Hubble Space Telescope Crew Rescue Analysis
NASA Technical Reports Server (NTRS)
Hamlin, Teri L.; Canga, Michael A.; Cates, Grant R.
2010-01-01
In the aftermath of the 2003 Columbia accident, NASA removed the Hubble Space Telescope (HST) Servicing Mission 4 (SM4) from the Space Shuttle manifest. Reasons cited included concerns that the risk of flying the mission would be too high. The HST SM4 was subsequently reinstated and flown as Space Transportation System (STS)-125 because of improvements in the ascent debris environment, the development of techniques for astronauts to perform on orbit repairs to damaged thermal protection, and the development of a strategy to provide a viable crew rescue capability. However, leading up to the launch of STS-125, the viability of the HST crew rescue capability was a recurring topic. For STS-125, there was a limited amount of time available to perform a crew rescue due to limited consumables (power, oxygen, etc.) available on the Orbiter. The success of crew rescue depended upon several factors, including when a problem was identified; when and what actions, such as powering down, were begun to conserve consumables; and where the Launch on Need (LON) vehicle was in its ground processing cycle. Crew rescue success also needed to be weighed against preserving the Orbiter s ability to have a landing option in case there was a problem with the LON vehicle. This paper focuses on quantifying the HST mission loss of crew rescue capability using Shuttle historical data and various power down strategies. Results from this effort supported NASA s decision to proceed with STS-125, which was successfully completed on May 24th 2009.
Ascent abort capability for the HL-20
NASA Technical Reports Server (NTRS)
Naftel, J. C.; Talay, T. A.
1993-01-01
The HL-20 has been designed with the capability for rescue of the crew during all phases of powered ascent from on the launch pad until orbital injection. A launch-escape system, consisting of solid rocket motors located on the adapter between the HL-20 and the launch vehicle, provides the thrust that propels the HL-20 to a safe distance from a malfunctioning launch vehicle. After these launch-escape motors have burned out, the adapter is jettisoned and the HL-20 executes one of four abort modes. In three abort modes - return-to-launch-site, transatlantic-abort-landing, and abort-to-orbit - not only is the crew rescued, but the HL-20 is recovered intact. In the ocean-landing-by-parachute abort mode, which occurs in between the return-to-launch-site and the transatlantic-abort-landing modes, the crew is rescued, but the HL-20 would likely sustain damage from the ocean landing. This paper describes the launch-escape system and the four abort modes for an ascent on a Titan III launch vehicle.
2012-02-17
Commercial Crew Program: The Commercial Crew Program at Kennedy Space Center is leading NASA’s efforts to develop the next United States capability for crew transportation and rescue services to and from the International Space Station ISS and other low Earth orbit destinations by the middle of the decade. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
Preparing a health care delivery system for Space Station
NASA Technical Reports Server (NTRS)
Logan, J. S.; Stewart, G. R.
1985-01-01
NASA's Space Station is viewed as the beginning of man's permanent presence in space. This paper presents the guidelines being developed by NASA's medical community in preparing a quality, permanent health care delivery system for Space Station. The guidelines will be driven by unique Space Station requirements such as mission duration, crew size, orbit altitude and inclination, EVA frequency and rescue capability. The approach will emphasize developing a health care system that is modular and flexible. It will also incorporate NASA's requirements for growth capability, commonality, maintainability, and advanced technology development. Goals include preventing unnecessary rescue attempts, as well as maintaining the health and safety of the crew. Proper planning will determine the levels of prevention, diagnosis, and treatment necessary to achieve these goals.
Postlanding optimum designs for the assured crew return vehicle
NASA Technical Reports Server (NTRS)
Hosterman, Kenneth C.; Anderson, Loren A.
1990-01-01
The optimized preliminary engineering design concepts for postlanding operations of a water-landing Assured Crew Return Vehicle (ACRV) during a medical rescue mission are presented. Two ACRVs will be permanently docked to Space Station Freedom, fulfilling NASA's commitment to Assured Crew Return Capability in the event of an accident or illness. The optimized configuration of the ACRV is based on an Apollo command module (ACM) derivative. The scenario assumes landing a sick or injured crewmember on water with the possibility of a delayed rescue. Design emphasis is placed on four major areas. First is the design of a mechanism that provides a safe and time-critical means of removing the sick or injured crewmember from the ACRV. Support to the assisting rescue personnel is also provided. Second is the design of a system that orients and stabilizes the craft after landing so as to cause no further injury or discomfort to the already ill or injured crewmember. Third is the design of a system that provides full medical support to a sick or injured crewmember aboard the ACRV from the time of separation from the space station to rescue by recovery forces. Last is the design of a system that provides for the comfort and safety of the entire crew after splashdown up to the point of rescue. The four systems are conceptually integrated into the ACRV.
NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation
NASA Technical Reports Server (NTRS)
Mango, Edward J.; Thomas, Rayelle E.
2013-01-01
The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.
First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit
NASA Technical Reports Server (NTRS)
Meade, Carl J.
1995-01-01
The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.
NASA's Commercial Crew Program, the Next Step in U.S. Space Transportation
NASA Technical Reports Server (NTRS)
Mango, Edward J., Jr.
2013-01-01
The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the middecade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA certification will cover all aspects of a crew transportation system, including: Development, test, evaluation, and verification. Program management and control. Flight readiness certification. Launch, landing, recovery, and mission operations. Sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA certification will validate technical and performance requirements, verify compliance with NASA requirements, validate that the crew transportation system operates in the appropriate environments, and quantify residual risks. The Commercial Crew Program will present progress to date and how it manages safety and reduces risk.
Space rescue system definition (system performance analysis and trades)
NASA Astrophysics Data System (ADS)
Housten, Sam; Elsner, Tim; Redler, Ken; Svendsen, Hal; Wenzel, Sheri
This paper addresses key technical issues involved in the system definition of the Assured Crew Return Vehicle (ACRV). The perspective on these issues is that of a prospective ACRV contractor, performing system analysis and trade studies. The objective of these analyses and trade studies is to develop the recovery vehicle system concept and top level requirements. The starting point for this work is the definition of the set of design missions for the ACRV. This set of missions encompasses three classes of contingency/emergency (crew illness/injury, space station catastrophe/failure, transportation element catastrophe/failure). The need is to provide a system to return Space Station crew to Earth quickly (less than 24 hours) in response to randomly occurring contingency events over an extended period of time (30 years of planned Space Station life). The main topics addressed and characterized in this paper include the following: Key Recovery (Rescue) Site Access Considerations; Rescue Site Locations and Distribution; Vehicle Cross Range vs Site Access; On-orbit Loiter Capability and Vehicle Design; and Water vs. Land Recovery.
Launch-Off-Need Shuttle Hubble Rescue Mission: Medical Issues
NASA Technical Reports Server (NTRS)
Hamilton, Douglas; Gillis, David; Ilcus, Linda; Perchonok, Michele; Polk, James; Brandt, Keith; Powers, Edward; Stepaniak, Phillip
2008-01-01
The Space Shuttle Hubble repair mission (STS-125) is unique in that a rescue mission (STS-400) has to be ready to launch before STS-125 life support runs out should the vehicle become stranded. The shuttle uses electrical power derived from fuel cells that use cryogenic oxygen and hydrogen (CRYO) to run all subsystems including the Environmental Control System. If the STS-125 crew cannot return to Earth due to failure of a critical subsystem, they must power down all nonessential systems and wait to be rescued by STS-400. This power down will cause the cabin temperature to be 60 F or less and freeze the rest of the vehicle, preventing it from attempting a reentry. After an emergency has been declared, STS-125 must wait at least 7 days to power down since that is the earliest that STS-400 can be launched. Problem The delayed power down of STS-125 causes CYRO to be consumed at high rates and limits the survival time after STS-400 launches to 10 days or less. CRYO will run out sooner every day that the STS-400 launch is delayed (weather at launch, technical issues etc.). To preserve CRYO and lithium hydroxide (LiOH - carbon dioxide removal) the crew will perform no exercise to reduce their metabolic rates, yet each deconditioned STS-125 crewmember must perform an EVA to rescue himself. The cabin may be cold for 10 days, which may cause shivering, increasing the metabolic rate of the STS-125 crew. Solution To preserve LiOH, the STS-125 manifest includes nutrition bars with low carbohydrate content to maintain crew respiratory quotient (RQ) below 0.85 as opposed to the usual shuttle galley food which is rich in carbohydrates and keeps the RQ at approximately 0.95. To keep the crew more comfortable in the cold vehicle warm clothing also has been included. However, with no exercise and limited diet, the deconditioned STS-125 crew returning on STS-400 may not be able to egress the vehicle autonomously requiring a supplemented crash-and-rescue capability.
Portraits - American Apollo-Soyuz Test Project (ASTP) Prime Crewmen
1974-01-01
S74-15241 (January 1974) --- These three NASA astronauts are the United States flight crew for the 1975 Apollo-Soyuz Test Project (ASTP) mission. The prime crew members for the joint United States - Soviet Union spaceflight are, left to right, Donald K. Slayton, docking module pilot; Vance D. Brand, command module pilot; and Thomas P. Stafford, commander. The American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked in Earth orbit for a maximum of two days. The ASTP mission is designed to test equipment and techniques that will establish international crew rescue capability in space, as well as permit future cooperative scientific missions.
NASA Technical Reports Server (NTRS)
Muratore, John F.
2007-01-01
Space Rescue has been a topic of speculation for a wide community of people for decades. Astronauts, aerospace engineers, diplomats, medical and rescue professionals, inventors and science fiction writers have all speculated on this problem. Martin Caidin's 1964 novel Marooned dealt with the problems of rescuing a crew stranded in low earth orbit. Legend at the Johnson Space Center says that Caidin's portrayal of a Russian attempt to save the American crew played a pivotal role in convincing the Russians to join the real joint Apollo-Soyuz mission. Space Rescue has been a staple in science fiction television and movies portrayed in programs such as Star Trek, Stargate-SG1 and Space 1999 and movies such as Mission To Mars and Red Planet. As dramatic and as difficult as rescue appears in fictional accounts, in the real world it has even greater drama and greater difficulty. Space rescue is still in its infancy as a discipline and the purpose of this chapter is to describe the issues associated with space rescue and the work done so far in this field. For the purposes of this chapter, the term space rescue will refer to any system which allows for rescue or escape of personnel from situations which endanger human life in a spaceflight operation. This will span the period from crew ingress prior to flight through crew egress postlanding. For the purposes of this chapter, the term primary system will refer to the spacecraft system that a crew is either attempting to escape from or from which an attempt is being made to rescue the crew.
Rescue Shuttle Flight Re-Entry: Controlling Astronaut Thermal Exposure
NASA Technical Reports Server (NTRS)
Gillis, David B.; Hamilton, Douglas; Ilcus, Stana; Stepaniak, Phil; Polk, J. D.; Son, Chang; Bue, Grant
2008-01-01
A rescue mission for the STS-125 Hubble Telescope Repair Mission requires reentry from space with 11 crew members aboard, exceeding past cabin thermal load experience and risking crew thermal stress potentially causing cognitive performance and physiological decrements. The space shuttle crew cabin air revitalization system (ARS) was designed to support a nominal crew complement of 4 to 7 crew and 10 persons in emergencies, all in a shirt-sleeve environment. Subsequent to the addition of full pressure suits with individual cooling units, the ARS cannot maintain a stable temperature in the crew cabin during reentry thermal loads. Bulk cabin thermal models, used for rescue mission planning and analysis of crew cabin air, were unable to accurately represent crew workstation values of air flow, carbon dioxide, and heat content for the middeck. Crew temperature models suggested significantly elevated core temperatures. Planning for an STS-400 potential rescue of seven stranded crew utilized computational fluid dynamics (CFD) models to demonstrate inhomogeneous cabin thermal properties and improve analysis compared to bulk models. In the absence of monitoring of crew temperature, heart rate, metabolic rate and incomplete engineering data on the performance of the integrated cooling garment/cooling unit (ICG/CU) at cabin temperatures above 75 degrees F, related systems & models were reevaluated and tests conducted with humans in the loop. Changes to the cabin ventilation, ICU placement, crew reentry suit-donning procedures, Orbiter Program wave-off policy and post-landing power down and crew extraction were adopted. A second CFD and core temperature model incorporated the proposed changes and confirmed satisfactory cabin temperature, improved air distribution, and estimated core temperatures within safe limits. CONCLUSIONS: These changes in equipment, in-flight and post-landing procedures, and policy were implemented for the STS-400 rescue shuttle & will be implemented in any future rescue flights from the International Space Station of stranded shuttle crews.
Soyuz-TM-based interim Assured Crew Return Vehicle (ACRV) for the Space Station Freedom
NASA Technical Reports Server (NTRS)
Semenov, Yu. P.; Babkov, Oleg I.; Timchenko, Vladimir A.; Craig, Jerry W.
1993-01-01
The concept of using the available Soyuz-TM Assured Crew Return Vehicle (ACRV) spacecraft for the assurance of the safety of the Space Station Freedom (SSF) crew after the departure of the Space Shuttle from SSF was proposed by the NPO Energia and was accepted by NASA in 1992. The ACRV will provide the crew with the capability to evacuate a seriously injured/ill crewmember from the SSF to a ground-based care facility under medically tolerable conditions and with the capability for a safe evacuation from SSF in the events SSF becomes uninhabitable or the Space Shuttle flights are interrupted for a time that exceeds SSF ability for crew support and/or safe operations. This paper presents the main results of studies on Phase A (including studies on the service life of ACRV; spacecraft design and operations; prelaunch processing; mission support; safety, reliability, maintenance and quality and assurance; landing, and search/rescue operations; interfaces with the SSF and with Space Shuttle; crew accommodation; motion of orbital an service modules; and ACRV injection by the Expendable Launch Vehicles), along with the objectives of further work on the Phase B.
Advanced missions safety. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
Three separate studies were performed under the general category of advanced missions safety. Each dealt with a separate issue, was a self-contained effort, and was independent of the other two studies. The studies are titled: (1) space shuttle rescue capability, (2) experiment safety, and (3) emergency crew transfer. A separate discussion of each study is presented.
2010-11-21
BOULDER, Colo. – A Sierra Nevada Corp. team member examines the company's structural test article for the Dream Chaser spacecraft in the University of Colorado at Boulder’s Facility for Advanced Spatial Technology. The university is one of Sierra Nevada’s partners on the design and development of the Dream Chaser orbital crew vehicle. Dream Chaser is one of five systems NASA invested in during Commercial Crew Development Round 1 CCDev1 activities in order to aid in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the International Space Station and other low Earth orbit destinations. In 2011, NASA's Commercial Crew Program CCP entered into another funded Space Act Agreement with Sierra Nevada for the second round of commercial crew development CCDev2) so the company could further develop its Dream Chaser spacecraft for NASA transportation services. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Sierra Nevada Corp.
ART CONCEPTS - APOLLO-SOYUZ TEST PROJECT (ASTP)
1975-04-01
S75-27288 (April 1975) --- An artist?s concept illustrating the mission profile of the Apollo-Soyuz Test Project. The phases of the mission depicted include launch, rendezvous, docking, separation and splashdown. During the joint U.S.-USSR ASTP flight, scheduled for July 1975, the American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked for a maximum period of two days. The mission is designed to test equipment and techniques that will establish international crew rescue capability in space, as well as permit future cooperative scientific missions. This artwork is by Davis Meltzer.
KSC off-runway contingency operation - Mode 7
NASA Technical Reports Server (NTRS)
Maples, Arthur; Doerr, Donald
1991-01-01
The possibility of a mishap during a space shuttle landing at Kennedy Space Center (KSC) dictates the need for plans to rescue astronauts from areas other than the Shuttle Landing Facility (SLF). All shuttle landings are unpowered, gliding flight maneuvers, and a deviation from the planned flight profile could result in a shuttle landing or crashing somewhere other than the SLF runway. The geography of the Kennedy Space Center makes helicopter airlifting the only universal means of transportation for the rescue crew. This rescue crew is composed of KSC contractor fire-rescuemen who would ride to the crash scene on USAF HH-3 helicopters. These crews are provided with personal protective suits and training in shallow water, swamp, and dry land rescues. They aid the egress of the crew to a safe area for helicopter pickup and subsequent triage and medevac.
Lunar Surface Operations with Dual Rovers
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Lofgren, Gary E.; Eppler, Dean E.; Ming, Douglas
2010-01-01
Lunar Electric Rovers (LER) are currently being developed that are substantially more capable than the Apollo vehicle (LRN ,"). Unlike the LRV, the new LERs provide a pressurized cabin that serves as short-sleeve environment for the crew of two, including sleeping accommodations and other provisions that allow for long tern stays, possibly up to 60 days, on the hear surface, without the need to replenish consumables from some outside source, such as a lander or outpost. As a consequence, significantly larger regions may be explored in the future and traverse distances may be measured in a few hundred kilometers (1, 2). However, crew safety remains an overriding concern, and methods other than "walk back", the major operational constraint of all Apollo traverses, must be implemented to assure -at any time- the safe return of the crew to the lander or outpost. This then causes current Constellation plans to envision long-tern traverses to be conducted with 2 LERs exclusively, each carrying a crew of two: in case one rover fails, the other will rescue the stranded crew and return all 4 astronauts in a single LER to base camp. Recent Desert Research and Technology Studies (DRATS) analog field tests simulated a continuous 14 day traverse (3), covering some 135 km, and included a rescue operation that transferred the crew and diverse consumables from one LER to another these successful tests add substantial realism to the development of long-term, dual rover operations. The simultaneous utilization of 2 LERs is of course totally unlike Apollo and raises interesting issues regarding science productivity and mission operations, the thrust of this note.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Corky Philyaw (left) and Edgar Suarez (right) prepare the flight battery for installation on the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (far left). DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. It is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station. DART will be launched from an Orbital Sciences Pegasus XL rocket no earlier than Oct. 26.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers prepare the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft for launch. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Orbital Sciences Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
Flight Demonstrations of Orbital Space Plane (OSP) Technologies
NASA Technical Reports Server (NTRS)
Turner, Susan
2003-01-01
The Orbital Space Plane (OSP) Program embodies NASA s priority to transport Space Station crews safely, reliably, and affordably, while it empowers the Nation s greater strategies for scientific exploration and space leadership. As early in the development cycle as possible, the OSP will provide crew rescue capability, offering an emergency ride home from the Space Station, while accommodating astronauts who are deconditioned due to long- duration missions, or those that may be ill or injured. As the OSP Program develops a fully integrated system, it will use existing technologies and employ computer modeling and simulation. Select flight demonstrator projects will provide valuable data on launch, orbital, reentry, and landing conditions to validate thermal protection systems, autonomous operations, and other advancements, especially those related to crew safety and survival.
A Simple Space Station Rescue Vehicle
NASA Technical Reports Server (NTRS)
Petro, Andrew
1995-01-01
Early in the development of the Space Station it was determined that there is a need to have a vehicle which could be used in the event that the Space Station crew need to quickly depart and return to Earth when the Space Shuttle is not available. Unplanned return missions might occur because of a medical emergency, a major Space Station failure, or if there is a long-term interruption in the delivery of logistics to the Station. The rescue vehicle ms envisioned as a simple capsule-type spacecraft which would be maintained in a dormant state at the Station for several years and be quickly activated by the crew when needed. During the assembly phase for the International Space Station, unplanned return missions will be performed by the Russian Soyuz vehicle, which can return up to three people. When the Station assembly is complete there will be a need for rescue capability for up to six people. This need might be met by an additional Soyuz vehicle or by a new vehicle which might come from a variety of sources. This paper describes one candidate concept for a Space Station rescue vehicle. The proposed rescue vehicle design has the blunt-cone shape of the Apollo command module but with a larger diameter. The rescue vehicle would be delivered to the Station in the payload bay of the Space Shuttle. The spacecraft design can accommodate six to eight people for a one-day return mission. All of the systems for the mission including deorbit propulsion are contained within the conical spacecraft and so there is no separate service module. The use of the proven Apollo re-entry shape would greatly reduce the time and cost for development and testing. Other aspects of the design are also intended to minimize development cost and simplify operations. This paper will summarize the evolution of rescue vehicle concepts, the functional requirements for a rescue vehicle, and describe the proposed design.
Aerodynamics of Reentry Vehicle Clipper at Descent Phase
NASA Astrophysics Data System (ADS)
Semenov, Yu. P.; Reshetin, A. G.; Dyadkin, A. A.; Petrov, N. K.; Simakova, T. V.; Tokarev, V. A.
2005-02-01
From Gagarin spacecraft to reusable orbiter Buran, RSC Energia has traveled a long way in the search for the most optimal and, which is no less important, the most reliable spacecraft for manned space flight. During the forty years of space exploration, in cooperation with a broad base of subcontractors, a number of problems have been solved which assure a safe long stay in space. Vostok and Voskhod spacecraft were replaced with Soyuz supporting a crew of three. During missions to a space station, it provides crew rescue capability in case of a space station emergency at all times (the spacecraft life is 200 days).The latest modification of Soyuz spacecraft -Soyuz TMA -in contrast to its predecessors, allows to become a space flight participant to a person of virtually any anthropometric parameters with a mass of 50 to 95 kg capable of withstanding up to 6 g load during descent. At present, Soyuz TMA spacecraft are the state-of-the-art, reliable and only means of the ISS crew delivery, in-flight support and return. Introduced on the basis of many years of experience in operation of manned spacecraft were not only the principles of deep redundancy of on-board systems and equipment, but, to assure the main task of the spacecraft -the crew return to Earth -the principles of functional redundancy. That is, vital operations can be performed by different systems based on different physical principles. The emergency escape system that was developed is the only one in the world that provides crew rescue in case of LV failure at any phase in its flight. Several generations of space stations that have been developed have broadened, virtually beyond all limits, capabilities of man in space. The docking system developed at RSC Energia allowed not only to dock spacecraft in space, but also to construct in orbit various complex space systems. These include large space stations, and may include in the future the in-orbit construction of systems for the exploration of the Moon and Mars.. Logistics spacecraft Progress have been flying regularly since 1978. The tasks of these unmanned spacecraft include supplying the space station with all the necessities for long-duration missions, such as propellant for the space station propulsion system, crew life support consumables, scientific equipment for conducting experiments. Various modifications of the spacecraft have expanded the space station capabilities. 1988 saw the first, and, much to our regret, the last flight of the reusable orbiter Buran.. Buran could deliver to orbit up to 30 tons of cargo, return 20 tons to Earth and have a crew of up to 10. However, due to our country's economic situation the project was suspended.
Hands-Free Control Interfaces for an Extra Vehicular Jetpack
NASA Technical Reports Server (NTRS)
Zumbado, Jennifer Rochlis; Curiel, Pedro H.; Schreiner, Sam
2012-01-01
The National Aeronautics and Space Administration (NASA) strategic vision includes, as part of its long-term goals, the exploration of deep space and Near Earth Asteroids (NEA). To support these endeavors, funds have been invested in research to develop advanced exploration capabilities. To enable the human mobility necessary to effectively explore NEA and deep space, a new extravehicular activity (EVA) Jetpack is under development at the Johnson Space Center. The new design leverages knowledge and experience gained from the current astronaut rescue device, the Simplified Aid for EVA Rescue (SAFER). Whereas the primary goal for a rescue device is to return the crew to a safe haven, in-space exploration and navigation requires an expanded set of capabilities. To accommodate the range of tasks astronauts may be expected to perform while utilizing the Jetpack, it was desired to offer a hands-free method of control. This paper describes the development and innovations involved in creating two hands-free control interfaces and an experimental test platform for a suited astronaut flying the Jetpack during an EVA.
2010-09-21
POWAY, Calif. – During NASA's Commercial Crew Development Round 1 CCDev1 activities, the rocket motor under development by Sierra Nevada Corp. for its Dream Chaser spacecraft successfully fires at the company's rocket test facility located near San Diego. NASA team members reviewed the motor's system and then watched it fire three times in one day, including one firing under vacuum ignition conditions. The tests, which simulated a complete nominal mission profile, demonstrated the multiple restart capability of Sierra Nevada's hybrid rocket. Two of the company's designed and developed hybrid rocket motors will be used as the main propulsion system on the Dream Chaser after launching aboard an Atlas V rocket. Dream Chaser is one of five systems NASA invested in during CCDev1 in order to aid in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the International Space Station and other low Earth orbit destinations. In 2011, NASA's Commercial Crew Program CCP entered into another funded Space Act Agreement with Sierra Nevada for the second round of commercial crew development CCDev2) so the company could further develop its Dream Chaser spacecraft for NASA transportation services. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Sierra Nevada Corp.
SpaceX Recovery Trainer Egress and Handling Testing
2018-04-17
Pararescue specialists from the 304th Rescue Squadron, located in Portland, Oregon and supporting the 45th Operations Group’s Detachment 3, based out of Patrick Air Force Base, prepare equipment during an April astronaut rescue exercise with NASA’s Commercial Crew Program and SpaceX off of Florida’s eastern coast. The pararescue specialists, also known as “Guardian Angels,” jumped from military aircraft and simulated a rescue operation to demonstrate their ability to safely remove crew from the SpaceX Crew Dragon in the unlikely event of an emergency landing. The pararescue specialists are fully qualified paramedics able to perform field surgery, if necessary.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers help guide the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft onto the mobile stand below. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Orbital Sciences Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
A prototype Crew Medical Restraint System (CMRS) for Space Station Freedom
NASA Technical Reports Server (NTRS)
Johnston, S. L.; Eichstadt, F. T.; Billica, R. D.
1992-01-01
The Crew Medical Restrain System (CMRS) is a prototype system designed and developed for use as a universally deployable medical restraint/workstation on Space Station Freedom (SSF), the Shuttle Transportation System (STS), and the Assured Crew Rescue Vehicle (ACRV) for support of an ill or injured crewmember requiring stabilization and transportation to Earth. The CMRS will support all medical capabilities of the Health Maintenance Facility (HMF) by providing a restraint/interface system for all equipment (advance life support packs, defibrillator, ventilator, portable oxygen supply, IV pump, transport monitor, transport aspirator, and intervenous fluids delivery system) and personnel (patient and crew medical officers). It must be functional within the STS, ACRV, and all SSF habitable volumes. The CMRS will allow for medical capabilities within CPR, ACLS and ATLS standards of care. This must all be accomplished for a worst case transport time scenario of 24 hours from SSF to a definitive medical care facility on Earth. A presentation of the above design prototype with its subsequent one year SSF/HMF and STS/ACRV high fidelity mock-up ground based simulation testing will be given. Also, parabolic flight and underwater Weightless Test Facility evaluations will be demonstrated for various medical contingencies. The final design configuration to date will be discussed with future space program impact considerations.
Space Station crew safety alternatives study. Volume 2: Threat development
NASA Technical Reports Server (NTRS)
Raasch, R. F.; Peercy, R. L., Jr.; Rockoff, L. A.
1985-01-01
The first 15 years of accumulated space station concepts for initial operational capability (IOC) during the early 1990's were considered. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration, and debris.
Space station crew safety alternatives study, volume 1
NASA Technical Reports Server (NTRS)
Peercy, R. L., Jr.; Raasch, R. F.; Rockoff, L. A.
1985-01-01
The first 15 years of accumulated space station concepts for initial operational capability (IOC) during the early 1990's were considered. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration and debris.
2004-09-02
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (right) is ready for mating with the upper stage (foreground) in preparation for launch on the Orbital Sciences Pegasus XL. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage at right in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-02
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft, suspended by a crane, over the upper stage in preparation for launch on the Orbital Sciences Pegasus XL. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (in background) has been rotated from vertical to horizontal and is ready for mating with the upper stage (foreground). DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Orbital Sciences Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers begin closing the gap between the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage behind them in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, a worker prepares the second and third stages of the Orbital Sciences Pegasus XL launch vehicle for mating. The Pegasus XL will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-02
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (right) is ready for mating with the upper stage (behind it) in preparation for launch on the Orbital Sciences Pegasus XL. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers stand by while an overhead crane moves the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft onto the mobile stand at right. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Orbital Sciences Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is ready for mating with the upper stage of the Orbital Sciences Pegasus XL behind it (right). DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers begin mating the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (foreground) is ready to be mated to second and third stages in preparation for the launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers prepare to mate the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
NASA Technical Reports Server (NTRS)
Rogers, James H.; Safie, Fayssal M.; Stott, James E.; Lo, Yunnhon
2004-01-01
In order to meet the space transportation needs for a new century, America's National Aeronautics and Space Administration (NASA) has implemented an Integrated Space Transportation Plan to produce safe, economical, and reliable access to space. One near term objective of this initiative is the design and development of a next-generation vehicle and launch system that will transport crew and cargo to and from the International Space Station (ISS), the Orbital Space Plane (OSP). The OSP system is composed of a manned launch vehicle by an existing Evolved Expendable Launch Vehicle (EELV). The OSP will provide emergency crew rescue from the ISS by 2008, and provide crew and limited cargo transfer to and from the ISS by 2012. A key requirement is for the OSP to be safer and more reliable than the Soyuz and Space Shuttle, which currently provide these capabilities.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Vandenberg Air Force Base in California, workers stand by while an overhead crane moves the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft onto the mobile stand at right. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Orbital Sciences Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASAs Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage at right in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASAs Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Volunteers from the KSC Fire-Rescue team dressed in launch and entry suits settle into seats in an orbiter crew compartment mock-up under the guidance of George Brittingham, USA suit technician on the Closeout Crew. Brittingham is helping Catherine Di Biase, a nurse with Bionetics Life Sciences. They are all taking part in a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer “astronauts” simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
SpaceX Recovery Trainer Egress and Handling Testing
2018-04-17
Pararescue specialists from the 304th Rescue Squadron, located in Portland, Oregon and supporting the 45th Operations Group’s Detachment 3, based out of Patrick Air Force Base, secure a covered life raft as the sun sets during an astronaut rescue training exercise with NASA’s Commercial Crew Program and SpaceX off of Florida’s eastern coast in April. The specially designed 20-person life raft is equipped with enough food, water and medical supplies to sustain both rescuers and crew for up to three days, if necessary. In this situation, the Department of Defense (DOD) would complete the rescue by enlisting help from the US Coast Guard, a DOD ship, or a nearby commercial ship of opportunity to transport the crew to safety.
