2013-12-04
ISS038-E-011718 (4 Dec. 2013) --- The Expedition 38 crew members participate in an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak. Pictured in the International Space Station?s Destiny laboratory are Russian cosmonaut Oleg Kotov (center), commander; NASA astronaut Michael Hopkins (left), Japan Aerospace Exploration Agency astronaut Koichi Wakata, flight engineers.
2013-12-04
ISS038-E-011716 (4 Dec. 2013) --- The Expedition 38 crew members participate in an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak. Pictured in the International Space Station?s Destiny laboratory are Russian cosmonaut Oleg Kotov (left), commander; NASA astronaut Michael Hopkins (bottom), Japan Aerospace Exploration Agency astronaut Koichi Wakata (center) and Russian cosmonaut Sergey Ryazanskiy, all flight engineers.
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Pilot Doug Hurley smiles after practicing driving the M-113 armored personnel carrier. The crew members of space shuttle Endeavour's STS-127 mission will each practice driving the M-113 in turn as part of their training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Commander Mark Polansky smiles after practicing driving the M-113 armored personnel carrier. The crew members of space shuttle Endeavour's STS-127 mission will each practice driving the M-113 in turn as part of their training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Akihiko Hoshide takes his place in the M113 armored personnel carrier, to practice driving as part of emergency training. He and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Ron Garan is pleased with his driving practice in the M113 armored personnel carrier, part of emergency training. He and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Commander Mark Kelly is ready to practice driving the M113 armored personnel carrier as part of emergency training. He and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Mike Fossum stands ready to practice driving the M113 armored personnel carrier as part of emergency training. He and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Greg Chamitoff stands ready to practice driving the M113 armored personnel carrier as part of emergency training. He and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
STS-99 crew practice driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Gerhard Thiele, who is with the European Space Agency, is ready to practice driving an armored personnel carrier that is part of emergency egress training and could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
STS 61-A crew during emergency egress training
NASA Technical Reports Server (NTRS)
1985-01-01
STS 61-A crew during emergency egress training. Henry W. Hartsfield Jr., STS 61-A mission commander, uses a Sky-Genie to practice emergency egress from a Shuttle vehicle. This training was held in the Shuttle mockup and integration laboratory (41244); Ernst Messerschmid, German payload specialist, goes through a rehearsal of procedures involved in preparing for launch and landing aboard the Shuttle. Briefing Messerschmid is Alan N. Rochford (41245); Descending from a simulated Shuttle orbiter, using a Sky-Genie device, is Astronaut Henry M. Hartsfield, Jr. Watching in blue flight garments are other members of the crew. They are, left to right, Ernst Messerschmid, German payload specialist; James F. Buchli, mission specialist; Bonnie J. Dunbar, mission specialist; Wubbo J. Ockels, Dutch payload specialist.
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Karen Nyberg is ready to begin driving practice in the M113 armored personnel carrier, part of emergency training. Behind her is Pilot Ken Ham. She and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Pilot Ken Ham stands ready to practice driving the M113 armored personnel carrier as part of emergency training. Behind him is Mission Specialist Karen Nyberg. Ham and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
STS-101 Mission Specialists Helms, Usachev and Voss practice emergency exit
NASA Technical Reports Server (NTRS)
2000-01-01
As part of Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew practices emergency egress from the orbiter at the 195-foot level of the Fixed Service Structure. Shown heading down the easily identified exit path, known as the 'yellow brick road,' are Mission Specialists Susan J. Helms (leading), Yuri Usachev of Russia and James Voss. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS- 101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight to the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Rex Walheim, at right, practices driving an M-113 armored personnel carrier as the instructor beside him monitors his performance. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Commander Stephen Frick takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Pilot Alan Poindexter takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Leland Melvin takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Hans Schlegel, of the European Space Agency, takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
STS-99 crew practice driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Pilot Dominic Gorie , is ready to practice driving an armored personnel carrier that is part of emergency egress training and could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Behind him (left) is Mission Specialist Gerhard Thiele, who is with the European Space Agency. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
Dahl, Eilif
2005-01-01
To describe the medical practice of one physician and two nurses during a 106-day westward cruise from Los Angeles to New York in 2004 with an average of 464 passengers (51% women) and 615 crew (22% women) aboard. Patient data were registered continuously and reviewed after the voyage. There were 4244 recorded patient contacts (=40 per day), 2866 of which directly involved the doctor (=27 per day). Passengers accounted for 59% of the doctor consultations, while crew accounted for 59% of the nurse consultations. The most frequent consultation cause was respiratory illness (19%) in passengers and skin disorders (27%) in crew. Among 101 reported injuries (56 passengers, 45 crew) wound was the most common type (passengers 41%, crew 40%). The most frequent accident location for passengers was ashore (27%) and for crew galleys aboard (31%). 133 crew were on sick leave for a total of 271 days, and seven were medically signed off, six of them following injuries. Seven passengers and 13 crew were referred to dentists ashore, five passengers and two crew were referred to medical specialists ashore and returned to the ship, while seven passengers and one crew were hospitalized in port. The medical staff on long voyages will have a busy general practice. Broad experience in emergency and general medicine, good communication skills and previous cruise experience are useful qualifications. While the ACEP PREP may be sufficient for shorter cruises, additional equipment is recommended for long voyages.
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Ron Garan practices driving the M113 armored personnel carrier as part of emergency training. At center is the Battalion Chief George Hoggard, providing instruction. Behind Garan is Pilot Ken Ham. They and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Mission Specialist Patrick Forrester (right) waits his turn to practice driving an M-113 armored personnel carrier as fellow crew members look on. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2008-02-23
KENNEDY SPACE CENTER, FLA. -- At NASA Kennedy Space Center's Launch Complex 39, STS-123 Mission Specialist Takao Doi of the Japan Aerospace Exploration Agency takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The crew members of space shuttle Endeavour's STS-123 mission will each practice driving the M-113 in turn as part of his training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The STS-123 crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. Endeavour's seven astronauts arrived at Kennedy's Shuttle Landing Facility in their T-38 training aircraft between 10:45 and 10:58 a.m. EST. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2001-11-07
KENNEDY SPACE CENTER, Fla. - Astronaut E. Michael Fincke is ready to practice driving an M-113 armored personnel carrier. Fincke is a backup crew member for the International Space Station Expedition 4 crew, who are flying on Space Shuttle Endeavour as part of mission STS-108. Both the mission crew and Expedition 4 crews are at KSC for Terminal Countdown Demonstration Test activities. The TCDT includes emergency exit from the launch pad and a simulated launch countdown. The 11-day mission will also carry the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. STS-108 is scheduled to launch Nov. 29
Mitropoulos, Panagiotis Takis; Cupido, Gerardo
2009-01-01
In construction, the challenge for researchers and practitioners is to develop work systems (production processes and teams) that can achieve high productivity and high safety at the same time. However, construction accident causation models ignore the role of work practices and teamwork. This study investigates the mechanisms by which production and teamwork practices affect the likelihood of accidents. The paper synthesizes a new model for construction safety based on the cognitive perspective (Fuller's Task-Demand-Capability Interface model, 2005) and then presents an exploratory case study. The case study investigates and compares the work practices of two residential framing crews: a 'High Reliability Crew' (HRC)--that is, a crew with exceptional productivity and safety over several years, and an average performing crew from the same company. The model explains how the production and teamwork practices generate the work situations that workers face (the task demands) and affect the workers ability to cope (capabilities). The case study indicates that the work practices of the HRC directly influence the task demands and match them with the applied capabilities. These practices were guided by the 'principle' of avoiding errors and rework and included work planning and preparation, work distribution, managing the production pressures, and quality and behavior monitoring. The Task Demand-Capability model links construction research to a cognitive model of accident causation and provides a new way to conceptualize safety as an emergent property of the production practices and teamwork processes. The empirical evidence indicates that the crews' work practices and team processes strongly affect the task demands, the applied capabilities, and the match between demands and capabilities. The proposed model and the exploratory case study will guide further discovery of work practices and teamwork processes that can increase both productivity and safety in construction operations. Such understanding will enable training of construction foremen and crews in these practices to systematically develop high reliability crews.
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Stanley Love, at right, practices driving an M-113 armored personnel carrier as the instructor behind him monitors his performance. Former astronaut Jerry Ross, chief of the Vehicle Integration Test Office at NASA Johnson Space Center, enjoys the ride in back. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Mission Specialist Tim Kopra practices driving the M-113 armored personnel carrier, which is part of the training on emergency egress procedures. Other crew members are seated behind him and will take their turns at driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
STS-99 crew practice driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Commander Kevin Kregel is ready to practice driving the M- 113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
STS-99 crew practice driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) is ready to practice driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M- 113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
STS-99 crew practice driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
Under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, STS-99 Commander Kevin Kregel practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
2013-12-04
ISS038-E-011708 (4 Dec. 2013) --- In the International Space Station?s Zvezda Service Module, Russian cosmonaut Sergey Ryazanskiy, Expedition 38 flight engineer, reads a procedures checklist during an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak.
14 CFR 27.805 - Flight crew emergency exits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight crew emergency exits. 27.805 Section... § 27.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the rotorcraft or...
14 CFR 29.805 - Flight crew emergency exits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight crew emergency exits. 29.805 Section... Accommodations § 29.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the...
14 CFR 29.805 - Flight crew emergency exits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight crew emergency exits. 29.805 Section... Accommodations § 29.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the...
14 CFR 27.805 - Flight crew emergency exits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight crew emergency exits. 27.805 Section... § 27.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the rotorcraft or...
2015-07-28
ISS044E025035 (07/29/2015) --- NASA astronaut Kjell Lindgren wears protective breathing apparatus that would be used in the unlikely event of a fire or hazardous chemical leak inside the pressurized air volume of the International Space Station. Familiarization of safety and emergency equipment is standard practice for all newly arrived crew members.
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Mission Specialist Christopher Cassidy is ready to take the wheel to practice driving the M-113 armored personnel carrier, which is part of the training on emergency egress procedures. The crew members of space shuttle Endeavour's STS-127 mission are taking turns driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2007-02-22
KENNEDY SPACE CENTER, FLA. -- At the 195-foot level of the fixed service structure on Launch Pad 39A, STS-117 crew members receive instruction on emergency egress during Terminal Countdown Demonstration Test activities. From left are Commander Rick Sturckow, Mission Specialist Danny Olivas and Pilot Lee Archambault. They and other crew members are practicing the emergency egress procedure using the slidewire basket system to get off the pad. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
STS-99 crew practice driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Mission Specialist Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, practices driving an armored personnel carrier under the watchful eye of Capt. George Hoggard (riding on the front), trainer with the KSC Fire Department. The vehicle is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities and could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Riding in the rear of the carrier are Mission Specialists Gerhard Thiele (center), Janice Voss (Ph.D.), and Commander Kevin Kregel. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station- derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
2013-12-04
ISS038-E-011710 (4 Dec. 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Michael Hopkins (foreground) and Japan Aerospace Exploration Agency astronaut Koichi Wakata, both Expedition 38 flight engineers, participate in an emergency simulation drill with participation from flight controllers on the ground. During the exercise, the crew practiced emergency communication and procedures in response to a predetermined scenario such as pressure leak.
STS-99 crew practice driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Janice Voss (Ph.D.) is ready to practice driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M- 113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. In the rear (right) is Commander Kevin Kregel. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
2009-06-02
CAPE CANAVERAL, Fla. – The STS-127 crew members sit in the M-113 armored personnel carrier for instructions on driving the M-113 as part of their training on emergency egress procedures. On the left are Commander Mark Polansky and Mission Specialists Tom Marshburn, Julie Payette and Dave Wolf (behind Payette). On the right are Mission Specialist Christopher Cassidy, Pilot Doug Hurley and Mission Specialist Tim Kopra. The crew members of space shuttle Endeavour's STS-127 mission will each practice driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2015-07-28
ISS044E025035 (07/29/2015) --- NASA astronaut Kjell Lindgren prepares to don protective breathing apparatus that would be used in the unlikely event of a fire or hazardous chemical leak inside the pressurized air volume of the International Space Station. Familiarization of safety and emergency equipment is standard practice for all newly arrived crew members.
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Mission Specialist Christopher Cassidy practices driving the M-113 armored personnel carrier, which is part of the training on emergency egress procedures. Other crew members seated behind him are Mission Specialist Julie Payette, Dave Wolf, Tom Marshburn and Pilot Doug Hurley, who will take their turns at driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Commander Rick Sturckow signals that he is ready to practice driving an M-113 armored personnel carrier. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Mission Specialist Patrick Forrester is helmeted and ready to practice driving an M-113 armored personnel carrier. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Pilot Lee Archambault is helmeted and ready to practice driving an M-113 armored personnel carrier. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Mission Specialist Danny Olivas is helmeted and ready to practice driving an M-113 armored personnel carrier. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Mission Specialist Julie Payette takes her turn practice driving the M-113 armored personnel carrier, which is part of the training on emergency egress procedures. Payette represents the Canadian Space Agency. Behind her is Pilot Doug Hurley. The crew members of space shuttle Endeavour's STS-127 mission are taking turns driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Mission Specialist Steven Swanson is helmeted and ready to practice driving an M-113 armored personnel carrier. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Mission Specialist James Reilly is helmeted and ready to practice driving an M-113 armored personnel carrier. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
STS-103 crew practice emergency egress in the slidewire basket
NASA Technical Reports Server (NTRS)
1999-01-01
In the slidewire basket on Launch Pad 39B, STS-103 Mission Specialist Steven L. Smith reaches for the lever that will release the basket. With Smith is fellow crew member Mission Specialist Jean-Frangois Clervoy of France. The baskets are part of the emergency egress system for persons in the Shuttle vehicle or on the Rotating Service Structure. Seven slidewires extend from the orbiter access arm, with a netted, flatbottom basket suspended from each wire. The STS-103 crew are taking part in Terminal Countdown Demonstration Test (TCDT) activities in preparation for launch. The other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
NASA Technical Reports Server (NTRS)
2003-01-01
The crew of Space Shuttle Atlantis on STS-114 is seen conducting several training exercises in preparation for their mission. The crew consists of Commander Eileen Collins, Pilot James Kelly, and Mission Specialists Soichi Noguchi and Stephen Robinson. With them are Yuri Malenchenko, Sergei Moschenko, and Edward Lu, the intended Expedition 7 crew of the International Space Station (ISS). During extravehicular activity (EVA) training in the virtual reality (VR) laboratory, crew members explore the exterior of the ISS, seen on a monitor. Suiting up with VR equipment is also shown. More EVA training takes place in the Neutral Buoyancy Laboratory (NBL). Here the astronauts are suited up for the NBL pool, and lowered into the water on a platform. After a crew photo session, the astronauts are seated in the Motion Base Simulator in their flight suits. The simulator is shown rocking side-to-side. The crew also hears a hands-on explanation of EVA preparations in the ISS airlock, and practices emergency egress from the CCT, a simulator shaped like an orbiter.
STS-47 MS Jemison extends side hatch mockup CES pole during JSC training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison extends crew escape system (CES) pole through a side hatch mockup during launch emergency egress (bailout) training in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. MS Jerome Apt (right) looks on. The crewmembers practiced extending the CES pole prior to donning their launch and entry suits (LESs) and conducting the simulation in the Crew Compartment Trainer (CCT).
STS-38 MS Springer climbs through CCT side hatch prior to egress training
1990-03-05
STS-38 Mission Specialist (MS) Robert C. Springer, wearing launch and entry suit (LES), climbs through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Springer will practice emergency egress through the side hatch using the crew escape system (CES) pole (at Springer's left). The inflated safety cushion under Springer will break his fall as he rolls out of the side hatch.
STS-38 MS Springer climbs through CCT side hatch prior to egress training
NASA Technical Reports Server (NTRS)
1990-01-01
STS-38 Mission Specialist (MS) Robert C. Springer, wearing launch and entry suit (LES), climbs through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Springer will practice emergency egress through the side hatch using the crew escape system (CES) pole (at Springer's left). The inflated safety cushion under Springer will break his fall as he rolls out of the side hatch.
STS-99 crew practice driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Pilot Dominic Gorie, under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Riding in the rear are Mission Specialists Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, Janet Lynn Kavandi (Ph.D.) and Janice Voss (Ph.D.). TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
STS-93 crew members take part in an emergency egress exercise
NASA Technical Reports Server (NTRS)
1999-01-01
During an emergency egress exercise at the launch pad, Pilot Jeffrey S. Ashby (left) and Commander Eileen M. Collins (right) practice getting into the slidewire basket that is part of an emergency escape route for persons in the Shuttle and on the Rotating Service Structure. The STS-93 crew has been taking part in Terminal Countdown Demonstration Test (TCDT) activities that include the emergency exit training and a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Mission Specialists Catherine G. Coleman (Ph.D.), Steven A. Hawley (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.
STS-99 crew practice driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-99 Mission Specialist Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, smiles during training on the M-113, an armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
STS-38 Pilot Culbertson rolls through CCT side hatch during egress training
NASA Technical Reports Server (NTRS)
1990-01-01
STS-38 Pilot Frank L. Culbertson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), rolls through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Assisted by technicians, Culbertson practices emergency egress through the side hatch using the crew escape system (CES) pole which extends out the side hatch. The inflated safety cushion breaks Culbertson's fall as he rolls out of the side hatch.
STS-38 Pilot Culbertson rolls through CCT side hatch during egress training
1990-03-05
STS-38 Pilot Frank L. Culbertson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), rolls through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Assisted by technicians, Culbertson practices emergency egress through the side hatch using the crew escape system (CES) pole which extends out the side hatch. The inflated safety cushion breaks Culbertson's fall as he rolls out of the side hatch.
2006-08-07
KENNEDY SPACE CENTER, FLA. - STS-115 Commander Brent Jett introduces his crew to waiting media at KSC's Shuttle Landing Facility after their arrival from Houston. The STS-115 crew has flown to NASA's Kennedy Space Center to take part in Terminal Countdown Demonstration Test activities. The TCDT is a pre-launch preparation that includes practicing emergency egress from the pad, driving an M-113 armored personnel carrier, and simulating the launch countdown. Launch of STS-115 is currently scheduled for Aug. 27. Photo credit: NASA/George Shelton
Hicks, Christopher M; Kiss, Alex; Bandiera, Glen W; Denny, Christopher J
2012-11-01
Emergency department resuscitation requires the coordinated efforts of an interdisciplinary team. Aviation-based crisis resource management (CRM) training can improve safety and performance during complex events. We describe the development, piloting, and multilevel evaluation of "Crisis Resources for Emergency Workers" (CREW), a simulation-based CRM curriculum for emergency medicine (EM) residents. Curriculum development was informed by an a priori needs assessment survey. We constructed a 1-day course using simulated resuscitation scenarios paired with focused debriefing sessions. Attitudinal shifts regarding team behaviours were assessed using the Human Factors Attitude Survey (HFAS). A subset of 10 residents participated in standardized pre- and postcourse simulated resuscitation scenarios to quantify the effect of CREW training on our primary outcome of CRM performance. Pre/post scenarios were videotaped and scored by two blinded reviewers using a validated behavioural rating scale, the Ottawa CRM Global Rating Scale (GRS). Postcourse survey responses were highly favourable, with the majority of participants reporting that CREW training can reduce errors and improve patient safety. There was a nonsignificant trend toward improved team-based attitudes as assessed by the HFAS (p = 0.210). Postcourse performance demonstrated a similar trend toward improved scores in all categories on the Ottawa GRS (p = 0.16). EM residents find simulation-based CRM instruction to be useful, effective, and highly relevant to their practice. Trends toward improved performance and attitudes may have arisen because our study was underpowered to detect a difference. Future efforts should focus on interdisciplinary training and recruiting a larger sample size.
On the practicality of emergency surgery during long-duration space missions.
Dawson, David L
2008-07-01
While discussions of the practicality of surgery in space often focus on technical issues, such as adapting instrumentation and procedures for use in microgravity, programmatic issues need to be addressed if meaningful capabilities for emergency surgery are to be considered for human exploration missions beyond low Earth orbit. Advanced technologies that have been evaluated, including simulation-enhanced training, telementoring, or robotic assistance, might help prepare or augment a crew medical officer, but a physician with advanced training and relevant experience will be needed if surgical capabilities beyond basic emergency aid are to be considered. Specific operational roles for physician-astronauts should be established.
STS-103 crew practice emergency egress in the slidewire basket
NASA Technical Reports Server (NTRS)
1999-01-01
In the slidewire basket on Launch Pad 39B, STS-103 Mission Specialists Jean-Frangois Clervoy of France (left) and Steven L. Smith take a break to pose for the photographer. The baskets are part of the emergency egress system for persons in the Shuttle vehicle or on the Rotating Service Structure. Seven slidewires extend from the orbiter access arm, with a netted, flatbottom basket suspended from each wire. The STS-103 crew are taking part in Terminal Countdown Demonstration Test (TCDT) activities in preparation for launch. The other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
STS-103 crew practice emergency egress in the slidewire basket
NASA Technical Reports Server (NTRS)
1999-01-01
In the slidewire basket on Launch Pad 39B, STS-103 Commander Curtis L. Brown Jr. (left) and Pilot Scott J. Kelly (right) adjust their equipment. The baskets are part of the emergency egress system for persons in the Shuttle vehicle or on the Rotating Service Structure. Seven slidewires extend from the orbiter access arm, with a netted, flatbottom basket suspended from each wire. The other crew members are Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, with the European Space Agency (ESA), and Jean-Frangois Clervoy of France, also with ESA.. The STS-103 crew are taking part in Terminal Countdown Demonstration Test (TCDT) activities in preparation for launch. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Andrew Thomas is ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Pilot James Kelly is ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, the STS-114 Mission Specialist Wendy Lawrence is getting ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Stephen Robinson is getting ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
STS-103 crew practice emergency egress in the slidewire basket
NASA Technical Reports Server (NTRS)
1999-01-01
Standing left to right, STS-103 Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialist Jean-Frangois Clervoy of France take a break during practice using the slidewire baskets, part of Terminal Countdown Demonstration Test (TCDT) activities in preparation for launch. The other crew members taking part are Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. The baskets are part of the emergency egress system for persons in the Shuttle vehicle or on the Rotating Service Structure. Seven slidewires extend from the orbiter access arm, with a netted, flatbottom basket suspended from each wire. The TCDT also provides the crew with opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
STS-92 Mission Specialist Wakata takes his turn driving the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
With Capt. George Hoggard, trainer with the KSC Fire Department, riding on top, Mission Specialist Koichi Wakata of Japan practices driving the M-113, part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Riding in the back (on the left) are other crew members, waiting their turn to drive. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
2006-06-13
KENNEDY SPACE CENTER, FLA. - During a break in the rain storms from Tropical Storm Alberto, the STS-121 crew arrives at NASA's Kennedy Space Center aboard a Grumman G2 aircraft to take part in a Terminal Countdown Demonstration Test, or TCDT. Greeting the crew is Shuttle Launch Director Mike Leinbach, here shaking hands with Mission Specialist Thomas Reiter, who represents the European Space Agency. Other crew members are Mission Commander Steven Lindsey, Pilot Mark Kelly, and Mission Specialists Piers Sellers, Michael Fossum, Lisa Nowak and Stephanie Wilson. Over several days, the crew will practice emergency egress from the pad and suit up in their orange flight suits for the simulated countdown to launch. Space Shuttle Discovery is designated to launch July 1 on mission STS-121. It will carry supplies to the International Space Station. Photo credit: NASA/Kim Shiflett
STS-113 crew during M-113 armored personnel carrier training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Donald Pettit stands ready for a practice drive in an M-113 armored personnel carrier during emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.
STS-113 crew during M-113 armored personnel carrier training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- During emergency egress training at the pad, Expedition 6 crew member Donald Pettit stands inside an M-113 armored personnel carrier before his practice drive. The training is part of Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.
STS-113 crew during M-113 armored personnel carrier training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Commander James Wetherbee practices driving an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.
STS-113 crew during M-113 armored personnel carrier training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Nikolai Budarin stands ready for a practice drive in an M-113 armored personnel carrier during emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.
STS-32 MS Dunbar wearing LES prepares for WETF water egress training
NASA Technical Reports Server (NTRS)
1989-01-01
STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES), orange parachute harness and life vest, is briefed on emergency egress procedures in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress. The crewmembers will simulate parachuting into water by using the WETF's nearby 25 ft deep pool.
The Challenge of Aviation Emergency and Abnormal Situations
NASA Technical Reports Server (NTRS)
Burian, Barbara K.; Barshi, Immanuel; Dismukes, Key
2005-01-01
Emergency and abnormal situations occur on flights everyday around the world. They range from minor situations readily managed to extremely serious and highly time-critical situations that deeply challenge the skills of even the most effective crews. How well crews respond to these situations is a function of several interacting sets of issues: (1) the design of non-normal procedures and checklists, (2) design of aircraft systems and automation, (3) specific aspects of the non-normal situation, such as time criticality and complexity of the situation, (4) human performance capabilities and cognitive limitations under high workload and stress, (5) design of training for non-normal situations, (6) philosophies, policies and practices within the industry, and (7) economic and regulatory constraints. Researchers and pilots working on NASA's Emergency and Abnormal Situations project are addressing these issues in a long-range study. In this paper we discuss these issues and illustrate them with examples from recent incidents and accidents.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members assess medical needs on “injured” astronauts removed from the orbiter crew compartment mock-up during a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
1999-04-27
STS-96 Mission Specialist Julie Payette (right) practices driving a small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. At left are Mission Specialist Valery Ivanovich Tokarev, with the Russian Space Agency, and Pilot Rick Douglas Husband. Payette is with the Canadian Space Agency. Riding on the front of the carrier is Capt. Steve Kelly, with Space Gateway Support, who is assisting the crew with their training. Other crew members are Commander Kent V. Rominger and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), and Daniel Barry (M.D., Ph.D.). Mission STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
STS-103 crew practice emergency egress in the slidewire basket
NASA Technical Reports Server (NTRS)
1999-01-01
In the slidewire basket on Launch Pad 39B, STS-103 Mission Specialist C. Michael Foale (Ph.D.) gets ready to pull the lever, which will release the basket. With Foale are fellow crew members Mission Specialists Claude Nicollier of Switzerland and John M. Grunsfeld (Ph.D.). The baskets are part of the emergency egress system for persons in the Shuttle vehicle or on the Rotating Service Structure. Seven slidewires extend from the orbiter access arm, with a netted, flatbottom basket suspended from each wire. The STS-103 crew are taking part in Terminal Countdown Demonstration Test (TCDT) activities in preparation for launch. The other crew members taking part are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, and Jean-Frangois Clervoy of France. Clervoy and Nicollier are with the European Space Agency. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
2001-11-07
KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Daniel M. Tani is ready to practice driving an M-113 armored personnel carrier. He and other crew members are taking part in Terminal Countdown Demonstration Test activities, which include emergency exit from the launch pad and a simulated launch countdown. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour
2000-01-12
During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Gerhard Thiele, who is with the European Space Agency, is ready to practice driving an armored personnel carrier that is part of emergency egress training and could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
2000-01-12
During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Pilot Dominic Gorie , is ready to practice driving an armored personnel carrier that is part of emergency egress training and could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Behind him (left) is Mission Specialist Gerhard Thiele, who is with the European Space Agency. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
2008-05-07
CAPE CANAVERAL, Fla. -- After completing M113 driving practice, the STS-124 crew stands in front of the armored personnel carrier for a photo. From left are Commander Mark Kelly, Mission Specialists Mike Fossum, Karen Nyberg and Ron Garan, Pilot Ken Ham, and Mission Specialists Akihiko Hoshide and Greg Chamitoff. They are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members lower a volunteer “astronaut” from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer “astronauts” who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Commander Eileen Collins gets ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Behind her is Capt. George Hoggard, who is astronaut rescue team leader. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Stephen Robinson (right) practices driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. At left is Capt. George Hoggard, who is astronaut rescue team leader. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
2007-02-22
KENNEDY SPACE CENTER, FLA. -- At the 195-foot level of the fixed service structure on Launch Pad 39A, STS-117 crew members receive instruction on emergency egress during Terminal Countdown Demonstration Test activities. From left are Mission Specialist Danny Olivas, Commander Rick Sturckow, Pilot Lee Archambault, and Mission Specialists James Reilly, Steven Swanson and Patrick Forrester. They are practicing the emergency egress procedure using the slidewire basket system to get off the pad. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
2004-02-18
KENNEDY SPACE CENTER, FLA. - A rescue team carries an “injured” astronaut toward the helicopter for transportation to a local hospital. They are all taking part in a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members on the ground take hold of a volunteer “astronaut” lowered from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members help a volunteer “astronaut” onto the ground after being lowered from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
STS-99 crew check out emergency egress equipment at launch pad during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
At Launch Pad 39A, STS-99 Mission Specialists Gerhard Thiele (Ph.D.), of the European Space Agency (in front), and Janet Kavandi (Ph.D.) prepare to practice emergency egress procedures with a slidewire basket. Seven slidewires, with flatbottom baskets suspended from each wire, extend from the Fixed Service Structure at the orbiter access arm level. These baskets could provide an escape route for the astronauts until the final 30 seconds of the countdown in case of an emergency. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
2007-11-18
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Leopold Eyharts of the European Space Agency, in front, practices driving an M-113 armored personnel carrier as the instructor, in the helmet beside him, monitors his performance. Eyharts will remain on the International Space Station as a flight engineer for Expedition 16 following the STS-122 mission. In back from left, former astronaut Jerry Ross, chief of the Vehicle Integration Test Office at NASA Johnson Space Center, and STS-122 Mission Specialists Leland Melvin, Stanley Love (standing) and Hans Schlegel of the European Space Agency, are along for the ride. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
STS-36 Commander Creighton in LES outside CCT side hatch during JSC training
NASA Technical Reports Server (NTRS)
1989-01-01
Standing on an inflated cushion outside the side hatch of the crew compartment trainer (CCT), STS-36 Commander John O. Creighton, wearing launch and entry suit (LES), smiles before climbing into the shuttle mockup. The crew escape system (CES) pole extends beyond the side hatch opening. Mission Specialist (MS) Richard M. Mullane is seen at the lower corner of the frame rolling on the safety cushion. CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. The crewmembers are practicing egress procedures that might be necessary in the event of an emergency aboard the shuttle.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members transport an “injured” astronaut during a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2002-10-16
KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Nikolai Budarin stands ready for a practice drive in an M-113 armored personnel carrier during emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.
2008-05-06
CAPE CANAVERAL, Fla. -- After their arrival at NASA Kennedy Space Center's Shuttle Landing Facility, the crew of space shuttle Discovery's STS-124 mission gather for a group photo. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, or TCDT. From left are Mission Specialist Greg Chamitoff, Pilot Ken Ham, Mission Specialist Karen Nyberg, Commander Mark Kelly and Mission Specialists Ron Garan, Mike Fossum and Akihiko Hoshide, who represents the Japan Aerospace Exploration Agency, or JAXA. TCDT is a rehearsal for launch that includes practicing emergency procedures, handling on-orbit equipment, and simulating a launch countdown. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
STS-93 crew practices emergency egress training from Launch Pad 39B
NASA Technical Reports Server (NTRS)
1999-01-01
The STS-93 crew pose in front of an M-113, an armored personnel carrier, before emergency egress training from the launch pad. From left are Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, Mission Specialist Michel Tognini of France, Commander Eileen M. Collins and Mission Specialist Catherine G. Coleman. Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS- 93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X- ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe.
2006-08-08
KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Daniel Burbank is ready to practice driving the M-113 armored personnel carrier. The STS-115 crew are at NASA's Kennedy Space Center for Terminal Countdown Demonstration Test activities such as the M-113 training. They will also practice emergency egress from the launch pad and take part in a simulated launch countdown. Liftoff of mission STS-115 aboard Space Shuttle Atlantis is scheduled in a window beginning Aug. 27. Photo credit: NASA/Cory Huston
2006-08-08
KENNEDY SPACE CENTER, FLA. - STS-115 Pilot Christopher Ferguson is ready to practice driving the M-113 armored personnel carrier. The STS-115 crew are at NASA's Kennedy Space Center for Terminal Countdown Demonstration Test activities such as the M-113 training. They will also practice emergency egress from the launch pad and take part in a simulated launch countdown. Liftoff of mission STS-115 aboard Space Shuttle Atlantis is scheduled in a window beginning Aug. 27. Photo credit: NASA/Cory Huston
The Evolution of On-Board Emergency Training for the International Space Station Crew
NASA Technical Reports Server (NTRS)
LaBuff, Skyler
2015-01-01
The crew of the International Space Station (ISS) receives extensive ground-training in order to safely and effectively respond to any potential emergency event while on-orbit, but few people realize that their training is not concluded when they launch into space. The evolution of the emergency On- Board Training events (OBTs) has recently moved from paper "scripts" to an intranet-based software simulation that allows for the crew, as well as the flight control teams in Mission Control Centers across the world, to share in an improved and more realistic training event. This emergency OBT simulator ensures that the participants experience the training event as it unfolds, completely unaware of the type, location, or severity of the simulated emergency until the scenario begins. The crew interfaces with the simulation software via iPads that they keep with them as they translate through the ISS modules, receiving prompts and information as they proceed through the response. Personnel in the control centers bring up the simulation via an intranet browser at their console workstations, and can view additional telemetry signatures in simulated ground displays in order to assist the crew and communicate vital information to them as applicable. The Chief Training Officers and emergency instructors set the simulation in motion, choosing the type of emergency (rapid depressurization, fire, or toxic atmosphere) and specific initial conditions to emphasize the desired training objectives. Project development, testing, and implementation was a collaborative effort between ISS emergency instructors, Chief Training Officers, Flight Directors, and the Crew Office using commercial off the shelf (COTS) hardware along with simulation software created in-house. Due to the success of the Emergency OBT simulator, the already-developed software has been leveraged and repurposed to develop a new emulator used during fire response ground-training to deliver data that the crew receives from the handheld Compound Specific Analyzer for Combustion Products (CSA-CP). This CSA-CP emulator makes use of a portion of codebase from the Emergency OBT simulator dealing with atmospheric contamination during fire scenarios, and feeds various data signatures to crew via an iPod Touch with a flight-like CSA-CP display. These innovative simulations, which make use of COTS hardware with custom in-house software, have yielded drastic improvements to emergency training effectiveness and risk reduction for ISS crew and flight control teams during on-orbit and ground training events.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A rescue team carries an injured astronaut toward the helicopter for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock- up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
STS-113 crew during M-113 armored personnel carrier training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Expedition 6 Commander Ken Bowersox stands ready for a practice drive in an M-113 armored personnel carrier during emergency egress training at the pad, one of the Terminal Countdown Demonstration Test activities in preparation for launch. The TCDT also includes a simulated launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members rescue an astronaut from inside the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members rescue an injured astronaut from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members assess medical needs on injured astronauts removed from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members transport an injured astronaut during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help an injured astronaut after removing him from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help an injured astronaut who was removed from the orbiter crew compartment mock- up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crews leave the scene after a helicopter removed rescued astronauts from the scene. They are taking part in a Mode VII emergency landing simulation at Kennedy Space Center, in order to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside an orbiter crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help an injured astronaut from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. Another is on the ground. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members rescue an injured astronaut from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2007-02-22
KENNEDY SPACE CENTER, FLA. -- In the Launch Pad 39A area, Mission STS-117 crew members receive instruction on emergency egress using the slidewire basket system during Terminal Countdown Demonstration Test activities. Here, Mission Specialists Steven Swanson (left) and Danny Olivas (right) practice exiting from the slidewire basket. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
2007-02-22
KENNEDY SPACE CENTER, FLA. -- In the Launch Pad 39A area, Mission STS-117 crew members receive instruction on emergency egress using the slidewire basket system during Terminal Countdown Demonstration Test activities. Here, Mission Specialists Steven Swanson (left) and Danny Olivas (right) practice exiting from the slidewire basket. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
2007-02-22
KENNEDY SPACE CENTER, FLA. -- In the Launch Pad 39A area, Mission STS-117 crew members receive instruction on emergency egress using the slidewire basket system during Terminal Countdown Demonstration Test activities. Here, Mission Specialist Steven Swanson (right) practices exiting from the slidewire basket. as Mission Specialist Danny Olivas assists. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Charles Camarda is getting ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Behind him are Mission Specialist Stephen Robinson and Capt. George Hoggard, who is astronaut rescue team leader, and, at right, Commander Eileen Collins. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Soichi Noguchi is ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Behind him at left is Capt. George Hoggard, who is astronaut rescue team leader. Noguchi is with the Japan Aerospace Exploration Agency.The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
2004-02-18
KENNEDY SPACE CENTER, FLA. - A helicopter approaches an orbiter crew compartment mock-up as part of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer “astronauts” simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
Orasanu, Judith
1991-01-01
Aircrew effectiveness in coping with emergencies has been linked to captain's personality profile. The present study analyzed cockpit communication during simulated flight to examine the relation between captains' discourse strategies, personality profiles, and crew performance. Positive Instrumental/Expressive captains and Instrumental-Negative captains used very similar communication strategies and their crews made few errors. Their talk was distinguished by high levels of planning and strategizing, gathering information, predicting/alerting, and explaining, especially during the emergency flight phase. Negative-Expressive captains talked less overall, and engaged in little problem solving talk, even during emergencies. Their crews made many errors. Findings support the theory that high crew performance results when captains use language to build shared mental models for problem situations.
2006-08-08
KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper is ready to practice driving the M-113 armored personnel carrier. Behind her is pilot Christopher Ferguson. The STS-115 crew are at NASA's Kennedy Space Center for Terminal Countdown Demonstration Test activities such as the M-113 training. They will also practice emergency egress from the launch pad and take part in a simulated launch countdown. Liftoff of mission STS-115 aboard Space Shuttle Atlantis is scheduled in a window beginning Aug. 27. Photo credit: NASA/Cory Huston
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members prepare to rescue another astronaut from inside the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members return to the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside the mock-up compartment. Rescuers have had to remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members on the ground take hold of a volunteer astronaut lowered from the top of the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members prepare to rescue another astronaut from inside the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help a volunteer astronaut onto the ground after being lowered from the top of the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members lower a volunteer astronaut from the top of the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
1999-04-27
Under the eye of Capt. Steve Kelly (left), with Space Gateway Support, Commander Kent V. Rominger gets ready to practice driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. At the rear is Douglas Hamilton, a Canadian flight surgeon. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
1999-04-27
While Capt. Steve Kelly, with Space Gateway Support, keeps watch from the top of the vehicle, STS-96 Pilot Rick Douglas Husband practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind them are (from left) Mission Specialist Daniel Barry (M.D., Ph.D.), Commander Kent V. Rominger and Mission Specialist Tamara E. Jernigan (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Mission Specialists Ellen Ochoa (Ph.D.), Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
1999-04-27
Under the guidance of Capt. Steve Kelly (left), with Space Gateway Support, STS-96 Mission Specialist Daniel Barry (right) practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. At the rear of the carrier are Pilot Rick Douglas Husband and Mission Specialists Tamara E. Jernigan (Ph.D.) and Ellen Ochoa (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
2000-01-12
Under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, STS-99 Commander Kevin Kregel practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
2000-01-12
Under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, STS-99 Commander Kevin Kregel practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
2000-01-12
During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Janice Voss (Ph.D.) is ready to practice driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. In the rear (right) is Commander Kevin Kregel. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
STS-103 M.S. Steven Smith during TCDT activities
NASA Technical Reports Server (NTRS)
1999-01-01
STS-103 Mission Specialist Steven L. Smith gets ready to practice driving a small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The other STS-103 crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.), (Ph.D.), and Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France, who are with the European Space Agency. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Volunteers from the KSC Fire-Rescue team dressed in launch and entry suits settle into seats in an orbiter crew compartment mock-up under the guidance of George Brittingham, USA suit technician on the Closeout Crew. Brittingham is helping Catherine Di Biase, a nurse with Bionetics Life Sciences. They are all taking part in a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer “astronauts” simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In a Mode VII emergency landing simulation at Kennedy Space Center, a helicopter crew helps rescued astronauts. The purpose of Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside an orbiter crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2000-04-07
KENNEDY SPACE CENTER, FLA. -- As part of Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew practices emergency egress from the orbiter at the 195-foot level of the Fixed Service Structure. Shown heading down the easily identified exit path, known as the "yellow brick road," are Mission Specialists Susan J. Helms (leading), Yury Usachev of Russia and James Voss. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight to the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A
2000-04-07
KENNEDY SPACE CENTER, FLA. -- As part of Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew practices emergency egress from the orbiter at the 195-foot level of the Fixed Service Structure. Shown heading down the easily identified exit path, known as the "yellow brick road," are Mission Specialists Susan J. Helms (leading), Yury Usachev of Russia and James Voss. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight to the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A
STS-32 MS Dunbar wearing LES floats in life raft during water egress training
1989-11-15
STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES) and lauch and entry helmet (LEH), in a single-occupant (one man) lift raft enlists the aid of two SCUBA-equipped divers as she floats in 25 ft deep pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress.
STS-32 MS Dunbar wearing LES floats in life raft during water egress training
NASA Technical Reports Server (NTRS)
1989-01-01
STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES) and lauch and entry helmet (LEH), in a single-occupant (one man) lift raft enlists the aid of two SCUBA-equipped divers as she floats in 25 ft deep pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress.
STS-65 PLC Hieb at mockup side hatch prepares to egress via an inflated slide
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Mission Specialist and Payload Commander (PLC) Richard J. Hieb, wearing launch and entry suit (LES) and launch and entry helmet (LEH), sits at the top of the inflated slide at the crew compartment trainer (CCT) side hatch and listens to a crew training staffer's instructions. Hieb practiced post landing emergency escape procedures along with his six STS-65 crewmates. The CCT is located in the Johnson Space Center's (JSC's) Mockup and Integration Laboratory (MAIL) Bldg 9NE. Hieb will join five NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
2009-10-19
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, STS-129 Mission Specialist Mike Foreman prepares to practice driving an M113 armored personnel carrier. The M113 is kept at the foot of the launch pad in case an emergency egress from the vicinity of the pad is needed. The crew members of space shuttle Atlantis' STS-129 mission are at Kennedy for training related to their launch dress rehearsal, the Terminal Countdown Demonstration Test. Launch of Atlantis on its STS-129 mission to the International Space Station is targeted for Nov. 16. For information on the STS-129 mission objectives and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett
STS-110 crew in M-113 personnel carrier during TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- With fellow crew members Mission Specialists Rex Walheim and Ellen Ochoa (waving her arm) and a trainer aboard, STS-110 Pilot Stephen Frick stirs up dust behind the M-113 armored personnel carrier as he practices driving it. The training is part of Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.
STS-112 crew during TCDT activities with M-113 carrier
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-112 Commander Jeffrey Ashby is ready for his practice run driving the M-113 armored personnel carrier. Ashby and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which include emergency egress training and driving the M-113. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.
Issues in life support and human factors in crew rescue from the ISS
NASA Technical Reports Server (NTRS)
Smart, K.
2001-01-01
The design and development of crew emergency response systems, particularly to provide an unplanned emergency return to Earth, requires an understanding of crew performance challenges in space. The combined effects of psychological and physiological adaptation during long-duration missions will have a significant effect on crew performance in the unpredictable and potentially life-threatening conditions of an emergency return to Earth. It is therefore important that the systems to be developed for emergency egress address these challenges through an integrated program to produce optimum productivity and safety in times of utmost stress. Fundamental to the success of the CRV is the Environmental Control and Life Support System (ECLSS), which provides the necessary conditions for the crew to survive their return mission in a shirtsleeve environment. This article will discuss the many issues in the design of an ECLSS system for CRV and place it in the context of the human performance challenges of the mission.
STS-26 crew during emergency egress exercise at LC 39 launch pad B
1988-05-04
S88-40898 (4 May 1988) --- Astronauts, members of the orbiter close-out crew and fire and rescue personnel participate in a simulated emergency egress exercise near the slide wire termination point bunker at Launch Pad 39B. The simulated exercise was performed to familiarize personnel with evacuation routes as well as emergency equipment and procedures. Reasons for conducting the emergency exercises include the need to validate recent post-Challenger upgrades to the launch pad's emergency escape system and the new procedures developed in preparation for STS-26. (NOTE: The astronaut pictured and many of the others who participated in the exercises are not members of STS-26 prime crew).
2004-02-18
KENNEDY SPACE CENTER, FLA. - An “injured” rescue worker is lifted into an M-113 armored personnel carrier provided for transportation during a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members transport an injured astronaut during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
STS-92 Mission Specialist Wakata completes his turn driving the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Koichi Wakata of Japan signals a successful driving lesson on the M-113 he is in. Capt. George Hoggard, trainer with the KSC Fire Department, sits on top. Behind Wakata are Commander Brian Duffy (left) and Leroy Chiao (right), waiting their turns. The practice drive is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
2000-09-13
STS-92 Mission Specialist Koichi Wakata of Japan signals a successful driving lesson on the M-113 he is in. Capt. George Hoggard, trainer with the KSC Fire Department, sits on top. Behind Wakata are Commander Brian Duffy (left) and Leroy Chiao (right), waiting their turns. The practice drive is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program
2017-11-02
NASA and Boeing personnel experience conditions during a water deluge test on the Crew Access Tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. The test gathered data on how launch site and astronaut crews would exit in the event of an emergency from the white room at the end of the crew access arm to the emergency escape system on the pad. Boeing’s Starliner will launch on a United Launch Alliance Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.
2017-11-02
NASA, Boeing and United Launch Alliance personnel run a water deluge test on the Crew Access Tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. The test gathered data on how launch site and astronaut crews would exit in the event of an emergency from the white room at the end of the crew access arm to the emergency escape system on the pad. Boeing’s Starliner will launch on a United Launch Alliance Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.
2017-11-02
NASA, Boeing and United Launch Alliance personnel begin a water deluge test on the Crew Access Tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. The test gathered data on how launch site and astronaut crews would exit in the event of an emergency from the white room at the end of the crew access arm to the emergency escape system on the pad. Boeing’s Starliner will launch on a United Launch Alliance Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.
STS-62 crew prepare for emergency egress training
1993-11-05
S93-48458 (5 Nov. 1993) --- In the Johnson Space Center's (JSC) Shuttle mockup and integration laboratory, the five crew members training for NASA's next mission are assisted in donning their partial pressure launch and entry suits. From left to right are astronaut John H. Casper, Andrew M. Allen, Pierre J. Thuot, Charles D. (Sam) Gemar and Marsha S. Ivins. Minutes later the crew was in the crew compartment trainer (CCT) rehearsing their scheduled March 1994 mission aboard the Space Shuttle Columbia. Launch, landing and emergency egress procedures were covered in the training session.
1999-04-27
STS-96 Mission Specialist Valery Ivanovich Tokarev practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Riding the front of the carrier is Capt. Steve Kelly (left), with Space Gateway Support, who is assisting with the training. Behind them are Pilot Rick Douglas Husband (waving), and Mission Specialists Daniel Barry (M.D., Ph.D.) and Tamara E. Jernigan (Ph.D.) (waving). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Ellen Ochoa (Ph.D.) and Julie Payette, with the Canadian Space Agency. Tokarev is with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
1999-04-27
At right, STS-96 Mission Specialist Tamara E. Jernigan (Ph.D.) practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. At left is Capt. Steve Kelly, with Space Gateway Support, who is assisting with the training. At the rear of the carrier are (left) Mission Specialist Julie Payette, with the Canadian Space Agency, and Commander Kent V. Rominger (right). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Daniel Barry (M.D., Ph.D.), and Valery Ivanovich Tokarev, who is with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
Astronaut Mary Ellen Weber during emergency bailout training at WETF
1995-02-16
S95-03469 (16 FEB 1995) --- Attired in a training version of the Shuttle launch and entry garment, astronaut Mary Ellen Weber gets help with the final touches of suit donning during a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Helping out is Rockwell's William L. Todd (right), while Staffon Isaacs looks on. Training as a mission specialist for the STS-70 mission, Weber was about to rehearse emergency bailout. The crew members made use of a nearby 25-feet deep pool to practice parachute landings in water and subsequent deployment of life rafts.
STS-102 crew poses on the FSS at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Three members of the STS-102 crew hurry to the slidewire baskets for emergency egress training. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
Orion Underway Recovery Test 5 (URT-5)
2016-10-29
A test version of the Orion crew module floats outside the well deck of the USS San Diego on the fourth day of Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy are practicing retrieving and securing the crew module in the well deck of the ship using tethers and a winch system to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
STS-47 Astronaut Crew at Pad B for TCDT, Emergency Egress Training, and Photo Opportunity
NASA Technical Reports Server (NTRS)
1992-01-01
The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri are seen during emergency egress training. Then Commander Gibson introduces the members of the crew and they each give a brief statement about the mission and answer questions from the press.