2004-02-18
KENNEDY SPACE CENTER, FLA. - An “injured” rescue worker is lifted into an M-113 armored personnel carrier provided for transportation during a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In a Mode VII emergency landing simulation at Kennedy Space Center, a helicopter crew helps rescued astronauts. The purpose of Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside an orbiter crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2004-02-18
KENNEDY SPACE CENTER, FLA. - A rescue team carries an “injured” astronaut toward the helicopter for transportation to a local hospital. They are all taking part in a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Space Station crew safety alternatives study. Volume 4: Appendices
NASA Technical Reports Server (NTRS)
Peercy, R. L., Jr.; Raasch, R. F.; Rockoff, L. A.
1985-01-01
The scope of this study considered the first 15 years of accumulated space station concepts for Initial Operational Capability (10C) during the early 1990's. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration and debris.
2010-04-01
is quite cognizant of globalization and the growing interdependence among nations. In this current of thinking, also amply evident in the Ningbo...occasions. In March, Unicorn Ace, with a crew of nineteen Chinese citizens, sank in the South China Sea. The Hong Kong Rescue Service, querying the...second major implication is that stronger Chinese coast guard entities are likely to give further impetus to China’s rapidly growing “soft power” both in
NASA Contingency Shuttle Crew Support (CSCS) Medical Operations
NASA Technical Reports Server (NTRS)
Adams, Adrien
2010-01-01
The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members rescue an astronaut from inside the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members rescue an injured astronaut from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crews leave the scene after a helicopter removed rescued astronauts from the scene. They are taking part in a Mode VII emergency landing simulation at Kennedy Space Center, in order to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside an orbiter crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members rescue an injured astronaut from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Orbiter fire rescue and crew escape training for EVA crew systems support
1993-01-28
Photos of orbiter fire rescue and crew escape training for extravehicular activity (EVA) crew systems support conducted in Bldg 9A Crew Compartment Trainer (CCT) and Fuel Fuselage Trainer (FFT) include views of CCT interior of middeck starboard fuselage showing middeck forward (MF) locker and COAS assembly filter, artiflex film and camcorder bag (26834); launch/entry suit (LES) helmet assembly, neckring and helmet hold-down assembly (26835-26836); middeck aft (MA) lockers (26837); area of middeck airlock and crew escape pole (26838); connectors of crew escape pole in the middeck (268390); three test subjects in LES in the flight deck (26840); emergency side hatch slide before inflated stowage (26841); area of below adjacent to floor panel MD23R (26842); a test subject in LES in the flight deck (26843); control board and also showing sign of "orbital maneuvering system (OMS) secure and OMS TK" (26844); test subject in the flight deck also showing chart of "ascent/abort summary" (26845).
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members prepare to rescue another astronaut from inside the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members prepare to rescue another astronaut from inside the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2011-07-20
LOUISVILLE, Colo. – During NASA's Commercial Crew Development Round 2 CCDev2) activities for the Commercial Crew Program CCP, Sierra Nevada Corp. SNC built a Simulator and Avionics Laboratory to help engineers evaluate the Dream Chaser's characteristics during the piloted phases of flight. Located at Sierra Nevada’s Space Systems facility in Louisville, Colo., it consists of a physical cockpit and integrated simulation hardware and software. The simulator is linked to the Vehicle Avionics Integration Laboratory, or VAIL, which serves as a platform for Dream Chaser avionics development, engineering testing and integration. VAIL also will also be used for verification and validation of avionics and software. Sierra Nevada is one of seven companies NASA entered into Space Act Agreements SAAs with during CCDev2 to aid in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the International Space Station and other low Earth orbit destinations. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Sierra Nevada Corp.
2013-11-20
VAN HORN, Texas – Blue Origin test fires a powerful new hydrogen- and oxygen-fueled American rocket engine at the company's West Texas facility. During the test, the BE-3 engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett
2013-11-20
VAN HORN, Texas – Blue Origin test fires a powerful new hydrogen- and oxygen-fueled American rocket engine at the company's West Texas facility. During the test, the BE-3 engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Blue Origin
2008-05-14
CAPE CANAVERAL, Fla. -- Off Florida's central east coast, a member of the rescue team in a training exercise, known as Mode VIII, keeps watch for the returning support crew from the U.S. Coast Guard cutter Kingfisher, from Port Canaveral, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. Photo credit: NASA/Dimitri Gerondidakis
SpaceX Recovery Trainer Egress and Handling Testing
2018-04-17
A C-17 Globemaster aircraft from the Alaska Air National Guard’s 249th Airlift Squadron flies overhead as pararescue specialists from the 304th Rescue Squadron, located in Portland, Oregon complete an astronaut rescue training exercise inside a covered life raft on the Atlantic Ocean. The pararescue specialists, supporting the 45th Operations Group’s Detachment 3, based out of Patrick Air Force Base, conducted the exercise in April with NASA’s Commercial Crew Program and SpaceX off of Florida’s eastern coast. The specially designed 20-person life raft is equipped with enough food, water and medical supplies to sustain both rescuers and crew for up to three days, if necessary. In this situation, the Department of Defense (DOD) would complete the rescue by enlisting help from the US Coast Guard, a DOD ship, or a nearby commercial ship of opportunity to transport the crew to safety.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A rescue team carries an injured astronaut toward the helicopter for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock- up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
46 CFR 117.210 - Rescue boats.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., and equipped to allow the crew to recover a helpless person from the water; (2) Recovery of a helpless.... (c) On a vessel of more than 19.8 meters (65 feet) in length operating on protected waters, a rescue... vessel of more than 19.8 meters operating on exposed or partially protected waters, a rescue boat...
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter is landing near rescue team members taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside an orbiter crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Lunar mission safety and rescue: Escape/rescue analysis and plan
NASA Technical Reports Server (NTRS)
1971-01-01
The results are presented of the technical analysis of escape/rescue/survival situations, crew survival techniques, alternate escape/rescue approaches and vehicles, and the advantages and disadvantages of each for advanced lunar exploration. Candidate escape/rescue guidelines are proposed and elements of a rescue plan developed. The areas of discussions include the following: lunar arrival/departure operations, lunar orbiter operations, lunar surface operations, lunar surface base escape/rescue analysis, lander tug location operations, portable airlock, emergency pressure suit, and the effects of no orbiting lunar station, no lunar surface base, and no foreign lunar orbit/surface operations on the escape/rescue plan.
Space station crew safety alternatives study. Volume 3: Safety impact of human factors
NASA Technical Reports Server (NTRS)
Rockoff, L. A.; Raasch, R. F.; Peercy, R. L., Jr.
1985-01-01
The first 15 years of accumulated space station concepts for Initial Operational Capability (IOC) during the early 1990's was considered. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration and debris. Of particular interest here is volume three (of five volumes) pertaining to the safety impact of human factors.
Lockheed Martin Response to the OSP Challenge
NASA Technical Reports Server (NTRS)
Sullivan, Robert T.; Munkres, Randy; Megna, Thomas D.; Beckham, Joanne
2003-01-01
The Lockheed Martin Orbital Space Plane System provides crew transfer and rescue for the International Space Station more safely and affordably than current human space transportation systems. Through planned upgrades and spiral development, it is also capable of satisfying the Nation's evolving space transportation requirements and enabling the national vision for human space flight. The OSP System, formulated through rigorous requirements definition and decomposition, consists of spacecraft and launch vehicle flight elements, ground processing facilities and existing transportation, launch complex, range, mission control, weather, navigation, communication and tracking infrastructure. The concept of operations, including procurement, mission planning, launch preparation, launch and mission operations and vehicle maintenance, repair and turnaround, is structured to maximize flexibility and mission availability and minimize program life cycle cost. The approach to human rating and crew safety utilizes simplicity, performance margin, redundancy, abort modes and escape modes to mitigate credible hazards that cannot be designed out of the system.
2013-11-20
VAN HORN, Texas – Blue Origin’s test stand, back right, is framed by a wind mill at the company’s West Texas facility. The company used this test stand to fire its powerful new hydrogen- and oxygen-fueled American rocket engine, the BE-3. The engine fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett
2013-11-20
VAN HORN, Texas – The sun sets over a test stand at Blue Origin’s West Texas facility. The company used this test stand to fire its powerful new hydrogen- and oxygen-fueled American rocket engine, the BE-3, on Nov. 20. The BE-3 fired at full power for more than two minutes to simulate a launch, then paused for about four minutes, mimicking a coast through space before it re-ignited for a brief final burn. The last phase of the test covered the work the engine could perform in landing the booster back softly on Earth. Blue Origin, a partner of NASA’s Commercial Crew Program, or CCP, is developing its Orbital Launch Vehicle, which could eventually be used to launch the company's Space Vehicle into orbit to transport crew and cargo to low-Earth orbit. CCP is aiding in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the station and other low-Earth orbit destinations by the end of 2017. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Lauren Harnett
2011-12-21
LOUISVILLE, Colo. – During NASA's Commercial Crew Development Round 2 CCDev2) activities for the Commercial Crew Program CCP, Sierra Nevada Corp. SNC delivered the primary structure of its Dream Chaser flight test vehicle to the company’s office in Louisville, Colo. SNC engineers currently are assembling the full-scale prototype, which includes the integration of secondary structures and subsystems. This all-composite structure of the company's planned winged spacecraft, the Dream Chaser, will be used to carry out several remaining CCDev2 milestones including a captive carry flight and the first approach and landing test of the spacecraft. During the captive carry flight, a carrier aircraft will the Dream Chaser vehicle over NASA's Dryden Flight Research Center in Edwards, Calif. Sierra Nevada is one of seven companies NASA entered into Space Act Agreements SAAs with during CCDev2 to aid in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the International Space Station and other low Earth orbit destinations. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Sierra Nevada Corp.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Volunteers from the KSC Fire-Rescue team dressed in launch and entry suits settle into seats in an orbiter crew compartment mock-up under the guidance of George Brittingham, USA suit technician on the Closeout Crew. Brittingham is helping Catherine Di Biase, a nurse with Bionetics Life Sciences. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer astronauts simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An injured rescue worker is lifted into an M-113 armored personnel carrier provided for transportation during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter rescue team prepares another injured astronaut for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter rescue team prepares another injured astronaut for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Crew Training - Apollo 9 (Egress) - Gulf
1968-11-20
S68-50989 (20 Nov. 1968) --- Astronaut James A. McDivitt, commander of the Apollo 9 prime crew, is hoisted up to a U.S. Coast Guard helicopter in a new type rescue net during water egress training in the Gulf of Mexico.
2006-03-15
KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center's Shuttle Landing Facility, an emergency rescue worker tends to an "injured astronaut" inside a rescue vehicle. Volunteers and emergency rescue workers are participating in a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Troy Cryder
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter rescue team carries another injured astronaut to a helicopter for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members assess medical needs on “injured” astronauts removed from the orbiter crew compartment mock-up during a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
30 CFR 49.4 - Alternative mine rescue capability for special mining conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative mine rescue capability for special mining conditions. 49.4 Section 49.4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS § 49.4 Alternative mine rescue capability for...
30 CFR 49.4 - Alternative mine rescue capability for special mining conditions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Alternative mine rescue capability for special mining conditions. 49.4 Section 49.4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS § 49.4 Alternative mine rescue capability for...
NASA's Orbital Space Plane Risk Reduction Strategy
NASA Technical Reports Server (NTRS)
Dumbacher, Dan
2003-01-01
This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.
Sustaining Statewide Disaster Response Capabilities from a Fire Service Perspective
2013-03-01
2010). These increased capabilities can be vital to the success of response operations that involve automobile accidents, train wrecks , boat...Trench Rescue Subterranean Rescue Dive Rescue Wilderness Rescue 2. 1670 Operations and Training for Technical Search and Rescue Incidents The
2006-03-15
KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center's Shuttle Landing Facility, emergency rescue personnel get equipment ready for a simulated emergency rescue of a shuttle crew after landing. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
1975-04-01
S75-27289 (May 1975) --- An artist?s concept depicting the American Apollo spacecraft docked with a Soviet Soyuz spacecraft in Earth orbit. During the joint U.S.-USSR Apollo-Soyuz Test Project mission, scheduled for July 1975, the American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked for a maximum period of two days. The mission is designed to test equipment and techniques that will establish international crew rescue capability in space, as well as permit future cooperative scientific missions. Each nation has developed separately docking systems based on a mutually agreeable single set of interface design specifications. The major new U.S. program elements are the docking module and docking system necessary to achieve compatibility of rendezvous and docking systems with the USSR-developed hardware to be used on the Soyuz spacecraft. The DM and docking system together with an Apollo Command/Service Module will be launched by a Saturn 1B launch vehicle. This artwork is by Paul Fjeld.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members transport an “injured” astronaut during a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2004-02-18
KENNEDY SPACE CENTER, FLA. - A helicopter approaches an orbiter crew compartment mock-up as part of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer “astronauts” simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members lower a volunteer “astronaut” from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer “astronauts” who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2006-03-15
KENNEDY SPACE CENTER, FLA. - In a simulated emergency landing of a shuttle crew at NASA Kennedy Space Center's Shuttle Landing Facility, emergency rescue personnel place an "injured astronaut" into a rescue vehicle. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Sanchez, Merri J.
2000-01-01
This project aimed to develop a methodology for evaluating performance and acceptability characteristics of the pressurized crew module volume suitability for zero-gravity (g) ingress of a spacecraft and to evaluate the operational acceptability of the NASA crew return vehicle (CRV) for zero-g ingress of astronaut crew, volume for crew tasks, and general crew module and seat layout. No standard or methodology has been established for evaluating volume acceptability in human spaceflight vehicles. Volume affects astronauts'ability to ingress and egress the vehicle, and to maneuver in and perform critical operational tasks inside the vehicle. Much research has been conducted on aircraft ingress, egress, and rescue in order to establish military and civil aircraft standards. However, due to the extremely limited number of human-rated spacecraft, this topic has been un-addressed. The NASA CRV was used for this study. The prototype vehicle can return a 7-member crew from the International Space Station in an emergency. The vehicle's internal arrangement must be designed to facilitate rapid zero-g ingress, zero-g maneuverability, ease of one-g egress and rescue, and ease of operational tasks in multiple acceleration environments. A full-scale crew module mockup was built and outfitted with representative adjustable seats, crew equipment, and a volumetrically equivalent hatch. Human factors testing was conducted in three acceleration environments using ground-based facilities and the KC-135 aircraft. Performance and acceptability measurements were collected. Data analysis was conducted using analysis of variance and nonparametric techniques.
Space safety and rescue 1984-1985
NASA Astrophysics Data System (ADS)
Heath, G. W.
The present conference on spacecraft crew safety and rescue technologies and operations considers safety aspects of Space Shuttle ground processing, the Inmarsat and COSPAS/SARSAT emergency location satellite systems, emergency location and rescue communications using Geosat, the use of the Manned Maneuvering Unit for on-orbit rescue operations, NASA Space Station safety design and operational considerations, and the medico-legal implications of space station operation. Also discussed are the operational and environmental aspects of EPIRBS, mobile satellites for safety and disaster response, Inmarsat's role in the Future Global Maritime Distress and Safety System, and test results of the L-band satellite's EPIRB system.
30 CFR 49.3 - Alternative mine rescue capability for small and remote mines.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS § 49.3 Alternative mine rescue capability for... statement by the operator as to the number of miners willing to serve on a mine rescue team; (8) The...
30 CFR 49.3 - Alternative mine rescue capability for small and remote mines.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS § 49.3 Alternative mine rescue capability for... statement by the operator as to the number of miners willing to serve on a mine rescue team; (8) The...
Advanced Crew Rescue Vehicle/Personnel Launch System
NASA Astrophysics Data System (ADS)
Craig, Jerry W.
1993-02-01
The Advanced Crew Rescue Vehicle (ACRV) will be an essential element of the Space Station to respond to three specific missions, all of which have occurred during the history space exploration by the U.S. and the Soviets: (1) Mission DRM-1: Return of disabled crew members during medical emergencies; (2) Mission DRM-2: Return of crew members from accidents or as a result of failures of Space Station systems; and (3) Mission DRM-3: Return of crew members during interruption of Space Shuttle launches. The ACRV will have the ability to transport up to eight astronauts during a 24-hour mission. Not only would the ACRV serve as a lifeboat to provide transportation back to Earth, but it would also be available as a immediately available safe refuge in case the Space Station were severely damaged by space debris or other catastrophe. Upon return to Earth, existing world-wide search and rescue assets operated by the Coast Guard and Department of Defense would be able to retrieve personnel returned to Earth via the ACRV. The operational approach proposed for the ACRV is tailored to satisfying mission requirements for simplicity of operation (no piloting skills or specially trained personnel are required), continuous availability, high reliability and affordability. By using proven systems as the basis for many critical ACRV systems, the ACRV program is more likely to achieve each of these mission requirements. Nonetheless, the need for the ACRV to operate reliably with little preflight preparation after, perhaps, 5 to 10 years in orbit imposes challenges not faced by any previous space system of this complexity. Specific concerns exist regarding micrometeoroid impacts, battery life, and degradation of recovery parachutes while in storage.
Advanced Crew Rescue Vehicle/Personnel Launch System
NASA Technical Reports Server (NTRS)
Craig, Jerry W.
1993-01-01
The Advanced Crew Rescue Vehicle (ACRV) will be an essential element of the Space Station to respond to three specific missions, all of which have occurred during the history space exploration by the U.S. and the Soviets: (1) Mission DRM-1: Return of disabled crew members during medical emergencies; (2) Mission DRM-2: Return of crew members from accidents or as a result of failures of Space Station systems; and (3) Mission DRM-3: Return of crew members during interruption of Space Shuttle launches. The ACRV will have the ability to transport up to eight astronauts during a 24-hour mission. Not only would the ACRV serve as a lifeboat to provide transportation back to Earth, but it would also be available as a immediately available safe refuge in case the Space Station were severely damaged by space debris or other catastrophe. Upon return to Earth, existing world-wide search and rescue assets operated by the Coast Guard and Department of Defense would be able to retrieve personnel returned to Earth via the ACRV. The operational approach proposed for the ACRV is tailored to satisfying mission requirements for simplicity of operation (no piloting skills or specially trained personnel are required), continuous availability, high reliability and affordability. By using proven systems as the basis for many critical ACRV systems, the ACRV program is more likely to achieve each of these mission requirements. Nonetheless, the need for the ACRV to operate reliably with little preflight preparation after, perhaps, 5 to 10 years in orbit imposes challenges not faced by any previous space system of this complexity. Specific concerns exist regarding micrometeoroid impacts, battery life, and degradation of recovery parachutes while in storage.
2006-03-15
KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center's Shuttle Landing Facility, emergency rescue personnel gently place an "injured astronaut" onto a stretcher. Volunteers and emergency rescue workers are participating in a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Troy Cryder
46 CFR 180.210 - Rescue boats.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of more than 19.8 meters (65 feet) in length must carry at least one rescue boat unless the cognizant... crew to recover a helpless person from the water; (2) Recovery of a helpless person can be observed... its maneuverability. (b) A vessel of not more than 19.8 meters (65 feet) in length is not required to...
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members on the ground take hold of a volunteer “astronaut” lowered from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2004-02-18
KENNEDY SPACE CENTER, FLA. - Emergency crew members help a volunteer “astronaut” onto the ground after being lowered from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
30 CFR 49.4 - Alternative mine rescue capability for special mining conditions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Alternative mine rescue capability for special mining conditions. 49.4 Section 49.4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and...
30 CFR 49.4 - Alternative mine rescue capability for special mining conditions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Alternative mine rescue capability for special mining conditions. 49.4 Section 49.4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and...
30 CFR 49.4 - Alternative mine rescue capability for special mining conditions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Alternative mine rescue capability for special mining conditions. 49.4 Section 49.4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and...
Overview of EVA PRA for TPS Repair for Hubble Space Telescope Servicing Mission
NASA Technical Reports Server (NTRS)
Bigler, Mark; Duncan, Gary; Roeschel, Eduardo; Canga, Michael
2010-01-01
Following the Columbia accident in 2003, NASA developed techniques to repair the Thermal Protection System (TPS) in the event of damage to the TPS as one of several actions to reduce the risk to future flights from ascent debris, micro-meteoroid and/or orbital debris (MMOD). Other actions to help reduce the risk include improved inspection techniques, reduced shedding of debris from the External Tank and ability to rescue the crew with a launch on need vehicle. For the Hubble Space Telescope (HST) Servicing Mission the crew rescue capability was limited by the inability to safe haven on the International Space Station (ISS), resulting in a greater reliance on the repair capability. Therefore it was desirable to have an idea of the risk associated with conducting a repair, where the repair would have to be conducted using an Extra-Vehicular Activity (EVA). Previously, focused analyses had been conducted to quantify the risk associated with certain aspects of an EVA, for example the EVA Mobility Unit (EMU) or Space Suit; however, the analyses were somewhat limited in scope. A complete integrated model of an EVA which could quantify the risk associated with all of the major components of an EVA had never been done before. It was desired to have a complete integrated model to be able to assess the risks associated with an EVA to support the Space Shuttle Program (SSP) in making risk informed decisions. In the case of the HST Servicing Mission, this model was developed to assess specifically the risks associated with performing a TPS repair EVA. This paper provides an overview of the model that was developed to support the HST mission in the event of TPS damage. The HST Servicing Mission was successfully completed on May 24th 2009 with no critical TPS damage; therefore the model was not required for real-time mission support. However, it laid the foundation upon which future EVA quantitative risk assessments could be based.
Assured crew return vehicle post landing configuration design and test
NASA Technical Reports Server (NTRS)
Anderson, Loren A.; Armitage, Pamela Kay
1992-01-01
The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined effort to design a one-fifth scale model of the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study.
Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions
NASA Technical Reports Server (NTRS)
Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F. J.; Crues, Edwin Z.; Li, Zu Qun; Bielski, Paul; Howe, A. Scott
2016-01-01
Phobos is a scientifically significant destination that would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to developing systems relevant to Mars surface missions, Phobos offers engineering, operational, and public engagement opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection and infrastructure development, which may include in situ resource utilization (ISRU) to provide liquid oxygen for the Mars Ascent Vehicle (MAV). A human mission to Mars' moons would be preceded by a cargo pre-deploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion based systems, with the habitat descending to the surface and the PEV remaining in orbit. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-Mars transit and to reach Phobos after insertion in to Mars orbit. The crew would taxi from Mars orbit to Phobos to join with the predeployed systems in a spacecraft that is based on a MAV, dock with and transfer to the PEV in Phobos orbit, and descend in the PEV to the surface habitat. A static Phobos surface habitat was chosen as a baseline architecture, in combination with the PEV that was used to descend from orbit as the main exploration vehicle. The habitat would, however, have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat would utilize deployable EVA support structures that allow astronauts to work from portable foot restraints or body restrain tethers in the vicinity of the habitat. Prototype structures were tested as part of NEEMO 20.
NASA Astrophysics Data System (ADS)
Tashakkori, H.; Rajabifard, A.; Kalantari, M.
2016-10-01
Search and rescue procedures for indoor environments are quite complicated due to the fact that much of the indoor information is unavailable to rescuers before physical entrance to the incident scene. Thus, decision making regarding the number of crew required and the way they should be dispatched in the building considering the various access points and complexities in the buildings in order to cover the search area in minimum time is dependent on prior knowledge and experience of the emergency commanders. Hence, this paper introduces the Search and Rescue Problem (SRP) which aims at finding best search and rescue routes that minimize the overall search time in the buildings. 3D BIM-oriented indoor GIS is integrated in the indoor route graph to find accurate routes based on the building geometric and semantic information. An Ant Colony Based Algorithm is presented that finds the number of first responders required and their individual routes to search all rooms and points of interest inside the building to minimize the overall time spent by all rescuers inside the disaster area. The evaluation of the proposed model for a case study building shows a significant improve in search and rescue time which will lead to a higher chance of saving lives and less exposure of emergency crew to danger.
Heat stress and a countermeasure in the Shuttle rescueman's suit
NASA Technical Reports Server (NTRS)
Doerr, D. F.; Reed, H.; Convertino, V. A.
1992-01-01
Rescue of the astronaut flight crew from a contingency landing may risk exposure of the rescue crew to toxic propellants spilling from potentially ruptured tanks in the crew module area. An Aquala dry diver's suit has been in service by the rescue team to preclude exposure, especially in the water rescue scenario. Heat stress has become a factor of concern in recent years when older and less physically-fit team members work in this suit. Methods: Field testing was initiated using fully instrumented rescue men in a simulated scenario to determine the extent of heat stress. Two tests were accomplished, one in the normal (N) configuration and one with a proposed cooling countermeasure, the Steele vest (S). Results: Heat stress was high as indicated by average rectal temperatures (Tre) of 38.28 degrees C(100.9 degrees F) after the 45 minute protocol. Slopes of the regression equations describing the increase in Tre with time were greater (P less than 0.05) with N (0.073 plus or minus .008) compared to S (0.060 plus or minus .007). Projection of time to the 38.89 degree C (102 degree F) limit was increased by 15.3 percent with the vest. Mean skin temperature (Tsk) was higher (P less than 0.05) in N (38.33 plus or minus .11 degrees C) compared to S (34.33 plus or minus .39 degrees C). Average heart rate was higher (P less than 0.05 in N than S. Sweat loss, as measured by weight loss, was more (P less than 0.05) for N (1.09 plus or minus .09 kg versus 0.77 plus or minus .06 kg). Air usage, while slightly less for S, was not statistically different. Conclusion: The use of the cool vest provided significant relief from thermal stress in spite of the addition of 3.4 kg (7.5 pounds) weight and some loss in mobility.
Systems Modeling for Crew Core Body Temperature Prediction Postlanding
NASA Technical Reports Server (NTRS)
Cross, Cynthia; Ochoa, Dustin
2010-01-01
The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.
Carbon Monoxide Exposure in Norwegian Rescue Helicopters.
Busch, Michael
2015-01-01
Exposure to exhaust fumes from combustion engines can lead to carbon monoxide (CO) poisoning. Sea King Rescue helicopter crews are frequently subjected to engine exhaust. This study investigates the extent of CO exposure and potential for intoxication for flight crews during standard operational training procedures. Over a 2-week period, rescue helicopter flight crews were monitored for exposure to exhaust fumes and clinical symptoms of CO intoxication by means of a written survey and measurements of carboxyhemoglobin saturation (SpCO) with a handheld pulse CO oximeter (RAD-57; Masimo, Irvine, CA). Normal ranges for SpCO were defined as ≤ 4%. Sixty-nine completed surveys and 138 SpCO measurements of 37 crewmembers were included in the study. Sixty-four percent (n = 44) experienced subjective exposure to engine exhaust during training. Clinical symptoms were reported in 8.6% (n = 6) and included exhaustion (n = 4), headache (n = 1), and nausea (n = 1). Twenty-nine percent (n = 20) showed postflight SpCO levels outside the normal range (≥ 4%). The maximum postflight SpCO level among all measurements was 7%. Exposure to engine fumes is common, even more so during open cargo door operations. However, clinical symptoms are infrequent and mild. Toxic SpCO levels were not reached in this study, but approximately one third of postflight SpCO levels were outside the normal range. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
A vision system planner for increasing the autonomy of the Extravehicular Activity Helper/Retriever
NASA Technical Reports Server (NTRS)
Magee, Michael
1993-01-01
The Extravehicular Activity Retriever (EVAR) is a robotic device currently being developed by the Automation and Robotics Division at the NASA Johnson Space Center to support activities in the neighborhood of the Space Shuttle or Space Station Freedom. As the name implies, the Retriever's primary function will be to provide the capability to retrieve tools and equipment or other objects which have become detached from the spacecraft, but it will also be able to rescue a crew member who may have become inadvertently de-tethered. Later goals will include cooperative operations between a crew member and the Retriever such as fetching a tool that is required for servicing or maintenance operations. This paper documents a preliminary design for a Vision System Planner (VSP) for the EVAR that is capable of achieving visual objectives provided to it by a high level task planner. Typical commands which the task planner might issue to the VSP relate to object recognition, object location determination, and obstacle detection. Upon receiving a command from the task planner, the VSP then plans a sequence of actions to achieve the specified objective using a model-based reasoning approach. This sequence may involve choosing an appropriate sensor, selecting an algorithm to process the data, reorienting the sensor, adjusting the effective resolution of the image using lens zooming capability, and/or requesting the task planner to reposition the EVAR to obtain a different view of the object. An initial version of the Vision System Planner which realizes the above capabilities using simulated images has been implemented and tested. The remaining sections describe the architecture and capabilities of the VSP and its relationship to the high level task planner. In addition, typical plans that are generated to achieve visual goals for various scenarios are discussed. Specific topics to be addressed will include object search strategies, repositioning of the EVAR to improve the quality of information obtained from the sensors, and complementary usage of the sensors and redundant capabilities.