2008-05-06
CAPE CANAVERAL, Fla. -- Back at the NASA Kennedy Space Center Shuttle Landing Facility, STS-124 Pilot Ken Ham is happy with the successful space shuttle landing practice aboard NASA's Shuttle Training Aircraft, or STA. Building. Kelly and Ham will be practicing space shuttle landings. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. The crew for space shuttle Discovery's STS-124 mission is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test, or TCDT. Providing astronauts and ground crews with an opportunity to participate in various simulated countdown activities, TCDT includes equipment familiarization and emergency training. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During emergency egress training on Launch Pad 39A, Expedition Three cosmonaut Vladimir Nikolaevich Dezhurov, STS-105 Mission Specialist Patrick Forrester, and cosmonaut Mikhail Tyurin watch while other crew members descend in a slidewire basket. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
2004-02-18
KENNEDY SPACE CENTER, FLA. - In the Launch Control Center, officials monitor the “Mode VII” emergency landing simulation being conducted at Kennedy Space Center and managed and directed from the LCC. From left are Dr. Luis Moreno and Dr. David Reed, with Bionetics Life Sciences, and Dr. Philip Scarpa, with the KSC Safety, Occupational Health and Environment Division. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer “astronauts” who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Orion Underway Recovery Test 5 (URT-5)
2016-10-26
A test version of the Orion crew module is secured in the well deck of the USS San Diego for Underway Recovery Test 5 in the Pacific Ocean off the coast of California. In view is the winch system that will be used to help retrieve the crew module during a series of tests in open waters. NASA's Ground Systems Development and Operations Program and the U.S. Navy will practice retrieving and securing the crew module in the well deck of the ship using a set of tethers and the winch system to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
2002-05-15
KENNEDY SPACE CENTER, FLA. - The STS-111 and Expedition 5 crews pose on top of the M-113 armored personnel carrier they practiced driving during emergency egress training at the pad. Standing, left to right, are Mission Commander Kenneth Cockrell, Mission Specialist Philippe Perrin, Expedition 5 member Peggy Whitson, Pilot Paul Lockhart and Mission Specialist Franklin Chang-Diaz; in front are Expedition 5 members Sergei Treschev (left) and Commander Valeri Korzun (right). The crews are taking part in Terminal Countdown Demonstration Test activities at KSC, which include a simulated launch countdown. Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter approaches an orbiter crew compartment mock-up as part of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews will respond to the volunteer astronauts simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Cockpit and cabin crew coordination
DOT National Transportation Integrated Search
1988-02-01
Cockpit and cabin crew coordination is crucial not only in emergencies, but : also during normal operations. The purposes of this study were to determine the : status of crew coordination in the industry and to identify the implications for : flight ...
Cockpit and cabin crew coordination
DOT National Transportation Integrated Search
1988-02-28
Cockpit and cabin crew coordination is crucial not only in emergencies, but also during normal operations. The purposes of this study were to determine the status of crew coordination in the industry and to identify the implications for flight safety...
NASA Technical Reports Server (NTRS)
Woodruff, Kristin K.; Lee, Stuart M. C.; Greenisen, Michael C.; Schneider, Suzanne M.
2000-01-01
The two flight suits currently worn by crew members during Shuttle launch and landing, the Launch and Entry Suit (LES) and the Advanced Crew Escape Suit (ACES), are designed to protect crew members in the case of emergency. Although the Liquid Cooling Garment (LCG) worn under the flight suits was designed to counteract the heat storage of the suits, the suits may increase thermal stress and limit the astronaut's egress capabilities. The purpose of this study was to assess the thermal loads experienced by crew members during a simulated emergency egress before and after spaceflight. Comparisons of skin temperatures were made between the preflight unsuited and suited conditions. between the pre- and postflight suited conditions, and between the two flight suits.
Production practices affecting worker task demands in concrete operations: A case study.
Memarian, Babak; Mitropoulos, Panagiotis
2015-01-01
Construction work involves significant physical, mental, and temporal task demands. Excessive task demands can have negative consequences for safety, errors and production. This exploratory study investigates the magnitude and sources of task demands on a concrete operation, and examines the effect of the production practices on the workers' task demands. The NASA Task Load Index was used to measure the perceived task demands of two work crews. The operation involved the construction of a cast-in-place concrete building under high schedule pressures. Interviews with each crew member were used to identify the main sources of the perceived demands. Extensive field observations and interviews with the supervisors and crews identified the production practices. The workers perceived different level of task demands depending on their role. The production practices influenced the task demands in two ways: (1) practices related to work organization, task design, resource management, and crew management mitigated the task demands; and (2) other practices related to work planning and crew management increased the crew's ability to cope with and adapt to high task demands. The findings identify production practices that regulate the workers' task demands. The effect of task demands on performance is mitigated by the ability to cope with high demands.
2000-01-12
STS-99 Pilot Dominic Gorie, under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Riding in the rear are Mission Specialists Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, Janet Lynn Kavandi (Ph.D.) and Janice Voss (Ph.D.). TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
2000-01-12
STS-99 Pilot Dominic Gorie, under the watchful eye of Capt. George Hoggard, a trainer with the KSC Fire Department, practices driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Riding in the rear are Mission Specialists Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, Janet Lynn Kavandi (Ph.D.) and Janice Voss (Ph.D.). TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
NASA Technical Reports Server (NTRS)
Heinbaugh, Randall; Cole, Richard
2016-01-01
Provide commercial partners with: center insight into NASA spaceflight medical experience center; information relative to both nominal and emergency care of the astronaut crew at landing site center; a basis for developing and sharing expertise in space medical factors associated with returning crew.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Volunteers from the KSC Fire-Rescue team dressed in launch and entry suits settle into seats in an orbiter crew compartment mock-up under the guidance of George Brittingham, USA suit technician on the Closeout Crew. Brittingham is helping Catherine Di Biase, a nurse with Bionetics Life Sciences. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer astronauts simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Advanced missions safety. Volume 2: Technical discussion. Part 3: Emergency crew transfer
NASA Technical Reports Server (NTRS)
1972-01-01
An evaluation of methods for emergency rescue of space crews using the Earth Orbit Shuttle was conducted. Emergency situations were analyzed for the mission categories of extravehicular activity, space shuttle orbiter, space station, and research applications module (RAM). Five different transfer concept categories were analyzed and each was scored on the basis of its operational effectiveness. A cost analysis of the transfer operations was developed.
2006-08-07
KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The STS-115 crew has flown to NASA's Kennedy Space Center to take part in Terminal Countdown Demonstration Test activities. The TCDT is a pre-launch preparation that includes practicing emergency egress from the pad, driving an M-113 armored personnel carrier, and simulating the launch countdown. Launch of STS-115 is currently scheduled for Aug. 27. Photo credit: NASA/George Shelton
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter is landing near rescue team members taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside an orbiter crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
STS-102 crew gets emergency exit training at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Getting training on the use of the slidewire basket for emergency exits from the launch pad are STS-102 Mission Specialists Paul Richards and Andrew Thomas. The rest of the crew includes Commander James Wetherbee, Pilot James Kelly and Mission Specialists James Voss, Susan Helms and Yury Usachev. The crew is taking part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
STS-54 Astronaut Crew Emergency Egress Training, Press Q&A, TCDT
NASA Technical Reports Server (NTRS)
1992-01-01
The crew of STS-54, Commander John H. Casper, Pilot Donald R. McMonagle, and Mission Specialists Mario Runco, Jr., Gregory J. Harbaugh, and Susan J. Helms, is seen during a question and answer session with the press and during the Terminal Countdown and Demonstration Test (TCDT), including Emergency Egress Training.
NASA Technical Reports Server (NTRS)
Stepaniak, Philip; Hamilton, Glenn C.; Stizza, Denis; Garrison, Richard; Gerstner, David
2001-01-01
In developing a permanently crewed space station, the importance of medical care has been continually reaffirmed; and the health maintenance facility (HMF) is an integral component. It has diagnostic, therapeutic, monitoring, and information management capability. It is designed to allow supportive care for: (1) non-life-threatening illnesses; e.g., headache, lacerations; (2) moderate to severe, possibly life-threatening illnesses; e.g., appendicitis, kidney stones; and (3) severe, incapacitating, life-threatening illnesses; e.g., major trauma, toxic exposure. Since the HMF will not have a general surgical capability, the need for emergency escape and recovery methods has been studied. Medical risk assessments have determined that it is impossible to accurately predict the incidence of crewmember illness/injury. A best estimate is 1:3 per work-year, with 1% of these needing an ACRV. For an eight-person crew, this means that one assured crew return vehicle (ACRV) will be used every 4 to 12 years. The ACRV would serve at least three basic objectives as: (1) a crew return if the space shuttle is unavailable; (2) an escape vehicle from a major time-critical space station emergency; and (3) a full or partial crew return vehicle for a medical emergency. The focus of this paper is the third objective for the ACRV.
2001-02-13
The STS-102 crew pose in front of an armored carrier that is used for emergency egress training. In the event of an emergency at the pad prior to launch, the carrier could be used to transport the crew to a nearby bunker or farther. The STS-102 crew is at KSC to take part in Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, carrying as payload the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8
Crew emergency return vehicle - Electrical power system design study
NASA Technical Reports Server (NTRS)
Darcy, E. C.; Barrera, T. P.
1989-01-01
A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.
STS-101 Mission Specialist Williams practices driving an M-113 during TCDT
NASA Technical Reports Server (NTRS)
2000-01-01
Seated on top of an M-113 personnel carrier, Capt. George Hoggard of the KSC/CCAFS Fire Department gives instruction to STS-101 Mission Specialist Yuri Usachev (right), who is in the driver seat. In the rear are Mission Specialists James Voss (holding a camera), Jeffrey N. Williams, Pilot Scott J. 'Doc' Horowitz and Mary Ellen Weber. Other crew members taking part are Commander James D. Halsell Jr. and Mission Specialist Susan J. Helms. The training is part of Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a simulated launch countdown. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.
2002-05-15
KENNEDY SPACE CENTER, FLA. - During Terminal Countdown Demonstration Test activities at KSC, STS-11 Commander Kenneth Cockrell practices driving the M-113 armored personnel carrier, part of emergency egress training at the pad. Supervising in front (left) is George Hoggard, with the KSC/CCAS Fire Department, who supervises the driving. Passengers in the M-113 (behind Hoggard) are Expedition 5 crew members Valeri Korzun and Peggy Whitson. The TCDT also includes a simulated launch countdown Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. . Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-09-01
The American Petroleum Institute issued a report on ''Recommended Practices for Safe Drilling of Wells Containing Hydrogen Sulfide.'' The study (RP49) updates a first edition published in September 1974. It provides a solid overview of preventive steps that should be taken to safeguard crew and equipment when drilling through H/sub 2/S zones. Discussions cover personnel training, protective equipment, wellsite layout, rig and well equipment, general rig operations and contingency planning and emergency procedures. This article summarizes the report.
Astronaut Kevin Kregel during training session at WETF
1995-02-16
S95-03465 (16 Feb 1995) --- Attired in a training version of the Shuttle launch and entry garment, astronaut Kevin R. Kregel gets help with the final touches of suit donning during a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Assigned as pilot for the STS-70 mission, Kregel was about to rehearse emergency bailout. The crew members made use of a nearby 25-feet deep pool to practice parachute landings in water and subsequent deployment of life rafts.
Astronaut Kevin Kregel during bailout training in WETF
1995-02-16
S95-03480 (16 FEB 1995) --- Attired in a training version of the Shuttle launch and entry garment, astronaut Kevin R. Kregel, pilot, gets help from SCUBA-equipped divers during a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). As part of the emergency bailout phase of their training agenda, the STS-70 crew members made use of this 25-feet deep pool to practice parachute landings in water and subsequent deployment of life rafts.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An injured rescue worker is lifted into an M-113 armored personnel carrier provided for transportation during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter rescue team prepares another injured astronaut for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter rescue team prepares another injured astronaut for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
STS-102 crew poses on the FSS at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- An STS-102 crew member reaches for the release lever for the slidewire basket, used for emergency egress from the orbiter and pad. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. On the horizon in the background can be seen the Vehicle Assembly Building. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
STS-102 crew poses on the FSS at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialists Andrew Thomas (front, left) and Paul Richards take their seats in the slidewire basket, used for emergency egress from the orbiter and pad. Behind them, other crew members climb into their basket. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
Arial, Marc; Benoît, Damien; Wild, Pascal
2014-07-01
Back problems are a major occupational health issue for prehospital emergency care professionals. The goals of this article are to: 1) provide descriptive data about the prevalence and the severity of lower back and upper back disorders in EMTs and paramedics; 2) identify some individual and collective strategies used by EMTs and paramedics to protect their health as they perform prehospital emergency missions; 3) assess the possible effectiveness of strategies in preventing back problems by exploring associations between the use of strategies and the presence and severity of symptoms. The method includes a questionnaire survey (sample n = 334; paramedics and emergency medical technicians) and ergonomics work practice analysis involving shadowing ambulance crews in 12 medical emergency services (over 400 h). A majority of ambulance professionals had experienced back pain in the twelve-month period before the survey. Work practice analysis revealed strategies and tricks of the trade used by ambulance professionals to reduce the chances of back strain while working. Multiple regression analyses showed that self-reported use of such strategies was associated with fewer back symptoms. Preventive strategies should be integrated into specialised training programs for prehospital medical emergency professionals. This approach could also be used in other work settings. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Airbag system and method for facilitating emergency egress from an aircraft
NASA Technical Reports Server (NTRS)
Rawdon, Blaine K. (Inventor); Hawley, Arthur V. (Inventor)
2002-01-01
An airbag system for elevating the fuselage of an aircraft off a landing surface a sufficient degree to allow for emergency egress of passengers and crew through ventral emergency exit doors. An airbag assembly made up of a plurality of independent airbags is disposed within the aircraft. When activated, the airbag system deploys the airbags external of the aircraft that elevate the fuselage of the aircraft a sufficient degree to allow for utilizing the ventral emergency exit doors on the fuselage to enable evacuating the passengers and crew. An activation mechanism is connected to the inflation.devices associated with each of the airbags. The activation mechanism generates an electrical signal which activates the inflation devices, which in turn fill the airbags with a compressed fluid, thus expanding the airbags and lifting the fuselage. A crew member initiates the activation of the airbag system through one or more switches.
STS-103 crew wait inside Discovery for simulated countdown exercise
NASA Technical Reports Server (NTRS)
1999-01-01
STS-103 Mission Specialists Jean-Fran'''ois Clervoy of France takes his seat inside the Space Shuttle Discovery during a practice launch countdown, part of Terminal Countdown Demonstration Test (TCDT) activities, while astronaut David 'Doc' Brown checks him out. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
Recovery and Rescue Teams Practice with Full-Size Crew Dragon Tr
2017-06-07
Personnel from NASA, SpaceX and the U.S. Air Force have begun practicing recovery operations for the SpaceX Crew Dragon. Using a full-size model of the spacecraft that will take astronauts to the International Space Station, Air Force parajumpers practice helping astronauts out of the SpaceX Crew Dragon following a mission. In certain unusual recovery situations, SpaceX may need to work with Air Force for parajumpers to recover astronauts from the capsule following a water landing. The recovery trainer was recently lowered into the Indian River Lagoon near NASA’s Kennedy Space Center allowing Air Force pararescue and others to refine recovery procedures. SpaceX is developing the Crew Dragon in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the International Space Station.
ULA Emergency Egress System (EES) Demonstration
2017-03-14
A team of engineers recently tested a newly installed emergency egress system at Space Launch Complex 41 at Cape Canaveral Air Force Station to prepare for crew launches for NASA’s Commercial Crew Program. Boeing’s CST-100 Starliner spacecraft and United Launch Alliance Atlas V rocket that will boost astronauts to the International Space Station, will have many safety elements built into the systems. The Starliner emergency egress system operates a lot like a zip line, with four egress cables connecting at level 12 of the Crew Access Tower to a landing zone about 1,300 feet away from the launch vehicle. Five individual seats on four separate lines can transport up to 20 people off of the tower in the unlikely event there is an emergency on the launch pad. NASA has partnered with private industry to take astronauts to the space station. Boeing and SpaceX are building their own unique systems that meet NASA safety and mission requirements. The systems also will include launch abort systems and additional controls that astronauts can use during flight to enhance crew safety. KSC Contact - Joshua Finch (321)867-2468 Headquarters Contact - Tabatha Thompson (202)358-1100 More Info - www.nasa.gov/commercialcrew
Decision Making in Action: Applying Research to Practice
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Hart, Sandra G. (Technical Monitor)
1994-01-01
The importance of decision-making to safety in complex, dynamic environments like mission control centers, aviation, and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment: Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. Yet laboratory research on decision making has not proven especially helpful in improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multi-dimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for training will be discussed.
Commercial Airline In-Flight Emergency: Medical Student Response and Review of Medicolegal Issues.
Bukowski, Josh H; Richards, John R
2016-01-01
As the prevalence of air travel increases, in-flight medical emergencies occur more frequently. A significant percentage of these emergencies occur when there is no certified physician, nurse, or paramedic onboard. During these situations, flight crews might enlist the help of noncertified passengers, such as medical students, dentists, or emergency medical technicians in training. Although Good Samaritan laws exist, many health care providers are unfamiliar with the limited legal protections and resources provided to them after responding to an in-flight emergency. A 78-year-old woman lost consciousness and became pulseless onboard a commercial aircraft. No physician was available. A medical student responded and coordinated care with the flight crew, ground support physician, and other passengers. After receiving a packet (4 g) of sublingual sucrose and 1 L i.v. crystalloid, the patient regained pulses and consciousness. The medical student made the decision not to divert the aircraft based on the patient's initial response to therapy and, 45 min later, the patient had normal vital signs. Upon landing, she was met and taken by paramedics to the nearest emergency department for evaluation of her collapse. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians are the most qualified to assist in-flight emergencies, but they might not be aware of the medicolegal risks involved with in-flight care, the resources available, and the role of the flight crew in liability and decision making. This case, which involved a medical student who was not given explicit protection under Good Samaritan laws, illustrates the authority of the flight crew during these events and highlights areas of uncertainty in the legislation for volunteer medical professionals. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter rescue team carries another injured astronaut to a helicopter for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
STS-102 crew poses on the FSS at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Relaxing after emergency escape training on the 195-foot level of the Fixed Service Structure, Launch Pad 39B, are(left to right) STS-102 Mission Specialists Andrew Thomas and Paul Richards and Commander James Wetherbee. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Also flying on the mission are the Expedition Two crew, who will replace the Expedition One crew on Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
Cooper, Simon; O'Carroll, Judith; Jenkin, Annie; Badger, Beryl
2007-01-01
Objective To identify collaborative instances and hindrances and to produce a model of collaborative practice. Methods A 12‐month (2005–2006) mixed methods clinical case study was carried out in a large UK ambulance trust. Collaboration was measured through direct observational ratings of communication skills, teamwork and leadership with 24 multi‐professional emergency care practitioners (ECPs), interviews with 45 ECPs and stakeholders, and an audit of 611 patients Results Using a generic qualitative approach, observational records and interviews showed that ECPs' numerous links with other professions were influenced by three major themes as follows. (i) The ECP role: for example, “restricted transport codes” of communication, focus on reducing admissions, frustrations about patient tasking and conflicting views about leadership and team work. (ii) Education and training: drivers for multi‐professional clinically focussed graduate level education, requirements for skill development in minor injury units (MIUs) and general practice, and the need for clinical supervision/mentorship. (iii) Cultural perspectives: a “crew room” blue collar view of inter‐professional working versus emerging professional white collar views, power and communication conflicts, and a lack of understanding of the ECPs' role. The quantitative findings are reported elsewhere. Conclusions The final model of collaborative practice suggests that ECPs are having an impact on patient care, but that improvements can be made. We recommend the appointment of ECP clinical leads, degree level clinically focussed multi‐professional education, communication skills training, clinical supervision and multi‐professional ECP appointments. PMID:17711937
The design and delivery of crew resource management training: exploiting available resources.
Salas, E; Rhodenizer, L; Bowers, C A
2000-01-01
Despite widespread acceptance throughout commercial and military settings, crew resource management (CRM) training programs have not escaped doubts about their effectiveness. The current state of CRM training is an example of how an entire body of pertinent research and development has not had the impact on practice that it could. In this paper we outline additional resources (i.e., principles, information, findings, and guidelines) from the team training and training effectiveness research literatures that can be used to improve the design and delivery of CRM training. Some of the resources discussed include knowledge about training effectiveness, training teamwork-related skills, scenario design, and performance measurement. We conclude with a discussion of emerging resources as well as those that need to be developed. The purpose of this paper is to provide the CRM training developer with better access to resources that can be applied to the design and delivery of CRM training programs.
Orion Underway Recovery Test 5 (URT-5)
2016-10-26
The USS San Diego departs Naval Base San Diego in California on its way out to sea in the Pacific Ocean for the Orion Underway Recovery Test 5. NASA's Ground Systems Development and Operations Program and the U.S. Navy will practice recovery techniques using the well deck of the ship and a test version of the Orion crew module to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2
1996-10-30
S96-18547 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox, STS-82 mission commander, chats with a crewmate (out of frame) prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the middeck.
2000-01-14
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-99 Mission Specialists Gerhard Thiele (Ph.D.), of the European Space Agency (in front), and Janet Kavandi (Ph.D.) prepare to practice emergency egress procedures with a slidewire basket. Seven slidewires, with flatbottom baskets suspended from each wire, extend from the Fixed Service Structure at the orbiter access arm level. These baskets could provide an escape route for the astronauts until the final 30 seconds of the countdown in case of an emergency. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
2000-01-14
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-99 Mission Specialists Gerhard Thiele (Ph.D.), of the European Space Agency (in front), and Janet Kavandi (Ph.D.) prepare to practice emergency egress procedures with a slidewire basket. Seven slidewires, with flatbottom baskets suspended from each wire, extend from the Fixed Service Structure at the orbiter access arm level. These baskets could provide an escape route for the astronauts until the final 30 seconds of the countdown in case of an emergency. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.
STS-26 MS Hilmers during egress training at JSC's MAIL full fuselage trainer
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), tries out the new crew escape system (CES) inflated slide during an emergency egress training exercise in JSC's Shuttle Mockup and Integration Laboratory (MAIL) Bldg 9A. Technicians stand on either side of the slide ready to help Hilmers to his feet once he reaches the bottom. Watching from floor level at the far left is astronaut Steven R. Nagel. A second crewmember stands in the open side hatch of the Full Fuselage Trainer (FFT) awaiting his turn to slide to 'safety'. During Crew Station Review (CSR) #3, the crew donned the new (navy blue) partial pressure suits (LESs) and checked out CES slide and other CES configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. The CES pole extends out the side hatch just above Hilmers' head.
Human Factors and ISS Medical Systems: Highlights of Procedures and Equipment Findings
NASA Technical Reports Server (NTRS)
Byrne, V. E.; Hudy, C.; Smith, D.; Whitmore, M.
2005-01-01
As part of the Space Human Factors Engineering Critical Questions Roadmap, a three year Technology Development Project (TDP) was funded by NASA Headquarters to examine emergency medical procedures on ISS. The overall aim of the emergency medical procedures project was to determine the human factors issues in the procedures, training, communications and equipment, and to recommend solutions that will improve the survival rate of crewmembers in the event of a medical emergency. Currently, each ISS crew remains on orbit for six month intervals. As there is not standing requirement for a physician crewmember, during such time, the maintenance of crew health is dependant on individual crewmembers. Further, in the event of an emergency, crew will need to provide prolonged maintenance care, as well as emergency treatment, to an injured crewmember while awaiting transport to Earth. In addition to the isolation of the crew, medical procedures must be carried out within the further limitations imposed by the physical environment of the space station. For example, in order to administer care on ISS without the benefit of gravity, the Crew Medical Officers (CMOs) must restrain the equipment required to perform the task, restrain the injured crewmember, and finally, restrain themselves. Both the physical environment and the physical space available further limit the technology that can be used onboard. Equipment must be compact, yet able to withstand high levels of radiation and function without gravity. The focus here is to highlight the human factors impacts from our three year project involving the procedures and equipment areas that have been investigated and provided valuable to ISS and provide groundwork for human factors requirements for medical applications for exploration missions.
Crew Communication as a Factor in Aviation Accidents
NASA Technical Reports Server (NTRS)
Goguen, J.; Linde, C.; Murphy, M.