Enhanced Rescue Lift Capability
NASA Technical Reports Server (NTRS)
Young, Larry A.
2007-01-01
The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms.
Spaceship Discovery's Crew and Cargo Lander Module Designs for Human Exploration of Mars
NASA Astrophysics Data System (ADS)
Benton, Mark G.
2008-01-01
The Spaceship Discovery design was first presented at STAIF 2006. This conceptual design space vehicle architecture for human solar system exploration includes two types of Mars exploration lander modules: A piloted crew lander, designated Lander Module 2 (LM2), and an autonomous cargo lander, designated Lander Module 3 (LM3). The LM2 and LM3 designs were first presented at AIAA Space 2007. The LM2 and LM3 concepts have recently been extensively redesigned. The specific objective of this paper is to present these revised designs. The LM2 and LM3 landers are based on a common design that can be configured to carry either crew or cargo. They utilize a combination of aerodynamic reentry, parachutes, and propulsive braking to decelerate from orbital velocity to a soft landing. The LM2 crew lander provides two-way transportation for a nominal three-person crew between Mars orbit and the surface, and provides life support for a 30-day contingency mission. It contains an ascent section to return the crew to orbit after completion of surface operations. The LM3 cargo lander provides one-way, autonomous transportation of cargo from Mars orbit to the surface and can be configured to carry a mix of consumables and equipment, or equipment only. Lander service life and endurance is based on the Spaceship Discovery conjunction-class Design Reference Mission 2. The LM3 is designed to extend the surface stay for three crew members in an LM2 crew lander such that two sets of crew and cargo landers enable human exploration of the surface for the bulk of the 454 day wait time at Mars, in two shifts of three crew members each. Design requirements, mission profiles, mass properties, performance data, and configuration layouts are presented for the LM2 crew and LM3 cargo landers. These lander designs are a proposed solution to the problem of safely transporting a human crew from Mars orbit to the surface, sustaining them for extended periods of time on the surface, and returning them safely to orbit. They are based on reliable and proven technology and build on an extensive heritage of successful unmanned probes. Safety, redundancy, and abort and rescue capabilities are stressed in the design and operations concepts. The designs share many common features, hardware, subsystems, and flight control modes to reduce development cost.
Female Astronaut-Candidates (ASCAN)'s - JSC
1979-03-23
S79-29592 (28 Feb 1979) --- Sporting their new Shuttle-type constant-wear garments, these six astronaut candidates pose for a picture in the crew systems laboratory at the Johnson Space Center (JSC) with the personnel rescue enclosure (PRE) or "rescue ball" and an unoccupied Apollo EMU. From left to right are Rhea Seddon, Kathryn D. Sullivan, Judith A. Resnik, Sally K. Ride, Anna L. Fisher and Shannon W. Lucid.
13 Things That Saved Apollo 13
NASA Technical Reports Server (NTRS)
Woodfill, Jared
2012-01-01
Perhaps, the most exciting rescue, terrestrial or extra-terrestrial, is the successful return of the Apollo 13 crew to Earth in April of 1970. The mission s warning system engineer, Jerry Woodfill, who remains a NASA employee after 47 years of government service has examined facets of the rescue for the past 42 years. He will present "13 Things That Saved Apollo 13" from the perspective of his real time experience as well as two score years of study. Many are recent discoveries never before published in mission reports, popular books or documentary and Hollywood movies depicting the rescue.
A Personnel Launch System for safe and efficient manned operations
NASA Astrophysics Data System (ADS)
Petro, Andrew J.; Andrews, Dana G.; Wetzel, Eric D.
1990-10-01
Several Conceptual designs for a simple, rugged Personnel Launch System (PLS) are presented. This system could transport people to and from Low Earth Orbit (LEO) starting in the late 1990's using a new modular Advanced Launch System (ALS) developed for the Space Exploration Initiative (SEI). The PLS is designed to be one element of a new space transportation architecture including heavy-lift cargo vehicles, lunar transfer vehicles, and multiple-role spcecraft such as the current Space Shuttle. The primary role of the PLS would be to deliver crews embarking on lunar or planetary missions to the Space Station, but it would also be used for earth-orbit sortie missions, space rescue missions, and some satellite servicing missions. The PLS design takes advantage of emerging electronic and structures technologies to offer a robust vehicle with autonomous operating and quick turnaround capabilities. Key features include an intact abort capability anywhere in the operating envelope, and elimination of all toxic propellants to streamline ground operations.
MEDICAL - SPACELAB (TEST OF SIMULATION)
1976-11-01
Spacelab simulations crew members during medical testing. Photo is of Patricia Cowings being zipped into the one-meter-diameter rescue ball during physical tests. Assisting her is Joe Schmitt, a suit technician.
2014-09-12
SAN DIEGO, Calif. – The Orion boilerplate test vehicle has been lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship, during the first day of Underway Recovery Test 4A at Naval Base San Diego in California. U.S. Navy personnel in two Zodiac boats practice procedures to tether and retrieve the test vehicle. The ship will head out to sea for four days to test crew module crane recovery operations. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-12
SAN DIEGO, Calif. – The Orion boilerplate test vehicle has been lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship, during the first day of Underway Recovery Test 4A at Naval Base San Diego in California. U.S. Navy personnel in a Zodiac boat practice procedures to tether and retrieve the test vehicle. The ship will head out to sea for four days to test crew module crane recovery operations. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-12
SAN DIEGO, Calif. – The Orion boilerplate test vehicle has been lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship, during the first day of Underway Recovery Test 4A at Naval Base San Diego in California. U.S. Navy personnel in a Zodiac boat practice procedures to tether and retrieve the test vehicle. The ship will head out to sea for four days to test crew module crane recovery operations. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-12
SAN DIEGO, Calif. – The Orion boilerplate test vehicle has been lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship, during the first day of Underway Recovery Test 4A at Naval Base San Diego in California. U.S. Navy personnel in a Zodiac boat practice procedures to tether and retrieve the test vehicle. The ship will head out to sea for four days to test crew module crane recovery operations. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-12
SAN DIEGO, Calif. – The Orion boilerplate test vehicle has been lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship, during the first day of Underway Recovery Test 4A at Naval Base San Diego in California. U.S. Navy personnel in a Zodiac boat practice procedures to tether the test vehicle. The ship will head out to sea for four days to test crew module crane recovery operations. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2013-11-11
Russian Search and Rescue all-terrain vehicles are seen waiting to ferry the Expedition 37 crew to their respective helicopters in a remote area outside the town of Zhezkazgan, Kazakhstan, on Monday, Nov. 11, 2013. The crew of Expedition 37 Commander Fyodor Yurchikhin of Roscosmos, Flight Engineers Karen Nyberg of NASA and Luca Parmitano of Italy returned to earth after five and a half months on the International Space Station. Photo Credit: (NASA/Carla Cioffi)
Advanced missions safety. Volume 2: Technical discussion. Part 3: Emergency crew transfer
NASA Technical Reports Server (NTRS)
1972-01-01
An evaluation of methods for emergency rescue of space crews using the Earth Orbit Shuttle was conducted. Emergency situations were analyzed for the mission categories of extravehicular activity, space shuttle orbiter, space station, and research applications module (RAM). Five different transfer concept categories were analyzed and each was scored on the basis of its operational effectiveness. A cost analysis of the transfer operations was developed.
2006-03-15
KENNEDY SPACE CENTER, FLA. - In a simulated emergency landing of a shuttle crew at NASA Kennedy Space Center's Shuttle Landing Facility, emergency rescue personnel tend to an "injured astronaut." Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members assess medical needs on injured astronauts removed from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members transport an injured astronaut during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help an injured astronaut after removing him from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help an injured astronaut who was removed from the orbiter crew compartment mock- up during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help an injured astronaut from the orbiter crew compartment mock-up during a Mode VII emergency landing simulation at Kennedy Space Center. Another is on the ground. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
1997-01-01
Members of the STS-83 flight crew pay attention to KSC instructor George Hoggard (center) as he gives them pointers about driving the M-113 rescue vehicle they are riding in during training that is a part of the Terminal Countdown Demonstration Test (TCDT) exercises at KSC for Shuttle flight crews prior to their mission. Pilot Susan L. Still is in the left foreground, while Mission Commander James D. Halsell Jr., is on the right. Other members of the STS- crew who will be aboard the Space Shuttle Columbia during the 16-day Microgravity Science Laboratory- Specialists Michael L. Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris.
2004-10-24
Expedition 9 Flight Engineer Michael Fincke performs the traditional crew signing inside of his Russian search and rescue helicopter while Expedition 5 Flight Engineer Peggy Whitson looks on, Sunday, October 24, 2004. Photo Credit: (NASA/Bill Ingalls)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... Request; Coal Mine Rescue Teams; Arrangements for Emergency Medical Assistance and Transportation for... Part 49, Mine Rescue Teams, Subpart B--Mine Rescue Teams for Underground Coal Mines, sets standards related to the availability of mine rescue teams; alternate mine rescue capability for small and remote...
Skylab 4 crew at start of high altitude chamber test at KSC
NASA Technical Reports Server (NTRS)
1973-01-01
Astronaut Gerald P. Carr, fully suited, Skylab 4 commander, prepares to enter spacecraft 118 (the Skylab 4 vehicle) at the start of the high altitude chamber test at the Kennedy Space Center (KSC) (34093); The Skylab 4 crew, fully suited, are seated inside their Command Module, which has been undergoing high altitude chamber test runs at KSC after being considered as a possible rescue vehicle, if needed for the Skylab 3 crew. Facing the camera is Scientist-Astronaut Edward G. Gibson, science pilot. Astronauts Carr, commander; and William R. Pogue, pilot, are also pictured (34094).
2006-03-15
KENNEDY SPACE CENTER, FLA. - In a simulated emergency landing of a shuttle crew at NASA Kennedy Space Center's Shuttle Landing Facility, an "astronaut" exits the orbiter mockup. Emergency rescue personnel are behind. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
2006-03-15
KENNEDY SPACE CENTER, FLA. - During a simulated emergency landing of a shuttle crew at NASA Kennedy Space Center's Shuttle Landing Facility, emergency rescue personnel carry an "injured astronaut" to a waiting helicopter. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
2006-03-15
KENNEDY SPACE CENTER, FLA. - Equipment is in place at NASA Kennedy Space Center's Shuttle Landing Facility for a simulated emergency rescue of a shuttle crew after landing. At center is the orbiter mockup. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
2006-03-15
KENNEDY SPACE CENTER, FLA. - In a simulated emergency landing of a shuttle crew at NASA Kennedy Space Center's Shuttle Landing Facility, emergency rescue personnel place an "injured astronaut" onto a stretcher. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
2006-03-15
KENNEDY SPACE CENTER, FLA. - During a simulated emergency landing of a shuttle crew at NASA Kennedy Space Center's Shuttle Landing Facility, emergency rescue personnel carry an "injured astronaut" to a waiting helicopter. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
2006-03-15
KENNEDY SPACE CENTER, FLA. - In a simulated emergency landing of a shuttle crew at NASA Kennedy Space Center's Shuttle Landing Facility, emergency rescue personnel aid an "astronaut" who just left the orbiter mockup. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
2006-03-15
KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center's Shuttle Landing Facility, emergency personnel tends to an "injured astronaut" inside a rescue vehicle during a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Jim Grossmann
International Space Station Crew Return Vehicle: X-38. Educational Brief.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…
2014-09-12
SAN DIEGO, Calif. – The USS Salvor, a safeguard-class rescue and salvage ship, departs from Naval Base San Diego on the first day of Orion Underway Recovery Test 4A. The Orion boilerplate test vehicle is in view on the ship. NASA, Lockheed Martin and the U.S. Navy will conduct alternate recovery methods using a stationary crane in the Pacific Ocean off the coast of San Diego to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allows the teams to demonstrate and evaluate recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-09-12
SAN DIEGO, Calif. – The USS Salvor, a safeguard-class rescue and salvage ship, departs from Naval Base San Diego on the first day of Orion Underway Recovery Test 4A. The Orion boilerplate test vehicle is in view on the ship. NASA, Lockheed Martin and the U.S. Navy will conduct alternate recovery methods using a stationary crane in the Pacific Ocean off the coast of San Diego to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allows the teams to demonstrate and evaluate recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2004-02-18
KENNEDY SPACE CENTER, FLA. - In the Launch Control Center, officials monitor the “Mode VII” emergency landing simulation being conducted at Kennedy Space Center and managed and directed from the LCC. From left are Dr. Luis Moreno and Dr. David Reed, with Bionetics Life Sciences, and Dr. Philip Scarpa, with the KSC Safety, Occupational Health and Environment Division. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer “astronauts” who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members return to the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside the mock-up compartment. Rescuers have had to remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members on the ground take hold of a volunteer astronaut lowered from the top of the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members help a volunteer astronaut onto the ground after being lowered from the top of the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members lower a volunteer astronaut from the top of the orbiter crew compartment mock-up that is the scene of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Recovery and Rescue Teams Practice with Full-Size Crew Dragon Tr
2017-06-07
Personnel from NASA, SpaceX and the U.S. Air Force have begun practicing recovery operations for the SpaceX Crew Dragon. Using a full-size model of the spacecraft that will take astronauts to the International Space Station, Air Force parajumpers practice helping astronauts out of the SpaceX Crew Dragon following a mission. In certain unusual recovery situations, SpaceX may need to work with Air Force for parajumpers to recover astronauts from the capsule following a water landing. The recovery trainer was recently lowered into the Indian River Lagoon near NASA’s Kennedy Space Center allowing Air Force pararescue and others to refine recovery procedures. SpaceX is developing the Crew Dragon in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the International Space Station.
2013-03-16
Expedition 34 Flight Engineer Evgeny Tarelkin of Russia is helped out a Russian Search and Rescue helicopter after flying from his Soyuz TMA-06M spacecraft landing site outside the town of Arkalyk to Kustanay, Kazakhstan on Saturday, March 16, 2013. Tarelkin, along with Commander Kevin Ford of NASA and Russian Soyuz Commander Oleg Novitskiy returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)
Expedition 54 Landing Preparations
2018-02-26
NASA, Roscosmos, and Russian Search and Rescue teams arrive at the Karagada airport to deploy to Zhezkazgan, Kazakhstan to pre-stage for the Soyuz MS-06 landing with Expedition 54 crew members Joe Acaba and Mark Vande Hei of NASA and cosmonaut Alexander Misurkin, Monday, Feb. 26, 2018. Acaba, Vande Hei, and Misurkin are returning after 168 days in space where they served as members of the Expedition 53 and 54 crews onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Expedition 54 Landing Preparations
2018-02-26
NASA, Roscosmos, and Russian Search and Rescue teams arrive in Zhezkazgan, Kazakhstan to prepare for the Soyuz MS-06 landing with Expedition 54 crew members Joe Acaba and Mark Vande Hei of NASA and cosmonaut Alexander Misurkin near the town of Zhezkazgan, Kazakhstan on Monday, Feb. 26, 2018. Acaba, Vande Hei, and Misurkin are returning after 168 days in space where they served as members of the Expedition 53 and 54 crews onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist a volunteer portraying an injured Huey II helicopter crew member participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- NASA Fire Rescue personnel assist volunteers portraying injured Huey II helicopter crew members participating in the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2011-08-31
CAPE CANAVERAL, Fla. -- Volunteers portraying injured Huey II helicopter crew members are assisted by NASA Fire Rescue personnel in support of the aviation safety exercise during Emergency Response Safety Training at the Shuttle Landing Facility, Runway 33, at NASA’s Kennedy Space Center in Florida. The simulated helicopter mishap exercise was conducted to evaluate emergency response and mishap investigations of aircraft at Kennedy. Participants included Air Rescue Fire Fighters, Flight Operations, Disaster Preparedness, Security, and Safety. NASA mandates simulated aviation safety training take place every two years. Photo credit: NASA/Kim Shiflett
2006-03-15
KENNEDY SPACE CENTER, FLA. - In a simulated emergency landing of a shuttle crew at NASA Kennedy Space Center's Shuttle Landing Facility, emergency rescue personnel tend to an "injured astronaut" on a stretcher at the bottom of the steps to the orbiter mockup. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
Combat Search and Rescue: Searching the History; Rescuing the Doctrine
2003-06-01
crew search effort KIA 23-Feb USMC Pride 16 AV-8 Capt Wilbourn none KIA 25-Feb USMC Jump 42 AV-8 Capt Walsh none Recovered by USMC in minutes USMC...61 Hallion, Richard P. Storm Over Iraq Air Power and the Gulf War. Washington, D.C.: Smithsonian Institution Press, 1992. Hampton, Lt Col Joseph C...Operation DESERT SHIELD Combat SAR Plan, 1 November 1990, in JPRA library. (Secret) Hampton, Lt Col Joseph C. Joint Universal Lessons Learned
30 CFR 49.3 - Alternative mine rescue capability for small and remote mines.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and... miners willing to serve on a mine rescue team; (8) The operator's alternative plan for assuring that a...
30 CFR 49.3 - Alternative mine rescue capability for small and remote mines.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and... miners willing to serve on a mine rescue team; (8) The operator's alternative plan for assuring that a...
30 CFR 49.3 - Alternative mine rescue capability for small and remote mines.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Metal and... miners willing to serve on a mine rescue team; (8) The operator's alternative plan for assuring that a...
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter approaches an orbiter crew compartment mock-up as part of a Mode VII emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2- 1/2 miles south of Runway 33. Emergency crews will respond to the volunteer astronauts simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Emergency crew members transport an injured astronaut during a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines... the operator as to the number of miners willing to serve on a mine rescue team; (8) The operator's...
30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines... the operator as to the number of miners willing to serve on a mine rescue team; (8) The operator's...
30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines... the operator as to the number of miners willing to serve on a mine rescue team; (8) The operator's...
30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines... the operator as to the number of miners willing to serve on a mine rescue team; (8) The operator's...
30 CFR 49.13 - Alternative mine rescue capability for small and remote mines.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines... the operator as to the number of miners willing to serve on a mine rescue team; (8) The operator's...
33 CFR 149.315 - What embarkation, launching, and recovery arrangements must rescue boats meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... recovery arrangements must rescue boats meet? 149.315 Section 149.315 Navigation and Navigable Waters COAST..., launching, and recovery arrangements must rescue boats meet? (a) Each rescue boat must be capable of being... boat embarkation and launching arrangement must permit the rescue boat to be boarded and launched in...
2010-09-24
Russian search and rescue personnel and engineers prepare to extract the crew from the Soyuz TMA-18 moments after it landed with Expedition 24 Commander Alexander Skvortsov and Flight Engineers Tracy Caldwell Dyson and Mikhail Kornienko near the town of Arkalyk, Kazakhstan on Saturday, Sept. 25, 2010. Russian Cosmonauts Skvortsov and Kornienko and NASA Astronaut Caldwell Dyson, are returning from six months onboard the International Space Station where they served as members of the Expedition 23 and 24 crews. Photo Credit: (NASA/Bill Ingalls)
2010-11-26
A Russian Search and Rescue all terrain vehicles wait to transport Expedition 25 Commander Doug Wheelock, Flight Engineers Shannon Walker and Fyodor Yurchikhin from the medical tent to awaiting helicopters shortly after the three crew members landed in the Soyuz TMA-19 spacecraft near Arkalyk, Kazakhstan on Friday, Nov. 26, 2010. Russian Cosmonaut Yurchikhin and NASA Astronauts Wheelock and Walker, are returning from nearly six months onboard the International Space Station where they served as members of the Expedition 24 and 25 crews. Photo Credit: (NASA/Bill Ingalls)
Surfacing Rescue Container Concept Design for Trident Submarines
2009-05-08
crew of their decompression obligation and will give undersea medical officers (UMO) on land the information they need to treat the crew upon arrival...ard . B ead boa ) Ba wit to ntly ora sa en s o is d OX ld er s h ule los is e v of t . L ec pu tin tte hin ad a te fety den f s to ma t...Technical Information Service, 1970. [34] SURVIVEX 2003, Exercise Tests Disabled Submarine Survival. Horn, Wayne G. 1, s.l. : Undersea Warfare
Crew Exploration Vehicle Service Module Ascent Abort Coverage
NASA Technical Reports Server (NTRS)
Tedesco, Mark B.; Evans, Bryan M.; Merritt, Deborah S.; Falck, Robert D.
2007-01-01
The Crew Exploration Vehicle (CEV) is required to maintain continuous abort capability from lift off through destination arrival. This requirement is driven by the desire to provide the capability to safely return the crew to Earth after failure scenarios during the various phases of the mission. This paper addresses abort trajectory design considerations, concept of operations and guidance algorithm prototypes for the portion of the ascent trajectory following nominal jettison of the Launch Abort System (LAS) until safe orbit insertion. Factors such as abort system performance, crew load limits, natural environments, crew recovery, and vehicle element disposal were investigated to determine how to achieve continuous vehicle abort capability.
STS-26 crew during emergency egress exercise at LC 39 launch pad B
1988-05-04
S88-40898 (4 May 1988) --- Astronauts, members of the orbiter close-out crew and fire and rescue personnel participate in a simulated emergency egress exercise near the slide wire termination point bunker at Launch Pad 39B. The simulated exercise was performed to familiarize personnel with evacuation routes as well as emergency equipment and procedures. Reasons for conducting the emergency exercises include the need to validate recent post-Challenger upgrades to the launch pad's emergency escape system and the new procedures developed in preparation for STS-26. (NOTE: The astronaut pictured and many of the others who participated in the exercises are not members of STS-26 prime crew).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... for OMB Review; Comment Request; Coal Mine Rescue Teams: Arrangements for Emergency Medical Assistance... Administration (MSHA) sponsored information collection request (ICR) titled, ``Coal Mine Rescue Teams... mine rescue team requirements; reporting to the MSHA alternative mine rescue capability for a small and...
2006-03-15
KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center's Shuttle Landing Facility, emergency personnel lower an "injured astronaut" on a stretcher down the stairs of the orbiter mockup. Volunteers and emergency rescue workers are participating in a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Jim Grossmann
Commercial Crew Transportation Capability
2014-09-16
Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)
2008-02-20
KENNEDY SPACE CENTER, FLA. -- With the aid of a drag chute billowing behind it, space shuttle Atlantis slows to a stop on Runway 15 of the Shuttle Landing Facility at NASA's Kennedy Space Center. At left is one of the fire/rescue vehicles standing by in the event of an emergency. The shuttle landed on orbit 202 to complete the 13-day STS-122 mission. Main gear touchdown was 9:07:10 a.m. Nose gear touchdown was 9:07:20 a.m. Wheel stop was at 9:08:08 a.m. Mission elapsed time was 12 days, 18 hours, 21 minutes and 44 seconds. During the mission, Atlantis' crew installed the new Columbus laboratory, leaving a larger space station and one with increased science capabilities. The Columbus Research Module adds nearly 1,000 cubic feet of habitable volume and affords room for 10 experiment racks, each an independent science lab. Photo credit: NASA/Norley Willets
Launch of Space Shuttle Atlantis / STS-125 Mission
2009-05-11
STS125-S-050 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.
Launch of Space Shuttle Atlantis / STS-125 Mission
2009-05-11
STS125-S-057 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, members of the STS-117 crew are instructed in the operation of an M-113 armored personnel carrier by the astronaut rescue team. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2014-09-14
SAN DIEGO, Calif. – The Orion boilerplate test vehicle has been lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship, during Underway Recovery Test 4A in the Pacific Ocean. Nearby, U.S. Navy personnel in a Zodiac boat prepare to practice procedures to tether and retrieve the test vehicle. NASA, Lockheed Martin and the U.S. Navy are testing crane recovery operations to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-14
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean during Underway Recovery Test 4A. Orion was lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship. Nearby, U.S. Navy personnel in a Zodiac boat and rigid hull inflatable boat prepare to practice procedures to tether and retrieve the test vehicle. NASA, Lockheed Martin and the U.S. Navy are conducting crane recovery tests to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-14
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean during Underway Recovery Test 4A. Orion was lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship. Nearby, U.S. Navy personnel in a Zodiac boat prepare to practice procedures to tether and retrieve the test vehicle. NASA, Lockheed Martin and the U.S. Navy are conducting crane recovery tests to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-14
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean during Underway Recovery Test 4A. Orion was lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship. Nearby, U.S. Navy personnel in a Zodiac boat have attached a flotation collar and tether lines to Orion to bring the test vehicle closer to the ship. NASA, Lockheed Martin and the U.S. Navy are conducting crane recovery tests to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-14
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean during the third day of Underway Recovery Test 4A. Orion was lowered into the water from the USS Salvor, a safeguard-class rescue and salvage ship, using a stationary crane. Tether lines were attached to the test vehicle from the ship for a towing test. Navy divers in a Zodiac boat practice recovery procedures and monitor Orion. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allows the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-09-14
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean during Underway Recovery Test 4A. Orion was lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship. Nearby, Navy divers in two Zodiac boats practice recovery procedures. An orange stabilization collar has been attached around Orion to prepare for lift by stationary crane back onto the USS Salvor. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Expedition 41 Soyuz TMA-13M Landing
2014-11-10
A Russian search and rescue helicopter crew waits for the weather to clear before taking off from Kustanay, Kazakhstan to support the Soyuz TMA-13M spacecraft landing with Expedition 41 Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), NASA Flight Engineer Reid Wiseman and Flight Engineer Alexander Gerst of the European Space Agency (ESA) on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews. Photo Credit: (NASA/Bill Ingalls)
2010-11-26
A Russian Search and Rescue helicopter and crew awaits the arrival of an all terrain vehicle carrying Expedition 25 Flight Engineer Fyodor Yurchikhin from the medical tent shortly after he and Expedition 25 Commander Doug Wheelock and Flight Engineer Shannon Walker landed in the Soyuz TMA-19 spacecraft near Arkalyk, Kazakhstan on Friday, Nov. 26, 2010. Russian Cosmonaut Yurchikhin and NASA Astronauts Wheelock and Walker, are returning from nearly six months onboard the International Space Station where they served as members of the Expedition 24 and 25 crews. Photo Credit: (NASA/Bill Ingalls)
2013-03-16
A Russian helicopter commander waits inside his Search and Rescue helicopter that was grounded by low visibility at the Arkalyk Airport in Kazakhstan on Saturday, March 16, 2013. The Soyuz TMA-06M spacecraft landed with Expedition 34 Commander Kevin Ford of NASA, Russian Soyuz Commander Oleg Novitskiy and Russian Flight Engineer Evgeny Tarelkin near the town of Arkalyk, Kazakhstan on Saturday, March 16, 2013. Ford, Novitskiy, and Tarelkin returned from 142 days onboard the International Space Station where they served as members of the Expedition 33 and 34 crews. Photo Credit: (NASA/Bill Ingalls)
Apollo 9 prime crew participates in water egress training in Gulf of Mexico
NASA Technical Reports Server (NTRS)
1968-01-01
The Apollo 9 prime crew participates in water egress training in the Gulf of Mexico. Being hoisted up to the U.S. Coast Guard helicopter in a new type of rescue net (called a Billy Pugh net) is Astronaut David R. Scott, command module pilot. Sitting in the life raft awaiting their turn for helicopter pickup are Astronauts Russell L. Schweickart (on left), lunar module pilot; and James A. McDivitt, commander. A team of Manned Spacecraft Center (MSC) swimmers assisted in the training exercise.
Surfacing Rescue Container Concept Design for Trident Submarines
2009-06-01
crew of their decompression obligation and will give undersea medical officers (UMO) on land the information they need to treat the crew upon arrival...ard . B ead boa ) Ba wit to ntly ora sa en s o is d OX ld er s h ule los is e v of t . L ec pu tin tte hin ad a te fety den f s to ma t...Information Service, 1970. [34] SURVIVEX 2003, Exercise Tests Disabled Submarine Survival. Horn, Wayne G. 1, s.l. : Undersea Warfare, 2003, Vol. 6, pp
Maryland Fire-Rescue Education and Training System. Organizational Design.
ERIC Educational Resources Information Center
Maryland Fire-Rescue Education and Training Commission.
This is a description of the Maryland system which was created to evaluate local fire-rescue education and training needs and capabilities and to assist local authorities with fire-rescue education and training. In the first of four parts, an historical presentation is used to identify and describe in general terms the state fire, rescue, and…
Issues in life support and human factors in crew rescue from the ISS
NASA Technical Reports Server (NTRS)
Smart, K.
2001-01-01
The design and development of crew emergency response systems, particularly to provide an unplanned emergency return to Earth, requires an understanding of crew performance challenges in space. The combined effects of psychological and physiological adaptation during long-duration missions will have a significant effect on crew performance in the unpredictable and potentially life-threatening conditions of an emergency return to Earth. It is therefore important that the systems to be developed for emergency egress address these challenges through an integrated program to produce optimum productivity and safety in times of utmost stress. Fundamental to the success of the CRV is the Environmental Control and Life Support System (ECLSS), which provides the necessary conditions for the crew to survive their return mission in a shirtsleeve environment. This article will discuss the many issues in the design of an ECLSS system for CRV and place it in the context of the human performance challenges of the mission.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of Inspection. Anti-exposure suit means a protective suit designed for use by rescue boat crews and marine evacuation system parties. Approval series means the first six digits of a number assigned by the..., the approval series corresponds to the number of the subpart. A listing of approved equipment...
Code of Federal Regulations, 2010 CFR
2010-10-01
... of Inspection. Anti-exposure suit means a protective suit designed for use by rescue boat crews and marine evacuation system parties. Approval series means the first six digits of a number assigned by the..., the approval series corresponds to the number of the subpart. A listing of approved equipment...
Code of Federal Regulations, 2012 CFR
2012-10-01
... of Inspection. Anti-exposure suit means a protective suit designed for use by rescue boat crews and marine evacuation system parties. Approval series means the first six digits of a number assigned by the..., the approval series corresponds to the number of the subpart. A listing of approved equipment...
Code of Federal Regulations, 2014 CFR
2014-10-01
... of Inspection. Anti-exposure suit means a protective suit designed for use by rescue boat crews and marine evacuation system parties. Approval series means the first six digits of a number assigned by the..., the approval series corresponds to the number of the subpart. A listing of approved equipment...
HH-65A Dolphin digital integrated avionics
NASA Technical Reports Server (NTRS)
Huntoon, R. B.
1984-01-01
Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.
Status of Commercial Programs at NASA
NASA Technical Reports Server (NTRS)
Groen, Frank
2011-01-01
NASA's strategy is two-fold: (1) Use Space Act Agreements to support the development of commercial crew transportation capabilities. (2) Use FAR-based contracts for the certification of commercially developed capabilities and for the procurement of crew transportation services to and from the ISS to meet NASA requirements. Focus is on reducing the risk and uncertainties of the development environment and on the incentives provided through competition by separating the design and early development content from the longer-term CTS Certification activities. CCP expects to develop, demonstrate, and certify U.S. commercial crew space transportation capabilities that meet ISS crew transportation needs by the end of FY 2017.
Crew Dragon Demonstration Mission 1
2018-06-13
SpaceX’s Crew Dragon is at NASA’s Plum Brook Station in Ohio, ready to undergo testing in the In-Space Propulsion Facility — the world’s only facility capable of testing full-scale upper-stage launch vehicles and rocket engines under simulated high-altitude conditions. The chamber will allow SpaceX and NASA to verify Crew Dragon’s ability to withstand the extreme temperatures and vacuum of space. This is the spacecraft that SpaceX will fly during its Demonstration Mission 1 flight test under NASA’s Commercial Crew Transportation Capability contract with the goal of returning human spaceflight launch capabilities to the U.S.
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, members of the STS-117 crew are instructed in the operation of an M-113 armored personnel carrier by astronaut rescue team leader Capt. George Hoggard (left). The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
Code of Federal Regulations, 2010 CFR
2010-10-01
... other similar places open to persons on board. Anti-exposure suit means a protective suit designed for use by rescue boat crews and marine evacuation system parties. Approval series means the first six... subpart of subchapter Q of this chapter, the approval series corresponds to the number of the subpart. A...
Code of Federal Regulations, 2013 CFR
2013-10-01
... other similar places open to persons on board. Anti-exposure suit means a protective suit designed for use by rescue boat crews and marine evacuation system parties. Approval series means the first six... subpart of subchapter Q of this chapter, the approval series corresponds to the number of the subpart. A...
2005-04-24
Expedition 10 Commander Leroy Chiao rests in a Russian search and rescue helicopter after a pre-dawn landing in the Soyuz TMA-5 capsule with crew mates Flight Engineer Salizhan Sharipov and European Space Agency astronaut Roberto Vittori northeast of the town of Arkalyk, Kazakhstan, Monday, April 25, 2005. Photo Credit: (NASA/Bill Ingalls)
The Search for a Permanent Home: Explaining the Organizational Instability of Air Force Rescue
2015-06-01
capability became a major concern after the failed attempt to rescue American hostages in Iran in 1979 . The merger of Rescue and SOF in 1983 succeeded in...Participants General Huyser’s opinion was counter to General Ralph Saunders, the Rescue commander from 1974 to 1979 , who was dedicated to...subsequent Rescue commander, Brigadier General Cornelius Nugteren, took command on 29 September 1979 and was more open to the idea of consolidation. In
NASA Technical Reports Server (NTRS)
Zeitler, Pamela S. (Compiler); Mango, Edward J.
2013-01-01
The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives.
Commercial Crew Transportation Capability
2014-09-16
NASA Administrator Charles Bolden listens to a reporter’s question after he announced the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)
Commercial Crew Transportation Capability
2014-09-16
Astronaut Mike Fincke, a former commander of the International Space Station, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)
Commercial Crew Transportation Capability
2014-09-16
Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)
STS-26 MS Nelson during Crew escape system (CES) testing in JSC WETF Bldg 29
1988-07-08
S88-42409 (20 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson participates in crew escape system (CES) testing in JSC Weightless Environment Training Facility (WETF) Bldg 29. Nelson, wearing the newly designed (navy blue) launch and entry suit (LES), floats in WETF pool with the aid of an underarm flotation device (modern version of Mas West floats). He awaits the assistance of SCUBA-equipped divers during a simulation of escape and rescue operations utilizing a new CES pole for emergency exit from the Space Shuttle.
STS-26 MS Lounge floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Lounge pulls cord on life raft and enlists the aid of a SCUBA-equipped diver. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle. Lounge is wearing gear like that each STS-26 crewmember and subsequent crews will carry onboard during launch.
Asteroid Crew Segment Mission Lean Development
NASA Technical Reports Server (NTRS)
Gard, Joseph; McDonald, Mark
2014-01-01
Asteroid Retrieval Crewed Mission (ARCM) requires a minimum set of Key Capabilities compared in the context of the baseline EM-1/2 Orion and SLS capabilities. These include: Life Support & Human Systems Capabilities; Mission Kit Capabilities; Minimizing the impact to the Orion and SLS development schedules and funding. Leveraging existing technology development efforts to develop the kits adds functionality to Orion while minimizing cost and mass impact.
Commercial Crew Transportation Capability
2014-09-16
From left, NASA Public Affairs Officer Stephanie Schierholz, NASA Administrator Charles Bolden, Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, Kathy Lueders, program manager of NASA's Commercial Crew Program, and Astronaut Mike Fincke, a former commander of the International Space Station, are seen during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)
Commercial Crew Transportation Capability
2014-09-16
Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks, as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, left, and Astronaut Mike Fincke, a former commander of the International Space Station look on during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)
NASA's New Orbital Space Plane: A Bridge to the Future
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Engler, Leah M.; Fisher, Mark F.; Dumbacher, Dan L.; Boswell, Barry E.
2003-01-01
NASA is developing a new spacecraft system called the Orbital Space Plane (OSP). The OSP will be launched on an expendable launch vehicle and serve to augment the shuttle in support of the International Space Station by transporting astronauts to and from the International Space Station and by providing a crew rescue system.
1997-03-01
Haiti, Somalia, Liberia, and Bosnia. The future appears very busy for Air Force rescue units as well. According to ?Strategic Assessment 1996?Instruments...13 COMTEMPORARY ROLE OF AIR REFUELING IN US AIR FORCE SEARCH AND RESCUE...places such as Haiti, Somalia, Liberia, and Bosnia. The future appears very busy for Air Force rescue units as well. According to “Strategic Assessment
Commercial Crew Transportation Capability
2014-09-16
NASA Administrator Charles Bolden, left, announces the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida looks on at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)
Remote Sensing Capabilities to Detect Maritime Vessels in Distress
NASA Technical Reports Server (NTRS)
Larsen, Rudolph K.; Green, John M.; Huxtable, Barton D.; Rais, Houra
2004-01-01
The National Aeronautics and Space Administration (NASA) has the responsibility for conducting research and development for search and rescue as charged under the National Search and Rescue Plan. For over two decades this task has been undertaken by the Search and Rescue Mission Office at the NASA Goddard Space Flight Center (GSFC). The technology used by the highly successful beacon locating satellite system, Cospas-Sarsat, was conceived and developed at GSFC and is managed by the National Oceanographic and Atmospheric Administration (NOAA). Using beacon-less remote sensing to find people and vessels in distress complements the demonstrated life saving capabilities of this satellite system. The Search and Rescue Mission Office has been investigating the use of fully polarimetric synthetic aperture radar to locate crashed aircraft. An overview of this effort and potential maritime applications of Search and Rescue Synthetic Aperture Radar (SAR) will be presented. The Mission Office has also developed a Laser search and rescue system called L-SAR. The prototype instrument was designed and built by SenSyTech Inc. It specifically targets the location of novel retro-reflective material easily applied to rescue equipment and vessels in distress. An overview of this effort will also be presented.
2014-09-14
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean during Underway Recovery Test 4A. Orion was lowered into the water with a stationary crane from the USS Salvor, a safeguard-class rescue and salvage ship. Nearby, U.S. Navy personnel in a Zodiac boat, left, and a rigid hull inflatable boat practice procedures to tether and retrieve the test vehicle. U.S. Navy divers are standing on the flotation collar that has been placed around the test vehicle. NASA, Lockheed Martin and the U.S. Navy are conducting crane recovery tests to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: Kim Shiflett
2014-09-14
SAN DIEGO, Calif. – On the third day of Underway Recovery Test 4A, the Orion boilerplate test vehicle floats in the Pacific Ocean near the USS Salvor, a safeguard-class rescue and salvage ship. Orion was lowered into the water with a stationary crane from the ship. Tether lines from the ship have been attached to Orion for a towing test. Nearby, Navy divers in Zodiac boats monitor Orion and practice recovery procedures. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allows the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Advanced missions safety. Volume 3: Appendices. Part 1: Space shuttle rescue capability
NASA Technical Reports Server (NTRS)
1972-01-01
The space shuttle rescue capability is analyzed as a part of the advanced mission safety study. The subjects discussed are: (1) mission evaluation, (2) shuttle configurations and performance, (3) performance of shuttle-launched tug system, (4) multiple pass grazing reentry from lunar orbit, (5) ground launched ascent and rendezvous time, (6) cost estimates, and (7) parallel-burn space shuttle configuration.
Crew procedures and workload of retrofit concepts for microwave landing system
NASA Technical Reports Server (NTRS)
Summers, Leland G.; Jonsson, Jon E.
1989-01-01
Crew procedures and workload for Microwave Landing Systems (MLS) that could be retrofitted into existing transport aircraft were evaluated. Two MLS receiver concepts were developed. One is capable of capturing a runway centerline and the other is capable of capturing a segmented approach path. Crew procedures were identified and crew task analyses were performed using each concept. Crew workload comparisons were made between the MLS concepts and an ILS baseline using a task-timeline workload model. Workload indexes were obtained for each scenario. The results showed that workload was comparable to the ILS baseline for the MLS centerline capture concept, but significantly higher for the segmented path capture concept.
Comparison of Propulsion Options for Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.
2018-01-01
NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Launch Control Center, Robert Holl (left), Landing Recovery directo, and Donald Hammel, from the Shuttle Project Office, are in contact with the leaders of the Mode VII emergency landing simulation at Kennedy Space Center. The simulation is being managed and directed from the LCC. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Eric Boe and Bob Behnken Dragon Tour
2017-03-08
During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronaut Bob Behnken views the Crew Dragon on March 8, 2017. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.
2011-03-16
Expedition 26 Commander Scott Kelly wears a blue wrist band that has a peace symbol, a heart and the word "Gabby" to show his love of his sister-in-law U.S. Rep. Gabrielle Giffords as he rest onboard a Russian Search and Rescue helicopter shortly after he and fellow crew members Oleg Skripochka and Alexander Kaleri landed in their Soyuz TMA-01M capsule near the town of Arkalyk, Kazakhstan on Wednesday, March 16, 2011. NASA Astronaut Kelly, Russian Cosmonauts Skripochka and Kaleri are returning from almost six months onboard the International Space Station where they served as members of the Expedition 25 and 26 crews. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Bigler, Mark; Canga, Michael A.; Duncan, Gary
2010-01-01
The Shuttle Program initiated an Extravehicular Activity (EVA) Probabilistic Risk Assessment (PRA) to assess the risks associated with performing a Shuttle Thermal Protection System (TPS) repair during the Space Transportation System (STS)-125 Hubble repair mission as part of risk trades between TPS repair and crew rescue.
78 FR 35108 - Special Conditions: Eurocopter France, EC175B; Use of 30-Minute Power Rating
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
..., generally intended to be used for hovering at increased power for search and rescue missions. The applicable....gov , including any personal information the commenter provides. Using the search function of the... carrying 16 passengers and 2 crew members. Its initial customer base will be offshore oil and Search and...
1994-09-16
Astronaut Mark Lee floats freely as he tests the new backpack called the Simplified Aid for EVA Rescue (SAFER) system. SAFER is designed for use in the event a crew member becomes untethered while conducting an EVA. The STS-64 mission marked the first untethered U.S. EVA in 10 years, and was launched on September 9, 1994, aboard the Space Shuttle Orbiter Discovery.
Mitropoulos, Panagiotis Takis; Cupido, Gerardo
2009-01-01
In construction, the challenge for researchers and practitioners is to develop work systems (production processes and teams) that can achieve high productivity and high safety at the same time. However, construction accident causation models ignore the role of work practices and teamwork. This study investigates the mechanisms by which production and teamwork practices affect the likelihood of accidents. The paper synthesizes a new model for construction safety based on the cognitive perspective (Fuller's Task-Demand-Capability Interface model, 2005) and then presents an exploratory case study. The case study investigates and compares the work practices of two residential framing crews: a 'High Reliability Crew' (HRC)--that is, a crew with exceptional productivity and safety over several years, and an average performing crew from the same company. The model explains how the production and teamwork practices generate the work situations that workers face (the task demands) and affect the workers ability to cope (capabilities). The case study indicates that the work practices of the HRC directly influence the task demands and match them with the applied capabilities. These practices were guided by the 'principle' of avoiding errors and rework and included work planning and preparation, work distribution, managing the production pressures, and quality and behavior monitoring. The Task Demand-Capability model links construction research to a cognitive model of accident causation and provides a new way to conceptualize safety as an emergent property of the production practices and teamwork processes. The empirical evidence indicates that the crews' work practices and team processes strongly affect the task demands, the applied capabilities, and the match between demands and capabilities. The proposed model and the exploratory case study will guide further discovery of work practices and teamwork processes that can increase both productivity and safety in construction operations. Such understanding will enable training of construction foremen and crews in these practices to systematically develop high reliability crews.
Search and Rescue Operations of Aircraft in Africa: Some Compelling Issues
NASA Technical Reports Server (NTRS)
Abeyratne, Ruwantissa I. R.
2002-01-01
The world aviation community has felt the compelling need for a well-coordinated global programme for search and rescue operations of aircraft ever since commercial aviation was regulated in 1944. Guidelines and plans of action for search and rescue have therefore been considered critical in the event of an aircraft accident. This fact is eminently brought to bear in the continental regions of Africa and South America in particular, where vast expanses of land are still uninhabited or sparsely populated and controlled flight into terrain (CFIT-where an aircraft may crash on land while still under the control of technical crew) is a common occurrence. There are numerous guidelines that have been adopted under the umbrella of the International Civil Aviation Organization which are already in place for the provision of search and rescue operations pertaining to aircraft. However, when an accident occurs in the territory of a State, there are sensitivities involving the State in which the aircraft concerned was registered and issues of sovereignty which have to be considered. Additionally. issues such as the voluntary nature of the search and rescue services offered. confidentiality, timeliness of such operations, fairness and uniformity all play a critical role. This article addresses the issue of search and rescue operations in Africa and examines in some detail where the world aviation community is right now and where it is headed in this important field of human endeavour.
Eric Boe and Bob Behnken Dragon Tour
2017-03-08
During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronauts Eric Boe, left, and Bob Behnken view the Crew Dragon on March 8, 2017. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.
Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions
NASA Technical Reports Server (NTRS)
Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F.
2016-01-01
Phobos is a scientifically significant destination that would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to developing systems relevant to Mars surface missions, Phobos offers engineering, operational, and public engagement opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection and infrastructure development which may include in situ resource utilization (ISRU) to provide liquid oxygen for the Mars Ascent Vehicle (MAV). A human mission to Mars' moons would be preceded by a cargo predeploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion based systems, with the habitat descending to the surface and the PEV remaining in orbit. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-Mars transit and to reach Phobos after insertion in to Mars orbit. The crew would taxi from Mars orbit to Phobos to join with the predeployed systems in a spacecraft that is based on a MAV, dock with and transfer to the PEV in Phobos orbit, and descend in the PEV to the surface habitat. A static Phobos surface habitat was chosen as a baseline architecture, in combination with the PEV that was used to descend from orbit as the main exploration vehicle. The habitat would, however, have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat would utilize deployable EVA support structures that allow astronauts to work from portable foot restraints or body restrain tethers in the vicinity of the habitat. Prototype structures were tested as part of NEEMO 20. PEVs would contain closed loop guidance and provide life support and consumables for two crew for 2 weeks plus reserves. The PEV has a cabin that uses the exploration atmosphere of 8.2 psi with 34% oxygen, enabling use of suit ports for rapid EVA with minimal oxygen prebreathe as well as dust control by keeping the suits outside the pressurized volume. When equipped with outriggers and control moment gyros, the PEV enables EVA tasks of up to 8 pounds of force application without the need to anchor. Tasks with higher force requirements can be performed with PEV propulsion providing the necessary thrust to react forces. Exploration of Phobos builds heavily from the developments of the cis-lunar proving ground, and significantly reduces Mars surface risk by facilitating the development and testing of habitats, MAVs, and pressurized rover cabins that are all Mars surface forward. A robotic precursor mission to Phobos and Deimos is also under consideration and would need to launch in 2022 to support a 2031 human Phobos mission.
Assessing Group Dynamics in a Mars Simulation
NASA Astrophysics Data System (ADS)
Bishop, S. L.
2007-10-01
International interest in psychosocial functioning generally and issues of group and inter-group function for space crews has increased as focus has shifted towards longer duration spaceflight and, particularly, the issues involved in sending a human crew to Mars (Kanas, et al., 2001; Dawson, 2002). Planning documents for a human mission to Mars such as the NASA Design Reference Mission (DRM 1.0) emphasize the need for adaptability of crewmembers and autonomy in the crew as a whole (Hoffman and Kaplan, 1997). Similarly a major study by the International Space University (ISU, 1991) emphasized the need for autonomy and initiative for a Mars crew given that many of the scenarios that will be encountered on Mars cannot be rehearsed on earth and given the lack of any realistic possibility for rescue of the crew. This research project was only one subset of data collected during the larger AustroMars Expedition at the Mars Desert Research Facility (MDRS) in 2006. The participating crew comprises part of a multi-year investigation on teams utilizing the MDRS facility. The program of research has included numerous researchers since 2002 with a progressive evolution of key foci addressing stress, personality, coping, adaptation, cognitive functioning, and group identity assessed across the duration period of the individual missions.
Orbital Space Plane (OSP) Program
NASA Technical Reports Server (NTRS)
McKenzie, Patrick M.
2003-01-01
Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.
Orbital Space Plane (OSP) Program at Lockheed Martin
NASA Technical Reports Server (NTRS)
Ford, Robert
2003-01-01
Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November 2002 to focus the overall theme of safer, more affordable space transportation along two paths the Orbital Space Plane (OSP) and the Next Generation Launch Technology programs. The Orbital Space Plane program has the goal of providing rescue capability from the International Space Station by 2008 or earlier and transfer capability for crew (and contingency cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2d Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 31d Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system design level of maturity by December 2003. This paper and presentation will update the aerospace community on the progress of the OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Launch Control Center, officials monitor the Mode VII emergency landing simulation being conducted at Kennedy Space Center and managed and directed from the LCC. From left are Dr. Luis Moreno and Dr. David Reed, with Bionetics Life Sciences, and Dr. Philip Scarpa, with the KSC Safety, Occupational Health and Environment Division. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Challenger Anniversary Resource Tape
NASA Technical Reports Server (NTRS)
1996-01-01
This commemorative video marks the tenth anniversary, January 28, 1986, of the ninth Challenger flight and the seven astronauts onboard who died when the Challenger exploded 73 seconds into flight. The flight crew was comprised of Cmdr. Francis R. Scobee, Pilot Michael J. Smith, and Mission Specialists Judith A. Resnik, Ellison S. Onizuka, Ronald E. McNair, Gregory Jarvis (Hughes Aircraft representative), and S. Christie McAuliffe (teacher). The flight crew is shown performing preflight training, physiological tests, environmental tests, press conferences, prelaunch activities, and launch activities. The Challenger explosion is shown from both the launch site and from the control center. Various rescue operations, news coverage, and shots of the wreckage after salvage are also presented. President Ronald Reagan is shown giving a tribute at the memorial service for the flight crew. The video ends with a flyby salute and pictures of each of the members of the Challenger.
Does modern helicopter construction reduce noise exposure in helicopter rescue operations?
Küpper, Thomas; Jansing, Paul; Schöffl, Volker; van Der Giet, Simone
2013-01-01
During helicopter rescue operations the medical personnel are at high risk for hearing damage by noise exposure. There are two important factors to be taken into account: first, the extreme variability, with some days involving no exposure but other days with extreme exposure; second, the extreme noise levels during work outside the helicopter, e.g. during winch operations. The benefit of modern, less noisier constructions and the consequences for noise protection are still unknown. We estimated the noise exposure of the personnel for different helicopter types used during rescue operations in the Alps and in other regions of the world with special regard to the advanced types like Eurocopter EC 135 to compare the benefit of modern constructions for noise protection with earlier ones. The rescue operations over 1 year of four rescue bases in the Alps (Raron and Zermatt in Switzerland; Landeck and Innsbruck in Austria, n = 2731) were analyzed for duration of rescue operations (noise exposure). Noise levels were measured during rescue operations at defined points inside and outside the different aircraft. The setting is according to the European standard (Richtlinie 2003/10/EG Amtsblatt) and to Class 1 DIN/IEC 651. With both data sets the equivalent noise level L(eq8h) was calculated. For comparison it was assumed that all rescue operations were performed with a specific type of helicopter. Then model calculations for noise exposure by different helicopter types, such as Alouette IIIb, Alouette II 'Lama', Ecureuil AS350, Bell UH1D, Eurocopter EC135, and others were performed. Depending on modern technologies the situation for the personnel has been improved significantly. Nevertheless noise prevention, which includes noise intermissions in spare time, is essential. Medical checks of the crews by occupational medicine (e.g. 'G20' in Germany) are still mandatory.
Blancher, Marc; Albasini, François; Elsensohn, Fidel; Zafren, Ken; Hölzl, Natalie; McLaughlin, Kyle; Wheeler, Albert R; Roy, Steven; Brugger, Hermann; Greene, Mike; Paal, Peter
2018-06-01
Blancher, Marc, François Albasini, Fidel Elsensohn, Ken Zafren, Natalie Hölzl, Kyle McLaughlin, Albert R. Wheeler III, Steven Roy, Hermann Brugger, Mike Greene, and Peter Paal. Management of multi-casualty incidents in mountain rescue: Evidence-based guidelines of the International Commission for Mountain Emergency Medicine (ICAR MEDCOM). High Alt Med Biol. 19:131-140, 2018. Multi-Casualty Incidents (MCI) occur in mountain areas. Little is known about the incidence and character of such events, and the kind of rescue response. Therefore, the International Commission for Mountain Emergency Medicine (ICAR MEDCOM) set out to provide recommendations for the management of MCI in mountain areas. Details of MCI occurring in mountain areas related to mountaineering activities and involving organized mountain rescue were collected. A literature search using (1) PubMed, (2) national mountain rescue registries, and (3) lay press articles on the internet was performed. The results were analyzed with respect to specific aspects of mountain rescue. We identified 198 MCIs that have occurred in mountain areas since 1956: 137 avalanches, 38 ski lift accidents, and 23 other events, including lightning injuries, landslides, volcanic eruptions, lost groups of people, and water-related accidents. General knowledge on MCI management is required. Due to specific aspects of triage and management, the approach to MCIs may differ between those in mountain areas and those in urban settings. Mountain rescue teams should be prepared to manage MCIs. Knowledge should be reviewed and training performed regularly. Cooperation between terrestrial rescue services, avalanche safety authorities, and helicopter crews is critical to successful management of MCIs in mountain areas.
Assured crew return capability Crew Emergency Return Vehicle (CERV) avionics
NASA Technical Reports Server (NTRS)
Myers, Harvey Dean
1990-01-01
The Crew Emergency Return Vehicle (CERV) is being defined to provide Assured Crew Return Capability (ACRC) for Space Station Freedom. The CERV, in providing the standby lifeboat capability, would remain in a dormat mode over long periods of time as would a lifeboat on a ship at sea. The vehicle must be simple, reliable, and constantly available to assure the crew's safety. The CERV must also provide this capability in a cost effective and affordable manner. The CERV Project philosophy of a simple vehicle is to maximize its useability by a physically deconditioned crew. The vehicle reliability goes unquestioned since, when needed, it is the vehicle of last resort. Therefore, its systems and subsystems must be simple, proven, state-of-the-art technology with sufficient redundancy to make it available for use as required for the life of the program. The CERV Project Phase 1'/2 Request for Proposal (RFP) is currently scheduled for release on October 2, 1989. The Phase 1'/2 effort will affirm the existing project requirements or amend and modify them based on a thorough evaluation of the contractor(s) recommendations. The system definition phase, Phase 2, will serve to define CERV systems and subsystems. The current CERV Project schedule has Phase 2 scheduled to begin October 1990. Since a firm CERV avionics design is not in place at this time, the treatment of the CERV avionics complement for the reference configuration is not intended to express a preference with regard to a system or subsystem.
Exploration Medical Capability (ExMC) Program
NASA Technical Reports Server (NTRS)
Kalla, Elizabeth
2006-01-01
This document reviews NASA's Exploration Medical Capability (ExMC) program. The new space exploration program, outlined by the President will present new challenges to the crew's health. The project goals are to develop and validate requirements for reliable, efficient, and robust medical systems and treatments for space exploration to maximize crew performance for mission objectives.
Coral Reef Early Warning System (CREWS) RPC Experiment
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.; Hall, Callie
2007-01-01
This viewgraph document reviews the background, objectives, methodology, validation, and present status of the Coral Reef Early Warning System (CREWS) Rapid Prototyping Capability (RPC) experiment. The potential NASA contribution to CREWS Decision Support Tool (DST) centers on remotely sensed imagery products.
The role of selection on evolutionary rescue
NASA Astrophysics Data System (ADS)
Amirjanov, Adil
The paper investigates the role of selection on evolutionary rescue of population. The statistical mechanics technique is used to model dynamics of a population experiencing a natural selection and an abrupt change in the environment. The paper assesses the selective pressure produced by two different mechanisms: by strength of resistance and by strength of selection (by intraspecific competition). It is shown that both mechanisms are capable of providing an evolutionary rescue of population in particular conditions. However, for a small level of an extinction rate, the population cannot be rescued without intraspecific competition.
Cadre Photos for Joint Test Team Feature
2017-02-23
During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronauts Suni Williams, left, and Doug Hurley participate in joint test team training using mockup components of the Crew Dragon on Feb. 23, 2017. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.
Cadre Photos for Joint Test Team Feature
2017-02-23
During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronauts Bob Behnken, left, and Eric Boe participate in joint test team training using mockup components of the Crew Dragon on Feb. 23, 2017. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.
Eric Boe and Bob Behnken Dragon Tour
2017-03-08
During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronauts Bob Behnken, left, and Eric Boe participate in joint test team training using mockup components of the Crew Dragon on March 8, 2017. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.
NASA Technical Reports Server (NTRS)
Entin, Elliot E.; Kerrigan, Caroline; Serfaty, Daniel; Young, Philip
1998-01-01
The goals of this project were to identify and investigate aspects of team and individual decision-making and risk-taking behaviors hypothesized to be most affected by prolonged isolation. A key premise driving our research approach is that effects of stressors that impact individual and team cognitive processes in an isolated, confined, and hazardous environment will be projected onto the performance of a simulation task. To elicit and investigate these team behaviors we developed a search and rescue task concept as a scenario domain that would be relevant for isolated crews. We modified the Distributed Dynamic Decision-making (DDD) simulator, a platform that has been extensively used for empirical research in team processes and taskwork performance, to portray the features of a search and rescue scenario and present the task components incorporated into that scenario. The resulting software is called DD-Search and Rescue (Version 1.0). To support the use of the DDD-Search and Rescue simulator in isolated experiment settings, we wrote a player's manual for teaching team members to operate the simulator and play the scenario. We then developed a research design and experiment plan that would allow quantitative measures of individual and team decision making skills using the DDD-Search and Rescue simulator as the experiment platform. A description of these activities and the associated materials that were produced under this contract are contained in this report.