1986-01-01
The crew communication process is analyzed. Planning and explanation are shown to be well-structured discourse types, described by formal rules. These formal rules are integrated with those describing the other most important discourse type within the cockpit: the command-and-control speech act chain. The latter is described as a sequence of speech acts for making requests (including orders and suggestions), for making reports, for supporting or challenging statements, and for acknowledging previous speech acts. Mitigation level, a linguistic indication of indirectness and tentativeness in speech, was an important variable in several hypotheses, i.e., the speech of subordinates is more mitigated than the speech of superiors, the speech of all crewmembers is less mitigated when they know that they are in either a problem or emergency situation, and mitigation is a factor in failures of crewmembers to initiate discussion of new topics or have suggestions ratified by the captain. Test results also show that planning and explanation are more frequently performed by captains, are done more during crew- recognized problems, and are done less during crew-recognized emergencies. The test results also indicated that planning and explanation are more frequently performed by captains than by other crewmembers, are done more during crew-recognized problems, and are done less during-recognized emergencies.
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Ron Garan is ready to drive the M113 armored personnel carrier as part of emergency training. Behind him is Pilot Ken Ham. They and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Greg Chamitoff drives the M113 armored personnel carrier as part of emergency training. Behind him Commander Mark Kelly. At center is Battalion Chief George Hoggard providing supervision. Chamitoff and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, members of the STS-117 crew are instructed in the operation of an M-113 armored personnel carrier by the astronaut rescue team. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
STS-102 crew poses on the FSS at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At the 195-foot level on the Fixed Service Structure, Launch Pad 39B, members of the STS-102 crew relax after emergency escape training. From left are Mission Specialists Paul Richards, Andrew Thomas and Susan Helms, and Commander James Wetherbee. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Helms is part of the Expedition Two crew who will be on the mission to replace Expedition One on the International Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
STS-102 crew poses on the FSS at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At the 195-foot level on the Fixed Service Structure, Launch Pad 39B, members of the STS-102 crew relax after emergency escape training. At left is Pilot James Kelly; in the center and right are Mission Specialists Yury Usachev and James Voss. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Usachev and Voss are part of the Expedition Two crew who will be on the mission to replace Expedition One on the International Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
ISS Training Best Practices and Lessons Learned
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Dempsey, Donna L.
2017-01-01
Training our crew members for long duration exploration-class missions (LDEM) will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for LDEM, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
ISS Training Best Practices and Lessons Learned
NASA Technical Reports Server (NTRS)
Dempsey, Donna L.; Barshi, Immanuel
2018-01-01
Training our crew members for long-duration Deep Space Transport (DST) missions will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for DST missions, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Launch Control Center, Robert Holl (left), Landing Recovery directo, and Donald Hammel, from the Shuttle Project Office, are in contact with the leaders of the Mode VII emergency landing simulation at Kennedy Space Center. The simulation is being managed and directed from the LCC. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
STS-95 crew members Glenn and Mukai learn about emergency egress system
NASA Technical Reports Server (NTRS)
1998-01-01
STS-95 Pilot Steven W. Lindsey, Payload Specialist John H. Glenn Jr., senator from Ohio, and Payload Specialist Chiaki Mukai, representing the National Space Development Agency of Japan (NASDA), listen to the Safety Egress trainer talk about the emergency egress system from the pad. The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. Other crew members are Mission Specialist Scott E. Parazynski, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), Mission Commander Curtis L. Brown, and Mission Specialist Stephen K. Robinson. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.
2014-05-01
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians practice lining up the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, on the ogive panel mockup hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-05-01
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians practice lining up the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, on the ogive panel mockup hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-05-01
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians practice lining up the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, on the ogive panel mockup hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
NASA Technical Reports Server (NTRS)
Zeitler, Pamela S. (Compiler); Mango, Edward J.
2013-01-01
The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives.
Scott, Greg; Clawson, Jeff; Fivaz, Mark C; McQueen, Jennie; Gardett, Marie I; Schultz, Bryon; Youngquist, Scott; Olola, Christopher H O
2016-02-01
Using the Medical Priority Dispatch System (MPDS) - a systematic 911 triage process - to identify a large subset of low-acuity patients for secondary nurse triage in the 911 center is a largely unstudied practice in North America. This study examines the ALPHA-level subset of low-acuity patients in the MPDS to determine the suitability of these patients for secondary triage by evaluating vital signs and necessity of lights-and-siren transport, as determined by attending Emergency Medical Services (EMS) ambulance crews. The primary objective of this study was to determine the clinical status of MPDS ALPHA-level (low-acuity) patients, as determined by on-scene EMS crews' patient care records, in two US agencies. A secondary objective was to determine which ALPHA-level codes are suitable candidates for secondary triage by a trained Emergency Communication Nurse (ECN). In this retrospective study, one full year (2013) of both dispatch data and EMS patient records data, associated with all calls coded at the ALPHA-level (low-acuity) in the dispatch protocol, were collected. The primary outcome measure was the number and percentage of ALPHA-level codes categorized as low-acuity, moderate-acuity, high-acuity, and critical using four common vital signs to assign these categories: systolic blood pressure (SBP), pulse rate (PR), oxygen saturation (SpO2), and Glasgow Coma Score (GCS). Vital sign data were obtained from ambulance crew electronic patient care records (ePCRs). The secondary endpoint was the number and percentage of ALPHA-level codes that received a "hot" (lights-and-siren) transport. Out of 19,300 cases, 16,763 (86.9%) were included in the final analysis, after excluding cases from health care providers and those with missing data. Of those, 89% of all cases did not have even one vital sign indicator of unstable patient status (high or critical vital sign). Of all cases, only 1.1% were transported lights-and-siren. With the exception of the low-acuity, ALPHA-level seizure cases, the ALPHA-level patients are suitable to transfer for secondary triage in a best-practices, accredited, emergency medical dispatch center that utilizes the MPDS at very high compliance rates. The secondary nurse triage process should identify the few at-risk patients that exist in the low-acuity calls.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Aviation Administration (FAA) Aviation Safety Inspectors with valid credentials and authorization are not... TSA for compliance with an aviation security program, emergency amendment, or security directive...
Acute stress reactions after submarine accidents.
Eid, Jarle; Johnsen, Bjørn Helge
2002-05-01
The aim of the present study was to explore contextual and individual factors associated with acute stress reactions in three Norwegian submarine crews exposed to different significant peacetime maneuver accidents. Approximately 2 to 3 weeks after the accidents, crew members completed the Coping Style Questionnaire, the General Health Questionnaire, the Impact of Event Scale, and the Post-Traumatic Symptom Scale. Although exposed subjects (N = 47) revealed more posttraumatic stress symptoms than nonexposed crew members on shore leave (N = 7), they showed less acute stress reactions than survivors from a surface ship accident in the Norwegian Navy. Inspection of individual cases revealed that 4% of the exposed submariners showed high loads of acute stress symptoms. Unit cohesion and habitual coping styles emerged as resilience factors, whereas previous exposure to critical incidents and personal experience of not coping in the accident situation emerged as vulnerability factors, explaining 32% of the acute stress reactions reported by submarine crew members.
2008-10-29
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 crew members gather near the slidewire baskets on the 195-foot level of the fixed service structure. From left are Mission Specialists Donald Pettit, Sandra Magnus, Heidemarie Stefanyshyn-Piper and Steve Bowen. They have taken part in a simulated countdown in space shuttle Endeavour followed by emergency escape procedures. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, members of the STS-117 crew are instructed in the operation of an M-113 armored personnel carrier by astronaut rescue team leader Capt. George Hoggard (left). The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2000-08-16
STS-106 Mission Specialist Edward T. Lu grins over the chance for his turn to drive the M113 armored personnel carrier. The M113 is an armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed “Expedition One,” is due to arrive at the Station in late fall
2000-08-16
Rising from the M113 armored personnel carrier, STS-106 Commander Terrence W. Wilcutt takes his turn at the helm of a small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed “Expedition One,” is due to arrive at the Station in late fall
2001-07-19
KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2008-02-24
KENNEDY SPACE CENTER, FLA. -- At NASA Kennedy Space Center's Launch Pad 39A, the crew for space shuttle Endeavour's STS-123 mission receives instruction on the operation of a slidewire basket during emergency egress training. In the basket are Mission Specialists Takao Doi of the Japan Aerospace Exploration Agency, Garrett Reisman and Rick Linnehan. The crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Launch Control Center, officials monitor the Mode VII emergency landing simulation being conducted at Kennedy Space Center and managed and directed from the LCC. From left are Dr. Luis Moreno and Dr. David Reed, with Bionetics Life Sciences, and Dr. Philip Scarpa, with the KSC Safety, Occupational Health and Environment Division. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
STS-113 TCDT emergency exit training at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - As part of Terminal Countdown Demonstration Test (TCDT) activities, the STS-113 and Expedition 6 crews receive training in emergency exit from the orbiter on Launch Pad 39A. Shown are (from left) Mission Commander James Wetherbee and cosmonaut Nikolai Budarin and astronaut Donald Pettit of the Expedition 6 crew. The TCDT also includes a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.
STS-102 crew poses on the FSS at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-102 Commander James Wetherbee reaches for the release lever for the slidewire basket, used for emergency egress from the orbiter and pad. Behind him is Pilot James Kelly. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
2001-04-08
Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist Umberto Guidoni. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Akihiko Hoshide drives the M113 armored personnel carrier as part of emergency training. Battalion Chief George Hoggard provides supervision. Behind them are Mission Specialist Ron Garan and Pilot Ken Ham. Hoshide and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Mike Fossum drives the M113 armored personnel carrier as part of emergency training. Behind him at left is Mission Specialist Greg Chamitoff. At center is Battalion Chief George Hoggard providing supervision. Fossum and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2001-04-08
Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist John L. Phillips. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
Decision Making in Action: Applying Research to Practice
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Statler, Irving C. (Technical Monitor)
1994-01-01
The importance of decision-making to safety in complex, dynamic environments like mission control centers and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment. Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. A similar observation has been made in nuclear power plants. Yet laboratory research on decision making has not proven especially helpful in improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multidimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for spaceflight and training for offshore installations will be discussed.
STS-108 backup crew member Robinson in an M-113
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Astronaut Stephen K. Robinson takes his turn at driving an M-113 armored personnel carrier. Robinson is a backup crew member for the International Space Station Expedition 4 crew, who are flying on Space Shuttle Endeavour as part of mission STS-108. Both the mission crew and Expedition 4 crews are at KSC for Terminal Countdown Demonstration Test activities. The TCDT includes emergency exit from the launch pad and a simulated launch countdown. The 11-day mission will also carry the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. STS-108 is scheduled to launch Nov. 29.
Medical operations: Crew surgeon's report. [in Skylab simulation test
NASA Technical Reports Server (NTRS)
Ross, C. E.
1973-01-01
To assure the safety and well being of the Skylab environment simulation crewmembers it was necessary to develop a medical safety plan with emergency procedures. All medical and nonmedical test and operations personnel, except those specifically exempted, were required to meet the medical standards and proficiency levels as established. Implemented programs included health care of the test crew and their families, occupational medical services for chamber operating personnel, clinical laboratory support and hypobaric and other emergency support.
STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2
1996-10-30
S96-18552 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox (left), STS-82 mission commander, chats with astronaut Scott J. Horowitz prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.
Medical Operations Console Procedure Evaluation: BME Response to Crew Call Down for an Emergency
NASA Technical Reports Server (NTRS)
Johnson-Troop; Pettys, Marianne; Hurst, Victor, IV; Smaka, Todd; Paul, Bonnie; Rosenquist, Kevin; Gast, Karin; Gillis, David; McCulley, Phyllis
2006-01-01
International Space Station (ISS) Mission Operations are managed by multiple flight control disciplines located at the lead Mission Control Center (MCC) at NASA-Johnson Space Center (JSC). ISS Medical Operations are supported by the complementary roles of Flight Surgeons (Surgeon) and Biomedical Engineer (BME) flight controllers. The Surgeon, a board certified physician, oversees all medical concerns of the crew and the BME provides operational and engineering support for Medical Operations Crew Health Care System. ISS Medical Operations is currently addressing the coordinated response to a crew call down for an emergent medical event, in particular when the BME is the only Medical Operations representative in MCC. In this case, the console procedure BME Response to Crew Call Down for an Emergency will be used. The procedure instructs the BME to contact a Surgeon as soon as possible, coordinate with other flight disciplines to establish a Private Medical Conference (PMC) for the crew and Surgeon, gather information from the crew if time permits, and provide Surgeon with pertinent console resources. It is paramount that this procedure is clearly written and easily navigated to assist the BME to respond consistently and efficiently. A total of five BME flight controllers participated in the study. Each BME participant sat in a simulated MCC environment at a console configured with resources specific to the BME MCC console and was presented with two scripted emergency call downs from an ISS crew member. Each participant used the procedure while interacting with analog MCC disciplines to respond to the crew call down. Audio and video recordings of the simulations were analyzed and each BME participant's actions were compared to the procedure. Structured debriefs were conducted at the conclusion of both simulations. The procedure was evaluated for its ability to elicit consistent responses from each BME participant. Trials were examined for deviations in procedure task completion and/or navigation, in particular the execution of the Surgeon call sequence. Debrief comments were used to analyze unclear procedural steps and to discern any discrepancies between the procedure and generally accepted BME actions. The sequence followed by BME participants differed considerably from the sequence intended by the procedure. Common deviations included the call sequence used to contact Surgeon, the content of BME and crew interaction and the gathering of pertinent console resources. Differing perceptions of task priority and imprecise language seem to have caused multiple deviations from the procedure s intended sequence. The study generated 40 recommendations for the procedure, of which 34 are being implemented. These recommendations address improving the clarity of the instructions, identifying training considerations, expediting Surgeon contact, improving cues for anticipated flight control team communication and identifying missing console tools.
Crew - First Manned Apollo Mission - Water Egress Procedures Practice - Ellington AFB (EAFB), TX
1966-06-01
S66-51583 (June 1966)--- Prime crew members announced by the National Aeronautics and Space Administration (NASA) for the first manned Apollo 1 space flight practice water egress procedures in a swimming pool at Ellington Air Force Base (EAFB), Houston, Texas. Astronaut Edward H. White II rides life raft in the foreground. Astronaut Roger B. Chaffee sits in hatch of the boilerplate model of the spacecraft. Astronaut Virgil I. Grissom, third member of the crew, waits inside the spacecraft.
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Pilot Doug Hurley drives the M-113 armored personnel carrier, which is part of the training on emergency egress procedures. The crew members of space shuttle Endeavour's STS-127 mission are taking turns driving the M-113, which will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 crew members get instructions inside an M113 armored personnel carrier about emergency procedures. Clockwise from left are Mission Specialists Greg Chamitoff and Akihiko Hoshide, Commander Mark Kelly, Mission Specialist Ron Garan, instructor Battalion Chief George Hoggard, Pilot Ken Ham and Mission Specialists Karen Nyberg and Mike Fossum. They are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Commander Mark Polansky takes his turn driving the M-113 armored personnel carrier, which is part of the training on emergency egress procedures. The crew members of space shuttle Endeavour's STS-127 mission are taking turns driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001
NASA Technical Reports Server (NTRS)
2001-01-01
The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a 'lifeboat' to enable a full seven-person station crew to evacuate in an emergency.
2001-04-08
Ready to take the wheel on the M-113 armored carrier is STS-100 Mission Specialist Yuri V. Lonchakov, who is with the Russian Space and Aviation Agency. He and the rest of the crew are taking part in Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
2008-05-07
CAPE CANAVERAL, Fla. -- Under the supervision of Battalion Chief George Hoggard, STS-124 Mission Specialist Karen Nyberg takes her turn (right) driving the armored personnel carrier, part of emergency training. At left are Mission Specialists Ron Garan and Akihiko Hoshide, who represents the Japan Aerospace Exploration Agency. They and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
2008-05-07
CAPE CANAVERAL, Fla. -- With Launch Pad 39B in the background, STS-124 Pilot Ken Ham drives the M113 armored personnel carrier as part of emergency training. Behind him at right is Mission Specialist Karen Nyberg. At center is Battalion Chief George Hoggard providing supervision. Ham and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001
2001-07-10
The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a "lifeboat" to enable a full seven-person station crew to evacuate in an emergency.
2008-02-25
KENNEDY SPACE CENTER, FLA. -- Emergency egress training completed, the STS-123 crew members gather at the slidewire baskets. Clockwise from left are Mission Specialists Mike Foreman, Garrett Reisman and Robert L. Behnken, Commander Dominic Gorie, Mission Specialist Rick Linnehan, Pilot Gregory H. Johnson and Takao Doi. The TCDT provides astronauts and ground crews with an opportunity to participate in various countdown activities, including equipment familiarization and emergency egress training. Endeavour is targeted to launch at 2:28 a.m. EDT March 11 on the 16-day STS-123 mission to the International Space Station. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2007-11-19
KENNEDY SPACE CENTER, FLA. -- The space shuttle Atlantis STS-122 crew receives instruction on slidewire basket operation, part of the emergency exit system on the fixed service structure on Launch Pad 39A. Here, Mission Specialist Rex Walheim practices getting out of one of the baskets as Mission Specialists Leopold Eyharts and Leland Melvin steady it. Seven slidewire baskets are available to carry the crew from the level of the pad's Orbiter Access Arm to this landing site, if needed. Each basket can hold up to three people. A braking system catch net and drag chain slow, and then halt, the baskets as they travel down the wire at approximately 55 miles per hour. The journey takes about half a minute. A bunker is located in the landing zone 1,200 feet west of the pad, with an M-113 armored personnel carrier stationed nearby. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization and a simulated launch countdown before launch. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
NASA's Human Rating Requirements - A Historical Interpretive Perspective
NASA Technical Reports Server (NTRS)
Langford, Gerald; White, Juli Kramer
2011-01-01
Section 3.0 of NASA's Human Rating Requirements for Space Systems, NPR 8705.2, represents technical engineering requirements that the Agenc y requires of Human Space Systems. In many cases the requirements are not unlike requirements for any space system, crewed or uncrewed, th ey deal with successfully accomplishing the mission objectives. Howev er, they go one step further and have requirements that go beyond suc cessful completion of the mission and dictate functions or actions ne cessary to assure the survival of the crew. In that regard they are u nique from other space system requirements. Even with their uniquenes s the technical requirements of the NPR 8705.2 have been relatively u nchanged in overall intent over the revisions. They all have provided for system redundancy, crew habitable environment, crew situational awareness, crew operation, system control, emergency egress and abort systems. In a few cases the intent of the requirement was changed in tentionally, either to restrict certain types of systems or their fun ctions, or to encompass lessons learned from previous programs. For t he most part the requirements are non controversial and represent the current best practices for human space systems, however, a few requi rements are always debated and have evolved over revisions of the NPR due to studies conducted with various programs like the Orbital Spac e Plane and the Constellation Programs. Those requirements will be di scussed using results of trade studies conducted during past programs highlighting how these particular requirements have evolved through the revisions of the NPR. Comments will also be provided for requirem ents that although not debated, have provided challenges in interpret ation.
A Methodology for Training International Space Station Crews to Respond to On-Orbit Emergencies
NASA Technical Reports Server (NTRS)
Balmain, Clinton; Fleming, Mark
2009-01-01
Most spaceflight crewmembers agree that emergency training is among the most important training they receive. If an emergency event occurs on-orbit crewmembers want to be able to rely on a thorough and proficient knowledge of emergency operations and procedures. The inherent complexity of ISS and the international nature of the onboard operations have resulted in emergency procedures that are complex by any measure; as a result, a very robust apparatus has been developed to give crewmembers initial training on emergency procedures and ensure proficiency up to (and even after) launch. One of the most important aspects of complex onboard operations in general, and emergency operations specifically, is learning how to coordinate roles and responsibilities with fellow crewmembers. A primary goal of NASA s emergency training program is to allow the crewmembers who will actually be together on-orbit to practice executing the emergency responses together before they fly. As with any operation that includes the use of software and hardware, the fidelity of the simulation environment is a critical element to successful training. The NASA training division has spent considerable time and effort to develop a simulator that addresses the most important aspects of emergency response, working within very difficult space and budgetary constraints.
STS-106 crew water survival training
2000-03-21
JSC2000-02564 (21 March 2000) --- Astronaut Terrence W. (Terry) Wilcutt, STS-106 mission commander, talks with crew training staff members during a simulation of an emergency bailout exercise in the water of the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC).
Orion Underway Recovery Test 5 (URT-5)
2016-10-29
NASA, contractor and U.S. Navy personnel are on the deck of the USS San Diego as the sun sets on the fourth day of Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy practiced retrieving and securing a test version of the Orion crew module in the well deck of the ship using tethers and a winch system to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-27
U.S. Navy divers and other personnel in a rigid hull Zodiac boat have attached tether lines to a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the USS San Diego, various watercraft and equipment to practice for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-28
U.S. Navy divers and other personnel in a Zodiac boat secure a harness around a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. Tether lines will be attached to the test module to help guide it back to the well deck of the USS San Diego. NASA's Ground Systems Development and Operations Program and the U.S. Navy are practicing recovery techniques to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
2008-05-06
CAPE CANAVERAL, Fla. -- Back at the NASA Kennedy Space Center Shuttle Landing Facility, STS-124 Commander Mark Kelly happily crosses the parking area after the successful space shuttle landing practice aboard NASA's Shuttle Training Aircraft, or STA. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. The crew for space shuttle Discovery's STS-124 mission is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test, or TCDT. Providing astronauts and ground crews with an opportunity to participate in various simulated countdown activities, TCDT includes equipment familiarization and emergency training. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
STS-96 M.S. Payette and Pilot Husband try on gas masks as part of a TCDT
NASA Technical Reports Server (NTRS)
1999-01-01
At Launch Pad 39B, STS-96 Mission Specialist Julie Payette, with the Canadian Space Agency, and Pilot Rick Douglas Husband practice putting on oxygen gas masks as part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress traiing, simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Ellen Ochoa (Ph.D.) and Valery Ivanovich Tokarev, with the Russian Space Agency. Scheduled for liftoff on May 20 at 9:32 a.m., STS- 96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- led experiment.
The Expedition Three crew poses for photo at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses in front of Space Shuttle Discovery on Launch Pad 39A. From left are cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov and Commander Frank Culbertson. Along with the STS-105 crew, they are taking part in Terminal Countdown Demonstration Test activities, which include emergency egress from the pad, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
Basic results of medical examinations of Soyuz spacecraft crew members
NASA Technical Reports Server (NTRS)
Gurovskiy, N. N.; Yegorov, A. D.; Kakurin, L. I.; Nefedov, Y. G.
1975-01-01
Weightlessness, hypokinesia and intense activity of crew members caused changes in human physiological functions during prolonged space flight as expressed in unusual diurnal rhythms. Microclimate, radiation and the nervous emotional state were not of significance in emergence of human body response reactions.