NASA Technical Reports Server (NTRS)
James, John T.; Meyers, Valerie E.; Sipes, Walter; Scully, Robert R.; Matty, Christopher M.
2011-01-01
Carbon dioxide (CO2) removal is one of the primary functions of the International Space Station (ISS) atmosphere revitalization systems. Primary CO2 removal is via the ISS s two Carbon Dioxide Removal Assemblies (CDRAs) and the Russian carbon dioxide removal assembly (Vozdukh); both of these systems are regenerable, meaning that their CO2 removal capacity theoretically remains constant as long as the system is operating. Contingency CO2 removal capability is provided by lithium hydroxide (LiOH) canisters, which are consumable, meaning that their CO2 removal capability disappears once the resource is used. With the advent of 6 crew ISS operations, experience showing that CDRA failures are not uncommon, and anecdotal association of crew symptoms with CO2 values just above 4 mmHg, the question arises: How much lower do we keep CO2 levels to minimize the risk to crew health and performance, and what will the operational cost to the CDRAs be to do it? The primary crew health concerns center on the interaction of increased intracranial pressure from fluid shifts and the increased intracranial blood flow induced by CO2. Typical acute symptoms include headache, minor visual disturbances, and subtle behavioral changes. The historical database of CO2 exposures since the beginning of ISS operations has been compared to the incidence of crew symptoms reported in private medical conferences. We have used this database in an attempt to establish an association between the CO2 levels and the risk of crew symptoms. This comparison will answer the question of the level needed to protect the crew from acute effects. As for the second part of the question, operation of the ISS s regenerable CO2 removal capability reduces the limited life of constituent parts. It also consumes limited electrical power and thermal control resources. Operation of consumable CO2 removal capability (LiOH) uses finite consumable materials, which must be replenished in the long term. Therefore, increased CO2 removal means increased resource use, with increased logistical capability to maintain necessary resources on board ISS. We must strike a balance between sufficiently low CO2 levels to maintain crew health and CO2 levels which are operationally feasible for the ISS program
Aircraft Mishap Exercise at SLF
2018-02-14
NASA Kennedy Space Center's Flight Operations prepares to rehearse a helicopter crash-landing to test new and updated emergency procedures. Called the Aircraft Mishap Preparedness and Contingency Plan, the operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing newly designed launch and entry suit (LES), floats in single-occupant life raft during simulations in the JSC Weightless Environment Training Facility Bldg 29 pool. During the simulation of escape and rescue operations, the crew escape system (CES) pole mode of egress from the Space Shuttle was utilized.
Progress of Crew Autonomous Scheduling Test (CAST) On the ISS
NASA Technical Reports Server (NTRS)
Healy, Matthew; Marquez, Jessica; Hillenius, Steven; Korth, David; Bakalyar, Lauren Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke;
2017-01-01
The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This presentation shows the progress done in this study with a single astronaut test subject participating in five CAST sessions. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers.
NASA Technical Reports Server (NTRS)
Foushee, H. C.
1981-01-01
The influence of group dynamics on the capability of aircraft crew members to make full use of the resources available on the flight deck in order to maintain flight safety is discussed. Instances of crewmembers withholding altimeter or heading information from the captain are cited as examples of domineering attitudes from command pilots and overconscientiousness on the parts of copilots, who may refuse to relay information forcefully enough or to take control of the aircraft in the case of pilot incapacitation. NASA studies of crew performance in controlled, simulator settings, concentrating on communication, decision making, crew interaction, and integration showed that efficient communication reduced errors. Acknowledgements served to encourage correct communication. The best crew performance is suggested to occur with personnel who are capable of both goal and group orientation. Finally, one bad effect of computer controlled flight is cited to be the tendency of the flight crew to think that someone else is taking care of difficulties in threatening situations.
NASA Technical Reports Server (NTRS)
Siders, Jeffrey A.; Smith, Robert H.
2004-01-01
The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.
NASA Technical Reports Server (NTRS)
Leitgab, Martin; Semones, Edward; Lee, Kerry
2016-01-01
The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.
Cadre Photos for Joint Test Team Feature
2017-02-23
During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronauts Bob Behnken, left, and Eric Boe participate in joint test team training using mockup components of the Crew Dragon on Feb. 23, 2017. Mike Good, program manager for Crew Operations and Testing at Johnson Space Center in Houston, is in the background. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.
Utilization of the International Space Station for Crew Autonomous Scheduling Test (CAST)
NASA Technical Reports Server (NTRS)
Healy, Matthew; Marquez, Jesica; Hillenius, Steven; Korth, David; Bakalyar, Laure Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke;
2017-01-01
The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This paper presents the results from a single astronaut test subject who participated in five CAST sessions. The details on the operational philosophy of CAST are discussed, including the approach to crew training, selection criteria for test days, and data collection methods. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers. It is hoped the results of this investigation will guide NASA's implementation of autonomous mission operations for long duration human space missions to Mars and beyond.
NASA Technical Reports Server (NTRS)
Proud, Ryan; Adam, Jason
2011-01-01
As of Draft 4.0 of the CCT-REQ-1130 requirements document for CCP, ISS Crew Transportation and Services Requirements Document, specific language for the verification of the abort capability requirement, 3.3.1.4, was added. The abort capability requirement ensures that the CTS under dispersed conditions is always capable of aborting from a failed LV. The Integrated Aborts IPT was asked to author a memo for how this verification might be completed. The following memo dictates one way that this requirement and its verification could be met, but this is the not the only method.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
1988-07-08
S88-42425 (20 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
Aircraft Mishap Exercise at SLF
2018-02-14
Members of NASA Kennedy Space Center's Flight Operations team participate in a rehearsal of a helicopter crash-landing to test new and updated emergency procedures. Called the Aircraft Mishap Preparedness and Contingency Plan, the operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
Aircraft Mishap Exercise at SLF
2018-02-14
NASA Kennedy Space Center's Flight Operations team reviews procedures before beginning a rehearsal of a helicopter crash-landing to test new and updated emergency procedures. Called the Aircraft Mishap Preparedness and Contingency Plan, the operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
Aircraft Mishap Exercise at SLF
2018-02-14
Members of NASA Kennedy Space Center's Flight Operations team prepare for a rehearsal of a helicopter crash-landing to test new and updated emergency procedures. Called the Aircraft Mishap Preparedness and Contingency Plan, the operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
Aircraft Mishap Exercise at SLF
2018-02-14
A member of NASA Kennedy Space Center's Flight Operations team prepares for a rehearsal of a helicopter crash-landing to test new and updated emergency procedures. Called the Aircraft Mishap Preparedness and Contingency Plan, the operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
Aeromedical Lessons Learned from the Space Shuttle Columbia Accident Investigation
NASA Technical Reports Server (NTRS)
Chandler, Mike
2011-01-01
This slide presentation provides an update on the Columbia accident response presented in 2005 with additional information that was not available at that time. It will provide information on the following topics: (1) medical response and Search and Rescue, (2) medico-legal issues associated with the accident, (3) the Spacecraft Crew Survival Integrated Investigation Team Report published in 2008, and (4) future NASA flight surgeon spacecraft accident response training.
2012-09-17
Expedition 32 NASA Flight Engineer Joe Acaba is helped from a Russian Search and Rescue all terrain vehicle (ATV) to his helicopter after he and Expedition 32 Commander Gennady Padalka and Flight Engineer Sergei Revin returned from the International Space Station on Monday, Sept. 17, 2012. Acaba, Padalka and Revin returned from five months onboard the International Space Station where they served as members of the Expedition 31 and 32 crews. Photo Credit: (NASA/Carla Cioffi)
2012-09-17
Expedition 32 NASA Flight Engineer Joe Acaba is helped from a Russian Search and Rescue all terrain vehicle (ATV) after he and Expedition 32 Commander Gennady Padalka and Flight Engineer Sergei Revin returned from the International Space Station on Monday, Sept. 17, 2012. Acaba, Padalka and Revin returned from five months onboard the International Space Station where they served as members of the Expedition 31 and 32 crews. Photo Credit: (NASA/Carla Cioffi)
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey has paddle-like gloves on his hands. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.
2016-04-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken including rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective Crew Transportation/Provide ability to transport at least four crew to cislunar space Heavy Launch Capability/Provide beyond LEO launch capabilities to include crew, co-manisfested payloads, and large cargo In-Space Propulsion/Provide in-sapce propulsion capabilities to send crew and cargo on Mars-class mission durations and distances Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication Science/Enable science community objectives Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture Deep Space Habitation/Provide beyond LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: .NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas
2016-07-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken in-cluding rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective • Crew Transportation/Provide ability to transport at least four crew to cislunar space • Heavy Launch Capability/Provide beyond-LEO launch capabilities to include crew, co-manisfested pay-loads, and large cargo • In-Space Propulsion/Provide in-space propulsion capabilities to send crew and cargo on Mars-class mission durations and distances • Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication • Science/Enable science community objectives • Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations • In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture • Deep Space Habitation/Provide beyond-LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy • Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
NASA Technical Reports Server (NTRS)
Cornelius, Randy; Frank, Jeremy; Garner, Larry; Haddock, Angie; Stetson, Howard; Wang, Lui
2015-01-01
The Autonomous Mission Operations project is investigating crew autonomy capabilities and tools for deep space missions. Team members at Ames Research Center, Johnson Space Center and Marshall Space Flight Center are using their experience with ISS Payload operations and TIMELINER to: move earth based command and control assets to on-board for crew access; safely merge core and payload command procedures; give the crew single action intelligent operations; and investigate crew interface requirements.
KSC firefighters support recent firefighting efforts with an aircraft rescue firefighting vehicle
NASA Technical Reports Server (NTRS)
1998-01-01
A Kennedy Space Center aircraft rescue firefighting vehicle supports heavy traffic at the Space Coast Regional Airport in Titusville, Florida, where aircraft capable of carrying water were staged during the recent brushfires throughout Florida. Aircraft were supporting firefighting efforts in Brevard, Volusia, and Flagler counties.
Gałązkowski, Robert; Wołkowski, Władysław; Mikos, Marcin; Szajda, Sławomir; Wejnarski, Arkadiusz; Świeżewski, Stanisław Paweł
2015-01-01
In 2008, the Polish Medical Air Rescue started replacing its fleet with modern EC135 machines. To ensure the maximum possible safety of the missions performed both in the period of implementing the change and later on, the management prepared a strategy of training its crews to use the new type of helicopter. The analysis of incidents that occurred during 2006-2009 showed that both the human and the technical factors must be carefully considered. Moreover, a risk analysis was conducted to reduce the risk both during general crew training and in the course of particular flight operations. A four-stage strategy of training pilots and crew members was worked out by weighing up all the risks. The analysis of data from 2010 to 2013 confirmed that the risk connected with flying and with all the activities involved in direct support aircraft operations is under control and lowered to an acceptable level.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, the STS-114 crew takes part in training on an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Seated in the M-113, left to right, are Commander Eileen Collins, Mission Specialist Stephen Robinson, Capt. George Hoggard, astronaut rescue team leader, Mission Specialists Andrew Thomas, Soichi Noguchi and Charles Camarda, and Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
Gałązkowski, Robert; Wołkowski, Władysław; Mikos, Marcin; Szajda, Sławomir; Wejnarski, Arkadiusz; Świeżewski, Stanisław Paweł
2015-01-01
In 2008, the Polish Medical Air Rescue started replacing its fleet with modern EC135 machines. To ensure the maximum possible safety of the missions performed both in the period of implementing the change and later on, the management prepared a strategy of training its crews to use the new type of helicopter. The analysis of incidents that occurred during 2006–2009 showed that both the human and the technical factors must be carefully considered. Moreover, a risk analysis was conducted to reduce the risk both during general crew training and in the course of particular flight operations. A four-stage strategy of training pilots and crew members was worked out by weighing up all the risks. The analysis of data from 2010 to 2013 confirmed that the risk connected with flying and with all the activities involved in direct support aircraft operations is under control and lowered to an acceptable level. PMID:26694009
Boeing Extrication Team training on Boeing Mock-Up Trainer (BMT)
2018-05-25
The Boeing extrication team train on the Boeing Mock-up Trainer from May 25 through May 28, 2018, at NASA's Johnson Space Center in Houston. The extrication team is comprised of firefighters from various U.S. Boeing sites. Each member of the team brings an expertise in Aerospace Confined Space Rescue, are Emergency Medical Technicians and have years of rescue experience. The team is highly motivated to getting the crew out quickly, safely and efficiently. The training at Johnson included suit training, side hatch egress, and Intravehicular Activity (IVA) rigging and egress. The week included a run for record on IVA egress for a testing requirement. Participants also included NASA Medical, the 45th Operations Group's Detachment 3, based at Patrick Air Force Base, and U.S. Air Force pararescue representation.
Commerical Crew Program (CCP) Access Arm Installation
2016-08-15
The Crew Access Arm and White Room for Boeing's CST-100 Starliner are attached to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41. The arm will serve as the connection that astronauts will walk through prior to boarding the Starliner spacecraft when stacked atop a United Launch Alliance Atlas V rocket. This installation completes the major construction of the first new Crew Access Tower to be built at the Cape since the Apollo era. Under a Commercial Crew Transportation Capability contract with NASA, Boeing’s Starliner system will be certified by NASA's Commercial Crew Program to fly crews to and from the International Space Station.
Environmental Control and Life Support Integration Strategy for 6-Crew Operations
NASA Technical Reports Server (NTRS)
2009-01-01
The International Space Station (ISS) crew compliment will be increasing in size from 3 to 6 crew members in the summer of 2009. In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). A critical step in advancing to a 6Crew support capability on ISS is a full checkedout and verification of the Regenerative ECLS hardware. With a successful checkout, the ISS will achieve full redundancy in its onorbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offers additional challenges. These challenges create the need for a higher level of onorbit consumables reserve to ensure crewmember life support during a system failure. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6Crew on ISS, as well as the continued work which will be necessary to ensure the support of crew and ISS Program objectives through the life of station.
The Quest for a Helicopter Suitable for Combat Rescue, 1967-1983.
1985-04-01
the war draqged on" (2:7). From this need came the development of the helicopter as a - ascue -,hicle, a development that came late in World War 11. Even...question of future conflicts and the coming jet age forced policy makers to consider the reorganization and expansion of a rescue force capable of...to existing aging H-3s" (6:92). The inadequacies of the USAF’s combat rescue helicopter force, both in terms of mission capabiitic: and number of
Electronic search and rescue aids
NASA Technical Reports Server (NTRS)
Trudell, B. J.
1980-01-01
There are two elements to the basic electronic search and rescue problem: a means for immediately alerting potential rescuers and an effective method to guide the rescue forces to the scene of the emergency. An Emergency Locator Transmitter (ELT) used by aircraft or an Emergency Position Indicating Radio Beacon (EPIRB) used by maritime vessels has the capability of providing for both an immediate alert and a homing signal to assist rescue forces in locating the site of the distress. This paper describes the development of ELT/EPIRB systems. Emphasis is placed on the SARSAT project, the COSPAS/SARSAT project, and an experimental 406 MHz ELT/EPIRB system.
An Alternative Approach to Human Servicing of Crewed Earth Orbiting Spacecraft
NASA Technical Reports Server (NTRS)
Mularski, John R.; Alpert, Brian K.
2017-01-01
As crewed spacecraft have grown larger and more complex, they have come to rely on spacewalks, or Extravehicular Activities (EVA), for mission success and crew safety. Typically, these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires volume and up-mass for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware. This paper proposes an alternative methodology, utilizing launch on-need hardware and crew to provide EVA capability for space stations in Earth orbit after assembly complete, in the same way that one would call a repairman to fix something at their home. This approach would reduce ground training requirements, save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, and lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to the failure as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current unplanned EVAs are conducted, including the time required for preparation, and offer alternatives for future spacecraft. As this methodology relies on the on-time and on-need launch of spacecraft, any space station that utilized this approach would need a robust transportation system including more than one launch vehicle capable of carrying crew. In addition, the fault tolerance of the space station would be an important consideration in how much time was available for EVA preparation after the failure. Each future program would have to weigh the risk of on-time launch against the increase in available crew time for the main objective of the spacecraft.
Medical Operational Challenges in the Expedition 16 Landing and Recovery
NASA Technical Reports Server (NTRS)
Moynihan, S.; Johnston, S. L.; Ilcus, L. S.; Shevchenko, V.
2009-01-01
On April 19, 2008 the crew of Expedition 16 left the International Space Station and returned to earth via their Soyuz TMA-11 capsule after 192 days on orbit. Their capsule experienced the second consecutive and third ballistic reentry in the last 10 TMA recoveries and landed approximately 260 miles (420 km) from the prime landing site. Issues: The purpose of this presentation will be to describe, not only the typical medical operational challenges faced by Flight Surgeons recovering a long duration crew from space, but also address the unique challenges that existed with the Expedition 16 landing and crew recovery. Nominal Soyuz recovery challenges include remote recovery sites with crew exposures to sleep shifting and fatigue, dehydration, hypothermia and hyperthermia, and rotational, sustained, and impact g-forces. These environmental factors coupled with the patho-physiologic neuro-vestibular and orthostatic intolerance changes that occur secondary to the crews reintroduction into the earth s gravity field will be detailed. Additional challenges that were unique to this expedition included a ballistic reentry with higher g-loads, the presence of fire outside of the capsule on landing, a contingency medical event of a ground support personnel, and loss of communications with the crew just prior to landing and during recovery operations. Conclusions: In spite of these unique challenges the Russian Search and Rescue Forces and Medical Support personnel along with U.S. Medical Support performed well together. Possible improvements in training and coordination will be discussed.
Crew systems: integrating human and technical subsystems for the exploration of space.
Connors, M M; Harrison, A A; Summit, J
1994-07-01
Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.
Crew systems: integrating human and technical subsystems for the exploration of space
NASA Technical Reports Server (NTRS)
Connors, M. M.; Harrison, A. A.; Summit, J.
1994-01-01
Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.
The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements
NASA Technical Reports Server (NTRS)
Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray
2012-01-01
In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.
Aircraft Mishap Exercise at SLF
2018-02-14
An Aircraft Mishap Preparedness and Contingency Plan is underway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The center's Flight Operations rehearsed a helicopter crash-landing to test new and updated emergency procedures. The operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
2010-11-26
Two Russian Search and Rescue helicopters land near the Soyuz TMA-19 spacecraft shortly after touch down with Expedition 25 Commander Doug Wheelock and Flight Engineers Shannon Walker and Fyodor Yurchikhin near the town of Arkalyk, Kazakhstan on Friday, Nov. 26, 2010. Russian Cosmonaut Yurchikhin and NASA Astronauts Wheelock and Walker, are returning from nearly six months onboard the International Space Station where they served as members of the Expedition 24 and 25 crews. Photo Credit: (NASA/Bill Ingalls)
2011-03-16
A Russian Search and Rescue helicopter arrives as the Soyuz TMA-01M spacecraft lands with Expedition 26 Commander Scott Kelly and Flight Engineers Oleg Skripochka and Alexander Kaleri near the town of Arkalyk, Kazakhstan on Wednesday, March 16, 2011. NASA Astronaut Kelly, Russian Cosmonauts Skripochka and Kaleri are returning from almost six months onboard the International Space Station where they served as members of the Expedition 25 and 26 crews. Photo Credit: (NASA/Bill Ingalls)
2010-11-26
A Russian Search and Rescue helicopter lands near the Soyuz TMA-19 spacecraft shortly after touch down with Expedition 25 Commander Doug Wheelock and Flight Engineers Shannon Walker and Fyodor Yurchikhin near the town of Arkalyk, Kazakhstan on Friday, Nov. 26, 2010. Russian Cosmonaut Yurchikhin and NASA Astronauts Wheelock and Walker, are returning from nearly six months onboard the International Space Station where they served as members of the Expedition 24 and 25 crews. Photo Credit: (NASA/Bill Ingalls)
2006-03-15
KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center's Shuttle Landing Facility, emergency personnel tend to "injured astronauts" during a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
2006-03-15
KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center's Shuttle Landing Facility, emergency personnel tend to "injured astronauts" during a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
2006-03-15
KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center's Shuttle Landing Facility, emergency personnel tend to "injured astronauts" during a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/George Shelton
5-Year Update Environmental Assessment for CV-22 Beddown
2007-02-01
supersonic flight. Activities do not include intentional fuel dumping below 6,000 feet. No new facilities or utilities will be necessary to support IOT&E...the ground, climb a ladder from the ground in to the aircraft, or ride the rescue hoist from the ground in to the aircraft. Once forces are secured...Crew Chief and specialists in the fields of Integrated Avionics, Propulsion, Hydraulics , and Electro- Environmental maintenance. The majority of the
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey pulls and fastens life raft protective cover over himself. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
CREW CHIEF: A computer graphics simulation of an aircraft maintenance technician
NASA Technical Reports Server (NTRS)
Aume, Nilss M.
1990-01-01
Approximately 35 percent of the lifetime cost of a military system is spent for maintenance. Excessive repair time is caused by not considering maintenance during design. Problems are usually discovered only after a mock-up has been constructed, when it is too late to make changes. CREW CHIEF will reduce the incidence of such problems by catching design defects in the early design stages. CREW CHIEF is a computer graphic human factors evaluation system interfaced to commercial computer aided design (CAD) systems. It creates a three dimensional man model, either male or female, large or small, with various types of clothing and in several postures. It can perform analyses for physical accessibility, strength capability with tools, visual access, and strength capability for manual materials handling. The designer would produce a drawing on his CAD system and introduce CREW CHIEF in it. CREW CHIEF's analyses would then indicate places where problems could be foreseen and corrected before the design is frozen.
Potential Mission Scenarios Post Asteroid Crewed Mission
NASA Technical Reports Server (NTRS)
Lopez, Pedro, Jr.; McDonald, Mark A.
2015-01-01
A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.
NASA Technical Reports Server (NTRS)
Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David
2010-01-01
The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.
Orbiter Autoland reliability analysis
NASA Technical Reports Server (NTRS)
Welch, D. Phillip
1993-01-01
The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.
Improvement of the Russian system of medical care at the site of space crew landing
NASA Astrophysics Data System (ADS)
Rukavishnikov, Ilya; Bogomolov, Valery; Polyakov, Alexey
The crew members are delivered to ISS and return back to the Earth on the space craft "Soyuz TMA" at present time. The technical means providing the safe landing of space crews are reliable enough. In spite of that the complex of negative factors (long lasting alternating and shock overloads, effects of landing apparatus rotation on vestibular system) affects the crew during landing and can reach the extreme values under the certain conditions. According to this fact there is a possibility of appearance of bodily damages of different weight besides the traditional functional disturbances. The group of search and rescue on the landing site includes the medical specialists appropriately equipped to stop the symptoms of medical contingency (strong vestibule-vegetative reactions, traumas of different weight, etc.) Medical evacuation complex which provides the acceptable conditions for the cosmonauts including the conditions for medical care is delivered to the landing site as well. The long term experience of search and rescue assurance at the landing site have shown that the specialists successfully cope with this task. In some cases it was required to give the medical help which allowed to improve the general condition and physical capacity of crewmembers and provide their evacuation to the places of postflight rehabilitation. At the same time the solution of some of the problems from our point of view could increase the efficacy of medical care for the landing crew. The organization of the training on emergency under the field conditions for medical specialists on the regular basis (not less that once a year) is extremely important. The equipment of medical specialists requires the regular improvement and modernization due to the fast changing medical technologies and standards. Wearable medical sets must provide the first aid performing in accordance to the modern medical requirements. It is also necessary to include in the list of equipment the textbook of methodic describing diagnostics and medical care in case of most probable diseases and traumas which can happen at the landing site. Application of modern telemedicine technologies will allow to increase the possibilities of diagnostics of emergency condition and to get the consultative support necessary for the decision making on first aid and on the ways of evacuation of crewmembers.
The Ares I Crew Launch Vehicle: Human Space Access for the Moon and Beyond
NASA Technical Reports Server (NTRS)
Cook, Stephen A.
2008-01-01
The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle (Figure 1), the United States first new human-rated launch vehicle in over 25 years. Ares I will provide the core space launch capabilities the United States needs to continue providing crew and cargo access to the International Space Station (ISS), maintaining the U.S. pioneering tradition as a spacefaring nation, and enabling cooperative international ventures to the Moon and beyond. This paper will discuss programmatic, design, fabrication, and testing progress toward building this new launch vehicle.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Commander Eileen Collins gets ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Behind her is Capt. George Hoggard, who is astronaut rescue team leader. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Stephen Robinson (right) practices driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. At left is Capt. George Hoggard, who is astronaut rescue team leader. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
1969-07-24
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF). In this photograph, the U.S.S. Hornet crew looks on as the quarantined Apollo 11 crew is addressed by U.S. President Richard Milhous Nixon via microphone and intercom. The president was aboard the recovery vessel awaiting return of the astronauts. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
Quarantined Apollo 11 Astronauts Addressed by U.S. President Richard Milhous Nixon
NASA Technical Reports Server (NTRS)
1969-01-01
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF). In this photograph, the U.S.S. Hornet crew looks on as the quarantined Apollo 11 crew is addressed by U.S. President Richard Milhous Nixon via microphone and intercom. The president was aboard the recovery vessel awaiting return of the astronauts. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
Modeling strength data for CREW CHIEF
NASA Technical Reports Server (NTRS)
Mcdaniel, Joe W.
1990-01-01
The Air Force has developed CREW CHIEF, a computer-aided design (CAD) tool for simulating and evaluating aircraft maintenance to determine if the required activities are feasible. CREW CHIEF gives the designer the ability to simulate maintenance activities with respect to reach, accessibility, strength, hand tool operation, and materials handling. While developing the CREW CHIEF, extensive research was performed to describe workers strength capabilities for using hand tools and manual handling of objects. More than 100,000 strength measures were collected and modeled for CREW CHIEF. These measures involved both male and female subjects in the 12 maintenance postures included in CREW CHIEF. The data collection and modeling effort are described.
Assured crew return vehicle post landing configuration design and test
NASA Technical Reports Server (NTRS)
1992-01-01
The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined efforts to design a one-fifth scale model for the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study. Section 1 describes in detail the design of a one-fifth scale model of the Apollo Command Module Derivative (ACMD) ACRV. The objective of the ACMD Configuration Model Team was to use geometric and dynamic constraints to design a one-fifth scale working model of the Apollo Command Module Derivative (ACMD) configuration with a Lift Attachment Point (LAP) System. This model was required to incorporate a rigidly mounted flotation system and the egress system designed the previous academic year. The LAP system was to be used to determine the dynamic effects of locating the lifting points at different locations on the vehicle. The team was then to build and test the model; however, due to priorities, this did not occur. To better simulate the ACMD after a water landing, the nose cone section was removed and the deck area exposed. The areas researched during the design process were construction, center of gravity and moment of inertia, and lift attachment points.
Continuous Improvements to East Coast Abort Landings for Space Shuttle Aborts
NASA Technical Reports Server (NTRS)
Butler, Kevin D.
2003-01-01
Improvement initiatives in the areas of guidance, flight control, and mission operations provide increased capability for successful East Coast Abort Landings (ECAL). Automating manual crew procedures in the Space Shuttle's onboard guidance allows faster and more precise commanding of flight control parameters needed for successful ECALs. Automation also provides additional capability in areas not possible with manual control. Operational changes in the mission concept allow for the addition of new landing sites and different ascent trajectories that increase the regions of a successful landing. The larger regions of ECAL capability increase the safety of the crew and Orbiter.
Onboard Determination of Vehicle Glide Capability for Shuttle Abort Flight Managment (SAFM)
NASA Technical Reports Server (NTRS)
Straube, Timothy; Jackson, Mark; Fill, Thomas; Nemeth, Scott
2002-01-01
When one or more main engines fail during ascent, the flight crew of the Space Shuttle must make several critical decisions and accurately perform a series of abort procedures. One of the most important decisions for many aborts is the selection ofa landing site. Several factors influence the ability to reach a landing site, including the spacecraft point of atmospheric entry, the energy state at atmospheric entry, the vehicle glide capability from that energy state, and whether one or more suitable landing sites are within the glide capability. Energy assessment is further complicated by the fact that phugoid oscillations in total energy influence glide capability. Once the glide capability is known, the crew must select the "best" site option based upon glide capability and landing site conditions and facilities. Since most of these factors cannot currently be assessed by the crew in flight, extensive planning is required prior to each mission to script a variety of procedures based upon spacecraft velocity at the point of engine failure (or failures). The results of this preflight planning are expressed in tables and diagrams on mission-specific cockpit checklists. Crew checklist procedures involve leafing through several pages of instructions and navigating a decision tree for site selection and flight procedures - all during a time critical abort situation. With the advent of the Cockpit Avionics Upgrade (CAU), the Shuttle will have increased on-board computational power to help alleviate crew workload during aborts and provide valuable situational awareness during nominal operations. One application baselined for the CAU computers is Shuttle Abort Flight Management (SAFM), whose requirements have been designed and prototyped. The SAFM application includes powered and glided flight algorithms. This paper describes the glided flight algorithm which is dispatched by SAFM to determine the vehicle glide capability and make recommendations to the crew for site selection as well as to monitor glide capability while in route to the selected site. Background is provided on Shuttle entry guidance as well as the various types of Shuttle aborts. SAFM entry requirements and cockpit disp lays are discussed briefly to provide background for Glided Flight algorithm design considerations. The central principal of the Glided Flight algorithm is the use of energy-over-weight (EOW) curves to determine range and crossrange boundaries. The major challenges of this technique are exo-atmospheric flight, and phugoid oscillations in energy. During exo-atmospheric flight, energy is constant, so vehicle EOW is not sufficient to determine glide capability. The paper describes how the exo-atmospheric problem is solved by propagating the vehicle state to an "atmospheric pullout" state defined by Shuttle guidance parameters.