1999-04-27
During emergency egress training at Launch Pad 39B, members of the STS-96 crew ride inside a small armored personnel carrier. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. From left are Pilot Rick Douglas Husband; Mission Specialists Daniel Barry (partly hidden), Tamara E. Jernigan, Julie Payette, and Valery Ivanovich Tokarev; and Commander Kent V. Rominger. Not shown is Mission Specialist Ellen Ochoa. The crew are at KSC for Terminal Countdown Demonstration Test (TCDT) activities, which also include simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment
2008-02-24
KENNEDY SPACE CENTER, FLA. -- At NASA Kennedy Space Center's Launch Pad 39A, the crew of space shuttle Endeavour's STS-123 mission answers questions from the media during a break from emergency egress training. From left are From left are Commander Dominic Gorie; Mission Specialist Garrett Reisman; Pilot Gregory H. Johnson; and Mission Specialists Robert L. Behnken, Mike Foreman, Takao Doi of the Japan Aerospace Exploration Agency and Rick Linnehan. The crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2008-02-24
KENNEDY SPACE CENTER, FLA. -- At NASA Kennedy Space Center's Launch Pad 39A, the crew for space shuttle Endeavour's STS-123 mission traverses the exit route from the White Room during instruction on emergency egress from the pad. From back to front are Mission Specialist Mike Foreman, Commander Dominic Gorie, Pilot Gregory H. Johnson and Mission Specialists Takao Doi of the Japan Aerospace Exploration Agency and Garrett Reisman. The crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2008-02-24
KENNEDY SPACE CENTER, FLA. -- At NASA Kennedy Space Center's Launch Pad 39A, the crew for space shuttle Endeavour's STS-123 mission receives instruction for emergency egress from the pad. In blue flight suits, from left, are Mission Specialist Mike Foreman; Pilot Gregory H. Johnson; Mission Specialists Takao Doi of the Japan Aerospace Exploration Agency, Garrett Reisman and Robert L. Behnken; and Commander Dominic Gorie. The crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2008-02-24
KENNEDY SPACE CENTER, FLA. -- At NASA Kennedy Space Center's Launch Pad 39A, the crew for space shuttle Endeavour's STS-123 mission receives instruction on the operation of a slidewire basket during emergency egress training. Mission Specialist Takao Doi of the Japan Aerospace Exploration Agency observes from the basket as Mission Specialist Rick Linnehan steadies the basket for Mission Specialist Garrett Reisman to jump to the ground. The crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2008-02-24
KENNEDY SPACE CENTER, FLA. -- At NASA Kennedy Space Center's Launch Pad 39A, the crew for space shuttle Endeavour's STS-123 mission receives instruction for emergency egress from the pad. In blue flight suits, from left, are Mission Specialist Mike Foreman; Pilot Gregory H. Johnson; Mission Specialists Takao Doi of the Japan Aerospace Exploration Agency, Garrett Reisman and Robert L. Behnken; and Commander Dominic Gorie. The crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2008-02-24
KENNEDY SPACE CENTER, FLA. -- At NASA Kennedy Space Center's Launch Pad 39A, the crew for space shuttle Endeavour's STS-123 mission receives instruction on the operation of a slidewire basket during emergency egress training. From top left are Pilot Gregory H. Johnson and Commander Dominic Gorie. In the basket are Mission Specialists Rick Linnehan, Garrett Reisman and Takao Doi of the Japan Aerospace Exploration Agency. The crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2007-11-18
KENNEDY SPACE CENTER, FLA. -- The STS-122 crew poses for a group portrait near Launch Pad 39B during a training session on the operation of the M-113 armored personnel carrier. An M-113 will be available to transport the crew to safety in the event of an emergency on the pad before their launch. From left are Mission Specialists Rex Walheim, Leopold Eyharts and Hans Schlegel of the European Space Agency, Stanley Love; Commander Steve Frick; Pilot Alan Poindexter; and Mission Specialist Leland Melvin. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
ISS Expedition 42 / 43 Crew Training Resource Reel (JSC-2641)
2014-11-14
Media resource reel of ISS Expedition 42 / 43 Crew training activities. Includes footage of crew photo shots with Samantha Cristoforetti, Anton Shkaplerov and Terry Virts; Routine shots with Virts, ISS Expedition 43 crewmember Scott Kelly, Cristoforetti, ISS Expedition 41 / 42 crewmember Barry Wilmore; and Shklaplerov; T-38 Operations with Virts; Routine operations with Cristoforetti, Shkaplerov and Virts; Neutral Buoyancy Lab (NBL) with Cristoforetti and Kelly; and Emergency Scenatios with Virts, Cristoforetti and Shkaplerov.
Agent Based Modeling of Collaboration and Work Practices Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Acquisti, Alessandro; Sierhuis, Maarten; Clancey, William J.; Bradshaw, Jeffrey M.; Shaffo, Mike (Technical Monitor)
2002-01-01
The International Space Station is one the most complex projects ever, with numerous interdependent constraints affecting productivity and crew safety. This requires planning years before crew expeditions, and the use of sophisticated scheduling tools. Human work practices, however, are difficult to study and represent within traditional planning tools. We present an agent-based model and simulation of the activities and work practices of astronauts onboard the ISS based on an agent-oriented approach. The model represents 'a day in the life' of the ISS crew and is developed in Brahms, an agent-oriented, activity-based language used to model knowledge in situated action and learning in human activities.
STS-92 crew get training on driving the M-113 armored vehicle
NASA Technical Reports Server (NTRS)
2000-01-01
As part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities, members of the STS-92 crew get instructions about the M-113 they are seated in at Launch Pad 39A. Seen on the left are Pilot Pam Melroy and Mission Specialists Leroy Chaio and Koichi Wakata of Japan In the middle, giving the instructions, is Capt. George Hoggard, trainer with the KSC Fire Department. At right are Commander Brian Duffy (leaning back) and Mission Specialist Michael Lopez-Alegria. The other crew members (not seen) are Mission Specialists Jeff Wisoff and Bill McArthur. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
NASA Technical Reports Server (NTRS)
Anderson, Brian L.
2001-01-01
The X-38 Project consists of a series of experimental vehicles designed to provide the technical "blueprint" for the International Space Station's (ISS) Crew Return Vehicle (CRV). There are three atmospheric vehicles and one space flight vehicle in the program. Each vehicle is designed as a technical stepping stone for the next vehicle, with each new vehicle being more complex and advanced than it's predecessor. The X-38 project began in 1995 at the Johnson Space Center (JSC) in Houston, Texas at the direction of the NASA administrator. From the beginning, the project has had the CRY design validation as its ultimate goal. The CRY has three basic missions that drive the design that must be proven during the course of the X-38 Project: a) Emergency return of an ill or injured crew member. b) Emergency return of an entire ISS crew due to the inability of ISS to sustain life c) Planned return of an entire ISS crew due to the inability to re-supply the ISS or return the crew. The X-38 project must provide the blueprint for a vehicle that provides the capability for human return from space for all three of these design missions.
2011-07-07
CAPE CANAVERAL, Fla. -- A media event was held on the grounds near the Press Site at NASA's Kennedy Space Center in Florida where a Multi-Purpose Crew Vehicle (MPCV) is on display. The MPCV is based on the Orion design requirements for traveling beyond low Earth orbit and will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Seen here is Mark Geyer, Multi-Purpose Crew Vehicle program manager speaking to media during a question-and-answer session. Photo credit: NASA/Frankie Martin
A Study of a Lifting Body as a Space Station Crew Exigency Return Vehicle (CERV)
NASA Technical Reports Server (NTRS)
MacConochie, Ian O.
2000-01-01
A lifting body is described for use as a return vehicle for crews from a space station. Reentry trajectories, subsystem weights and performance, and costs are included. The baseline vehicle is sized for a crew of eight. An alternate configuration is shown in which only four crew are carried with the extra volume reserved for logistics cargo. A water parachute recovery system is shown as an emergency alternative to a runway landing. Primary reaction control thrusters from the Shuttle program are used for orbital maneuvering while the Shuttle verniers are used for all attitude control maneuvers.
2012-02-17
Orion / Space Launch System: NASA has selected the design of a new Space Launch System SLS that will take the agency's astronauts farther into space than ever before and provide the cornerstone for America's future human space exploration efforts. The SLS will launch human crews beyond low Earth orbit in the Orion Multi-Purpose Crew Vehicle. Orion is America’s next generation spacecraft. It will serve as the exploration vehicle that will provide emergency abort capability, sustain the crew during space travel, carry the crew to distant planetary bodies, and provide safe return from deep space. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Mission Specialist Dave Wolf takes the wheel of the M-113 armored personnel carrier. Driving the M-113 is part of the training on emergency egress procedures. The crew members of space shuttle Endeavour's STS-127 mission are taking turns driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Mission Specialist Dave Wolf poses for a photograph after driving the M-113 armored personnel carrier, which is part of the training on emergency egress procedures. The crew members of space shuttle Endeavour's STS-127 mission are taking turns driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Mission Specialist Tom Marshburn takes his turn driving the M-113 armored personnel carrier, which is part of the training on emergency egress procedures. The crew members of space shuttle Endeavour's STS-127 mission are taking turns driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Mission Specialist Tim Kopra is happy to have successfully driven the M-113 armored personnel carrier, which is part of the training on emergency egress procedures. The crew members of space shuttle Endeavour's STS-127 mission are taking turns driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Mission Specialist Tom Marshburn smiles after successfully driving the M-113 armored personnel carrier, which is part of the training on emergency egress procedures. The crew members of space shuttle Endeavour's STS-127 mission are taking turns driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
2008-02-25
KENNEDY SPACE CENTER, FLA. -- Emergency egress training completed, the STS-123 crew members gather at the slidewire baskets. In front is Mission Specialist Takao Doi, who represents the Japan Aerospace Exploration Agency. The egress training followed the simulated launch countdown, which was the culmination of the terminal countdown demonstration test, or TCDT. The TCDT provides astronauts and ground crews with an opportunity to participate in various countdown activities, including equipment familiarization and emergency egress training. Endeavour is targeted to launch at 2:28 a.m. EDT March 11 on the 16-day STS-123 mission to the International Space Station. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
46 CFR 185.510 - Emergency instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Emergency instructions. 185.510 Section 185.510 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.510 Emergency instructions. (a) The master and crew of a vessel...
46 CFR 185.510 - Emergency instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Emergency instructions. 185.510 Section 185.510 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.510 Emergency instructions. (a) The master and crew of a vessel...
Dahl, Eilif
2006-01-01
To study crew referrals to out-patient port services from 3 passenger ships during 12 months (2004), with focus on dentist appointments. The median number of crew on Ship A was 561, on Ship B 534 and on Ship C 614. Crew referrals were registered continuously and after each cruise segment recorded in the ship's doctor's medical cruise report, from which the data were retrieved and reviewed. During 2004 the doctors of the 3 sister ships had a total of 8888 crew consultations (Table 1). Mean number of doctor consultations for crew was 17.5 a day. On Ship A 50%, on B 59% and on C 70% of the port referrals were dentist appointments. A crew member was referred to a dentist every 7 (Ship C) to 10 days (Ships A + B). Among the specified dental referrals, 18% were extraction requests. The ship's doctors had a busy crew practice, but were neither trained nor equipped to do elective dentistry aboard. Crew referral rate to services ashore was low, but 50-70% of the referrals for out-patient port services concerned dentistry. Inadequate health insurance caused low-wage crew to request free extractions instead of expensive repair in high-cost ports. As dentistry in local ports is a poor substitute for the person's own dentist, doctors performing seafarer examinations should ensure that dental problems are solved before sign-on.
Return to Flight: Crew Activities Resource Reel 1 of 2
NASA Technical Reports Server (NTRS)
2005-01-01
The crew of the STS-114 Discovery Mission is seen in various aspects of training for space flight. The crew activities include: 1) STS-114 Return to Flight Crew Photo Session; 2) Tile Repair Training on Precision Air Bearing Floor; 3) SAFER Tile Inspection Training in Virtual Reality Laboratory; 4) Guidance and Navigation Simulator Tile Survey Training; 5) Crew Inspects Orbital Boom and Sensor System (OBSS); 6) Bailout Training-Crew Compartment; 7) Emergency Egress Training-Crew Compartment Trainer (CCT); 8) Water Survival Training-Neutral Buoyancy Lab (NBL); 9) Ascent Training-Shuttle Motion Simulator; 10) External Tank Photo Training-Full Fuselage Trainer; 11) Rendezvous and Docking Training-Shuttle Engineering Simulator (SES) Dome; 12) Shuttle Robot Arm Training-SES Dome; 13) EVA Training Virtual Reality Lab; 14) EVA Training Neutral Buoyancy Lab; 15) EVA-2 Training-NBL; 16) EVA Tool Training-Partial Gravity Simulator; 17) Cure in Place Ablator Applicator (CIPAA) Training Glove Vacuum Chamber; 16) Crew Visit to Merritt Island Launch Area (MILA); 17) Crew Inspection-Space Shuttle Discovery; and 18) Crew Inspection-External Tank and Orbital Boom and Sensor System (OBSS). The crew are then seen answering questions from the media at the Space Shuttle Landing Facility.
CCP Boeing/ULA Crew Access Arm Emergency Evacuation Water Test
2016-03-23
Water sprays on the Crew Access Arm during a deluge systems test March 23 at a construction yard near NASA's Kennedy Space Center in Florida. The arm is being tested before being installed on Space Launch Complex 41 Crew Access Tower later this year. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.
STS-93 crew members take part in an emergency egress exercise
NASA Technical Reports Server (NTRS)
1999-01-01
During an emergency egress exercise at the launch pad, Pilot Jeffrey S. Ashby (left) and Commander Eileen M. Collins (right) hurry down the yellow-painted path to a slidewire basket. The baskets are part of an emergency escape route for persons in the Shuttle and on the Rotating Service Structure. The STS-93 crew members have been taking part in Terminal Countdown Demonstration Test (TCDT) activities that include the emergency exit training and a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Mission Specialists Catherine G. Coleman (Ph.D.), Steven A. Hawley (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.
46 CFR 122.510 - Emergency instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Emergency instructions. 122.510 Section 122.510 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Emergencies § 122.510 Emergency instructions. (a) The master and crew of a vessel will be familiar with the...
46 CFR 122.510 - Emergency instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Emergency instructions. 122.510 Section 122.510 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Emergencies § 122.510 Emergency instructions. (a) The master and crew of a vessel will be familiar with the...
46 CFR 199.80 - Muster list and emergency instructions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the general emergency alarm system and public address system; (2) The emergency signals; (3) The... on board; (vi) Using communication equipment; (vii) Manning the emergency squad assigned to deal with... assigned to members of the crew in relation to passengers and other persons on board in case of an...
14 CFR 135.331 - Crewmember emergency training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Training... of crew and passenger oxygen. (6) Removal of life rafts from the aircraft, inflation of the life rafts, use of life lines, and boarding of passengers and crew, if applicable. (7) Donning and inflation...
STS-87 Commander Kregel holds the crew patch in front of Columbia's entry hatch at LC 39B during TCD
NASA Technical Reports Server (NTRS)
1997-01-01
STS-87 Commander Kevin Kregel holds the crew patch in front of Columbia's entry hatch at Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.
Expedition Three crew poses for photo on Fixed Service structure
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses on the Fixed Service Structure at Launch Pad 39A. From left are cosmonaut Mikhail Tyurin, commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.
STS-105 crew poses for photo at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
Expedition Three crew clasp hands for photo at pad
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew join hands for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.
Expedition Three crew poses for photo at pad
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001
Crew emergency return vehicle autoland feasibility study
NASA Technical Reports Server (NTRS)
Bossi, J. A.; Langehough, M. A.; Lee, K. L.
1989-01-01
The crew emergency return vehicle (CERV) autoland feasibility study focused on determining the controllability of the NASA Langley high lift over drag CERV for performing an automatic landing at a prescribed runway. An autoland system was developed using integral linear quadratic Gaussian (LQG) design techniques. The design was verified using a nonlinear 6 DOF simulation. Simulation results demonstrate that the CERV configuration is a very flyable configuration for performing an autoland mission. Adequate stability and control was demonstrated for wind turbulence and wind shear. Control surface actuator requirements were developed.
ISS emergency scenarios and a virtual training simulator for Flight Controllers
NASA Astrophysics Data System (ADS)
Uhlig, Thomas; Roshani, Frank-Cyrus; Amodio, Ciro; Rovera, Alessandro; Zekusic, Nikola; Helmholz, Hannes; Fairchild, Matthew
2016-11-01
The current emergency response concept for the International Space Station (ISS) includes the support of the Flight Control Team. Therefore, the team members need to be trained in emergencies and the corresponding crew procedures to ensure a smooth collaboration between crew and ground. In the case where the astronaut and ground personnel training is not collocated it is a challenging endeavor to ensure and maintain proper knowledge and skills for the Flight Control Team. Therefore, a virtual 3D simulator at the Columbus Control Center (Col-CC) is presented, which is used for ground personnel training in the on-board emergency response. The paper briefly introduces the main ISS emergency scenarios and the corresponding response strategy, details the resulting learning objectives for the Flight Controllers and elaborates on the new simulation method, which will be used in the future. The status of the 3D simulator, first experiences and further plans are discussed.
Ambulance snatching: how vulnerable are we?
Alves, Donald W; Bissell, Richard A
2003-08-01
Out of concern that ambulances might be targeted for hijack for terrorism purposes, we observed security-related behaviors of a cross-section of ambulance crews and their vehicles in Emergency Department ambulance bays. We sent observers to a convenience sample of trauma and suburban Emergency Department ambulance entrances in several states. We observed 151 total ambulance arrivals. Overall, the average time present was 21.5 min, 23.2% of units were left with the engine running, 26.5% were left open, 90.1% were left unattended, 84.1% were unlocked, and 16.6% had a non-crew visitor in the ambulance bay. Several issues were identified demonstrating potential "attractiveness" to individuals who may wish to disrupt Emergency Medical Services or steal an emergency vehicle. We are concerned that this is the case at the majority of ambulance bays in our country. Emergency services agencies should take steps to train their personnel to secure the ambulance.
STS-103 crew learn about use of slideware basket at Pad 39B
NASA Technical Reports Server (NTRS)
1999-01-01
At the slidewire area of Launch Pad 39B, the STS-103 crew listen to use of the emergency egress equipment. From left are the trainer, with crew members Mission Specialists Steven L. Smith, Jean-Frangois Clervoy of France, Claude Nicollier of Switzerland, John M. Grunsfeld (Ph.D.), Pilot Steven J. Kelly, C. Michael Foale (Ph.D.), and (kneeling) Commander Curtis L. Brown Jr. Clervoy and Nicollier are both with the European Space Agency. As a preparation for launch, the crew have been participating in Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
Blomberg, Hans; Gedeborg, Rolf; Berglund, Lars; Karlsten, Rolf; Johansson, Jakob
2011-10-01
Mechanical chest compression devices are being implemented as an aid in cardiopulmonary resuscitation (CPR), despite lack of evidence of improved outcome. This manikin study evaluates the CPR-performance of ambulance crews, who had a mechanical chest compression device implemented in their routine clinical practice 8 months previously. The objectives were to evaluate time to first defibrillation, no-flow time, and estimate the quality of compressions. The performance of 21 ambulance crews (ambulance nurse and emergency medical technician) with the authorization to perform advanced life support was studied in an experimental, randomized cross-over study in a manikin setup. Each crew performed two identical CPR scenarios, with and without the aid of the mechanical compression device LUCAS. A computerized manikin was used for data sampling. There were no substantial differences in time to first defibrillation or no-flow time until first defibrillation. However, the fraction of adequate compressions in relation to total compressions was remarkably low in LUCAS-CPR (58%) compared to manual CPR (88%) (95% confidence interval for the difference: 13-50%). Only 12 out of the 21 ambulance crews (57%) applied the mandatory stabilization strap on the LUCAS device. The use of a mechanical compression aid was not associated with substantial differences in time to first defibrillation or no-flow time in the early phase of CPR. However, constant but poor chest compressions due to failure in recognizing and correcting a malposition of the device may counteract a potential benefit of mechanical chest compressions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Exploration Medical System Demonstration
NASA Technical Reports Server (NTRS)
Rubin, D. A.; Watkins, S. D.
2014-01-01
BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that allows for scalability, extensibility, and interoperability of data sources and data users. f. Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management. g. Provide a better standard of healthcare for crew members through reductions in the time required by crew and ground personnel to provide medical treatment and the number of crew errors experienced during treatment.
Aircrew perceived stress: examining crew performance, crew position and captains personality.
Bowles, S; Ursin, H; Picano, J
2000-11-01
This study was conducted at NASA Ames Research Center as a part of a larger research project assessing the impact of captain's personality on crew performance and perceived stress in 24 air transport crews (5). Three different personality types for captains were classified based on a previous cluster analysis (3). Crews were comprised of three crewmembers: captain, first officer, and second officer/flight engineer. A total of 72 pilots completed a 1.5-d full-mission simulation of airline operations including emergency situations in the Ames Manned Vehicle System Research Facility B-727 simulator. Crewmembers were tested for perceived stress on four dimensions of the NASA Task Load Index after each of five flight legs. Crews were divided into three groups based on rankings from combined error and rating scores. High performance crews (who committed the least errors in flight) reported experiencing less stress in simulated flight than either low or medium crews. When comparing crew positions for perceived stress over all the simulated flights no significant differences were found. However, the crews led by the "Right Stuff" (e.g., active, warm, confident, competitive, and preferring excellence and challenges) personality type captains typically reported less stress than crewmembers led by other personality types.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses in front of Space Shuttle Discovery on Launch Pad 39A. From left are cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov and Commander Frank Culbertson. Along with the STS-105 crew, they are taking part in Terminal Countdown Demonstration Test activities, which include emergency egress from the pad, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-19
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin, a cosmonaut with the Russian Aviation and Space Agency, checks out the slidewire basket at Launch Pad 39A. At right is STS-105 Pilot Rick Sturckow. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2009-06-02
CAPE CANAVERAL, Fla. – STS-127 Mission Specialist Julie Payette smiles after her success in driving the M-113 armored personnel carrier, which is part of the training on emergency egress procedures. Payette represents the Canadian Space Agency. The crew members of space shuttle Endeavour's STS-127 mission are taking turns driving the M-113. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is at NASA's Kennedy Space Center for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes the emergency egress training and equipment familiarization. The STS-127 mission is the final of three flights dedicated to the assembly of the Japanese Kibo laboratory complex. Endeavour's launch is targeted for June 13. Photo credit: NASA/Kim Shiflett
STS-102 crew poses on the FSS at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialists Yury Usachev (left), Susan Helms (center) and James Voss (right) take time to pose for the camera after emergency escape training on the 195-foot level of the Fixed Service Structure, Launch Pad 39B. They are the Expedition Two crew who will be flying to the International Space Station on mission STS-102 to replace Expedition One. The STS-102 crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
2000-09-13
With other crew members in the back, STS-92 Mission Specialist Leroy Chiao races the M-113 along the track through the scrub. Driving the M-113 is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program
2008-02-24
KENNEDY SPACE CENTER, FLA. -- At NASA Kennedy Space Center's Launch Pad 39A, STS-123 Mission Specialist Takao Doi of the Japan Aerospace Exploration Agency receives instruction on the operation of a slidewire basket during emergency egress training. The crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
Crew of the first manned Apollo mission practice water egress procedures
1966-06-01
S66-51581 (June 1966) --- Prime crew for the first manned Apollo mission practice water egress procedures with full scale boilerplate model of their spacecraft. In the water at right is astronaut Edward H. White (foreground) and astronaut Roger B. Chaffee. In raft near the spacecraft is astronaut Virgil I. Grissom. NASA swimmers are in the water to assist in the practice session that took place at Ellington AFB, near the Manned Spacecraft Center, Houston.
75 FR 61386 - Emergency Escape Breathing Apparatus Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
...-0044, Notice No. 1] RIN 2130-AC14 Emergency Escape Breathing Apparatus Standards AGENCY: Federal... breathing apparatus (EEBA) to the members of the train crew and certain other employees while they are... EEBA--emergency escape breathing apparatus FRA--Federal Railroad Administration FRSA--the former...
NASA Technical Reports Server (NTRS)
2002-01-01
Footage shows the crew of STS-109 (Commander Scott Altman, Pilot Duane Carey, Payload Commander John Grunsfeld, and Mission Specialists Nancy Currie, James Newman, Richard Linnehan, and Michael Massimino) during various parts of their training. Scenes show the crew's photo session, Post Landing Egress practice, training in Dome Simulator, Extravehicular Activity Training in the Neutral Buoyancy Laboratory (NBL), and using the Virtual Reality Laboratory Robotic Arm. The crew is also seen tasting food as they choose their menus for on-orbit meals.
2007-07-17
KENNEDY SPACE CENTER, Fla. -- STS-118 Commander Scott Kelly practices driving an M-113 armored personnel carrier with fellow crew members Tracy Caldwell, Alvin Drew and Dave Williams, all mission specialists, as passengers. They are at Kennedy for the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. TCDT activities include the M-113 training, payload familiarization, emergency egress training at the pad and a simulated launch countdown. The STS-118 payload aboard Space Shuttle Endeavour includes the S5 truss, a SPACEHAB module and external stowage platform 3. The mission is the 22nd flight to the International Space Station and is targeted for launch on Aug.7. NASA/George Shelton
2008-10-29
CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 crew members enjoy talking with the Closeout Crew as they suit up. In the foreground is Mission Specialist Heidemarie Stefanyshyn-Piper; behind her is Pilot Eric Boe. They and other crew members will take part in a simulated launch countdown after entering space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
NASA Technical Reports Server (NTRS)
1974-01-01
Operational and configuration checks for the Apollo-Soyuz Test Project are presented. The checks include: backup crew prelaunch, prime crew prelaunch, boost and insertion, G and C reference data, G and N reference modes, rendezvous, navigation, Apollo-Soyuz operations, abort procedures, and emergency procedures.
RME 1327 - Crew Medical Restraint System (CMRS)
1997-02-18
STS081-318-031 (12-22 Jan. 1997) --- Astronauts Brent W. Jett, Jr. (left), STS-81 pilot, and John E. Blaha in the Spacehab Double Module (DM) evaluate the Crew Medical Restraint System (CMRS) carrier, onboard the Space Shuttle Atlantis. The device is an emergency aid forerunner for hardware on the International Space Station (ISS).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
... significantly delay issuance of the design approval and thus delivery of the affected aircraft. In addition, the... specific portion of the special conditions, explain the reason for any recommended change, and include... compartment configuration that affect crew member emergency egress or any other procedures affecting the...
2000-08-16
STS-106 Mission Specialist Edward T. Lu, at the wheel of the M113 armored personnel carrier, heads down the road with passengers Capt. George Hoggard riding in front and Mission Specialists Richard A. Mastracchio and Yuri I. Malenchenko in the back. The M113 is an armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-106 is scheduled to launch Sept. 8, 2000, at 8:31 a.m. EDT from Launch Pad 39B. On the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed “Expedition One,” is due to arrive at the Station in late fall
STS-95 crew members Duque and Mukai check out slidewire basket
NASA Technical Reports Server (NTRS)
1998-01-01
At Launch Pad 39-B, STS-95 Mission Specialist Pedro Duque of Spain (left) and Payload Specialist Chiaki Mukai look over the gate for the slidewire basket, part of the emergency egress system on the pad. Mukai represents the National Space Development Agency of Japan (NASDA), and Duque the European Space Agency (ESA). The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. Other STS-95 crew members are Mission Specialist Stephen K. Robinson, Mission Commander Curtis L. Brown, Pilot Steven W. Lindsey, Payload Specialists John H. Glenn Jr., senator from Ohio, and Mission Specialist Scott E. Parazynski. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.
STS-97 crew meets with the media at Launch Pad 39B
NASA Technical Reports Server (NTRS)
2000-01-01
Standing in the slidewire landing zone at Launch Pad 39B, the STS-97 crew respond to questions from the media. Commander Brent Jett (on left, with microphone) introduces the rest of the crew (left to right) Pilot Mike Bloomfield and Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. Garneau is with the Canadian Space Agency. The nets suspended behind them are a braking system catch net for the slidewire baskets that provide emergency exit from the orbiter and Fixed Service Structure. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.
Orbiter fire rescue and crew escape training for EVA crew systems support
1993-01-28
Photos of orbiter fire rescue and crew escape training for extravehicular activity (EVA) crew systems support conducted in Bldg 9A Crew Compartment Trainer (CCT) and Fuel Fuselage Trainer (FFT) include views of CCT interior of middeck starboard fuselage showing middeck forward (MF) locker and COAS assembly filter, artiflex film and camcorder bag (26834); launch/entry suit (LES) helmet assembly, neckring and helmet hold-down assembly (26835-26836); middeck aft (MA) lockers (26837); area of middeck airlock and crew escape pole (26838); connectors of crew escape pole in the middeck (268390); three test subjects in LES in the flight deck (26840); emergency side hatch slide before inflated stowage (26841); area of below adjacent to floor panel MD23R (26842); a test subject in LES in the flight deck (26843); control board and also showing sign of "orbital maneuvering system (OMS) secure and OMS TK" (26844); test subject in the flight deck also showing chart of "ascent/abort summary" (26845).
NASA Technical Reports Server (NTRS)
Tuan, George C.; Graf, John C.
2008-01-01
Emergency mask approach on Orion poses a challenge to the traditional Shuttle or Station approaches. Currently, in the case of a fire or toxic spill event, the crew utilizes open loop oxygen masks that provide the crew with oxygen to breath, but also dumps the exhaled oxygen into the cabin. For Orion, with a small cabin volume, the extra oxygen will exceed the flammability limit within a short period of time, unless a nitrogen purge is also provided. Another approach to a fire or toxic spill event is the use of a filtering emergency masks. These masks utilize some form of chemical beds to scrub the air clean of toxic providing the crew safe breathing air for a period without elevating the oxygen level in the cabin. Using the masks and a form of smoke-eater filter, it may be possible to clean the cabin completely or to a level for safe transition to a space suit to perform a cabin purge. Issues with filters in the past have been the reaction temperature and high breathing resistance. Development in a new form of chemical filters has shown promise to make the filtering approach feasible.
NASA Technical Reports Server (NTRS)
Tuan, George C.; Graf, John C.
2009-01-01
Emergency mask approach on Orion poses a challenge to the traditional Shuttle or Station approaches. Currently, in the case of a fire or toxic spill event, the crew utilizes open loop oxygen masks that provide the crew with oxygen to breath, but also dumps the exhaled oxygen into the cabin. For Orion, with a small cabin volume, the extra oxygen will exceed the flammability limit within a short period of time, unless a nitrogen purge is also provided. Another approach to a fire or toxic spill event is the use of a filtering emergency masks. These masks utilize some form of chemical beds to scrub the air clean of toxic providing the crew safe breathing air for a period without elevating the oxygen level in the cabin. Using the masks and a form of smoke-eater filter, it may be possible to clean the cabin completely or to a level for safe transition to a space suit to perform a cabin purge. Issues with filters in the past have been the reaction time, breakthroughs, and high breathing resistance. Development in a new form of chemical filters has shown promise to make the filtering approach feasible.
Duque and Parazynski in an emergency egress exercise from Space Shuttle Discovery
NASA Technical Reports Server (NTRS)
1998-01-01
STS-95 Mission Specialists Pedro Duque of Spain (left), representing the European Space Agency (ESA), and Scott E. Parazynski (behind him) hurry toward the basket at the 195-foot level of Launch Pad 39B during an emergency egress exercise. Duque and Parazynski, along with other crew members, are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialists John H. Glenn Jr., senator from Ohio, and Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.
STS-105 crew poses for photo on Fixed Service Structure
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.
STS-105 and Expedition Three crews pose together for photo on Fixed Service Structure
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin undergoes suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Commander Frank Culbertson and Vladimir Nikolaevich Dezhurov are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. Dezhurov and Tyurin are both with the Russian Aviation and Space Agency. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Vladimir Nikolaevich Dezhurov gets ready to drive the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other crew members taking part are the STS-105 crew, Commander Scott Horowitz, Pilot Rick Sturckow, Mission Specialists Daniel Barry and Patrick Forrester; and the rest of Expedition Three, Commander Frank Culbertson and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew Commander Frank Culbertson is behind the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Vladimir Nikolaevich Dezhurov undergoes suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Commander Frank Culbertson and Mikhail Tyurin are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. Dezhurov and Tyurin are both with the Russian Aviation and Space Agency. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
Effects of incentives on psychosocial performances in simulated space-dwelling groups
NASA Astrophysics Data System (ADS)
Hienz, Robert D.; Brady, Joseph V.; Hursh, Steven R.; Gasior, Eric D.; Spence, Kevin R.; Emurian, Henry H.
Prior research with individually isolated 3-person crews in a distributed, interactive, planetary exploration simulation examined the effects of communication constraints and crew configuration changes on crew performance and psychosocial self-report measures. The present report extends these findings to a model of performance maintenance that operationalizes conditions under which disruptive affective responses by crew participants might be anticipated to emerge. Experiments evaluated the effects of changes in incentive conditions on crew performance and self-report measures in simulated space-dwelling groups. Crews participated in a simulated planetary exploration mission that required identification, collection, and analysis of geologic samples. Results showed that crew performance effectiveness was unaffected by either positive or negative incentive conditions, while self-report measures were differentially affected—negative incentive conditions produced pronounced increases in negative self-report ratings and decreases in positive self-report ratings, while positive incentive conditions produced increased positive self-report ratings only. Thus, incentive conditions associated with simulated spaceflight missions can significantly affect psychosocial adaptation without compromising task performance effectiveness in trained and experienced crews.
Assured crew return capability Crew Emergency Return Vehicle (CERV) avionics
NASA Technical Reports Server (NTRS)
Myers, Harvey Dean
1990-01-01
The Crew Emergency Return Vehicle (CERV) is being defined to provide Assured Crew Return Capability (ACRC) for Space Station Freedom. The CERV, in providing the standby lifeboat capability, would remain in a dormat mode over long periods of time as would a lifeboat on a ship at sea. The vehicle must be simple, reliable, and constantly available to assure the crew's safety. The CERV must also provide this capability in a cost effective and affordable manner. The CERV Project philosophy of a simple vehicle is to maximize its useability by a physically deconditioned crew. The vehicle reliability goes unquestioned since, when needed, it is the vehicle of last resort. Therefore, its systems and subsystems must be simple, proven, state-of-the-art technology with sufficient redundancy to make it available for use as required for the life of the program. The CERV Project Phase 1'/2 Request for Proposal (RFP) is currently scheduled for release on October 2, 1989. The Phase 1'/2 effort will affirm the existing project requirements or amend and modify them based on a thorough evaluation of the contractor(s) recommendations. The system definition phase, Phase 2, will serve to define CERV systems and subsystems. The current CERV Project schedule has Phase 2 scheduled to begin October 1990. Since a firm CERV avionics design is not in place at this time, the treatment of the CERV avionics complement for the reference configuration is not intended to express a preference with regard to a system or subsystem.
Crew decision making under stress
NASA Technical Reports Server (NTRS)
Orasanu, J.
1992-01-01
Flight crews must make decisions and take action when systems fail or emergencies arise during flight. These situations may involve high stress. Full-missiion flight simulation studies have shown that crews differ in how effectively they cope in these circumstances, judged by operational errors and crew coordination. The present study analyzed the problem solving and decision making strategies used by crews led by captains fitting three different personality profiles. Our goal was to identify more and less effective strategies that could serve as the basis for crew selection or training. Methods: Twelve 3-member B-727 crews flew a 5-leg mission simulated flight over 1 1/2 days. Two legs included 4 abnormal events that required decisions during high workload periods. Transcripts of videotapes were analyzed to describe decision making strategies. Crew performance (errors and coordination) was judged on-line and from videotapes by check airmen. Results: Based on a median split of crew performance errors, analyses to date indicate a difference in general strategy between crews who make more or less errors. Higher performance crews showed greater situational awareness - they responded quickly to cues and interpreted them appropriately. They requested more decision relevant information and took into account more constraints. Lower performing crews showed poorer situational awareness, planning, constraint sensitivity, and coordination. The major difference between higher and lower performing crews was that poorer crews made quick decisions and then collected information to confirm their decision. Conclusion: Differences in overall crew performance were associated with differences in situational awareness, information management, and decision strategy. Captain personality profiles were associated with these differences, a finding with implications for crew selection and training.
2014-09-12
SAN DIEGO, Calif. – The Orion boilerplate test vehicle has been lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship, during the first day of Underway Recovery Test 4A at Naval Base San Diego in California. U.S. Navy personnel in two Zodiac boats practice procedures to tether and retrieve the test vehicle. The ship will head out to sea for four days to test crew module crane recovery operations. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-12
SAN DIEGO, Calif. – The Orion boilerplate test vehicle has been lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship, during the first day of Underway Recovery Test 4A at Naval Base San Diego in California. U.S. Navy personnel in a Zodiac boat practice procedures to tether and retrieve the test vehicle. The ship will head out to sea for four days to test crew module crane recovery operations. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-12
SAN DIEGO, Calif. – The Orion boilerplate test vehicle has been lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship, during the first day of Underway Recovery Test 4A at Naval Base San Diego in California. U.S. Navy personnel in a Zodiac boat practice procedures to tether and retrieve the test vehicle. The ship will head out to sea for four days to test crew module crane recovery operations. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-12
SAN DIEGO, Calif. – The Orion boilerplate test vehicle has been lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship, during the first day of Underway Recovery Test 4A at Naval Base San Diego in California. U.S. Navy personnel in a Zodiac boat practice procedures to tether and retrieve the test vehicle. The ship will head out to sea for four days to test crew module crane recovery operations. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-12
SAN DIEGO, Calif. – The Orion boilerplate test vehicle has been lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship, during the first day of Underway Recovery Test 4A at Naval Base San Diego in California. U.S. Navy personnel in a Zodiac boat practice procedures to tether the test vehicle. The ship will head out to sea for four days to test crew module crane recovery operations. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
STS-121 Crew attends the "X Games" in Los Angeles
2006-08-03
JSC2006-E-32816 (3 August 2006) --- The crew of STS-121 attended opening day of the 12th "X Games" in Los Angeles Aug. 3, discussing their recent mission to the International Space Station with students and athletes. Astronaut Steven W. Lindsey (with microphone), commander, and his crew take time out of the question and answer session to watch "Rally Car" practice. The crew's visit also included presentations at the Jet Propulsion Laboratory and the California Science Center.
Wang, Dunxing; Gao, Qin; Li, Zhizhong; Song, Fei; Ma, Liang
2017-12-01
This study aims to develop a taxonomy of coordination behaviours during emergencies in nuclear power plants (NPPs). We summarised basic coordination behaviours from literature in aviation, health care and nuclear field and identified coordination behaviours specific to the nuclear domain by interviewing and surveying control crew operators. The established taxonomy includes 7 workflow stages and 24 basic coordination behaviours. To evaluate the reliability and feasibility of the taxonomy, we analysed 12 videos of operators' training sessions by coding coordination behaviours with the taxonomy and the inter-rater reliability was acceptable. Further analysis of the frequency, the duration and the direction of the coordination behaviours revealed four coordination problems. This taxonomy provides a foundation of systematic observation of coordination behaviours among NPP crews, advances researchers' understanding of the coordination mechanism during emergencies in NPPs and facilitate the possibility to deepen the understanding of the relationships between coordination behaviours and team performance. Practitioner Summary: A taxonomy of coordination behaviours during emergencies in nuclear power plants was developed. Reliability and feasibility of the taxonomy was verified through the analysis of 12 training sessions. The taxonomy can serve as an observation system for analysis of coordination behaviours and help to identify coordination problems of control crews.
Control Room Training for the Hyper-X Project Utilizing Aircraft Simulation
NASA Technical Reports Server (NTRS)
Lux-Baumann, Jesica; Dees, Ray; Fratello, David
2006-01-01
The NASA Dryden Flight Research Center flew two Hyper-X research vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This report describes the technology in the simulation environment and the Mission Control Center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.
Control Room Training for the Hyper-X Program Utilizing Aircraft Simulation
NASA Technical Reports Server (NTRS)
Lux-Baumann, Jessica R.; Dees, Ray A.; Fratello, David J.
2006-01-01
The NASA Dryden Flight Research Center flew two Hyper-X Research Vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions, personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This paper describes the technology in the simulation environment and the mission control center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians prepare the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort motor has been prepared for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-06-07
CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
A critical care helicopter system in trauma.
Jacobs, L. M.; Bennett, B.
1989-01-01
Civilian helicopters and emergency medical services in the United States have been in existence for approximately 15 years. The rapid growth of this type of health care delivery coupled with an increasing number of accidents has prompted professional and lay scrutiny of these programs. Although they have a demonstrated history of benefit to patients, the type and severity of injuries to patients who are eligible for helicopter transportation need further definition. The composition of the medical crews and the benefits that particular crew members bring to the patients require ongoing evaluation. Significant questions regarding the number of pilots in a helicopter and in a program remain to be answered. This article reviews the role of emergency medical air transport services in providing care to trauma patients, staff training and evaluation, and safety criteria and offers recommendations to minimize risks to patients and crews. PMID:2695653
2008-10-29
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialists Sandra Magnus, Shane Kimbrough and Heidemarie Stefanyshyn-Piper have taken their seats in a slidewire basket, part of the emergency escape system on the 195-foot level of the fixed service structure. They have taken part in a simulated countdown in space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
STS-92 Mission Specialist Chiao drives the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
With other crew members in the back, STS-92 Mission Specialist Leroy Chiao races the M-113 along the track through the scrub. Driving the M-113 is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
STS-92 Mission Specialist Wisoff is ready to drive the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Jeff Wisoff happily anticipates his chance to drive the M-113 he is in. Behind him are Commander Brian Duffy (left) and Mission Specialist Leroy Chiao, along with other crew members. Part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities, the tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
2000-09-13
STS-92 Mission Specialist Bill McArthur gets ready to take his turn at driving the M-113, part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind him (left) is Mission Specialist Jeff Wisoff, waiting his turn to drive along with other unidentified crew members.; The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program
2008-02-24
KENNEDY SPACE CENTER, FLA. -- At NASA Kennedy Space Center's Launch Pad 39A, a mission specialist on space shuttle Endeavour's STS-123 mission, Takao Doi of the Japan Aerospace Exploration Agency, prepares to take questions from the media during a break from emergency egress training. The crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1989-01-01
The discovery that human error has caused many more airline crashes than mechanical malfunctions led to an increased emphasis on teamwork and coordination in airline flight training programs. Human factors research at Ames Research Center has produced two crew training programs directed toward more effective operations. Cockpit Resource Management (CRM) defines areas like decision making, workload distribution, communication skills, etc. as essential in addressing human error problems. In 1979, a workshop led to the implementation of the CRM program by United Airlines, and later other airlines. In Line Oriented Flight Training (LOFT), crews fly missions in realistic simulators while instructors induce emergency situations requiring crew coordination. This is followed by a self critique. Ames Research Center continues its involvement with these programs.
2001-07-19
KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-20
KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew join hands for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001
Orion Underway Recovery Test 5 (URT-5)
2016-10-30
U.S. Navy divers and other personnel in several rigid hull inflatable and Zodiac boats have surrounded a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. An orange winch line has been attached to the test module to pull it into the well deck of the USS San Diego. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the Navy ship, various watercraft and equipment to practice for recovery of Orion on its return from deep space missions. The testing allows the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
2013-08-13
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, NASA and U.S. Navy personnel practice procedures during a stationary recovery test on the Orion boilerplate test article. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2018-04-20
An MRAP armored vehicle goes through a training run on the Shuttle Landing Facility to support NASA's Commercial Crew Program at the agency's Kennedy Space Center in Florida. The 45,000-pound mine-resistant. The MRAP offers a mobile bunker for astronauts and ground crews in the unlikely event they have to get away from the launch pad quickly in an emergency.
NASA Technical Reports Server (NTRS)
Curry, Donald M.
2000-01-01
This presentation discuss the x-38 crew return vehicle. As an element of the International Space Station (ISS), there are potential problems that are discussed. These include ISS catastrophe, emergency medical evacuation, and period of Space Shuttle unavailability. The x-38 program purpose was also discussed. The Reduction of the costs and schedule for the development of Crew Return Vehicles (CRV's) and Crew Transfer Vehicles (CTV's) through the use of the rapid development methodology associated with an X-project were also presented. With specific attention to ground testing, atmospheric testing, and space flight testing.
X-38 vehicle #131R during pre-launch with B-52 008 mothership and F-18 chase aircraft
2000-11-02
The X-38 prototypes are intended to perfect a "crew lifeboat" for the International Space Station. The X-38 vehicle 131R demonstrates a huge 7,500 square-foot parafoil that will that will enable the Crew Return Vehicle (CRV) to land on the length of a football field after returning from space. The CRV is intended to serve as an emergency transport to carry a crew to safety in the event of problems with the International Space Station.
X-38 vehicle #131R during pre-launch with B-52 008 mothership and F-18 chase aircraft
NASA Technical Reports Server (NTRS)
2000-01-01
The X-38 prototypes are intended to perfect a 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R demonstrates a huge 7,500 square-foot parafoil that will that will enable the Crew Return Vehicle (CRV) to land on the length of a football field after returning from space. The CRV is intended to serve as an emergency transport to carry a crew to safety in the event of problems with the International Space Station.
A health care system for the Space Station
NASA Technical Reports Server (NTRS)
1992-01-01
Life science will be one of the pacing technologies for long duration manned spaceflight. The ability to effectively deliver state-of-the-art inflight medical care will have a major impact on crew health and mission success. The future Space Station crews will participate in missions of extended duration with limited capability for emergency return. This factor alone places great responsibility on program designers to ensure the health, safety, and well-being of the crews. The Health Maintenance Facility (HMF) under development at the Johnson Space Center is described.
Thirsk during CHeCS medical emergency training
2009-07-02
ISS020-E-016866 (2 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, participates in Crew Health Care Systems (CHeCS) medical emergency training in the Destiny laboratory of the International Space Station.
2008-10-29
CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Sandra Magnus (right) gets ready to enter space shuttle Endeavour. At left is a member of the Closeout Crew, Travis Thompson. The crew will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
STS-108 and Expedition 4 crews during media interview
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-108 crew and Expedition 4 crew answer questions from the media during an interview session. With the microphone is Commander Dominic L. Gorie. From left are STS-108 Pilot Mark E. Kelly, Mission Specialists Daniel M. Tani and Linda A. Godwin, and Gorie; Expedition 4 Commander Yuri Onufrienko, Carl E. Walz and Daniel W. Bursch. The crews are at KSC for Terminal Countdown Demonstration Test activities that include emergency exit training from the orbiter and launch pad and a simulated launch countdown. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour.
STS-108 and Expedition 4 crews during media interview
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-108 crew and Expedition 4 crew answer questions from the media during an interview session. With the microphone is Expedition 4 Commander Yuri Onufrienko. From left are STS-108 Pilot Mark E. Kelly, Mission Specialists Daniel M. Tani and Linda A. Godwin, and Commander Dominic L. Gorie; Onufrienko and Expedition 4 members Carl E. Walz and Daniel W. Bursch. The crews are at KSC for Terminal Countdown Demonstration Test activities that include emergency exit training from the orbiter and launch pad and a simulated launch countdown. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour.
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew Commander Frank Culbertson gives a thumbs up before taking the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov . Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
A comparison of the costs of forest service and contract fire crews in the Pacific Northwest.
Geoffrey H. Donovan
2005-01-01
Rising wildfire suppression expenditures on public land in the United States have led to increased scrutiny of wildfire management practices. One area that has received particular attention is the Forest Service's increasing reliance on contract fire crews. Because a contract crew rate includes several costs that are not included in the wage costs of a Forest...
NASA Technical Reports Server (NTRS)
Danford, S.; Meindl, J.; Hunt, R.
1985-01-01
Issues of crew productivity during design work on space station are discussed. The crew productivity is defined almost exclusively in terms of human factors engineering and habitability design concerns. While such spatial environmental conditions are necessary to support crew performance and productivity, they are not sufficient to ensure high levels of crew performance and productivity on the post-Initial Operational Configurations (IOC) space station. The role of the organizational environment as a complement to the spatial environment for influencing crew performance in such isolated and confined work settings is examined. Three possible models of operation for post-IOC space station's organizational environment are identified and it is explained how they and space station's spatial environment will combine and interact to occasion patterns of crew behavior is suggested. A three phase program of research design: (1) identify patterns of crew behavior likely to be occasioned on post-IOC space station for each of the three models of operation; and (2) to determine proactive/preventative management strategies which could be adopted to maximize the emergence of preferred outcomes in crew behavior under each of the several spatial and organizational environment combinations.
Dental practice during a world cruise: characterisation of oral health at sea.
Sobotta, Bernhard A J; John, Mike T; Nitschke, Ina
2006-01-01
To describe oral health of passengers and crew attending the dental service aboard during a two months world cruise. In a retrospective, descriptive epidemiologic study design the routine documentation of all dental treatment provided at sea was analysed after the voyage. Subjects were n = 57 passengers (3.5 % of 1619) with a mean age of 71 (+/- 9.8) years and n =56 crew (5.6 % of 999) with a mean age of 37 (+/- 12.0) years. Age, gender, nationality, number of natural teeth and implants were extracted. The prosthetic status was described by recording the number of teeth replaced by fixed prosthesis and number of teeth replaced by removable prosthesis. Oral health-related quality of life (OHRQoL) was measured using the 14-item Oral Health Impact Profile (OHIP-14) and characterised by the OHIP sum score. Women attended for treatment more often than men. Passengers had a mean number of 20 natural teeth plus substantial fixed and removable prosthodontics. Crew had a mean of 26 teeth. British crew and Australian passengers attended the dental service above average. Crew tended to have a higher average OHIP-14 sum score than passengers indicating an increased rate of perceived problems. Emergency patients from both crew and passengers have a higher sum score than patients attending for routine treatment. In passengers the average number of teeth appears to be higher than that of an age matched population of industrialized countries. However, the passengers' socioeconomic status was higher which has an effect on this finding. Socioeconomic factors also serve to explain the high standard of prosthetic care in passengers. Crew in general present with less sophisticated prosthetic devices. This is in line with their different socioeconomic status and origin from developing countries. The level of dental fees aboard in comparison to treatment costs in home countries may explain some of the differences in attendance. Passengers have enjoyed high standards of prosthetic care in the past and will expect a similarly high standard from ship based facilities. The ease of access to quality dental care may explain the relatively low level of perceived problems as characterised by oral health-related quality of life scores. The dental officer aboard has to be prepared to care for very varied diagnostic and treatment needs.