2013-12-20
MORRO BAY, Calif. – A crew member preps an Erickson Sky Crane helicopter for a test of the SpaceX Dragon test article. The test enables SpaceX engineers to evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place at Morro Bay, Calif. Photo credit: NASA/Kim Shiflett
Influence of the helicopter environment on patient care capabilities: Flight crew perceptions
NASA Technical Reports Server (NTRS)
Meyers, K. Jeffrey; Rodenberg, Howard; Woodard, Daniel
1994-01-01
Flight crew perceptions of the effect of the rotary wing environment on patient care capabilities have not been subject to statistical analysis. We hypothesized that flight crew perceived significant difficulties in performing patient care tasks during air medical transport. A survey instrument was distributed to a convenience sample of flight crew members from twenty flight programs. Respondents were asked to compare the difficulty of performing patient care tasks in rotary wing and standard (emergency department or intensive care unit) settings. Demographic data collected on respondents included years of flight experience, flights per month, crew duty position, and primary aircraft in which the respondent worked. Statistical analysis was performed as appropriate using Student's t-test, type 111 sum of squares, and analysis of variance. Alpha was defined as p is less than or equal to .05. Fifty-five percent of programs (90 individuals) responded. All tasks were rated significantly more difficult in the rotary wing environment. Ratings were not significantly correlated with flight experience, duty position, flights per month, or aircraft used. We conclude that the performance of patient care tasks are perceived by air medical flight crew to be significantly more difficult during rotary wing air medical transport than in hospital settings.
Influence of the helicopter environment on patient care capabilities: flight crew perceptions
NASA Technical Reports Server (NTRS)
Myers, K. J.; Rodenberg, H.; Woodard, D.
1995-01-01
INTRODUCTION: Flight crew perceptions of the effect of the rotary-wing environment on patient-care capabilities have not been subject to statistical analysis. We hypothesized that flight crew members perceived significant difficulties in performing patient-care tasks during air medical transport. METHODS: A survey was distributed to a convenience sample of flight crew members from 20 flight programs. Respondents were asked to compare the difficulty of performing patient-care tasks in rotary-wing and standard (emergency department or intensive care unit) settings. Demographic data collected on respondents included years of flight experience, flights per month, crew duty position and primary aircraft in which the respondent worked. Statistical analysis was performed as appropriate using Student's t-test, type III sum of squares, and analysis of variance. Alpha was defined as p < 0.05. RESULTS: Fifty-five percent of programs (90 individuals) responded. All tasks were significantly rated more difficult in the rotary-wing environment. Ratings were not significantly correlated with flight experience, duty position, flights per month or aircraft used. CONCLUSIONS: We conclude that the performance of patient-care tasks are perceived by air medical flight crew to be significantly more difficult during rotary-wing air medical transport than in hospital settings.
Powering Exploration: The Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Cook, Stephen A.
2008-01-01
The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle, as well as early design work for Ares V cargo launch vehicle. Ares I and Ares V will form the core space launch capabilities the United States needs to continue its pioneering tradition as a spacefaring nation. This paper will discuss programmatic, design, fabrication, and testing progress toward building these new launch vehicles.
NASA Technical Reports Server (NTRS)
Hamilton, Douglas; Gillis, David; Bue, Grant; Son, Chan; Norcross, Jason; Kuznetz, Larry; Chapman, Kirt; Chhipwadia, Ketan; McBride, Tim
2008-01-01
The shuttle crew wears the Advanced Crew Escape Spacesuit (ACES) to protect themselves from cabin decompression and to support bail out during landing. ACES is cooled by a liquid-cooled garment (LCG) that interfaces to a heat exchanger that dumps heat into the cabin. The ACES outer layer is made of Gore-Tex(Registered TradeMark), permitting water vapor to escape while containing oxygen. The crew can only lose heat via insensible water losses and the LCG. Under nominal landing operations, the average cabin temperature rarely exceeds 75 F, which is adequate for the ACES to function. Problem A rescue shuttle will need to return 11 crew members if the previous mission suffers a thermal protection system failure, preventing it from returning safely to Earth. Initial analysis revealed that 11 crew members in the shuttle will increase cabin temperature at wheel stop above 80 F, which decreases the ACES ability to keep crew members cool. Air flow in the middeck of the shuttle is inhomogeneous and some ACES may experience much higher temperatures that could cause excessive thermal stress to crew members. Methods A ground study was conducted to measure the cooling efficiency of the ACES at 75 F, 85 F, and 95 F at 50% relative humidity. Test subjects representing 5, 50, and 95 percentile body habitus of the astronaut corps performed hand ergometry keeping their metabolic rate at 400, 600, and 800 BTU/hr for one hour. Core temperature was measured by rectal probe and skin, while inside and outside the suit. Environmental chamber wall and cooling unit inlet and outlet temperatures were measured using high-resolution thermistors ( 0.2 C). Conclusions Under these test conditions, the ACES was able to protect the core temperature of all test subjects, however thermal stress due to high insensible losses and skin temperature and skin heat flow may impact crew performance. Further research should be performed to understand the impact on cognitive performance.
Narrative in Army Values Training
2003-01-01
character of the first American president. As the “father of our country,” the power of the story implies that part of the essential nature of being a...that was at that time in mostly composed of singles. The homogenous nature of American society and the role of religion within society are assumed in...man crew accomplished three major interventions that day. First, he landed the helicopter to rescue a group of civilians from a small team of U.S
Expedition 36 Soyuz TMA-08M Landing
2013-09-11
A Russian search and rescue helicopter and crew wait to depart the Zhezkazgan airport in Kazakhstan to support the landing of the Soyuz TMA-08M spacecraft with Expedition 36 Commander Pavel Vinogradov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Alexander Misurkin of Roscosmos and Flight Engineer Chris Cassidy, Wednesday, Sept. 11, 2013. Vinogradov, Misurkin and Cassidy are returning to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2010-09-24
Russian search and rescue teams arrive at the landing site seconds after the Soyuz TMA-18 spacecraft touched down with Expedition 24 Commander Alexander Skvortsov and Flight Engineers Tracy Caldwell Dyson and Mikhail Kornienko near the town of Arkalyk, Kazakhstan on Saturday, Sept. 25, 2010. Russian Cosmonauts Skvortsov and Kornienko and NASA Astronaut Caldwell Dyson, are returning from six months onboard the International Space Station where they served as members of the Expedition 23 and 24 crews. Photo Credit: (NASA/Bill Ingalls)
2010-11-26
A Russian Search and Rescue hellicopter is seen in eth back ground as the Soyuz TMA-19 spacecraft descends with Expedition 25 Commander Doug Wheelock and Flight Engineers Shannon Walker and Fyodor Yurchikhin near the town of Arkalyk, Kazakhstan on Friday, Nov. 26, 2010. Russian Cosmonaut Yurchikhin and NASA Astronauts Wheelock and Walker, are returning from nearly six months onboard the International Space Station where they served as members of the Expedition 24 and 25 crews. Photo Credit: (NASA/Bill Ingalls)
Human performance in the modern cockpit
NASA Technical Reports Server (NTRS)
Dismukes, R. K.; Cohen, M. M.
1992-01-01
This panel was organized by the Aerospace Human Factors Committee to illustrate behavioral research on the perceptual, cognitive, and group processes that determine crew effectiveness in modern cockpits. Crew reactions to the introduction of highly automated systems in the cockpit will be reported on. Automation can improve operational capabilities and efficiency and can reduce some types of human error, but may also introduce entirely new opportunities for error. The problem solving and decision making strategies used by crews led by captains with various personality profiles will be discussed. Also presented will be computational approaches to modeling the cognitive demands of cockpit operations and the cognitive capabilities and limitations of crew members. Factors contributing to aircrew deviations from standard operating procedures and misuse of checklist, often leading to violations, incidents, or accidents will be examined. The mechanisms of visual perception pilots use in aircraft control and the implications of these mechanisms for effective design of visual displays will be discussed.
NASA Technical Reports Server (NTRS)
1981-01-01
The primary change in crew capsule definition is a smaller MOTV crew capsule, switching from a 3-man capsule to a 2-man capsule. A second change permitted crew accommodations for sleeping and privacy to be combined with the flight station. The current baseline DRM, ER1, requires 2 men for 3 to 4 days to repair a multi-disciplined GOE Platform and a modest amount of mission dedicated hardware. A 2-man MOTV crew capsule to be used as a design reference point for the OTV, and its interfaces between the STS and other associated equipment or facilities are described in detail. The functional capabilities of the 2-man capsule, as well as its application to a wide range of generic missions, is also presented. The MOTV turnaround is addressed and significant requirements for both space based and ground based scenarios are summarized.
NASA Astrophysics Data System (ADS)
Gidaris, I.; Gori, A.; Panakkal, P.; Padgett, J.; Bedient, P. B.
2017-12-01
The record-breaking rainfall produced over the Houston region by Hurricane Harvey resulted in catastrophic and unprecedented impacts on the region's infrastructure. Notably, Houston's transportation network was crippled, with almost every major highway flooded during the five-day event. Entire neighborhoods and subdivisions were inundated, rendering them completely inaccessible to rescue crews and emergency services. Harvey has tragically highlighted the vulnerability of major thoroughfares, as well as neighborhood roads, to severe inundation during extreme precipitation events. Furthermore, it has emphasized the need for detailed accessibility characterization of road networks under extreme event scenarios in order to determine which areas of the city are most vulnerable. This analysis assesses and tracks the accessibility of Houston's major highways during Harvey's evolution by utilizing road flood/closure data from the Texas DOT. In the absence of flooded/closure data for local roads, a hybrid approach is adopted that utilizes a physics-based hydrologic model to produce high-resolution inundation estimates for selected urban watersheds in the Houston area. In particular, hydrologic output in the form of inundation depths is used to estimate the operability of local roads. Ultimately, integration of hydrologic-based estimation of road conditions with observed data from DOT supports a network accessibility analysis of selected urban neighborhoods. This accessibility analysis can identify operable routes for emergency response (rescue crews, medical services, etc.) during the storm event.
NASA Technical Reports Server (NTRS)
Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry
2015-01-01
NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify and employ novel software for procedure development and execution. The procedures contained the ground procedure logic and actions as possible to include fault detection and recovery capabilities.
Crew system dynamics - Combining humans and automation
NASA Technical Reports Server (NTRS)
Connors, Mary
1989-01-01
Some of the human factor issues involved in effectively combining human and automated systems are examined with particular reference to spaceflights. The concepts of the crew system and crew systems dynamics are defined, and the present status of crew systems is summarized. The possibilities and potential problems aasociated with the use of automated systems are discussed, as are unique capabilities and possible errors introduced by human participants. It is emphasized that the true integration of human and automated systems must allow for the characteristics of both.
NASA Technical Reports Server (NTRS)
Prokhorov, Kimberlee; Shkedi, Brienne
2006-01-01
The current International Space Station (ISS) Environmental Control and Life Support (ECLS) system is designed to support an ISS crew size of three people. The capability to expand that system to support nine crew members during a Contingency Shuttle Crew Support (CSCS) scenario has been evaluated. This paper describes how the ISS ECLS systems may be operated for supporting CSCS, and the durations expected for the oxygen supply and carbon dioxide control subsystems.
Exploration Medical Capability (ExMC) Projects
NASA Technical Reports Server (NTRS)
Wu, Jimmy; Watkins, Sharmila; Baumann, David
2010-01-01
During missions to the Moon or Mars, the crew will need medical capabilities to diagnose and treat disease as well as for maintaining their health. The Exploration Medical Capability Element develops medical technologies, medical informatics, and clinical capabilities for different levels of care during space missions. The work done by team members in this Element is leading edge technology, procedure, and pharmacological development. They develop data systems that protect patient's private medical information, aid in the diagnosis of medical conditions, and act as a repository of relevant NASA life sciences experimental studies. To minimize the medical risks to crew health the physicians and scientists in this Element develop models to quantify the probability of medical events occurring during a mission. They define procedures to treat an ill or injured crew member who does not have access to an emergency room and who must be cared for in a microgravity environment where both liquids and solids behave differently than on Earth. To support the development of these medical capabilities, the Element manages the development of medical technologies that prevent, monitor, diagnose, and treat an ill or injured crewmember. The Exploration Medical Capability Element collaborates with the National Space Biomedical Research Institute (NSBRI), the Department of Defense, other Government-funded agencies, academic institutions, and industry.
Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission
NASA Technical Reports Server (NTRS)
Lopez, Pedro, Jr.
2015-01-01
A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.
Crew Transfer Options for Servicing of Geostationary Satellites
NASA Technical Reports Server (NTRS)
Cerro, Jeffrey A.
2012-01-01
In 2011, NASA and DARPA undertook a study to examine capabilities and system architecture options which could be used to provide manned servicing of satellites in Geostationary Earth Orbit (GEO). The study focused on understanding the generic nature of the problem and examining technology requirements, it was not for the purpose of proposing or justifying particular solutions. A portion of this study focused on assessing possible capabilities to efficiently transfer crew between Earth, Low Earth Orbit (LEO), and GEO satellite servicing locations. This report summarizes the crew transfer aspects of manned GEO satellite servicing. Direct placement of crew via capsule vehicles was compared to concepts of operation which divided crew transfer into multiple legs, first between earth and LEO and second between LEO and GEO. In space maneuvering via purely propulsive means was compared to in-space maneuvering which utilized aerobraking maneuvers for return to LEO from GEO. LEO waypoint locations such as equatorial, Kennedy Space Center, and International Space Station inclinations were compared. A discussion of operational concepts is followed by a discussion of appropriate areas for technology development.
Human Spaceflight Safety for the Next Generation on Orbital Space Systems
NASA Technical Reports Server (NTRS)
Mango, Edward J.
2011-01-01
The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives. The primary role of the CCP is to enable and ensure safe human spaceflight and processes for the next generation of earth orbital space systems. The architecture of the Program delineates the process for investment performance in safe orbital systems, Crew Transportation System (CTS) certification, and CTS Flight Readiness. A series of six technical documents build up the architecture to address the top-level CTS requirements and standards. They include Design Reference Missions, with the near term focus on ISS crew services, Certification and Service Requirements, Technical Management Processes, and Technical and Operations Standards Evaluation Processes.
1969-07-24
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home for 21 days following the mission. In this photograph, the Hornet crew and honor guard snap to attention to begin the official cake cutting ceremony for the Apollo 11 astronauts. Astronauts Armstrong and Aldrin are visible in the window of the MQF.
1969-07-24
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via a Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. The Command Module (CM), piloted by Michael Collins remained in a parking orbit around the Moon while the Lunar Module (LM), named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. The surface exploration was concluded in 2½ hours, in which the crew collected 47 pounds of lunar surface material for analysis back on Earth. Upon splash down in the Pacific Ocean, Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was taken to safety aboard the USS Hornet, where they were quartered in a mobile quarantine facility. Shown here is the Apollo 11 crew inside the quarantine facility. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
1969-07-27
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. On arrival at Ellington Air Force base near the MSC, the crew, still under a 21 day quarantine in the MQF, were greeted by their wives. Pictured here is Joan Aldrin, wife of Buzz Aldrin, speaking with her husband via telephone patch.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Commander Eileen Collins takes her turn at driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Standing behind her is Capt. George Hoggard, who is astronaut rescue team leader. On the left is KSC videographer Glen Benson. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Soichi Noguchi drives an M- 113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Behind him at left is Capt. George Hoggard, who is astronaut rescue team leader. Noguchi is with the Japan Aerospace Exploration Agency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
Self-rescue strategies for EVA crewmembers equipped with the SAFER backpack
NASA Technical Reports Server (NTRS)
Williams, Trevor; Baughman, David
1994-01-01
An extravehicular astronaut who becomes separated from a space station has three options available: grappling the station immediately by means of a 'shepherd's crook' device; rescue by either a second crewmember flying an MMU or a robotic-controlled MMU; or self-rescue by means of a propulsive system. The first option requires very fast response by a tumbling astronaut; the second requires constant availability of an MMU, as well as a rendezvous procedure thousands of feet from the station. This paper will consider the third option, propulsive self-rescue. In particular, the capability of the new Simplified Aid for EVA Rescue (SAFER) propulsive backpack, which is to be tested on STS-64 in Sep. 1994, will be studied. This system possesses an attitude hold function that can automatically detumble an astronaut after separation. On-orbit tests of candidate self-rescue systems have demonstrated the need for such a feature. SAFER has a total delta(v) capability of about 10 fps, to cover both rotations and translations, compared with a possible separation rate of 2.5 fps. But the delta(v) required for self-rescue is critically dependent on the delay before return can be initiated, as a consequence of orbital effects. A very important practical question is then whether the total delta(v) of SAFER is adequate to perform self-rescue for worst case values of separation speed, time to detumble, and time for the astronaut to visually acquire the station. This paper shows that SAFER does indeed have sufficient propellant to carry out self-rescue in all realistic separation cases, as well as in cases which are considerably more severe than anything likely to be encountered in practice. The return trajectories and total delta(v)'s discussed are obtained by means of an 'inertial line-of-sight targeting' scheme, derived in the paper, which allows orbital effects to be corrected by making use of the visual information available to the pilot, namely the line-of-sight direction to the station relative to the stars.
2014-05-29
HAWTHORNE, Calif. - A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. SpaceX unveiled the new spacecraft during a ceremony at its headquarters in Hawthorne, Calif. The Dragon V2 is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. SpaceX unveiled the new spacecraft during a ceremony at its headquarters in Hawthorne, Calif. The Dragon V2 is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. SpaceX unveiled the new spacecraft during a ceremony at its headquarters in Hawthorne, Calif. The Dragon V2 is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. SpaceX unveiled the new spacecraft during a ceremony at its headquarters in Hawthorne, Calif. The Dragon V2 is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
Taking the Next Steps: The Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Cook, Stephen A.; Vanhooser, Teresa
2008-01-01
The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects Office (APO) to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon, Mars, and beyond. The APO continues to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle, as well as early design work for the Ares V cargo launch vehicle. Ares I and Ares V will form the core space launch capabilities that the United States needs to continue its pioneering tradition as a spacefaring nation (Figure 1). This paper will discuss design, fabrication, and testing progress toward building these new launch vehicles.
Personal Rotorcraft Design and Performance with Electric Hybridization
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2017-01-01
Recent and projected improvements for more or all-electric aviation propulsion systems can enable greater personal mobility, while also reducing environmental impact (noise and emissions). However, all-electric energy storage capability is significantly less than present, hydrocarbon-fueled systems. A system study was performed exploring design and performance assuming hybrid propulsion ranging from traditional hydrocarbon-fueled cycles (gasoline Otto and diesel) to all-electric systems using electric motors generators, with batteries for energy storage and load leveling. Study vehicles were a conventional, single-main rotor (SMR) helicopter and an advanced vertical takeoff and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew); the design range for the VTOL aircraft was set to 150 miles (about one hour total flight). Search and rescue (SAR), loiter, and cruise-dominated missions were chosen to illustrate each vehicle and degree of hybrid propulsion strengths and weaknesses. The traditional, SMR helicopter is a hover-optimized design; electric hybridization was performed assuming a parallel hybrid approach by varying degree of hybridization. Many of the helicopter hybrid propulsion combinations have some mission capabilities that might be effective for short range or on-demand mobility missions. However, even for 30 year technology electrical components, all hybrid propulsion systems studied result in less available fuel, lower maximum range, and reduced hover and loiter duration than the baseline vehicle. Results for the VTOL aircraft were more encouraging. Series hybrid combinations reflective of near-term systems could improve range and loiter duration by 30. Advanced, higher performing series hybrid combinations could double or almost triple the VTOL aircrafts range and loiter duration. Additional details on the study assumptions and work performed are given, as well as suggestions for future study effort.
2011-05-23
Russian Search and rescue helicopters are seen as they prepare for the landing of the Soyuz TMA-20 spacecraft with Expedition 27 Commander Dmitry Kondratyev and Flight Engineers Paolo Nespoli and Cady Coleman in a remote area southeast of the town of Zhezkazgan, Kazakhstan, on Tuesday, May 24, 2011. NASA Astronaut Coleman, Russian Cosmonaut Kondratyev and Italian Astronaut Nespoli are returning from more than five months onboard the International Space Station where they served as members of the Expedition 26 and 27 crews. Photo Credit: (NASA/Bill Ingalls)
2010-11-26
Expedition 25 Commander Doug Wheelock waves to the camera as Russian Search and Rescue teams and medical personnel carry him from the Soyuz TMA-19 spacecraft shortly after the capsule landed with him, Expedition 25 Flight Engineer Shannon Walker and Flight Engineer Fyodor Yurchikhin near Arkalyk, Kazakhstan on Friday, Nov. 26, 2010. Russian Cosmonaut Yurchikhin and NASA Astronauts Wheelock and Walker, are returning from nearly six months onboard the International Space Station where they served as members of the Expedition 24 and 25 crews. Photo Credit: (NASA/Bill Ingalls)
2010-11-26
Expedition 25 Flight Engineer Fyodor Yurchikhin is helped from a Russian Search and Rescue all terrain vehicle to a helicopter shortly after Yurchikhin, Expedition 25 Commander Doug Wheelock and Flight Engineer Shannon Walker landed in the Soyuz TMA-19 spacecraft near Arkalyk, Kazakhstan on Friday, Nov. 26, 2010. Russian Cosmonaut Yurchikhin and NASA Astronauts Wheelock and Walker, are returning from nearly six months onboard the International Space Station where they served as members of the Expedition 24 and 25 crews. Photo Credit: (NASA/Bill Ingalls)
2010-11-26
A Russian Search and Rescue all terrain vehicle carrying Expedition 25 Flight Engineer Shannon Walker from the medical tent pulls up to a helicopter shortly after Walker, Expedition 25 Commander Doug Wheelock and Flight Engineer Fyodor Yurchikhin landed in the Soyuz TMA-19 spacecraft near Arkalyk, Kazakhstan on Friday, Nov. 26, 2010. Russian Cosmonaut Yurchikhin and NASA Astronauts Wheelock and Walker, are returning from nearly six months onboard the International Space Station where they served as members of the Expedition 24 and 25 crews. Photo Credit: (NASA/Bill Ingalls)
2012-09-17
Expedition 32 NASA Flight Engineer Joe Acaba rests on the Russian Search and Rescue helicopter that is carrying him from the Soyuz TMA-04M landing site in a remote area outside Arkalyk, Kazakhstan to Kostanay, Kazakhstan shortly after he and Expedition 32 Commander Gennady Padalka and Flight Engineer Sergei Revin returned from the International Space Station on Monday, Sept. 17, 2012. Acaba, Padalka and Revin returned from five months onboard the International Space Station where they served as members of the Expedition 31 and 32 crews. Photo Credit: (NASA/Carla Cioffi)
2012-09-17
A view inside inside the Russian Search and Rescue helicopter that will carry Expedition 32 Flight Engineer Joe Acaba from the Soyuz TMA-04M landing site in a remote area outside Arkalyk, Kazakhstan to Kostanay, Kazakhstan shortly after he and Expedition 32 Commander Gennady Padalka and Flight Engineer Sergei Revin returned from the International Space Station on Monday, Sept. 17, 2012. Acaba, Padalka and Revin returned from five months onboard the International Space Station where they served as members of the Expedition 31 and 32 crews. Photo Credit: (NASA/Carla Cioffi)
2012-07-01
A Russian Search and Rescue helicopter flies to the the Soyuz TMA-03M capsule shortly after it landed with Expedition 31 Commander Oleg Kononenko of Russia and Flight Engineers Don Pettit of NASA and Andre Kuipers of the European Space Agency in a remote area near the town of Zhezkazgan, Kazakhstan, on Sunday, July 1, 2012. Pettit, Kononenko and Kuipers returned from more than six months onboard the International Space Station where they served as members of the Expedition 30 and 31 crews. Photo Credit: (NASA/Bill Ingalls)
2010-11-26
Russian Search and Rescue teams and medical personnel help Expedition 25 Commander Doug Wheelock out of the Soyuz TMA-19 spacecraft shortly after the capsule landed with him, Expedition 25 Flight Engineer Shannon Walker and Flight Engineer Fyodor Yurchikhin near Arkalyk, Kazakhstan on Friday, Nov. 26, 2010. Russian Cosmonaut Yurchikhin and NASA Astronauts Wheelock and Walker, are returning from nearly six months onboard the International Space Station where they served as members of the Expedition 24 and 25 crews. Photo Credit: (NASA/Bill Ingalls)
2006-03-15
KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center's Shuttle Landing Facility, volunteer Charlie Plain poses as an injured astronaut during a simulated emergency landing of a shuttle crew. Plain is a Public Affairs Web writer. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Troy Cryder
STS-26 MS Hilmers floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Hilmers pulls his legs into the inflating raft while he is assisted by two SCUBA-equipped divers. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
STS-26 Commander Hauck floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Removing water from his raft, Hauck awaits the assistance of SCUBA-equipped divers (one of whom is partially visible at bottom right). The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
2006-03-15
KENNEDY SPACE CENTER, FLA. - Charlie Plain, a Public Affairs Web writer with InDyne Inc., is one of many workers at NASA's Kennedy Space Center posing as astronauts during a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/George Shelton
Space Station Freedom crew training
NASA Technical Reports Server (NTRS)
Bobko, K. J.; Gibson, E. G.; Maroney, S. A.; Muccio, J. D.
1990-01-01
The nature of the Space Station Freedom Program presents an array of new and enhanced challenges which need to be addressed en route to developing an effective and affordable infrastructure for crew training. Such an infrastructure is essential for the safety and success of the program. The three major challenges that affect crew training are the long lifetime of the program (thirty years), the interdependence of successive increments, and the participation of the three International Partners (Canada, European Space Agency, and Japan) and a myriad of experimenters. This paper addresses these major challenges as they drive the development of a crew training capability and the actual conduct of crew training.
Oryong 501 sinking incident in the Bering Sea-International DVI cooperation in the Asia Pacific.
Chung, Nak-Eun; Castilani, Anton; Tierra, Wilfredo E; Beh, Philip; Mahmood, Mohd Shah
2017-09-01
On December 1st, 2014, the sinking of Oryong 501 occurred in the Bering Sea off the east coast of Russia. A total of 60 crew members, including 35 Indonesians, 13 Filipinos, 11 South Koreans and 1 Russian inspector were on board out of which only seven survived. Through an international rescue operation, the dead bodies of 27 were found and the remaining 26 crew are still missing. After transferring the dead bodies to the Busan Harbor in South Korea, the operation to identify the deceased began involving DVI teams from three countries: Korea, Indonesia and the Philippines. When a deep sea fishing boat sinks, it is very difficult to obtain antemortem data of the crew who had been on board for a long time. This is especially so if the crews are multinational. Further, the accuracy of the antemortem data provided by the families may be questionable, and the provided data is often not standardized. Despite the fact that the antemortem data were received in different formats, the identification process for the bodies of the 27 crew from the Oryong sinking was quickly completed through the cooperation among the three DVI teams. This case is an excellent example of how efficiently a DVI operation can be conducted in the Asia Pacific region. Issues raised during this operation should enable even better preparation for similar events in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Environmental Control and Life Support Integration Strategy for 6-Crew Operations Stephanie Duchesne
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie M.
2009-01-01
The International Space Station (ISS) crew compliment has increased in size from 3 to 6 crew members . In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station.
NASA astronauts and industry experts check out the crew accommod
2012-01-30
HAWTHORNE, Calif. -- NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. On top, from left, are NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA astronauts Tony Antonelli and Lee Archambault, and SpaceX Mission Operations Engineer Laura Crabtree. On bottom, from left, are SpaceX Thermal Engineer Brenda Hernandez and NASA astronauts Rex Walheim and Tim Kopra. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies
Environmental Control and Life Support Integration Strategy for 6-Crew Operations
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie M.; Tressler, Chad H.