A taxonomy of decision problems on the flight deck
NASA Technical Reports Server (NTRS)
Orasanu, Judith M.; Fischer, Ute; Tarrel, Richard J.
1993-01-01
Examining cases of real crews making decisions in full-mission simulators or through Aviation Safety Reporting System (ASRS) reports shows that there are many different types of decisions that crews must make. Features of the situation determine the type of decision that must be made. The paper identifies six types of decisions that require different types of cognitive work and are also subject to different types of error or failure. These different requirements, along with descriptions of effective crew strategies, can serve as a basis for developing training practices and for evaluating crews.
[Some approaches to the countermeasure system for a mars exploration mission].
Kozlovskaia, I B; Egorov, A D; Son'kin, V D
2010-01-01
In article discussed physiological and methodical principles of the organization of training process and his (its) computerization during Martian flight in conditions of autonomous activity of the crew, providing interaction with onboard medical means, self-maintained by crew of the their health, performance of preventive measures, diagnostic studies and, in case of necessity, carrying out of treatment. In super long autonomous flights essentially become complicated the control of ground experts over of crew members conditions, that testifies to necessity of a computerization of control process by a state of health of crew, including carrying out of preventive actions. The situation becomes complicated impossibility of reception and transfer aboard the necessary information in real time and emergency returning of crew to the Earth. In these conditions realization of problems of physical preventive maintenance should be solved by means of the onboard automated expert system, providing management by trainings of each crew members, directed on optimization of their psychophysical condition.
STS-62 Preflight training in Crew Compartment Trainer (CCT) in bldg 9A
1993-11-01
S93-48462 (5 Nov. 1993) --- Astronaut Charles D. (Sam) Gemar, wearing a partial pressure launch and entry suit (LES), takes a break during a training exercise at the Johnson Space Center (JSC). The mission specialist and four crew mates rehearsed emergency egress procedures using the escape pole device in the trainer's hatchway (near right center frame).
Astronaut Scott Parazynski in hatch of CCT during training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Scott E. Parazynski, STS-66 mission specialist, poses near the hatchway of the crew compartment trainer (CCT) (out of frame) in JSC's Shuttle mockup and integration laboratory. Crew members were about to begin a rehearsal of procedures to be followed during the launch and entry phases of their flight. That rehearsal was followed by a training session on emergency egress procedures.
STS-95 crew members Glenn, Robinson and Lindsey take break from TCDT
NASA Technical Reports Server (NTRS)
1998-01-01
At Launch Pad 39-B, at the 195-foot level, STS-95 crew members learn about the slidewire basket, lower right, that is part of the emergency egress system from the orbiter before launch. Shown are (left to right) Mission Specialist Scott E. Parazynski, Pilot Steven W. Lindsey, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), Mission Specialist Stephen K. Robinson, Payload Specialist Chiaki Mukai, representing the National Space Development Agency of Japan (NASDA), Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.
2007-11-18
KENNEDY SPACE CENTER, FLA. -- The STS-122 crew poses for a group portrait near Launch Pad 39B following a training session on the operation of the M-113 armored personnel carrier. An M-113 will be available to transport the crew to safety in the event of an emergency on the pad before their launch. From left are Mission Specialists Rex Walheim and Stanley Love; Commander Steve Frick; Pilot Alan Poindexter; and Mission Specialists Leland Melvin, Leopold Eyharts and Hans Schlegel. Eyharts and Schlegel are with the European Space Agency. Eyharts will remain on the International Space Station as a flight engineer for Expedition 16 following the STS-122 mission. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett
Magnetic radiation shielding - An idea whose time has returned?
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1991-01-01
One solution to the problem of shielding crew from particulate radiation in space is to use active electromagnetic shielding. Practical types of shield include the magnetic shield, in which a strong magnetic field diverts charged particles from the crew region, and the magnetic/electrostatic plasma shield, in which an electrostatic field shields the crew from positively charged particles, while a magnetic field confines electrons from the space plasma to provide charge neutrality. Advances in technology include high-strength composite materials, high-temperature superconductors, numerical computational solutions to particle transport in electromagnetic fields, and a technology base for construction and operation of large superconducting magnets. These advances make electromagnetic shielding a practical alternative for near-term future missions.
2008-10-29
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Sandra Magnus is strapped into her seat in space shuttle Endeavour. She and other crew members will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
2001-07-18
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson happily sits through suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, both with the Russian Aviation and Space Agency, are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-04-08
STS-100 Commander Kent V. Rominger is ready to take the wheel on the M-113 armored carrier that could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Driving the tracked vehicle is part of Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
2001-04-08
STS-100 Mission Specialist Chris A. Hadfield is ready to take the wheel on the M-113 armored carrier that could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Driving the tracked vehicle is part of Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A
STS-113 TCDT emergency exit training at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist John Herrington (left) and cosmonaut Nikolai Budarin (center) listen to instructions from a trainer on the emergency egress system on Launch Pad 39A. They are other crew members are taking part in Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.
2007-02-22
KENNEDY SPACE CENTER, FLA. -- At the 195-foot level of the fixed service structure on Launch Pad 39A, STS-117 crew members receive instruction on emergency egress during Terminal Countdown Demonstration Test activities. Pilot Lee Archambault reviews emergency egress procedures using the slidewire basket system to get off the pad. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
2000-01-12
STS-99 Mission Specialist Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, smiles during training on the M-113, an armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
STS-110 M.S. Ochoa in M-113 personnel carrier during TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Ellen Ochoa practices driving the M-113 armored personnel carrier, part of Terminal Countdown Demonstration Test activities. Accompanying her are fellow crew members Mission Specialist Rex Walheim (far left) and Pilot Stephen Frink (second from left). In front is the trainer. TCDT includes emergency egress training and a simulated launch countdown. The TCDT is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.
STS-105 and Expedition Three crews talk to media at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At the slidewire landing site, Launch Pad 39A, STS-105 Mission Specialist Daniel Barry responds to a question during a media interview. With him are (left to right) Mission Specialist Patrick Forrester, Pilot Rick Sturckow and Commander Scott Horowitz; with the Expedition Three crew Commander Frank Culbertson and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, who are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
STS-105 and Expedition Three crews pose for photo at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose at Launch Pad 39A after training exercises. Pictured (left to right) are STS-105 Mission Specialists Patrick Forrester and Daniel Barry and Commander Scott Horowitz; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; and STS-105 Pilot Rick Sturckow. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
2008-10-28
CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the STS-126 crew is ready to answer questions from the media about their mission. Commander Chris Ferguson, at left, introduces his crew: (from left) Pilot Eric Boe and Mission Specialists Steve Bowen, Sandra Magnus, Shane Kimbrough, Donald Pettit and Heidemarie Stefanyshyn-Piper. Behind them is space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit procedures and a simulated launch countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Kim Shiflett
STS-113 crew during M-113 armored personnel carrier training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The Expedition 6 crew pauses for a photo after emergency egress training at the pad, which included driving the M-113 armored personnel carrier behind them. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.
STS-113 crew during M-113 armored personnel carrier training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-113 Pilot Paul Lockhart test drives an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He is accompanied by several other crew members, seen at left, Mission Specialist Michael Lopez-Alegria and Commander James Wetherbee. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a simulated launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.
STS-113 crew during M-113 armored personnel carrier training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Donald Pettit concentrates on driving an M-113 armored personnel carrier during emergency egress training at the pad. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.
STS-113 crew during M-113 armored personnel carrier training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Nikolai Budarin takes his turn driving an M-113 armored personnel carrier during emergency egress training at the pad. The crew is preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10, by taking part in Terminal Countdown Demonstration Test activities. The TCDT includes a simulated launch countdown.. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.
STS-102 crew poses on the FSS at Launch Pad 39B during TCDT
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-102 crew poses for a photo on the 215-foot level of the Fixed Service Structure. Behind them is Space Shuttle Discovery. Standing, left to right, are Mission Specialist Susan Helms, Pilot James Kelly, Mission Specialists Andrew Thomas and Paul Richards, Commander James Wetherbee and Mission Specialists Yury Usachev and James Voss. The crew is taking part in Terminal Countdown Demonstration Test activities, which include emergency exit training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.
The role of flight planning in aircrew decision performance
NASA Technical Reports Server (NTRS)
Pepitone, Dave; King, Teresa; Murphy, Miles
1989-01-01
The role of flight planning in increasing the safety and decision-making performance of the air transport crews was investigated in a study that involved 48 rated airline crewmembers on a B720 simulator with a model-board-based visual scene and motion cues with three degrees of freedom. The safety performance of the crews was evaluated using videotaped replays of the flight. Based on these evaluations, the crews could be divided into high- and low-safety groups. It was found that, while collecting information before flights, the high-safety crews were more concerned with information about alternative airports, especially the fuel required to get there, and were characterized by making rapid and appropriate decisions during the emergency part of the flight scenario, allowing these crews to make an early diversion to other airports. These results suggest that contingency planning that takes into account alternative courses of action enhances rapid and accurate decision-making under time pressure.
STS-105 and Expedition Three crews in White Room at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.
STS-114: Crew Training Clip from JSC
NASA Technical Reports Server (NTRS)
2003-01-01
STS-114 Discovery crew is shown in various training exercises at Johnson Space Center. The crew consists of Eileen Collins, Commander; James Kelley, Pilot; Charles Camarda, Mission Specialist; Wendy Lawrence, Mission Specialist; Soichi Noguchi, Mission Specialist; Steve Robinson, Mission Specialist; and Andy Thomas, Mission Specialist. The exercises include: 1) EVA training in the VR lab; 2) Neutral Buoyancy Laboratory (NBL) EVA Training; 3) Walk to Motion Base Simulator; 4) EVA Preparations in ISS Airlock; and 7) Emergency Egress from Crew Compartment Trainer (CCT). A crew photo session is also presented. Footage of The Space Shuttle Atlantis inside the Kennedy Space Center Vehicle Assembly Building (VAB) after its demating from the Solid Rocket Booster and External Tank is shown. The video ends with techniques for inspecting and repairing Thermal Protection System tiles, a video of external tank production at the Michoud Assembly Facility (MAF) and redesign of the foam from the bipod ramp at Michoud Assembly Facility (MAF).
14 CFR 23.805 - Flightcrew emergency exits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... emergency exit must be located to allow rapid evacuation of the crew and have a size and shape of at least a... than six feet from the ground, an assisting means must be provided. The assisting means may be a rope...
The STS-93 crew practice emergency egress training from Launch Pad 39B.
NASA Technical Reports Server (NTRS)
1999-01-01
Inside an M-113 armored personnel carrier at the launch pad, the STS-93 crew take part in emergency egress training under the watchful eyes of Capt. George Hoggard (center), trainer with the KSC Fire Department. From left are Mission Specialist Michel Tognini of France, Commander Eileen M. Collins, Hoggard, Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, and Mission Specialist Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). The training is part of Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Karen Nyberg waits to begin training on the M113 armored personnel carrier on Launch Pad 39B. She and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
The X-38 vehicle #131R arrives at NASA Dryden Flight Research Center
2000-07-11
The X-38 Vehicle 131R, intended to prove the utility of a "lifeboat" crew return vehicle to bring crews home from the International Space Station in the event of an emergency, was unloaded from NASA's Super Guppy transport aircraft on July 11, 2000. The newest X-38 version arrived at Dryden for drop tests from NASA's venerable B-52 mother ship. The tests will evaluate a 7,500 square-foot parafoil intended to permit the crew return vehicle to return from space and land in the length of a football field.
2011-07-07
CAPE CANAVERAL, Fla. -- A media event was held on the grounds near the Press Site at NASA's Kennedy Space Center in Florida where a Multi-Purpose Crew Vehicle (MPCV) is on display. The MPCV is based on the Orion design requirements for traveling beyond low Earth orbit and will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Seen here is a sample of the Orion launch-and-entry suit on display. Photo credit: NASA/Frankie Martin
The X-38 vehicle #131R arrives at NASA Dryden Flight Research Center
NASA Technical Reports Server (NTRS)
2000-01-01
The X-38 Vehicle 131R, intended to prove the utility of a 'lifeboat' crew return vehicle to bring crews home from the International Space Station in the event of an emergency, was unloaded from NASA's Super Guppy transport aircraft on July 11, 2000. The newest X-38 version arrived at Dryden for drop tests from NASA's venerable B-52 mother ship. The tests will evaluate a 7,500 square-foot parafoil intended to permit the crew return vehicle to return from space and land in the length of a football field.
Novitskiy participates in a CHeCS medical contingency drill in the U.S. Laboratory
2012-11-26
ISS034-E-005260 (26 Nov. 2012) --- Russian cosmonaut Oleg Novitskiy, Expedition 34 flight engineer, participates in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
Shkaplerov participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory
2011-12-16
ISS030-E-012600 (16 Dec. 2011) --- Russian cosmonaut Anton Shkaplerov, Expedition 30 flight engineer, participates in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
Novitskiy participates in a CHeCS medical contingency drill in the U.S. Laboratory
2012-11-26
ISS034-E-005266 (26 Nov. 2012) --- Russian cosmonaut Oleg Novitskiy, Expedition 34 flight engineer, participates in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
NASA Astrophysics Data System (ADS)
Walsh, T.; Layton, T.; Mellor, J. E.
2017-12-01
Storm damage to the electric grid impacts 23 million electric utility customers and costs US consumers $119 billion annually. Current restoration techniques rely on the past experiences of emergency managers. There are few analytical simulation and prediction tools available for utility managers to optimize storm recovery and decrease consumer cost, lost revenue and restoration time. We developed an agent based model (ABM) for storm recovery in Connecticut. An ABM is a computer modeling technique comprised of agents who are given certain behavioral rules and operate in a given environment. It allows the user to simulate complex systems by varying user-defined parameters to study emergent, unpredicted behavior. The ABM incorporates the road network and electric utility grid for the state, is validated using actual storm event recoveries and utilizes the Dijkstra routing algorithm to determine the best path for repair crews to travel between outages. The ABM has benefits for both researchers and utility managers. It can simulate complex system dynamics, rank variable importance, find tipping points that could significantly reduce restoration time or costs and test a broad range of scenarios. It is a modular, scalable and adaptable technique that can simulate scenarios in silico to inform emergency managers before and during storm events to optimize restoration strategies and better manage expectations of when power will be restored. Results indicate that total restoration time is strongly dependent on the number of crews. However, there is a threshold whereby more crews will not decrease the restoration time, which depends on the total number of outages. The addition of outside crews is more beneficial for storms with a higher number of outages. The time to restoration increases linearly with increasing repair time, while the travel speed has little overall effect on total restoration time. Crews traveling to the nearest outage reduces the total restoration time, while crews going to the outage with most customers affected increases the overall restoration time but more quickly decreases the customers remaining without power. This model can give utility company managers the ability to optimize their restoration strategies before or during a storm event to reduce restoration times and costs.
Armbruster, W; Kubulus, D; Schlechtriemen, T; Adler, J; Höhn, M; Schmidt, D; Duchêne, S; Steiner, P; Volk, T; Wrobel, M
2014-09-01
Prehospital emergency medicine is a challenge for trainee emergency physicians. Rare injuries and diseases as well as patients in extreme age groups can unexpectedly face emergency physicians. In the regulations on medical education the German Medical Association requires participation in 50 emergency missions under the supervision of an experienced emergency physician. This needs to be improved because on-the-job training does not generally represent the whole spectrum of emergency medicine and a good and structured training under on call conditions is nearly impossible. The subject of the model project described was whether practical training for emergency physicians can be achieved by participation in simulation training instead of real emergency situations. After modification of the Saarland regulations on medical education it was possible to replace up to 25 participations in emergency missions by simulation training. The concept of the course NASimSaar25 requires participants to complete 25 simulator cases in 3 days in small training groups. Emergency situations from all medical disciplines need to be treated. A special focus is on the treatment of life-threatening and rare diseases and injuries. Modern simulators and actors are used. The debriefings are conducted by experienced tutors based on approved principles. Medical contents, learning targets from the field of crew resource management (CRM) and soft skills are discussed in these debriefings. Education in the field of emergency medicine can be improved by simulator-based learning and training. However, practical work under a tutor in real and clinical experience cannot be completely replaced by simulation. Simulator training can only be successful if theoretical knowledge has already been acquired. A simulator-based course concept can result in an improvement of emergency medical education. The model project NASimSaar25 was well received by the target audience and mostly very well evaluated in terms of learning and reality. If this project becomes established the demand on simulation-based training will increase. The training should achieve a consistent standard of quality.
STS-92 crew talk to media at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
At Launch Pad 39A during a question and answer session with the media, STS-92 Commander Brian Duffy talks about the mission. Standing next to him, left to right, are Pilot Pamela Ann Melroy and Mission Specialists Leroy Chiao, William S. McArthur Jr., Peter J.K. 'Jeff' Wisoff, Michael E. Lopez-Alegria and Koichi Wakata of Japan. The crew is at KSC for Terminal Countdown Demonstration Test activities that provide emergency egress training, opportunities to inspect the mission payload, and a simulated countdown. The slidewire basket area is a landing site for the crew if they have to use the slidewire baskets to exit the orbiter on the pad in an emergency. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, the STS-114 crew takes part in training on an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Seated in the M-113, left to right, are Commander Eileen Collins, Mission Specialist Stephen Robinson, Capt. George Hoggard, astronaut rescue team leader, Mission Specialists Andrew Thomas, Soichi Noguchi and Charles Camarda, and Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
STS-92 Mission Specialist McArthur is ready to take his turn driving the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
STS-92 Mission Specialist Bill McArthur gets ready to take his turn at driving the M-113, part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind him (left) is Mission Specialist Jeff Wisoff, waiting his turn to drive along with other unidentified crew members. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
2013-10-24
CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is being moved by flatbed truck from the high bay. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility high bay at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission is being loaded onto a flatbed truck. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2013-09-27
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
2013-09-27
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
2013-10-24
CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is backed by flatbed truck into a low bay at the facility. The low bay has been prepared for additional LAS processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2013-10-24
CAPE CANAVERAL, Fla. – At the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1, is being moved by flatbed truck from the high bay. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility high bay at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission is being loaded onto a flatbed truck. The LAS will be moved to a low bay at the facility to complete processing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
STS-87 M.S. Doi and Chawla and P.S. Kadenyuk in slidewire basket
NASA Technical Reports Server (NTRS)
1997-01-01
The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participates in the Terminal Countdown Demonstration Test (TCDT) at KSC. Testing a slide wire basket that is part of the pads emergency egress system are, from left, Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU); and Mission Specialist Kalpana Chawla, Ph.D. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.
STS-97 crew meets with the media at Launch Pad 39B
NASA Technical Reports Server (NTRS)
2000-01-01
Standing in the slidewire landing zone at Launch Pad 39B, the STS-97 crew respond to questions from the media. They are, left to right, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. Garneau is with the Canadian Space Agency. The nets suspended behind them are a braking system catch net for the slidewire baskets that provide emergency exit from the orbiter and Fixed Service Structure. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.
NASA Astrophysics Data System (ADS)
Roma, Peter G.; Hursh, Steven R.; Hienz, Robert D.; Emurian, Henry H.; Gasior, Eric D.; Brinson, Zabecca S.; Brady, Joseph V.
2011-05-01
Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3-4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.
Evaluating the effectiveness of cockpit resource management training
NASA Technical Reports Server (NTRS)
Helmreich, Robert L.
1989-01-01
The concept of providing flight crews with intensive training in crew coordination and interpersonal skills (cockpit resource management training - CRM) is outlined with emphasis on full mission simulator training (line-oriented flight training - LOFT). Findings from several airlines that have instituted CRM and LOFT are summarized. Four types of criteria used for evaluating CRM programs: observer ratings of crew behavior, measures of attitudes regarding cockpit management, self-reports by participants on the value of the training, and case studies of CRM-related incidents and accidents are covered. Attention is focused on ratings of the performance of crews during line flights and during simulator sessions conducted as a part of LOFT. A boomerang effect - the emergence of a subgroup that has changed the attitudes in the opposite direction from that desired is emphasized.
2008-10-29
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 crew members head for the slidewire baskets on the 195-foot level of the fixed service structure. They have taken part in a simulated countdown in space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-29
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Donald Pettit signals okay as he gets into his seat in space shuttle Endeavour. He and other crew members will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-29
CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Commander Chris Ferguson adjusts his headset before donning his helmet. He will enter space shuttle Endeavour to take part in a simulated launch countdown with the other crew members. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-29
CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Pilot Eric Boe waits to finish his suit-up. He and other crew members will take part in a simulated launch countdown after entering space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-29
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Heidemarie Stefanyshyn-Piper is strapped into her seat in space shuttle Endeavour. She and other crew members will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-29
CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Shane Kimbrough gets help with his suit before entering space shuttle Endeavour. He and other crew members will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-29
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 crew members climb into a slidewire basket on the 195-foot level of the fixed service structure. They have taken part in a simulated countdown in space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-29
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 crew members head for the slidewire baskets on the 195-foot level of the fixed service structure. They have taken part in a simulated countdown in space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-29
CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Donald Pettit adjusts his headset. He will enter space shuttle Endeavour to take part in a simulated launch countdown with the other crew members. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
STS-108 and Expedition 4 crews visit Mobile Command Center at CCAFS
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-108 crew visit the Mobile Command Center at Cape Canaveral Air Force Station. From left are Pilot Mark E. Kelly, Mission Specialist Daniel M. Tani; Commander Dominic L. Gorie and Mission Specialist Linda A. Godwin; and Expedition 4 Commander Onufrienko and Daniel W. Bursch and Carl E. Walz. Crew members are at KSC for Terminal Countdown Demonstration Test activities that include a simulated launch countdown, and emergency exit training from the orbiter and launch pad. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour.
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Pilot Rick Sturckow and Mission Specialists Daniel Barry and Patrick Forrester; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2013-05-13
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, Lockheed Martin crews begin uncovering the Orion ground test vehicle in the Launch Equipment Test Facility, or LETF. The GTA was moved from the Operations and Checkout Facility to the LETF for a series of pyrotechnic bolt tests. The GTA is being used for path finding operations in the O&C, including simulated manufacturing and assembly procedures. Launching atop NASA's heavy-lift Space Launch System SLS, which also is under development, the Orion Multi-Purpose Crew Vehicle MPCV will serve as the exploration vehicle that will carry astronaut crews beyond low Earth orbit. It also will provide emergency abort capabilities, sustain the crew during space travel and provide safe re-entry from deep space return velocities. For more information, visit www.nasa.gov/orion. Photo credit: Jim Grossman
2013-05-13
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, Lockheed Martin crews uncover the Orion ground test vehicle in the Launch Equipment Test Facility, or LETF. The GTA was moved from the Operations and Checkout Facility to the LETF for a series of pyrotechnic bolt tests. The GTA is being used for path finding operations in the O&C, including simulated manufacturing and assembly procedures. Launching atop NASA's heavy-lift Space Launch System SLS, which also is under development, the Orion Multi-Purpose Crew Vehicle MPCV will serve as the exploration vehicle that will carry astronaut crews beyond low Earth orbit. It also will provide emergency abort capabilities, sustain the crew during space travel and provide safe re-entry from deep space return velocities. For more information, visit www.nasa.gov/orion. Photo credit: Jim Grossman
NASA Astrophysics Data System (ADS)
Zea, Luis; Diaz, Alejandro R.; Shepherd, Charles K.; Kumar, Ranganathan
2010-07-01
Extra-vehicular activities (EVAs) are an essential part of human space exploration, but involve inherently dangerous procedures which can put crew safety at risk during a space mission. To help mitigate this risk, astronauts' training programs spend substantial attention on preparing for surface EVA emergency scenarios. With the help of two Mars Desert Research Station (MDRS) crews (61 and 65), wearing simulated spacesuits, the most important of these emergency scenarios were examined at three different types of locations that geologically and environmentally resemble lunar and Martian landscapes. These three platforms were analyzed geologically as well as topographically (utilizing a laser range finder with slope estimation capabilities and a slope determination software). Emergency scenarios were separated into four main groups: (1) suit issues, (2) general physiological, (3) attacks and (4) others. Specific tools and procedures were developed to address each scenario. The tools and processes were tested in the field under Mars-analog conditions with the suited subjects for feasibility and speed of execution.
Cockpit emergency safety system
NASA Astrophysics Data System (ADS)
Keller, Leo
2000-06-01
A comprehensive safety concept is proposed for aircraft's experiencing an incident to the development of fire and smoke in the cockpit. Fire or excessive heat development caused by malfunctioning electrical appliance may produce toxic smoke, may reduce the clear vision to the instrument panel and may cause health-critical respiration conditions. Immediate reaction of the crew, safe respiration conditions and a clear undisturbed view to critical flight information data can be assumed to be the prerequisites for a safe emergency landing. The personal safety equipment of the aircraft has to be effective in supporting the crew to divert the aircraft to an alternate airport in the shortest possible amount of time. Many other elements in the cause-and-effect context of the emergence of fire, such as fire prevention, fire detection, the fire extinguishing concept, systematic redundancy, the wiring concept, the design of the power supplying system and concise emergency checklist procedures are briefly reviewed, because only a comprehensive and complete approach will avoid fatal accidents of complex aircraft in the future.
2013-12-05
CAPE CANAVERAL, Fla. -- The first of four new emergency egress vehicles, called Mine-Resistant Ambush-Protection, or MRAP, vehicles arrived at Kennedy Space Center in Florida from the U.S. Army Red River Depot in Texarkana, Texas. Each vehicle will be processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Jim Grossmann
2013-12-05
CAPE CANAVERAL, Fla. -- The first of four new emergency egress vehicles, called Mine-Resistant Ambush-Protection, or MRAP, vehicles arrived at Kennedy Space Center in Florida from the U.S. Army Red River Depot in Texarkana, Texas. Each vehicle will be processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Jim Grossmann
2013-12-05
CAPE CANAVERAL, Fla. -- The first of four new emergency egress vehicles, called Mine-Resistant Ambush-Protection, or MRAP, vehicles arrived at Kennedy Space Center in Florida from the U.S. Army Red River Depot in Texarkana, Texas. Each vehicle will be processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Jim Grossmann
Prehospital care in Hong Kong.
Lo, C B; Lai, K K; Mak, K P
2000-09-01
A quick and efficient prehospital emergency response depends on immediate ambulance dispatch, patient assessment, triage, and transport to hospital. During 1999, the Ambulance Command of the Hong Kong Fire Services Department responded to 484,923 calls, which corresponds to 1329 calls each day. Cooperation between the Fire Services Department and the Hospital Authority exists at the levels of professional training of emergency medical personnel, quality assurance, and a coordinated disaster response. In response to the incident at the Hong Kong International Airport in the summer of 1999, when an aircraft overturned during landing, the pre-set quota system was implemented to send patients to designated accident and emergency departments. Furthermore, the 'first crew at the scene' model has been adopted, whereby the command is established and triage process started by the first ambulance crew members to reach the scene. The development of emergency protocols should be accompanied by good field-to-hospital and interhospital communication, the upgrading of decision-making skills, a good monitoring and auditing structure, and commitment to training and skills maintenance.
STS-113 TCDT emergency exit training at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - As part of Terminal Countdown Demonstration Test (TCDT) activities, the STS-113 and Expedition 6 crews receive training in emergency exit from the orbiter on Launch Pad 39A. Shown are (from left) Expedition 6 Commander Ken Bowersox; STS-113 Pilot Paul Lockhart; astronaut Donald Pettit; Mission Specialist Michael Lopez-Alegria, Commander James Wetherbee and Mission Specialist John Herrington; and cosmonaut Nikolai Budarin. The TCDT also includes a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.
STS-113 TCDT emergency exit training at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - On Launch Pad 39A, a trainer (right) explains use of the slidewire basket, part of the emergency egress system, to Expedition 6 astronaut Donald Pettit (left) and STS-113 Mission Specialists Michael Lopez-Alegria (center) and John Herrington (right). . They are other crew members are taking part in Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.
A video-based system and method for improving aircraft security
NASA Astrophysics Data System (ADS)
Ebenstein, Samuel E.; Smith, Gregory H.; Zorka, Nicholas G.; Rodin, Yelena M.; Meitzler, Thomas J.
2004-08-01
Commercial airplanes are now a weapon of mass destruction to be used in asymmetric warfare against the United States. There is a clear need for enhanced situational awareness within the passenger cabin of airplanes. If the crew suspected that the security of an aircraft had been compromised it would be critical for a crew member to be able to clearly and rapidly see what is occurring inside the passenger cabin without having to open the door to the cockpit. In case of emergency it would also be extremely valuable for ground personnel and aircraft responding to the emergency to be able to visually monitor what is happening inside the aircraft cabin.
2008-09-23
CAPE CANAVERAL, Fla. - STS-125 Pilot Gregory C. Johnson serves as a “guinea pig” to demonstrate emergency escape apparatus from the 195-foot level of the fixed service structure on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Looking on are Mission Specialists Andrew Feustel, Megan McArthur and Mike Massimino. The crew is at Kennedy to take part in terminal countdown demonstration test, or TCDT, activities before launching on space shuttle Atlantis’ mission to service NASA’s Hubble Space Telescope. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization, emergency training and a simulated launch countdown. Atlantis is targeted to launch Oct. 10. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – The SpaceX Dragon test article tumbles over the Pacific Ocean, off the coast of Morro Bay, Calif., following its release for an Erickson Sky Crane helicopter. SpaceX engineers induced the tumble to evaluate the spacecraft's parachute deployment system in an emergency abort scenario. The test is part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – An Erickson Sky Crane helicopter releases the SpaceX Dragon test article, inducing a tumble similar to what is expected in an emergency abort scenario, over the Pacific Ocean, off the coast of Morro Bay, Calif. The test allowed engineers to better evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – The SpaceX Dragon test article tumbles over the Pacific Ocean, off the coast of Morro Bay, Calif., following its release for an Erickson Sky Crane helicopter. SpaceX engineers induced the tumble to evaluate the spacecraft's parachute deployment system in an emergency abort scenario. The test is part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2018-04-20
An MRAP armored vehicle goes through a training run on the Shuttle Landing Facility to support NASA's Commercial Crew Program at the agency's Kennedy Space Center in Florida. The 45,000-pound mine-resistant ambush protected vehicle, or MRAP, was originally designed for military applications. The MRAP offers a mobile bunker for astronauts and ground crews in the unlikely event they have to get away from the launch pad quickly in an emergency.
2018-04-20
Inside a Shuttle Landing Facility hangar at NASA's Kennedy Space Center in Florida, two MRAP armored vehicles are prepared for a training drive to support the agency's Commercial Crew Program. The 45,000-pound mine-resistant ambush protected vehicle, or MRAP, was originally designed for military applications. The MRAP offers a mobile bunker for astronauts and ground crews in the unlikely event they have to get away from the launch pad quickly in an emergency.
2018-04-20
Inside a Shuttle Landing Facility hangar at NASA's Kennedy Space Center in Florida, an MRAP armored vehicle is prepared for a training drive to support the agency's Commercial Crew Program. The 45,000-pound mine-resistant ambush protected vehicle, or MRAP, was originally designed for military applications. The MRAP offers a mobile bunker for astronauts and ground crews in the unlikely event they have to get away from the launch pad quickly in an emergency.
2018-04-20
Two MRAP armored vehicles go through a training run on the Shuttle Landing Facility to support NASA's Commercial Crew Program at the agency's Kennedy Space Center in Florida. The 45,000-pound mine-resistant ambush protected vehicle, or MRAPs, were originally designed for military applications. The MRAP offers a mobile bunker for astronauts and ground crews in the unlikely event they have to get away from the launch pad quickly in an emergency.
Burbank participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory
2011-12-16
ISS030-E-012613 (16 Dec. 2011) --- NASA astronaut Dan Burbank (foreground), Expedition 30 commander, and Russian cosmonaut Anton Shkaplerov, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
Burbank participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory
2011-12-16
ISS030-E-012609 (16 Dec. 2011) --- NASA astronaut Dan Burbank (foreground), Expedition 30 commander, and Russian cosmonaut Anton Shkaplerov, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
Ivanishin participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory
2011-12-16
ISS030-E-012604 (16 Dec. 2011) --- Russian cosmonauts Anatoly Ivanishin (foreground) and Anton Shkaplerov, both Expedition 30 flight engineers, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
NASA Technical Reports Server (NTRS)
Foushee, H. C.; Lauber, J. K.; Baetge, M. M.; Acomb, D. B.
1986-01-01
Excessive flightcrew fatigue has potentially serious safety consequences. Laboratory studies have implicated fatigue as a causal factor associated with varying levels of performance deterioration depending on the amount of fatigue and the type of measure utilized in assessing performance. These studies have been of limited utility because of the difficulty of relating laboratory task performance to the demands associated with the operation of a complex aircraft. The performance of 20 volunteer twin-jet transport crews is examined in a full-mission simulator scenario that included most aspects of an actual line operation. The scenario included both routine flight operations and an unexpected mechanical abnormality which resulted in a high level of crew workload. Half of the crews flew the simulation within two to three hours after completing a three-day, high-density, short-haul duty cycle (Post-Duty condition). The other half flew the scenario after a minimum of three days off duty (Pre-Duty) condition). The results revealed that, not surprisingly, Post-Duty crews were significantly more fatigued than Pre-Duty crews. However, a somewhat counter-intuitive pattern of results emerged on the crew performancemeasures. In general, the performance of Post-Duty crews was significantly better than that of Pre-Duty crews, as rated by an expert observer on a number of dimensions relevant to flight safety. Analyses of the flightcrew communication patterns revealed that Post-Duty crews communicated significantly more overall, suggesting, as has previous research, that communication is a good predictor of overall crew performance.
Introduction of a compressed air breathing apparatus for the offshore oil and gas industry.
Brooks, Chris J; MacDonald, Conor V; Carroll, Joel; Gibbs, Peter N G
2010-07-01
When a helicopter ditches the majority of crew and passengers have to make an underwater escape. Some may not be able to hold their breath and will drown. For at least 15 yr, military aircrew have been trained to use a scuba system. In the offshore oil and gas industry, there has been more caution about introducing a compressed air system and a rebreather system has been introduced as an alternative. Recently, Canadian industry and authorities approved the introduction of Helicopter Underwater Emergency Breathing Apparatus (HUEBA) training using compressed air. This communication reports the training of the first 1000 personnel. Training was introduced in both Nova Scotia and Newfoundland concurrently by the same group of instructors. Trainees filled out a questionnaire concerning their perceived ratings of the ease or difficulty of classroom training and the practical use of the HUEBA. Ninety-eight percent of trainees found the classroom and in-water training to be "good/very good". Trainees found it to be "easy/very easy" to clear the HUEBA and breathe underwater in 84% and 64% of cases, respectively. Divers reported a greater ease in learning all the practical uses of the HUEBA except application of the nose clip. There were problems with the nose clip fitting incorrectly, and interference of the survival suit hood with the regulator, which subsequently have been resolved. When carefully applied, the introduction of the HUEBA into training for offshore oil and gas industry helicopter crew and passengers can be safely conducted.
Astronaut Vance Brand practices operating Docking Module hatch for ASTP
NASA Technical Reports Server (NTRS)
1975-01-01
Astronaut Vance D. Brand, command module pilot of the American Apollo Soyuz Test Project (ASTP) prime crew, practices operating a Docking Module hatch during ASTP pre-flight training at JSC. The Docking Module is designed to link the Apollo and Soyuz spacecraft during their docking in Earth orbit mission. Gary L. Doerre of JSC's Crew Training and Procedures Division is working with Brand. Doerre is wearing a face mask to help prevent possible exposure to Brand of disease prior to the ASTP launch.
Crew coordination concepts: Continental Airlines CRM training
NASA Technical Reports Server (NTRS)
Christian, Darryl; Morgan, Alice
1987-01-01
The outline of the crew coordination concepts at Continental airlines is: (1) Present relevant theory: Contained in a pre-work package and in lecture/discussion form during the work course, (2) Discuss case examples: Contained in the pre-work for study and use during the course; and (3) Simulate practice problems: Introduced during the course as the beginning of an ongoing process. These concepts which are designed to address the problem pilots have in understanding the interaction between situations and their own theories of practice are briefly discussed.
2013-07-26
CAPE CANAVERAL, Fla. – The Orion crew module for Exploration Flight Test 1 sits inside a clean room processing cell in the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
2013-07-26
CAPE CANAVERAL, Fla. – The Orion crew module for Exploration Flight Test 1 sits inside a clean room processing cell in the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
Expedition 6 crew group photo during TCDT
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - The Expedition 6 crew poses for a photo on 195-foot level of the Fixed Service Structure on Launch Pad 39A. From left are astronaut Donald Pettit, Commander Ken Bowersox and cosmonaut Nikolai Budarin. Along with the STS-113 crew, they have been participating in emergency egress training, part of Terminal Countdown Demonstration Test activities in preparation for their launch. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour, as well as Expedition 6, who will replace Expedition 5 on the Station. The mission is scheduled to launch Nov. 10, 2002.
2008-05-07
CAPE CANAVERAL, Fla. -- STS-124 Mission Specialists Greg Chamitoff (left) and Akihiko Hoshide (center) and Commander Mark Kelly take part in M113 training on Launch Pad 39A. They and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
1993-11-01
6.36 5.94 6.39 5.99 GMo (ft) 5.07 4.68 4.83 4.60 FSM (ft-lbs) .00 1232.00 1232.00 1232.00 FSC (ft) .00 .02 .02 .02 GMt (ft) 5.07 4.66 4.81 4.58 LCG (ft...mechanical plant , the 502001 can certainly get underway for an emergency response in less than ten minutes of notification, assuming that all crew members are...of the well deck and the stern ramp permit the crew to deploy pollution control booms from the boat. The stern ramp is also useful as a platform and
2001-07-19
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-19
KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-20
KENNEDY SPACE CENTER, Fla. -- STS-105 Pilot Rick Sturckow waits for his helmet during suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001
2001-07-20
KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz finishes with suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities includes emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001
SpaceX Recovery Trainer Egress and Handling Testing
2018-04-17
Pararescue specialists from the 304th Rescue Squadron, located in Portland, Oregon and supporting the 45th Operations Group’s Detachment 3, based out of Patrick Air Force Base, prepare equipment during an April astronaut rescue exercise with NASA’s Commercial Crew Program and SpaceX off of Florida’s eastern coast. The pararescue specialists, also known as “Guardian Angels,” jumped from military aircraft and simulated a rescue operation to demonstrate their ability to safely remove crew from the SpaceX Crew Dragon in the unlikely event of an emergency landing. The pararescue specialists are fully qualified paramedics able to perform field surgery, if necessary.
2014-08-02
SAN DIEGO, Calif. – U.S. Navy personnel in a rigid hull inflatable boat practice with tether lines attached to the Orion boilerplate test vehicle during an evolution of the Underway Recovery Test 2 near the USS Anchorage in the Pacific Ocean off the coast of San Diego. The vehicle is outside of the ship. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Tony Gray
2014-08-02
SAN DIEGO, Calif. – U.S. Navy personnel in rigid hull inflatable boats practice with tether lines attached to the Orion boilerplate test vehicle during an evolution of the Underway Recovery Test 2 near the USS Anchorage in the Pacific Ocean off the coast of San Diego. The vehicle is outside of the ship. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: U.S. Navy/Specialist 1st Class Gary Keen
2014-08-03
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean off the coast of San Diego during a portion of Underway Recovery Test 2. U.S. Navy divers in a Zodiac boat are practicing techniques to attach a lifting sling to the test vehicle. NASA, Lockheed Martin and the U.S. Navy are conducting the test from the USS Anchorage to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the team to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-08-03
SAN DIEGO, Calif. – U.S. Navy personnel in rigid hull inflatable boats and U.S. Navy divers in two Zodiac boats practice using tether lines to guide the Orion boilerplate test vehicle back to the USS Anchorage during a portion of Underway Recovery Test 2 in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the team to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-08-03
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean off the coast of San Diego during a portion of Underway Recovery Test 2. U.S. Navy divers in a Zodiac boat are practicing techniques to attach a lifting sling to the test vehicle. NASA, Lockheed Martin and the U.S. Navy are conducting the test from the USS Anchorage to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the team to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-08-03
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean off the coast of San Diego during a portion of Underway Recovery Test 2. Nearby, U.S. Navy personnel in a rigid hull inflatable boat practice with tether lines on the test vehicle. Positioned further out in the ocean are three other rigid hull inflatable boats. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the team to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Exposure Assessment at 30 000 Feet: Challenges and Future Directions
Grajewski, Barbara; Pinkerton, Lynne E.
2015-01-01
Few studies of cancer mortality and incidence among flight crew have included a detailed assessment of both occupational exposures and lifestyle factors that may influence the risk of cancer. In this issue, Kojo et al. (Risk factors for skin cancer among Finnish airline cabin crew. Ann. Occup. Hyg 2013; 57: 695–704) evaluated the relative contributions of ultraviolet and cosmic radiation to the incidence of skin cancer in Finnish flight attendants. This is a useful contribution, yet the reason flight crew members have an increased risk of skin cancer compared with the general population remains unclear. Good policy decisions for flight crew will depend on continued and emerging effective collaborations to increase study power and improve exposure assessment in future flight crew health studies. Improving the assessment of occupational exposures and non-occupational factors will cost additional time and effort, which are well spent if the role of exposures can be clarified in larger studies. PMID:23818455
In-Space Crew-Collaborative Task Scheduling
NASA Technical Reports Server (NTRS)
Jaap, John; Meyer, Patrick; Davis, Elizabeth; Richardson, Lea
2006-01-01
As humans venture farther from Earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
2008-10-29
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialists (top to bottom) Heidemarie Stefanyshyn-Piper, Shane Kimbrough and Sandra Magnus are strapped in their seats in space shuttle Endeavour. They and other crew members will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-29
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 crew members climb into a slidewire basket on the 195-foot level of the fixed service structure. They have taken part in a simulated countdown in space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder
STS-113 crew during M-113 armored personnel carrier training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-113 Mission Commander James Wetherbee gets ready to drive an M-113 armored personnel carrier, part of emergency egress training during Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes a launch countdown. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Also onboard Space Shuttle Endeavour will be the Expedition 6 crew who will replace Expedition 5, returning to Earth after 4 months.
2001-07-18
KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Daniel T. Barry is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Patrick Forrester; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
2001-07-19
KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001
The Way of the Gun: Applying Lessons of Ground Combat to Pilot Training
2016-02-29
actual practice repetitions.7 Current USAF Crew/Cockpit Resource Management ( CRM ) and Aerospace Physiology courses do not include any instruction on...Burke, Clint A. Bowers, and Katherine A. Wilson. Team Training in the Skies: Does Crew Resource Management ( CRM ) Training Work? Orlando, FL
2012-04-23
Expedition 31 NASA backup crew member Kevin Ford signs for his Soyuz vehicle simulation test card before senior officials at the Gagarin Cosmonaut Training Center, Monday, April 23, 2012 in Star City, Russia, while his fellow crew members Oleg Novitskiy (far left) and Evgeny Tarelkin look on. Expedition 31 prime crew members commander Gennady Padalka, flight engineers Joe Acaba and Sergei Revin practiced similar scenarios nearby in advance of their final approval for launch to the International Space Station, scheduled for May 15, 2012. Photo Credit: (NASA/Carla Cioffi)
Commercial aviation in-flight emergencies and the physician.
Cocks, Robert; Liew, Michele
2007-02-01
Commercial aviation in-flight emergencies are relatively common, so it is likely that a doctor travelling frequently by air will receive a call for help at some stage in their career. These events are stressful, even for experienced physicians. The present paper reviews what is known about the incidence and types of in-flight emergencies that are likely to be encountered, the international regulations governing medical kits and drugs, and the liability, fitness and indemnity issues facing 'Good Samaritan' medical volunteers. The medical and aviation literature was searched, and information was collated from airlines and other sources regarding medical equipment available on board commercial aircraft. Figures for the incidence of significant in-flight emergencies are approximately 1 per 10-40 000 passengers, with one death occurring per 3-5 million passengers. Medically related diversion of an aircraft following an in-flight emergency may occur in up to 7-13% of cases, but passenger prescreening, online medical advice and on-board medical assistance from volunteers reduce this rate. Medical volunteers may find assisting with an in-flight emergency stressful, but should acknowledge that they play a vital role in successful outcomes. The medico-legal liability risk is extremely small, and various laws and industry indemnity practices offer additional protection to the volunteer. In addition, cabin crew receive training in a number of emergency skills, including automated defibrillation, and are one of several sources of help available to the medical volunteer, who is not expected to work alone.
Rescue Shuttle Flight Re-Entry: Controlling Astronaut Thermal Exposure
NASA Technical Reports Server (NTRS)
Gillis, David B.; Hamilton, Douglas; Ilcus, Stana; Stepaniak, Phil; Polk, J. D.; Son, Chang; Bue, Grant
2008-01-01
A rescue mission for the STS-125 Hubble Telescope Repair Mission requires reentry from space with 11 crew members aboard, exceeding past cabin thermal load experience and risking crew thermal stress potentially causing cognitive performance and physiological decrements. The space shuttle crew cabin air revitalization system (ARS) was designed to support a nominal crew complement of 4 to 7 crew and 10 persons in emergencies, all in a shirt-sleeve environment. Subsequent to the addition of full pressure suits with individual cooling units, the ARS cannot maintain a stable temperature in the crew cabin during reentry thermal loads. Bulk cabin thermal models, used for rescue mission planning and analysis of crew cabin air, were unable to accurately represent crew workstation values of air flow, carbon dioxide, and heat content for the middeck. Crew temperature models suggested significantly elevated core temperatures. Planning for an STS-400 potential rescue of seven stranded crew utilized computational fluid dynamics (CFD) models to demonstrate inhomogeneous cabin thermal properties and improve analysis compared to bulk models. In the absence of monitoring of crew temperature, heart rate, metabolic rate and incomplete engineering data on the performance of the integrated cooling garment/cooling unit (ICG/CU) at cabin temperatures above 75 degrees F, related systems & models were reevaluated and tests conducted with humans in the loop. Changes to the cabin ventilation, ICU placement, crew reentry suit-donning procedures, Orbiter Program wave-off policy and post-landing power down and crew extraction were adopted. A second CFD and core temperature model incorporated the proposed changes and confirmed satisfactory cabin temperature, improved air distribution, and estimated core temperatures within safe limits. CONCLUSIONS: These changes in equipment, in-flight and post-landing procedures, and policy were implemented for the STS-400 rescue shuttle & will be implemented in any future rescue flights from the International Space Station of stranded shuttle crews.
2015-12-01
Occupational Injuries COPS Community Oriented Policing Services CRM Crew Resource Management DA Department of the Army FEMA Federal Emergency...establishes composite risk management ( CRM ), also known as crew resource management, “as the Army’s principal risk reduction methodology and assures...regulatory and statutory compliance.”106 CRM , also utilized by other branches within the military and by the aviation industry, is intended “to minimize
STS-47 Payload Specialist Mohri at side hatch during JSC egress exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Japanese Payload Specialist Mamoru Mohri, wearing launch and entry suit (LES), prepares to enter the Crew Compartment Trainer (CCT) side hatch during launch emergency egress (bailout) in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Mohri's right hand rests on the extended crew escape system (CES) pole which will be used in the exercise. Mohri represents Japan's National Development Space Agency (NASDA).
Ford and Novitskiy participate in a CHeCS Medical Contingency Drill in the U.S. Laboratory
2012-11-26
ISS034-E-005268 (26 Nov. 2012) --- NASA astronaut Kevin Ford (background), Expedition 34 commander; and Russian cosmonaut Oleg Novitskiy, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
Novitskiy and Tarelkin both participate in a CHeCS medical contingency drill in the U.S. Laboratory
2012-11-26
ISS034-E-005261 (26 Nov. 2012) --- Russian cosmonauts Oleg Novitskiy (left) and Evgeny Tarelkin, both Expedition 34 flight engineers, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
NASA Technical Reports Server (NTRS)
1999-01-01
Live footage of the STS-93 crewmembers shows Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, Mission Specialists Steven A. Hawley, Catherine G. Coleman, and Michel Tognini going through various training activities. These activities include Bail Out Training NBL, Emergency Egress Training, Earth Observations Classroom Training, Simulator Training, T-38 Departure from Ellington Field, Chandra Deploy Training, SAREX Shuttle Amateur Radio Experiment, CCT Bail Out Crew Compartment Training, and Southwest Research Ultraviolet Imaging System (SWUIS) Training.