2010-01-01
The International Space Station (ISS) crew complement has increased in size from 3 to 6 crew members. In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System (OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the t OS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station
NASA Technical Reports Server (NTRS)
Stepaniak, Philip; Hamilton, Glenn C.; Stizza, Denis; Garrison, Richard; Gerstner, David
2001-01-01
In developing a permanently crewed space station, the importance of medical care has been continually reaffirmed; and the health maintenance facility (HMF) is an integral component. It has diagnostic, therapeutic, monitoring, and information management capability. It is designed to allow supportive care for: (1) non-life-threatening illnesses; e.g., headache, lacerations; (2) moderate to severe, possibly life-threatening illnesses; e.g., appendicitis, kidney stones; and (3) severe, incapacitating, life-threatening illnesses; e.g., major trauma, toxic exposure. Since the HMF will not have a general surgical capability, the need for emergency escape and recovery methods has been studied. Medical risk assessments have determined that it is impossible to accurately predict the incidence of crewmember illness/injury. A best estimate is 1:3 per work-year, with 1% of these needing an ACRV. For an eight-person crew, this means that one assured crew return vehicle (ACRV) will be used every 4 to 12 years. The ACRV would serve at least three basic objectives as: (1) a crew return if the space shuttle is unavailable; (2) an escape vehicle from a major time-critical space station emergency; and (3) a full or partial crew return vehicle for a medical emergency. The focus of this paper is the third objective for the ACRV.
Johnsen, Anne Siri; Sollid, Stephen J M; Vigerust, Trond; Jystad, Morten; Rehn, Marius
2017-01-01
Helicopter Emergency Medical Services (HEMS) aim to bring a highly specialised crew to the scene of major incidents for triage, treatment and transport. We aim to describe experiences made by HEMS in Norway in the management of major incidents. Doctors, rescue paramedics and pilots working in Norwegian HEMS and Search and Rescue Helicopters (SAR) January 1st 2015 were invited to a cross-sectional study on experiences, preparedness and training in major incident management. We identified a total of 329 Norwegian crewmembers of which 229 (70%) responded; doctors 101/150, (67%), rescue paramedics 64/78 (82%), pilots 64/101, (63%). HEMS and SAR crewmembers had experience from a median of 2 (interquartile range 0-6) major incidents. Road traffic incidents were the most frequent mechanism and blunt trauma the dominating injury. HEMS mainly contributed with triage, treatment and transport. Communication with other emergency services prior to arrival was described as bad, but good to excellent when cooperating on scene. The respondents called for more interdisciplinary exercises. HEMS and SAR crewmembers have limited exposure to major incident management. Interdisciplinary training on frequent scenarios with focus on cooperation and communication is called for.
Accomplishments in Bioastronautics Research Aboard International Space Station
NASA Technical Reports Server (NTRS)
Uri, John J.
2003-01-01
The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.
The Charlotte (TM) intra-vehicular robot
NASA Technical Reports Server (NTRS)
Swaim, Patrick L.; Thompson, Clark J.; Campbell, Perry D.
1994-01-01
NASA has identified telerobotics and telescience as essential technologies to reduce the crew extra-vehicular activity (EVA) and intra-vehicular activity (IVA) workloads. Under this project, we are developing and flight testing a novel IVA robot to relieve the crew of tedious and routine tasks. Through ground telerobotic control of this robot, we will enable ground researchers to routinely interact with experiments in space. Our approach is to develop an IVA robot system incrementally by employing a series of flight tests with increasing complexity. This approach has the advantages of providing an early IVA capability that can assist the crew, demonstrate capabilities that ground researchers can be confident of in planning for future experiments, and allow incremental refinement of system capabilities and insertion of new technology. In parallel with this approach to flight testing, we seek to establish ground test beds, in which the requirements of payload experimenters can be further investigated. In 1993 we reviewed manifested SpaceHab experiments and defined IVA robot requirements to assist in their operation. We also examined previous IVA robot designs and assessed them against flight requirements. We rejected previous design concepts on the basis of threat to crew safety, operability, and maintainability. Based on this insight, we developed an entirely new concept for IVA robotics, the CHARLOTTE robot system. Ground based testing of a prototype version of the system has already proven its ability to perform most common tasks demanded of the crew, including operation of switches, buttons, knobs, dials, and performing video surveys of experiments and switch panels.
2012-04-03
CAPE CANAVERAL, Fla. -- This is a printable version of NASA's "Same Crew, New Ride" poster depicting an artist's conception of NASA's Commercial Crew Program CCP. The poster features a NASA astronaut in the foreground with a vehicle launching toward the International Space Station in the background. CCP is investing in the aerospace industry and helping multiple companies design and develop crew transportation systems that could be capable of flying to the space station and other low Earth orbit destinations. The program is meant to accelerate a United States-led capability to the station where critical scientific work is being performed for use in applications here on Earth. CCP is expected to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. For more information, visit www.nasa.gov/commercialcrew. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
An Alternative Approach to Human Servicing of Manned Earth Orbiting Spacecraft
NASA Technical Reports Server (NTRS)
Mularski, John; Alpert, Brian
2011-01-01
As manned spacecraft have grown larger and more complex, they have come to rely on spacewalks or Extravehicular Activities (EVA) for both mission success and crew safety. Typically these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires volume and up-mass for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware . This paper proposes an alternative methodology to utilize launch-on-need hardware and crew to provide EVA capability for space stations in Earth orbit after assembly complete, in the same way that most people would call a repairman to fix something at their home. This approach would not only reduce ground training requirements and save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, but would also lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to the failure as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current ISS unplanned EVAs are conducted, including the time required for preparation, and offer alternatives for future spacecraft utilizing lessons learned from ISS. As this methodology relies entirely on the on-time and on-need launch of spacecraft, any space station that utilized this approach would need a robust transportation system including more than one launch vehicle capable of carrying crew. In addition the fault tolerance of the space station would be an important consideration in how much time was available for EVA preparation after the failure. Each future program would have to weigh the risk of on-time launch against the increase in available crew time for the main objective of the spacecraft.
2013-07-22
HOUSTON - JSC2013e068324 - Kathy Lueders, NASA deputy manager for the Commercial Crew Program, is interviewed by the media during the unveiling of a CST-100 mock-up at the company's Houston Product Support Center. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068290 - Kathy Lueders, NASA deputy manager for the Commercial Crew Program, addresses the media before the unveiling of a CST-100 mock-up at the company's Houston Product Support Center. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068296 - John Mulholland, vice president and program manager, Commercial Crew, for The Boeing Company, addresses the media before the unveiling of a CST-100 mock-up at the company's Houston Product Support Center. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-12-20
An Erickson Sky Crane helicopter returns the SpaceX Dragon test article to Morro Bay, Cailf., following a test to evaluate the spacecraft's parachute deployment system. The test was part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2012-01-30
HAWTHORNE, Calif. -- NASA astronauts and industry experts are monitored while they check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies
Planning for Crew Exercise for Future Deep Space Mission Scenarios
NASA Technical Reports Server (NTRS)
Moore, Cherice; Ryder, Jeff
2015-01-01
Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.
2012-08-03
Cape Canaveral, Fla. -- NASA Administrator Charlie Bolden sees firsthand how Kennedy Space Center is transitioning to a spaceport of the future as Kennedy's Mike Parrish explains the upcoming use of the crawler-transporter, which has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett
2012-08-03
Cape Canaveral Air Force Station, Fla. -- NASA Administrator Charlie Bolden sees firsthand how Kennedy Space Center is transitioning to a spaceport of the future as Kennedy's Mike Parrish explains the upcoming use of the crawler-transporter, which has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett
2012-08-03
Cape Canaveral Air Force Station, Fla. -- NASA Administrator Charlie Bolden sees firsthand how NASA's Kennedy Space Center is transiting to a spaceport of the future as he gets a close look at the crawler-transporter that has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett
2012-08-03
CAPE CANAVERAL, Fla. – NASA Administrator Charlie Bolden sees firsthand how Kennedy Space Center is transitioning to a spaceport of the future as Kennedy's Mary Hanna explains the upcoming use of the crawler-transporter, which has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett
2014-05-29
HAWTHORNE, Calif. - The Dragon V2 spacecraft's seating arrangement with the control panel swung up to allow crewmembers to get into their seats. Once the crew is in place, the control panel swings down and locks in launch position. SpaceX unveiled the new spacecraft during a ceremony at its headquarters in Hawthorne, Calif. The Dragon V2 is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2012-01-12
CAPE CANAVERAL, Fla. -- This is a printable poster of the aerospace companies NASA's Commercial Crew Program (CCP) entered into Space Act Agreements with during Commercial Crew Development Round 2 (CCDev2) activities in 2011 in order to mature the design and development of crew transportation systems with the overall goal of accelerating a United States-led capability to the International Space Station. CCDev2 companies are Alliant Techsystems (ATK), Blue Origin, The Boeing Co., Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies (SpaceX), and United Launch Alliance (ULA). The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. For more information, visit www.nasa.gov/commercialcrew
2012-01-12
CAPE CANAVERAL, Fla. -- This is a printable banner of the aerospace companies NASA's Commercial Crew Program (CCP) entered into Space Act Agreements with during Commercial Crew Development Round 2 (CCDev2) activities in 2011 in order to mature the design and development of crew transportation systems with the overall goal of accelerating a United States-led capability to the International Space Station. CCDev2 companies are Alliant Techsystems (ATK), Blue Origin, The Boeing Co., Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies (SpaceX), and United Launch Alliance (ULA). The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. For more information, visit www.nasa.gov/commercialcrew
2012-11-01
CAPE CANAVERAL, Fla. – The Orion Exploration Flight Test 1 crew module is undergoing proof pressure testing at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The test incrementally pressurizes the spacecraft with breathing air and is designed to demonstrate weld strength capability and structural performance at maximum flight operating pressures. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Ben Smegelsky
2012-11-01
CAPE CANAVERAL, Fla. – The Orion Exploration Flight Test 1 crew module is undergoing proof pressure testing at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The test incrementally pressurizes the spacecraft with breathing air and is designed to demonstrate weld strength capability and structural performance at maximum flight operating pressures. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Ben Smegelsky
2012-11-01
CAPE CANAVERAL, Fla. – The Orion Exploration Flight Test 1 crew module is undergoing proof pressure testing at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The test incrementally pressurizes the spacecraft with breathing air and is designed to demonstrate weld strength capability and structural performance at maximum flight operating pressures. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Ben Smegelsky
Crew Survivability After a Rapid Cabin Depressurization Event
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2012-01-01
Anecdotal evidence acquired through historic failure investigations involving rapid cabin decompression (e.g. Challenger, Columbia and Soyuz 11) show that full evacuation of the cabin atmosphere may occur within seconds. During such an event, the delta-pressure between the sealed suit ventilation system and the cabin will rise at the rate of the cabin depressurization; potentially at a rate exceeding the capability of the suit relief valve. It is possible that permanent damage to the suit pressure enclosure and ventilation loop components may occur as the integrated system may be subjected to delta pressures in excess of the design-to pressures. Additionally, as the total pressure of the suit ventilation system decreases, so does the oxygen available to the crew. The crew may be subjected to a temporarily incapacitating, but non-lethal, hypoxic environment. It is expected that the suit will maintain a survivable atmosphere on the crew until the vehicle pressure control system recovers or the cabin has otherwise attained a habitable environment. A common finding from the aforementioned reports indicates that the crew would have had a better chance at surviving the event had they been in a protective configuration, that is, in a survival suit. Making use of these lessons learned, the Constellation Program implemented a suit loop in the spacecraft design and required that the crew be in a protective configuration, that is suited with gloves on and visors down, during dynamic phases of flight that pose the greatest risk for a rapid and uncontrolled cabin depressurization event: ascent, entry, and docking. This paper details the evaluation performed to derive suit pressure garment and ventilation system performance parameters that would lead to the highest probability of crew survivability after an uncontrolled crew cabin depressurization event while remaining in the realm of practicality for suit design. This evaluation involved: (1) assessment of stakeholder expectations to validate the functionality being imposed; (2) review/refinement of concept of operations to establish the potential triggers for such an event and define the response of the spacecraft and suit ventilation loop pressure control systems; and (3) assessment of system capabilities with respect to structural capability and pressure control.
2012-01-30
HAWTHORNE, Calif. -- NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. On top, from left, are NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA astronauts Tony Antonelli and Lee Archambault, and SpaceX Mission Operations Engineer Laura Crabtree. On bottom, from left, are SpaceX Thermal Engineer Brenda Hernandez and NASA astronauts Rex Walheim and Tim Kopra. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies
2013-07-22
HOUSTON - The Boeing Company unveils its fully outfitted CST-100 mock-up at the company's Houston Product Support Center in Texas. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is designed being to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations, including the International Space Station. Boeing is one of three aerospace industry partners working with CCP during its Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - The Boeing Company unveils its fully outfitted CST-100 mock-up at the company's Houston Product Support Center in Texas. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations, including the International Space Station. Boeing is one of three aerospace industry partners working with CCP during its Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Charles Camarda is getting ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Behind him are Mission Specialist Stephen Robinson and Capt. George Hoggard, who is astronaut rescue team leader, and, at right, Commander Eileen Collins. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Soichi Noguchi is ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Behind him at left is Capt. George Hoggard, who is astronaut rescue team leader. Noguchi is with the Japan Aerospace Exploration Agency.The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.
Ambulance helicopter contribution to search and rescue in North Norway.
Glomseth, Ragnar; Gulbrandsen, Fritz I; Fredriksen, Knut
2016-09-13
Search and rescue (SAR) operations constitute a significant proportion of Norwegian ambulance helicopter missions, and they may limit the service's capacity for medical operations. We compared the relative contribution of the different helicopter resources using a common definition of SAR-operation in order to investigate how the SAR workload had changed over the last years. We searched the mission databases at the relevant SAR and helicopter emergency medical service (HEMS) bases and the Joint Rescue Coordination Centre (North) for helicopter-supported SAR operations within the potential operation area of the Tromsø HEMS base in 2000-2010. We defined SAR operations as missions over land or sea within 10 nautical miles from the coast with an initial search phase, missions with use of rescue hoist or static rope, and avalanche operations. There were 769 requests in 639 different SAR operations, and 600 missions were completed. The number increased during the study period, from 46 in 2000 to 77 in 2010. The Tromsø HEMS contributed with the highest number of missions and experienced the largest increase, from 10 % of the operations in 2000 to 50 % in 2010. Simple terrain and sea operations dominated, and avalanches accounted for as many as 12 % of all missions. The helicopter crews used static rope or rescue hoist in 141 operations. We have described all helicopter supported SAR operations in our area by combining databases. The Tromsø HEMS service had taken over one half of the missions by 2010. Increased availability for SAR work is one potential explanation. The number of SAR missions increased during 2000-2010, and the Tromsø HEMS experienced the greatest increase in workload.
2011-07-07
CAPE CANAVERAL, Fla. -- A media event was held on the grounds near the Press Site at NASA's Kennedy Space Center in Florida where a Multi-Purpose Crew Vehicle (MPCV) is on display. The MPCV is based on the Orion design requirements for traveling beyond low Earth orbit and will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Seen here is Mark Geyer, Multi-Purpose Crew Vehicle program manager speaking to media during a question-and-answer session. Photo credit: NASA/Frankie Martin
2012-02-17
Orion / Space Launch System: NASA has selected the design of a new Space Launch System SLS that will take the agency's astronauts farther into space than ever before and provide the cornerstone for America's future human space exploration efforts. The SLS will launch human crews beyond low Earth orbit in the Orion Multi-Purpose Crew Vehicle. Orion is America’s next generation spacecraft. It will serve as the exploration vehicle that will provide emergency abort capability, sustain the crew during space travel, carry the crew to distant planetary bodies, and provide safe return from deep space. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
Outcomes of crew resource management training
NASA Technical Reports Server (NTRS)
Helmreich, Robert L.; Wilhelm, John A.
1991-01-01
Participants' self-reports and measures of attitudes regarding flightdeck management indicate that crew resource management training is favorably received and causes highly significant, positive changes in attitudes regarding crew coordination and personal capabilities. However, a subset of participants reacted negatively to the training and showed boomerangs (negative change) in attitudes. Explorations into the causes of this effect pinpoint personality factors and group dynamics as critical determinants of reactions to training and of the magnitude and direction of attitude changes. Implications of these findings for organizations desiring to enhance crew effectiveness are discussed, and areas of needed additional research are described.
2012-01-12
CAPE CANAVERAL, Fla. -- This is a printable poster with NASA's Commercial Crew Program (CCP) logo. CCP is leading NASA's effort of accelerating a United States-led capability to the International Space Station by investing in the design and development of the aerospace industry's crew transportation systems. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. For more information, visit www.nasa.gov/commercialcrew
2012-01-12
CAPE CANAVERAL, Fla. -- This is a printable poster with NASA's Commercial Crew Program (CCP) logo. CCP is leading NASA's effort of accelerating a United States-led capability to the International Space Station by investing in the design and development of the aerospace industry's crew transportation systems. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. For more information, visit www.nasa.gov/commercialcrew
2013-07-22
HOUSTON - JSC2013e068304 - Chris Ferguson, director of Crew and Mission Operations for The Boeing Company and former NASA astronaut, is interviewed by the media during the unveiling of a CST-100 mock-up at the company's Houston Product Support Center. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068310 - Chris Ferguson, director of Crew and Mission Operations for The Boeing Company and former NASA astronaut, discusses the fit check evaluation of the CST-100 mock-up with the media during its unveiling at the company's Houston Product Support Center. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068300 - Chris Ferguson, director of Crew and Mission Operations for The Boeing Company and former NASA astronaut, addresses the media before the unveiling of a CST-100 mock-up at the company's Houston Product Support Center. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
1969-07-27
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. On arrival at Ellington Air Force base near the MSC, the crew, still under a 21 day quarantine in the MQF are greeted by their wives. Looking out of the facility are (L-R) Armstrong, Aldrin, and Collins. Wives are (L-R) Pat Collins, Jan Armstrong, and Joan Aldrin.
Quarantined Apollo 11 Astronaut Aldrin Speaks With Wife Joan
NASA Technical Reports Server (NTRS)
1969-01-01
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. On arrival at Ellington Air Force base near the MSC, the crew, still under a 21 day quarantine in the MQF, were greeted by their wives. Pictured here is Joan Aldrin, wife of Buzz Aldrin, speaking with her husband via telephone patch.
2013-12-20
MORRO BAY, Calif. – An Erickson Sky Crane helicopter returns the SpaceX Dragon test article to Morro Bay, Cailf., following a test to evaluate the spacecraft's parachute deployment system. The test was part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – An Erickson Sky Crane helicopter returns the SpaceX Dragon test article to Morro Bay, Cailf., following a test to evaluate the spacecraft's parachute deployment system. The test was part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. - An Erickson Sky Crane helicopter returns the SpaceX Dragon test article to Morro Bay, Cailf., following a test to evaluate the spacecraft's parachute deployment system. The test was part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. - An Erickson Sky Crane helicopter returns the SpaceX Dragon test article to Morro Bay, Cailf., following a test to evaluate the spacecraft's parachute deployment system. The test was part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – An Erickson Sky Crane helicopter returns the SpaceX Dragon test article to Morro Bay, Cailf., following a test to evaluate the spacecraft's parachute deployment system. The test was part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – Drogue chutes open above Dragon test article during a test to evaluate the spacecraft's parachute deployment system. The drogue chutes stabilized the vehicle, in preparation for main chute deployment as part of a milestone under SpaceX's Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – Drogue chutes open above Dragon test article during a test to evaluate the spacecraft's parachute deployment system. The drogue chutes stabilized the vehicle, in preparation for main chute deployment as part of a milestone under SpaceX's Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – Drogue chutes open above Dragon test article during a test to evaluate the spacecraft's parachute deployment system. The drogue chutes stabilized the vehicle, in preparation for main chute deployment as part of a milestone under SpaceX's Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2016-01-01
Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. The evolved configurations of SLS, including both the 105 t Block 1B and the 130 t Block 2, offer opportunities for launching co-manifested payloads and a new class of secondary payloads with the Orion crew vehicle, and also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle, delivering unmatched mass-lift capability, payload volume, and C3.
Crew escape system test at Naval Weapons Center, China Lake, California
NASA Technical Reports Server (NTRS)
1988-01-01
As part of a crew escape system (CES) test program, a lifelike dummy is pulled by a tractor rocket from an airborne Convair-240 (C-240) aircraft at Naval Weapons Center, China Lake, California. A P-3 chase plane accompanies the C-240. The C-240 was modified with a space shuttle side hatch mockup for the tests which will evaluate candidate concepts developed to provide crew egress capability during Space Shuttle controlled gliding flight.
2013-01-09
CAPE CANAVERAL, Fla. -- At a news conference NASA officials and industry partners discuss progress of the agency's Commercial Crew Program. Among those participating in the briefing is Ed Mango, NASA Commercial Crew Program manager. Through CCP, NASA is facilitating the development of U.S. commercial crew space transportation capabilities to achieve safe, reliable and cost-effective access to and from low-Earth orbit for potential future government and commercial customers. For more information, visit http://www.nasa.gov/commercialcrew Photo credit: NASA/Kim Shiflett
2012-10-19
VAN HORN, Texas – Blue Origin’s New Shepard crew capsule touched down 1,630 feet from the its simulated propulsion module launch pad at the company's West Texas launch site, completing a successful test of its New Shepard crew capsule escape system. The pusher escape system was designed and developed by Blue Origin to allow crew escape in the event of an emergency during any phase of ascent for its suborbital New Shepard system. As part of an incremental development program, the results of this test will shape the design of the escape system for the company's orbital biconic-shaped Space Vehicle. The system is expected to enable full reusability of the launch vehicle, which is different from NASA's previous launch escape systems that would pull a spacecraft away from its rocket before reaching orbit. The test was part of Blue Origin's work supporting its funded Space Act Agreement with NASA during Commercial Crew Development Round 2 CCDev2). Through initiatives like CCDev2, NASA is fostering the development of a U.S. commercial crew space transportation capability with the goal of achieving safe, reliable and cost-effective access to and from the International Space Station and low-Earth orbit. After the capability is matured and available to the government and other customers, NASA could contract to purchase commercial services to meet its station crew transportation needs. For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin
2012-04-25
HAWTHORNE, Calif. -- NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. On top, from left, are NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA astronauts Tony Antonelli and Eric Boe and SpaceX Mission Operations Engineer Laura Crabtree. On bottom, from left, are SpaceX Thermal Engineer Brenda Hernandez and NASA astronauts Rex Walheim and Tim Kopra. This is the second crew accommodation check that allowed passengers to get a feel for Dragon’s interior, including displays and simulated control panels. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies
1969-07-25
The Apollo 11 mission, the first manned lunar mission, launched aboard the Saturn V launch vehicle from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins, remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. The surface exploration was concluded in 2½ hours. Once the crew collected 47 pounds of lunar surface material for analysis back on Earth, the LM redocked with the CM for the crew’s return to Earth. Following splash down in the Pacific Ocean, Navy para-rescue men recovered the capsule housing the 3-man crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). Astronaut Collins took this snapshot of astronauts Armstrong (center) and Aldrin inside of the MQF.
1969-07-27
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. In this close up of the MQF, commander Armstrong can be seen through the facility window after its arrival at the MSC.
1997-01-22
KENNEDY SPACE CENTER, FLA. - STS-82 crew members and workers at KSC's Vertical Processing Facility get a final look at the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in its flight configuration for the STS-82 mission. The crew is participating in the Crew Equipment Integration Test (CEIT). NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument - its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is scheduled Feb. 11 aboard Discovery with a crew of seven.
NASA Technical Reports Server (NTRS)
Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy
2010-01-01
Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments
An Alternative Approach to Human Servicing of Crewed Earth Orbiting Spacecraft
NASA Technical Reports Server (NTRS)
Mularski, John R.; Alpert, Brian K.
2017-01-01
As crewed spacecraft have grown larger and more complex, they have come to rely on spacewalks, or Extravehicular Activities (EVA), for assembly and to assure mission success. Typically, these spacecraft maintain all of the hardware and trained personnel needed to perform an EVA on-board at all times. Maintaining this capability requires up-mass, volume for storage of EVA hardware, crew time for ground and on-orbit training, and on-orbit maintenance of EVA hardware. This paper proposes an alternative methodology, utilizing either launch-on-need hardware and crew or regularly scheduled missions to provide EVA capability for space stations in low Earth orbit after assembly complete. Much the same way that one would call a repairman to fix something at their home these EVAs are dedicated to maintenance and upgrades of the orbiting station. For crew safety contingencies it is assumed the station would be designed such the crew could either solve those issues from inside the spacecraft or use the docked Earth to Orbit vehicles as a return lifeboat, in the same manner as the International Space Station (ISS) which does not rely on EVA for crew safety related contingencies. This approach would reduce ground training requirements for long duration crews, save Intravehicular Activity (IVA) crew time in the form of EVA hardware maintenance and on-orbit training, and lead to more efficient EVAs because they would be performed by specialists with detailed knowledge and training stemming from their direct involvement in the development of the EVA. The on-orbit crew would then be available to focus on the immediate response to any failures such as IVA systems reconfiguration or jumper installation as well as the day-to-day operations of the spacecraft and payloads. This paper will look at how current unplanned EVAs are conducted on ISS, including the time required for preparation, and offer an alternative for future spacecraft. As this methodology relies on the on-time and on-need launch of spacecraft, any space station that utilized this approach would need a robust transportation system, possibly including more than one launch vehicle capable of carrying crew. In addition, the fault tolerance of the future space station would be an important consideration in how much time was available for EVA preparation after the failure. Ideally the fault tolerance of the station would allow for the maintenance tasks to be grouped such that they could be handled by regularly scheduled maintenance visits and not contingency launches. Each future program would have to weigh the risk of on-time launch against the increase in available crew time for the main objective of the spacecraft. This is only one of several ideas that could be used to reduce or eliminate a station's reliance on rapid turnaround EVAs using on-board crew. Others could include having shirt-sleeve access to critical systems or utilizing low pressure temporarily pressurized equipment bays.
Soluble Protein Analysis using a Compact Bench-top Flow Cytometer
NASA Technical Reports Server (NTRS)
Pappas, Dimitri; Kao, Shib-Hsin; Cyr, Johnathan
2004-01-01
Future space exploration missions will require analytical technology capable of providing both autonomous medical care to the crew and investigative capabilities to researchers. While several promising candidate technologies exist for further development, flow cytometry is an attractive technology as it offers both crew health (blood cell count, leukocyte differential, etc.) and a wide array of biochemistry and immunology assays. research settings, the application of this technique to soluble protein analysis is also possible. Proteomic beads using fluorescent dyes for optical encoding were used to monitor six cytokines simultaneously in cell medium of cell cultures in stationary and rotating cell culture systems. The results of this work demonstrate that a compact flow cytometer, such as a system proposed for space flight, can detect a variety of soluble proteins for crew health and biotechnology experiments during long-term missions.
2012-08-03
CAPE CANAVERAL, Fla. – NASA Administrator Charlie Bolden, accompanied by Center Director Bob Cabana, sees firsthand how NASA's Kennedy Space Center is transiting to a spaceport of the future as Kennedy's Mary Hanna explains the upcoming uses for the crawler-transporter that has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett
2012-08-03
Cape Canaveral Air Force Station, Fla. -- NASA Administrator Charlie Bolden, accompanied by Center Director Bob Cabana, sees firsthand how NASA's Kennedy Space Center is transiting to a spaceport of the future as Kennedy's Mike Parrish explains the upcoming uses for the crawler-transporter that has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett
2013-07-22
HOUSTON - JSC2013e068344 - NASA astronaut Randy Bresnik gets into position in The Boeing Company's CST-100 spacecraft for a fit check evaluation at the company's Houston Product Support Center. Bresnik's fit check will help evaluate a crew's maneuverability in the spacecraft and test communications. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068317 - NASA astronaut Serena Aunon exits The Boeing Company's CST-100 spacecraft following a fit check evaluation at the company's Houston Product Support Center. Aunon's fit check will help evaluate a crew's maneuverability in the spacecraft and test communications. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068269 - NASA astronaut Serena Aunon prepares to enter The Boeing Company's CST-100 spacecraft for a fit check evaluation at the company's Houston Product Support Center. Aunon's fit check will help evaluate a crew's maneuverability in the spacecraft and test communications. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068333 - NASA astronaut Randy Bresnik prepares to enter The Boeing Company's CST-100 spacecraft for a fit check evaluation at the company's Houston Product Support Center. Bresnik's fit check will help evaluate a crew's maneuverability in the spacecraft and test communications. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068260 - NASA astronaut Serena Aunon suits up for a fit check evaluation of The Boeing Company's CST-100 spacecraft at the company's Houston Product Support Center. Aunon's fit check will help evaluate a crew's maneuverability in the spacecraft and test communications. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068247 - The Boeing Company unveils its fully outfitted CST-100 mock-up at the company's Houston Product Support Center in Texas. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is designed being to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations, including the International Space Station. Boeing is one of three aerospace industry partners working with CCP during its Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068244 - The Boeing Company unveils the interior of its fully outfitted CST-100 mock-up at the company's Houston Product Support Center in Texas. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations, including the International Space Station. Boeing is one of three aerospace industry partners working with CCP during its Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068245 - The Boeing Company unveils the interior its fully outfitted CST-100 mock-up at the company's Houston Product Support Center in Texas. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations, including the International Space Station. Boeing is one of three aerospace industry partners working with CCP during its Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068284 - John Elbon, vice president for Space Exploration for The Boeing Company, addresses the media before the unveiling of a CST-100 mock-up at the company's Houston Product Support Center. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068287 - John Elbon, vice president for Space Exploration for The Boeing Company, addresses the media before the unveiling of a CST-100 mock-up at the company's Houston Product Support Center. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068248 - Chris Ferguson, director of Crew and Mission Operations for The Boeing Company, is interviewed by the media during the unveiling of a CST-100 mock-up at the company's Houston Product Support Center. This test version is optimized to support five crew members and will allow the company to evaluate crew safety, interfaces, communications, maneuverability and ergonomics. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations, including the International Space Station. Boeing is one of three aerospace industry partners working with CCP during its Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
Conceptual designs study for a Personnel Launch System (PLS)
NASA Technical Reports Server (NTRS)
Wetzel, E. D.
1990-01-01
A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.
2013-05-14
Expedition 35 Commander Chris Hadfield of the Canadian Space Agency (CSA) is helped off a Russian Search and Rescue helicopter at Karaganda Airport in Kazakhstan following his landing in the Soyuz TMA-07M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, Tuesday, May 14, 2013. Hadfield, Expedition 35 NASA Flight Engineer Tom Marshburn and Russian Flight Engineer Roman Romanenko of the Russian Federal Space Agency (Roscosmos) returned to earth from more than five months onboard the International Space Station where they served as members of the Expedition 34 and 35 crews. Photo Credit: (NASA/Carla Cioffi)
Expedition 41 Soyuz TMA-13M Landing
2014-11-10
A Russian Search and Rescue helicopter prepares to take off from Kustanay, Kazakhstan to support the Soyuz TMA-13M spacecraft landing with Expedition 41 Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), NASA Flight Engineer Reid Wiseman and Flight Engineer Alexander Gerst of the European Space Agency (ESA) on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews. Photo Credit: (NASA/Bill Ingalls)
Expedition 41 Soyuz TMA-13M Landing
2014-11-10
A Russian search and rescue team member looks out a helicopter window as they fly from Kustanay, Kazakhstan to support the Soyuz TMA-13M spacecraft landing with Expedition 41 Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), NASA Flight Engineer Reid Wiseman and Flight Engineer Alexander Gerst of the European Space Agency (ESA) on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews. Photo Credit: (NASA/Bill Ingalls)
Expedition 41 Soyuz TMA-13M Landing
2014-11-10
Russian Search and Rescue helicopter teams are seen waiting to take off in their helicopter from Kustanay, Kazakhstan to support the Soyuz TMA-13M spacecraft landing with Expedition 41 Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), NASA Flight Engineer Reid Wiseman and Flight Engineer Alexander Gerst of the European Space Agency (ESA) on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews. Photo Credit: (NASA/Bill Ingalls)
Expedition 41 Soyuz TMA-13M Landing
2014-11-10
Russian Search and Rescue helicopter teams wait to take off from Kustanay, Kazakhstan to support the Soyuz TMA-13M spacecraft landing with Expedition 41 Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), NASA Flight Engineer Reid Wiseman and Flight Engineer Alexander Gerst of the European Space Agency (ESA) on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews. Photo Credit: (NASA/Bill Ingalls)
2013-05-14
Expedition 35 NASA Flight Engineer Tom Marshburn is helped off a Russian Search and Rescue helicopter at Karaganda Airport in Kazakhstan following his landing in the Soyuz TMA-07M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, Tuesday, May 14, 2013. Marshburn, Expedition 35 Commander Chris Hadfield of the Canadian Space Agency (CSA) and Russian Flight Engineer Roman Romanenko of the Russian Federal Space Agency (Roscosmos) returned to earth from more than five months onboard the International Space Station where they served as members of the Expedition 34 and 35 crews. Photo Credit: (NASA/Carla Cioffi)
Expedition 41 Soyuz TMA-13M Landing
2014-11-10
A Russian search and rescue helicopter arrives at the Soyuz TMA-13M spacecraft landing site after the capsule landed with Expedition 41 Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), NASA Flight Engineer Reid Wiseman and Flight Engineer Alexander Gerst of the European Space Agency (ESA) near the town of Arkalyk, Kazakhstan on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews. Photo Credit: (NASA/Bill Ingalls)
Expedition 41 Soyuz TMA-13M Landing
2014-11-10
Russian Search and Rescue helicopter tail rotors are seen as teams wait to take off from Kustanay, Kazakhstan to support the Soyuz TMA-13M spacecraft landing with Expedition 41 Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), NASA Flight Engineer Reid Wiseman and Flight Engineer Alexander Gerst of the European Space Agency (ESA) on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews. Photo Credit: (NASA/Bill Ingalls)
Expedition 37 Soyuz Landing Preparation
2013-11-10
View from the cockpit of one of twelve Russian search and rescue helicopters as they fly from the city of Karaganda to Zhezkazgan in Kazakhstan, Sunday, Nov. 10, 2013, a day ahead of the scheduled landing of the Soyuz TMA-09M spacecraft with the Expedition 37 crew. Exp. 37 Commander Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos), Flight Engineer Karen Nyberg of NASA and Flight Engineer Luca Parmitano of the European Space Agency are returning to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Carla Cioffi)
2013-05-14
Russian Search and Rescue Helicopters are seen as they await departure from the landing zone in a remote area near the town of Zhezkazgan, Kazakhstan following the the landing of the Soyuz TMA-07M spacecraft on Tuesday, May 14, 2013. The Soyuz spacecraft delivered Expedition 35 Commander Chris Hadfield of the Canadian Space Agency (CSA), NASA Flight Engineer Tom Marshburn and Russian Flight Engineer Roman Romanenko after having spent five months onboard the International Space Station where they served as members of the Expedition 34 and 35 crews. Photo Credit: (NASA/Carla Cioffi)
CoCoNaut Polarimetric SAR Signature Trial. Small Vessels of Opportunity Collections off Tofino, BC
2006-10-01
open beaches or the 2 DRDC Ottawa TM 2006-184 ’I7 Goden Hind. " 4 Ext vo %1ý Figure 1: COG Tofino MCTS coverage zone with proposed imaging lines. Yellow...keeping ability to sea state 5. Duties: Search & Rescue, Fisheries Patrol and En- forcement, Pollution Response, and other tasks as required. Crewing...Air Maritime Patrol Aircraft: Speedair 01 (c) West Coast Wild, FPML: Foxtrot Poppa Mike Lima (d) CP-140 Aurora, 407 Sqn: Demon 03 1.2 Cal Site Radios
2006-03-15
KENNEDY SPACE CENTER, FLA. - Inside the orbiter mockup at NASA Kennedy Space Center's Shuttle Landing Facility, volunteer "astronaut" Charlie Plain, with InDyne Inc., gets settled in a seat with the help of United Space Alliance Insertion Tech Mike Thompson before a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/George Shelton
2006-03-15
KENNEDY SPACE CENTER, FLA. - Inside the orbiter mockup at NASA Kennedy Space Center's Shuttle Landing Facility, volunteer "astronaut" Jeremy Garcia, with United Space Alliance (USA), is helped with his launch and entry suit by USA Insertion Tech George Brittingham before a simulated emergency landing of a shuttle crew. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/George Shelton
2006-03-15
KENNEDY SPACE CENTER, FLA. - During a simulated emergency landing of a shuttle crew at NASA Kennedy Space Center's Shuttle Landing Facility, medevac personnel tend to an "injured astronaut" in the helicopter. The astronaut will be taken to an area hospital participating in the simulation. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/Kim Shiflett
2006-03-15
KENNEDY SPACE CENTER, FLA. - Preparing for a simulated emergency landing of a shuttle crew, United Space Alliance (USA) Suit Tech Toni Costa-Davis helps volunteer "astronaut" Brian Bateman, also with USA, with his launch and entry suit. Many volunteers posed as astronauts during the simulation. Known as a Mode VI exercise, the operation uses volunteer workers from the Center to pose as astronauts. The purpose of the simulation is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. Photo credit: NASA/George Shelton
2012-02-07
CAPE CANAVERAL, Fla. -- Commercial Crew Program (CCP) Manager Ed Mango, left, and Deputy Program Manager Brent Jett host a Program Strategy Forum at NASA's Kennedy Space Center in Florida. The forum was held to update industry partners about NASA's next phase of developing commercial space transportation system capabilities. CCP is helping to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of the program is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. For more information, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett
Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations
NASA Technical Reports Server (NTRS)
Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.
1989-01-01
The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.
Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations
NASA Astrophysics Data System (ADS)
Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.
1989-07-01
The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.
Medical System Concept of Operations for Mars Exploration Missions
NASA Technical Reports Server (NTRS)
Urbina, Michelle; Rubin, D.; Hailey, M.; Reyes, D.; Antonsen, Eric
2017-01-01
Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.
Mars Field Geology, Biology. and Paleontology Workshop: Summary and Recommendations
NASA Technical Reports Server (NTRS)
Budden, Nancy Ann (Editor)
1998-01-01
Current NASA planning envisions human missions to Mars as early as 2013, on a mission that would send six crew members for a 500-day stay on the surface of Mars. While our understanding of how we would get there and back is fairly mature, the planning for what the crew would do to explore while on the surface for 500 days is less detailed. Mission objectives are to understand the composition and geo- morphology of the martian surface, and to continue to investigate and sample the geologic history of Mars. Special emphasis will focus on exploring for possible biogenic signatures, past or present, and on analyzing pre-biotic chemistry. The purpose of this workshop was to explore the strategies, desired capabilities, skills, and operational realities required to lend success to the first human missions to Mars. Current mission planning dictates that there will be considerable mobility, sampling and analytical capability available to human crews, at a site warranting long-term geologic and possibly biological interest. However, the details of specific capabilities are not yet clearly defined.
Mars Field Geology, Biology, and Paleontology Workshop: Summary and Recommendations
NASA Technical Reports Server (NTRS)
Budden, Nancy Ann (Editor)
1999-01-01
Current NASA planning envisions human missions to Mars as early as 2013, on a mission that would send six crew members for a 500-day stay on the surface of Mars. While our understanding of how we would get there and back is fairly mature, the planning for what the crew would do to explore while on the surface for 500 days is less detailed. Mission objectives are to understand the composition and geo- morphology of the martian surface, and to continue to investigate and sample the geologic history of Mars. Special emphasis will focus on exploring for possible biogenic signatures, past or present, and on analyzing pre-biotic chemistry. The purpose of this workshop was to explore the strategies, desired capabilities, skills, and operational realities required to lend success to the first human missions to Mars. Current mission planning dictates that there will be considerable mobility, sampling and analytical capability available to human crews, at a site warranting long-term geologic and possibly biological interest. However, the details of specific capabilities are not yet clearly defined.
NASA Technical Reports Server (NTRS)
Tri, Terry O.
1999-01-01
As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.
iPAS: AES Flight System Technology Maturation for Human Spaceflight
NASA Technical Reports Server (NTRS)
Othon, William L.
2014-01-01
In order to realize the vision of expanding human presence in space, NASA will develop new technologies that can enable future crewed spacecraft to go far beyond Earth orbit. These technologies must be matured to the point that future project managers can accept the risk of incorporating them safely and effectively within integrated spacecraft systems, to satisfy very challenging mission requirements. The technologies must also be applied and managed within an operational context that includes both on-board crew and mission support on Earth. The Advanced Exploration Systems (AES) Program is one part of the NASA strategy to identify and develop key capabilities for human spaceflight, and mature them for future use. To support this initiative, the Integrated Power Avionics and Software (iPAS) environment has been developed that allows engineers, crew, and flight operators to mature promising technologies into applicable capabilities, and to assess the value of these capabilities within a space mission context. This paper describes the development of the integration environment to support technology maturation and risk reduction, and offers examples of technology and mission demonstrations executed to date.
2012-03-09
CANOGA PARK, Calif. -- Pratt & Whitney Rocketdyne hot-fires a launch abort engine for The Boeing Co., which is developing its CST-100 spacecraft for NASA's Commercial Crew Program. Under its fixed-price contract with Boeing, Pratt and Whitney Rocketdyne is combining its Attitude Control Propulsion System thrusters from heritage spaceflight programs, Bantam abort engine design and storable propellant engineering capabilities. In 2011, NASA selected Boeing of Houston during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, Blue Origin, Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Pratt & Whitney Rocketdyne
2012-03-09
CANOGA PARK, Calif. -- Pratt & Whitney Rocketdyne hot-fires a launch abort engine for The Boeing Co., which is developing its CST-100 spacecraft for NASA's Commercial Crew Program. Under its fixed-price contract with Boeing, Pratt and Whitney Rocketdyne is combining its Attitude Control Propulsion System thrusters from heritage spaceflight programs, Bantam abort engine design and storable propellant engineering capabilities. In 2011, NASA selected Boeing of Houston during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, Blue Origin, Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Pratt & Whitney Rocketdyne
2012-03-09
CANOGA PARK, Calif. -- Pratt & Whitney Rocketdyne hot-fires a launch abort engine for The Boeing Co., which is developing its CST-100 spacecraft for NASA's Commercial Crew Program. Under its fixed-price contract with Boeing, Pratt and Whitney Rocketdyne is combining its Attitude Control Propulsion System thrusters from heritage spaceflight programs, Bantam abort engine design and storable propellant engineering capabilities. In 2011, NASA selected Boeing of Houston during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, Blue Origin, Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Pratt & Whitney Rocketdyne
NASA Technical Reports Server (NTRS)
Dodson, D. W.; Shields, N. L., Jr.
1979-01-01
Individual Spacelab experiments are responsible for developing their CRT display formats and interactive command scenarios for payload crew monitoring and control of experiment operations via the Spacelab Data Display System (DDS). In order to enhance crew training and flight operations, it was important to establish some standardization of the crew/experiment interface among different experiments by providing standard methods and techniques for data presentation and experiment commanding via the DDS. In order to establish optimum usage guidelines for the Spacelab DDS, the capabilities and limitations of the hardware and Experiment Computer Operating System design had to be considered. Since the operating system software and hardware design had already been established, the Display and Command Usage Guidelines were constrained to the capabilities of the existing system design. Empirical evaluations were conducted on a DDS simulator to determine optimum operator/system interface utilization of the system capabilities. Display parameters such as information location, display density, data organization, status presentation and dynamic update effects were evaluated in terms of response times and error rates.
2013-01-09
CAPE CANAVERAL, Fla. -- At a news conference NASA officials and industry partners discuss progress of the agency's Commercial Crew Program. Among those participating in the briefing is Garrett Reisman, Space Exploration Technologies SpaceX Commercial Crew project manager. Through CCP, NASA is facilitating the development of U.S. commercial crew space transportation capabilities to achieve safe, reliable and cost-effective access to and from low-Earth orbit for potential future government and commercial customers. For more information, visit http://www.nasa.gov/commercialcrew Photo credit: NASA/Kim Shiflett
Human Health and Support Systems Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Grounds, Dennis; Boehm, Al
2005-01-01
The Human Health and Support Systems Capability Roadmap focuses on research and technology development and demonstration required to ensure the health, habitation, safety, and effectiveness of crews in and beyond low Earth orbit. It contains three distinct sub-capabilities: Human Health and Performance. Life Support and Habitats. Extra-Vehicular Activity.
2011-09-16
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, Phil McAlister (left), director, Commercial Spaceflight Development in NASA’s Human Exploration and Operations Mission Directorate, and Brent Jeff, deputy director, Commercial Crew Program, brief representatives from aerospace industry partners and the media during a strategy forum on the next steps for NASA's Commercial Crew Program. The goal of the Commercial Crew Program is to have a commercially developed, human-capable, certified spacecraft safely flying astronauts into orbit and to the International Space Station by the middle of the decade. For more information about NASA's Commercial Crew Program, visit http://www.nasa.gov/exploration/commercial. Photo credit: NASA/Jim Grossmann
Crew systems and flight station concepts for a 1995 transport aircraft
NASA Technical Reports Server (NTRS)
Sexton, G. A.
1983-01-01
Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.
1998-07-02
KENNEDY SPACE CENTER, FLA. -- Kennedy Space Center firefighters support firefighting efforts in north Brevard County with an aircraft rescue firefighting vehicle capable of holding 1,000 gallons of water.
Spaceflight Flow Cytometry: Design Challenges and Applications
NASA Technical Reports Server (NTRS)
Pappas, Dimitri; Kao, Shih-Hsin; Jeevarajan, Antony S.
2004-01-01
Future space exploration missions will require analytical technology capable of providing both autonomous medical care to the crew and investigative capabilities to researchers. While several promising candidate technologies exist for further development, flow cytometry is an attractive technology as it offers both crew health and a wide array of biochemistry and immunology assays. While flow cytometry has been widely used for cellular analysis in both clinical and research settings, the requirements for proper operation in spaceflight impose constraints on any instrument designs. The challenges of designing a spaceflight-ready flow cytometer are discussed, as well as some preliminary results using a prototype system.
NASA Technical Reports Server (NTRS)
Sumrall, Phil
2008-01-01
The NASA Ares Projects are developing the launch vehicles to move the United States and humanity beyond low earth orbit. Ares 1 is a crewed vehicle, and Ares V is a heavy-lift vehicle being designed to send crews and cargo to the Moon. The Ares V design is evolving and maturing toward an authority-to-proceed milestone in 2011. The Ares V vehicle will be considered a national asset, opening new worlds and creating unmatched opportunities for human exploration, science, national security, and space business.
2014-05-29
HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling ceremony. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., prior to its unveiling. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - SpaceX CEO and founder Elon Musk unveils the Dragon V2 inside SpaceX headquarters in Hawthorne, Calif. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
2014-05-29
HAWTHORNE, Calif. - HAWTHORNE, Calif. - The Dragon V2 stands on a stage inside SpaceX headquarters in Hawthorne, Calif., during its unveiling ceremony. The spacecraft is designed to carry people into Earth's orbit and was developed in partnership with NASA's Commercial Crew Program under the Commercial Crew Integrated Capability agreement. SpaceX is one of NASA's commercial partners working to develop a new generation of U.S. spacecraft and rockets capable of transporting humans to and from Earth's orbit from American soil. Ultimately, NASA intends to use such commercial systems to fly U.S. astronauts to and from the International Space Station. Photo credit: NASA/Dimitri Gerondidakis
Aerospace Vehicle Design, Spacecraft Section. Volume 1: Project Groups 3-5
NASA Technical Reports Server (NTRS)
1989-01-01
Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedom and provide an emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are analyzed. These subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing.
A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes
Sun, Jingxuan; Li, Boyang; Jiang, Yifan; Wen, Chih-yung
2016-01-01
Wilderness search and rescue entails performing a wide-range of work in complex environments and large regions. Given the concerns inherent in large regions due to limited rescue distribution, unmanned aerial vehicle (UAV)-based frameworks are a promising platform for providing aerial imaging. In recent years, technological advances in areas such as micro-technology, sensors and navigation have influenced the various applications of UAVs. In this study, an all-in-one camera-based target detection and positioning system is developed and integrated into a fully autonomous fixed-wing UAV. The system presented in this paper is capable of on-board, real-time target identification, post-target identification and location and aerial image collection for further mapping applications. Its performance is examined using several simulated search and rescue missions, and the test results demonstrate its reliability and efficiency. PMID:27792156
A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes.
Sun, Jingxuan; Li, Boyang; Jiang, Yifan; Wen, Chih-Yung
2016-10-25
Wilderness search and rescue entails performing a wide-range of work in complex environments and large regions. Given the concerns inherent in large regions due to limited rescue distribution, unmanned aerial vehicle (UAV)-based frameworks are a promising platform for providing aerial imaging. In recent years, technological advances in areas such as micro-technology, sensors and navigation have influenced the various applications of UAVs. In this study, an all-in-one camera-based target detection and positioning system is developed and integrated into a fully autonomous fixed-wing UAV. The system presented in this paper is capable of on-board, real-time target identification, post-target identification and location and aerial image collection for further mapping applications. Its performance is examined using several simulated search and rescue missions, and the test results demonstrate its reliability and efficiency.
Dynamics and control of escape and rescue from a tumbling spacecraft
NASA Technical Reports Server (NTRS)
Kaplan, M. H.
1972-01-01
Papers on the problem of controlling a tumbling spacecraft before crew rescue is affected are presented. Fluid jets are considered; It is concluded that a gas jet results in long tumble times and low utilization efficiencies and a liquid jet appears more attractive because it can be directed. A conceptual design of an unmanned antitumbling module for automatic dock and detumble is formulated, and analyses of its dynamics and control, synthesis of position and attitude control systems, and sequence of operations are given. The minimum time detumble operation is analyzed with respect to (1) to a constraint on the magnitude of the control moment vector and (2) to constraints on the magnitude of each of the three components of the control moment vector. Internal passive and active mechanisms of energy dissipation are also considered. Structural flexibility modelling techniques and detumbling effects of structural flexibility on free-tumbling motion, are reviewed. Mass expulsion, momentum exchange, and moveable mass techniques are described, and methods of analyzing these devices are surveyed.
2011-12-01
CAPE CANAVERAL, Fla. -- This is an artist's conception of the Dragon capsule under development by Space Exploration Technologies (SpaceX) of Hawthorne, Calif., for NASA's Commercial Crew Program (CCP). In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance (ULA). For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies
2012-01-30
HAWTHORNE, Calif. -- NASA astronaut Rex Walheim checks out the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies
2012-04-03
CAPE CANAVERAL, Fla. -- This is an artist's conception of the Human Spacecraft being considered for NASA's Commercial Crew Program CCP. In 2011, NASA and Excalibur Almaz Inc. of Houston entered into an unfunded Space Act Agreement during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, Blue Origin, The Boeing Co., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/exploration/commercialcrew Image credit: Excalibur Almaz Inc.
2011-12-01
CAPE CANAVERAL, Fla. -- This is an artist's conception of the CST-100 under development by The Boeing Co. of Houston for NASA's Commercial Crew Program (CCP). In 2011, NASA selected Boeing during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), Blue Origin, Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies (SpaceX), and United Launch Alliance (ULA). For more information, visit www.nasa.gov/commercialcrew. Image credit: The Boeing Co.
2011-12-01
CAPE CANAVERAL, Fla. -- This is an artist's conception of the Dream Chaser spacecraft under development by Sierra Nevada of Centennial, Colo., for NASA's Commercial Crew Program (CCP). In 2011, NASA selected Sierra Nevada during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), The Boeing Co., Excalibur Almaz Inc., Blue Origin, Space Exploration Technologies (SpaceX), and United Launch Alliance (ULA). For more information, visit www.nasa.gov/commercialcrew. Image credit: Sierra Nevada Corp.
2011-12-01
CAPE CANAVERAL, Fla. -- This is an artist's conception of the Space Vehicle under development by Blue Origin of Kent, Wash., for NASA's Commercial Crew Program (CCP). In 2011, NASA selected Blue Origin during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), The Boeing Co., Excalibur Almaz Inc., Sierra Nevada Corp., Space Exploration Technologies (SpaceX), and United Launch Alliance (ULA). For more information, visit www.nasa.gov/commercialcrew. Image credit: Blue Origin
Fourth-generation Mars vehicle concepts
NASA Astrophysics Data System (ADS)
Sherwood, Brent
1994-09-01
Conceptual designs for fourth-generation crew-carrying Mars transfer and excursion vehicles, fully integrated to state-of-the-art standards, are presented. The resulting vehicle concepts are sized for six crew members, and can support all opposition and conjunction opportunities in or after 2014. The modular, reusable transfer ship is launched to Earth orbit on six 185-ton-class boosters and assembled there robotically. Its dual nuclear-thermal rocket engines use liquid hydrogen propollant. The payload consists of a microgravity habitation system and an expendable lift-to-drag = 1.6 lander capable of aeromaneuvering to sites within +/- 20 deg of the equator. This lander can deliver either an expendable, storable-bipropellant crew-carrying ascent vehicle, or 40 tons of cargo, and it is capable of limited surface mobility to support base buildup. Multiple cargo landers sent ahead on robotic transfer vehicles deliver the supplies and equipment required for long-duration surface missions.
2013-07-12
CAPE CANAVERAL, Fla. -- This graphic depicts the patriotic endeavor of NASA's three Commercial Crew Program, or CCP, partners. The Boeing Company of Houston, Sierra Nevada Corporation, or SNC, of Louisville, Colo., and Space Exploration Technologies, or SpaceX, of Hawthorne, Calif., are working under the agency's Commercial Crew Integrated Capability, or CCiCap, initiative and Certification Products Contract, or CPC, phase to develop spaceflight capabilities that eventually could provide launch services to transport NASA astronauts to the International Space Station from U.S. soil. Shown along the bottom, from left, are: Boeing's integrated CST-100 spacecraft and United Launch Alliance, or ULA, Atlas V rocket SNC's integrated Dream Chaser spacecraft and Atlas V and SpaceX's integrated Dragon spacecraft and Falcon 9 rocket. In the center are artist depictions of company spacecraft in orbit. At the top is NASA's destination for crew transportation in low-Earth orbit, the International Space Station. For more information, visit www.nasa.gov/commercialcrew. Image credit: NASA
Accomplishments in bioastronautics research aboard International Space Station.
Uri, John J; Haven, Cynthia P
2005-01-01
The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program. c2005 Published by Elsevier Ltd.
2013-07-22
HOUSTON - NASA astronaut Serena Aunon puts on her orange launch-and-entry suit for a fit check evaluation of The Boeing Company's CST-100 spacecraft at the company's Houston Product Support Center. Aunon's fit check will help evaluate a crew's maneuverability in the spacecraft and test communications. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068329 - NASA astronaut Randy Bresnik is interviewed by the media before he enters The Boeing Company's CST-100 spacecraft for a fit check evaluation at the company's Houston Product Support Center. Bresnik's fit check will help evaluate a crew's maneuverability in the spacecraft and test communications. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
2013-07-22
HOUSTON - JSC2013e068264 - NASA astronaut Serena Aunon's boots are covered before she enters The Boeing Company's CST-100 spacecraft for a fit check evaluation at the company's Houston Product Support Center. Aunon's fit check will help evaluate a crew's maneuverability in the spacecraft and test communications. Boeing's CST-100 is being designed to transport crew members or a mix of crew and cargo to low-Earth-orbit destinations. The evaluation is part of the ongoing work supporting Boeing's funded Space Act Agreement with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative. CCiCap is intended to make commercial human spaceflight services available for government and commercial customers. To learn more about CCP, visit http://www.nasa.gov/commercialcrew. Photo credit: NASA/Robert Markowitz
NASA Technical Reports Server (NTRS)
Woodruff, Kristin K.; Lee, Stuart M. C.; Greenisen, Michael C.; Schneider, Suzanne M.
2000-01-01
The two flight suits currently worn by crew members during Shuttle launch and landing, the Launch and Entry Suit (LES) and the Advanced Crew Escape Suit (ACES), are designed to protect crew members in the case of emergency. Although the Liquid Cooling Garment (LCG) worn under the flight suits was designed to counteract the heat storage of the suits, the suits may increase thermal stress and limit the astronaut's egress capabilities. The purpose of this study was to assess the thermal loads experienced by crew members during a simulated emergency egress before and after spaceflight. Comparisons of skin temperatures were made between the preflight unsuited and suited conditions. between the pre- and postflight suited conditions, and between the two flight suits.
Crew Exploration Vehicle Ascent Abort Trajectory Analysis and Optimization
NASA Technical Reports Server (NTRS)
Falck, Robert D.; Gefert, Leon P.
2007-01-01
The Orion Crew Exploration Vehicle is the first crewed capsule design to be developed by NASA since Project Apollo. Unlike Apollo, however, the CEV is being designed for service in both Lunar and International Space Station missions. Ascent aborts pose some issues that were not present for Apollo, due to its launch azimuth, nor Space Shuttle, due to its cross range capability. The requirement that a North Atlantic splashdown following an abort be avoidable, in conjunction with the requirement for overlapping abort modes to maximize crew survivability, drives the thrust level of the service module main engine. This paper summarizes 3DOF analysis conducted by NASA to aid in the determination of the appropriate propulsion system for the service module, and the appropriate propellant loading for ISS missions such that crew survivability is maximized.
2015-10-01
to improving the capabilities of humanitarian rescue robotics. 15. SUBJECT TERMS Robotics, Mobility , Platform Dexterity, Supervised Autonomy...38 3.2.3.1. Planning Backend ...55 4.1.6. Build and Test Infrastructure
NASA space station automation: AI-based technology review. Executive summary
NASA Technical Reports Server (NTRS)
Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.
1985-01-01
Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.
2013-12-20
MORRO BAY, Calif. – An Erickson Sky Crane helicopter refuels following splash down of SpaceX Dragon test article. The test enables SpaceX engineers to evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. The parachute test took place at Morro Bay, Calif. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – The SpaceX Dragon test article awaits recovery from the Pacific Ocean, off the coast of Morro Bay, Calif following splash down. The test enabled SpaceX engineers to evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – The SpaceX Dragon test article splashes down following a test over the Pacific Ocean, off the coast of Morro Bay, Calif. The test enabled SpaceX engineers to evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – The SpaceX Dragon test article splashes down following a test over the Pacific Ocean, off the coast of Morro Bay, Calif. The test enabled SpaceX engineers to evaluate the spacecraft's parachute deployment system as part of a milestone under its Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett