Sample records for crimped barley grain

  1. Technical note: In situ ruminal starch disappearance kinetics of hull-less barley, hulled barley, and corn grains.

    PubMed

    Ferreira, G; Yang, Y; Teets, C L; Brooks, W S; Griffey, C A

    2018-07-01

    The objective of this study was to compare ruminal starch disappearance rates of hull-less barley, hulled barley, and corn grains. Five different genotypes were used for each of the 2 barley types. In addition, each of these genotypes was grown in 2 different locations and years, resulting 10 independent barley samples for each of the 2 barley grain types. Five different genotypes of corn grain were obtained from a commercial seed company. After being ground to pass through a 4-mm screen of a cutter mill, 3.6 g of each grain was placed into a porous bag, which was then incubated in the rumen of 2 ruminally cannulated cows for 0, 4, 8, 12, 24, and 48 h. Corn grains had greater instant ruminal starch disappearances than barley grains (22.4 and 8.2%, respectively). Instant ruminal starch disappearances did not differ between hulled and hull-less barley grains. Ruminal starch fractional disappearance rates were greatest for hulled barley grains, moderate for hull-less barley grains, and lowest for corn grains (15.3, 13.9, and 7.1%/h, respectively). Ruminal starch half-life was shortest for hulled and hull-less barley grains (4.4 h) and longest for corn grains (6.6 h). Ruminal starch half-life did not differ between hulled barley and hull-less barley grains. In conclusion, using a holistic experimental design and statistical analysis, this study showed that starch from hull-less barley grains has a ruminal half-life similar to that of hulled barley grains and shorter than that of corn grains. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Phenolic compounds of barley grain and their implication in food product discoloration.

    PubMed

    Quinde-Axtell, Zory; Baik, Byung-Kee

    2006-12-27

    Barley grains contain significant amounts of phenolic compounds that may play a major role in the discoloration of food products. Phenolic acid and proanthocyanidin (PA) composition of 11 barley genotypes were determined, using high-performance liquid chromatography and liquid chromatography-mass spectrometry, and their significance on food discoloration was evaluated. Abraded grains contained 146-410 microg/g of phenolic acids (caffeic, p-coumaric, and ferulic) in hulled barley and 182-282 microg/g in hulless barley. Hulled PA-containing and PA-free genotypes had comparable phenolic acid contents. Catechin and six major barley PAs, including dimeric prodelphinidin B3 and procyandin B3, and four trimers were quantified. PAs were quantified as catechin equivalents (CE). The catechin content was higher in hulless (48-71 microg/g) than in hulled (32-37 microg/g) genotypes. The total PA content of abraded barley grains ranged from 169 to 395microg CE/g in PA-containing hulled and hulless genotypes. Major PAs were prodelphinidin B3 (39-109 microg CE/g) and procyanidin B3 (40-99 microg CE/g). The contents of trimeric PAs including procyanidin C2 ranged from 53 to 151 g CE/g. Discoloration of barley flour dough correlated with the catechin content of abraded grains (r = -0.932, P < 0.001), but not with the content of individual phenolic acids and PAs. Discoloration of barley flour dough was, however, intensified when total PA extracts and catechin or dimeric PA fractions were added into PA-free barley flour. The brightness of dough also decreased when the total PA extract or trimeric PA fraction was added into heat-treated PA-free barley flour. Despite its low concentration, catechin appears to exert the largest influence on the discoloration of barley flour dough among phenolic compounds.

  3. Substitution of wheat dried distillers grains with solubles for barley grain or barley silage in feedlot cattle diets: intake, digestibility, and ruminal fermentation.

    PubMed

    Li, Y L; McAllister, T A; Beauchemin, K A; He, M L; McKinnon, J J; Yang, W Z

    2011-08-01

    The objective of this study was to evaluate the effects of substituting wheat dried distillers grains with solubles (DDGS) for barley grain and barley silage on intake, digestibility, and ruminal fermentation in feedlot beef cattle. Eight ruminally cannulated Angus heifers (initial BW 455 ± 10.8 kg) were assigned to a replicated 4 × 4 Latin square design with 4 treatments: control, low (25%), medium (30%), and high (35%) wheat DDGS (DM basis). The diets consisted of barley silage, barley concentrate, and wheat DDGS in ratios of 15:85:0 (CON), 10:65:25 (25DDGS), 5:65:30 (30DDGS), and 0:65:35 (35DDGS; DM basis), respectively. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy (grain) and fiber in feedlot finishing diets. Intakes (kg/d) of DM and OM were not different, whereas those of CP, NDF, ADF, and ether extract (EE) were greater (P < 0.01) and intake of starch was less (P < 0.01) for the 25DDGS compared with the CON diet. The digestibilities of CP, NDF, ADF, and EE in the total digestive tract were greater (P < 0.05) for 25DDGS vs. CON. Ruminal pH and total VFA concentrations were not different (P > 0.15) between 25DDGS and CON diets. Replacing barley silage with increasing amounts of wheat DDGS (i.e., from 25DDGS to 35DDGS) linearly reduced (P < 0.05) intakes of DM and other nutrients without altering (P=0.40) CP intake. In contrast, digestibilities of DM and other nutrients in the total digestive tract linearly increased (P < 0.05) with increasing wheat DDGS except for that of EE. Additionally, with increasing amounts of wheat DDGS, mean ruminal pH tended (P=0.10) to linearly decrease, and ruminal pH status decreased with longer (P=0.04) duration of pH <5.5 and <5.2, and greater (P=0.01) curve area under pH <5.8 and <5.5 without altering (P > 0.19) ruminal VFA and NH(3)-N concentrations. Results indicated that wheat DDGS can be effectively

  4. Evaluation of triticale dried distillers grains with solubles as a substitute for barley grain and barley silage in feedlot finishing diets.

    PubMed

    Wierenga, K T; McAllister, T A; Gibb, D J; Chaves, A V; Okine, E K; Beauchemin, K A; Oba, M

    2010-09-01

    The objective of this study was to assess the value of triticale dried distillers grains with solubles (DDGS) as a replacement for barley silage in addition to a portion of the dry-rolled barley (DRB) in a grain-based feedlot finishing diet. The trial used 160 crossbred yearling steers: 144 noncannulated (478 +/- 84 kg) in a complete randomized design, and 16 ruminally cannulated (494 +/- 50 kg) in a replicated 4 x 4 Latin square design. The noncannulated steers were assigned to 8 standard pens (10 per pen) and 8 pens equipped with the GrowSafe system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada; 8 per pen). The cannulated steers were placed (2 per pen) in the 8 GrowSafe pens and moved between pens at 28-d intervals. Each of 4 experimental diets was fed in 2 standard and 2 GrowSafe pens. The diets contained (DM basis) 1) 85% DRB and 10% barley silage (CON); 2) 65% DRB, 20% triticale DDGS, and 10% barley silage (D-10S), 3) 65% DRB, 25% triticale DDGS, and 5% barley silage, and 4) 65% DRB, 30% triticale DDGS, and no barley silage. Supplement (5% of dietary DM) was included in all diets. Ruminal pH was measured over four 7-d periods using indwelling electrodes. Replacing barley silage with triticale DDGS linearly decreased mean ruminal pH (P = 0.006), linearly increased duration (P = 0.006 and P = 0.01) and area under the curve (P = 0.02 and P = 0.05) below pH 5.5 and 5.2, and linearly increased the frequency of subacute (P = 0.005) and acute (P = 0.05) bouts of ruminal acidosis. Variation in mean ruminal pH decreased (P = 0.008) in steers fed D-10S compared with CON. Similarly, variation in DMI was less for steers fed triticale DDGS compared with CON. Steers fed D-10S tended to have greater DMI (P = 0.08) but similar ADG and G:F compared with CON steers. Replacing barley silage with triticale DDGS tended to linearly decrease DMI (P = 0.10) and increase (P = 0.06) G:F. Compared with CON, steers fed D-10S tended to have greater backfat thickness (P = 0.10) and

  5. Evolution of the Grain Dispersal System in Barley.

    PubMed

    Pourkheirandish, Mohammad; Hensel, Goetz; Kilian, Benjamin; Senthil, Natesan; Chen, Guoxiong; Sameri, Mohammad; Azhaguvel, Perumal; Sakuma, Shun; Dhanagond, Sidram; Sharma, Rajiv; Mascher, Martin; Himmelbach, Axel; Gottwald, Sven; Nair, Sudha K; Tagiri, Akemi; Yukuhiro, Fumiko; Nagamura, Yoshiaki; Kanamori, Hiroyuki; Matsumoto, Takashi; Willcox, George; Middleton, Christopher P; Wicker, Thomas; Walther, Alexander; Waugh, Robbie; Fincher, Geoffrey B; Stein, Nils; Kumlehn, Jochen; Sato, Kazuhiro; Komatsuda, Takao

    2015-07-30

    About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain

    PubMed Central

    Hassan, Ali Saleh; Houston, Kelly; Lahnstein, Jelle; Shirley, Neil; Schwerdt, Julian G.; Gidley, Michael J.; Waugh, Robbie; Little, Alan

    2017-01-01

    In barley endosperm arabinoxylan (AX) is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC) method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 μg/g to ~ 9 μg/g. We used this data for a Genome Wide Association Study (GWAS) that revealed three significant quantitative trait loci (QTL) associated with grain AX levels which passed a false discovery threshold (FDR) and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them) potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain. PMID:28771585

  7. Transcriptomics analysis of hulless barley during grain development with a focus on starch biosynthesis.

    PubMed

    Tang, Yawei; Zeng, Xingquan; Wang, Yulin; Bai, Lijun; Xu, Qijun; Wei, Zexiu; Yuan, Hongjun; Nyima, Tashi

    2017-01-01

    Hulless barley, with its unique nutritional value and potential health benefits, has increasingly attracted attentions in recent years. However, the transcription dynamics during hulless barley grain development is not well understood. In the present study, we investigated the transcriptome changes during barley grain development using Illumina paired-end RNA-sequencing. Two datasets of the developing grain transcriptomes from two barley landraces with the differential seed starch synthesis traits were generated, and comparative transcriptome approach in both genotypes was performed. The results showed that 38 differentially expressed genes (DEGs) were found co-modulated in both genotypes during the barley grain development. Of those, the proteins encoded by most of those DGEs were found, such as alpha-amylase-related proteins, lipid-transfer protein, homeodomain leucine zipper (HD-Zip), NUCLEAR FACTOR-Y, subunit B (NF-YBs), as well as MYB transcription factors. More interestingly, two genes Hvulgare_GLEAN_10012370 and Hvulgare_GLEAN_10021199 encoding SuSy, AGPase (Hvulgare_GLEAN_10033640 and Hvulgare_GLEAN_10056301), as well as SBE2b (Hvulgare_GLEAN_10018352) were found to significantly contribute to the regulatory mechanism during grain development in both genotypes. Moreover, six co-expression modules associated with specific biological processes or pathways (M1 to M6) were identified by consensus co-expression network. Significantly enriched pathways of those module genes showed difference in both genotypes. These results will expand our understanding of the complex molecular mechanism of starch synthesis during barley grain development.

  8. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.

    PubMed

    Holme, Inger Baeksted; Dionisio, Giuseppe; Madsen, Claus Krogh; Brinch-Pedersen, Henrik

    2017-04-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T 2 -generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature grains as feed to increase the release of bio-available phosphate and minerals bound to the phytate of the grains; secondly, the utilization of the powdered straw either directly or phytase extracted hereof as a supplement to high phytate feed or food; and finally, the use of the stubble to be ploughed into the soil for mobilizing phytate-bound phosphate for plant growth. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication.

    PubMed

    Shi, Tao; Dimitrov, Ivan; Zhang, Yinling; Tax, Frans E; Yi, Jing; Gou, Xiaoping; Li, Jia

    2015-10-01

    Traits related to grain and reproductive organs in grass crops have been under continuous directional selection during domestication. Barley is one of the oldest domesticated crops in human history. Thus genes associated with the grain and reproductive organs in barley may show evidence of dramatic evolutionary change. To understand how artificial selection contributes to protein evolution of biased genes in different barley organs, we used Digital Gene Expression analysis of six barley organs (grain, pistil, anther, leaf, stem and root) to identify genes with biased expression in specific organs. Pairwise comparisons of orthologs between barley and Brachypodium distachyon, as well as between highland and lowland barley cultivars mutually indicated that grain and pistil biased genes show relatively higher protein evolutionary rates compared with the median of all orthologs and other organ biased genes. Lineage-specific protein evolutionary rates estimation showed similar patterns with elevated protein evolution in barley grain and pistil biased genes, yet protein sequences generally evolve much faster in the lowland barley cultivar. Further functional annotations revealed that some of these grain and pistil biased genes with rapid protein evolution are related to nutrient biosynthesis and cell cycle/division. Our analyses provide insights into how domestication differentially shaped the evolution of genes specific to different organs of a crop species, and implications for future functional studies of domestication genes.

  10. Crimp-Imbalanced Protective (CRIMP) Fabrics

    DTIC Science & Technology

    2010-03-31

    ILLUSTRATIONS ii LIST OF TABLES iv LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS iv INTRODUCTION 1 THREAT TYPES AND PROTECTION LEVELS 2 HISTORICAL...velocity 3-D Three-dimensional v (vi blank) CRIMP-IMBALANCED PROTECTIVE (CRIMP) FABRICS INTRODUCTION Lightweight, soft-armor systems have...1200 ft/sec D-4 (qi-uO /(B jaug UIBJJS 3i;sei3 (qi-uO 3* dSd ui uoipnpay > .’/ .7 • ’/ i •’/ !/ / *- IT> *- m y / II

  11. Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect.

    PubMed

    Kim, Hyunsook; Turowski, Maciej; Anderson, W H Kerr; Young, Scott A; Kim, Yookyung; Yokoyama, Wallace

    2011-07-27

    We investigated in Syrian Golden hamsters the biological impact and its underlying mechanism of single whole grain breads supplemented with 2-3% hydroxypropyl methylcellulose (HPMC), a semisynthetic viscous soluble dietary fiber (SDF) as a substitute for gluten. Hamsters were fed high-fat diets supplemented with 48-65% (w/w) differently ground, freeze-dried single grain breads including whole grain wheat, barley, barley supplemented with HPMC, debranned oat, and oat supplemented with HPMC which were compared to a diet containing microcrystalline cellulose (control). All single grain breads significantly lowered plasma LDL-cholesterol concentrations compared to the control. Enrichment with HPMC further lowered plasma and hepatic cholesterol concentrations. Despite the reduced molecular weight of naturally occurring soluble (1--->3),(1--->4)-β-d-glucan (β-glucan) caused by the bread-making process, whole grain barley breads downregulated hepatic expression of CYP7A1 and HMG-CoAR genes that are responsible for bile acid and cholesterol synthesis, suggesting a possible role of bioactive compounds such as short-chain fatty acids and phenolic compounds from barley bread. Barley bread enriched with HPMC downregulated expression of ABCG5 gene. Taken together, it appears that distinctive modulation of synthesis and excretion of hepatic cholesterol and bile acid contributes to the cholesterol-lowering properties of whole grain barley breads and breads enriched with HPMC. These data suggests that alternative whole grain breads supplemented with HPMC may provide consumers with a staple food that can assist in cholesterol management.

  12. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley.

    PubMed

    Lachman, Jaromír; Hejtmánková, Alena; Orsák, Matyáš; Popov, Marek; Martinek, Petr

    2018-02-01

    Colored-grain spring and winter wheat, spring tritordeum and barley (blue aleurone, purple pericarp, and yellow endosperm) from the harvests 2014 and 2015 were evaluated for tocol contents by HPLC-FD. Higher content of total tocols was found in spring wheat varieties compared with winter varieties. Four tocols (β-tocotrienol, α-tocotrienol, β-tocopherol, and α-tocopherol) were identified in wheat and tritordeum varieties. Dominant tocols in purple- and blue-grained wheat and yellow-grained tritordeum were α-tocopherol and β-tocotrienol, whereas spring barley varieties differed from wheat and tritordeum by high α-tocotrienol content. Tocol content was significantly affected by genotype and in a lesser extent in some varieties and lines also by rainfall and temperatures during crop year. Higher rainfall and lower temperatures caused in most varieties higher tocol contents. Purple- and blue-grained wheat lines with higher tocol, anthocyanin and phenolic acids with health benefits may be useful for breeding new varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves.

    PubMed

    Kazemi-Bonchenari, M; Salem, A Z M; López, S

    2017-08-01

    Chemical and physical treatments of barley grain increase ruminally resistant starch and can improve the rumen fermentation pattern. The objective of the present study was to evaluate the effects of chemical (addition of citric acid, CA) and physical (grinding to two different particle sizes, PS) treatment of barley grain on performance, rumen fermentation, microbial protein yield in the rumen and selected blood metabolites in growing calves. In all, 28 male Holstein calves (172±5.1 kg initial BW) were used in a complete randomised design with a factorial arrangement of 2 barley grain particle sizes×2 levels of citric acid. The diets were as follows: (i) small PS (average 1200 µm) barley grain soaked in water (no CA addition); (ii) small PS barley grain soaked in a CA solution (adding 20 g CA/kg barley); (iii) large PS (average 2400 µm) barley grain soaked in water (no citric acid addition) and (iv) large PS barley grain soaked in a citric acid solution (adding 20 g CA/kg barley). Barley grain was then incorporated at 35% in a total mixed ration and fed to the calves for 11 weeks. Feeding small PS barley decreased feed intake (P=0.02) and average daily weight gain (P=0.01). The addition of CA to barley grain did not affect intake but increased weight gain (P0.05). However, the molar proportion of propionate was increased (P=0.03) when barley was more finely ground, and that of acetate was increased (P=0.04) when CA was added to barley grain. The ruminal concentration of ammonia nitrogen was increased (P<0.01) and microbial nitrogen synthesis in the rumen tended to decrease by adding CA to barley. Treating barley grain with citric acid increased fibre digestibility of total mixed rations, attenuated the decrease in ruminal pH, and improved weight gain and feed efficiency in male Holstein growing calves fed a high-cereal diet (550 g cereal grain/kg diet).

  14. Differences in Grain Ultrastructure, Phytochemical and Proteomic Profiles between the Two Contrasting Grain Cd-Accumulation Barley Genotypes

    PubMed Central

    Sun, Hongyan; Cao, Fangbin; Wang, Nanbo; Zhang, Mian; Mosaddek Ahmed, Imrul; Zhang, Guoping; Wu, Feibo

    2013-01-01

    To reveal grain physio-chemical and proteomic differences between two barley genotypes, Zhenong8 and W6nk2 of high- and low- grain-Cd-accumulation, grain profiles of ultrastructure, amino acid and proteins were compared. Results showed that W6nk2 possesses significantly lower protein content, with hordein depicting the greatest genotypic difference, compared with Zhenong8, and lower amino acid contents with especially lower proportion of Glu, Tyr, Phe and Pro. Both scanning and transmission electron microscopy observation declared that the size of A-type starch molecule in W6nk2 was considerably larger than that of Zhenong8. Grains of Zhenong8 exhibited more protein-rich deposits around starch granules, with some A-type granules having surface pits. Seventeen proteins were identified in grains, using 2-DE coupled with mass spectrometry, with higher expression in Zhenong8 than that in W6nk2; including z-type serpin, serpin-Z7 and alpha-amylase/trypsin inhibitor CM, carbohydrate metabolism, protein synthesis and signal transduction related proteins. Twelve proteins were less expressed in Zhenong8 than that in W6nk2; including barley trypsin inhibitor chloroform/methanol-soluble protein (BTI-CMe2.1, BTI-CMe2.2), trypsin inhibitor, dehydroascorbate reductase (DHAR), pericentrin, dynein heavy chain and some antiviral related proteins. The data extend our understanding of mechanisms underlying Cd accumulation/tolerance and provides possible utilization of elite genetic resources in developing low-grain-Cd barley cultivars. PMID:24260165

  15. Comparative expression analysis of hordein and beta-amylase in developing barley grains

    USDA-ARS?s Scientific Manuscript database

    Hordeins are the major seed storage proteins (SSP) in the barley grain. They account for the majority of all proteins in the mature grain. Hordeins accumulate and are stored during grain development. Their primary function is to act as nitrogen, carbon, and sulfur reserves. Beta-amylase is a starch ...

  16. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains.

    PubMed

    Paznocht, Luboš; Kotíková, Zora; Šulc, Miloslav; Lachman, Jaromír; Orsák, Matyáš; Eliášová, Marie; Martinek, Petr

    2018-02-01

    Carotenoids are important phytonutrients responsible for the yellow endosperm color in cereal grains. Five carotenoids, namely lutein, zeaxanthin, antheraxanthin, α- and β-carotene, were quantified by HPLC-DAD-MS in fourteen genotypes of wheat, barley and tritordeum harvested in Czechia in 2014 and 2015. The highest carotenoid contents were found in yellow-grained tritordeum HT 439 (12.16μg/gDW), followed by blue-grained wheat V1-131-15 (7.46μg/gDW), and yellow-grained wheat TA 4024 (7.04μg/gDW). Comparing carotenoid contents, blue varieties had lower whereas purple ones had the same or higher levels than conventional bread wheat. Lutein was the main carotenoid found in wheat and tritordeum while zeaxanthin dominated in barley. The majority of cereals contained considerable levels of esterified forms (up to 61%) of which lutein esters prevailed. It was assessed that cereal genotype determines the proportion of free and esterified forms. High temperatures and drought during the growing season promoted carotenoid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    NASA Astrophysics Data System (ADS)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P < 0.05) in oat than in barley. The starch content was greater (P < 0.05) in barley than in oat. The CDC Meredith showed greater total rumen degradable carbohydrate (RDC), intestinal digestible fraction carbohydrate (FC) and lower total rumen undegradable carbohydrate (RUC). However, the estimated milk production did not differ for CDC Nasser oat and CDC Meredith barley. Lignin peak area and peak height did not differ (P > 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  18. Occurrence of deoxynivalenol and zearalenone in brewing barley grains from Brazil.

    PubMed

    Piacentini, Karim C; Rocha, L O; Savi, G D; Carnielli-Queiroz, L; Almeida, F G; Minella, E; Corrêa, B

    2018-03-09

    Barley (Hordeum vulgare L.) is an important cereal crop for food and represents one of the main ingredients in beer production. Considering the importance of barley and its derived products, the knowledge about the mycotoxin contamination in the barley production is essential in order to assess its safety. In this study, the levels of deoxynivalenol (DON) and zearalenone (ZEN) in brewing barley were determined using a LC-MS/MS method. A survey was conducted in 2015 to estimate the mycotoxin levels in these products (n = 76) from four crop regions in Brazil. The results showed high levels of DON and ZEN in the analyzed samples, with contamination levels of 94 and 73.6%, respectively. The mean levels of DON and ZEN ranged from 1700 to 7500 μg/kg and from 300 to 630 μg/kg, respectively. Barley samples from regions 1 and 2 presented higher levels of ZEN and DON, respectively, and those from region 4 presented lower levels of both. Co-occurrence of DON and ZEN was seen in the majority of the barley grain samples, and the mycotoxin content was above the maximum levels established by the Brazilian and European regulations.

  19. In situ identification and quantification of protein-hydrolyzing ruminal bacteria associated with the digestion of barley and corn grain.

    PubMed

    Xia, Yun; Kong, Yunhong; Huang, Heping; Yang, Hee Eun; Forster, Robert; McAllister, Tim A

    2016-12-01

    In this study, BODIPY FL DQ™ casein staining combined with fluorescence in situ hybridization (FISH) was used to detect and identify protein-hydrolyzing bacteria within biofilms that produced active cell-surface-associated serine- and metallo-proteases during the ruminal digestion of barley and corn grain in cows fed barley-based diets at 2 different levels. A doublet coccoid bacterial morphotype associated with barley and corn grain particles fluoresced after BODIPY FL DQ™ casein staining. Bacteria with this morphotype accounted for 3%-10% of the total bacteria attached to surface of cereal grain particles, possibly indicative of an important role in the hydrolysis of the protein matrix within the endosperm. However, the identity of these predominant proteolytic bacteria could not be determined using FISH. Quantitative FISH revealed that known proteolytic species, Prevotella ruminicola, Ruminobacter amylophilus, and Butyrivibrio fibrisolvens, were attached to particles of various cultivars of barley grain and corn, confirming their role in the proteolysis of cereal grains. Differences in chemical composition among different barley cultivars did not affect the composition of proteolytic bacterial populations. However, the concentrate level in the basal diet did have an impact on the relative abundance of proteolytic bacteria and thus possibly their overall contribution to the proteolysis of cereal grains.

  20. Barley

    USDA-ARS?s Scientific Manuscript database

    The U.S. malting and brewing industries are America’s largest consumers of barley, purchasing more than one-half of the U.S. barley grain crop. More than 70% of the hectares seeded to barley are seeded to cultivars recommended by the American Malting Barley Association (AMBA). The malting and brewi...

  1. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition

    PubMed Central

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-01-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. PMID:26951372

  2. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    PubMed

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed. © 2014 Scandinavian Plant Physiology Society.

  3. Selenium speciation in malt, wort, and beer made from selenium-biofortified two-rowed barley grain.

    PubMed

    Rodrigo, Sara; Santamaria, Oscar; Chen, Yi; McGrath, Steve P; Poblaciones, Maria J

    2014-06-25

    Selenium (Se) biofortification of barley is a suitable strategy to increase the Se concentration in grain. In the present paper, the suitability of this Se-biofortified grain for making Se-enriched beer is analyzed. The aim of the present study was to evaluate the effect of different Se fertilizer doses (0, 10, and 20 g of Se ha(-1)) and forms (sodium selenate or sodium selenite) on the Se loss during the malting and brewing processes and Se speciation in grain, malt, wort, and beer. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC)-ICP-MS for total Se and speciation. Mashing-lautering was the process with the greatest Se loss (83.8%). After malting and brewing, only 7.3% of the initial Se was retained in beer, mainly in selenite form. Even so, the fertilizer application of sodium selenate at 20 g ha(-1) increased the total Se concentration almost 6-fold in the final beer in comparison to the use of grain derived from unfertilized barley. The present paper provides evidence that the use of Se-biofortified barley grain as a raw material to produce Se-enriched beer is possible, and the results are comparable to other methods in terms of efficiency.

  4. Tool for Crimping Flexible Circuit Leads

    NASA Technical Reports Server (NTRS)

    Hulse, Aaron; Diftler, Myron A.

    2009-01-01

    A hand tool has been developed for crimping leads in flexible tails that are parts of some electronic circuits -- especially some sensor circuits. The tool is used to cut the tails to desired lengths and attach solder tabs to the leads. For tailoring small numbers of circuits for special applications, this hand tool is a less expensive alternative to a commercially available automated crimping tool. The crimping tool consists of an off-the-shelf hand crimping tool plus a specialized crimping insert designed specifically for the intended application.

  5. Transcriptome Assembly and Analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum) Developing Grains, with Emphasis on Quality Properties

    PubMed Central

    Chen, Xin; Long, Hai; Gao, Ping; Deng, Guangbing; Pan, Zhifen; Liang, Junjun; Tang, Yawei; Tashi, Nyima; Yu, Maoqun

    2014-01-01

    Background Hulless barley is attracting increasing attention due to its unique nutritional value and potential health benefits. However, the molecular biology of the barley grain development and nutrient storage are not well understood. Furthermore, the genetic potential of hulless barley has not been fully tapped for breeding. Methodology/Principal Findings In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces. A total of 13.1 and 12.9 million paired-end reads with lengths of 90 bp were generated from the two varieties and were assembled to 48,863 and 45,788 unigenes, respectively. A combined dataset of 46,485 All-Unigenes were generated from two transcriptomes with an average length of 542 bp, and 36,278 among were annotated with gene descriptions, conserved protein domains or gene ontology terms. Furthermore, sequences and expression levels of genes related to the biosynthesis of storage reserve compounds (starch, protein, and β-glucan) were analyzed, and their temporal and spatial patterns were deduced from the transcriptome data of cultivated barley Morex. Conclusions/Significance We established a sequences and functional annotation integrated database and examined the expression profiles of the developing grains of Tibetan hulless barley. The characterization of genes encoding storage proteins and enzymes of starch synthesis and (1–3;1–4)-β-D-glucan synthesis provided an overview of changes in gene expression associated with grain nutrition and health properties. Furthermore, the characterization of these genes provides a gene reservoir, which helps in quality improvement of hulless barley. PMID:24871534

  6. Effects of process parameters on the properties of barley containing snacks enriched with brewer's spent grain.

    PubMed

    Kirjoranta, Satu; Tenkanen, Maija; Jouppila, Kirsi

    2016-01-01

    Brewer's spent grain (BSG), a by-product of malting of barley in the production of malt extract, was used as an ingredient in extruded barley-based snacks in order to improve the nutritional value of the snacks and widen the applications of this by-product in food sector. The effects of the extrusion parameters on the selected properties of the snacks were studied. Snacks with different ingredients including whole grain barley flour, BSG, whey protein isolate (WPI), barley starch and waxy corn starch were produced in 5 separate trials using a co-rotating twin-screw extruder. Extrusion parameters were water content of the mass (17-23 %), screw speed (200-500 rpm) and temperature of the last section and die (110-150 °C). Expansion, hardness and water content of the snacks were determined. Snacks containing barley flour and BSG (10 % of solids) had small expansion and high hardness. Addition of WPI (20 % of solids) increased expansion only slightly. Snacks with high expansion and small hardness were obtained when part of the barley flour was replaced with starch (barley or waxy corn). Yet, the highest expansion and the smallest hardness were achieved when barley flour was used with barley starch and WPI without BSG. Furthermore, expansion increased by increasing screw speed and decreasing water content of the mass in most of the trials. This study showed that BSG is a suitable material for extruded snacks rich in dietary fiber. Physical properties of the snacks could be improved by using barley or waxy corn starch and WPI.

  7. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. © The Author 2016. Published by

  8. Bioactive phytochemicals in barley.

    PubMed

    Idehen, Emmanuel; Tang, Yao; Sang, Shengmin

    2017-01-01

    Epidemiological studies have consistently shown that regular consumption of whole grain barley reduces the risk of developing chronic diseases. The presence of barley fiber, especially β-glucan in whole grain barley, has been largely credited for these health benefits. However, it is now widely believed that the actions of the fiber component alone do not explain the observed health benefits associated with the consumption of whole grain barley. Whole grain barley also contains phytochemicals including phenolic acids, flavonoids, lignans, tocols, phytosterols, and folate. These phytochemicals exhibit strong antioxidant, antiproliferative, and cholesterol lowering abilities, which are potentially useful in lowering the risk of certain diseases. Therefore, the high concentration of phytochemicals in barley may be largely responsible for its health benefits. This paper reviews available information regarding barley phytochemicals and their potential to combat common nutrition-related diseases including cancer, cardiovascular disease, diabetes, and obesity. Copyright © 2016. Published by Elsevier B.V.

  9. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro disappearance and gas production for feedlot cattle.

    PubMed

    Tagawa, Shin-Ichi; Holtshausen, Lucia; McAllister, Tim A; Yang, Wen Zhu; Beauchemin, Karen Ann

    2017-04-01

    The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01). The DMD (g/kg DM) of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05) than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm). In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01) and tended to increase (p = 0.09) gas production and decreased (p<0.01) fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH), but consistent with Experiment 2, ENZ addition increased (p<0.01) DMD and gas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley

  10. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  11. The Application of Ultrasonic Inspection to Crimped Electrical Connections

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2010-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The development of a prototype instrument, based on a modified, commercially available, crimp tool, is demonstrated for applying this technique when wire crimps are installed. The crimp tool has three separate crimping locations that accommodate the three different ferrule diameters. The crimp tool in this study is capable of crimping wire diameters ranging from 12 to 26 American Wire Gauge (AWG). A transducer design is presented that allows for interrogation of each of the three crimp locations on the crimp tool without reconfiguring the device. An analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse is shown to correlate to both crimp location in the tool and the AWG of the crimp/ferrule combination. The detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, is discussed. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process.

  12. Tubing crimping pliers

    DOEpatents

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  13. A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination[W][OPEN

    PubMed Central

    Barrero, Jose M.; Downie, A. Bruce; Xu, Qian; Gubler, Frank

    2014-01-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8’-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  14. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding. PMID:26483818

  15. Method for hull-less barley transformation and manipulation of grain mixed-linkage beta-glucan.

    PubMed

    Lim, Wai Li; Collins, Helen M; Singh, Rohan R; Kibble, Natalie A J; Yap, Kuok; Taylor, Jillian; Fincher, Geoffrey B; Burton, Rachel A

    2018-05-01

    Hull-less barley is increasingly offering scope for breeding grains with improved characteristics for human nutrition; however, recalcitrance of hull-less cultivars to transformation has limited the use of these varieties. To overcome this limitation, we sought to develop an effective transformation system for hull-less barley using the cultivar Torrens. Torrens yielded a transformation efficiency of 1.8%, using a modified Agrobacterium transformation method. This method was used to over-express genes encoding synthases for the important dietary fiber component, (1,3;1,4)-β-glucan (mixed-linkage glucan), primarily present in starchy endosperm cell walls. Over-expression of the HvCslF6 gene, driven by an endosperm-specific promoter, produced lines where mixed-linkage glucan content increased on average by 45%, peaking at 70% in some lines, with smaller increases in transgenic HvCslH1 grain. Transgenic HvCslF6 lines displayed alterations where grain had a darker color, were more easily crushed than wild type and were smaller. This was associated with an enlarged cavity in the central endosperm and changes in cell morphology, including aleurone and sub-aleurone cells. This work provides proof-of-concept evidence that mixed-linkage glucan content in hull-less barley grain can be increased by over-expression of the HvCslF6 gene, but also indicates that hull-less cultivars may be more sensitive to attempts to modify cell wall composition. © 2017 Institute of Botany, Chinese Academy of Sciences.

  16. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  17. Comparison of Marginal Circumference of Two Different Pre-Crimped Stainless Steel Crowns for Primary Molars After Re-Crimping.

    PubMed

    Afshar, Hossein; Ghandehari, Mehdi; Soleimani, Banafsheh

    2015-12-01

    It is not clear what type of pre-crimped crown is more successful in achieving greater marginal adaptation following re-crimping. This study aimed to assess the changes in the circumference of 3M ESPE and MIB pre-crimped stainless steel crowns (SSCs) for the primary maxillary and mandibular first and second molars following re-crimping. This was an in-vitro, experimental study. Initial photographs were obtained from the margins of 3M and MIB SSCs for the upper and lower primary molars using a digital camera. Crown margins were crimped by applying 0.2N force using 114 and 137 pliers. Post-crimping photographs were also obtained and the changes in crown circumference after crimping were calculated using AutoCad software. The percentage of reduction in the circumference of crowns for each tooth was statistically analyzed based on the type of crown using student t-test. The effect of crown design and the associated teeth on the decreased circumference percentage was statistically analyzed by two-sided ANOVA. The percentage of reduction in lower E SSC circumference was 3.71±0.39% in MIB and 6.29±0.62% in 3M crowns. These values were 3.55±0.55% and 7.15±1.13% for the lower Ds, and 3.95±0.43 and 6.24±0.85% for the upper Ds, respectively. For the upper Es, these values were found to be 3.12±0.65% and 5.14±0.94%, respectively. For each tooth, a significant difference was found between MIB and 3M SSCs in terms of the percentage of reduction in crown circumference following crimping. The magnitude of this reduction was smaller in MIB compared to 3M SSCs (P<0.001). Considering the significant reduction in the marginal circumference of precrimped SSCs following re-crimping, it appears that this manipulation must be necessarily performed for MIB and 3M pre-crimped SSCs. By using 3M SSCs, higher marginal adaptation can be achieved following crimping.

  18. Comparison of Marginal Circumference of Two Different Pre-Crimped Stainless Steel Crowns for Primary Molars After Re-Crimping

    PubMed Central

    Afshar, Hossein; Ghandehari, Mehdi; Soleimani, Banafsheh

    2015-01-01

    Objectives: It is not clear what type of pre-crimped crown is more successful in achieving greater marginal adaptation following re-crimping. This study aimed to assess the changes in the circumference of 3M ESPE and MIB pre-crimped stainless steel crowns (SSCs) for the primary maxillary and mandibular first and second molars following re-crimping. Materials and Methods: This was an in-vitro, experimental study. Initial photographs were obtained from the margins of 3M and MIB SSCs for the upper and lower primary molars using a digital camera. Crown margins were crimped by applying 0.2N force using 114 and 137 pliers. Post-crimping photographs were also obtained and the changes in crown circumference after crimping were calculated using AutoCad software. The percentage of reduction in the circumference of crowns for each tooth was statistically analyzed based on the type of crown using student t-test. The effect of crown design and the associated teeth on the decreased circumference percentage was statistically analyzed by two-sided ANOVA. Results: The percentage of reduction in lower E SSC circumference was 3.71±0.39% in MIB and 6.29±0.62% in 3M crowns. These values were 3.55±0.55% and 7.15±1.13% for the lower Ds, and 3.95±0.43 and 6.24±0.85% for the upper Ds, respectively. For the upper Es, these values were found to be 3.12±0.65% and 5.14±0.94%, respectively. For each tooth, a significant difference was found between MIB and 3M SSCs in terms of the percentage of reduction in crown circumference following crimping. The magnitude of this reduction was smaller in MIB compared to 3M SSCs (P<0.001). Conclusion: Considering the significant reduction in the marginal circumference of precrimped SSCs following re-crimping, it appears that this manipulation must be necessarily performed for MIB and 3M pre-crimped SSCs. By using 3M SSCs, higher marginal adaptation can be achieved following crimping. PMID:27559353

  19. Differential triazole sensitivity among members of the Fusarium graminearum species complex infecting barley grains in Brazil

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight (FHB) is an important disease of small grains and is caused mainly by members of the Fusarium graminearum species complex (FGSC). Barley growers in Brazil rely on fungicides, especially triazoles, to suppress the disease and limit mycotoxin contamination of grain. Information on...

  20. Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential.

    PubMed

    Sultan, Abida; Frisvad, Jens C; Andersen, Birgit; Svensson, Birte; Finnie, Christine

    2017-10-03

    The indigenous fungal species populating cereal grains produce numerous plant cell wall-degrading enzymes including xylanases, which could play important role in plant-pathogen interactions and in adaptation of the fungi to varying carbon sources. To gain more insight into the grain surface-associated enzyme activity, members of the populating fungal community were isolated, and their secretomes and xylanolytic activities assessed. Twenty-seven different fungal species were isolated from grains of six barley cultivars over different harvest years and growing sites. The isolated fungi were grown on medium containing barley flour or wheat arabinoxylan as sole carbon source. Their secretomes and xylanase activities were analyzed using SDS-PAGE and enzyme assays and were found to vary according to species and carbon source. Secretomes were dominated by cell wall degrading enzymes with xylanases and xylanolytic enzymes being the most abundant. A 2-DE-based secretome analysis of Aspergillus niger and the less-studied pathogenic fungus Fusarium poae grown on barley flour and wheat arabinoxylan resulted in identification of 82 A. niger and 31 F. poae proteins many of which were hydrolytic enzymes, including xylanases. The microorganisms that inhabit the surface of cereal grains are specialized in production of enzymes such as xylanases, which depolymerize plant cell walls. Integration of gel-based proteomics approach with activity assays is a powerful tool for analysis and characterization of fungal secretomes and xylanolytic activities which can lead to identification of new enzymes with interesting properties, as well as provide insight into plant-fungal interactions, fungal pathogenicity and adaptation. Understanding the fungal response to host niche is of importance to uncover novel targets for potential symbionts, anti-fungal agents and biotechnical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Investigation of the Germination of Barley and Wheat Grains with a Design of Experiments for the Production of Hydrolases

    PubMed Central

    Kranz, Bertolt; Koch, Milena; Schapfl, Matthias

    2015-01-01

    Summary The production of hydrolases from cereals has been examined in order to investigate food-derived enzymes as an alternative source to microbial enzymes for the use in food processes. For that, the influence of temperature on the pretreatment, imbibition and germination of barley and wheat grains was determined by measuring the β-glucosidase, β-galactosidase and lipase activities using a design of experiments. The evaluation of the statistical model showed an increase of the β-glucosidase activity with low imbibition and low germination temperature for barley grains and low imbibition and high germination temperature for wheat grains. The maximum β-glucosidase activity in wheat extracts was (585±151) nkat per g of dry mass (dm), while in barley extracts it was (109±15) nkat per g of dm. The maximum β-galactosidase activities in barley and wheat extracts were (34±12) and (63±23) nkat per g of dm, respectively. The maximum lipase activities of (6.7±0.1) and (4.6±4.4) nkat per g of dm in barley and wheat extracts, respectively, were rather low compared to the glycosidase activities. The extracts were also tested for other hydrolase activities (e.g. peptidase and α-amylase activities). The insights obtained enable the basis for the potential use of cereal hydrolases in food processing, which might be attractive to consumers. PMID:27904341

  2. Ultrasonic Inspection to Quantify Failure Pathologies of Crimped Electrical Connections

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2014-01-01

    Previous work has shown that ultrasonic inspection provides a means of assessing electrical crimp quality that ensures the electrical and mechanical integrity of an initial crimp before the installation process is completed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination was shown to correlate with the results of destructive pull tests, which is a standard for assessing crimp wire junction quality. Of additional concern are crimps made at high speed assembly lines for wiring harnesses, which are used for critical applications, such as in aircraft. During high-speed assembly it is possible that many faulty crimps go undetected until long after assembly, and fail in service. The position and speed of the crimping jaw become factors as the high-speed crimp is formed. The work presented in this paper is designed to cover the more difficult and more subtle area of high-speed crimps by taking into account the rate change of the measurements. Building on the previous work, we present an analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse that is shown to correlate to the gauge of the crimp/ferrule combination and the position of the crimping jaw. Results demonstrating the detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, are presented. The ability of this technique to estimate crimp height, a mechanical measure of crimp quality, is discussed.

  3. Ultrasonic inspection to quantify failure pathologies of crimped electrical connections

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2015-03-01

    Previous work has shown that ultrasonic inspection provides a means of assessing electrical crimp quality that ensures the electrical and mechanical integrity of an initial crimp before the installation process is completed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination was shown to correlate with the results of destructive pull tests, which is a standard for assessing crimp wire junction quality. Of additional concern are crimps made at high speed assembly lines for wiring harnesses, which are used for critical applications, such as in aircraft. During high-speed assembly it is possible that many faulty crimps go undetected until long after assembly, and fail in service. The position and speed of the crimping jaw become factors as the high-speed crimp is formed. The work presented in this paper is designed to cover the more difficult and more subtle area of high-speed crimps by taking into account the rate change of the measurements. Building on the previous work, we present an analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse that is shown to correlate to the gauge of the crimp/ferrule combination and the position of the crimping jaw. Results demonstrating the detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, are presented. The ability of this technique to estimate crimp height, a mechanical measure of crimp quality, is discussed.

  4. Influence of barley grain treated with alkaline compounds or organic extracts on ex vivo site and extent of digestion of starch.

    PubMed

    Naseroleslami, Reza; Mesgaran, Mohsen Danesh; Tahmasbi, Abdolmansour; Vakili, Seyed Alireza; Ebrahimi, Seyed Hadi

    2018-02-01

    Two e x vivo experiments were conducted to verify the effect of barley grain ( Nusrat cultivar ) treated with alkaline compounds (AC) including alum, ammonium, and sodium hydroxide or cation-exchanged organic extracts (OE) prepared from alfalfa hay, sugar beet pulp and Ulva Fasciata , on extent and digestion of starch. In the first study, the in vitro first order disappearance kinetic parameters of dry matter (DM), crude protein (CP) and starch were estimated using a non-linear model (D (t) = D (i) · e (-k d · time) + I, where: D (t) = potentially digestible residues at any time, D (i) = potentially digestible fraction at any time, k d = fractional rate constant of digestion (/h), I = indigestible fraction at any time). In the second experiment, the ruminal and post-ruminal disappearance of DM, CP, and starch were determined using in situ mobile nylon bag. Barley grains treated with alum and alfalfa extract had a higher constant rate of starch digestion (0.11 and 0.09/h) than others. Barley grain treated with OE had a higher constant rate of CP digestion and that of treated with AC had a higher constant rate of starch digestion (0.08 and 0.11/h) compared with those of the other treatments. The indigestible fraction of starch treated with alum and sugar beet pulp extract was higher than that of the control group (0.24 and 0.25 vs 0.21). Barley grain treated with AC and OE had significant CP disappearance in the rumen, post-rumen and total tract, and also starch disappearance for post-rumen and total tract compared with the untreated (p<0.001). This study demonstrated that AC and OE might have positive effects on the starch degradation of the barley grain. In addition, treating barley grain with alum and sugar beet pulp extract could change the site and extend digestion of protein and starch.

  5. Influence of barley grain treated with alkaline compounds or organic extracts on ex vivo site and extent of digestion of starch

    PubMed Central

    Vakili, Seyed Alireza

    2018-01-01

    Objective Two ex vivo experiments were conducted to verify the effect of barley grain (Nusrat cultivar) treated with alkaline compounds (AC) including alum, ammonium, and sodium hydroxide or cation-exchanged organic extracts (OE) prepared from alfalfa hay, sugar beet pulp and Ulva Fasciata, on extent and digestion of starch. Methods In the first study, the in vitro first order disappearance kinetic parameters of dry matter (DM), crude protein (CP) and starch were estimated using a non-linear model (D(t) = D(i) · e(−kd · time) + I, where: D(t) = potentially digestible residues at any time, D(i) = potentially digestible fraction at any time, kd = fractional rate constant of digestion (/h), I = indigestible fraction at any time). In the second experiment, the ruminal and post-ruminal disappearance of DM, CP, and starch were determined using in situ mobile nylon bag. Results Barley grains treated with alum and alfalfa extract had a higher constant rate of starch digestion (0.11 and 0.09/h) than others. Barley grain treated with OE had a higher constant rate of CP digestion and that of treated with AC had a higher constant rate of starch digestion (0.08 and 0.11/h) compared with those of the other treatments. The indigestible fraction of starch treated with alum and sugar beet pulp extract was higher than that of the control group (0.24 and 0.25 vs 0.21). Barley grain treated with AC and OE had significant CP disappearance in the rumen, post-rumen and total tract, and also starch disappearance for post-rumen and total tract compared with the untreated (p<0.001). Conclusion This study demonstrated that AC and OE might have positive effects on the starch degradation of the barley grain. In addition, treating barley grain with alum and sugar beet pulp extract could change the site and extend digestion of protein and starch. PMID:28728361

  6. Supplements of transgenic malt or grain containing (1,3-1,4)-beta-glucanase increase the nutritive value of barley-based broiler diets to that of maize.

    PubMed

    Von Wettstein, D; Warner, J; Kannangara, C G

    2003-07-01

    1. A diet with addition to normal barley of malt from transgenic barley expressing a protein engineered, thermotolerant Bacillus (1,3-1,4)-beta-glucanase during germination has previously been demonstrated to provide a broiler chicken weight gain comparable to maize diets. It also reduced dramatically the number of birds with adhering sticky droppings, but did not entirely eliminate sticky droppings. One of the objectives of the broiler chicken trials reported here was to determine if higher concentrations of transgenic malt could alleviate the sticky droppings. 2. Another aim was to investigate the feasibility of using mature transgenic grain containing the thermotolerant (1,3-1,4)-beta-glucanase as feed addition and to compare diets containing transgenic grain to a diet with the recommended amount of a commercial beta-glucanase-based product. 3. Inclusion of 75 or 151 g/kg transgenic malt containing 4.7 or 98 mg/kg thermotolerant (1,3-1,4)-beta-glucanase with 545 or 469 g/kg non-transgenic barley instead of maize yielded a weight gain in Cornish Cross broiler chickens indistinguishable from presently used maize diets. The gene encoding the enzyme is expressed in the aleurone with a barley alpha-amylase gene promoter and the enzyme is synthesised with a signal peptide for secretion into the endosperm of the malting grain. 4. Equal weight gain was achieved, when the feed included 39 g/kg transgenic barley grain [containing 66 mg/kg thermotolerant (1,3-1,4)-beta-glucanase] and 581 g/kg non-transgenic barley instead of maize. In this case, the gene encoding the enzyme has been expressed with the D-hordein gene (Hor3-1) promoter during grain maturation. The enzyme is synthesised as a precursor with a signal peptide for transport through the endoplasmic reticulum and targeted into the storage vacuoles. Deposition of the enzyme in the prolamin storage protein bodies of the endosperm protects it from degradation during the programmed cell death of the endosperm in the

  7. Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows.

    PubMed

    Iqbal, S; Zebeli, Q; Mazzolari, A; Bertoni, G; Dunn, S M; Yang, W Z; Ametaj, B N

    2009-12-01

    The objectives of the present in vivo and in situ trials were to evaluate whether feeding barley grain steeped in lactic acid (LA) would affect rumen fermentation patterns, in situ dry matter (DM) degradation kinetics, and milk production and composition in lactating dairy cows. The in vivo trial involved 8 rumen-fistulated Holstein cows fed once daily a total mixed ration containing rolled barley grain (27% in DM) steeped for 48 h in an equal quantity of tap water (CTR) or in 0.5% LA (TRT) in a 2 x 2 crossover design. The in situ trials consisted of incubation of untreated rolled barley grain in cows fed CTR or TRT diets and of incubation of 3 different substrates including CTR or barley grain steeped in 0.5% or 1.0% LA (TRT1 and TRT2, respectively) up to 72 h in the rumen. Results of the in vivo trial indicated that cows fed the TRT diet had greater rumen pH during most intensive fermentation phases at 10 and 12 h post-feeding. The latter effect was associated with a shorter duration in which rumen pH was below 5.8 for cows fed the TRT diet (2.4 h) compared with CTR diet (3.9 h). Furthermore, cows fed the TRT diet had lower concentrations of volatile fatty acids at 2 and 4 h post-feeding. In addition, concentrations of preprandial volatile fatty acids were lower in the rumen fluid of cows fed the TRT diet. Results also showed that molar proportion of acetate was lower, whereas propionate tended to increase by feeding cows the TRT diet. Cows fed the TRT diet demonstrated greater rumen in situ lag time of substrate DM degradation and a tendency to lower the fractional degradation rate. Other in situ results indicated a quadratic effect of LA on the effective rumen degradability of substrates whereby the latter variable was decreased from CTR to TRT1 but increased for TRT2 substrate. Although the diet did not affect actual milk yield, fat-corrected milk, percentages of milk protein, and lactose and concentration of milk urea nitrogen, cows fed the TRT diet increased

  8. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that...

  9. Fungal community, Fusarium head blight complex and secondary metabolites associated with malting barley grains harvested in Umbria, central Italy.

    PubMed

    Beccari, Giovanni; Senatore, Maria Teresa; Tini, Francesco; Sulyok, Michael; Covarelli, Lorenzo

    2018-05-20

    In recent years, due to the negative impact of toxigenic mycobiota and of the accumulation of their secondary metabolites in malting barley grains, monitoring the evolution of fungal communities in a certain cultivation area as well as detecting the different mycotoxins present in the raw material prior to malting and brewing processes have become increasingly important. In this study, a survey was carried out on malting barley samples collected after their harvest in the Umbria region (central Italy). Samples were analyzed to determine the composition of the fungal community, to identify the isolated Fusarium species, to quantify fungal secondary metabolites in the grains and to characterize the in vitro mycotoxigenic profile of a subset of the isolated Fusarium strains. The fungal community of barley grains was mainly composed of microorganisms belonging to the genus Alternaria (77%), followed by those belonging to the genus Fusarium (27%). The Fusarium head blight (FHB) complex was represented by nine species with the predominance of Fusarium poae (37%), followed by Fusarium avenaceum (23%), Fusarium graminearum (22%) and Fusarium tricinctum (7%). Secondary metabolites biosynthesized by Alternaria and Fusarium species were present in the analyzed grains. Among those biosynthesized by Fusarium species, nivalenol and enniatins were the most prevalent ones. Type A trichothecenes (T-2 and HT-2 toxins) as well as beauvericin were also present with a high incidence. Conversely, the number of samples contaminated with deoxynivalenol was low. Conjugated forms, such as deoxynivalenol-3-glucoside and HT-2-glucoside, were detected for the first time in malting barley grains cultivated in the surveyed area. In addition, strains of F. avenaceum and F. tricinctum showed the ability to biosynthesize in vitro high concentrations of enniatins. The analysis of fungal secondary metabolites, both in the grains and in vitro, revealed also the presence of other compounds, for which

  10. Confined Tube Crimp Using Portable Hand Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Joseph James; Pereyra, R. A.; Archuleta, Jeffrey Christopher

    2016-04-04

    The Lawrence Radiation Laboratory developed handheld tools that crimp a 1/16 inch OD tube, forming a leak tight seal1 (see Figure 1). The leak tight seal forms by confining the 1/16 inch OD tubing inside a die while applying crimp pressure. Under confined pressure, the tube walls weld at the crimp. The purpose of this study was to determine conditions for fabricating a leak tight tube weld. The equipment was used on a trial-and-error basis, changing the conditions after each attempt until successful welds were fabricated. To better confine the tube, the die faces were polished. Polishing removed a fewmore » thousandths of an inch from the die face, resulting in a tighter grip on the tubing wall. Using detergent in an ultrasonic bath, the tubing was cleaned. Also, the time under crimp pressure was increased to 30 seconds. With these modifications, acceptable cold welds were fabricated. After setting the conditions for an acceptable cold weld, the tube was TIG welded across the crimped face.« less

  11. Label-free proteome profiling reveals developmental-dependent patterns in young barley grains.

    PubMed

    Kaspar-Schoenefeld, Stephanie; Merx, Kathleen; Jozefowicz, Anna Maria; Hartmann, Anja; Seiffert, Udo; Weschke, Winfriede; Matros, Andrea; Mock, Hans-Peter

    2016-06-30

    Due to its importance as a cereal crop worldwide, high interest in the determination of factors influencing barley grain quality exists. This study focusses on the elucidation of protein networks affecting early grain developmental processes. NanoLC-based separation coupled to label-free MS detection was applied to gain insights into biochemical processes during five different grain developmental phases (pre-storage until storage phase, 3days to 16days after flowering). Multivariate statistics revealed two distinct developmental patterns during the analysed grain developmental phases: proteins showed either highest abundance in the middle phase of development - in the transition phase - or at later developmental stages - within the storage phase. Verification of developmental patterns observed by proteomic analysis was done by applying hypothesis-driven approaches, namely Western Blot analysis and enzyme assays. High general metabolic activity of the grain with regard to protein synthesis, cell cycle regulation, defence against oxidative stress, and energy production via photosynthesis was observed in the transition phase. Proteins upregulated in the storage phase are related towards storage protein accumulation, and interestingly to the defence of storage reserves against pathogens. A mixed regulatory pattern for most enzymes detected in our study points to regulatory mechanisms at the level of protein isoforms. In-depth understanding of early grain developmental processes of cereal caryopses is of high importance as they influence final grain weight and quality. Our knowledge about these processes is still limited, especially on proteome level. To identify key mechanisms in early barley grain development, a label-free data-independent proteomics acquisition approach has been applied. Our data clearly show, that proteins either exhibit highest expression during cellularization and the switch to the storage phase (transition phase, 5-7 DAF), or during storage

  12. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang

    2012-05-01

    Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research

  13. Effect of sprouted barley grain supplementation of an herbage or haylage diet on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG), with a pasture (orchardgrass) or haylage diet, on nutrient digestibility, VFA production, bacterial protein synthesis, and methane production. Treatmen...

  14. Over-expression of (1,3;1,4)-β-D-glucanase isoenzyme EII gene results in decreased (1,3;1,4)-β-D-glucan content and increased starch level in barley grains.

    PubMed

    Han, Ning; Na, Chenglong; Chai, Yuqiong; Chen, Jianshu; Zhang, Zhongbo; Bai, Bin; Bian, Hongwu; Zhang, Yuhong; Zhu, Muyuan

    2017-01-01

    High content of (1,3;1,4)-β-d-glucan in barley grains is regarded as an undesirable factor affecting malting potential, brewing yield and feed utilization. Production of thermostable bacterial (1,3;1,4)-β-glucanase in transgenic barley grain or supplementation of exogenous bacterial (1,3;1,4)-β-glucanase has been used to improve malt and feed quality. The aim of the present study was to investigate the effect of over-expression of an endogenous (1,3;1,4)-β-glucanase on β-glucan content and grain composition in barley. A construct containing full-length HvGlb2 cDNA encoding barley (1,3;1,4)-β-glucanase isoenzyme EII under the control of a promoter of barley D-Hordein gene Hor3-1 was introduced into barley cultivar Golden Promise via Agrobacterium-mediated transformation, and transgenic plants were regenerated after hygromycin selection. The T 2 generation of proHor3:HvGlb2 transgenic lines showed increased activity of (1,3;1,4)-β-glucanase in grains. Total β-glucan content was reduced by more than 95.73% in transgenic grains compared with the wild-type control. Meanwhile, over-expression of (1,3;1,4)-β-glucanase led to an increase in 1000-grain weight, which might be due to elevated amounts of starch in the grain. Manipulating the expression of (1,3;1,4)-β-glucanase EII can control the β-glucan content in grain with no apparent harmful effects on grain quality of transgenic plants. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Ultrasonics Equipped Crimp Tool: A New Technology for Aircraft Wiring Safety

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Perey, Daniel F.; Cramer, Elliott

    2006-01-01

    We report on the development of a new measurement technique to quantitatively assess the condition of wire crimp connections. This ultrasonic (UT) method transmits high frequency sound waves through the joint under inspection. The wire-crimp region filters and scatters the ultrasonic energy as it passes through the crimp and wire. The resulting output (both time and frequency domains) provides a quantitative measure of the joint quality that is independent and unaffected by current. Crimps of poor mechanical and electrical quality will result in low temporal output and will distort the spectrum into unique and predictable patterns, depending on crimp "quality". This inexpensive, real-time measurement system can provide certification of crimps as they are made and recertification of existing wire crimps currently in service. The measurements for re-certification do not require that the wire be disconnected from its circuit. No other technology exists to measure in-situ the condition of wire joints (no electrical currents through the crimp are used in this analytical technique). We discuss the signals obtained from this instrument, and correlate these signals with destructive wire pull tests.

  16. Development of predictive models for total phenolics and free p-coumaric acid contents in barley grain by near-infrared spectroscopy.

    PubMed

    Han, Zhigang; Cai, Shengguan; Zhang, Xuelei; Qian, Qiufeng; Huang, Yuqing; Dai, Fei; Zhang, Guoping

    2017-07-15

    Barley grains are rich in phenolic compounds, which are associated with reduced risk of chronic diseases. Development of barley cultivars with high phenolic acid content has become one of the main objectives in breeding programs. A rapid and accurate method for measuring phenolic compounds would be helpful for crop breeding. We developed predictive models for both total phenolics (TPC) and p-coumaric acid (PA), based on near-infrared spectroscopy (NIRS) analysis. Regressions of partial least squares (PLS) and least squares support vector machine (LS-SVM) were compared for improving the models, and Monte Carlo-Uninformative Variable Elimination (MC-UVE) was applied to select informative wavelengths. The optimal calibration models generated high coefficients of correlation (r pre ) and ratio performance deviation (RPD) for TPC and PA. These results indicated the models are suitable for rapid determination of phenolic compounds in barley grains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Compositional Analysis of Whole Grains, Processed Grains, Grain Co-Products, and Other Carbohydrate Sources with Applicability to Pet Animal Nutrition

    PubMed Central

    Beloshapka, Alison N.; Buff, Preston R.; Fahey, George C.; Swanson, Kelly S.

    2016-01-01

    Our objective was to measure the proximate, starch, amino acid, and mineral compositions of grains, grain co-products, and other carbohydrate sources with potential use in pet foods. Thirty-two samples from barley (barley flake, cut barley, ground pearled barley, malted barley, whole pearled barley, pearled barley flakes, and steamed rolled barley); oats (groats, ground oatmeal, ground steamed groats, instant oats, oat bran, oat fiber, oat flour, quick oats, regular rolled oats, steamed rolled oat groats, and steel cut groats); rice (brown rice, polished rice, defatted rice bran, and rice flour); and miscellaneous carbohydrate sources (canary grass seed, hulled millet, whole millet, quinoa, organic spelt hull pellets, potato flake, sorghum, whole wheat, and whole yellow corn) were analyzed. Crude protein, amino acid, fat, dietary fiber, resistant starch, and mineral concentrations were highly variable among the respective fractions (i.e., barley flake vs. malted barley vs. steamed rolled barley) as well as among the various grains (i.e., barley flake vs. brown rice vs. canary grass seed). These ingredients not only provide a readily available energy source, but also a source of dietary fiber, resistant starch, essential amino acids, and macrominerals for pet diets. PMID:28231117

  18. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    PubMed Central

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  19. Murciano-Granadina Goat Performance and Methane Emission after Replacing Barley Grain with Fibrous By-Products.

    PubMed

    Ibáñez, Carla; Criscioni, Patricia; Arriaga, Haritz; Merino, Pilar; Espinós, Francisco Juan; Fernández, Carlos

    2016-01-01

    The aim of this experiment was to study the effects of substituting dietary barley grain with orange pulp or soybean hulls on energy, nitrogen and carbon balance, methane emission and milk performance in dairy goats. Twelve Murciano-Granadina dairy goats in midlactation were selected and divided into three groups based on similar body weight (42.1 ± 1.2 kg) and milk yield (2.16 ± 0.060 kg/goat/day). The experiment was conducted in an incomplete crossover design where one group of four goats was fed a mixed ration of barley grain (BRL), another group of four goats replaced barley grain with orange pulp (OP) and the last group of four goats with soybean hulls (SH). After adaptation to diets, the goats were allocated to individual metabolism cages and intake, faeces, urine and milk were recorded and analysed. Then, gas exchange measurements were recorded by a mobile open-circuit indirect calorimetry system using a head box. Dry matter intake was similar for all three groups (2.03 kg/d, on average). No influence of the diet was observed for energy balance and the efficiency of use of metabolizable energy for milk production was 0.61. The OP and SH diets showed greater (P < 0.05) fat mobilization (-42.8 kJ/kg of BW0.75, on average) than BRL (19.2 kJ/kg of BW0.75). Pentadecanoic acid (15:0) and heptadecanoic acid (17:0) were potential biomarkers of rumen function because the higher contents found in the milk of OP and SH goats than BRL suggest a negative impact of these diets on rumen bacterial metabolism; probably linked to the lower nitrogen supply of diet OP to synthesize microbial protein and greater content of fat in diet SH. Replacement of cereal grain with fibrous by-products did not increased enteric methane emissions (54.7 L/goat per day, on average). Therefore, lactating goats could utilize dry orange pulp and soybean hulls diets with no detrimental effect on milk performance.

  20. Murciano-Granadina Goat Performance and Methane Emission after Replacing Barley Grain with Fibrous By-Products

    PubMed Central

    Ibáñez, Carla; Criscioni, Patricia; Arriaga, Haritz; Merino, Pilar; Espinós, Francisco Juan; Fernández, Carlos

    2016-01-01

    The aim of this experiment was to study the effects of substituting dietary barley grain with orange pulp or soybean hulls on energy, nitrogen and carbon balance, methane emission and milk performance in dairy goats. Twelve Murciano-Granadina dairy goats in midlactation were selected and divided into three groups based on similar body weight (42.1 ± 1.2 kg) and milk yield (2.16 ± 0.060 kg/goat/day). The experiment was conducted in an incomplete crossover design where one group of four goats was fed a mixed ration of barley grain (BRL), another group of four goats replaced barley grain with orange pulp (OP) and the last group of four goats with soybean hulls (SH). After adaptation to diets, the goats were allocated to individual metabolism cages and intake, faeces, urine and milk were recorded and analysed. Then, gas exchange measurements were recorded by a mobile open-circuit indirect calorimetry system using a head box. Dry matter intake was similar for all three groups (2.03 kg/d, on average). No influence of the diet was observed for energy balance and the efficiency of use of metabolizable energy for milk production was 0.61. The OP and SH diets showed greater (P < 0.05) fat mobilization (-42.8 kJ/kg of BW0.75, on average) than BRL (19.2 kJ/kg of BW0.75). Pentadecanoic acid (15:0) and heptadecanoic acid (17:0) were potential biomarkers of rumen function because the higher contents found in the milk of OP and SH goats than BRL suggest a negative impact of these diets on rumen bacterial metabolism; probably linked to the lower nitrogen supply of diet OP to synthesize microbial protein and greater content of fat in diet SH. Replacement of cereal grain with fibrous by-products did not increased enteric methane emissions (54.7 L/goat per day, on average). Therefore, lactating goats could utilize dry orange pulp and soybean hulls diets with no detrimental effect on milk performance. PMID:26983120

  1. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs.

    PubMed

    Holme, Inger B; Wendt, Toni; Gil-Humanes, Javier; Deleuran, Lise C; Starker, Colby G; Voytas, Daniel F; Brinch-Pedersen, Henrik

    2017-09-01

    In the present study, we utilized TALEN- and CRISPR/Cas9-induced mutations to analyze the promoter of the barley phytase gene HvPAPhy_a. The purpose of the study was dual, validation of the PAPhy_a enzyme as the main contributor of the mature grain phytase activity (MGPA), as well as validating the importance of a specific promoter region of the PAPhy_a gene which contains three overlapping cis-acting regulatory elements (GCN4, Skn1 and the RY-element) known to be involved in gene expression during grain filling. The results confirm that the barley PAPhy_a enzyme is the main contributor to the MGPA as grains of knock-out lines show very low MGPA. Additionally, the analysis of the HvPAPhy_a promoter region containing the GCN4/Skn1/RY motif highlights its importance for HvPAPhy_a expression as the MGPA in grains of plant lines with mutations within this motif is significantly reduced. Interestingly, lines with deletions located downstream of the motif show even lower MGPA levels, indicating that the GCN4/SKn1/RY motif is not the only element responsible for the level of PAPhy_a expression during grain maturation. Mutant grains with very low MPGA showed delayed germination as compared to grains of wild type barley. As grains with high levels of preformed phytases would provide more readily available phosphorous needed for a fast germination, this indicates that faster germination may be implicated in the positive selection of the ancient PAPhy gene duplication that lead to the creation of the PAPhy_a gene.

  2. Sprouted barley for dairy cows: Nutritional composition and digestibility

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley or barley grain with an haylage or pasture diet on nutrient digestibility and methane output. Barley grain was sprouted in climate controlled growth chambers, to be used as part ...

  3. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    PubMed

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  4. Spatio-Temporal Dynamics of Fructan Metabolism in Developing Barley Grains[W

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Peshev, Darin; Weschke, Winfriede; Van den Ende, Wim; Mock, Hans-Peter; Matros, Andrea

    2014-01-01

    Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase. PMID:25271242

  5. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  6. A Method For The Verification Of Wire Crimp Compression Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Perey, Daniel F.; Yost, William t.

    2010-01-01

    The development of a new ultrasonic measurement technique to assess quantitatively wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. To demonstrate the technique, the case of incomplete compression of crimped connections is ultrasonically tested, and the results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently predicts good crimps when the ultrasonic transmission is above a certain threshold amplitude level. A quantitative measure of the quality of the crimped connection based on the ultrasonic energy transmitted is shown to respond accurately to crimp quality. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. A comparison of the results of two different instruments is presented and shows reproducibility between instruments within a 95% confidence bound.

  7. Interactions between barley grain processing and source of supplemental dietary fat on nitrogen metabolism and urea-nitrogen recycling in dairy cows.

    PubMed

    Gozho, G N; Hobin, M R; Mutsvangwa, T

    2008-01-01

    The objective of this study was to determine the effects of methods of barley grain processing and source of supplemental fat on urea-N transfer to the gastrointestinal tract (GIT) and the utilization of this recycled urea-N in lactating dairy cows. Four ruminally cannulated Holstein cows (656.3 +/- 27.7 kg of BW; 79.8 +/- 12.3 d in milk) were used in a 4 x 4 Latin square design with 28-d periods and a 2 x 2 factorial arrangement of dietary treatments. Experimental diets contained dry-rolled barley or pelleted barley in combination with whole canola or whole flaxseed as supplemental fat sources. Nitrogen balance was measured from d 15 to 19, with concurrent measurements of urea-N kinetics using continuous intrajugular infusions of [15N 15N]-urea. Dry matter intake and N intake were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Nitrogen retention was not affected by diet, but fecal N excretion was higher in cows fed dry-rolled barley than in those fed pelleted barley. Actual and energy-corrected milk yield were not affected by diet. Milk fat content and milk fat yield were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Source of supplemental fat did not affect urea-N kinetics. Urea-N production was higher (442.2 vs. 334.3 g of N/d), and urea-N entering the GIT tended to be higher (272.9 vs. 202.0 g of N/d), in cows fed dry-rolled barley compared with those fed pelleted barley. The amount of urea-N entry into the GIT that was returned to the ornithine cycle was higher (204.1 vs. 159.5 g of N/d) in cows fed dry-rolled barley than in pelleted barley-fed cows. The amount of urea-N recycled to the GIT and used for anabolic purposes, and the amounts lost in the urine or feces were not affected by dietary treatment. Microbial nonammonia N supply, estimated using total urinary excretion of purine derivatives, was not affected by diet. These results show that even though barley grain processing altered urea

  8. Effect of sprouted barley grain supplementation of an herbage-based or haylage-based diet on ruminal fermentation and methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane outp...

  9. Starch accumulation in hulless barley during grain filling.

    PubMed

    Zheng, Xu-Guang; Qi, Jun-Cang; Hui, Hong-Shan; Lin, Li-Hao; Wang, Feng

    2017-12-01

    Starch consists of two types of molecules: amylose and amylopectin. The objective of this study was increase understanding about mechanisms related to starch accumulation in hulless barley (Hordeum vulgare L.) grain by measuring temporal changes in (i) grain amylose and amylopectin content, (ii) starch synthase activity, and (iii) the relative expressions of key starch-related genes. The amylopectin/amylose ratio gradually declined in both Beiqing 6 and Kunlun 12. In both cultivars, the activities of adenosine diphosphate glucose pyrophosphorylase, soluble starch synthase (SSS), granule bound starch synthase (GBSS), and starch branching enzyme (SBE) increased steadily during grain filling, reaching their maximums 20-25 days after anthesis. The activities of SSS and SBE were greater in Ganken 5 than in either Beiqing 6 or Kunlun 12. The expression of GBSS I was greater in Beiqing 6 and Kunlun 12 than in Ganken 5. In contrast, the expression of SSS I, SSS II and SBE I was greater in Ganken 5 than in Beiqing 6 and Kunlun 12. The peak in GBSS I expression was later than that of SSS I, SSS II, SBE IIa and SBE IIb. The GBSS I transcript in Kunlun 12 was expressed on average 90 times more than the GBSS II transcript. The results suggest that SBE and SSS may control starch synthesis at the transcriptional level, whereas GBSS I may control starch synthesis at the post transcriptional level. GBSS I is mainly responsible for amylose synthesis whereas SSS I and SBE II are mainly responsible for amylopectin synthesis in amyloplasts.

  10. QTL controlling grain filling under terminal drought stress in a set of wild barley introgression lines.

    PubMed

    Honsdorf, Nora; March, Timothy J; Pillen, Klaus

    2017-01-01

    Drought is a major abiotic stress impeding the yield of cereal crops globally. Particularly in Mediterranean environments, water becomes a limiting factor during the reproductive developmental stage, causing yield losses. The wild progenitor of cultivated barley Hordeum vulgare ssp spontaneum (Hsp) is a potentially useful source of drought tolerance alleles. Wild barley introgression lines like the S42IL library may facilitate the introduction of favorable exotic alleles into breeding material. The complete set of 83 S42ILs was genotyped with the barley 9k iSelect platform in order to complete genetic information obtained in previous studies. The new map comprises 2,487 SNPs, spanning 989.8 cM and covering 94.5% of the Hsp genome. Extent and positions of introgressions were confirmed and new information for ten additional S42ILs was collected. A subset of 49 S42ILs was evaluated for drought response in four greenhouse experiments. Plants were grown under well-watered conditions until ten days post anthesis. Subsequently drought treatment was applied by reducing the available water. Several morphological and harvest parameters were evaluated. Under drought treatment, trait performance was reduced. However, there was no interaction effect between genotype and treatment, indicating that genotypes, which performed best under control treatment, also performed best under drought treatment. In total, 40 QTL for seven traits were detected in this study. For instance, favorable Hsp effects were found for thousand grain weight (TGW) and number of grains per ear under drought stress. In particular, line S42IL-121 is a promising candidate for breeding improved malting cultivars, displaying a TGW, which was increased by 17% under terminal drought stress due to the presence of an unknown wild barley QTL allele on chromosome 4H. The introgression line showed a similar advantage in previous field experiments and in greenhouse experiments under early drought stress. We, thus

  11. Crimp sealing of tubes flush with or below a fixed surface

    DOEpatents

    Fischer, Jon E.; Walmsley, Don; Wapman, P. Derek

    1996-01-01

    An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes.

  12. Crimp sealing of tubes flush with or below a fixed surface

    DOEpatents

    Fischer, J.E.; Walmsley, D.; Wapman, P.D.

    1996-08-20

    An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. 8 figs.

  13. HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination1

    PubMed Central

    Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia

    2016-01-01

    Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. PMID:26912343

  14. HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination.

    PubMed

    Diaz-Mendoza, Mercedes; Dominguez-Figueroa, Jose D; Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia; Hensel, Goetz; Kumlehn, Jochen; Diaz, Isabel; Martinez, Manuel

    2016-04-01

    Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for...

  16. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming. © 2013 Elsevier Inc. All rights reserved.

  17. Effects of ensiling cereal grains (barley, wheat, triticale and rye) on total and pre-caecal digestibility of proximate nutrients and amino acids in pigs.

    PubMed

    Hackl, W; Pieper, B; Pieper, R; Korn, U; Zeyner, A

    2010-12-01

    Inclemency of weather frequently causes critical water contents in cereal grains above 15%. Ensiling in pre-mature condition may be an alternative to other techniques of preservation. Aim of this study was to compare apparent total tract digestibility (D(t) ; barley, wheat, triticale, rye) of proximate nutrients and pre-caecal digestibility (D(pc); barley, wheat) of amino acids (AA), respectively, from cereal grains in ensiled and almost dry condition. Moistly harvested cereal grains (67-73% dry matter) were milled through a 4-mm sieve and ensiled with lactic acid bacteria (LAB, 3 × 10(5) colony forming units/g Lactobacillus plantarum DSMZ 8862 and 8866). To investigate D(t), two trials were conducted with six Mini-Lewe pigs and four German Landrace pigs, respectively. D(pc) of AA was determined using four German Landrace pigs with ileo-rectal anastomosis. D(t) of proximate nutrients did not differ between cereal grains and their silages, except for ether extract, which was more digestible in ensiled than dry wheat, triticale and rye (p < 0.05). Lysine content was lower in ensiled than dry barley and wheat. In barley, ensiling was accompanied by reduced D(pc) of lysine and histidine (p < 0.05). In wheat, ensiling increased D(pc) of lysine, methionine, threonine and leucin (p < 0.05). Ensiling of pre-mature cereal grains with LAB can serve as a reasonable storage alternative. However, as limited data are yet available, further research is required to understand completely the impact of ensiling on nutritional value as indicated, for example, by the lysine content and the D(pc) of certain AA. © 2010 Blackwell Verlag GmbH.

  18. Combined moist airtight storage and feed fermentation of barley by the yeast Wickerhamomyces anomalus and a lactic acid bacteria consortium

    PubMed Central

    Borling Welin, Jenny; Lyberg, Karin; Passoth, Volkmar; Olstorpe, Matilda

    2015-01-01

    This study combined moist airtight storage of moist grain with pig feed fermentation. Starter cultures with the potential to facilitate both technologies were added to airtight stored moist crimped cereal grain, and the impact on storage microflora and the quality of feed fermentations generated from the grain was investigated. Four treatments were compared: three based on moist barley, either un-inoculated (M), inoculated with Wickerhamomyces anomalus (W), or inoculated with W. anomalus and LAB starter culture, containing Pediococcus acidilactici DSM 16243, Pediococcus pentosaceus DSM 12834 and Lactobacillus plantarum DSM 12837 (WLAB); and one treatment based on dried barley (D). After 6 weeks of storage, four feed fermentations FM, FW, FWLAB, and FD, were initiated from M, W, WLAB, and D, respectively, by mixing the grain with water to a dry matter content of 30%. Each treatment was fermented in batch initially for 7 days and then kept in a continuous mode by adding new feed daily with 50% back-slop. During the 6 week storage period, the average water activity decreased in M, W and WLAB from 0.96 to 0.85, and cereal pH decreased from approximately 6.0 at harvest to 4.5. Feed fermentation conferred a further pH decrease to 3.8–4.1. In M, W and WLAB, molds and Enterobacteriaceae were mostly below detection limit, whereas both organism groups were detected in D. In fermented feed, Enterobacteriaceae were below detection limit in almost all conditions. Molds were detected in FD, for most of the fermentation time in FM and at some sampling points in FW and FWLAB. Starter organisms, especially W. anomalus and L. plantarum comprised a considerable proportion of the yeast and LAB populations, respectively, in both stored grain and fermented feed. However, autochthonous Pichia kudriavzevii and Kazachstania exigua partially dominated the yeast populations in stored grain and fermented feed, respectively. PMID:25954295

  19. Application of Near Infrared Reflectance Spectroscopy for Rapid and Non-Destructive Discrimination of Hulled Barley, Naked Barley, and Wheat Contaminated with Fusarium

    PubMed Central

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Oh, Kyoungmin; Kim, Geonseob; Ham, Hyeonheui; Kim, Seongmin; Kim, Moon S.

    2018-01-01

    Fusarium is a common fungal disease in grains that reduces the yield of barley and wheat. In this study, a near infrared reflectance spectroscopic technique was used with a statistical prediction model to rapidly and non-destructively discriminate grain samples contaminated with Fusarium. Reflectance spectra were acquired from hulled barley, naked barley, and wheat samples contaminated with Fusarium using near infrared reflectance (NIR) spectroscopy with a wavelength range of 1175–2170 nm. After measurement, the samples were cultured in a medium to discriminate contaminated samples. A partial least square discrimination analysis (PLS-DA) prediction model was developed using the acquired reflectance spectra and the culture results. The correct classification rate (CCR) of Fusarium for the hulled barley, naked barley, and wheat samples developed using raw spectra was 98% or higher. The accuracy of discrimination prediction improved when second and third-order derivative pretreatments were applied. The grains contaminated with Fusarium could be rapidly discriminated using spectroscopy technology and a PLS-DA discrimination model, and the potential of the non-destructive discrimination method could be verified. PMID:29301319

  20. Isolation of tissues and preservation of RNA from intact, germinated barley grain.

    PubMed

    Betts, Natalie S; Berkowitz, Oliver; Liu, Ruijie; Collins, Helen M; Skadhauge, Birgitte; Dockter, Christoph; Burton, Rachel A; Whelan, James; Fincher, Geoffrey B

    2017-08-01

    Isolated barley (Hordeum vulgare L.) aleurone layers have been widely used as a model system for studying gene expression and hormonal regulation in germinating cereal grains. A serious technological limitation of this approach has been the inability to confidently extrapolate conclusions obtained from isolated tissues back to the whole grain, where the co-location of several living and non-living tissues results in complex tissue-tissue interactions and regulatory pathways coordinated across the multiple tissues. Here we have developed methods for isolating fragments of aleurone, starchy endosperm, embryo, scutellum, pericarp-testa, husk and crushed cell layers from germinated grain. An important step in the procedure involves the rapid fixation of the intact grain to freeze the transcriptional activity of individual tissues while dissection is effected for subsequent transcriptomic analyses. The developmental profiles of 19 611 gene transcripts were precisely defined in the purified tissues and in whole grain during the first 24 h of germination by RNA sequencing. Spatial and temporal patterns of transcription were validated against well-defined data on enzyme activities in both whole grain and isolated tissues. Transcript profiles of genes involved in mitochondrial assembly and function were used to validate the very early stages of germination, while the profiles of genes involved in starch and cell wall mobilisation matched existing data on activities of corresponding enzymes. The data will be broadly applicable for the interrogation of co-expression and differential expression patterns and for the identification of transcription factors that are important in the early stages of grain and seed germination. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Effect of barley and its amylopectin content on ruminal fermentation and nitrogen utilization in lactating dairy cows.

    PubMed

    Foley, A E; Hristov, A N; Melgar, A; Ropp, J K; Etter, R P; Zaman, S; Hunt, C W; Huber, K; Price, W J

    2006-11-01

    The effect of type of grain (corn vs. barley) and amylopectin content of barley grain (normal vs. waxy) on ruminal fermentation, digestibility, and utilization of ruminal ammonia nitrogen for milk protein synthesis was studied in a replicated 3 x 3 Latin square design trial with 6 lactating dairy cows. The experimental treatments were (proportion of dietary dry matter): CORN, 40% corn grain, NBAR, 30% normal Baronesse barley:10% corn grain, and WBAR, 30% high-amylopectin (waxy) Baronesse barley:10% corn grain. All grains were steam-rolled and fed as part of a total mixed ration. The NBAR and WBAR diets resulted in increased ruminal ammonia concentrations compared with CORN (8.2, 7.4, and 5.6 mM, respectively), but other ruminal fermentation parameters were not affected. Ruminal digestibility of dietary nutrients and microbial protein synthesis in the rumen were also not affected by diet. Corn grain had greater in situ effective ruminal dry matter degradability (62.8%) than the barley grains (58.2 and 50.7%, respectively), and degradability of the normal barley starch was greater than that of the waxy barley (69.3 and 58.9%, respectively). A greater percentage of relative starch crystallinity was observed for the waxy compared with the normal barley grain. Total tract apparent digestibility of dry matter and organic matter were decreased by WBAR compared with CORN and NBAR. Total tract starch digestibility was greater and milk urea nitrogen content was lower for CORN compared with the 2 barley diets. In this study, the extent of processing of the grain component of the diet was most likely the factor that determined the diet responses. Minimal processing of barley grain (processing indexes of 79.2 to 87.9%) reduced its total tract digestibility of starch compared with steam-rolled corn (processing index of 58.8%). As a result of the increased ammonia concentration and reduced degradability of barley dry matter in the rumen, the utilization of ruminal ammonia

  2. Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets.

    PubMed

    Zhong, Yadong; Marungruang, Nittaya; Fåk, Frida; Nyman, Margareta

    2015-05-28

    Mixed-linkage β-glucans are fermented by the colon microbiota that give rise to SCFA. Propionic and butyric acids have been found to play an important role in colonic health, as well as they may have extraintestinal metabolic effects. The aim of the present study was to investigate how two whole-grain barley varieties differing in dietary fibre and β-glucan content affected caecal SCFA, gut microbiota and some plasma inflammatory markers in rats consuming low-fat (LF) or high-fat (HF) diets. Barley increased the caecal pool of SCFA in rats fed the LF and HF diets compared with those fed the control diet, and the effect was generally dependent on fibre content, an exception was butyric acid in the LF setting. Furthermore, whole-grain barley reduced plasma lipopolysaccharide-binding protein and monocyte chemoattractant protein-1, increased the caecal abundance of Lactobacillus and decreased the Bacteroides fragilis group, but increased the number of Bifidobacterium only when dietary fat was consumed at a low level. Fat content influenced the effects of barley: rats fed the HF diets had a higher caecal pool of acetic and propionic acids, higher concentrations of amino acids and higher amounts of lipids in the portal plasma and liver than rats fed the LF diets; however, less amounts of butyric acid were generally formed. Interestingly, there was an increase in the caecal abundance of Akkermansia and the caecal pool of succinic acid, and a decrease in the proportion of Bifidobacterium and the Clostridium leptum group. In summary, whole-grain barley decreased HF diet-induced inflammation, which was possibly related to the formation of SCFA and changes in microbiota composition. High β-glucan content in the diet was associated with reduced plasma cholesterol levels.

  3. Assessment and Calibration of a Crimp Tool Equipped with Ultrasonic Analysis Features

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Perey, Daniel F. (Inventor); Cramer, K. Elliott (Inventor)

    2013-01-01

    A method is provided for calibrating ultrasonic signals passed through a crimp formed with respect to a deformable body via an ultrasonically-equipped crimp tool (UECT). The UECT verifies a crimp quality using the ultrasonic signals. The method includes forming the crimp, transmitting a first signal, e.g., a pulse, to a first transducer of the UECT, and converting the first signal, using the first transducer, into a second signal which defines an ultrasonic pulse. This pulse is transmitted through the UECT into the crimp. A second transducer converts the second signal into a third signal, which may be further conditioned, and the ultrasonic signals are calibrated using the third signal or its conditioned variant. An apparatus for calibrating the ultrasonic signals includes a pulse module (PM) electrically connected to the first and second transducers, and an oscilloscope or display electrically connected to the PM for analyzing an electrical output signal therefrom.

  4. Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L.) grown in a low rain-fall environment

    PubMed Central

    Obsa, Bulti Tesso; Eglinton, Jason; Coventry, Stewart; March, Timothy; Guillaume, Maxime; Le, Thanh Phuoc; Hayden, Matthew; Langridge, Peter

    2017-01-01

    Identifying yield and grain plumpness QTL that are independent of developmental variation or phenology is of paramount importance for developing widely adapted and stable varieties through the application of marker assisted selection. The current study was designed to dissect the genetic basis of yield performance and grain plumpness in southern Australia using three doubled haploid (DH) populations developed from crosses between adapted parents that are similar in maturity and overall plant development. Three interconnected genetic populations, Commander x Fleet (CF), Commander x WI4304 (CW), and Fleet x WI4304 (FW) developed from crossing of Australian elite barley genotypes, were used to map QTL controlling yield and grain plumpness. QTL for grain plumpness and yield were analysed using genetic linkage maps made of genotyping-by-sequencing markers and major phenology genes, and field trials at three drought prone environments for two growing seasons. Seventeen QTL were detected for grain plumpness. Eighteen yield QTL explaining from 1.2% to 25.0% of the phenotypic variation were found across populations and environments. Significant QTL x environment interaction was observed for all grain plumpness and yield QTL, except QPlum.FW-4H.1 and QYld.FW-2H.1. Unlike previous yield QTL studies in barley, none of the major developmental genes, including Ppd-H1, Vrn-H1, Vrn-H2 and Vrn-H3, that drive barley adaption significantly affected grain plumpness and yield here. Twenty-two QTL controlled yield or grain plumpness independently of known maturity QTL or genes. Adjustment for maturity effects through co-variance analysis had no major effect on these yield QTL indicating that they control yield per se. PMID:28542571

  5. Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L.) grown in a low rain-fall environment.

    PubMed

    Obsa, Bulti Tesso; Eglinton, Jason; Coventry, Stewart; March, Timothy; Guillaume, Maxime; Le, Thanh Phuoc; Hayden, Matthew; Langridge, Peter; Fleury, Delphine

    2017-01-01

    Identifying yield and grain plumpness QTL that are independent of developmental variation or phenology is of paramount importance for developing widely adapted and stable varieties through the application of marker assisted selection. The current study was designed to dissect the genetic basis of yield performance and grain plumpness in southern Australia using three doubled haploid (DH) populations developed from crosses between adapted parents that are similar in maturity and overall plant development. Three interconnected genetic populations, Commander x Fleet (CF), Commander x WI4304 (CW), and Fleet x WI4304 (FW) developed from crossing of Australian elite barley genotypes, were used to map QTL controlling yield and grain plumpness. QTL for grain plumpness and yield were analysed using genetic linkage maps made of genotyping-by-sequencing markers and major phenology genes, and field trials at three drought prone environments for two growing seasons. Seventeen QTL were detected for grain plumpness. Eighteen yield QTL explaining from 1.2% to 25.0% of the phenotypic variation were found across populations and environments. Significant QTL x environment interaction was observed for all grain plumpness and yield QTL, except QPlum.FW-4H.1 and QYld.FW-2H.1. Unlike previous yield QTL studies in barley, none of the major developmental genes, including Ppd-H1, Vrn-H1, Vrn-H2 and Vrn-H3, that drive barley adaption significantly affected grain plumpness and yield here. Twenty-two QTL controlled yield or grain plumpness independently of known maturity QTL or genes. Adjustment for maturity effects through co-variance analysis had no major effect on these yield QTL indicating that they control yield per se.

  6. Crimped braided sleeves for soft, actuating arm in robotic abdominal surgery.

    PubMed

    Elsayed, Yahya; Lekakou, Constantina; Ranzani, Tommaso; Cianchetti, Matteo; Morino, Mario; Arezzo, Alberto; Menciassi, Arianna; Geng, Tao; Saaj, Chakravarthini M

    2015-01-01

    This paper investigates different types of crimped, braided sleeve used for a soft arm for robotic abdominal surgery, with the sleeve required to contain balloon expansion in the pneumatically actuating arm while it follows the required bending, elongation and diameter reduction of the arm. Three types of crimped, braided sleeves from PET (BraidPET) or nylon (BraidGreyNylon and BraidNylon, with different monofilament diameters) were fabricated and tested including geometrical and microstructural characterisation of the crimp and braid, mechanical tests and medical scratching tests for organ damage of domestic pigs. BraidPET caused some organ damage, sliding under normal force of 2-5 N; this was attributed to the high roughness of the braid pattern, the higher friction coefficient of polyethylene terephthalate (PET) compared to nylon, and the high frequency of the crimp peaks for this sleeve. No organ damage was observed for the BraidNylon, attributed to both the lower roughness of the braid pattern and the low friction coefficient of nylon. BraidNylon also required the lowest tensile force during its elongation to similar maximum strain as that of BraidPET, translating to low power requirements. BraidNylon is recommended for the crimped sleeve of the arm designed for robotic abdominal surgery.

  7. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...— Damaged kernels 1 (percent) Foreign material (percent) Other grains (percent) Skinned and broken kernels....0 10.0 15.0 1 Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered against sound barley. Notes: Malting barley shall not be infested in accordance with...

  8. Ultrasonic Device for Assessing the Quality of a Wire Crimp

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Perey, Daniel F. (Inventor); Cramer, Karl E. (Inventor)

    2015-01-01

    A system for determining the quality of an electrical wire crimp between a wire and ferrule includes an ultrasonically equipped crimp tool (UECT) configured to transmit an ultrasonic acoustic wave through a wire and ferrule, and a signal processor in communication with the UECT. The signal processor includes a signal transmitting module configured to transmit the ultrasonic acoustic wave via an ultrasonic transducer, signal receiving module configured to receive the ultrasonic acoustic wave after it passes through the wire and ferrule, and a signal analysis module configured to identify signal differences between the ultrasonic waves. The signal analysis module is then configured to compare the signal differences attributable to the wire crimp to a baseline, and to provide an output signal if the signal differences deviate from the baseline.

  9. Reciprocal combinations of barley and corn grains in oil-supplemented diets: feeding behavior and milk yield of lactating cows.

    PubMed

    Kargar, S; Ghorbani, G R; Khorvash, M; Sadeghi-Sefidmazgi, A; Schingoethe, D J

    2014-11-01

    The effect of barley-based (BBD) or corn-based diets (CBD), or their equal blend (BCBD) on dry matter (DM) intake, feeding and chewing behavior, and production performance of lactating dairy cows was evaluated. Nine multiparous Holstein cows (75.6 ± 11.0 d in milk) were used in a triplicate 3 × 3 Latin square design with 21-d periods. Forage-to-concentrate ratio (40:60), forage neutral detergent fiber (20% of DM), total neutral detergent fiber (>29% of DM), and geometric mean particle size (4.3mm) were similar among treatments. Meal patterns, including meal size and intermeal interval, were not affected by the dietary treatments and DM intake (25.6 kg/d) was not different among treatments. Ether extract intake increased linearly with increasing amount of the corn grain in the diets. Due to similar feed intake, actual milk (48.6 kg/d), 4% fat-corrected milk (36.8 kg/d), and fat- and protein-corrected milk (38.1 kg/d) yields were not affected by treatments. Average milk protein percentage and yield were 2.83% and 1.37 kg/d, respectively, and were not different across treatments. Milk fat percentage increased linearly with increasing amount of corn grain in the diets and was greater in CBD relative to BCBD but not BBD (2.31, 2.28, and 2.57%, for BBD, BCBD, and CBD, respectively). However, milk fat yield tended to show a linear increase as the amount of corn grain included in the diets increased. Results indicated that changing diet fermentability by replacing barley grain for corn grain in oil-supplemented diets did not influence feeding patterns and thereby no changes in feed intake and milk yield occurred. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Effect of including high-lipid by-product pellets in substitution for barley grain and canola meal in finishing diets for beef cattle on ruminal fermentation and nutrient digestibility.

    PubMed

    Górka, P; Castillo-Lopez, E; Joy, F; Chibisa, G E; McKinnon, J J; Penner, G B

    2015-10-01

    The objective was to determine the effect of replacing barley grain and canola meal with high-lipid by-product pellets (HLBP; 14.6% CP, 29.8% NDF, 9.0% fat, and 5.52 MJ NE/kg in DM) on DMI, ruminal fermentation, nutrient flow at the omasal canal, and nutrient digestibility. Four ruminally cannulated and ovariectomized Hereford × Gelbvieh heifers (initial BW of 631.9 ± 23.3 kg; mean ± SD) were used in a 4 × 4 Latin square design. Periods consisted of 28 d, including 10 d for diet transition, 11 d for dietary adaptation, and 7 d for measurements. Heifers were fed a typical finishing diet consisting of 89% of concentrate (barley grain and canola meal; CONT), 6% of barley silage, and 5% of mineral and vitamin supplement (on DM basis). Dietary treatments consisted of a CONT or diets where 30% (HLBP30), 60% (HLBP60), and 90% (HLBP90) of the barley grain and canola meal were replaced with HLBP. Dry matter intake was not affected by treatment ( > 0.10). Total short-chain fatty acid concentration and molar proportions of acetate, propionate, and butyrate ( > 0.10) among treatments and ruminal ammonia did not differ ( > 0.10) among treatments, and ruminal ammonia increased ( = 0.03) linearly with increasing HLBP inclusion rate in the diet. Mean and maximum pH increased, whereas the duration and area that pH was below 5.8, 5.5, and 5.2, thresholds used for mild, severe, and acute ruminal acidosis, respectively, decreased linearly ( ≤ 0.05) with increasing rates of inclusion of HLBP. Organic matter flow at the omasal canal increased linearly ( = 0.03) with increasing HLBP inclusion rate in the diet. However, OM digestibility coefficients and apparent ruminal NDF and ADF digestibility yielded negative values for some animals, especially those fed HLBP90, indicating that ruminal digestibility was underestimated. Total tract OM digestibility decreased linearly ( < 0.01) with increasing inclusion rates of HLBP. This study showed that HLBP inclusion in substitution for barley

  11. Using barley genomics to develop Fusarium head blight resistant wheat and barley

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight, caused by Fusarium graminearum, is a major problem for wheat and barley growers. During infection, F. graminearum produces trichothecene mycotoxins (e.g., deoxynivalenol or DON) that increases fungal virulence and reduces grain quality and yield. Previous work in Arabidopsis sh...

  12. Current and potential barley grain food products

    USDA-ARS?s Scientific Manuscript database

    Barley has been an important food source from the beginning of human civilization, and remains an important staple food crop in a few countries, although its consumption has decreased sharply with the ample availability of more palatable and versatile food crops such as rice and wheat. In many Weste...

  13. Short communication: Effects of processing methods of barley grain in starter diets on feed intake and performance of dairy calves.

    PubMed

    Jarrah, A; Ghorbani, G R; Rezamand, P; Khorvash, M

    2013-01-01

    The present study was conducted to evaluate the effects of different processing methods of barley grain in starter rations on feed intake, average daily gain, feed efficiency, skeletal growth, fecal score, and rumen pH of dairy calves. Thirty-two Holstein dairy calves (16 female and 16 male) were randomly allocated to 1 of 4 treatments consisting of coarse ground, whole, steam-rolled, or roasted barley from d 4 to 56 of birth in a completely randomized design. Starter diets were formulated to have similar ingredients and composition. All calves had free access to water and feed throughout the study period and received 4 L of milk/d from a bottle from d 4 to 41, 2L/d from d 41 to 45, and weaning occurred on d 45. Feed intake and fecal score were recorded daily. Body weight and skeletal growth measures were recorded on d 4 (beginning of the study), 45, and 56. Rumen fluid and blood samples were collected on d 35, 45, and 56. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC). The results indicate that different methods of processing barley had no detectable effect on dry matter intake, average daily gain, and feed efficiency and that skeletal growth, health, and rumen pH were not affected by dietary treatments. In conclusion, the results show that different processing methods of barley included in starter diets had no detectable effect on the performance of dairy calves under our experimental conditions. Therefore, feeding whole or coarsely ground barley would be a more economical method compared with steam rolled or roasted barley. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Evaluating Changes in Tendon Crimp with Fatigue Loading as an ex vivo Structural Assessment of Tendon Damage

    PubMed Central

    Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.

    2015-01-01

    The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654

  15. Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains.

    PubMed

    Radchuk, Volodymyr; Riewe, David; Peukert, Manuela; Matros, Andrea; Strickert, Marc; Radchuk, Ruslana; Weier, Diana; Steinbiß, Hans-Henning; Sreenivasulu, Nese; Weschke, Winfriede; Weber, Hans

    2017-07-20

    Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Influence of inoculum and climatic factors on the severity of Fusarium head blight in German spring and winter barley.

    PubMed

    Linkmeyer, Andrea; Hofer, Katharina; Rychlik, Michael; Herz, Markus; Hausladen, Hans; Hückelhoven, Ralph; Hess, Michael

    2016-01-01

    Fusarium head blight (FHB) of small cereals is a disease of global importance with regard to economic losses and mycotoxin contamination harmful to human and animal health. In Germany, FHB is predominantly associated with wheat and F. graminearum is recognised as the major causal agent of the disease, but little is known about FHB of barley. Monitoring of the natural occurrence of FHB on Bavarian barley revealed differences for individual Fusarium spp. in incidence and severity of grain infection between years and between spring and winter barley. Parallel measurement of fungal DNA content in grain and mycotoxin content suggested the importance of F. graminearum in winter barley and of F. langsethiae in spring barley for FHB. The infection success of these two species was associated with certain weather conditions and barley flowering time. Inoculation experiments in the field revealed different effects of five Fusarium spp. on symptom formation, grain yield and mycotoxin production. A significant association between fungal infection of grain and mycotoxin content was observed following natural or artificial infection with the type B trichothecene producer F. culmorum, but not with the type A trichothecene-producing species F. langsethiae and F. sporotrichioides. Trichothecene type A toxin contamination also occurred in the absence of significant damage to grain and did not necessarily promote fungal colonisation.

  17. The Role of α-Glucosidase in Germinating Barley Grains1[W][OA

    PubMed Central

    Stanley, Duncan; Rejzek, Martin; Naested, Henrik; Smedley, Mark; Otero, Sofía; Fahy, Brendan; Thorpe, Frazer; Nash, Robert J.; Harwood, Wendy; Svensson, Birte; Denyer, Kay; Field, Robert A.; Smith, Alison M.

    2011-01-01

    The importance of α-glucosidase in the endosperm starch metabolism of barley (Hordeum vulgare) seedlings is poorly understood. The enzyme converts maltose to glucose (Glc), but in vitro studies indicate that it can also attack starch granules. To discover its role in vivo, we took complementary chemical-genetic and reverse-genetic approaches. We identified iminosugar inhibitors of a recombinant form of an α-glucosidase previously discovered in barley endosperm (ALPHA-GLUCOSIDASE97 [HvAGL97]), and applied four of them to germinating grains. All four decreased the Glc-to-maltose ratio in the endosperm 10 d after imbibition, implying inhibition of maltase activity. Three of the four inhibitors also reduced starch degradation and seedling growth, but the fourth did not affect these parameters. Inhibition of starch degradation was apparently not due to inhibition of amylases. Inhibition of seedling growth was primarily a direct effect of the inhibitors on roots and coleoptiles rather than an indirect effect of the inhibition of endosperm metabolism. It may reflect inhibition of glycoprotein-processing glucosidases in these organs. In transgenic seedlings carrying an RNA interference silencing cassette for HvAgl97, α-glucosidase activity was reduced by up to 50%. There was a large decrease in the Glc-to-maltose ratio in these lines but no effect on starch degradation or seedling growth. Our results suggest that the α-glucosidase HvAGL97 is the major endosperm enzyme catalyzing the conversion of maltose to Glc but is not required for starch degradation. However, the effects of three glucosidase inhibitors on starch degradation in the endosperm indicate the existence of unidentified glucosidase(s) required for this process. PMID:21098673

  18. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    PubMed

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  19. Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding.

    PubMed

    Hegelund, Josefine Nymark; Schiller, Michaela; Kichey, Thomas; Hansen, Thomas Hesselhøj; Pedas, Pai; Husted, Søren; Schjoerring, Jan Kofod

    2012-07-01

    Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the proteins. Here, we document that barley (Hordeum vulgare) MT3 and MT4 proteins exist in planta and that they differ in tissue localization as well as in metal coordination chemistry. Combined transcriptional and histological analyses showed temporal and spatial correlations between transcript levels and protein abundance during grain development. MT3 was present in tissues of both maternal and filial origin throughout grain filling. In contrast, MT4 was confined to the embryo and aleurone layer, where it appeared during tissue specialization and remained until maturity. Using state-of-the-art speciation analysis by size-exclusion chromatography inductively coupled plasma mass spectrometry and electrospray ionization time-of-flight mass spectrometry on recombinant MT3 and MT4, their specificity and capacity for metal ion binding were quantified, showing a strong preferential Zn binding relative to Cu and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations.

  20. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.)

    USDA-ARS?s Scientific Manuscript database

    High beta glucan (BG) barleys (Hordeum vulgare L.) have major potential as food ingredients due to the well know health benefits. Quantitative trait loci (QTLs) associated with BG have been reported in hulled barley, however no QTL studies have been reported in hulless barley. In this study, QTL an...

  1. Wet processing barley grains into concentrates with protein, beta-glucan, and starch

    USDA-ARS?s Scientific Manuscript database

    An improved wet method was developed to process barley into fractions concentrated in protein, (1-3)(1-4)-b-D-glucan (BG), starch, or other carbohydrates (CHO). Alkaline concentration, solvent to barley flour ratio (SFR), and extraction temperature were evaluated for their effects on concentration a...

  2. Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose.

    PubMed

    Olsson, J; Börjesson, T; Lundstedt, T; Schnürer, J

    2002-02-05

    Mycotoxin contamination of cereal grains can be detected and quantified using complex extraction procedures and analytical techniques. Normally, the grain odour, i.e. the presence of non-grain volatile metabolites, is used for quality classification of grain. We have investigated the possibility of using fungal volatile metabolites as indicators of mycotoxins in grain. Ten barley samples with normal odour, and 30 with some kind of off-odour were selected from Swedish granaries. The samples were evaluated with regard to moisture content, fungal contamination, ergosterol content, and levels of ochratoxin A (OA) and deoxynivalenol (DON). Volatile compounds were also analysed using both an electronic nose and gas chromatography combined with mass spectrometry (GC-MS). Samples with normal odour had no detectable ochratoxin A and average DON contents of 16 microg kg(-1) (range 0-80), while samples with off-odour had average OA contents of 76 microg kg(-1) (range 0-934) and DON contents of 69 microg kg(-1) (range 0-857). Data were evaluated by multivariate data analysis using projection methods such as principal component analysis (PCA) and partial least squares (PLS). The results show that it was possible to classify the OA level as below or above the maximum limit of 5 microg kg(-1) cereal grain established by the Swedish National Food Administration, and that the DON level could be estimated using PLS. Samples with OA levels below 5 microg kg(-1) had higher concentration of aldehydes (nonanal, 2-hexenal) and alcohols (1-penten-3-ol, 1-octanol). Samples with OA levels above 5 microg kg(-1) had higher concentrations of ketones (2-hexanone, 3-octanone). The GC-MS system predicted OA concentrations with a higher accuracy than the electronic nose, since the GC-MS misclassified only 3 of 37 samples and the electronic nose 7 of 37 samples. No correlation was found between odour and OA level, as samples with pronounced or strong off-odours had OA levels both below and above 5

  3. Diamine oxidase is involved in H(2)O(2) production in the chalazal cells during barley grain filling.

    PubMed

    Asthir, Bavita; Duffus, Carol M; Smith, Rachel C; Spoor, William

    2002-04-01

    The localization and activities of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.4.3.4) together with polyamine levels have been investigated in developing grains of barley (Hordeum vulgare L.). DAO (pH 7.5) is present mainly in vascular tissue and its neighbouring cells, namely chalazal cells and nucellar projection, while PAO (pH 6.0) is mainly localized in the chlorenchymatous cells of the crease and at the base of the vascular tissue. Activities of both these enzymes appear to be independently-regulated, as DAO activity increased steadily throughout grain development while PAO activity was higher during the early stages of grain filling, declined thereafter and again increased towards maturity. The maximum activities of DAO coincided with the maximum content of putrescine while the levels of PAO did not seem to be directly correlated with spermidine or spermine contents. Isoelectric focusing (IEF) of DAO and PAO activities revealed the presence of bands at 30 and 45 DPA. The possible involvement of DAO and PAO in the supply of H(2)O(2) to peroxidase-catalysed reactions in the chalazal cells during grain filling is discussed.

  4. Fuel cell crimp-resistant cooling device with internal coil

    NASA Technical Reports Server (NTRS)

    Wittel, deceased, Charles F. (Inventor)

    1986-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet. The conduit has an internal coil means which enables it to be bent in small radii without crimping.

  5. Surface interactions of Fusarium graminearum on barley.

    PubMed

    Imboden, Lori; Afton, Drew; Trail, Frances

    2018-06-01

    The filamentous fungus Fusarium graminearum, a devastating pathogen of barley (Hordeum vulgare L.), produces mycotoxins that pose a health hazard. To investigate the surface interactions of F. graminearum on barley, we focused on barley florets, as the most important infection site leading to grain contamination. The fungus interacted with silica-accumulating cells (trichomes and silica/cork cell pairs) on the host surface. We identified variation in trichome-type cells between two-row and six-row barley, and in the role of specific epidermal cells in the ingress of F. graminearum into barley florets. Prickle-type trichomes functioned to trap conidia and were sites of fungal penetration. Infections of more mature florets supported the spread of hyphae into the vascular bundles, whereas younger florets did not show this spread. These differences related directly to the timing and location of increases in silica content during maturation. Focal accumulation of cellulose in infected paleae of two-row and six-row barley indicated that the response is in part linked to trichome type. Overall, silica-accumulating epidermal cells had an expanded role in barley, serving to trap conidia, provide sites for fungal ingress and initiate resistance responses, suggesting a role for silica in pathogen establishment. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  6. Process for Nondestructive Evaluation of the Quality of a Crimped Wire Connector

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cramer, Karl E. (Inventor); Perey, Daniel F. (Inventor); Williams, Keith A. (Inventor)

    2014-01-01

    A process and apparatus for collecting data for nondestructive evaluation of the quality of a crimped wire connector are provided. The process involves providing a crimping tool having an anvil and opposing jaw for crimping a terminal onto a stranded wire, moving the jaw relative to the anvil to close the distance between the jaw and the anvil and thereby compress the terminal against the wire, while transmitting ultrasonic waves that are propagated through the terminal-wire combination and received at a receiving ultrasonic transducer as the jaw is moved relative to the anvil, and detecting and recording the position of the jaw relative to the anvil as a function of time and detecting and recording the amplitude of the ultrasonic wave that is received at the receiving ultrasonic transducer as a function of time as the jaw is moved relative to the anvil.

  7. Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains.

    PubMed

    Zhang, Xiao-Wei; Jiang, Qian-Tao; Wei, Yu-Ming; Liu, Chunji

    2017-01-01

    Anthocyanin-rich barley can have great potential in promoting human health and in developing nutraceuticals and functional foods. As different anthocyanin compounds have different antioxidant activities, breeding cultivars with pre-designed anthocyanin compositions could be highly desirable. Working toward this possibility, we assessed and reported for the first time the genetic control of individual anthocyanin compounds in barley. Of the ten anthocyanins assessed, two, peonidin-3-glucoside (P3G) and cyanidin-3-glucoside (C3G), were major components in the purple pericarp barley genotype RUSSIA68. Quantitative trait locus (QTL) mapping showed that both anthocyanin compounds were the interactive products of two loci, one located on chromosome arm 2HL and the other on 7HS. However, the two different anthocyanin components seem to be controlled by different interactions between the two loci. The effects of the 7HS locus on P3G and C3G were difficult to detect without removing the effect of the 2HL locus. At least one copy of the 2HL alleles from the purple pericarp parent was required for the synthesis of P3G. This does not seem to be the case for the production of C3G which was produced in each of all the different allele combinations between the two loci. Typical maternal effect was also observed in the inheritance of purple pericarp grains in barley. The varied values of different compounds, coupled with their different genetic controls, highlight the need for targeting individual anthocyanins in crop breeding and food processing.

  8. Evaluation of in vitro models for predicting acidosis risk of barley grain in finishing beef cattle.

    PubMed

    Anele, U Y; Swift, M-L; McAllister, T A; Galyean, M L; Yang, W Z

    2015-10-01

    Our objective was to develop a model to predict the acidosis potential of barley based on the in vitro batch culture incubation of 50 samples varying in bulk density, starch content, processing method, growing location, and agronomic practices. The model was an adaptation of the acidosis index (calculated from a combination of in situ and in vitro analyses and from several components of grain chemical composition) developed in Australia for use in the feed industry to estimate the potential for grains to increase the risk of ruminal acidosis. Of the independent variables considered, DM disappearance at 6 h of incubation (DMD6) using reduced-strength (20%) buffer in the batch culture accounted for 90.5% of the variation in the acidosis index with a root mean square error (RMSE) of 4.46%. To evaluate our model using independent datasets (derived from previous batch culture studies using full-strength [100%] buffer), we performed another batch culture study using full-strength buffer. The full-strength buffer model using in vitro DMD6 (DMD6-FS) accounted for 66.5% of the variation in the acidosis index with an RMSE of 8.30%. When the new full-strength buffer model was applied to 3 independent datasets to predict acidosis, it accounted for 20.1, 28.5, and 30.2% of the variation in the calculated acidosis index. Significant ( < 0.001) mean bias was evident in 2 of the datasets, for which the DMD6 model underpredicted the acidosis index by 46.9 and 5.73%. Ranking of samples from the most diverse independent dataset using the DMD6-FS model and the Black (2008) model (calculated using in situ starch degradation) indicated the relationship between the rankings using Spearman's rank correlation was negative (ρ = -0.30; = 0.059). When the reduced-strength buffer model was used, however, there were similarities in the acidosis index ranking of barley samples by the models as shown by the result of a correlation analysis between calculated (using the Australian model) and

  9. Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains.

    PubMed

    Benech-Arnold, Roberto L; Gualano, Nicolas; Leymarie, Juliette; Côme, Daniel; Corbineau, Françoise

    2006-01-01

    Two mechanisms have been suggested as being responsible for dormancy in barley grain: (i) ABA in the embryo, and (ii) limitation of oxygen supply to the embryo by oxygen fixation as a result of the oxidation of phenolic compounds in the glumellae. The aim of the present work was to investigate whether hypoxia imposed by the glumellae interferes with ABA metabolism in the embryo, thus resulting in dormancy. In dormant and non-dormant grains incubated at 20 degrees C and in non-dormant grains incubated at 30 degrees C (i.e. when dormancy is not expressed), ABA content in the embryo decreased dramatically during the first 5 h of incubation before germination was detected. By contrast, germination of dormant grains was less than 2% within 48 h at 30 degrees C and embryo ABA content increased during the first hours of incubation and then remained 2-4 times higher than in embryos from grains in which dormancy was not expressed. Removal of the glumellae allowed germination of dormant grains at 30 degrees C and the embryos did not display the initial increase in ABA content. Incubation of de-hulled grains under 5% oxygen to mimic the effect of glumellae, restored the initial increase ABA in content and completely inhibited germination. Incubation of embryos isolated from dormant grains, in the presence of a wide range of ABA concentrations and under various oxygen tensions, revealed that hypoxia increased embryo sensitivity to ABA by 2-fold. This effect was more pronounced at 30 degrees C than at 20 degrees C. Furthermore, when embryos from dormant grains were incubated at 30 degrees C in the presence of 10 microM ABA, their endogenous ABA content remained constant after 48 h of incubation under air, while it increased dramatically in embryos incubated under hypoxia, indicating that the apparent increase in embryo ABA responsiveness induced by hypoxia was, in part, mediated by an inability of the embryo to inactivate ABA. Taken together these results suggest that hypoxia

  10. Enrichment of Antioxidant Capacity and Vitamin E in Pita Made from Barley.

    PubMed

    Do, Thi Thu Dung; Muhlhausler, Beverly; Box, Amanda; Able, Amanda J

    2016-03-01

    This study aimed to enhance total antioxidant and vitamin E content of pita bread, by replacing 50% of the standard baker's flour with flours milled from covered (WI2585 and Harrington) or hulless (Finniss) barley genotypes, previously shown to have high antioxidant and vitamin E levels at harvest. Pita breads were made from either 100% baker's flour (control) or 50% malt flour, whole-grain flour, or flour from barley grains pearled at 10%, 15%, and 20% grain weight. Antioxidant capacity and vitamin E content of flours and pitas were determined by their ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and high performance liquid chromatography, respectively. The physical and sensory properties of the pitas were also assessed. All pitas made from either whole grain or pearled barley flour had a higher antioxidant capacity and most also had higher vitamin E content than standard pita. The antioxidant and vitamin E levels were reduced in pearled compared to whole grains, however the extent of that reduction varied among genotypes. The greatest antioxidant and vitamin E levels were found in pita made from malt flour or Finniss whole grain flour. Furthermore, sensory analysis suggested these pitas were acceptable to consumers and retained similar physical and sensory properties to those in the control pita. © 2016 Institute of Food Technologists®

  11. Effects of grain source, grain processing, and protein degradability on rumen kinetics and microbial protein synthesis in Boer kids.

    PubMed

    Brassard, M-E; Chouinard, P Y; Berthiaume, R; Tremblay, G F; Gervais, R; Martineau, R; Cinq-Mars, D

    2015-11-01

    Microbial protein synthesis in the rumen would be optimized when dietary carbohydrates and proteins have synchronized rates and extent of degradation. The aim of this study was to evaluate the effect of varying ruminal degradation rate of energy and nitrogen sources on intake, nitrogen balance, microbial protein yield, and kinetics of nutrients in the rumen of growing kids. Eight Boer goats (38.2 ± 3.0 kg) were used. The treatments were arranged in a split-plot Latin square design with grain sources (barley or corn) forming the main plots (squares). Grain processing methods and levels of protein degradability formed the subplots in a 2 × 2 factorial arrangement for a total of 8 dietary treatments. The grain processing method was rolling for barley and cracking for corn. Levels of protein degradability were obtained by feeding untreated soybean meal (SBM) or heat-treated soybean meal (HSBM). Each experimental period lasted 21 d, consisting of a 10-d adaptation period, a 7-d digestibility determination period, and a 4-d rumen evacuation and sampling period. Kids fed with corn had higher purine derivatives (PD) excretion when coupled with SBM compared with HSBM and the opposite occurred with barley-fed kids ( ≤ 0.01). Unprocessed grain offered with SBM led to higher PD excretion than with HSBM whereas protein degradability had no effect when processed grain was fed ( ≤ 0.03). Results of the current experiment with high-concentrate diets showed that microbial N synthesis could be maximized in goat kids by combining slowly fermented grains (corn or unprocessed grains) with a highly degradable protein supplement (SBM). With barley, a more rapidly fermented grain, a greater microbial N synthesis was observed when supplementing a low-degradable protein (HSBM).

  12. Granary trial of protein-enriched pea flour for the control of three stored-product insects in barley.

    PubMed

    Hou, Xingwei; Fields, Paul G

    2003-06-01

    A granary trial was conducted to evaluate the efficacy of protein-enriched pea flour against three common stored-grain insects, Sitophilus oryzae (L.), Tribolium castaneum (Herbst), and Cryptolestes ferrugineus (Stephens). Six 30-t farm granaries were filled with approximately 11 t of barley. The barley was either not treated, treated with protein-enriched pea flour at 0.1% throughout the entire grain mass, or treated at 0.5% throughout the top half of the grain mass. Adult insects were released in screened boxes (two insects per kilogram barley for S. oryzae and T. castaneum 1.4 insects per kilogram barley for C. ferrugineus). Barley was sampled four times during the 70-d trial. The number and mortality of adults and emerged adults in the samples were noted. Four kinds of traps, flight, surface-pitfall, probe-pitfall, and sticky-bar, were placed at different locations in the granaries to estimate the movement of insects. The 0.1% protein-enriched pea flour treatment reduced adult numbers of S. oryzae by 93%, T. castaneum by 66%, and C. ferrugineus by 58%, and reduced the emerged adults by 87, 77, and 77%, respectively. Treating the top half of the barley with 0.5% protein-enriched pea flour had similar effects as treating the entire grain mass with 0.1% pea-protein flour. However, the top-half treatment failed to prevent insects from penetrating into the untreated lower layer. Differences between traps are discussed.

  13. Evaluation of the procedure for separating barley from other spring small grains. [North Dakota, South Dakota, Minnesota and Montana

    NASA Technical Reports Server (NTRS)

    Magness, E. R. (Principal Investigator)

    1980-01-01

    The success of the Transition Year procedure to separate and label barley and the other small grains was assessed. It was decided that developers of the procedure would carry out the exercise in order to prevent compounding procedural problems with implementation problems. The evaluation proceeded by labeling the sping small grains first. The accuracy of this labeling was, on the average, somewhat better than that in the Transition Year operations. Other departures from the original procedure included a regionalization of the labeling process, the use of trend analysis, and the removal of time constraints from the actual processing. Segment selection, ground truth derivation, and data available for each segment in the analysis are discussed. Labeling accuracy is examined for North Dakota, South Dakota, Minnesota, and Montana as well as for the entire four-state area. Errors are characterized.

  14. Exercise-related alterations in crimp morphology in the central regions of superficial digital flexor tendons from young thoroughbreds: a controlled study.

    PubMed

    Patterson-Kane, J C; Wilson, A M; Firth, E C; Parry, D A; Goodship, A E

    1998-01-01

    Injury to the core of the mid-metacarpal region of the superficial digital flexor tendon in Thoroughbred racehorses is a very frequent but poorly understood condition. It has been suggested that subclinical changes induced by galloping exercise weaken the collagen in this region of the tendon, predisposing it to rupture. The longitudinally arranged collagen fibrils in tendon follow a planar waveform, termed the crimp. Fibril bundles with a smaller crimp angle fail at a lower level of strain than those with a larger crimp angle. This study tested the hypothesis that a specific 18 month exercise programme would result in significant reduction of collagen fibril crimp angle and period length in the core region of the superficial digital flexor tendon of young Thoroughbreds (21 +/- 1 months), compared to the normal change in these parameters with age. Central region crimp angle and length were significantly lower in exercised horses than in control horses (P < 0.05). The crimp angle was significantly lower in this central region than in the peripheral region of the tendon in 4 of the 5 exercised horses, as was the crimp length in 3 of the 4 horses. The crimp angle in the peripheral region was significantly greater in exercised horses than in the controls (P < 0.05), which may indicate functional adaptation due to differing mechanical environment between the 2 tendon regions. The results of this study supported previous evidence that galloping exercise modifies normal age-related changes in crimp morphology in the core of the superficial digital flexor tendon. Such changes are indicative of microtrauma and would be detrimental to tendon strength.

  15. Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat, Barley, Maize, and Rice[W][OA

    PubMed Central

    Dionisio, Giuseppe; Madsen, Claus K.; Holm, Preben B.; Welinder, Karen G.; Jørgensen, Malene; Stoger, Eva; Arcalis, Elsa; Brinch-Pedersen, Henrik

    2011-01-01

    Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic analyses indicated that PAPhys possess four conserved domains unique to the PAPhys. In barley and wheat, the PAPhy genes can be grouped as PAPhy_a or PAPhy_b isogenes (barley, HvPAPhy_a, HvPAPhy_b1, and HvPAPhy_b2; wheat, TaPAPhy_a1, TaPAPhy_a2, TaPAPhy_b1, and TaPAPhy_b2). In rice and maize, only the b type (OsPAPhy_b and ZmPAPhy_b, respectively) were identified. HvPAPhy_a and HvPAPhy_b1/b2 share 86% and TaPAPhya1/a2 and TaPAPhyb1/b2 share up to 90% (TaPAPhy_a2 and TaPAPhy_b2) identical amino acid sequences. despite of this, PAPhy_a and PAPhy_b isogenes are differentially expressed during grain development and germination. In wheat, it was demonstrated that a and b isogene expression is driven by different promoters (approximately 31% identity). TaPAPhy_a/b promoter reporter gene expression in transgenic grains and peptide mapping of TaPAPhy purified from wheat bran and germinating grains confirmed that the PAPhy_a isogene set present in wheat/barley but not in rice/maize is the origin of high phytase activity in mature grains. PMID:21220762

  16. Elastic Response of Crimped Collagen Fibrils

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Doehring, Todd C.

    2005-01-01

    A physiologic constitutive expression is presented in algorithmic format for the elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils have a three-dimensional structure at the micrometer scale that we approximate as a helical spring. The symmetry of this waveform allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form. Model predictions are in good agreement with experimental observations for mitral-valve chordae tendineae

  17. Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands

    PubMed Central

    2011-01-01

    Background Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Information on the ethnobotany, food utilization and maintenance of barley landraces is valuable to design and plan germplasm conservation strategies as well as to improve food utilization of barley. Methods A study, involving field visits and household interviews, was conducted in three administrative zones. Eleven districts from the three zones, five kebeles in each district and five households from each kebele were visited to gather information on the ethnobotany, the utilization of barley and how barley end-uses influence the maintenance of landrace diversity. Results According to farmers, barley is the "king of crops" and it is put for diverse uses with more than 20 types of barley dishes and beverages reportedly prepared in the study area. The products are prepared from either boiled/roasted whole grain, raw- and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley traditional foods have perceived qualities and health benefits by the farmers. Fifteen diverse barley landraces were reported by farmers, and the ethnobotany of the landraces reflects key quantitative and qualitative traits. Some landraces that are preferred for their culinary qualities are being marginalized due to moisture shortage and soil degradation. Conclusions Farmers' preference of different landraces for various end-use qualities is one of the important factors that affect the decision process of landraces maintenance, which in turn affect genetic diversity. Further studies on improving maintenance of landraces, developing suitable varieties and improving the food utilization of barley including processing techniques could contribute to food security of the area. PMID:21711566

  18. Barley Metallothioneins: MT3 and MT4 Are Localized in the Grain Aleurone Layer and Show Differential Zinc Binding1[W][OA

    PubMed Central

    Hegelund, Josefine Nymark; Schiller, Michaela; Kichey, Thomas; Hansen, Thomas Hesselhøj; Pedas, Pai; Husted, Søren; Schjoerring, Jan Kofod

    2012-01-01

    Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the proteins. Here, we document that barley (Hordeum vulgare) MT3 and MT4 proteins exist in planta and that they differ in tissue localization as well as in metal coordination chemistry. Combined transcriptional and histological analyses showed temporal and spatial correlations between transcript levels and protein abundance during grain development. MT3 was present in tissues of both maternal and filial origin throughout grain filling. In contrast, MT4 was confined to the embryo and aleurone layer, where it appeared during tissue specialization and remained until maturity. Using state-of-the-art speciation analysis by size-exclusion chromatography inductively coupled plasma mass spectrometry and electrospray ionization time-of-flight mass spectrometry on recombinant MT3 and MT4, their specificity and capacity for metal ion binding were quantified, showing a strong preferential Zn binding relative to Cu and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations. PMID:22582132

  19. Stress examination of flexor tendon pulley rupture in the crimp grip position: a 1.5-Tesla MRI cadaver study.

    PubMed

    Bayer, Thomas; Fries, Simon; Schweizer, Andreas; Schöffl, Isabelle; Janka, Rolf; Bongartz, Georg

    2015-01-01

    The objectives of this study were the evaluation of flexor tendon pulley rupture of the fingers in the crimp grip position using magnetic resonance imaging (MRI) and the comparison of the results with MRI in the neutral position in a cadaver study. MRI in the crimp grip position and in the neutral position was performed in 21 cadaver fingers with artificially created flexor tendon pulley tears (combined pulley rupture, n = 14; single pulley rupture, n = 7). Measurement of the distance between the tendon and bone was performed. Images were evaluated by two readers, first independently and in cases of discrepancy in consensus. Sensitivity and specificity for detecting combined pulley ruptures were calculated. Tendon bone distances were significantly higher in the crimp grip position than in the neutral position. Sensitivity and specificity for detecting combined pulley rupture were 92.86 % and 100 % respectively in the crimp grip position and 78.57 % and 85.71 % respectively in the neutral position. Kappa values for interobserver reliability were 0.87 in the crimp grip position and 0.59 in the neutral position. MRI examination in the crimp grip position results in higher tendon bone distances by subjecting the pulleys to a higher strain, which facilitates image evaluation with higher interobserver reliability, higher sensitivity, and higher specificity for combined pulley rupture compared with examination in the neutral position.

  20. Characterization of Antibodies for Grain-Specific Gluten Detection.

    PubMed

    Sharma, Girdhari M; Rallabhandi, Prasad; Williams, Kristina M; Pahlavan, Autusa

    2016-03-01

    Gluten ingestion causes immunoglobulin E (IgE)-mediated allergy or celiac disease in sensitive individuals, and a strict gluten-free diet greatly limits food choices. Immunoassays such as enzyme-linked immunosorbent assay (ELISA) are used to quantify gluten to ensure labeling compliance of gluten-free foods. Anti-gluten antibodies may not exhibit equal affinity to gluten from wheat, rye, and barley. Moreover, because wheat gluten is commonly used as a calibrator in ELISA, accurate gluten quantitation from rye and barley contaminated foods may be compromised. Immunoassays utilizing grain-specific antibodies and calibrators may help improve gluten quantitation. In this study, polyclonal antibodies raised against gluten-containing grain-specific peptides were characterized for their immunoreactivity to gluten from different grain sources. Strong immunoreactivity to multiple gluten polypeptides from wheat, rye, and barley was observed in the range 34 to 43 kDa with anti-gliadin, 11 to 15 and 72 to 95 kDa with anti-secalin, and 30 to 43 kDa with anti-hordein peptide antibodies, respectively. Minimal or no cross-reactivity with gluten from other grains was observed among these antibodies. The anti-consensus peptide antibody raised against a repetitive amino acid sequence of proline and glutamine exhibited immunoreactivity to gluten from wheat, rye, barley, and oat. The antibodies exhibited similar immunoreactivity with most of the corresponding grain cultivars by ELISA. The high specificity and minimal cross-reactivity of grain-specific antibodies suggest their potential use in immunoassays for accurate gluten quantitation. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  1. Effect of composted sewage sludge on morpho-physiological growth parameters, grain yield and selected functional compounds of barley.

    PubMed

    Pasqualone, Antonella; Summo, Carmine; Centomani, Isabella; Lacolla, Giovanni; Caranfa, Gianraffaele; Cucci, Giovanna

    2017-03-01

    Several studies have evaluated the effects of composted sewage sludge on barley and found a positive influence on crop productivity. No studies have investigated the effects of composted sewage sludge on functional compounds of the caryopsis, such as phenolics and β-glucans. The former play a role in plant defence mechanisms and both could be influenced by variations of kernel size related to fertilization intensity. The present study aimed to evaluate the effect of different doses (3-12 mg ha -1 ) of composted sewage sludge applied alone or in combination with mineral fertilization on morpho-physiological and yield qualitative parameters, especially phenolics and β-glucans contents of grains, in barley. Increasing fertilization rates, irrespective of fertilizer type, improved morpho-physiological and yield parameters, whereas the phenolic compounds and the related antioxidant activity significantly decreased (P < 0.05). The β-glucans and the main color indices did not show significant differences. The combined application of 6 mg ha -1 sewage sludge and nitrogen was not significantly different from mineral fertilization. Morpho-physiological and qualitative parameters, as well as bioactive compounds, were all significantly correlated with nutrient levels, with higher r values for nitrogen. Composted sewage sludge had a similar effect compared to mineral fertilization. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Barley and Oat beta-Glucan content measured by Calcofluor fluorescence in a microplate assay

    USDA-ARS?s Scientific Manuscript database

    Beta-glucans, linear glucan polymers of mixed linkage, are important constituents of cereal cell walls. They have important health benefits in the human diet, but also can negatively affect the use of barley grain as an animal feed. High beta-glucans in barley malt can also cause problems in brewi...

  3. Fermentation of Barley by Using Saccharomyces cerevisiae: Examination of Barley as a Feedstock for Bioethanol Production and Value-Added Products ▿

    PubMed Central

    Gibreel, Amera; Sandercock, James R.; Lan, Jingui; Goonewardene, Laksiri A.; Zijlstra, Ruurd T.; Curtis, Jonathan M.; Bressler, David C.

    2009-01-01

    The objective of this study was to examine the ethanol yield potential of three barley varieties (Xena, Bold, and Fibar) in comparison to two benchmarks, corn and wheat. Very high gravity (VHG; 30% solids) fermentations using both conventional and Stargen 001 enzymes for starch hydrolysis were carried out as simultaneous saccharification and fermentation. The grains and their corresponding dried distiller's grain with solubles (DDGS) were also analyzed for nutritional and value-added characteristics. A VHG traditional fermentation approach utilizing jet-cooking fermentation revealed that both dehulled Bold and Xena barley produced ethanol concentrations higher than that produced by wheat (12.3, 12.2, and 11.9%, respectively) but lower than that produced by corn (13.8%). VHG-modified Stargen-based fermentation of dehulled Bold barley demonstrated comparable performance (14.3% ethanol) relative to that of corn (14.5%) and wheat (13.3%). Several important components were found to survive fermentation and were concentrated in DDGS. The highest yield of phenolics was detected in the DDGS (modified Stargen 001, 20% solids) of Xena (14.6 mg of gallic acid/g) and Bold (15.0 mg of gallic acid/g) when the hull was not removed before fermentation. The highest concentration of sterols in DDGS from barley was found in Xena (3.9 mg/g) when the hull was included. The DDGS recovered from corn had the highest concentration of fatty acids (72.6 and 77.5 mg/g). The DDGS recovered from VHG jet-cooking fermentations of Fibar, dehulled Bold, and corn demonstrated similar levels of tocopherols and tocotrienols. Corn DDGS was highest in crude fat but was lowest in crude protein and in vitro energy digestibility. Wheat DDGS was highest in crude protein content, similar to previous studies. The barley DDGS was the highest in in vitro energy digestibility. PMID:19114516

  4. Elastic model for crimped collagen fibrils

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Doehring, Todd C.

    2005-01-01

    A physiologic constitutive expression is presented in algorithmic format for the nonlinear elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils in a fascicle have a three-dimensional structure at the micron scale that we approximate as a helical spring. The symmetry of this wave form allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form: all integrals become analytic. Model predictions are in good agreement with experimental observations for mitral-valve chordae tendinece.

  5. A computational study of crimping and expansion of bioresorbable polymeric stents

    NASA Astrophysics Data System (ADS)

    Qiu, T. Y.; Song, M.; Zhao, L. G.

    2018-05-01

    This paper studied the mechanical performance of four bioresorbable PLLA stents, i.e., Absorb, Elixir, Igaki-Tamai and RevaMedical, during crimping and expansion using the finite element method. Abaqus CAE was used to create the geometrical models for the four stents. A tri-folded balloon was created using NX software. For the stents, elastic-plastic behaviour was used, with hardening implemented by considering the increase of yield stress with the plastic strain. The tri-folded balloon was treated as linear elastic. To simulate the crimping of stents, a set of 12 rigid plates were generated around the stents with a radially enforced displacement. During crimping, the stents were compressed from a diameter of 3 mm to 1.2 mm, with the maximum stress developed at both inner and outer sides of the U-bends. During expansion, the stent inner diameter increased to 3 mm at the peak pressure and then recoiled to different final diameters after balloon deflation due to different stent designs. The maximum stress was found again at the U-bends of stents. Diameter change, recoiling effect and radial strength/stiffness were also compared for the four stents to assess the effect of design variation on stent performance. The effect of loading rate on stent deformation was also simulated by considering the time-dependent plastic behaviour of polymeric material.

  6. A computational study of crimping and expansion of bioresorbable polymeric stents

    NASA Astrophysics Data System (ADS)

    Qiu, T. Y.; Song, M.; Zhao, L. G.

    2017-10-01

    This paper studied the mechanical performance of four bioresorbable PLLA stents, i.e., Absorb, Elixir, Igaki-Tamai and RevaMedical, during crimping and expansion using the finite element method. Abaqus CAE was used to create the geometrical models for the four stents. A tri-folded balloon was created using NX software. For the stents, elastic-plastic behaviour was used, with hardening implemented by considering the increase of yield stress with the plastic strain. The tri-folded balloon was treated as linear elastic. To simulate the crimping of stents, a set of 12 rigid plates were generated around the stents with a radially enforced displacement. During crimping, the stents were compressed from a diameter of 3 mm to 1.2 mm, with the maximum stress developed at both inner and outer sides of the U-bends. During expansion, the stent inner diameter increased to 3 mm at the peak pressure and then recoiled to different final diameters after balloon deflation due to different stent designs. The maximum stress was found again at the U-bends of stents. Diameter change, recoiling effect and radial strength/stiffness were also compared for the four stents to assess the effect of design variation on stent performance. The effect of loading rate on stent deformation was also simulated by considering the time-dependent plastic behaviour of polymeric material.

  7. Quantitative Trait Loci Associated with the Tocochromanol (Vitamin E) Pathway in Barley.

    PubMed

    Graebner, Ryan C; Wise, Mitchell; Cuesta-Marcos, Alfonso; Geniza, Matthew; Blake, Tom; Blake, Victoria C; Butler, Joshua; Chao, Shiaomen; Hole, David J; Horsley, Rich; Jaiswal, Pankaj; Obert, Don; Smith, Kevin P; Ullrich, Steven; Hayes, Patrick M

    2015-01-01

    The Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- α-, β-, δ-, γ-tocopherol and tocotrienol- were assayed. We found 13 single nucleotide polymorphisms associated with the concentration of one or more of these tocochromanol forms in barley, seven of which were within 2 cM of sequences homologous to cloned genes associated with tocochromanol production in barley and/or other plants. These associations confirmed a prior report based on bi-parental QTL mapping. This knowledge will aid future efforts to better understand the role of tocochromanols in barley, with specific reference to abiotic stress resistance. It will also be useful in developing barley varieties with higher tocochromanol concentrations, although at current recommended daily consumption amounts, barley would not be an effective sole source of vitamin E. However, it could be an important contributor in the context of whole grains in a balanced diet.

  8. Brassinosteroid enhances resistance to fusarium diseases of barley.

    PubMed

    Ali, Shahin S; Kumar, G B Sunil; Khan, Mojibur; Doohan, Fiona M

    2013-12-01

    Fusarium pathogens are among the most damaging pathogens of cereals. These pathogens have the ability to attack the roots, seedlings, and flowering heads of barley and wheat plants with disease, resulting in yield loss and head blight disease and also resulting in the contamination of grain with mycotoxins harmful to human and animal health. There is increasing evidence that brassinosteroid (BR) hormones play an important role in plant defense against both biotic and abiotic stress agents and this study set out to determine if and how BR might affect Fusarium diseases of barley. Application of the epibrassinolide (epiBL) to heads of 'Lux' barley reduced the severity of Fusarium head blight (FHB) caused by Fusarium culmorum by 86% and reduced the FHB-associated loss in grain weight by 33%. Growth of plants in soil amended with epiBL resulted in a 28 and 35% reduction in Fusarium seedling blight (FSB) symptoms on the Lux and 'Akashinriki' barley, respectively. Microarray analysis was used to determine whether growth in epiBL-amended soil changed the transcriptional profile in stem base tissue during the early stages of FSB development. At 24 and 48 h post F. culmorum inoculation, there were 146 epiBL-responsive transcripts, the majority being from the 48-h time point (n = 118). Real-time reverse-transcription polymerase chain reaction analysis validated the results for eight transcripts, including five defense genes. The results of gene expression studies show that chromatin remodeling, hormonal signaling, photosynthesis, and pathogenesis-related genes are activated in plants as a result of growth in epiBL.

  9. Analysis of grain characters in temperate grasses reveals distinctive patterns of endosperm organization associated with grain shape

    PubMed Central

    Drea, Sinéad

    2012-01-01

    Members of the core pooids represent the most important crops in temperate zones including wheat, barley, and oats. Their importance as crops is largely due to the grain, particularly the storage capabilities of the endosperm. In this study, a comprehensive survey of grain morphology and endosperm organization in representatives of wild and cultivated species throughout the core pooids was performed. As sister to the core pooid tribes Poeae, Aveneae, Triticeae, and Bromeae within the Pooideae subfamily, Brachypodium provides a taxonomically relevant reference point. Using macroscopic, histological, and molecular analyses distinct patterns of grain tissue organization in these species, focusing on the peripheral and modified aleurone, are described. The results indicate that aleurone organization is correlated with conventional grain quality characters such as grain shape and starch content. In addition to morphological and organizational variation, expression patterns of candidate gene markers underpinning this variation were examined. Features commonly associated with grains are largely defined by analyses on lineages within the Triticeae and knowledge of grain structure may be skewed as a result of the focus on wheat and barley. Specifically, the data suggest that the modified aleurone is largely restricted to species in the Triticeae tribe. PMID:23081982

  10. BIOCHEMICAL COMPOSITION AND NUTRITIONAL EVALUATION OF BARLEY RIHANE (HORDEUM VULGARE L.).

    PubMed

    Lahouar, Lamia; Ghrairi, Fatma; El Arem, Amira; Medimagh, Sana; El Felah, Mouledi; Salem, Hichem Ben; Achour, Lotfi

    2017-01-01

    Many experimental studies have suggested an important role for barley Rihane(BR)in the prevention of colon cancer and cardiovascular diseases. The objective of this study was to evaluate the physico-chemical properties and nutritional characterizations of BR compared to other varieties grown in Tunisia (Manel, Roho and Tej). Total, insoluble and soluble dietary fiber(β-glucan), total protein, ash and some minerals of BR and Tunisian barley varieties were determined. The results revealed that BR is good source of dietary fiber mainly β-glucan compared to the other varieties. This variety is a relatively rich source of phosphorous and potassium and it contains many important unsaturated fatty acids. BR has higher nutritional value than other varieties. Barley Rihane has significant nutritional characterizations compared to others Tunisian barleys varieties. Abbreviations: BR, Barley Rihane; LDL, low density lipoprotein; HDL, high density lipoprotein; AOM, azoxymethane; TBV, Tunisian barley varieties; TGW, thousand grain weight; SW, weight specific; TDF, total dietary fiber; IDF, insoluble dietary fiber; SDF, soluble dietary fiber; DM, Dry Matter.

  11. BIOCHEMICAL COMPOSITION AND NUTRITIONAL EVALUATION OF BARLEY RIHANE (HORDEUM VULGARE L.)

    PubMed Central

    Lahouar, Lamia; Ghrairi, Fatma; El Arem, Amira; Medimagh, Sana; El Felah, Mouledi; Salem, Hichem Ben; Achour, Lotfi

    2017-01-01

    Background: Many experimental studies have suggested an important role for barley Rihane(BR)in the prevention of colon cancer and cardiovascular diseases. The objective of this study was to evaluate the physico-chemical properties and nutritional characterizations of BR compared to other varieties grown in Tunisia (Manel, Roho and Tej). Material and Methods: Total, insoluble and soluble dietary fiber(β-glucan), total protein, ash and some minerals of BR and Tunisian barley varieties were determined. Results: The results revealed that BR is good source of dietary fiber mainly β-glucan compared to the other varieties. This variety is a relatively rich source of phosphorous and potassium and it contains many important unsaturated fatty acids. BR has higher nutritional value than other varieties. Conclusion: Barley Rihane has significant nutritional characterizations compared to others Tunisian barleys varieties. Abbreviations: BR, Barley Rihane; LDL, low density lipoprotein; HDL, high density lipoprotein; AOM, azoxymethane; TBV, Tunisian barley varieties; TGW, thousand grain weight; SW, weight specific; TDF, total dietary fiber; IDF, insoluble dietary fiber; SDF, soluble dietary fiber; DM, Dry Matter. PMID:28480409

  12. Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain.

    PubMed

    Gangopadhyay, Nirupama; Rai, Dilip K; Brunton, Nigel P; Gallagher, Eimear; Hossain, Mohammad B

    2016-11-01

    In the present study, the relative contribution of individual/classes of polyphenols in barley, to its antioxidant properties, was evaluated. Flash chromatography was used to fractionate the total polyphenol extract of Irish barley cultivar 'Irina', and fractions with highest antioxidant properties were identified using total phenolic content and three in vitro antioxidant assays: DPPH, FRAP, and ORAC. Flavanols (catechin, procyanidin B, prodelphinidin B, procyanidin C) and a novel substituted flavanol (catechin dihexoside, C27H33O16(-), m/z 613.17), were identified as constituents of the fraction with highest antioxidant capacity. Upon identification of phenolics in the other active fractions, the order of most potent contributors to observed antioxidant capacity of barley extract were, flavanols>flavonols (quercetin)>hydroxycinnamic acids (ferulic, caffeic, coumaric acids). The most abundant polyphenol in the overall extract was ferulic acid (277.7μg/gdw barley), followed by procyanidin B (73.7μg/gdw barley). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Aspergillus ficuum phytase activity is inhibited by cereal grain components.

    PubMed

    Bekalu, Zelalem Eshetu; Madsen, Claus Krogh; Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2017-01-01

    In the current study, we report for the first time that grain components of barley, rice, wheat and maize can inhibit the activity of Aspergillus ficuum phytase. The phytase inhibition is dose dependent and varies significantly between cereal species, between cultivars of barley and cultivars of wheat and between Fusarium graminearum infected and non-infected wheat grains. The highest endpoint level of phytase activity inhibition was 90%, observed with grain protein extracts (GPE) from F. graminearum infected wheat. Wheat GPE from grains infected with F. graminearum inhibits phytase activity significantly more than GPE from non-infected grains. For four barley cultivars studied, the IC50 value ranged from 0.978 ± 0.271 to 3.616 ± 0.087 mg×ml-1. For two non-infected wheat cultivars investigated, the IC50 values were varying from 2.478 ± 0.114 to 3.038 ± 0.097 mg×ml-1. The maize and rice cultivars tested gaveIC50 values on 0.983 ± 0.205 and 1.972 ± 0.019 mg×ml-1, respectively. After purifying the inhibitor from barley grains via Superdex G200, an approximately 30-35 kDa protein was identified. No clear trend for the mechanism of inhibition could be identified via Michaelis-Menten kinetics and Lineweaver-Burk plots. However, testing of the purified phytase inhibitor together with the A. ficuum phytase and the specific protease inhibitors pepstatin A, E64, EDTA and PMSF revealed that pepstatin A repealed the phytase inhibition. This indicates that the observed inhibition of A. ficuum phytase by cereal grain extracts is caused by protease activity of the aspartic proteinase type.

  14. Aspergillus ficuum phytase activity is inhibited by cereal grain components

    PubMed Central

    Bekalu, Zelalem Eshetu; Madsen, Claus Krogh; Dionisio, Giuseppe

    2017-01-01

    In the current study, we report for the first time that grain components of barley, rice, wheat and maize can inhibit the activity of Aspergillus ficuum phytase. The phytase inhibition is dose dependent and varies significantly between cereal species, between cultivars of barley and cultivars of wheat and between Fusarium graminearum infected and non-infected wheat grains. The highest endpoint level of phytase activity inhibition was 90%, observed with grain protein extracts (GPE) from F. graminearum infected wheat. Wheat GPE from grains infected with F. graminearum inhibits phytase activity significantly more than GPE from non-infected grains. For four barley cultivars studied, the IC50 value ranged from 0.978 ± 0.271 to 3.616 ± 0.087 mg×ml-1. For two non-infected wheat cultivars investigated, the IC50 values were varying from 2.478 ± 0.114 to 3.038 ± 0.097 mg×ml-1. The maize and rice cultivars tested gaveIC50 values on 0.983 ± 0.205 and 1.972 ± 0.019 mg×ml-1, respectively. After purifying the inhibitor from barley grains via Superdex G200, an approximately 30–35 kDa protein was identified. No clear trend for the mechanism of inhibition could be identified via Michaelis-Menten kinetics and Lineweaver-Burk plots. However, testing of the purified phytase inhibitor together with the A. ficuum phytase and the specific protease inhibitors pepstatin A, E64, EDTA and PMSF revealed that pepstatin A repealed the phytase inhibition. This indicates that the observed inhibition of A. ficuum phytase by cereal grain extracts is caused by protease activity of the aspartic proteinase type. PMID:28472144

  15. Phenotypic and Physiological Evaluation of Two and Six Rows Barley under Different Environmental Conditions.

    PubMed

    Naser, Mahmoud; Badran, Mohamed; Abouzied, Hanaa; Ali, Heba; Elbasyoni, Ibrahim

    2018-05-04

    In recent years, barley has attracted more interest as a food and feed source because of its high soluble dietary fiber and β-glucan content compared with other small grains. Twenty-five barley genotypes (20 imported genotypes and five check cultivars) were grown in three environments for two successive seasons: 2015/2016 and 2016/2017. The first environment was in El-Nubaria, Alexandria, Egypt during 2015/2016, while the second and third environments were in El-Bostan, Elbhera, Egypt during 2015/2016 and 2016/2017. The experiments were conducted in a randomized complete block design with the three replicates. The primary objectives of the current study were to evaluate the performance of 20 imported barley genotypes under several environmental conditions. The imported materials were superior to the local commercial cultivars for several traits, including grain yield. Therefore, the superior genotypes will be further evaluated and used in barley breeding programs. Our future work will focus on creating several crosses among the selected superior genotypes to improve yield and other important traits, while applying marker-assisted selection.

  16. The 1980 US/Canada wheat and barley exploratory experiment, volume 1

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.

    1983-01-01

    The results from the U.S./Canada Wheat and Barley Exploratory Experiment which was completed during FY 1980 are presented. The results indicate that the new crop identification procedures performed well for spring small grains and that they are conductive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology. However, the crop calendars will require additional development and refinements prior to integration into automated area estimation technology. The evaluation showed the integrated technology to be capable of producing accurate and consistent spring small grains proportion estimates. However, barley proportion estimation technology was not satisfactorily evaluated. The low-density segments examined were judged not to give indicative or unequivocal results. It is concluded that, generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analyses to a variety of agricultural and meteorological conditions representative of the global environment. It is further concluded that a strong potential exists for establishing a highly efficient technology or spring small grains.

  17. Effects of feeding hull-less barley on production performance, milk fatty acid composition, and nutrient digestibility of lactating dairy cows.

    PubMed

    Yang, Y; Ferreira, G; Teets, C L; Corl, B A; Thomason, W E; Griffey, C A

    2017-05-01

    The objectives of this study were to evaluate production performance, milk fatty acid composition, and nutrient digestibility in high-producing dairy cows consuming diets containing corn and hull-less barley (cultivar Amaze 10) in different proportions as the grain source. Eight primiparous and 16 multiparous Holstein cows were assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with 21-d periods. Cows were fed once daily (1200 h) by means of a Calan gate system (American Calan Inc., Northwood, NH). All diets contained ∼20% grain (dry matter basis). Treatments consisted of 100% corn (0B), 67% corn and 33% hull-less barley (33B), 33% corn and 67% hull-less barley (67B), and 100% hull-less barley (100B) as the grain sources. Total-tract nutrient digestibility was estimated using lanthanum chloride (LaCl 3 ) as an external marker. Dry matter intake differed quadratically among treatments, being lowest for 67B and highest for 0B and 100B. Feeding hull-less barley did not affect milk yield, and milk fat concentration differed cubically among treatments. The cubic response was attributed to the higher milk fat concentration observed for the diet containing 67B. Neither the concentrations in milk of protein and lactose nor the yields of protein and lactose differed among treatments. The proportion of de novo synthesized fatty acids in milk did not differ among treatments. The apparent total-tract digestibility of dry matter, crude protein, and neutral detergent fiber did not differ among treatments. Although a quadratic effect was observed, starch digestibility was minimally affected by treatments. In conclusion, this study indicates that hull-less barley grain is as good as corn grain as an energy source when formulating diets for high-producing dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Improved palatability and bio-functionality of super-hard rice by soaking in a barley-koji miso suspension.

    PubMed

    Nakamura, Sumiko; Nakano, Yohei; Satoh, Hikaru; Ohtsubo, Ken'ichi

    2013-01-01

    Cooked grains of ae rice cultivars are too hard and non-sticky due to the presence of long-chain amylopectin, and ae rice cultivars are therefore called ``super-hard rice'' and cannot be used as table rice. However, they are promising in terms of their bio-functionality such as preventing diabetes. Miso (soybean paste) is a yeast-fermented food, made from steamed soybeans, salt, and inoculated cereals known as koji, made from rice, barley, or soybeans.We investigated the effects of soaking ae mutant rice cultivars in a miso suspension. Their chemical components, physical properties, and enzyme activities were measured under different conditions (milled rice before or after soaking in a 5% barley-koji miso suspension). Rice grains cooked after soaking in the miso suspension were less hard and more sticky than those cooked after soaking in water. Rice grains cooked after soaking in a 5% barley-koji miso suspension maintained high amounts of resistant starch and dietary fiber, and were fortified with polyphenols and isoflavones. Palatable and bio-functional ae rice could therefore be produced by cooking after soaking in a 5% barley-koji miso suspension.

  19. Identification of a Phytase Gene in Barley (Hordeum vulgare L.)

    PubMed Central

    Dai, Fei; Qiu, Long; Ye, Lingzhen; Wu, Dezhi; Zhou, Meixue; Zhang, Guoping

    2011-01-01

    Background Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. Methodology/Principal Findings Quantitative trait loci (QTL) analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP) gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. Conclusions/Significance It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains. PMID:21533044

  20. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  1. Analysis of grain quality at receival

    USDA-ARS?s Scientific Manuscript database

    With an emphasis on wheat and to a lesser extent, barley, we describe the series of post harvest transfer stages of grain between the first point of sale and the export terminal. At each transfer point, a document accompanies a grain consignment that pertains to its quality (class, purity, sanitatio...

  2. Comparative energy content and amino acid digestibility of barley obtained from diverse sources fed to growing pigs.

    PubMed

    Wang, Hong Liang; Shi, Meng; Xu, Xiao; Ma, Xiao Kang; Liu, Ling; Piao, Xiang Shu

    2017-07-01

    Two experiments were conducted to determine the content of digestible energy (DE) and metabolizable energy (ME) as well as the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in barley grains obtained from Australia, France or Canada. In Exp. 1, 18 growing barrows (Duroc×Landrace×Yorkshire; 31.5±3.2 kg) were individually placed in stainless-steel metabolism crates (1.4×0.7×0.6 m) and randomly allotted to 1 of 3 test diets. In Exp. 2, eight crossbred pigs (30.9±1.8 kg) were allotted to a replicate 3×4 Youden Square designed experiment with three periods and four diets. Two pigs received each diet during each test period. The diets included one nitrogen-free diet and three test diets. The relative amounts of gross energy (GE), CP, and all AA in the Canadian barley were higher than those in Australian and French barley while higher concentrations of neutral detergent fiber, acid detergent fiber, total dietary fiber, insoluble dietary fiber and β-glucan as well as lower concentrations of GE and ether extract were observed in the French barley compared with the other two barley sources. The DE and ME as well as the SID of histidine, isoleucine, leucine and phenylalanine in Canadian barley were higher (p<0.05) than those in French barley but did not differ from Australian barley. Differences in the chemical composition, energy content and the SID and AID of AA were observed among barley sources obtained from three countries. The feeding value of barley from Canada and Australia was superior to barley obtained from France which is important information in developing feeding systems for growing pigs where imported grains are used.

  3. Barley and oat beta-glucan content measured by calcofluor fluorescence in a microplate assay

    USDA-ARS?s Scientific Manuscript database

    Beta-glucan levels in grains, particularly barley and oats, are receiving increased interest in part due to their recognized benefits to human health. While a number of methods to determine grain beta-glucan levels are available, each suffers from significant drawbacks for routine implementation. ...

  4. The transfer of {sup 137}Cs from barley to beer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proehl, G.; Mueller, H.; Voigt, G.

    Beer has been brewed from barley contaminated with {sup 137}Cs as a consequence of the Chernobyl accident. The {sup 137}Cs activity has been measured in all intermediate steps and in the by-products of the production process. About 35 % of the {sup 137}Cs in barley were recovered in beer. Processing factors defined as the concentration ratio of processed and raw products were determined to be 0.61, 3.3, 0.1 and 0.11 for malt, malt germs, spent grains and beer, respectively. 4 refs., 2 tabs.

  5. Effects of feeding hulled and hull-less barley with low- and high-forage diets on lactation performance, nutrient digestibility, and milk fatty acid composition of lactating dairy cows.

    PubMed

    Yang, Y; Ferreira, G; Teets, C L; Corl, B A; Thomason, W E; Griffey, C A

    2018-04-01

    The objective of this study was to evaluate lactation performance, nutrient digestibility, and milk fatty acid composition of high-producing dairy cows consuming diets containing hulled or hull-less barley as the grain source when feeding low-forage (LF) or high-forage (HF) diets. Eight primiparous (610 ± 40 kg of body weight and 72 ± 14 d in milk) and 16 multiparous (650 ± 58 kg of body weight and 58 ± 16 d in milk) Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and 21-d periods. Cows were assigned to squares based on parity (1, 2, and ≥3) and days in milk. Diets were formulated to contain on a dry matter basis (1) 45% forage and hulled barley as the sole grain source, (2) 65% forage and hulled barley as the sole grain source, (3) 45% forage and hull-less barley as the sole grain source, and (4) 65% forage and hull-less barley as the sole grain source. Dry matter intake tended to be lower for the diet with 65% forage and hulled barley than for the rest of the diets (24.4 vs. 26.6 kg/d). Neither the type of barley nor the forage-to-concentrate ratio affected milk yield (41.7 kg/d). Barley type did not affect milk fat or protein concentrations. Feeding LF diets decreased milk fat concentration from 3.91% to 3.50%. This decrease was less than anticipated and resulted in a 7% decrease in milk fat yield relative to cows consuming HF diets (1.60 and 1.49 kg/d for HF and LF diets, respectively). Feeding LF diets increased the concentration of C18:1 trans-10 in milk fat, suggesting that feeding LF diets may have marginally altered rumen function. In conclusion, LF diets containing barley grains can marginally decrease milk fat concentration. Overall, and based on the conditions of this study, there is limited evidence to anticipate a dramatic or acute milk fat depression when feeding hull-less barley as the grain source in diets for high-producing dairy cows. Copyright

  6. 10. SOUTH BAY SHOWING 300TON R.D. WOOD CO. HYDRAULIC CRIMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SOUTH BAY SHOWING 300-TON R.D. WOOD CO. HYDRAULIC CRIMPING PRESS. VIEW EAST ALSO SHOWING NORTHWEST CORNER OF OFFICE/MACHINE SHOP - Oldman Boiler Works, Fabricating Shop, 32 Illinois Street, Buffalo, Erie County, NY

  7. Stitch modeling of non crimp fabric in forming simulations

    NASA Astrophysics Data System (ADS)

    Steer, Q.; Colmars, J.; Boisse, P.

    2018-05-01

    The use of Non Crimp Fabric composite has increased during the last years due to cheaper cost of manufacturing and high mechanicals properties suitable for applications such as aeronautic, automotive and wind turbines. The main difference between Non Crimp Fabric (NCF) and textile reinforcement is the mean of manufacturing: where in textile fibers are woven, in NCF layers of unidirectional oriented fibers are assembled with a stitch. As a consequence, the stitch especially its geometry (stitch pattern) will have a major influence on the deformation of this type of reinforcement during forming process. Experimental campaigns on NCF samples compared to textile with the same fibers orientation have showed that the stitch affects the shear behavior of the reinforcement which is the main mode of deformation in the forming process. A description of the stitch has been implemented in a shell element for macro scale forming simulation as a first approach based on simple hypothesis. Further works are focus on the specific behavior of the stitch along the fabric and interaction with the fibers layers during shear deformation of the reinforcement and a method to implement the stitch in a more refined model of the fabric.

  8. Methane emissions from two breeds of beef cows offered diets containing barley straw with either grass silage or brewers' grains.

    PubMed

    Duthie, C-A; Rooke, J A; Hyslop, J J; Waterhouse, A

    2015-10-01

    Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers' grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two×two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers' grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n=48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed×treatment combination (total n=40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P0.05). However, when expressed as a proportion of metabolic BW (BW0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW0.75, P<0.05) and produced more CH4 per kg BW0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher (P<0.001) and propionate and butyrate lower (P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4

  9. Inferring geographic origin of barley accessions using molecular markers

    USDA-ARS?s Scientific Manuscript database

    The USDA Agricultural Research Service (ARS) National Small Grains Collection (NSGC) has 207 landrace barleys obtained from a nursery grown in the Ukraine in 1930 by N.I. Vavilov, many of which have multiple resistance (MR) to disease similar to accessions from Ethiopia. Vavilov collected germplasm ...

  10. Gibberellic acid (GA3) induced changes in proanthocyanidins and malt quality of two- and six-row husked barleys.

    PubMed

    Yadav, S K; Luthra, Y P; Sood, D R; Aggarwal, N K

    2000-01-01

    Analysis of husked barleys for proanthocyanidins and malt quality attributes has shown that not a single variety is free of proanthocyanidins. The proanthocyanidins in barley grains varied from 3.85 to 4.94 mg/g as catechin equivalent. The concentration of proanthocyanidins decreased, while total soluble sugars, reducing sugars, diastatic power and beta-amylase activity increased during maltings as well as with exogenous gibberellic acid (GA3) application. Alfa 93 (two-row) and RD2560 (six-row) varieties appeared to be superior for malting and brewing purposes on the basis of proanthocyanidins, total phenols, diastatic power and beta-amylase activity. It is suggested that exogenous application of GA3 at 15 ppm may be useful for producing good quality malt from barley grains.

  11. Bioaccessible mineral content of malted finger millet (Eleusine coracana), wheat (Triticum aestivum), and barley (Hordeum vulgare).

    PubMed

    Platel, Kalpana; Eipeson, Sushma W; Srinivasan, Krishnapura

    2010-07-14

    Malted grains are extensively used in weaning and geriatric foods. Malting generally improves the nutrient content and digestibility of foods. The present investigation examined the influence of malting of finger millet, wheat, and barley on the bioaccessibility of iron, zinc, calcium, copper, and manganese. Malting increased the bioaccessibility of iron by >3-fold from the two varieties of finger millet and by >2-fold from wheat, whereas such a beneficial influence was not seen in barley. The bioaccessibility of zinc from wheat and barley increased to an extent of 234 and 100%, respectively, as a result of malting. However, malting reduced the bioaccessibility of zinc from finger millet. Malting marginally increased the bioaccessibility of calcium from white finger millet and wheat. Whereas malting did not exert any influence on bioaccessibility of copper from finger millet and wheat, it significantly decreased (75%) the same from barley. Malting did increase the bioaccessibility of manganese from brown finger millet (17%) and wheat (42%). Thus, malting could be an appropriate food-based strategy to derive iron and other minerals maximally from food grains.

  12. AgRISTARS: Foreign commodity production forecasting. The 1980 US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Payne, R. W. (Principal Investigator)

    1981-01-01

    The crop identification procedures used performed were for spring small grains and are conducive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology; however, the crop calendars require additional development and refinements prior to integration into automated area estimation technology. The integrated technology is capable of producing accurate and consistent spring small grains proportion estimates. Barley proportion estimation technology was not satisfactorily evaluated because LANDSAT sample segment data was not available for high density barley of primary importance in foreign regions and the low density segments examined were not judged to give indicative or unequvocal results. Generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analysis to a variety of agricultural and meteorological conditions representative of the global environment.

  13. Ingestible roasted barley for contrast-enhanced photoacoustic imaging in animal and human subjects.

    PubMed

    Wang, Depeng; Lee, Dong Hyeun; Huang, Haoyuan; Vu, Tri; Lim, Rachel Su Ann; Nyayapathi, Nikhila; Chitgupi, Upendra; Liu, Maggie; Geng, Jumin; Xia, Jun; Lovell, Jonathan F

    2018-08-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality. While many contrast agents have been developed for PACT, these typically cannot immediately be used in humans due to the lengthy regulatory process. We screened two hundred types of ingestible foodstuff samples for photoacoustic contrast with 1064 nm pulse laser excitation, and identified roasted barley as a promising candidate. Twenty brands of roasted barley were further screened to identify the one with the strongest contrast, presumably based on complex chemical modifications incurred during the roasting process. Individual roasted barley particles could be detected through 3.5 cm of chicken-breast tissue and through the whole hand of healthy human volunteers. With PACT, but not ultrasound imaging, a single grain of roasted barley was detected in a field of hundreds of non-roasted particles. Upon oral administration, roasted barley enabled imaging of the gut and peristalsis in mice. Prepared roasted barley tea could be detected through 2.5 cm chicken breast tissue. When barley tea was administered to humans, photoacoustic imaging visualized swallowing dynamics in healthy volunteers. Thus, roasted barley represents an edible foodstuff that should be considered for photoacoustic contrast imaging of swallowing and gut processes, with immediate potential for clinical translation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons

    USDA-ARS?s Scientific Manuscript database

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known so...

  15. Recombinant barley-produced antibody for detection and immunoprecipitation of the major bovine milk allergen, β-lactoglobulin.

    PubMed

    Ritala, A; Leelavathi, S; Oksman-Caldentey, K-M; Reddy, V S; Laukkanen, M-L

    2014-06-01

    Recombinant allergens and antibodies are needed for diagnostic, therapeutic, food processing and quality verification purposes. The aim of this work was to develop a barley-based production system for β-lactoglobulin (BLG) specific immunoglobulin E antibody (D1 scFv). The expression level in the best barley cell clone was 0.8-1.2 mg/kg fresh weight, and was constant over an expression period of 21 days. In the case of barley grains, the highest stable productivity (followed up to T2 grains) was obtained when the D1 scFv cDNA was expressed under a seed-specific Glutelin promoter rather than under the constitutive Ubiquitin promoter. Translational fusion of ER retention signal significantly improved the accumulation of recombinant antibody. Furthermore, lines without ER retention signal lost D1 scFv accumulation in T2 grains. Pilot scale purification was performed for a T2 grain pool (51 g) containing 55.0 mg D1 scFv/kg grains. The crude extract was purified by a two-step purification protocol including IMAC and size exclusion chromatography. The purification resulted in a yield of 0.47 mg of D1 scFv (31 kD) with high purity. Enzyme-linked immunosorbent assay revealed that 29 % of the purified protein was fully functional. In immunoprecipitation assay the purified D1 scFv recognized the native 18 kD BLG in the milk sample. No binding was observed with the heat-treated milk sample, as expected. The developed barley-based expression system clearly demonstrated its potential for application in the processing of dairy milk products as well as in detecting allergens from foods possibly contaminated by bovine milk.

  16. Does Whole Grain Consumption Alter Gut Microbiota and Satiety?

    PubMed Central

    Cooper, Danielle N.; Martin, Roy J.; Keim, Nancy L.

    2015-01-01

    This review summarizes recent studies examining whole grain consumption and its effect on gut microbiota and satiety in healthy humans. Studies comparing whole grains to their refined grain counterparts were considered, as were studies comparing different grain types. Possible mechanisms linking microbial metabolism and satiety are described. Clinical trials show that whole grain wheat, maize, and barley alter the human gut microbiota, but these findings are based on a few studies that do not include satiety components, so no functional claims between microbiota and satiety can be made. Ten satiety trials were evaluated and provide evidence that whole oats, barley, and rye can increase satiety, whereas the evidence for whole wheat and maize is not compelling. There are many gaps in the literature; no one clinical trial has examined the effects of whole grains on satiety and gut microbiota together. Once understanding the impact of whole grains on satiety and microbiota is more developed, then particular grains might be used for better appetite control. With this information at hand, healthcare professionals could make individual dietary recommendations that promote satiety and contribute to weight control. PMID:27417768

  17. Effects of grain species and cultivar, thermal processing, and enzymatic hydrolysis on gluten quantitation.

    PubMed

    Pahlavan, Autusa; Sharma, Girdhari M; Pereira, Marion; Williams, Kristina M

    2016-10-01

    Gluten from wheat, rye, and barley can trigger IgE-mediated allergy or Celiac disease in sensitive individuals. Gluten-free labeled foods are available as a safe alternative. Immunoassays such as the enzyme-linked immunosorbent assay (ELISA) are commonly used to quantify gluten in foods. However, various non-assay related factors can affect gluten quantitation. The effect of gluten-containing grain cultivars, thermal processing, and enzymatic hydrolysis on gluten quantitation by various ELISA kits was evaluated. The ELISA kits exhibited variations in gluten quantitation depending on the gluten-containing grain and their cultivars. Acceptable gluten recoveries were obtained in 200mg/kg wheat, rye, and barley-spiked corn flour thermally processed at various conditions. However, depending on the enzyme, gluten grain source, and ELISA kit used, measured gluten content was significantly reduced in corn flour spiked with 200mg/kg hydrolyzed wheat, rye, and barley flour. Thus, the gluten grain source and processing conditions should be considered for accurate gluten analysis. Published by Elsevier Ltd.

  18. Separability study of wheat and small grains

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Marquina, N. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Barley showed significant separability from spring wheat, both multitemporally and on a single date chosen near the turning time for barley. Oats showed occasional multitemporal separability from barley and spring wheat; however, the cause of this separability was not well understood. Oats showed no significant separability from spring wheat on any single date during the growing season. By pooling data from segments having an acquisition near the turning time for barley, a fixed unitemporal projection for aiding in the labeling of barley versus spring wheat and oats was constructed. This projection has about the same separability of barley from spring wheat and oats as the unitemporal greeness versus brightness plot. The new fixed projection has the advantage that barley occurs consistently in the same general location on the plot with respect to spring wheat and oats. Attempts to construct a fixed multitemporal or a segment-dependent multitemporal projection for aiding in the labeling of spring wheat versus other small grains were unsuccessful due to segment availability and the fact that each segment has a unique acquisition history.

  19. Extrusion of barley and oat influence the fecal microbiota and SCFA profile of growing pigs.

    PubMed

    Moen, Birgitte; Berget, Ingunn; Rud, Ida; Hole, Anastasia S; Kjos, Nils Petter; Sahlstrøm, Stefan

    2016-02-01

    The effect of extrusion of barley and oat on the fecal microbiota and the formation of SCFA was evaluated using growing pigs as model system. The pigs were fed a diet containing either whole grain barley (BU), oat groat (OU), or their respective extruded samples (BE and OE). 454 pyrosequencing showed that the fecal microbiota of growing pigs was affected by both extrusion and grain type. Extruded grain resulted in lower bacterial diversity and enrichment in operational taxonomic units (OTUs) affiliated with members of the Streptococcus, Blautia and Bulleidia genera, while untreated grain showed enrichment in OTUs affiliated with members of the Bifidobacterium and Lactobacillus genera, and the butyrate-producing bacteria Butyricicoccus, Roseburia, Coprococcus and Pseudobutyrivibrio. Untreated grain resulted in a significant increase of n-butyric, i-valeric and n-valeric acid, which correlated with an increase of Bifidobacterium and Lactobacillus. This is the first study showing that cereal extrusion affects the microbiota composition and diversity towards a state generally thought to be less beneficial for health, as well as less amounts of beneficial butyric acid.

  20. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley.

    PubMed

    Gong, Xue; McDonald, Glenn

    2017-09-01

    Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency. Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutE GY ) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutE GY . A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.

  1. Spring Small Grains Area Estimation

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  2. Response of lactating dairy cows to degree of steam-flaked barley grain in low-forage diets.

    PubMed

    Safaei, Kh; Ghorbani, G R; Alikhani, M; Sadeghi-Sefidmazgi, A; Yang, W Z

    2017-10-01

    This study was conducted to investigate the effects of processing method (grinding vs. steam flaking) and increasing densities of steam-flaked barley grain on dry matter intake (DMI), rumen pH and fermentation characteristics, digestibility of dry matter in the total digestive tract (DDTT), and milk production of dairy cows. Eight multiparous mid-lactation Holstein cows averaging 103 ± 24 DIM, 44.5 ± 4.7 kg milk/day and weighing 611 ± 43 kg at the start of the experiment were used in a replicated 4 × 4 Latin square design with 21-day periods. Cows were fed diets consisting of (DM basis) 23.8% corn silage, 13.5% chopped alfalfa hay and 62.7% concentrate. The dietary treatments were either ground barley (GB) using a hammer mill or steam-flaked barley (SFB) - varying density at 390, 340 or 290 g/l. Processing method (GB vs. SFB) did not affect DMI (23.6 kg/day on average), DDTT (71.0% on average), milk yield (43.4 kg/day on average), milk components, rumen pH and molar proportions of acetate, propionate, butyrate and sorting activity. Ruminal isovalerate concentration tended (p = 0.06) to be higher for cows fed GB than those fed SFB-based diets. Decreasing the density of SFB from 390, 340 to 290 g/l tended to linearly increase DMI (p = 0.09), decrease total solids percentage of milk (p = 0.10) and linearly decreased milk urea nitrogen (12.8, 12.4 and 12.1 mg/dl; p = 0.04); also, the sorting index (SI) of the particles retained on the 19.0-mm sieve without affecting the SI of the particles retained on 8.0-mm, 1.18-mm or passed through 1.18-mm sieve (p = 0.05). These results indicated the limited effects of processing method (grinding vs. steam flaking) and densities of SFB (390, 290 or 290 g/l) on cows' performance and feed utilization for dairy cows fed low-forage diets. Therefore, both processing methods could be recommended under current feeding conditions of dairy cows. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell

  3. Capturing pair-wise epistatic effects associated with three agronomic traits in barley.

    PubMed

    Xu, Yi; Wu, Yajun; Wu, Jixiang

    2018-04-01

    Genetic association mapping has been widely applied to determine genetic markers favorably associated with a trait of interest and provide information for marker-assisted selection. Many association mapping studies commonly focus on main effects due to intolerable computing intensity. This study aims to select several sets of DNA markers with potential epistasis to maximize genetic variations of some key agronomic traits in barley. By doing so, we integrated a MDR (multifactor dimensionality reduction) method with a forward variable selection approach. This integrated approach was used to determine single nucleotide polymorphism pairs with epistasis effects associated with three agronomic traits: heading date, plant height, and grain yield in barley from the barley Coordinated Agricultural Project. Our results showed that four, seven, and five SNP pairs accounted for 51.06, 45.66 and 40.42% for heading date, plant height, and grain yield, respectively with epistasis being considered, while corresponding contributions to these three traits were 45.32, 31.39, 31.31%, respectively without epistasis being included. The results suggested that epistasis model was more effective than non-epistasis model in this study and can be more preferred for other applications.

  4. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 7. Group V. Grains.

    DTIC Science & Technology

    1980-12-01

    but low gluten ; therefore, it is adequrate as animai teed ’,ut makes a poor breadstuff. The ciief ron-teed rie o! barley is as malt, which is barley...For example, hogs and poultry must have large quantities of grain in their ( diets . On the other hand, the ruminant animals, such as cattle and sheep...relatively cheap grain prices, grain, rather than high roughage diets , will be fed to the rumi- nants. In addition to ration variation by species, grain fed to

  5. Grain source and marginal changes in forage particle size modulate digestive processes and nutrient intake of dairy cows.

    PubMed

    Nasrollahi, S M; Khorvash, M; Ghorbani, G R; Teimouri-Yansari, A; Zali, A; Zebeli, Q

    2012-08-01

    This study investigated the effects of, and interactions between, dietary grain source and marginal changes in alfalfa hay (AH) particle size (PS) on digestive processes of dairy cows. A total of eight Holstein dairy cows (175 days in milk) were allocated in a replicated 4 × 4 Latin square design with four 21-day periods. The experiment was a 2 × 2 factorial arrangement with two levels of theoretical PS of AH (fine = 15 mm or long = 30 mm) each combined with two different sources of cereal grains (barley grain alone or barley plus corn grain in a 50 : 50 ratio). Results showed that cows consuming diets supplemented with corn had greater dry matter and nutrient intakes (P < 0.01), independent of forage PS. In addition, the apparent digestibility of fiber fractions was greater for diets supplemented with corn (P = 0.01). The feeding of barley grain-based diets was associated with greater apparent digestibility of non-fiber carbohydrates, and this variable was even greater when long AH was fed (P = 0.04). Moreover, the feeding of long AH resulted in longer time spent eating (P = 0.03) and higher pH (P < 0.01), as well as a tendency for higher acetate-to-propionate ratio in the rumen fluid (P = 0.06) at 3 h post feeding. In conclusion, the results indicated that the marginal increase of PS of AH may prolong eating time and improve rumen fermentation, particularly in diets based on barley grain. Partial substitution of barley grain by corn can improve feed intake and fiber digestibility in mid-lactation dairy cows.

  6. 7 CFR 457.118 - Malting barley price and quality endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and succeeding crop years are as follows: FCIC policies United States Department of Agriculture... the class barley in accordance with the Official United States Standards for Grain; and (3) Is not... identified by the Food and Drug Administration or other public health organizations of the United States as...

  7. 7 CFR 457.118 - Malting barley price and quality endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and succeeding crop years are as follows: FCIC policies United States Department of Agriculture... the class barley in accordance with the Official United States Standards for Grain; and (3) Is not... identified by the Food and Drug Administration or other public health organizations of the United States as...

  8. Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial

    PubMed Central

    Sawicki, Caleigh M.; McKay, Diane L.; McKeown, Nicola M.; Dallal, Gerard; Chen, C. -Y. Oliver; Blumberg, Jeffrey B.

    2016-01-01

    While dietary fiber plays an important role in the health benefits associated with whole grain consumption, other ingredients concentrated in the outer bran layer, including alkylresorcinols, lignans, phenolic acids, phytosterols, and tocols, may also contribute to these outcomes. To determine the acute bioavailability and pharmacokinetics of the major phytochemicals found in barley and oats, we conducted a randomized, three-way crossover trial in 13 healthy subjects, aged 40–70 years with a body mass index (BMI) of 27–35.9 kg/m2. After a two-day run-in period following a diet low in phytochemicals, subjects were randomized to receive muffins made with either 48 g whole oat flour, whole barley flour, or refined wheat flour plus cellulose (control), with a one-week washout period between each intervention. At the same time, an oral glucose tolerance test was administered. In addition to plasma phytochemical concentrations, glucose and insulin responses, biomarkers of antioxidant activity, lipid peroxidation, inflammation, and vascular remodeling were determined over a 24-h period. There was no significant effect on acute bioavailability or pharmacokinetics of major phytochemicals. Administered concurrently with a glucose bolus, the source of whole grains did not attenuate the post-prandial response of markers of glucoregulation and insulin sensitivity, inflammation, nor vascular remodeling compared to the refined grain control. No significant differences were observed in the bioavailability or postprandial effects between whole-oat and whole-barley compared to a refined wheat control when administered with a glucose challenge. These null results may be due, in part, to the inclusion criteria for the subjects, dose of the whole grains, and concurrent acute administration of the whole grains with the glucose bolus. PMID:27983687

  9. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau.

    PubMed

    Yang, Xi-Juan; Dang, Bin; Fan, Ming-Tao

    2018-04-11

    In this study, the polyphenols composition and antioxidant properties of 12 blue highland barley varieties planted on the Qinghai-Tibet Plateau area were measured. The contents of the free, bound and total phenolic acids varied between 166.20-237.60, 170.10-240.75 and 336.29-453.94 mg of gallic acid equivalents per 100 g of dry weight (DW) blue highland barley grains, while the free and bound phenolic acids accounted for 50.09% and 49.91% of the total phenolic acids, respectively. The contents of the free, bound and total flavones varied among 20.61-25.59, 14.91-22.38 and 37.91-47.98 mg of catechin equivalents per 100 g of dry weight (DW) of blue highland barley grains, while the free and bound flavones accounted for 55.90% and 44.10% of the total flavones, respectively. The prominent phenolic compounds in the blue hulless barley grains were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, naringenin, hesperidin, rutin, (+)-catechin and quercetin. Among these, protocatechuic acid, chlorogenic acid and (+)-catechin were the major phenolic compounds in the free phenolics extract. The most abundant bound phenolics were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, benzoic acid, dimethoxybenzoic acid, naringenin, hesperidin, quercetin and rutin. The average contribution of the bound phenolic extract to the DPPH • free radical scavenging capacity was higher than 86%, that of free phenolic extract to the ABTS •+ free radical scavenging capacity was higher than 79%, and that of free phenolic (53%) to the FRAP antioxidant activity was equivalent to that of the bound phenol extract (47%). In addition, the planting environment exerts a very important influence on the polyphenol composition, content and antioxidant activity of blue highland barley. The correlation analysis showed that 2,4-hydroxybenzoic acid and protocatechuic acid were the main contributors to the DPPH • and ABTS •+ free radical scavenging capacity in the free phenolic extract

  10. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach

    PubMed Central

    Zhang, Kefeng; Bosch-Serra, Angela D.; Boixadera, Jaume; Thompson, Andrew J.

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm3 cm-3 and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha-l for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was discussed

  11. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach.

    PubMed

    Zhang, Kefeng; Bosch-Serra, Angela D; Boixadera, Jaume; Thompson, Andrew J

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm(3) cm(-3) and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha(-l) for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was

  12. Effects of Multiple Crimps and Cable Length on Reflection Signatures from Long Cables

    DOT National Transportation Integrated Search

    2002-03-19

    The accuracy of time domain reflectometry (TDR) measurements of rock shearing with cable lengths greater than 60 m has not been adequately documented. This paper presents the results of controlled crimping and shearing of a 530 m long, 22.2mm diamete...

  13. Crimping and deployment of balloon-expandable valved stents are responsible for the increase in the hydraulic conductance of leaflets.

    PubMed

    Convelbo, Channing; Guetat, Pierre; Cambillau, Michèle; Allam, Bachir; Bruneval, Patrick; Lafont, Antoine; Zegdi, Rachid

    2013-12-01

    Leaflet injury has been documented to occur during the deployment of valved stents (VSs). The pathological aspects, however, of this injury are difficult to quantify. Conversely, the hydraulic conductance of a (pericardial) membrane may be easily determined. The impact of crimping and deployment of VS on this parameter was therefore investigated. Bovine pericardial square (25 × 25 mm) patches were placed within a pressure chamber and their hydraulic conductance was determined. The influence of the pressure gradient and tissue thickness on this parameter was analysed. Six balloon-expandable VS were constructed. The hydraulic conductance of their bovine pericardial leaflets was determined before and after VS crimping and deployment in four of them. Pericardial leaflets of non-crimped VS were used as controls. Hydraulic conductance increased insignificantly with the pressure level within the chamber: from 128 ± 26.9 ml/h/m(2)/mmHg at a pressure of 50 mmHg to 232.3 ± 51.9 ml/h/m(2)/mmHg at a pressure of 250 mmHg (P = 0.117). Hydraulic conductance was not correlated to pericardial thickness, for thickness measurements ranging from 0.34 to 0.76 mm. The hydraulic conductance of VS leaflets significantly increased immediately after crimping from 45.2 ± 7.6 to 667.9.0 ± 527.2 ml/h/m(2)/mmHg (P < 0.001). This increase was still observed 24 h after VS deployment. No change in hydraulic conductance occurred in the control group. The determination of the hydraulic conductance of pericardial patches was easy to perform, reproducible and not influenced by tissue thickness. The hydraulic conductance of pericardial leaflets dramatically increased after VS crimping and deployment. This parameter might be, in the future, a useful noninvasive tool in studying leaflet trauma.

  14. Variation in chemical composition and physical characteristics of cereal grains from different genotypes.

    PubMed

    Rodehutscord, Markus; Rückert, Christine; Maurer, Hans Peter; Schenkel, Hans; Schipprack, Wolfgang; Bach Knudsen, Knud Erik; Schollenberger, Margit; Laux, Meike; Eklund, Meike; Siegert, Wolfgang; Mosenthin, Rainer

    2016-01-01

    Genotypes of cereal grains, including winter barley (n = 21), maize (n = 27), oats (n = 14), winter rye (n = 22), winter triticale (n = 21) and winter wheat (n = 29), were assayed for their chemical composition and physical characteristics as part of the collaborative research project referred to as GrainUp. Genotypes of one grain species were grown on the same site, except maize. In general, concentrations of proximate nutrients were not largely different from feed tables. The coefficient of variation (CV) for the ether extract concentration of maize was high because the data pool comprised speciality maize bred for its high oil content. A subset of 8 barley, 20 rye, 20 triticale and 20 wheat samples was analysed to differ significantly in several carbohydrate fractions. Gross energy concentration of cereal grains could be predicted from proximate nutrient concentration with good accuracy. The mean lysine concentration of protein was the highest in oats (4.2 g/16 g N) and the lowest in wheat (2.7 g/16 g N). Significant differences were also detected in the concentrations of macro elements as well as iron, manganese, zinc and copper. Concentrations of arsenic, cadmium and lead were below the limit of detection. The concentration of lower inositol phosphates was low, but some inositol pentaphosphates were detected in all grains. In barley, relatively high inositol tetraphosphate concentration also was found. Intrinsic phytase activity was the highest in rye, followed by triticale, wheat, barley and maize, and it was not detectable in oats. Substantial differences were seen in the thousand seed weight, test weight, falling number and extract viscoelasticity characteristics. The study is a comprehensive overview of the composition of different cereal grain genotypes when grown on the same location. The relevance of the variation in composition for digestibility in different animal species will be subject of other communications.

  15. Barley yellow dwarf virus: Luteoviridae or Tombusviridae?

    PubMed

    Miller, W Allen; Liu, Sijun; Beckett, Randy

    2002-07-01

    Summary Barley yellow dwarf virus (BYDV), the most economically important virus of small grains, features highly specialised relationships with its aphid vectors, a plethora of novel translation mechanisms mediated by long-distance RNA interactions, and an ambiguous taxonomic status. The structural and movement proteins of BYDV that confer aphid transmission and phloem-limitation properties resemble those of the Luteoviridae, the family in which BYDV is classified. In contrast, many genes and cis-acting signals involved in replication and gene expression most closely resemble those of the Tombusviridae. BYDV is in genus Luteovirus, family Luteoviridae. BYDV includes at least two serotypes or viruses: BYDV-PAV and BYDV-MAV. The former BYDV-RPV is now Cereal yellow dwarf virus-RPV (CYDV-RPV). CYDV is in genus Polerovirus, family Luteoviridae. Genus Luteovirus shares many features with family Tombusviridae. Physical properties: approximately 25 nm icosahedral (T = 3) virions. One major (22 kDa) and one minor (50-55 kDa) coat protein. 5.6-5.8 kb positive sense RNA genome with no 5'-cap and no poly(A) tail. Most grasses. Most important in oats, barley and wheat. Also infects maize and rice. Yellowing and dwarfing in barley, stunting in wheat; reddening, yellowing and blasting in oats. Some isolates cause leaf notching and curling. Key attractions: Model for the study of circulative transmission of aphid-transmitted viruses. Plethora of unusual translation mechanisms. Evidence of recombination in recent evolutionary history creates taxonomic ambiguity. Economically important virus of wheat, barley and oats, worldwide. Useful websites/meetings: International symposium: 'Barley Yellow Dwarf Disease: Recent Advances and Future Strategies', CIMMYT, El Batan, Mexico, 1-5 September 2002, http://www.cimmyt.cgiar.org/Research/wheat/Conf_BYD_02/invitation.htm http://www.cimmyt.org/Research/wheat/BYDVNEWS/htm/BYDVNEWS.htm Aphid transmission animation: http://www.ppws.vt.edu/~sforza/tmv/bydv_aph.html.

  16. Mobile bag starch prececal disappearance and postprandial glycemic response of four forms of barley in horses.

    PubMed

    Philippeau, C; Varloud, M; Julliand, V

    2014-05-01

    To determine prececal starch digestibili-ty and estimate glucose uptake from the digestion of 4 forms of barley in the small intestine, 4 mature cecally fistulated geldings (449 ± 41 kg BW) fed a 62:38 (wt/wt) meadow hay:concentrate diet at 1.7 kg DM/100 kg BW were included in a 4 × 4 Latin square design experiment. During each period, horses received 80% DM of their concentrate as 1 of the 4 forms of a same batch of barley, whole grain, 2.5 mm ground, steam flaked, and pelleted. Hay was offered in 2 equal meals and concentrate in 2 unequal meals. The starch supply in the morning meal amounted 2.7 g starch/kg BW. At each period, mobile bag DM and starch disappearance was determined. Except for ground barley, each form of barley was 4 mm ground before being introduced in the bag. Nylon bags containing each substrate were intubated in the horse receiving the pelleted barley. Bags were collected in the cecum for 10 h postintubation. At each period, postprandial glycemia was measured on blood samples collected on the 4 horses via an indwelling jugular catheter just before the concentrate morning meal and for 8 h. No hay in the morning meal was given the day of the measurements. Whole blood glucose was analyzed with a portable blood glucose meter. Mobile bag prececal DM disappearance and starch disappearance depended (P < 0.01) on barley form. Prececal starch disappearance of whole barley was the lowest but no difference (P > 0.05) was detected among the 3 processed grains. No significant effect of barley form was found whatever the glycemic parameters. No significant correlation was reported between glycemic parameters and the amount of prececal mobile bag disappeared starch calculated as the starch intake in the morning meal by the mobile bag starch disappearance. To conclude, the whole form of barley exhibited the lowest prececal mobile bag starch disappearance whereas, in relationship with large individual variations, no significant variation has been shown in

  17. Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland.

    PubMed

    Krysińska-Traczyk, Ewa; Perkowski, Juliusz; Dutkiewicz, Jacek

    2007-01-01

    During combine harvesting of 5 various cereal crops (rye, barley, oats, buckwheat, corn) 24 samples of grain and 24 samples of settled grain dust were collected on farms located in the Lublin province of eastern Poland. The samples were examined for the concentration of total microfungi, Fusarium species, deoxynivalenol (DON), nivalenol (NIV), and ochratoxin A (OTA). Microfungi able to grow on malt agar were present in 79.2% of grain samples and in 91.7% of grain dust samples in the concentrations of 1.0-801.3x10(3) cfu/g and 1.5-12440.0x10(3) cfu/g, respectively. The concentration of microfungi in grain dust samples was significantly greater than in grain samples (p<0.01). Fusarium strains were isolated from 54.2% of grain samples and from 58.3% of grain dust samples in the concentrations of 0.1-375.0x10(3) cfu/g and 4.0-7,700.0x10(3) cfu/g, respectively. They were found in all samples of grain and grain dust from rye, barley and corn, but only in 0-16.7% of samples of grain and grain dust from oats and buckwheat. DON was found in 79.2% of grain samples and in 100% of grain dust samples in the concentrations of 0.001-0.18 microg/g and 0.006-0.283 microg/g, respectively. NIV was detected in 62.5% of grain samples and in 94.4% of grain dust samples in the concentrations of 0.004-0.502 microg/g and 0.005-0.339 microg/g, respectively. OTA was detected in 58.3% of grain samples and in 91.7% of grain dust samples in the concentrations of 0.00039- 0.00195 microg/g and 0.00036-0.00285 microg/g, respectively. The concentrations of DON, total fusariotoxins (DON+NIV) and OTA were significantly greater in grain dust samples than in grain samples (p<0.05, p<0.05, and p<0.001, respectively). The concentration of Fusarium poae in the samples of rye grain and dust was significantly correlated with the concentrations of DON (p<0.05), NIV (p<0.01), and total fusariotoxins (p<0.05). Similarly, the concentration of Fusarium culmorum in the samples of barley grain and dust was

  18. Immunological characterization of the gluten fractions and their hydrolysates from wheat, rye and barley.

    PubMed

    Rallabhandi, Prasad; Sharma, Girdhari M; Pereira, Marion; Williams, Kristina M

    2015-02-18

    Gluten proteins in wheat, rye and barley cause celiac disease, an autoimmune disorder of the small intestine, which affects approximately 1% of the world population. Gluten is comprised of prolamin and glutelin. Since avoidance of dietary gluten is the only option for celiac patients, a sensitive gluten detection and quantitation method is warranted. Most regulatory agencies have set a threshold of 20 ppm gluten in foods labeled gluten-free, based on the currently available ELISA methods. However, these methods may exhibit differences in gluten quantitation from different gluten-containing grains. In this study, prolamin and glutelin fractions were isolated from wheat, rye, barley, oats and corn. Intact and pepsin-trypsin (PT)-digested prolamin and glutelin fractions were used to assess their immunoreactivity and gluten recovery by three sandwich and two competitive ELISA kits. The Western blots revealed varied affinity of ELISA antibodies to gluten-containing grain proteins and no reactivity to oat and corn proteins. ELISA results showed considerable variation in gluten recoveries from both intact and PT-digested gluten fractions among different kits. Prolamin fractions showed higher gluten recovery compared to their respective glutelin fractions. Among prolamins, barley exhibited higher recovery compared to wheat and rye with most of the ELISA kits used. Hydrolysis resulted in reduced gluten recovery of most gluten fractions. These results suggest that the suitability of ELISA for accurate gluten quantitation is dependent upon various factors, such as grain source, antibody specificity, gluten proteins and the level of their hydrolysis in foods.

  19. Creation of the first ultra-low gluten barley (Hordeum vulgare L.) for coeliac and gluten-intolerant populations.

    PubMed

    Tanner, Gregory J; Blundell, Malcolm J; Colgrave, Michelle L; Howitt, Crispin A

    2016-04-01

    Coeliac disease is a well-defined condition that is estimated to affect approximately 1% of the population worldwide. Noncoeliac gluten sensitivity is a condition that is less well defined, but is estimated to affect up to 10% of the population, and is often self-diagnosed. At present, the only remedy for both conditions is a lifelong gluten-free diet. A gluten-free diet is often expensive, high in fat and low in fibre, which in themselves can lead to adverse health outcomes. Thus, there is an opportunity to use novel plant breeding strategies to develop alternative gluten-free grains. In this work, we describe the breeding and characterization of a novel ultra-low gluten (ULG) barley variety in which the hordein (gluten) content was reduced to below 5 ppm. This was achieved using traditional breeding strategies to combine three recessive alleles, which act independently of each other to lower the hordein content in the parental varieties. The grain of the initial variety was shrunken compared to wild-type barleys. We implemented a breeding strategy to improve the grain size to near wild-type levels and demonstrated that the grains can be malted and brewed successfully. The ULG barley has the potential to provide novel healthy foods and beverages for those who require a gluten-free diet. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Partial replacement of barley grain and soybean meal by fleabane (Conyza bonariensis) in diets of growing Awassi lambs.

    PubMed

    Abo Omar, J M; Omar, M

    2012-07-01

    Effects of partial substitution of barley grain and soybean meal with fleabane (FB) Conyza bonariensis on growth performances and body compositions of 24 male local Awassi lambs were studied. All lambs were male with an average BW of 20.3 kg (s.d. = 2.0 kg) at the beginning of the experiment. Animals were randomly divided into four groups of six lambs each. Lambs in each group received individually their cereal-soybean-based total mixed rations with levels of FB: 0, 50, 100 and 150 g/kg dry matter (DM) diet, which replaced similar values of barley and soybean meal. All rations were isonitrogenous and isocaloric. The fattening experiment lasted 9 weeks, after which all lambs were slaughtered. The composition of nutrients in the C. bonariensis were 89.6%, 15.0%, 28.0%, 30.0% and 10% for organic matter, CP, NDF, ADF and lignin, respectively. At the end of the experiment, lambs fed 100 and 150 g FB/kg DM diets gained more weight (P < 0.05) than those fed the control and 50 g FB/kg DM diets. The DM intake was lower in lambs fed the highest level of FB compared with intakes of lambs in other treatments. Diet content of FB had significant effect (P < 0.05) on weights of empty body, carcass, gut and external (hide, head and feet) among all animals. However, FB had no effects on lambs' thoracic organs (lungs and heart) and liver. Muscle, bone, omental and mesenteric fat, subcutaneous, intermuscular, pelvic and kidney fat weights (g/kg empty BW) were not affected by FB feeding. Carcass fat was decreased (P < 0.05) by the increase of FB. Total body fat was the same in all animals of the experiment.

  1. New starch phenotypes produced by TILLING in barley.

    PubMed

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1:3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications.

  2. The crimping problem in stapes surgery.

    PubMed

    Kwok, Pingling; Fisch, Ugo; Strutz, Jürgen

    2007-01-01

    The goal of this study was to compare the attachment of stapes prostheses with differently shaped loops to the long process of the incus. Gold, steel/Teflon, platinum/Teflon, and two different titanium stapes prostheses were inserted in 30 specially prepared temporal bones by three experienced surgeons using the Fisch technique with the McGee crimper and straight alligator forceps for the crimping of the loops. In all prostheses, a sufficiently firm attachment of the long process of the incus was achieved. The band-shaped loops showed a better contact with the incus than did the wire loops. However, the broad spiral-shaped loops led to a loss of the perpendicular axis of the piston to the long incus process. The geometry of the loop affects the final length of the piston in the vestibule and its angle to the long process of the incus.

  3. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Short- and full-season soybean in stale seedbeds versus rolled-crimped winter rye mulch

    USDA-ARS?s Scientific Manuscript database

    Late seedbed preparations (also known as stale or false seedbeds) are used by organic growers to reduce weed populations prior to crop planting. Rye mulches, derived from mechanically killed (rolled and crimped) winter rye cover crops, can serve the same purpose for spring-planted organic crops. Bot...

  5. Comparative digestibility of energy and nutrients and fermentability of dietary fiber in eight cereal grains fed to pigs.

    PubMed

    Cervantes-Pahm, Sarah K; Liu, Yanhong; Stein, Hans H

    2014-03-30

    Cereal grains provide a large portion of caloric intake in diets for humans, but not all cereal grains provide the same amount of energy. Therefore, an experiment was conducted to determine and compare the metabolizable energy (ME), the apparent ileal digestibility (AID), and the apparent total tract digestibility (ATTD) of gross energy (GE) and nutrients in eight cereal grains when fed to pigs. Rice had greater (P < 0.05) AID of GE than other cereal grains, greater (P < 0.05) AID of starch than yellow dent corn, dehulled barley, rye, and wheat, and greater (P < 0.05) ATTD of GE than yellow dent corn, rye, sorghum, and wheat. Dehulled barley, rye, and sorghum had less (P < 0.05) AID of starch than other cereal grains. Dehulled barley had greater (P < 0.05) ATTD of GE than rye. Dehulled oats had the greatest (P < 0.05) ME compared with other cereal grains, whereas rye had the least (P < 0.05) ME. Dehulled oats provide more energy to diets and should be used if the goal is to increase caloric intake. In contrast, sorghum and rye may be more suitable to control diabetes and manage body weight of humans. © 2013 Society of Chemical Industry.

  6. Biomarker of whole grain wheat intake associated lower BMI in older adults

    USDA-ARS?s Scientific Manuscript database

    Alkylresorcinols (AR) are phenolic lipids in the bran fraction of some whole grains (wheat, rye and barley). Plasma AR reflect recent intake of these whole grains. We examined the cross-sectional associations between plasma AR (measured by LCMS/ MS), whole wheat intake, and body mass index (BMI) in ...

  7. Analysis of the arabinoxylan arabinofuranohydrolase gene family in barley does not support their involvement in the remodelling of endosperm cell walls during development.

    PubMed

    Laidlaw, Hunter K C; Lahnstein, Jelle; Burton, Rachel A; Fincher, Geoffrey B; Jobling, Stephen A

    2012-05-01

    Arabinoxylan arabinofuranohydrolases (AXAHs) are family GH51 enzymes that have been implicated in the removal of arabinofuranosyl residues from the (1,4)-β-xylan backbone of heteroxylans. Five genes encoding barley AXAHs range in size from 4.6 kb to 7.1 kb and each contains 16 introns. The barley HvAXAH genes map to chromosomes 2H, 4H, and 5H. A small cluster of three HvAXAH genes is located on chromosome 4H and there is evidence for gene duplication and the presence of pseudogenes in barley. The cDNAs corresponding to barley and wheat AXAH genes were cloned, and transcript levels of the genes were profiled across a range of tissues at different developmental stages. Two HvAXAH cDNAs that were successfully expressed in Nicotiana benthamiana leaves exhibited similar activities against 4-nitrophenyl α-L-arabinofuranoside, but HvAXAH2 activity was significantly higher against wheat flour arabinoxylan, compared with HvAXAH1. HvAXAH2 also displayed activity against (1,5)-α-L-arabinopentaose and debranched arabinan. Western blotting with an anti-HvAXAH antibody was used to define further the locations of the AXAH enzymes in developing barley grain, where high levels were detected in the outer layers of the grain but little or no protein was detected in the endosperm. The chromosomal locations of the genes do not correspond to any previously identified genomic regions shown to influence heteroxylan structure. The data are therefore consistent with a role for AXAH in depolymerizing arabinoxylans in maternal tissues during grain development, but do not provide compelling evidence for a role in remodelling arabinoxylans during endosperm or coleoptile development in barley as previously proposed.

  8. Extraction of starch from hulled and hull-less barley with papain and aqueous sodium hydroxide.

    PubMed

    Sharma, Priyanka; Tejinder, S

    2014-12-01

    Starch was isolated from hulled (VJM 201) and hull-less (BL 134) barley with papain and aqueous sodium hydroxide treatments. For enzyme-assisted extraction, barley was steeped in water containing 0.2 % SO2 + 0.55 % lactic acid at 50° ± 2 °C for 4-5 h. The slurry was mixed with 0.4-2.0 g papain/kg barley and incubated at 50° ± 2 °C for 1-5 h. Aqueous sodium hydroxide (0.01-0.05 M) was added to the finely ground barley meal. The alkaline slurry was incubated at ambient temperature (25° ± 2 °C) for 15-60 min. The starch and grain fractions were isolated by screening and centrifugation. Increases in the time of treatment significantly affected the fiber, centrifugation and non-starch residue losses. Concentration of papain and sodium hydroxide had negligible effect on extraction losses. The enzyme-assisted extraction efficiency of starch was higher (80.7-84.6 %) than the alkaline method (70.9-83.7 %). The hulled barley showed higher extraction efficiency than the hull-less barley. The slurry treated with 0.4 g papain/kg barley for 5 h and 0.03 M sodium hydroxide for 60 min produced maximal yield of starch. Barley starch showed desirably high pasting temperature, water binding capacity and hold viscosity; and low final and setback viscosity compared with the commercial corn starch. The alkaline extracted hull-less barley starch showed exceptionally high peak and hold viscosities.

  9. Cooking Characteristics and Antioxidant Activity of Rice-Barley Mix at Different Cooking Method and Mixing Ratio.

    PubMed

    Woo, Koan Sik; Kim, Hyun-Joo; Lee, Ji Hae; Ko, Jee Yeon; Lee, Byong Won; Lee, Byoung Kyu

    2018-03-01

    This study aimed to compare the phenolic compounds and antioxidant activity of barley at different proportion (0, 5, 10, 15, and 20%), and using different cooking methods. The grains used in this experiment are barley ( Hordeum vulgare L. cv. Huinchalssal) and Samkwang rice. The rice-barley mixture was cooked using general and high pressure cooking methods with and without fermented alcohol. The quality characteristics such as water binding capacity, pasting characteristic, water solubility, and swelling power of different proportions of barley were evaluated. The antioxidant characteristics evaluated are total polyphenol, flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azinobis(3-ethylbenothiazoline-6-sulphonic acid) (ABTS) diammonium salt radical scavenging activities. Results showed that peak [195.0~184.0 rapid visco units (RVU)], trough (130.0~116.2 RVU), final (252.0~221.8 RVU), and setback viscosity (57.0~37.5 RVU) decreased correspondingly with the increase in the amount of barley. Water binding capacity (187.31~136.01%) and swelling power (162.37~127.58%) decreased as amounts of barley increases, however the water solubility (5.35~6.89%) increased. Moreover, the total polyphenol and flavonoid, and the DPPH and ABTS radical scavenging activities contents increased as the amounts of barley in the mixture increases. This study generally aims to provide useful information for the manufacturing of processed products.

  10. The effects on cow performance and calf birth and weaning weight of replacing grass silage with brewers grains in a barley straw diet offered to pregnant beef cows of two different breeds.

    PubMed

    Rooke, J A; Duthie, C-A; Hyslop, J J; Morgan, C A; Waterhouse, T

    2016-08-01

    The effects on cow and calf performance of replacing grass silage with brewers grains in diets based on barley straw and fed to pregnant beef cows are reported. Using a 2 × 2 factorial arrangement of breed and diet, cows pregnant by artificial insemination (n = 34) of two breeds (cross-bred Limousin, n = 19 and pure-bred Luing, n = 15) were fed diets ad libitum which consisted of either (g/kg dry matter) barley straw (664) and grass silage (325; GS) or barley straw (783) and brewers grains (206, BG) and offered as total mixed rations. From gestation day (GD) 168 until 266, individual daily feed intakes were recorded and cow body weight (BW) and body condition score (BCS) measured weekly. Calving date, calf sex, birth and weaning BW, and calf age at weaning were also recorded. Between GD 168 and 266, cross-bred Limousin cows gained more weight than Luing cows (p < 0.05) and cows offered BG gained more weight than cows offered GS (p < 0.001). Luing cows lost more BCS than cross-bred Limousin cows (p < 0.05), but diet did not affect BCS. There were no differences in dry matter intake as a result of breed or diet. Calf birth BW, however, was greater for cows fed BG than GS (44 vs. 38 kg, SEM 1.0, p < 0.001) with no difference between breeds. At weaning, calves born to BG-fed cows were heavier than those born to GS-fed cows (330 vs. 286 kg, SEM 9.3, p < 0.01). In conclusion, replacement of grass silage with brewers grains improved the performance of beef cows and increased calf birth and weaning BW. Further analysis indicated that the superior performance of cows offered the BG diet was most likely due to increases in protein supply which may have improved both energy and protein supply to the foetus. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm1[OPEN

    PubMed Central

    Zhang, Runxuan; Burton, Rachel A; Shirley, Neil J.; Little, Alan; Morris, Jenny; Milne, Linda

    2016-01-01

    Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development. PMID:26754666

  12. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling.

    PubMed

    Kohl, Stefan; Hollmann, Julien; Erban, Alexander; Kopka, Joachim; Riewe, David; Weschke, Winfriede; Weber, Hans

    2015-03-01

    During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing that glume metabolism and development adjusts to changing grain demands, reflected by specific signatures of metabolite and transcript abundances. Before high endosperm sink strength is established by storage product accumulation, glumes form early, intermediary sink organs, shifting then to remobilizing and exporting source organs. Metabolic and transcriptional transitions occur at two phases: first, at the onset of endosperm filling, as a consequence of endosperm sink activity and assimilate depletion in endosperm and vascular tissues; second, at late grain filling, by developmental ageing and senescence. Regulation of and transition between phases are probably governed by specific NAC and WRKY transcription factors, and both abscisic and jasmonic acid, and are accompanied by changed expression of specific nitrogen transporters. Expression and metabolite profiling suggest glume-specific mechanisms of assimilate conversion and translocation. In summary, grain filling and endosperm sink strength coordinate phase changes in glumes via metabolic, hormonal, and transcriptional control. This study provides a comprehensive view of barley glume development and metabolism, and identifies candidate genes and associated pathways, potentially important for breeding improved grain traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK

    PubMed Central

    Nielsen, L.K.; Cook, D.J.; Edwards, S.G.; Ray, R.V.

    2014-01-01

    Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium

  14. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley.

    PubMed

    Burton, Rachel A; Jobling, Stephen A; Harvey, Andrew J; Shirley, Neil J; Mather, Diane E; Bacic, Antony; Fincher, Geoffrey B

    2008-04-01

    Cellulose synthase-like CslF genes have been implicated in the biosynthesis of (1,3;1,4)-beta-d-glucans, which are major cell wall constituents in grasses and cereals. Seven CslF genes from barley (Hordeum vulgare) can be divided into two classes on the basis of intron-exon arrangements. Four of the HvCslF genes have been mapped to a single locus on barley chromosome 2H, in a region corresponding to a major quantitative trait locus for grain (1,3;1,4)-beta-d-glucan content. The other HvCslF genes map to chromosomes 1H, 5H, and 7H, and in two cases the genes are close to other quantitative trait loci for grain (1,3;1,4)-beta-d-glucan content. Spatial and temporal patterns of transcription of the seven genes have been defined through quantitative polymerase chain reaction. In developing barley coleoptiles HvCslF6 mRNA is most abundant. Transcript levels are maximal in 4- to 5-d coleoptiles, at a time when (1,3;1,4)-beta-d-glucan content of coleoptile cell walls also reaches maximal levels. In the starchy endosperm of developing grain, HvCslF6 and HvCslF9 transcripts predominate. Two peaks of transcription are apparent. One occurs just after endosperm cellularization, 4 to 8 d after pollination, while the second occurs much later in grain development, more than 20 d after pollination. Marked varietal differences in transcription of the HvCslF genes are observed during endosperm development. Given the commercial importance of cereal (1,3;1,4)-beta-d-glucans in human nutrition, in stock feed, and in malting and brewing, the observation that only two genes, HvCslF6 and HvCslF9, are transcribed at high levels in developing grain is of potential relevance for the future manipulation of grain (1,3;1,4)-beta-d-glucan levels.

  15. Effects of wheat dried distillers' grains with solubles and cinnamaldehyde on in vitro fermentation and protein degradation using the Rusitec technique.

    PubMed

    Lia, Yangling; He, Maolong; Li, Chun; Forster, Robert; Beauchemin, Karen Anne; Yang, Wenzhu

    2012-04-01

    This study was conducted to evaluate the effect of wheat dried distillers' grains with solubles (DDGS) and cinnamaldehyde (CIN) on in vitro fermentation and microbial profiles using the rumen simulation technique. The control substrate (10% barley silage, 85% barley grain and 5% supplement, on dry matter basis) and the wheat DDGS substrate (30% wheat DDGS replaced an equal portion of barley grain) were combined with 0 and 300 mg CIN/l of culture fluid. The inclusion of DDGS increased (p < 0.05) the concentration of volatile fatty acids (VFA) and the molar proportion of acetate and propionate. Dry matter disappearance (p = 0.03) and production of bacterial protein (p < 0.01) were greater, whereas the disappearances of crude protein (CP) and neutral detergent fibre were less (p < 0.01) for the DDGS than for the control substrate. With addition of CIN, concentration of total VFA decreased and fermentation pattern changed to greater acetate and less propionate proportions (p < 0.01). The CIN reduced (p < 0.01) methane production and CP degradability. The copy numbers of Fibrobacter, Prevotella and Archaea were not affected by DDGS but were reduced (p < 0.05) by CIN. The results indicate that replacing barley grain by DDGS increased nutrient fermentability and potentially increase protein flows to the intestine. Supplementation of high-grain substrates with CIN reduced methane production and potentially increased the true protein reaching the small intestine; however, overall reduction of feed fermentation may lower the feeding value of a high-grain diet.

  16. 3D finite element simulation of non-crimp fabric composites ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-05-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness of less than a millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g., fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The influence of porosity in the epoxy matrix as a typical manufacturing defect on the ultrasonic wave propagation and attenuation has been studied.

  17. Anthocyanin composition and oxygen radical scavenging capacity (ORAC) of milled and pearled purple, black, and common barley.

    PubMed

    Bellido, Guillermo G; Beta, Trust

    2009-02-11

    The importance of anthocyanins to the total antioxidant capacity of various fruits and vegetables has been well established, but less attention has been focused on cereal grains. This study investigated the antioxidant capacity and anthocyanin composition of a bran-rich pearling fraction (10% outer kernel layers) and whole kernel flour of purple (CI-1248), black (PERU-35), and yellow (EX-83) barley genotypes. HPLC analysis showed that as much as 6 times more anthocyanin per unit weight (microg/g) was present in the bran-rich fractions of yellow and purple barley (1587 and 3534, respectively) than in their corresponding whole kernel flours (210 and 573, respectively). Delphinidin 3-glucoside, delphinidin 3-rutinoside, cyanidin 3-glucoside, petunidin 3-glucoside, and cyanidin chloride were positively identified in barley, with as many as 9 and 15 anthocyanins being detected in yellow and purple barley, respectively. Antioxidant activity analysis showed that the ORAC values for the bran-rich fractions were significantly (p < 0.05) higher than for the whole kernel flour.

  18. Exploiting induced variation to dissect quantitative traits in barley.

    PubMed

    Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie

    2010-04-01

    The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.

  19. Effects of Crimped Fiber Paths on Mixed Mode Delamination Behaviors in Woven Fabric Composites

    DTIC Science & Technology

    2016-09-01

    continuum finite - element models. Three variations of a plain-woven fabric architecture—each of which had different crimped fiber paths—were considered... Finite - Element Analysis Fracture Mechanics Fracture Toughness Mixed Modes Strain Energy Release Rate 16. SECURITY...polymer FB Fully balanced laminate FEA Finite - element analysis FTCM Fracture toughness conversion mechanism G Shear modulus GI, GII, GIII Mode

  20. New Starch Phenotypes Produced by TILLING in Barley

    PubMed Central

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1∶3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications. PMID:25271438

  1. Natural Contamination with Mycotoxins Produced by Fusarium graminearum and Fusarium poae in Malting Barley in Argentina

    PubMed Central

    Nogueira, María Soledad; Decundo, Julieta; Martinez, Mauro; Dieguez, Susana Nelly; Moreyra, Federico; Moreno, Maria Virginia

    2018-01-01

    Two of the most common species of toxin-producing Fusarium contaminating small cereal grains are Fusarium graminearum and F. poae; with both elaborating diverse toxins, especially deoxynivalenol (DON) and nivalenol (NIV), respectively. The objective of our work during the 2012–2014 growing seasons was to screen crops for the most commonly isolated Fusarium species and to quantify DON and NIV toxins in natural malting-barley samples from different producing areas of Argentina. We identified 1180 Fusarium isolates in the 119 samples analyzed, with 51.2% being F. graminearum, 26.2% F. poae and 22.6% other species. We found high concentrations of mycotoxins, at maximum values of 12 μg/g of DON and 7.71 μg/g of NIV. Of the samples, 23% exhibited DON at an average of 2.36 μg/g, with 44% exceeding the maximum limits (average of 5.24 μg/g); 29% contained NIV at an average of 2.36 μg/g; 7% contained both DON and NIV; and 55% were without DON or NIV. Finally, we report the mycotoxin contamination of the grain samples produced by F. graminearum and F. poae, those being the most frequent Fusarium species present. We identified the main Fusarium species affecting natural malting-barley grains in Argentina and documented the presence of many samples with elevated concentrations of DON and NIV. To our knowledge, the investigation reported here was the first to quantify the contamination by Fusarium and its toxins in natural samples of malting barley in Argentina. PMID:29439459

  2. Natural Contamination with Mycotoxins Produced by Fusarium graminearum and Fusarium poae in Malting Barley in Argentina.

    PubMed

    Nogueira, María Soledad; Decundo, Julieta; Martinez, Mauro; Dieguez, Susana Nelly; Moreyra, Federico; Moreno, Maria Virginia; Stenglein, Sebastian Alberto

    2018-02-11

    Two of the most common species of toxin-producing Fusarium contaminating small cereal grains are Fusarium graminearum and F. poae ; with both elaborating diverse toxins, especially deoxynivalenol (DON) and nivalenol (NIV), respectively. The objective of our work during the 2012-2014 growing seasons was to screen crops for the most commonly isolated Fusarium species and to quantify DON and NIV toxins in natural malting-barley samples from different producing areas of Argentina. We identified 1180 Fusarium isolates in the 119 samples analyzed, with 51.2% being F. graminearum , 26.2% F. poae and 22.6% other species. We found high concentrations of mycotoxins, at maximum values of 12 μg/g of DON and 7.71 μg/g of NIV. Of the samples, 23% exhibited DON at an average of 2.36 μg/g, with 44% exceeding the maximum limits (average of 5.24 μg/g); 29% contained NIV at an average of 2.36 μg/g; 7% contained both DON and NIV; and 55% were without DON or NIV. Finally, we report the mycotoxin contamination of the grain samples produced by F. graminearum and F. poae , those being the most frequent Fusarium species present. We identified the main Fusarium species affecting natural malting-barley grains in Argentina and documented the presence of many samples with elevated concentrations of DON and NIV. To our knowledge, the investigation reported here was the first to quantify the contamination by Fusarium and its toxins in natural samples of malting barley in Argentina.

  3. The Barley Phytomer

    PubMed Central

    Forster, Brian P.; Franckowiak, Jerome D.; Lundqvist, Udda; Lyon, Jackie; Pitkethly, Ian; Thomas, William T. B.

    2007-01-01

    Background and Aims Morphological mutants have been useful in elucidating the phytomeric structure of plants. Recently described mutants have shed new light on the ontogeny (development of plant structures) and the phytomeric system of barley (Hordeum vulgare). Since the current model for barley phytomers was not adequate to explain the nature of some mutants, a new model is proposed. Methods New phytomer mutants were detected by visual assessment of mutant families in the Optic barley mutation grid population. This was done at various growth stages using laboratory, glasshouse and field screens. Simple explanations were adopted to account for aberrant phytomer phenotypes and a thesis for a new phytomer model was developed. Key Results and Conclusions A barley phytomer model is presented, in which the origins of vegetative and generative structures can be explained by a single repeating phytomer unit. Organs on the barley plant are divided into two classes, single or paired, depending on their origin. Paired structures are often fused together to create specific organs. The model can be applied to wheat (Triticum aestivum) and related grasses. PMID:17901062

  4. Influence of weed species and time of glyphosate application on Rhizoctonia root rot of barley

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani AG-8 causes root disease in wheat, barley, canola and other small grains in the dryland inland Pacific Northwest. The pathogen survives between crops on roots of volunteers and grassy weeds. Destroying this green bridge with herbicides such as glyphosate is a common tactic to cont...

  5. Hypocholesterolaemic effect of whole-grain highland hull-less barley in rats fed a high-fat diet.

    PubMed

    Xia, Xuejuan; Li, Guannan; Song, Jiaxin; Zheng, Jiong; Kan, Jianquan

    2018-05-01

    Whole-grain highland hull-less barley (WHLB) contains high amounts of bioactive compounds that potentially exhibit cholesterol-lowering effects. This study investigated the hypocholesterolaemic effect of WHLB. A total of seventy-two male Sprague-Dawley rats were divided into four groups and were fed with the normal control diet, high-fat diet (HFD) and HFD containing low or high dose (10 or 48·95 %) of WHLB. High dose of WHLB significantly decreased the organ indexes of liver and abdominal fat and lipid levels of plasma and liver in HFD rats. The lipid regulation effect of WHLB, which was reconfirmed through hepatocyte morphologic observation, was accompanied by a large excretion of bile acids in the small intestinal contents and the faeces. Real-time PCR analyses, which were further reconfirmed through Western blot analyses, revealed that a high dose of WHLB significantly enhanced the hepatic expressions of AMP-activated protein kinase α, cholesterol 7α-hydroxylase, LDL receptor, liver X receptor, and PPARα and decreased the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase. It also enhanced the ileal expression of farnesoid X receptor and resulted in the decrease of expression of apical sodium-dependent bile acid transporter. WHLB exhibited hypocholesterolaemic effects mainly by inhibiting cholesterol synthesis, cholesterol accumulation in peripheral tissue, and bile acid reabsorption and by stimulating bile acid synthesis.

  6. Particle Size Effects on the Quality of Flour Tortillas Enriched with Whole Grain Waxy Barley

    USDA-ARS?s Scientific Manuscript database

    Wheat tortillas were enriched with whole barley flour (WBF) of different particle sizes including 237 micros (regular-R), 131 micros (intermediate-IM), and 68 micros (microground-MG). Topographical and fluorescent microstructure images of flours, doughs and tortillas were examined. Flours and tort...

  7. Drought Response in the Spikes of Barley: Gene Expression in the Lemma, Palea, Awn, and Seed

    USDA-ARS?s Scientific Manuscript database

    The photosynthetic organs of the barley spike (lemma, palea, and awn) are considered resistant to drought. This is a beneficial trait because they can sustain grain-filling when drought occurs at the reproductive stage. However, there is little information about gene expression in the spike organs u...

  8. Screening of the aerodynamic and biophysical properties of barley malt

    NASA Astrophysics Data System (ADS)

    Ghodsvali, Alireza; Farzaneh, Vahid; Bakhshabadi, Hamid; Zare, Zahra; Karami, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel. S.

    2016-10-01

    An understanding of the aerodynamic and biophysical properties of barley malt is necessary for the appropriate design of equipment for the handling, shipping, dehydration, grading, sorting and warehousing of this strategic crop. Malting is a complex biotechnological process that includes steeping; germination and finally, the dehydration of cereal grains under controlled temperature and humidity conditions. In this investigation, the biophysical properties of barley malt were predicted using two models of artificial neural networks as well as response surface methodology. Stepping time and germination time were selected as the independent variables and 1 000 kernel weight, kernel density and terminal velocity were selected as the dependent variables (responses). The obtained outcomes showed that the artificial neural network model, with a logarithmic sigmoid activation function, presents more precise results than the response surface model in the prediction of the aerodynamic and biophysical properties of produced barley malt. This model presented the best result with 8 nodes in the hidden layer and significant correlation coefficient values of 0.783, 0.767 and 0.991 were obtained for responses one thousand kernel weight, kernel density, and terminal velocity, respectively. The outcomes indicated that this novel technique could be successfully applied in quantitative and qualitative monitoring within the malting process.

  9. Major Cereal Grain Fibers and Psyllium in Relation to Cardiovascular Health

    PubMed Central

    Bernstein, Adam M.; Titgemeier, Brigid; Kirkpatrick, Kristin; Golubic, Mladen; Roizen, Michael F.

    2013-01-01

    Numerous studies reveal the cardiovascular benefits of consuming dietary fiber and, especially, cereal fiber. Cereal fiber is associated with cardiovascular risk reduction through multiple mechanisms and consuming a variety of cereal fiber sources offers health benefits specific to the source. Certain cereal fibers have been studied more extensively than others and provide greater support for their incorporation into a healthful diet. β-glucan from oats or barley, or a combination of whole oats and barley, and soluble fiber from psyllium reduces the risk of coronary heart disease; inulin-type fructans added to foods and beverages may modestly decrease serum triacylglycerols; arabinoxylan and resistant starch may improve glycemic control. Individuals with low cereal fiber intake should increase their intake of whole grains in order to receive the benefits of whole grains in addition to fiber. For those adjusting to the texture and palatability of whole grains, turning to added-fiber products rich in β-glucan and psyllium may allow them to reach their fiber goals without increasing caloric intake. PMID:23628720

  10. The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies.

    PubMed

    Muñoz-Amatriaín, María; Cuesta-Marcos, Alfonso; Endelman, Jeffrey B; Comadran, Jordi; Bonman, John M; Bockelman, Harold E; Chao, Shiaoman; Russell, Joanne; Waugh, Robbie; Hayes, Patrick M; Muehlbauer, Gary J

    2014-01-01

    New sources of genetic diversity must be incorporated into plant breeding programs if they are to continue increasing grain yield and quality, and tolerance to abiotic and biotic stresses. Germplasm collections provide a source of genetic and phenotypic diversity, but characterization of these resources is required to increase their utility for breeding programs. We used a barley SNP iSelect platform with 7,842 SNPs to genotype 2,417 barley accessions sampled from the USDA National Small Grains Collection of 33,176 accessions. Most of the accessions in this core collection are categorized as landraces or cultivars/breeding lines and were obtained from more than 100 countries. Both STRUCTURE and principal component analysis identified five major subpopulations within the core collection, mainly differentiated by geographical origin and spike row number (an inflorescence architecture trait). Different patterns of linkage disequilibrium (LD) were found across the barley genome and many regions of high LD contained traits involved in domestication and breeding selection. The genotype data were used to define 'mini-core' sets of accessions capturing the majority of the allelic diversity present in the core collection. These 'mini-core' sets can be used for evaluating traits that are difficult or expensive to score. Genome-wide association studies (GWAS) of 'hull cover', 'spike row number', and 'heading date' demonstrate the utility of the core collection for locating genetic factors determining important phenotypes. The GWAS results were referenced to a new barley consensus map containing 5,665 SNPs. Our results demonstrate that GWAS and high-density SNP genotyping are effective tools for plant breeders interested in accessing genetic diversity in large germplasm collections.

  11. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene

    PubMed Central

    Komatsuda, Takao; Pourkheirandish, Mohammad; He, Congfen; Azhaguvel, Perumal; Kanamori, Hiroyuki; Perovic, Dragan; Stein, Nils; Graner, Andreas; Wicker, Thomas; Tagiri, Akemi; Lundqvist, Udda; Fujimura, Tatsuhito; Matsuoka, Makoto; Matsumoto, Takashi; Yano, Masahiro

    2007-01-01

    Increased seed production has been a common goal during the domestication of cereal crops, and early cultivators of barley (Hordeum vulgare ssp. vulgare) selected a phenotype with a six-rowed spike that stably produced three times the usual grain number. This improved yield established barley as a founder crop for the Near Eastern Neolithic civilization. The barley spike has one central and two lateral spikelets at each rachis node. The wild-type progenitor (H. vulgare ssp. spontaneum) has a two-rowed phenotype, with additional, strictly rudimentary, lateral rows; this natural adaptation is advantageous for seed dispersal after shattering. Until recently, the origin of the six-rowed phenotype remained unknown. In the present study, we isolated vrs1 (six-rowed spike 1), the gene responsible for the six-rowed spike in barley, by means of positional cloning. The wild-type Vrs1 allele (for two-rowed barley) encodes a transcription factor that includes a homeodomain with a closely linked leucine zipper motif. Expression of Vrs1 was strictly localized in the lateral-spikelet primordia of immature spikes, suggesting that the VRS1 protein suppresses development of the lateral rows. Loss of function of Vrs1 resulted in complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets in the six-rowed phenotype. Phylogenetic analysis demonstrated that the six-rowed phenotype originated repeatedly, at different times and in different regions, through independent mutations of Vrs1. PMID:17220272

  12. Level of contamination with mycobiota and contents of mycotoxins from the group of trichothecenes in grain of wheat , oats, barley, rye and triticale harvested in Poland in 2006- 2008.

    PubMed

    Stuper-Szablewska, Kinga; Perkowski, Juliusz

    2017-03-01

    The risk of cereal exposure to microbial contamination is high and possible at any time, starting from the period of plant vegetation, through harvest, up to the processing, storage and transport of the final product. Contents of mycotoxins in grain are inseparably connected with the presence of fungal biomass, the presence of which may indicate the occurrence of a fungus, and indirectly also products of its metabolism. Analyses were conducted on 378 grain samples of wheat, triticale, barley, rye and oats collected from grain silos located at grain purchase stations and at mills in Poland in 2006, 2007 and 2008. The concentrations of ERG and mycotoxins from the group of trichothecenes, as well as CFU numbers were analysed. The tested cereals were characterised by similarly low concentrations of both the investigated fungal metabolites and the level of microscopic fungi. However, conducted statistical analyses showed significant variation between tested treatments. Oat and rye grain contained the highest amounts of ERG, total toxins and CFU. In turn, the lowest values of investigated parameters were found in grain of wheat and triticale. Chemometric analyses, based on the results of chemical and microbiological tests, showed slight differences between contents of analysed metabolites between the years of the study, and do not confirm the observations on the significance of the effect of weather conditions on the development of mycobiota and production of mycotoxins; however, it does pertain to treatments showing no significant infestation. Highly significant correlations between contents of trichothecenes and ERG concentration (higher than in the case of the correlation of the total toxin concentrations/log cfu/g), indicate that the level of this metabolite is inseparably connected with mycotoxin contents in grain.

  13. Development of endosperm transfer cells in barley.

    PubMed

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC

  14. Development of endosperm transfer cells in barley

    PubMed Central

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC

  15. Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    PubMed Central

    2011-01-01

    Background The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-O-acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals. Results Two Fusarium trichothecene 3-O-acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (Saccharomyces cerevisiae) during a series of small-scale ethanol fermentations using barley (Hordeum vulgare). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red®, which also consumed galactose when present in the mash. Conclusions This study demonstrates the potential of using yeast expressing a trichothecene 3-O-acetyltransferase to modify DON during commercial fuel ethanol fermentation. PMID:21888629

  16. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis.

    PubMed

    Pourabed, Ehsan; Ghane Golmohamadi, Farzan; Soleymani Monfared, Peyman; Razavi, Seyed Morteza; Shobbar, Zahra-Sadat

    2015-01-01

    The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.

  17. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner

    PubMed Central

    Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben

    2016-01-01

    An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625

  18. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  19. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  20. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  1. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of— Test... and Six-rowed Blue Malting barley varieties not meeting the requirements of this section shall be...

  2. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence1[OPEN

    PubMed Central

    Taketa, Shin; Mascher, Martin; Yuo, Takahisa; Beier, Sebastian; Taudien, Stefan; Morgante, Michele

    2016-01-01

    Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226

  3. Microbial populations and fermentation profiles in rumen liquid and solids of Holstein cows respond differently to dietary barley processing.

    PubMed

    Metzler-Zebeli, B U; Khol-Parisini, A; Gruber, L; Zebeli, Q

    2015-12-01

    To evaluate the effects of treating barley grain with lactic acid (LA) and heat on postprandial dynamics of 19 microbial taxa and fermentation in the rumen of dairy cows. This study was designed as a double 3 × 3 Latin square with six rumen-cannulated cows and three diets either containing untreated control barley or barley treated with 1% LA and 1% LA and heat (LAH, 55°C). Microbial populations, pH and volatile fatty acids were assessed in rumen liquid and solids during the postprandial period. Propionate increased and butyrate decreased in rumen solids of cows fed LA and LAH treated barley compared to the control barley. The LA but not LAH treatment depressed Fibrobacter succinogenes in rumen liquid and solids, whereas the opposite effect was observed for Ruminococcus albus in both fractions and Ruminococcus flavefaciens in rumen solids. LA promoted Ruminobacter amylophilus with the effect being more pronounced with LAH. The Lactobacillus group and Megasphaera elsdenii increased in both fractions with LA but not with LAH. LA and LAH treatment of barley differently altered ruminal abundance of certain bacterial taxa and fungi and increased propionate fermentation in rumen solids, whereby LA and LAH effects were consistent and mostly independent of the rumen fraction and time after barley feeding. Results provided evidence that LA and LAH treatment of barley can enhance rumen propionate fermentation without adversely affecting rumen pH. As propionate is the major contributor to gluconeogenesis in ruminants, the present barley treatment may have practical application to enhance energy supply in dairy cows. © 2015 The Society for Applied Microbiology.

  4. Rolled-crimped winter rye cover effects on hand-weeding times and fruit yield and quality of cucurbits

    USDA-ARS?s Scientific Manuscript database

    Fruit and vegetables produced without pesticides are in demand by some segments of society. However, weeds often are deleterious in such crops, and managing them without herbicides is difficult. Stale seedbeds and rolled-crimped winter rye cover crops are non-chemical methods that may help manage we...

  5. Further Experiments on Gibberellin-Stimulated Amylase Production in Cereal Grains

    ERIC Educational Resources Information Center

    Coppage, Jo; Hill, T. A.

    1973-01-01

    Experiments conducted on wheat and barley grains to analyze activities of alpha- and beta-amylase enzymes. Gibberellins were used exogenously. Techniques are described in detail. Results on different cultivars revealed that beta-amylase was not an invariable result of imbibition. Techniques employed can be used by school students. (PS)

  6. 78 FR 76098 - Rail Transportation of Grain, Rate Regulation Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ...) Opening 4-5, Rate Regulation Reforms, EP 715; Alliance for Rail Competition, Montana Wheat & Barley... Producers Board, and Washington Grain Commission Opening 6-12, Rate Regulation Reforms, EP 715. \\3\\ NGFA Opening 3-4, Rate Regulation Reforms, EP 715. \\4\\ BNSF Ry. Co. Reply 10, Rate Regulation Reforms, EP 715...

  7. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products.

    PubMed

    Tosh, S M

    2013-04-01

    Oat and barley foods have been shown to reduce human glycaemic response, compared to similar wheat foods or a glucose control. The strength of the evidence supporting the hypothesis that the soluble fibre, mixed linkage β-glucan, reduces glycaemic response was evaluated. A search of the literature was conducted to find clinical trials with acute glycaemic response as an end point using oat or barley products. Of the 76 human studies identified, 34 met the inclusion and exclusion criteria. Dose response and ratio of β-glucan to available carbohydrate as predictors of glycaemic response were assessed. Meals provided 0.3-12.1 g oat or barley β-glucan, and reduced glycaemic response by an average of 48 ± 33 mmol · min/l compared to a suitable control. Regression analysis on 119 treatments indicated that change in glycaemic response (expressed as incremental area under the post-prandial blood-glucose curve) was greater for intact grains than for processed foods. For processed foods, glycaemic response was more strongly related to the β-glucan dose alone (r(2)=0.48, P<0.0001) than to the ratio of β-glucan to the available carbohydrate (r(2)=0.25, P<0.0001). For processed foods containing 4 g of β-glucan, the linear model predicted a decrease in glycaemic response of 27 ± 3 mmol · min/l, and 76% of treatments significantly reduced glycaemic response. Thus, intact grains as well as a variety of processed oat and barley foods containing at least 4 g of β-glucan and 30-80 g available carbohydrate can significantly reduce post-prandial blood glucose.

  8. Molecular Farming in Barley: Development of a Novel Production Platform to Produce Human Antimicrobial Peptide LL-37.

    PubMed

    Holásková, Edita; Galuszka, Petr; Mičúchová, Alžbeta; Šebela, Marek; Öz, Mehmet Tufan; Frébort, Ivo

    2018-06-01

    The peptide LL-37, a component of the human innate immune system, represents a promising drug candidate. In particular, the development of low-cost production platform technology is a critical bottleneck in its use in medicine. In the present study, a viable approach for the LL-37 production in transgenic barley is developed. First, comparative analyses of the effects of different fused peptide epitope tags applicable for accumulation and purification on LL-37 production yield are performed using transient expression in tobacco leaves. Following the selection of the most yielding fusion peptide strategies, eight different constructs for the expression of codon optimized chimeric LL-37 genes in transgenic barley plants are created. The expression of individual constructs is driven either by an endosperm-specific promoter of the barley B1 hordein gene or by the maize ubiquitin promoter. The transgenes are stably integrated into the barley genome and inherited in the subsequent generation. All transgenic lines show normal phenotypes and are fertile. LL-37 accumulated in the barley seeds up to 0.55 mg per 1 kg of grain. The fused epitope tags are cleaved off by the use of enterokinase. Furthermore, in planta produced LL-37 including the fused versions is biologically active. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields

    USDA-ARS?s Scientific Manuscript database

    A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...

  10. Chemical test for mammalian feces in grain products: collaborative study.

    PubMed

    Gerber, H R

    1989-01-01

    A collaborative study was conducted to validate the use of the AOAC alkaline phosphatase method for mammalian feces in corn meal, 44.B01-44.B06, for 7 additional products: brown rice cream, oat bran, grits, semolina, pasta flour, farina, and barley plus (a mixture of barley, oat bran, and brown rice). The proposed method determines the presence of alkaline phosphatase, an enzyme contained in mammalian feces, by using phenolphthalein diphosphate as the enzyme substrate in a test agar medium. Fecal matter is separated from the grain products by specific gravity differences in 1% test agar. As the product is distributed on liquid test agar, fecal fragments float while the grain products sink. The alkaline phosphatase cleaves phosphate radicals from phenolphthalein diphosphate, generating free phenolphthalein, which produces a pink to red-purple color around the fecal particles in the previously colorless medium. Collaborators' recovery averages ranged from 21.7 particles (72.3%) for oat bran to 25.3 particles (84.3%) for semolina at the 30 particle spike level. Overall average background was 0.4 positive reactions per food type. The collaborators reported that the method was quick, simple, and easy to use. The method has been approved interim official first action for all 7 grain products.

  11. Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy.

    PubMed

    Ramakrishna, Ramnarain; Sarkar, Dipayan; Manduri, Avani; Iyer, Shreyas Ganesan; Shetty, Kalidas

    2017-10-01

    Sprouts of cereal grains, such as barley ( Hordeum vulgare L.), are a good source of beneficial phenolic bioactives. Such health relevant phenolic bioactives of cereal sprouts can be targeted to manage chronic hyperglycemia and oxidative stress commonly associated with type 2 diabetes (T2D). Therefore improving phenolic bioactives by stimulating plant endogenous defense responses such as protective pentose phosphate pathway (PPP) during sprouting has significant merit. Based on this metabolic rationale, this study aimed to enhance phenolic bioactives and associated antioxidant and anti-hyperglycemic functions in dark germinated barley sprouts using exogenous elicitor treatments. Dark-germinated sprouts of two malting barley cultivars (Pinnacle and Celebration), treated with chitosan oligosaccharide (COS) and marine protein hydrolysate (GP), were evaluated. Total soluble phenolic content (TSP), phenolic acid profiles, total antioxidant activity (TA) and in vitro inhibitory activities of hyperglycemia relevant α-amylase and α-glucosidase enzymes of the dark germinated barley sprouts were evaluated at day 2, 4, and 6 post elicitor treatments. Overall, TSP content, TA, and α-amylase inhibitory activity of dark germinated barley sprouts decreased, while α-glucosidase inhibitory activity and gallic acid content increased from day 2 to day 6. Among barley cultivars, high phenolic antioxidant-linked anti-hyperglycemic bioactives were observed in Celebration. Furthermore, GP and COS seed elicitor treatments in selective doses improved T2D relevant phenolic-linked anti-hyperglycemic bioactives of barley spouts at day 6. Therefore, such seed elicitation approach can be strategically used to develop bioactive enriched functional food ingredients from cereal sprouts targeting chronic hyperglycemia and oxidative stress linked to T2D.

  12. Effect of rising atmospheric carbon dioxide concentration on the protein composition of cereal grain.

    PubMed

    Wroblewitz, Stefanie; Hüther, Liane; Manderscheid, Remy; Weigel, Hans-Joachim; Wätzig, Hermann; Dänicke, Sven

    2014-07-16

    The present study investigates effects of rising atmospheric CO2 concentration on protein composition of maize, wheat, and barley grain, especially on the fractions prolamins and glutelins. Cereals were grown at different atmospheric CO2 concentrations to simulate future climate conditions. Influences of two nitrogen fertilization levels were studied for wheat and barley. Enriched CO2 caused an increase of globulin and B-hordein of barley. In maize, the content of globulin, α-zein, and LMW polymers decreased, whereas total glutelin, zein, δ-zein, and HMW polymers rose. Different N supplies resulted in variations of barley subfractions and wheat globulin. Other environmental influences showed effects on the content of nearly all fractions and subfractions. Variations in starch-protein bodies caused by different CO2 treatments could be visualized by scanning electron microscopy. In conclusion, climate change would have impacts on structural composition of proteins and, consequently, on the nutritional value of cereals.

  13. Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley.

    PubMed

    Wang, Rong; Yang, Fei; Zhang, Xiao-Qi; Wu, Dianxin; Tan, Cong; Westcott, Sharon; Broughton, Sue; Li, Chengdao; Zhang, Wenying; Xu, Yanhao

    2017-01-01

    Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7-9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene ( vvy ) was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.

  14. Population subdivision of Fusarium graminearum from barley and wheat in the upper Midwestern United States at the turn of the century

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum, the causal agent of Fusarium head blight (FHB) in wheat and barley, is one of the most economically destructive pathogens of these grains worldwide. Recent population genetic studies of the pathogen obtained from wheat in North America supported population subdivision in part c...

  15. Discriminating oat and groat kernels from other grains using near infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Oat and groats can be discriminated from other grains such as barley, wheat, rye, and triticale (non-oats) using near infrared spectroscopy. The two instruments tested were the manual version of the ARS-USDA Single Kernel Near Infrared (SKNIR) and the automated QualySense QSorter Explorer high-speed...

  16. Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley

    PubMed Central

    Nice, Liana M.; Steffenson, Brian J.; Brown-Guedira, Gina L.; Akhunov, Eduard D.; Liu, Chaochih; Kono, Thomas J. Y.; Morrell, Peter L.; Blake, Thomas K.; Horsley, Richard D.; Smith, Kevin P.; Muehlbauer, Gary J.

    2016-01-01

    The ability to access alleles from unadapted germplasm collections is a long-standing problem for geneticists and breeders. Here we developed, characterized, and demonstrated the utility of a wild barley advanced backcross-nested association mapping (AB-NAM) population. We developed this population by backcrossing 25 wild barley accessions to the six-rowed malting barley cultivar Rasmusson. The 25 wild barley parents were selected from the 318 accession Wild Barley Diversity Collection (WBDC) to maximize allelic diversity. The resulting 796 BC2F4:6 lines were genotyped with 384 SNP markers, and an additional 4022 SNPs and 263,531 sequence variants were imputed onto the population using 9K iSelect SNP genotypes and exome capture sequence of the parents, respectively. On average, 96% of each wild parent was introgressed into the Rasmusson background, and the population exhibited low population structure. While linkage disequilibrium (LD) decay (r2 = 0.2) was lowest in the WBDC (0.36 cM), the AB-NAM (9.2 cM) exhibited more rapid LD decay than comparable advanced backcross (28.6 cM) and recombinant inbred line (32.3 cM) populations. Three qualitative traits: glossy spike, glossy sheath, and black hull color were mapped with high resolution to loci corresponding to known barley mutants for these traits. Additionally, a total of 10 QTL were identified for grain protein content. The combination of low LD, negligible population structure, and high diversity in an adapted background make the AB-NAM an important tool for high-resolution gene mapping and discovery of novel allelic variation using wild barley germplasm. PMID:27182953

  17. Composition of extracts of airborne grain dusts: lectins and lymphocyte mitogens.

    PubMed Central

    Olenchock, S A; Lewis, D M; Mull, J C

    1986-01-01

    Airborne grain dusts are heterogeneous materials that can elicit acute and chronic respiratory pathophysiology in exposed workers. Previous characterizations of the dusts include the identification of viable microbial contaminants, mycotoxins, and endotoxins. We provide information on the lectin-like activity of grain dust extracts and its possible biological relationship. Hemagglutination of erythrocytes and immunochemical modulation by antibody to specific lectins showed the presence of these substances in extracts of airborne dusts from barley, corn, and rye. Proliferation of normal rat splenic lymphocytes in vitro provided evidence for direct biological effects on the cells of the immune system. These data expand the knowledge of the composition of grain dusts (extracts), and suggest possible mechanisms that may contribute to respiratory disease in grain workers. PMID:3709474

  18. Feasibility of FT–Raman spectroscopy for rapid screening for DON toxin in ground wheat and barley.

    PubMed

    Liu, Y; Delwiche, S R; Dong, Y

    2009-10-01

    Rapid detection of deoxynivalenol (DON) in cereal-based food and feed has long been the goal of regulators and manufacturers. As non-destructive approaches, infrared (IR) and near-infrared (NIR) spectroscopic techniques have been used for the prediction and classification of contaminated single-kernel and ground grain without any DON extraction steps. These methods, however, are hindered by the intense and broad spectral bands attributed to naturally occurring moisture. Raman spectroscopy could be an alternative to IR and NIR due to its insensitivity to water and fewer overlapped bands. This study explored the feasibility of the Raman technique for rapid and non-destructive screening of DON-contaminated wheat and barley meal. The advantages of this technique include the use of a 1064-nm NIR excitation laser that reduces interference from fluorescence of biological compounds in wheat and barley, the use of a simple intensity-intensity algorithm at two unique frequencies, plus the technique's ease of sample preparation. The results indicate that the simple algorithm, as well as principal component analysis applied to the Raman spectra, can be used to classify low from high DON grain.

  19. Effect of timing and type of supplementary grain on herbage intake, nitrogen utilization and milk production in dairy cows grazed on perennial ryegrass pasture from evening to morning.

    PubMed

    Ueda, Koichiro; Mitani, Tomohiro; Kondo, Seiji

    2017-01-01

    The present study aimed to clarify the effect of timing and type of supplementary grain in grazing dairy cows on herbage dry matter intake (HDMI), nitrogen utilization and milk production. Eight lactating cows were allowed to graze from evening to morning during three seasonal periods (spring, summer, autumn). They were randomly allocated to four treatments (timing: pre- (Pre) or post-grazing (Post), for large grain allotments consisting of 75% of daily grain offered; grain type: barley or corn) in 4 × 4 Latin square designs in each period. In the spring period, HDMI was greater for cows fed corn than those fed barley (P = 0.005), whereas cows in the Pre treatment had a similar HDMI, higher (P = 0.049) urinary purine derivative concentration and greater (P = 0.004) milk yield compared with cows in the Post treatment. In the summer and autumn periods, timing treatments did not affect HDMI, nitrogen utilization or milk production, but cows supplemented with barley had higher urinary purine derivatives concentration (P < 0.05) and milk yield (P < 0.05) compared with those supplemented with corn. The results indicate that large grain allotments immediately before evening grazing during early grazing seasons increased ruminal microbial protein synthesis and milk production without reducing HDMI regardless of grain type. © 2016 Japanese Society of Animal Science.

  20. Genetic Dissection of Photoperiod Response Based on GWAS of Pre-Anthesis Phase Duration in Spring Barley

    PubMed Central

    Alqudah, Ahmad M.; Sharma, Rajiv; Pasam, Raj K.; Graner, Andreas; Kilian, Benjamin; Schnurbusch, Thorsten

    2014-01-01

    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley. PMID:25420105

  1. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material.

    PubMed

    Steiner, Elisabeth; Auer, Andrea; Becker, Thomas; Gastl, Martina

    2012-03-15

    Brewing with 100% barley using the Ondea® Pro exogenous brewing enzyme product was compared to brewing with 100% barley. The use of barley, rather than malt, in the brewing process and the consequences for selected beer quality attributes (foam formation, colloidal stability and filterability, sensory differences, protein content and composition) was considered. The quality attributes of barley, malt, kettle-full-wort, cold wort, unfiltered beer and filtered beer were assessed. A particular focus was given to monitoring changes in the barley protein composition during the brewing process and how the exogenous OndeaPro® enzymes influenced wort protein composition. All analyses were based on standard brewing methods described in ASBC, EBC or MEBAK. To monitor the protein changes two-dimensional polyacrylamide gel electrophoresis was used. It was shown that by brewing beer with 100% barley and an appropriate addition of exogenous Ondea® Pro enzymes it was possible to efficiently brew beer of a satisfactory quality. The production of beers brewed with 100% barley resulted in good process efficiency (lautering and filtration) and to a final product whose sensory quality was described as light, with little body and mouthfeel, very good foam stability and similar organoleptic qualities compared to conventional malt beer. In spite of the sensory evaluation differences could still be seen in protein content and composition. Copyright © 2011 Society of Chemical Industry.

  2. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    PubMed

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Acute symptoms following exposure to grain dust in farming.

    PubMed Central

    Manfreda, J; Holford-Strevens, V; Cheang, M; Warren, C P

    1986-01-01

    History of acute symptoms (cough, wheezing, shortness of breath, fever, stuffy nose, and skin itching/rash) following exposure to grain dust was obtained from 661 male and 535 female current and former farmers. These symptoms were relatively common: 60% of male and 25% of female farmers reported at least one such symptom on exposure to grain dust. Association of cough, wheezing, shortness of breath, and stuffy nose with skin reactivity and capacity to form IgE is consistent with an allergic nature of these symptoms. Barley and oats dust were perceived as dust most often producing symptoms. On the other hand, grain fever showed a different pattern, i.e., it was not associated with either skin reactivity or total IgE. Smoking might modify the susceptibility to react to grain dust with symptoms. Only those who reported wheezing on exposure to grain dust may have an increased risk to develop chronic airflow obstruction. PMID:3709486

  4. Postharvest production of ochratoxin A by Aspergillus ochraceus and Penicillium viridicatum in barley with different protein levels.

    PubMed Central

    Häggblom, P E; Ghosh, J

    1985-01-01

    The production of ochratoxin A (OA) in barley by Aspergillus ochraceus and Penicillium viridicatum was measured at 12 and 25 degrees C. The grain had been fertilized with various amounts of nitrogen fertilizer (0, 90, or 240 kg/ha) and contained (at crop maturity) 9.1, 10.4, or 12.0% protein, respectively. The production of OA by both fungi increased as the protein concentration increased. Glutamic acid and proline were enriched relative to other amino acids as the protein concentration increased. The differences in OA production could not be explained by a differential effect of protein or amino acids on fungal growth in barley. However, glutamic acid and proline enhanced OA production in liquid cultures of both A. ochraceus and P. viridicatum. PMID:4004212

  5. Mid-Infrared (MIR) and Near-Infrared (NIR) Detection of Rhizoctonia solani AG 2-2 IIIB on Barley-Based Artificial Inoculum.

    PubMed

    Webb, Kimberly M; Calderón, Francisco J

    2015-10-01

    The amount of Rhizoctonia solani in the soil and how much must be present to cause disease in sugar beet (Beta vulgaris L.) is relatively unknown. This is mostly because of the usually low inoculum densities found naturally in soil and the low sensitivity of traditional serial dilution assays. We investigated the usefulness of Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopic properties in identifying the artificial colonization of barley grains with R. solani AG 2-2 IIIB and in detecting R. solani populations in plant tissues and inoculants. The objectives of this study were to compare the ability of traditional plating assays to NIR and MIR spectroscopies to identify R. solani in different-size fractions of colonized ground barley (used as an artificial inoculum) and to differentiate colonized from non-inoculated barley. We found that NIR and MIR spectroscopies were sensitive in resolving different barley particle sizes, with particles that were <0.25 and 0.25-0.5 mm having different spectral properties than coarser particles. Moreover, we found that barley colonized with R. solani had different MIR spectral properties than the non-inoculated samples for the larger fractions (0.5-1.0, 1.0-2.0, and >2.0 mm) of the ground barley. This colonization was confirmed using traditional plating assays. Comparisons with the spectra from pure fungal cultures and non-inoculated barley suggest that the MIR spectrum of colonized barley is different because of the consumption of C substrates by the fungus rather than because of the presence of fungal bands in the spectra of the colonized samples. We found that MIR was better than NIR spectroscopy in differentiating the colonized from the control samples.

  6. Fusariotoxicosis from barley in British Columbia. II. Analysis and toxicity of syspected barley.

    PubMed Central

    Puls, R; Greenway, J A

    1976-01-01

    Fusariotoxin T-2, a trichothecene, was tentatively identified in barley samples which caused field outbreaks of mycotoxicosis in British Columbia. Geese died when fed the contaminated barley experimentally but mice were little affected after long term feeding. The methods used in the laboratory for trichothecene extraction and identification of T-2 toxin are described. PMID:1000373

  7. Mass spectrometry-based analysis of whole-grain phytochemicals.

    PubMed

    Koistinen, Ville Mikael; Hanhineva, Kati

    2017-05-24

    Whole grains are a rich source of several classes of phytochemicals, such as alkylresorcinols, benzoxazinoids, flavonoids, lignans, and phytosterols. A high intake of whole grains has been linked to a reduced risk of some major noncommunicable diseases, and it has been postulated that a complex mixture of phytochemicals works in synergy to generate beneficial health effects. Mass spectrometry, especially when coupled with liquid chromatography, is a widely used method for the analysis of phytochemicals owing to its high sensitivity and dynamic range. In this review, the current knowledge of the mass spectral properties of the most important classes of phytochemicals found in cereals of common wheat, barley, oats, and rye is discussed.

  8. Leaf primordium size specifies leaf width and vein number among row-type classes in barley.

    PubMed

    Thirulogachandar, Venkatasubbu; Alqudah, Ahmad M; Koppolu, Ravi; Rutten, Twan; Graner, Andreas; Hensel, Goetz; Kumlehn, Jochen; Bräutigam, Andrea; Sreenivasulu, Nese; Schnurbusch, Thorsten; Kuhlmann, Markus

    2017-08-01

    Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  9. Fourier transform infrared microspectroscopic analysis of the effects of cereal type and variety within a type of grain on structural makeup in relation to rumen degradation kinetics.

    PubMed

    Walker, Amanda M; Yu, Peiqiang; Christensen, Colleen R; Christensen, David A; McKinnon, John J

    2009-08-12

    The objectives of this study were to use Fourier transform infrared microspectroscopy (FTIRM) to determine structural makeup (features) of cereal grain endosperm tissue and to reveal and identify differences in protein and carbohydrate structural makeup between different cereal types (corn vs barley) and between different varieties within a grain (barley CDC Bold, CDC Dolly, Harrington, and Valier). Another objective was to investigate how these structural features relate to rumen degradation kinetics. The items assessed included (1) structural differences in protein amide I to nonstructural carbohydrate (NSC, starch) intensity and ratio within cellular dimensions; (2) molecular structural differences in the secondary structure profile of protein, alpha-helix, beta-sheet, and their ratio; (3) structural differences in NSC to amide I ratio profile. From the results, it was observed that (1) comparison between grain types [corn (cv. Pioneer 39P78) vs barley (cv. Harrington)] showed significant differences in structural makeup in terms of NSC, amide I to NSC ratio, and rumen degradation kinetics (degradation ratio, effective degradability of dry matter, protein and NSC) (P < 0.05); (2) comparison between varieties within a grain (barley varieties) also showed significant differences in structural makeup in terms of amide I, NSC, amide I to NSC ratio, alpha-helix and beta-sheet protein structures, and rumen degradation kinetics (effective degradability of dry matter, protein, and NSC) (P < 0.05); (3) correlation analysis showed that the amide I to NSC ratio was strongly correlated with rumen degradation kinetics in terms of the degradation rate (R = 0.91, P = 0.086) and effective degradability of dry matter (R = 0.93, P = 0.071). The results suggest that with the FTIRM technique, the structural makeup differences between cereal types and between different varieties within a type of grain could be revealed. These structural makeup differences were related to the rate

  10. Bioactive compounds in cereal grains - occurrence, structure, technological significance and nutritional benefits - a review.

    PubMed

    Bartłomiej, Siurek; Justyna, Rosicka-Kaczmarek; Ewa, Nebesny

    2012-12-01

    This review presents current information about principal, biologically active compounds contained in grains of cereals that are most popular in Europe (wheat, rye, barley and oat). The tendency to provide consumers with safe foods, which promote their health and are based on cereal grains and/or their components with the high nutritive value, has been recently observed. The intake of protective substances contained in whole grains and their fractions contributes to a decreased risk of food-dependent diseases like the coronary heart disease and insulin-dependent diabetes. This study describes the structure, occurrence in cereal grains, technological importance and beneficial influence on human health of bioactive substances such as arabinoxylans, β-glucans, alkylresorcinols, tocols and phytosterols.

  11. Effects of whole grains on coronary heart disease risk.

    PubMed

    Harris, Kristina A; Kris-Etherton, Penny M

    2010-11-01

    Characterizing which types of carbohydrates, including whole grains, reduce the risk for coronary heart disease (CHD) is challenging. Whole grains are characterized as being high in resistant carbohydrates as compared with refined grains, meaning they typically are high in fiber, nutrients, and bound antioxidants. Whole grain intake consistently has been associated with improved cardiovascular disease outcomes, but also with healthy lifestyles, in large observational studies. Intervention studies that assess the effects of whole grains on biomarkers for CHD have mixed results. Due to the varying nutrient compositions of different whole grains, each could potentially affect CHD risk via different mechanisms. Whole grains high in viscous fiber (oats, barley) decrease serum low-density lipoprotein cholesterol and blood pressure and improve glucose and insulin responses. Grains high in insoluble fiber (wheat) moderately lower glucose and blood pressure but also have a prebiotic effect. Obesity is inversely related to whole grain intake, but intervention studies with whole grains have not produced weight loss. Visceral fat, however, may be affected favorably. Grain processing improves palatability and can have varying effects on nutrition (e.g., the process of milling and grinding flour increases glucose availability and decreases phytochemical content whereas thermal processing increases available antioxidants). Understanding how individual grains, in both natural and processed states, affect CHD risk can inform nutrition recommendations and policies and ultimately benefit public health.

  12. Whole Tibetan Hull-Less Barley Exhibit Stronger Effect on Promoting Growth of Genus Bifidobacterium than Refined Barley In Vitro.

    PubMed

    Gong, Lingxiao; Cao, Wenyan; Gao, Jie; Wang, Jing; Zhang, Huijuan; Sun, Baoguo; Yin, Meng

    2018-04-01

    The gut microbiota has recently become a new route for research at the intersection of diet and human health. The aim of this study was to investigate whether whole Tibetan hull-less barley (WHB) and refined Tibetan hull-less barley (RHB) caused differentiation of the fecal microbiota in vitro. The microbiota-accessible ingredients in the 2 barley samples were studied using an in vitro enzymatic digestion procedure. After in vitro digestion, insoluble dietary fiber, phenolic compounds, proteins, and β-glucans were 93.2%, 103.4%. 18.8%, and 10.2% higher provided by WHB flour as compared with RHB flour based on the same mass amount. However, due to the significantly higher content of insoluble dietary fiber, WHB digesta had lower percentage contents of fast fermentable substrates including dietary fiber and starch as compared with RHB digesta. The results of Next-generation sequencing of the bacterial 16SrRNA gene showed that both WHB and RHB fermentation had significantly promoted the growth of Bifidobacterium and inhibited the growth of pathogenic bacteria such as Dorea, Escherichia, Oscillopira, and Ruminococcus. Moreover, in response to WHB fermentation, the relative abundance of Bifidobacterium increased by 78.5% and 92.8% as compared with RHB and fructo-oligosaccharides (FOs). Both WHB and RHB are good sources of fermentable dietary fiber with the ability to yield high concentration of short chain fatty acids (SCFAs) as compared to FOs. However, the higher fraction of soluble fiber in RHB digesta increase higher amounts of SCFA compared with WHB digesta. Our findings shed light on the complex interactions of whole cereals with gut microbiota and the possible impact on host health. Until now, only few reports have regarded the impact of in vitro digestion in components of whole grain with complex food matrix. Moreover, our findings shed light on the complex interactions of whole cereals with gut microbiota and the possible impact on host health. © 2018

  13. The effect of Fusarium culmorum infection and deoxynivalenol (DON) application on proteome response in barley cultivars Chevron and Pedant.

    PubMed

    Kosová, Klára; Chrpová, Jana; Šantrůček, Jiří; Hynek, Radovan; Štěrbová, Lenka; Vítámvás, Pavel; Bradová, Jana; Prášil, Ilja Tom

    2017-10-03

    Fusarium head blight (FHB) disease adversely affects grain quality and final yield in small-grain cereals including barley. In the present study, the effect of an artificial infection with Fusarium culmorum and an application of deoxynivalenol (DON) on barley spikes of cultivars Chevron and Pedant during flowering was investigated at grain mid-dough stage (BBCH 73) 10days after pathogen inoculation (10 dai). Proteomic analysis using a two-dimensional differential gel electrophoresis (2D-DIGE) technique coupled with LC-MS/MS investigated 98 protein spots revealing quantitative or qualitative differences between the experimental variants. Protein functional annotation of 93 identified protein spots revealed that most affected functional groups represent storage proteins (globulins, hordeins), followed by proteins involved in carbohydrate metabolism (α-amylase inhibitor, β-amylase, glycolytic enzymes), amino acid metabolism (aminotransferases), defence response (chitinase, xylanase inhibitor, serpins, SGT1, universal stress protein USP), protein folding (chaperones, chaperonins), redox metabolism (ascorbate-glutathione cycle), and proteasome-dependent protein degradation. The obtained results indicate adverse effects of infection on plant proteome as well as an active plant response to pathogen as shown by enhanced levels of several inhibitors of pathogen-produced degradation enzymes (α-amylase inhibitor, xylanase inhibitor, serpins), chaperones, and other stress-related proteins (SGT1, USP). Genotypic differences were found in hordein abundance between Chevron and Pedant. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Out-of-plane permeability of multilayer 0°/90° non-crimp fabrics

    NASA Astrophysics Data System (ADS)

    Fang, Liangchao; Wu, Wenyu; Xu, Chunting; Zhang, Hui

    2018-03-01

    Layer shift is the main source of the variations in permeability values for multilayer fabrics. This phenomenon could change the flow path and cause inadequate infiltration. In this paper, the out-of-plane permeability of multilayer 0°/90° non-crimp fabrics was analyzed statistically. Based on the prediction models of 2-layer fabrics, every two adjacent layers were regarded as porous media with different permeabilities. The out-of-plane permeability of multilayer fabrics was then modeled with the electrical resistance analogy. Analytical results were compared with experiment data. And the effect of number of layer on permeability was thoroughly researched based on the statistical point of view.

  15. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation

    PubMed Central

    Mendiondo, Guillermina M.; Medhurst, Anne; van Roermund, Carlo W.; Zhang, Xuebin; Devonshire, Jean; Scholefield, Duncan; Fernández, José; Axcell, Barry; Ramsay, Luke; Waterham, Hans R.; Waugh, Robbie; Theodoulou, Frederica L.; Holdsworth, Michael J.

    2014-01-01

    In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ. PMID:24913629

  16. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Synchrotron-Based Infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, N.; Yu, P

    2010-01-01

    spectroscopic information and the nutrient value of barley grain, although significant differences in biodegradation kinetics were observed. In conclusion, the studies demonstrated the potential of ultraspatially resolved synchrotron based technology (SFTIRM) to reveal the structural and chemical makeup within cellular and subcellular dimensions without destruction of the inherent structure of cereal grain tissue.« less

  17. Genome-Wide Association Mapping for Kernel and Malting Quality Traits Using Historical European Barley Records

    PubMed Central

    Röder, Marion S.; van Eeuwijk, Fred

    2014-01-01

    Malting quality is an important trait in breeding barley (Hordeum vulgare L.). It requires elaborate, expensive phenotyping, which involves micro-malting experiments. Although there is abundant historical information available for different cultivars in different years and trials, that historical information is not often used in genetic analyses. This study aimed to exploit historical records to assist in identifying genomic regions that affect malting and kernel quality traits in barley. This genome-wide association study utilized information on grain yield and 18 quality traits accumulated over 25 years on 174 European spring and winter barley cultivars combined with diversity array technology markers. Marker-trait associations were tested with a mixed linear model. This model took into account the genetic relatedness between cultivars based on principal components scores obtained from marker information. We detected 140 marker-trait associations. Some of these associations confirmed previously known quantitative trait loci for malting quality (on chromosomes 1H, 2H, and 5H). Other associations were reported for the first time in this study. The genetic correlations between traits are discussed in relation to the chromosomal regions associated with the different traits. This approach is expected to be particularly useful when designing strategies for multiple trait improvements. PMID:25372869

  18. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing.

    PubMed

    Los, Agata; Ziuzina, Dana; Akkermans, Simen; Boehm, Daniela; Cullen, Patrick J; Van Impe, Jan; Bourke, Paula

    2018-04-01

    Contamination of cereal grains as a key global food resource with insects or microorganisms is a persistent concern for the grain industry due to irreversible damage to quality and safety characteristics and economic losses. Atmospheric cold plasma presents an alternative to conventional grain decontamination methods owing to the high antimicrobial potential of reactive species generated during the treatment, but effects against product specific microflora are required to understand how to optimally develop this approach for grains. This work investigated the influence of ACP processing parameters for both cereal grain decontamination and grain quality as important criteria for grain or seed use. A high voltage (HV) (80 kV) dielectric barrier discharge (DBD) closed system was used to assess the potential for control of native microflora and pathogenic bacterial and fungal challenge microorganisms, in tandem with effects on grain functional properties. Response surface modelling of experimental data probed the key factors in relation to microbial control and seed germination promotion. The maximal reductions of barley background microbiota were 2.4 and 2.1 log 10  CFU/g and of wheat - 1.5 and 2.5 log 10  CFU/g for bacteria and fungi, respectively, which required direct treatment for 20 min followed by a 24 h sealed post-treatment retention time. In the case of challenge organisms inoculated on barley grains, the highest resistance was observed for Bacillus atrophaeus endospores, which, regardless of retention time, were maximally reduced by 2.4 log 10  CFU/g after 20 min of direct treatment. The efficacy of the plasma treatment against selected microorganisms decreased in the following order: E. coli > P. verrucosum (spores) > B. atrophaeus (vegetative cells) > B. atrophaeus (endospores). The challenge microorganisms were more susceptible to ACP treatment than naturally present background microbiota. No major effect of short term

  19. Transcriptomic Analysis of Temperature Responses of Aspergillus kawachii during Barley Koji Production

    PubMed Central

    Futagami, Taiki; Mori, Kazuki; Wada, Shotaro; Ida, Hiroko; Kajiwara, Yasuhiro; Takashita, Hideharu; Tashiro, Kosuke; Yamada, Osamu; Omori, Toshiro; Kuhara, Satoru

    2014-01-01

    The koji mold Aspergillus kawachii is used for making the Japanese distilled spirit shochu. During shochu production, A. kawachii is grown in solid-state culture (koji) on steamed grains, such as rice or barley, to convert the grain starch to glucose and produce citric acid. During this process, the cultivation temperature of A. kawachii is gradually increased to 40°C and is then lowered to 30°C. This temperature modulation is important for stimulating amylase activity and the accumulation of citric acid. However, the effects of temperature on A. kawachii at the gene expression level have not been elucidated. In this study, we investigated the effect of solid-state cultivation temperature on gene expression for A. kawachii grown on barley. The results of DNA microarray and gene ontology analyses showed that the expression of genes involved in the glycerol, trehalose, and pentose phosphate metabolic pathways, which function downstream of glycolysis, was downregulated by shifting the cultivation temperature from 40 to 30°C. In addition, significantly reduced expression of genes related to heat shock responses and increased expression of genes related with amino acid transport were also observed. These results suggest that solid-state cultivation at 40°C is stressful for A. kawachii and that heat adaptation leads to reduced citric acid accumulation through activation of pathways branching from glycolysis. The gene expression profile of A. kawachii elucidated in this study is expected to contribute to the understanding of gene regulation during koji production and optimization of the industrially desirable characteristics of A. kawachii. PMID:25501485

  20. Transcriptomic analysis of temperature responses of Aspergillus kawachii during barley koji production.

    PubMed

    Futagami, Taiki; Mori, Kazuki; Wada, Shotaro; Ida, Hiroko; Kajiwara, Yasuhiro; Takashita, Hideharu; Tashiro, Kosuke; Yamada, Osamu; Omori, Toshiro; Kuhara, Satoru; Goto, Masatoshi

    2015-02-01

    The koji mold Aspergillus kawachii is used for making the Japanese distilled spirit shochu. During shochu production, A. kawachii is grown in solid-state culture (koji) on steamed grains, such as rice or barley, to convert the grain starch to glucose and produce citric acid. During this process, the cultivation temperature of A. kawachii is gradually increased to 40 °C and is then lowered to 30 °C. This temperature modulation is important for stimulating amylase activity and the accumulation of citric acid. However, the effects of temperature on A. kawachii at the gene expression level have not been elucidated. In this study, we investigated the effect of solid-state cultivation temperature on gene expression for A. kawachii grown on barley. The results of DNA microarray and gene ontology analyses showed that the expression of genes involved in the glycerol, trehalose, and pentose phosphate metabolic pathways, which function downstream of glycolysis, was downregulated by shifting the cultivation temperature from 40 to 30 °C. In addition, significantly reduced expression of genes related to heat shock responses and increased expression of genes related with amino acid transport were also observed. These results suggest that solid-state cultivation at 40 °C is stressful for A. kawachii and that heat adaptation leads to reduced citric acid accumulation through activation of pathways branching from glycolysis. The gene expression profile of A. kawachii elucidated in this study is expected to contribute to the understanding of gene regulation during koji production and optimization of the industrially desirable characteristics of A. kawachii.

  1. Spatiotemporal Dynamics of Oligofructan Metabolism and Suggested Functions in Developing Cereal Grains

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Mock, Hans-Peter; Marko, Doris; Weschke, Winfriede; Matros, Andrea

    2016-01-01

    Oligofructans represent one of the most important groups of sucrose-derived water–soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [β(2,1); β(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed. PMID:26834760

  2. Barley hulls and straw constituents and emulsifying properties of their hemicelluloses

    USDA-ARS?s Scientific Manuscript database

    Barley hulls (husks) are potential by-products of barley ethanol production. Barley straw is an abundant biomass in the regions producing barley for malting, feeds, and fuel ethanol. Both barley hulls and straw contain valuable hemicelluloses (arabinoxylans) and other useful carbohydrate and non-car...

  3. Products based on a high fiber barley genotype, but not on common barley or oats, lower postprandial glucose and insulin responses in healthy humans.

    PubMed

    Liljeberg, H G; Granfeldt, Y E; Björck, I M

    1996-02-01

    Postprandial blood glucose and insulin responses to cereal products made from common barley, oats or a barley genotype containing elevated levels of beta-glucans were evaluated in nine healthy subjects. Porridges were made from commercial Swedish whole-meal barley or oat flours, and a mixed whole-meal porridge using the high fiber barley genotype and commercial Swedish common barley (50:50). Also studied were two types of flour-based bread products composed of high fiber barley and common barley in ratios of 50:50 or 80:20, respectively. The common oat and barley porridges produced postprandial glucose and insulin responses similar to the white wheat bread reference, suggesting that the naturally occurring dietary fiber in these whole-meal flours has no impact on the glucose tolerance. In contrast, all high fiber barley products induced significantly lower responses than did the reference product, with the glycemic and insulin indices ranging from 57 to 72 or 42 to 72%, respectively. It is concluded that "lente" products of high sensory quality can be prepared from a barley genotype with an elevated content of soluble dietary fiber. The glycemic index of these products compares favorably with that of products made from common cereals, suggesting their use as a potential component of diets for patients with diabetes and hyperlipidemia, and for individuals predisposed to metabolic disease.

  4. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison.

    PubMed

    Li, Chengdao; Ni, Peixiang; Francki, Michael; Hunter, Adam; Zhang, Yong; Schibeci, David; Li, Heng; Tarr, Allen; Wang, Jun; Cakir, Mehmet; Yu, Jun; Bellgard, Matthew; Lance, Reg; Appels, Rudi

    2004-05-01

    Pre-harvest sprouting results in significant economic loss for the grain industry around the world. Lack of adequate seed dormancy is the major reason for pre-harvest sprouting in the field under wet weather conditions. Although this trait is governed by multiple genes it is also highly heritable. A major QTL controlling both pre-harvest sprouting and seed dormancy has been identified on the long arm of barley chromosome 5H, and it explains over 70% of the phenotypic variation. Comparative genomics approaches among barley, wheat and rice were used to identify candidate gene(s) controlling seed dormancy and hence one aspect of pre-harvest sprouting. The barley seed dormancy/pre-harvest sprouting QTL was located in a region that showed good synteny with the terminal end of the long arm of rice chromosome 3. The rice DNA sequences were annotated and a gene encoding GA20-oxidase was identified as a candidate gene controlling the seed dormancy/pre-harvest sprouting QTL on 5HL. This chromosomal region also shared synteny with the telomere region of wheat chromosome 4AL, but was located outside of the QTL reported for seed dormancy in wheat. The wheat chromosome 4AL QTL region for seed dormancy was syntenic to both rice chromosome 3 and 11. In both cases, corresponding QTLs for seed dormancy have been mapped in rice.

  5. The Genetic Basis of Composite Spike Form in Barley and ‘Miracle-Wheat’

    PubMed Central

    Poursarebani, Naser; Seidensticker, Tina; Koppolu, Ravi; Trautewig, Corinna; Gawroński, Piotr; Bini, Federica; Govind, Geetha; Rutten, Twan; Sakuma, Shun; Tagiri, Akemi; Wolde, Gizaw M.; Youssef, Helmy M.; Battal, Abdulhamit; Ciannamea, Stefano; Fusca, Tiziana; Nussbaumer, Thomas; Pozzi, Carlo; Börner, Andreas; Lundqvist, Udda; Komatsuda, Takao; Salvi, Silvio; Tuberosa, Roberto; Uauy, Cristobal; Sreenivasulu, Nese; Rossini, Laura; Schnurbusch, Thorsten

    2015-01-01

    Inflorescences of the tribe Triticeae, which includes wheat (Triticum sp. L.) and barley (Hordeum vulgare L.) are characterized by sessile spikelets directly borne on the main axis, thus forming a branchless spike. ‘Compositum-Barley’ and tetraploid ‘Miracle-Wheat’ (T. turgidum convar. compositum (L.f.) Filat.) display noncanonical spike-branching in which spikelets are replaced by lateral branch-like structures resembling small-sized secondary spikes. As a result of this branch formation ‘Miracle-Wheat’ produces significantly more grains per spike, leading to higher spike yield. In this study, we first isolated the gene underlying spike-branching in ‘Compositum-Barley,’ i.e., compositum 2 (com2). Moreover, we found that COM2 is orthologous to the branched headt (bht) locus regulating spike branching in tetraploid ‘Miracle-Wheat.’ Both genes possess orthologs with similar functions in maize BRANCHED SILKLESS 1 (BD1) and rice FRIZZY PANICLE/BRANCHED FLORETLESS 1 (FZP/BFL1) encoding AP2/ERF transcription factors. Sequence analysis of the bht locus in a collection of mutant and wild-type tetraploid wheat accessions revealed that a single amino acid substitution in the DNA-binding domain gave rise to the domestication of ‘Miracle-Wheat.’ mRNA in situ hybridization, microarray experiments, and independent qRT-PCR validation analyses revealed that the branch repression pathway in barley is governed through the spike architecture gene Six-rowed spike 4 regulating COM2 expression, while HvIDS1 (barley ortholog of maize INDETERMINATE SPIKELET 1) is a putative downstream target of COM2. These findings presented here provide new insights into the genetic basis of spike architecture in Triticeae, and have disclosed new targets for genetic manipulations aiming at boosting wheat’s yield potential. PMID:26156223

  6. Updated survey of Fusarium species and toxins in Finnish cereal grains.

    PubMed

    Hietaniemi, Veli; Rämö, Sari; Yli-Mattila, Tapani; Jestoi, Marika; Peltonen, Sari; Kartio, Mirja; Sieviläinen, Elina; Koivisto, Tauno; Parikka, Päivi

    2016-05-01

    The aim of the project was to produce updated information during 2005-14 on the Fusarium species found in Finnish cereal grains, and the toxins produced by them, as the last comprehensive survey study of Fusarium species and their toxins in Finland was carried out at the turn of the 1960s and the 1970s. Another aim was to use the latest molecular and chemical methods to investigate the occurrence and correlation of Fusarium species and their mycotoxins in Finland. The most common Fusarium species found in Finland in the FinMyco project 2005 and 2006 were F. avenaceum, F. culmorum, F. graminearum, F. poae, F. sporotrichioides and F. langsethiae. F. avenaceum was the most dominant species in barley, spring wheat and oat samples. The occurrence of F. culmorum and F. graminearum was high in oats and barley. Infection by Fusarium fungi was the lowest in winter cereal grains. The incidence of Fusarium species in 2005 was much higher than in 2006 due to weather conditions. F. langsethiae has become much more common in Finland since 2001. F. graminearum has also risen in the order of importance. A highly significant correlation was found between Fusarium graminearum DNA and deoxynivalenol (DON) levels in Finnish oats, barley and wheat. When comparing the FinMyco data in 2005-06 with the results of the Finnish safety monitoring programme for 2005-14, spring cereals were noted as being more susceptible to infection by Fusarium fungi and the formation of toxins. The contents of T-2 and HT-2 toxins and the frequency of exceptionally high DON concentrations all increased in Finland during 2005-14. Beauvericin (BEA), enniatins (ENNs) and moniliformin (MON) were also very common contaminants of Finnish grains in 2005-06. Climate change is leading to warmer weather, and this may indicate more changes in Finnish Fusarium mycobiota and toxin contents and profiles in the near future.

  7. Supplementation of Reduced Gluten Barley Diet with Oral Prolyl Endopeptidase Effectively Abrogates Enteropathy-Associated Changes in Gluten-Sensitive Macaques.

    PubMed

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Liu, David X; Alvarez, Xavier; Laine, David; Clarke, Adam; Doyle, Anthony; Aye, Pyone P; Blanchard, James; Moehs, Charles P

    2016-06-28

    Celiac disease (CD) is an autoimmune disorder that affects approximately three million people in the United States. Furthermore, non-celiac gluten sensitivity (NCGS) affects an estimated additional 6% of the population, e.g., 20 million in the U.S. The only effective treatment of CD and NCGS requires complete removal of gluten sources from the diet. While required adherence to a gluten-free diet (GFD) is extremely difficult to accomplish, efforts to develop additional supportive treatments are needed. To facilitate these efforts, we developed a gluten-sensitive (GS) rhesus macaque model to study the effects of novel therapies. Recently reported results from phase one of this project suggest that partial improvement-but not remission-of gluten-induced disease can be accomplished by 100-fold reduction of dietary gluten, i.e., 200 ppm-by replacement of conventional dietary sources of gluten with a mutant, reduced gluten (RG) barley (lys3a)-derived source. The main focus of this (phase two) study was to determine if the inflammatory effects of the residual gluten in lys3a mutant barley grain could be further reduced by oral supplementation with a prolylendopeptidase (PE). Results reveal that PE supplementation of RG barley diet induces more complete immunological, histopathological and clinical remission than RG barley diet alone. The combined effects of RG barley diet and PE supplementation resulted in a further decrease of inflammatory mediators IFN-γ and TNF secretion by peripheral lymphocytes, as well as decreased plasma anti-gliadin and anti-intestinal tissue transglutaminase (TG2) antibodies, diminished active caspase production in small intestinal mucosa, and eliminated clinical diarrhea-all comparable with a gluten-free diet induced remission. In summary, the beneficial results of a combined RG barley and PE administration in GS macaques may warrant the investigation of similar synergistic approaches.

  8. Supplementation of Reduced Gluten Barley Diet with Oral Prolyl Endopeptidase Effectively Abrogates Enteropathy-Associated Changes in Gluten-Sensitive Macaques

    PubMed Central

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Liu, David X.; Alvarez, Xavier; Laine, David; Clarke, Adam; Doyle, Anthony; Aye, Pyone P.; Blanchard, James; Moehs, Charles P.

    2016-01-01

    Celiac disease (CD) is an autoimmune disorder that affects approximately three million people in the United States. Furthermore, non-celiac gluten sensitivity (NCGS) affects an estimated additional 6% of the population, e.g., 20 million in the U.S. The only effective treatment of CD and NCGS requires complete removal of gluten sources from the diet. While required adherence to a gluten-free diet (GFD) is extremely difficult to accomplish, efforts to develop additional supportive treatments are needed. To facilitate these efforts, we developed a gluten-sensitive (GS) rhesus macaque model to study the effects of novel therapies. Recently reported results from phase one of this project suggest that partial improvement—but not remission—of gluten-induced disease can be accomplished by 100-fold reduction of dietary gluten, i.e., 200 ppm—by replacement of conventional dietary sources of gluten with a mutant, reduced gluten (RG) barley (lys3a)-derived source. The main focus of this (phase two) study was to determine if the inflammatory effects of the residual gluten in lys3a mutant barley grain could be further reduced by oral supplementation with a prolylendopeptidase (PE). Results reveal that PE supplementation of RG barley diet induces more complete immunological, histopathological and clinical remission than RG barley diet alone. The combined effects of RG barley diet and PE supplementation resulted in a further decrease of inflammatory mediators IFN-γ and TNF secretion by peripheral lymphocytes, as well as decreased plasma anti-gliadin and anti-intestinal tissue transglutaminase (TG2) antibodies, diminished active caspase production in small intestinal mucosa, and eliminated clinical diarrhea—all comparable with a gluten-free diet induced remission. In summary, the beneficial results of a combined RG barley and PE administration in GS macaques may warrant the investigation of similar synergistic approaches. PMID:27367722

  9. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley.

    PubMed

    Dai, Fei; Chen, Zhong-Hua; Wang, Xiaolei; Li, Zefeng; Jin, Gulei; Wu, Dezhi; Cai, Shengguan; Wang, Ning; Wu, Feibo; Nevo, Eviatar; Zhang, Guoping

    2014-09-16

    The domestication of cultivated barley has been used as a model system for studying the origins and early spread of agrarian culture. Our previous results indicated that the Tibetan Plateau and its vicinity is one of the centers of domestication of cultivated barley. Here we reveal multiple origins of domesticated barley using transcriptome profiling of cultivated and wild-barley genotypes. Approximately 48-Gb of clean transcript sequences in 12 Hordeum spontaneum and 9 Hordeum vulgare accessions were generated. We reported 12,530 de novo assembled transcripts in all of the 21 samples. Population structure analysis showed that Tibetan hulless barley (qingke) might have existed in the early stage of domestication. Based on the large number of unique genomic regions showing the similarity between cultivated and wild-barley groups, we propose that the genomic origin of modern cultivated barley is derived from wild-barley genotypes in the Fertile Crescent (mainly in chromosomes 1H, 2H, and 3H) and Tibet (mainly in chromosomes 4H, 5H, 6H, and 7H). This study indicates that the domestication of barley may have occurred over time in geographically distinct regions.

  10. Cereal grains and coronary heart disease.

    PubMed

    Truswell, A S

    2002-01-01

    Cereal grains and their products provide around 30% of total energy intake in British adults, (much more than any of the other major food groups). Coronary heart disease (CHD) is the largest single cause of death in Britain and many other Western countries. This review examines the question whether there is a relation between cereal consumption and CHD. Several of the nutrients in cereals have known potential for reducing risk factors for CHD: the linoleic acid, fibre, vitamin E, selenium and folate. Cereals also contain phytoestrogens of the lignan family and several phenolic acids with antioxidant properties. Processing generally reduces the content of these nutrients and bioprotective substances. Although cereals at the farm gate are very low in salt, processed cereal foods, eg bread and some breakfast cereals, are high-salt foods and thus could contribute to raising blood pressure. Human experiments have clearly shown that oat fibre tends to lower plasma total and LDL cholesterol but wheat fibre does not. Rice bran and barley may also lower cholesterol but most people do not eat enough barley to have an effect. Cereal foods with low glycaemic index such as pasta and oats are beneficial for people with diabetes and might lower plasma lipids. Between 1996 and 2001 an accumulation of five very large cohort studies in the USA, Finland and Norway have all reported that subjects consuming relatively large amounts of whole grain cereals have significantly lower rates of CHD. This confirms an earlier report from a small British cohort. The protective effect does not seem to be due to cholesterol-lowering. While cohort studies have shown this consistent protective effect of whole grain cereals, there has been (only one) randomised controlled secondary prevention trial of advice to eat more cereal fibre. In this there was no reduction of the rate of reinfarction. The trial had some weaknesses, eg there were eight different diets, compliance was not checked objectively

  11. Growth performance, feeding behavior, and selected blood metabolites of Holstein dairy calves fed restricted amounts of milk: No interactions between sources of finely ground grain and forage provision.

    PubMed

    Mirzaei, M; Khorvash, M; Ghorbani, G R; Kazemi-Bonchenari, M; Ghaffari, M H

    2017-02-01

    The objective of this study was to investigate the effects of grain sources and forage provision on growth performance, blood metabolites, and feeding behaviors of dairy calves. Sixty 3-d-old Holstein dairy calves (42.2 ± 2.5 kg of body weight) were used in a 2 × 3 factorial arrangement with the factors being grain sources (barley and corn) and forage provision (no forage, alfalfa hay, and corn silage). Individually housed calves were randomly assigned (n = 10 calves per treatment: 5 males and 5 females) to 6 treatments: (1) barley grain (BG) without forage supplement, (2) BG with alfalfa hay (AH) supplementation, (3) BG with corn silage (CS) supplementation, (4) corn grain (CG) without forage supplement, (5) CG with AH supplementation, and (6) CG with CS supplementation. All calves had ad libitum access to water and starter feed throughout the experiment. All calves were weaned on d 49 and remained in the study until d 63. Starter feed intake and average daily gain (ADG) was greater for calves fed barley than those fed corn during the preweaning and overall periods. Calves supplemented with CS had greater final body weight and postweaning as well as overall starter feed intake than AH and non-forage-supplemented calves. During the preweaning and overall periods, feeding of CS was found to increase ADG compared with feeding AH and nonforage diets. However, feed efficiency was not affected by dietary treatments. Calves supplemented with CS spent more time ruminating compared with AH and control groups; nonnutritive oral behaviors were the greatest in non-forage-supplemented calves. Regardless of the grain sources, the rumen pH value was greater for AH calves compared with CS and non-forage-supplemented calves. Blood concentration of BHB was greater for CS-supplemented calves compared with AH and non-forage-supplemented calves. Furthermore, body length and heart girth were greater for calves fed barley compared with those fed corn, and also in forage

  12. A Barley Powdery Mildew Fungus Non-Autonomous Retrotransposon Encodes a Peptide that Supports Penetration Success on Barley.

    PubMed

    Nottensteiner, Mathias; Zechmann, Bernd; McCollum, Christopher; Hückelhoven, Ralph

    2018-05-11

    Pathogens overcome plant immunity by the means of secreted effectors. Host effector targets often act in pathogen defense but might also support fungal accommodation or nutrition. The barley ROP GTPase HvRACB is involved in accommodation of fungal haustoria of the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) in barley epidermal cells. We found that HvRACB interacts with the ROP-interactive peptide 1 (ROPIP1) that is encoded on the active non-long terminal repeat retroelement Eg-R1 of Bgh. Over-expression of ROPIP1 in barley epidermal cells and host-induced post-transcriptional gene silencing (HIGS) of ROPIP1 suggested that ROPIP1 is involved in virulence of Bgh. Bimolecular fluorescence complementation and co-localization supported that ROPIP1 can interact with activated HvRACB in planta. We show that ROPIP1 is expressed by Bgh on barley and translocated into the cytoplasm of infected barley cells. ROPIP1 is recruited to microtubules upon co-expression of microtubule associated ROP GTPase ACTIVATING PROTEIN (HvMAGAP1) and can destabilize cortical microtubules. Data suggest that Bgh ROPIP targets HvRACB and manipulates host cell microtubule organization for facilitated host cell entry. This points to a possible neo-functionalization of retroelement-derived transcripts for the evolution of a pathogen virulence effector.

  13. HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner

    PubMed Central

    Wendt, Toni; Holme, Inger; Dockter, Christoph; Preuß, Aileen; Thomas, William; Waugh, Robbie; Braumann, Ilka

    2016-01-01

    Heterotrimeric G proteins are intracellular membrane-attached signal transducers involved in various cellular processes in both plants and animals. They consist of three subunits denoted as α, β and γ. The γ-subunits of the so-called AGG3 type, which comprise a transmembrane domain, are exclusively found in plants. In model species, these proteins have been shown to participate in the control of plant height, branching and seed size and could therefore impact the harvestable yield of various crop plants. Whether AGG3-type γ-subunits influence yield in temperate cereals like barley and wheat remains unknown. Using a transgenic complementation approach, we show here that the Scottish malting barley cultivar (cv.) Golden Promise carries a loss-of-function mutation in HvDep1, an AGG3-type subunit encoding gene that positively regulates culm elongation and seed size in barley. Somewhat intriguingly, agronomic field data collected over a 12-year period reveals that the HvDep1 loss-of-function mutation in cv. Golden Promise has the potential to confer either a significant increase or decrease in harvestable yield depending on the environment. Our results confirm the role of AGG3-type subunit-encoding genes in shaping plant architecture, but interestingly also indicate that the impact HvDep1 has on yield in barley is both genotypically and environmentally sensitive. This may explain why widespread exploitation of variation in AGG3-type subunit-encoding genes has not occurred in temperate cereals while in rice the DEP1 locus is widely exploited to improve harvestable yield. PMID:28005988

  14. Comparative genomic analysis and expression of the APETALA2-like genes from barley, wheat, and barley-wheat amphiploids

    PubMed Central

    Gil-Humanes, Javier; Pistón, Fernando; Martín, Antonio; Barro, Francisco

    2009-01-01

    Background The APETALA2-like genes form a large multi-gene family of transcription factors which play an important role during the plant life cycle, being key regulators of many developmental processes. Many studies in Arabidopsis have revealed that the APETALA2 (AP2) gene is implicated in the establishment of floral meristem and floral organ identity as well as temporal and spatial regulation of flower homeotic gene expression. Results In this work, we have cloned and characterised the AP2-like gene from accessions of Hordeum chilense and Hordeum vulgare, wild and domesticated barley, respectively, and compared with other AP2 homoeologous genes, including the Q gene in wheat. The Hordeum AP2-like genes contain two plant-specific DNA binding motifs called AP2 domains, as does the Q gene of wheat. We confirm that the H. chilense AP2-like gene is located on chromosome 5Hch. Patterns of expression of the AP2-like genes were examined in floral organs and other tissues in barley, wheat and in tritordeum amphiploids (barley × wheat hybrids). In tritordeum amphiploids, the level of transcription of the barley AP2-like gene was lower than in its barley parental and the chromosome substitutions 1D/1Hch and 2D/2Hch were seen to modify AP2 gene expression levels. Conclusion The results are of interest in order to understand the role of the AP2-like gene in the spike morphology of barley and wheat, and to understand the regulation of this gene in the amphiploids obtained from barley-wheat crossing. This information may have application in cereal breeding programs to up- or down-regulate the expression of AP2-like genes in order to modify spike characteristics and to obtain free-threshing plants. PMID:19480686

  15. Damage Simulation in Non-Crimp Fabric Composite Plates Subjected to Impact Loads

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid

    2014-01-01

    Progressive failure analysis (PFA) of non-crimp fabric (NCF) composite laminates subjected to low velocity impact loads was performed using the COmplete STress Reduction (COSTR) damage model implemented through VUMAT and UMAT41 user subroutines in the frame works of the commercial finite element programs ABAQUS/Explicit and LS-DYNA, respectively. To validate the model, low velocity experiments were conducted and detailed correlations between the predictions and measurements for both intra-laminar and inter-laminar failures were made. The developed material and damage model predicts the peak impact load and duration very close with the experimental results. Also, the simulation results of delamination damage between the ply interfaces, in-plane matrix damages and fiber damages were all in good agreement with the measurements from the non-destructive evaluation data.

  16. Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Garimella, Sandilya V. B.; Hamid, Ahmed M.

    We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within Structures for Lossless Ion Manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also their subsequent efficient compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a long serpentine path TW SLIM region after which CRIMP allows the large ion populations to be ‘squeezed’. The compression process occurs at an interface between two SLIM regions, one operating conventionally and the second having an intermittently pausing or ‘stuttering’ TW, allowing the contents of multiple binsmore » of ions from the first region to be merged into a single bin in the second region. In this initial work stationary voltages in the second region were used to block ions from exiting the first (trapping) region, and the resumption of TWs in the second region allows ions to exit, and the population to also be compressed if CRIMP is applied. In our initial evaluation we show that the number of charges trapped for a 40 s accumulation period was ~5×109, more than two orders of magnitude greater than the previously reported charge capacity using an ion funnel trap. We also show that over 1×109 ions can be accumulated with high efficiency in the present device, and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Lower compression ratios allow increased IM peak heights without significant loss of signal, while excessively large compression ratios can lead to ion losses and other artifacts. Importantly, we show that extended ion accumulation in conjunction with CRIMP and multiple passes provides the basis for a highly desirable combination of ultra-high sensitivity and ultra-high resolution IM separations using SLIM.« less

  17. Viability of barley seeds after long-term exposure to outer side of international space station

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi C.; Elena, Shagimardanova; Gusev, Oleg A.; Kihara, Makoto; Hoki, Takehiro; Sychev, Vladimir N.; Levinskikh, Margarita A.; Novikova, Natalia D.; Grigoriev, Anatoly I.

    2011-09-01

    Barley seeds were exposed to outer space for 13 months in a vented metal container without a climate control system to assess the risk of physiological and genetic mutation during long-term storage in space. The space-stored seeds (S0 generation), with an 82% germination rate in 50 seeds, lost about 20% of their weight after the exposure. The germinated seeds showed normal growth, heading, and ripening. The harvested seeds (S1 generation) also germinated and reproduced (S2 generation) as did the ground-stored seeds. The culm length, ear length, number of seed, grain weight, and fertility of the plants from the space-stored seeds were not significantly different from those of the ground-stored seeds in each of the S0 and S1 generation. Furthermore, the S1 and S2 space-stored seeds respectively showed similar β-glucan content to those of the ground-stored seeds. Amplified fragment length polymorphism analysis with 16 primer combinations showed no specific fragment that appears or disappears significantly in the DNA isolated from the barley grown from the space-stored seeds. Though these data are derived from nine S0 space-stored seeds in a single exposure experiment, the results demonstrate the preservation of barley seeds in outer space for 13 months without phenotypic or genotypic changes and with healthy and vigorous growth in space.

  18. Experimental Barley Flour Production in 12,500-Year-Old Rock-Cut Mortars in Southwestern Asia.

    PubMed

    Eitam, David; Kislev, Mordechai; Karty, Adiel; Bar-Yosef, Ofer

    2015-01-01

    Experimental archaeology at a Natufian site in the Southern Levant documents for the first time the use of 12,500-year-old rock-cut mortars for producing wild barley flour, some 2,000 to 3,000 years before cereal cultivation. Our reconstruction involved processing wild barley on the prehistoric threshing floor, followed by use of the conical mortars (a common feature in Natufian sites), thereby demonstrating the efficient peeling and milling of hulled grains. This discovery complements nearly 80 years of investigations suggesting that the Natufians regularly harvested almost-ripe wild cereals using sickles hafted with flint blades. Sickles had been replicated in the past and tested in the field for harvesting cereals, thusly obtaining the characteristic sheen along the edge of the hafted flint blades as found in Natufian remnants. Here we report that Natufian wide and narrow conical mortars enabled the processing of wild barley for making the groats and fine flour that provided considerable quantities of nourishment. Dishes in the Early Natufian (15,000-13,500 CalBP) were groat meals and porridge and subsequently, in the Late Natufian (13,500-11,700 CalBP), we suggest that unleavened bread made from fine flour was added. These food preparing techniques widened the dietary breadth of the sedentary Natufian hunter-gatherers, paving the way to the emergence of farming communities, the hallmark of the Neolithic Revolution.

  19. Metabolism of Linoleic Acid by Barley Lipoxygenase and Hydroperoxide Isomerase 1

    PubMed Central

    Lulai, Edward C.; Baker, Charles W.; Zimmerman, Don C.

    1981-01-01

    The oxidation of linoleic acid in incubation mixtures containing extracts of barley lipoxygenase and hydroperoxide isomerase, and the production of these enzymes in quiescent and germinated barley, were investigated. The ratio of 9-hydroperoxylinoleic acid to 13-hydroperoxylinoleic acid was higher for incubation mixtures containing extracts of quiescent barley than for mixtures containing extracts of germinated barley; production of 13-hydroperoxylinoleic acid from germinated barley exceeded that of quiescent barley. Hydroperoxy metabolites of linoleic acid were converted to 9-hydroxy-10-oxo-cis-12-octadecenoic acid, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, and small amounts of 11-hydroxy-12,13-epoxy-cis-9-octadecenoic acid and 11-hydroxy-9,10-epoxy-cis-13-octadecenoic acid whether quiescent or germinated barley was the enzyme source; a fifth product, 13-hydroxy-12-oxo-cis-9-octadecenoic acid was formed only when germinated barley was the enzyme source. Lipoxygenase was readily extracted by buffer, but hydroperoxide isomerase was bound in a catalytically active state to the insoluble barley grist and was efficiently extracted only when Triton X-100 was included in the extraction buffer. Hydroperoxide isomerase was localized in the embryo of quiescent barley, but it was present in the embryo, acrospire, and in small but concentrated amounts in the rootlet of germinating barley. The levels of both lipoxygenase and hydroperoxide isomerase increased through the thirteenth day of germination. Images PMID:16662032

  20. Stable carbon and nitrogen isotopes and quality traits of fossil cereal grains provide clues on sustainability at the beginnings of Mediterranean agriculture.

    PubMed

    Aguilera, Mònica; Araus, José Luis; Voltas, Jordi; Rodríguez-Ariza, Maria Oliva; Molina, Fernando; Rovira, Núria; Buxó, Ramon; Ferrio, Juan Pedro

    2008-06-01

    We present a novel approach to study the sustainability of ancient Mediterranean agriculture that combines the measurement of carbon isotope discrimination (Delta(13)C) and nitrogen isotope composition (delta(15)N) along with the assessment of quality traits in fossil cereal grains. Charred grains of naked wheat and barley were recovered in Los Castillejos, an archaeological site in SE Spain, with a continuous occupation of ca. 1500 years starting soon after the origin of agriculture (ca. 4000 BCE) in the region. Crop water status and yield were estimated from Delta(13)C and soil fertility and management practices were assessed from the delta(15)N and N content of grains. The original grain weight was inferred from grain dimensions and grain N content was assessed after correcting N concentration for the effect of carbonisation. Estimated water conditions (i.e. rainfall) during crop growth remained constant for the entire period. However, the grain size and grain yield decreased progressively during the first millennium after the onset of agriculture, regardless of the species, with only a slight recovery afterwards. Minimum delta(15)N values and grain N content were also recorded in the later periods of site occupation. Our results indicate a progressive loss of soil fertility, even when the amount of precipitation remained steady, thereby indicating the unsustainable nature of early agriculture at this site in the Western Mediterranean Basin. In addition, several findings suggest that barley and wheat were cultivated separately, the former being restricted to marginal areas, coinciding with an increased focus on wheat cultivation. John Wiley & Sons, Ltd

  1. Characterization of Resistance to Cephus cinctus (Hymenoptera: Cephidae) in Barley Germplasm.

    PubMed

    Varella, Andrea C; Talbert, Luther E; Achhami, Buddhi B; Blake, Nancy K; Hofland, Megan L; Sherman, Jamie D; Lamb, Peggy F; Reddy, Gadi V P; Weaver, David K

    2018-04-02

    Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.

  2. Milk production is unaffected by replacing barley or sodium hydroxide wheat with maize cob silage in rations for dairy cows.

    PubMed

    Hymøller, L; Hellwing, A L F; Lund, P; Weisbjerg, M R

    2014-05-01

    Starch is an important energy-providing nutrient for dairy cows that is most commonly provided from cereal grains. However, ruminal fermentation of large amounts of easily degradable starch leads to excessive production and accumulation of volatile fatty acids (VFA). VFA not only play a vital role in the energy metabolism of dairy cows but are also the main cause of ruminal acidosis and depressed feed intake. The aim of the present study was to compare maize cob silage (MCS) as an energy supplement in rations for dairy cows with highly rumen-digestible rolled barley and with sodium hydroxide wheat (SHW), which has a higher proportion of by-pass starch than barley. Two studies were carried out: (1) a production study on 45 Danish Holstein cows and (2) an intensive study to determine digestibilities, rumen fermentation patterns and methane emission using three rumen-cannulated Danish Holstein cows. Both studies were organised as a 3×3 Latin square with three experimental periods and three different mixed rations. The rations consisted of grass-clover silage and maize silage (~60% of dry matter (DM)), rapeseed cake, soybean meal, sugar beet pulp and one of three different cereals as a major energy supplement: MCS, SHW or rolled barley (~25% of DM). When MCS replaced barley or SHW as an energy supplement in the mixed rations, it resulted in a lower dry matter intake; however, the apparent total tract digestibilities of DM, organic matter, NDF, starch and protein were not different between treatments. The energy-corrected milk yield was unaffected by treatment. The fat content of the milk on the MCS ration was not different from the SHW ration, whereas it was higher on the barley ration. The protein content of the milk decreased when MCS was used in the ration compared with barley and SHW. From ruminal VFA patterns and pH measures, it appeared that MCS possessed roughage qualities with respect to rumen environment, while at the same time being sufficiently energy rich

  3. Infestation and Quantification of Ochratoxigenic Fungi in Barley and Wheat Naturally Contaminated with Ochratoxin A.

    PubMed

    Kuruc, Julie; Hegstad, Justin; Lee, Hyun Jung; Simons, Kristin; Ryu, Dojin; Wolf-Hall, Charlene

    2015-07-01

    Cereal grains are a significant source of ochratoxin A (OTA) in the human diet. Multiple ochratoxigenic Aspergillus and Penicillium spp. have been reported as contaminants on various cereal grains around the world, although relatively few species dominate in any given location. Efforts to mitigate the risk of fungal contamination and OTA accumulation can be made pre- and postharvest. Still, a rapid and reliable screening method is sought that can be used to predict the OTA level of a sample and to inform risk assessments prior to processing. In this study, we assessed the efficacy of two OTA-related indices for OTA level prediction. Infestation rates were determined by direct plating for freshly harvested and stored barley, durum, and hard red spring wheat samples (n = 139) with known OTA levels. Presumptive ochratoxigenic isolates were tested for their ability to produce OTA. The nonribosomal peptide synthase (otanpsPN) involved in OTA biosynthesis was used to quantify ochratoxigenic fungi in barley and wheat. Viable Penicillium verrucosum was present in 45% of the samples. In total, 62.7% (n = 110) of the P. verrucosum isolates tested produced OTA on dichloran yeast extract sucrose 18% glycerol agar. Both OTA level and infestation rate (r = 0.30), as well as OTA level and otanpsPN concentration (r = 0.56), were weakly correlated. Neither infestation rate nor otanpsPN concentration is a reliable predictor of OTA level in a sample.

  4. Transposable element junctions in marker development and genomic characterization of barley

    USDA-ARS?s Scientific Manuscript database

    Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...

  5. Shotgun proteomics of the barley seed proteome

    USDA-ARS?s Scientific Manuscript database

    Barley seed proteins are of prime importance to the brewing industry, human and animal nutrition and in plant breeding for cultivar identification. To obtain comprehensive proteomic data from barley seeds, acetone precipitated proteins were in-solution digested and the resulting peptides were analyz...

  6. The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress.

    PubMed

    Hein, Jordan A; Sherrard, Mark E; Manfredi, Kirk P; Abebe, Tilahun

    2016-11-09

    Photosynthetic organs of the cereal spike (ear) provide assimilate for grain filling, but their response to drought is poorly understood. In this study, we characterized the drought response of individual organs of the barley spike (awn, lemma, and palea) and compared them with a vegetative organ (fifth leaf). Understanding differences in physiological and metabolic responses between the leaf and spike organs during drought can help us develop high yielding cultivars for environments where terminal drought is prevalent. We exposed barley plants to drought by withholding water for 4 days at the grain filling stage and compared changes in: (1) relative water content (RWC), (2) osmotic potential (Ψ s ), (3) osmotic adjustment (OA), (4) gas exchange, and (5) metabolite content between organs. Drought reduced RWC and Ψ s in all four organs, but the decrease in RWC was greater and there was a smaller change in Ψ s in the fifth leaf than the spike organs. We detected evidence of OA in the awn, lemma, and palea, but not in the fifth leaf. Rates of gas exchange declined more rapidly in the fifth leaf than awn during drought. We identified 18 metabolites but, only ten metabolites accumulated significantly during drought in one or more organs. Among these, proline accumulated in all organs during drought while accumulation of the other metabolites varied between organs. This may suggest that each organ in the same plant uses a different set of osmolytes for drought resistance. Our results suggest that photosynthetic organs of the barley spike maintain higher water content, greater osmotic adjustment, and higher rates of gas exchange than the leaf during drought.

  7. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows: 1...

  8. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows: 1...

  9. Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley.

    PubMed

    Siebenhandl, Susanne; Grausgruber, Heinrich; Pellegrini, Nicoletta; Del Rio, Daniele; Fogliano, Vincenzo; Pernice, Rita; Berghofer, Emmerich

    2007-10-17

    Two pigmented wheat genotypes (blue and purple) and two black barley genotypes were fractionated in bran and flour fractions, examined, and compared for their free radical scavenging properties against 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (Trolox equivalent antioxidant capacity, TEAC), ferric reducing antioxidant power (FRAP), total phenolic content (TPC), phenolic acid composition, carotenoid composition, and total anthocyanin content. The results showed that fractionation has a significant influence on the antioxidant properties, TPC, anthocyanin and carotenoid contents, and phenolic acid composition. Bran fractions had the greatest antioxidant activities (1.9-2.3 mmol TEAC/100 g) in all four grain genotypes and were 3-5-fold higher than the respective flour fractions (0.4-0.7 mmol TEAC/100 g). Ferulic acid was the predominant phenolic acid in wheat genotypes (bran fractions) while p-coumaric acid was the predominant phenolic acid in the bran fractions of barley genotypes. High-performance liquid chromatography analysis detected the presence of lutein and zeaxanthin in all fractions with different distribution patterns within the genotypes. The highest contents of anthocyanins were found in the middlings of black barley genotypes or in the shorts of blue and purple wheat. These data suggest the possibility to improve the antioxidant release from cereal-based food through selection of postharvest treatments.

  10. Aspergillus clavatus tremorgenic neurotoxicosis in cattle fed sprouted grains.

    PubMed

    McKenzie, R A; Kelly, M A; Shivas, R G; Gibson, J A; Cook, P J; Widderick, K; Guilfoyle, A F

    2004-10-01

    Beef and dairy cattle from four different herds in southern and central Queensland fed hydroponically-produced sprouted barley or wheat grain heavily infested with Aspergillus clavatus developed posterior ataxia with knuckling of fetlocks, muscular tremors and recumbency, but maintained appetite. A few animals variously had reduced milk production, hyperaesthesia, drooling of saliva, hypermetria of hind limbs or muscle spasms. Degeneration of large neurones was seen in the brain stem and spinal cord grey matter. The syndrome was consistent with A clavatus tremorgenic mycotoxicosis of ruminants. The cases are the earliest known to be associated with this fungus in Australia. They highlight a potential hazard of hydroponic fodder production systems, which appear to favour A clavatus growth on sprouted grain, exacerbated in some cases by equipment malfunctions that increase operating temperatures.

  11. Quantitative Trait Loci for Yield and Yield-Related Traits in Spring Barley Populations Derived from Crosses between European and Syrian Cultivars

    PubMed Central

    Krystkowiak, Karolina; Sawikowska, Aneta; Frohmberg, Wojciech; Górny, Andrzej; Kędziora, Andrzej; Jankowiak, Janusz; Józefczyk, Damian; Karg, Grzegorz; Andrusiak, Joanna; Krajewski, Paweł; Szarejko, Iwona; Surma, Maria; Adamski, Tadeusz; Guzy-Wróbelska, Justyna; Kuczyńska, Anetta

    2016-01-01

    In response to climatic changes, breeding programmes should be aimed at creating new cultivars with improved resistance to water scarcity. The objective of this study was to examine the yield potential of barley recombinant inbred lines (RILs) derived from three cross-combinations of European and Syrian spring cultivars, and to identify quantitative trait loci (QTLs) for yield-related traits in these populations. RILs were evaluated in field experiments over a period of three years (2011 to 2013) and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers; a genetic map for each population was constructed and then one consensus map was developed. Biological interpretation of identified QTLs was achieved by reference to Ensembl Plants barley gene space. Twelve regions in the genomes of studied RILs were distinguished after QTL analysis. Most of the QTLs were identified on the 2H chromosome, which was the hotspot region in all three populations. Syrian parental cultivars contributed alleles decreasing traits' values at majority of QTLs for grain weight, grain number, spike length and time to heading, and numerous alleles increasing stem length. The phenomic and molecular approaches distinguished the lines with an acceptable grain yield potential combining desirable features or alleles from their parents, that is, early heading from the Syrian breeding line (Cam/B1/CI08887//CI05761) and short plant stature from the European semidwarf cultivar (Maresi). PMID:27227880

  12. In vivo indices for predicting acidosis risk of grains in cattle: Comparison with in vitro methods.

    PubMed

    Lean, I J; Golder, H M; Black, J L; King, R; Rabiee, A R

    2013-06-01

    Our objective was to evaluate a near-infrared reflectance spectroscopy (NIRS) used in the feed industry to estimate the potential for grains to increase the risk of ruminal acidosis. The existing NIRS calibration was developed from in sacco and in vitro measures in cattle and grain chemical composition measurements. To evaluate the existing model, 20 cultivars of 5 grain types were fed to 40 Holstein heifers using a grain challenge protocol and changes in rumen VFA, ammonia, lactic acids, and pH that are associated with acidosis were measured. A method development study was performed to determine a grain feeding rate sufficient to induce non-life threatening but substantial ruminal changes during grain challenge. Feeding grain at a rate of 1.2% of BW met these criteria, lowering rumen pH (P = 0.01) and increasing valerate (P < 0.01) and propionate concentrations (P = 0.01). Valerate was the most discriminatory measure indicating ruminal change during challenge. Heifers were assigned using a row by column design in an in vivo study to 1 of 20 grain cultivars and were reassigned after a 9 d period (n = 4 cattle/treatment). The test grains were dry rolled oats (n = 3), wheat (n = 6), barley (n = 4), triticale (n = 4), and sorghum (n = 3) cultivars. Cattle were adapted to the test grain and had ad libitum access to grass silage 11 d before the challenge. Feed was withheld for 14 h before challenge feeding with 0.3 kg DM of silage followed by the respective test grain fed at 1.2% of BW. A rumen sample was taken by stomach tube 5, 65, 110, 155, and 200 min after grain consumption. The rumen is not homogenous and samples of rumen fluid obtained by stomach tube will differ from those gained by other methods. Rumen pH was measured immediately; individual VFA, ammonia, and D- and L-lactate concentrations were analyzed later. Rumen pH (P = 0.002) and all concentrations of fermentation products differed among grains (P = 0.001). A previously defined discriminant score

  13. The Importance of Barley Genetics and Domestication in a Global Perspective

    PubMed Central

    Pourkheirandish, Mohammad; Komatsuda, Takao

    2007-01-01

    Background Archaeological evidence has revealed that barley (Hordeum vulgare) is one of the oldest crops used by ancient farmers. Studies of the time and place of barley domestication may help in understanding ancient human civilization. Scope The studies of domesticated genes in crops have uncovered the mechanisms which converted wild and unpromising wild species to the most important food for humans. In addition to archaeological studies, molecular studies are finding new insights into the process of domestication. Throughout the process of barley domestication human selection on wild species resulted in plants with more harvestable seeds. One of the remarkable changes during barley domestications was the appearance of six-rowed barley. The gene associated with this trait results in three times more seed per spike compared with ancestral wild barley. This increase in number of seed resulted in a major dichotomy in the evolution of barley. The identification of the six-rowed spike gene provided a framework for understanding how this character was evolved. Some important barley domestication genes have been discovered and many are currently being investigated. Conclusions Identification of domestication genes in crops revealed that most of the drastic changes during domestication are the result of functional impairments in transcription factor genes, and creation of new functions is rare. Isolation of the six-rowed spike gene revealed that this trait was domesticated more than once in the domestication history of barley. Six-rowed barley is derived from two-rowed ancestral forms. Isolation of photoperiod-response genes in barley and rice revealed that different genes belonging to similar genetic networks partially control this trait. PMID:17761690

  14. Experimental Barley Flour Production in 12,500-Year-Old Rock-Cut Mortars in Southwestern Asia

    PubMed Central

    Eitam, David; Kislev, Mordechai; Karty, Adiel; Bar-Yosef, Ofer

    2015-01-01

    Experimental archaeology at a Natufian site in the Southern Levant documents for the first time the use of 12,500-year-old rock-cut mortars for producing wild barley flour, some 2,000 to 3,000 years before cereal cultivation. Our reconstruction involved processing wild barley on the prehistoric threshing floor, followed by use of the conical mortars (a common feature in Natufian sites), thereby demonstrating the efficient peeling and milling of hulled grains. This discovery complements nearly 80 years of investigations suggesting that the Natufians regularly harvested almost-ripe wild cereals using sickles hafted with flint blades. Sickles had been replicated in the past and tested in the field for harvesting cereals, thusly obtaining the characteristic sheen along the edge of the hafted flint blades as found in Natufian remnants. Here we report that Natufian wide and narrow conical mortars enabled the processing of wild barley for making the groats and fine flour that provided considerable quantities of nourishment. Dishes in the Early Natufian (15,000–13,500 CalBP) were groat meals and porridge and subsequently, in the Late Natufian (13,500–11,700 CalBP), we suggest that unleavened bread made from fine flour was added. These food preparing techniques widened the dietary breadth of the sedentary Natufian hunter-gatherers, paving the way to the emergence of farming communities, the hallmark of the Neolithic Revolution. PMID:26230092

  15. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for payment...

  16. Malt in combination with Lactobacillus rhamnosus increases concentrations of butyric acid in the distal colon and serum in rats compared with other barley products but decreases viable counts of cecal bifidobacteria.

    PubMed

    Bränning, Camilla E; Nyman, Margareta E

    2011-01-01

    Several substances, including glutamine and propionic acid but in particular butyric acid, have been proposed to be important for colonic health. β-Glucans lead to the formation of comparatively high amounts of butyric acid, and germinated barley foodstuff obtained from brewer's spent grain (BSG), containing high amounts of β-glucans and glutamine, has been reported to reduce the inflammatory response in the colon of patients with ulcerative colitis. The present study examines how 3 barley products, whole grain barley, malt, and BSG, affect SCFA in the hindgut and serum of rats and whether the addition of Lactobacillus rhamnosus 271 to each of these diets would have further effects. Amino acids in plasma and the cecal composition of the microbiota were also analyzed. The butyric acid concentration in the distal colon and serum was higher in the malt groups than in the other groups as was the serum concentration of propionic acid. The concentrations of propionic and butyric acids were higher in the cecum and serum of rats given L. rhamnosus than in those not given this strain. The proportion of plasma glutamine and the cecal number of bifidobacteria were lower in the malt groups than in the other groups. L. rhamnosus decreased the number of cecal bifidobacteria, whereas plasma glutamine was unaffected. We conclude that malt together with L. rhamnosus 271 had greater effects on propionic and butyric acid concentrations in rats than the other barley products. This is interesting when developing food with effects on colonic health.

  17. Wholegrain barley β-glucan fermentation does not improve glucose tolerance in rats fed a high-fat diet.

    PubMed

    Belobrajdic, Damien P; Jobling, Stephen A; Morell, Matthew K; Taketa, Shin; Bird, Anthony R

    2015-02-01

    Fermentation of oat and barley β-glucans is believed to mediate in part their metabolic health benefits, but the exact mechanisms remain unclear. In this study, we sought to test the hypothesis that barley β-glucan fermentation raises circulating incretin hormone levels and improves glucose control, independent of other grain components. Male Sprague-Dawley rats (n = 30) were fed a high-fat diet for 6 weeks and then randomly allocated to 1 of 3 dietary treatments for 2 weeks. The low- (LBG, 0% β-glucan) and high- (HBG, 3% β-glucan) β-glucan diets contained 25% wholegrain barley and similar levels of insoluble dietary fiber, available carbohydrate, and energy. A low-fiber diet (basal) was included for comparison. Immediately prior to the dietary intervention, gastric emptying rate (using the (13)C-octanoic breath test) and postprandial glycemic response of each diet were determined. At the end of the study, circulating gut hormone levels were determined; and a glucose tolerance test was performed. The rats were then killed, and indices of cecal fermentation were assessed. Diet did not affect live weight; however, the HBG diet, compared to basal and LBG, reduced food intake, tended to slow gastric emptying, increased cecal digesta mass and individual and total short-chain fatty acid pools, and lowered digesta pH. In contrast, circulating levels of glucose, insulin, gastric-inhibitory peptide, and glucagon-like peptide-1, and glucose tolerance were unaffected by diet. In conclusion, wholegrain barley β-glucan suppressed feed intake and increased cecal fermentation but did not improve postprandial glucose control or insulin sensitivity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  18. Ectoparasitic growth of Magnaporthe on barley triggers expression of the putative barley wax biosynthesis gene CYP96B22 which is involved in penetration resistance

    PubMed Central

    2014-01-01

    Background Head blast caused by the fungal plant pathogen Magnaporthe oryzae is an upcoming threat for wheat and barley cultivation. We investigated the nonhost response of barley to an isolate of the Magnaporthe species complex which is pathogenic on Pennisetum spp. as a potential source for novel resistance traits. Results Array experiments identified a barley gene encoding a putative cytochrome P450 monooxygenase whose transcripts accumulate to a higher concentration in the nonhost as compared to the host interaction. The gene clusters within the CYP96 clade of the P450 plant gene family and is designated as CYP96B22. Expression of CYP96B22 was triggered during the ectoparasitic growth of the pathogen on the outside of the leaf. Usage of a fungicidal treatment and a Magnaporthe mutant confirmed that penetration was not necessary for this early activation of CYP96B22. Transcriptional silencing of CYP96B22 using Barley stripe mosaic virus led to a decrease in penetration resistance of barley plants to Magnaporthe host and nonhost isolates. This phenotype seems to be specific for the barley-Magnaporthe interaction, since penetration of the adapted barley powdery mildew fungus was not altered in similarly treated plants. Conclusion Taken together our results suggest a cross-talk between barley and Magnaporthe isolates across the plant surface. Since members of the plant CYP96 family are known to be involved in synthesis of epicuticular waxes, these substances or their derivatives might act as signal components. We propose a functional overlap of CYP96B22 in the execution of penetration resistance during basal and nonhost resistance of barley against different Magnaporthe species. PMID:24423145

  19. Characterization of volatile aroma compounds in different brewing barley cultivars.

    PubMed

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  20. 7 CFR 457.118 - Malting barley price and quality endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... highest additional value price will be used until the number of bushels covered at the higher additional... barley contract or malting barley price agreement, you must provide us with a copy of your current crop... contract or malting barley price agreement is not provided to us by the acreage reporting date. (c) Under...

  1. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-12-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  2. Study of the prevalence of chronic, non-specific lung disease and related health problems in the grain-handling industry. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankin, J.; Bates, J.; Claremont, A.

    1986-10-01

    A total of 310 grain handlers was studied, with attention to prevalence and characteristics of clinical, psychological, immunological, radiological, serological blood and urine parameters to determine any apparent effects from grain-dust exposure. Grain handlers had a higher prevalence of respiratory symptoms and signs than did the city workers who comprised the comparison group. Evidence of accumulative respiratory effect due to recurring exposures to grain dust was found. Acute and chronic airway reactions were induced by exposure to grain dust. Wheezing and dyspnea on exposure were related to length of employment. Grain fever syndrome was prevalent. Cases of acute recurrent conjunctivitismore » and rhinitis were found along with skin pruritus, mainly on exposure to barley dust. Pesticide exposure caused temporary disabling symptoms. Lung function was adversely affected by grain-dust exposure. Exposure to grain mites and insects in contaminated cereal grain caused a reaction among grain workers.« less

  3. Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2016-01-01

    The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm. PMID:27786300

  4. Machine vision methods for use in grain variety discrimination and quality analysis

    NASA Astrophysics Data System (ADS)

    Winter, Philip W.; Sokhansanj, Shahab; Wood, Hugh C.

    1996-12-01

    Decreasing cost of computer technology has made it feasible to incorporate machine vision technology into the agriculture industry. The biggest attraction to using a machine vision system is the computer's ability to be completely consistent and objective. One use is in the variety discrimination and quality inspection of grains. Algorithms have been developed using Fourier descriptors and neural networks for use in variety discrimination of barley seeds. RGB and morphology features have been used in the quality analysis of lentils, and probability distribution functions and L,a,b color values for borage dockage testing. These methods have been shown to be very accurate and have a high potential for agriculture. This paper presents the techniques used and results obtained from projects including: a lentil quality discriminator, a barley variety classifier, a borage dockage tester, a popcorn quality analyzer, and a pistachio nut grading system.

  5. Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process

    PubMed Central

    2010-01-01

    Background US legislation requires the use of advanced biofuels to be made from non-food feedstocks. However, commercialization of lignocellulosic ethanol technology is more complex than expected and is therefore running behind schedule. This is creating a demand for non-food, but more easily converted, starch-based feedstocks other than corn that can fill the gap until the second generation technologies are commercially viable. Winter barley is such a feedstock but its mash has very high viscosity due to its high content of β-glucans. This fact, along with a lower starch content than corn, makes ethanol production at the commercial scale a real challenge. Results A new fermentation process for ethanol production from Thoroughbred, a winter barley variety with a high starch content, was developed. The new process was designated the EDGE (enhanced dry grind enzymatic) process. In this process, in addition to the normal starch-converting enzymes, two accessory enzymes were used to solve the β-glucan problem. First, β-glucanases were used to hydrolyze the β-glucans to oligomeric fractions, thus significantly reducing the viscosity to allow good mixing for the distribution of the yeast and nutrients. Next, β-glucosidase was used to complete the β-glucan hydrolysis and to generate glucose, which was subsequently fermented in order to produce additional ethanol. While β-glucanases have been previously used to improve barley ethanol production by lowering viscosity, this is the first full report on the benefits of adding β-glucosidases to increase the ethanol yield. Conclusions In the EDGE process, 30% of total dry solids could be used to produce 15% v/v ethanol. Under optimum conditions an ethanol yield of 402 L/MT (dry basis) or 2.17 gallons/53 lb bushel of barley with 15% moisture was achieved. The distillers dried grains with solubles (DDGS) co-product had extremely low β-glucan (below 0.2%) making it suitable for use in both ruminant and mono-gastric animal

  6. miRNA regulation in the early development of barley seed

    PubMed Central

    2012-01-01

    Background During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets. Results Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis. We also identified many potential miRNAs including several belonging to known miRNA families. Our data gave us evidence for an increase in miRNA-mediated regulation during the transition between pre-storage and storage phases. Potential miRNA targets were found in various signalling pathways including components of four phytohormone pathways (ABA, GA, auxin, ethylene) and the defence response to powdery mildew infection. Among the putative miRNA targets we identified were two essential genes controlling the GA response, a GA3oxidase1 and a homolog of the receptor GID1, and a homolog of the ACC oxidase which catalyses the last step of ethylene biosynthesis. We found that two MLA genes are potentially miRNA regulated, establishing a direct link between miRNAs and the R gene response. Conclusion Our dataset provides a useful source of information on miRNA regulation during the early development of cereal grains and our analysis suggests that miRNAs contribute to the control of development of the cereal grain, notably through the regulation of phytohormone response pathways. PMID:22838835

  7. Design of Tailored Non-Crimp Fabrics Based on Stitching Geometry

    NASA Astrophysics Data System (ADS)

    Krieger, Helga; Gries, Thomas; Stapleton, Scott E.

    2018-02-01

    Automation of the preforming process brings up two opposing requirements for the used engineering fabric. On the one hand, the fabric requires a sufficient drapeability, or low shear stiffness, for forming into double-curved geometries; but on the other hand, the fabric requires a high form stability, or high shear stiffness, for automated handling. To meet both requirements tailored non-crimp fabrics (TNCFs) are proposed. While the stitching has little structural influence on the final part, it virtually dictates the TNCFs local capability to shear and drape over a mold during preforming. The shear stiffness of TNCFs is designed by defining the local stitching geometry. NCFs with chain stitch have a comparatively high shear stiffness and NCFs with a stitch angle close to the symmetry stitch angle have a very low shear stiffness. A method to design the component specific local stitching parameters of TNCFs is discussed. For validation of the method, NCFs with designed tailored stitching parameters were manufactured and compared to benchmark NCFs with uniform stitching parameters. The designed TNCFs showed both, generally a high form stability and in locally required zones a good drapeability, in drape experiments over an elongated hemisphere.

  8. Nutritional Physiology of the Khapra Beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) Fed on Various Barley Cultivars.

    PubMed

    Seifi, S; Naseri, B; Razmjou, J

    2016-02-01

    The Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is known as one of the mostserious pests of grains in many parts of the world. In this study, the effect of nine barley cultivars (‘Bahman’,‘CB-84-10’, ‘Fajr 30’, ‘Makuyi’, ‘Nosrat’, ‘Yousof’, ‘13A1’, ‘18A1’, and ‘19 A1’) and a wheat cultivar (‘MV17’, as a control) was determined on the nutritional indices and digestive enzymatic activity of T. granarium at 33 6 1C,relative humidity of 6565%, and a photoperiod of 14:10 (L:D) h. The highest and lowest values of larval weight gain of sixth instar were detected on wheat (0.757±0.068 mg) and cultivar Bahman (0.342±0.071 mg). Also, T. granarium larvae fed on cultivar Bahman had the lowest value of efficiency of conversion of ingested food(10.90±2.09%) as compared with wheat and other barley cultivars. Also, the highest midgut amylolytic and proteolytic activities of sixth instar were on cultivar Bahman (0.364±0.024 mU/mg and 80.54±1.73 U/mg, respectively)and the lowest activities were on cultivar Nosrat (0.043±0.004 mU/mg and 7.15±0.01 U/mg, respectively).It is concluded that barley cultivar Bahman was the most unsuitable host for feeding of T. granarium.

  9. Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness.

    PubMed

    Suriyasak, Chetphilin; Harano, Keisuke; Tanamachi, Koichiro; Matsuo, Kazuhiro; Tamada, Aina; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2017-09-01

    Heat stress during grain filling increases rice grain chalkiness due to increased activity of α-amylase, which hydrolyzes starch. In rice and barley seeds, reactive oxygen species (ROS) produced after imbibition induce α-amylase activity via regulation of gibberellin (GA) and abscisic acid (ABA) levels during seed germination. Here, we examined whether ROS is involved in induction of grain chalkiness by α-amylase in developing rice grains under heat stress. To elucidate the role of ROS in grain chalkiness, we grew post-anthesis rice plants (Oryza sativa L. cv. Koshihikari) under control (25°C) or heat stress (30°C) conditions with or without antioxidant (dithiothreitol) treatment. The developing grains were analyzed for expression of NADPH oxidases, GA biosynthesis genes (OsGA3ox1, OsGA20ox1), ABA catabolism genes (OsABA8'OH1, OsABA8'OH2) and an α-amylase gene (OsAmy3E), endogenous H 2 O 2 content and the grain quality. In grains exposed to heat stress, the expression of NADPH oxidase genes (especially, OsRbohB, OsRbohD, OsRbohF and OsRbohI) and the ROS content increased. Heat stress also increased the expression of OsGA3ox1, OsGA20ox1, OsABA8'OH1, OsABA8'OH2 and OsAmy3E. On the other hand, dithiothreitol treatment reduced the effects of heat stress on the expression of these genes and significantly reduced grain chalkiness induced by heat stress. These results suggest that, similar to cereal seed germination mechanism, ROS produced under heat stress is involved in α-amylase induction in maturating rice grains through GA/ABA metabolism, and consequently caused grain chalkiness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. The duration of time that beef cattle are fed a high-grain diet affects the recovery from a bout of ruminal acidosis: dry matter intake and ruminal fermentation.

    PubMed

    Schwaiger, T; Beauchemin, K A; Penner, G B

    2013-12-01

    This study was conducted to determine if the duration of time cattle are fed a high-grain diet affects their susceptibility to and recovery from ruminal acidosis. Sixteen Angus heifers (BW ± SEM, 261 ± 6.1 kg) were assigned to 1 of 4 blocks and fed a backgrounding diet consisting of 60% barley silage, 30% barley grain, and 10% supplement (DM basis). Within block, cattle were randomly assigned to 1 of 2 treatments differing in the number of days they were fed the high-grain diet before an acidosis challenge: 34 d for long adapted (LA) and 8 d for short adapted (SA). All heifers were exposed to the same 20 d dietary transition to a high-grain diet containing 9% barley silage, 81% barley grain, and 10% supplement (DM basis). Ruminal acidosis was induced by restricting feed to 50% of DMI:BW for 24 h followed by an intraruminal infusion of ground barley at 10% DMI:BW. Heifers were then given their regular diet allocation 1 h after the intraruminal infusion. Data were collected during an 8-d baseline period (BASE), on the day of the acidosis challenge (CHAL), and during 2 consecutive 8-d recovery periods (REC1 and REC2). Acidosis induction increased daily duration (531 to 1,020 min/d; P < 0.001) and area (176 to 595 (min × pH)/d; P < 0.001) that ruminal pH was <5.5 relative to BASE. Relative to BASE, inducing acidosis also increased the daily mean (0.3 to 11.4 mM; P = 0.013) and maximum (1.3 to 29.3 mM; P = 0.008) ruminal fluid lactate concentrations. There was no effect of dietary treatment on ruminal pH, lactate, or short-chain fatty acid (SCFA) concentrations (P > 0.050). However, during BASE and CHAL, SA heifers experienced greater linear (P = 0.031), quadratic (P = 0.016), and cubic (P = 0.008) coefficients for the duration of time that pH was <5.5. In addition, a treatment × day interaction for the duration that pH was <5.5 during REC1 suggested that LA cattle tended to recover from the challenge more rapidly than SA cattle (P = 0.085). Regression analysis

  11. Incorporation of whole, ancient grains into a modern Asian Indian diet to reduce the burden of chronic disease.

    PubMed

    Dixit, Anjali A; Azar, Kristen Mj; Gardner, Christopher D; Palaniappan, Latha P

    2011-08-01

    Refined carbohydrates, such as white rice and white flour, are the mainstay of the modern Asian Indian diet, and may contribute to the rising incidence of type 2 diabetes and cardiovascular disease in this population. Prior to the 1950s, whole grains such as amaranth, barley, brown rice, millet, and sorghum were more commonly used in Asian Indian cooking. These grains and other non-Indian grains such as couscous, quinoa, and spelt are nutritionally advantageous and may be culturally acceptable carbohydrate substitutes for Asian Indians. This review focuses on practical recommendations for culturally sensitive carbohydrate modification in a modern Asian Indian diet to reduce type 2 diabetes and cardiovascular disease in this population. © 2011 International Life Sciences Institute.

  12. Effect of wheat dried distillers grains with solubles and fibrolytic enzymes on ruminal fermentation, digestibility, growth performance, and feeding behavior of beef cattle.

    PubMed

    He, Z X; Walker, N D; McAllister, T A; Yang, W Z

    2015-03-01

    Two experiments were conducted to evaluate the effect of wheat dried distillers grains with solubles (DDGS) and fibrolytic enzymes (FE) on ruminal fermentation, in situ ruminal and in vivo total tract digestibility, growth performance, and feeding behavior of growing beef cattle. In Exp. 1, 6 ruminally cannulated Angus heifers (average BW of 794 ± 44.2 kg) were used in a 6 × 6 Latin square design with 2 × 3 factorial arrangement of treatments. Treatments were a control diet consisting of 50% barley silage, 10% grass hay, and 40% barley grain-based concentrate (CON) and the CON with 15% DDGS substituted for barley grain (WDG) combined with either 0, 1, or 2 mL FE/kg diet DM, respectively. Inclusion of DDGS increased total tract digestibility of CP ( < 0.01), NDF ( = 0.04), and ADF ( = 0.03). Increasing FE linearly ( = 0.03) increased CP digestibility without affecting the digestibility of other nutrients. There were no effects of DDGS inclusion or FE on ruminal pH or VFA concentration except that propionate was greater ( = 0.04) with the WDG. In situ ruminal DM and NDF disappearance of barley silage was greater ( < 0.04) in heifers fed the WDG than in heifers fed the CON after 24 h of incubation. Increasing FE linearly ( = 0.03) increased in situ NDF disappearance of barley silage after 24 h of incubation. In Exp. 2, 120 weaned steers (initial BW of 289 ± 11.0 kg) were fed diets similar to those in Exp. 1. The steers fed the WDG had greater ( < 0.01) final BW, ADG, DMI, and G:F compared with steers fed the CON. Increasing FE did not alter ADG or G:F but tended ( < 0.07) to linearly decrease DMI. There were interactions ( < 0.02) between DDGS and FE on eating rate and the time spent at the feed bunk. Supplementing FE decreased ( < 0.01) time at the bunk and increased ( < 0.01) eating rate for steers fed the WDG but not for steers fed the CON. Eating rate ( < 0.01) and meal frequency ( = 0.02) were greater but eating duration was shorter ( < 0.01) for steers fed

  13. Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil

    PubMed Central

    Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam

    2013-01-01

    Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966

  14. Molecular cytogenetic and morphological characterization of two wheat-barley translocation lines

    PubMed Central

    Ivanizs, László; Farkas, András; Linc, Gabriella; Molnár-Láng, Márta

    2018-01-01

    Abstract Barley chromosome 5H, carrying important QTLs for plant adaptation and tolerance to abiotic stresses, is extremely instable in the wheat genetic background and is eliminated in the early generations of wheat-barley crosses. A spontaneous wheat-barley 5HS-7DS.7DL translocation was previously obtained among the progenies of the Mv9kr1 x Igri hybrid. The present work reports on the transfer of the 5HS-7DS.7DL translocation into a modern wheat cultivar, Mv Bodri, in order to use it in the wheat breeding program. The comparison of the hybridization bands of DNA repeats HvT01, pTa71, (GAA)n and the barley centromere-specific (AGGGAG)n in Igri barley and the 5HS-7DS.7DL translocation, together with the visualization of the barley chromatin made it possible to determine the size of the introgressed barley segment, which was approximately 74% of the whole 5HS. Of the 29 newly developed PCR markers, whose source ESTs were selected from the Genome Zipper of barley chromosome 5H, 23 were mapped in the introgressed 1–0.26 FL 5HS bin, three were located in the missing C-0.26 FL region, while three markers were specific for 5HL. The translocation breakpoint was flanked by markers Hv7502 and Hv3949. A comparison of the parental wheat cultivars and the wheat-barley introgression lines indicated that the presence of the translocation improved tillering ability in the Mv9kr1 and Mv Bodri genetic background. The similar or better yield components under high- or low-input cultivation environments, respectively, indicated that the 5HS-7DS.7DL translocation had little or no negative effect on yield components, making it a promising genotype to improve wheat genetic diversity. These results promise to accelerate functional genomic studies on barley chromosome 5H and to support pre-breeding and breeding research on wheat. PMID:29889875

  15. Rapid nested PCR-based detection of Ramularia collo-cygni direct from barley.

    PubMed

    Havis, Neil D; Oxley, Simonj P; Piper, Stephen R; Langrell, Stephen R H

    2006-03-01

    Ramularia collo-cygni is a barley pathogen of increasing importance in Northern and Central Europe, New Zealand and South America. Accurate visual and microscopic identification of the pathogen from diseased tissue is difficult. A nested PCR-based diagnostic test has been developed as part of an initiative to map the distribution of the pathogen in Scotland. The entire nuclear ribosomal internal transcribed spacer and 5.8S rRNA gene regions from 14 isolates of diverse global origin exhibited complete homology following sequence characterization. Two pairs of species-specific primers, based on inter-specific sequence divergence with closely related species, were designed and empirically evaluated for diagnostic nested PCR. Nested primers Rcc3 and Rcc4 consistently amplified a single product of 256 bp from DNA of 24 R. collo-cygni isolates of diverse global provenance, but not from other Ramularia species, or other fungi commonly encountered in cereal pathosystems, as well as Hordeum or Secale DNA preparations. Using this approach, R. collo-cygni was successfully identified from naturally infected barley leaf, awn and grain samples of diverse geographical provenance, in particular from symptoms that lacked the presence of characteristic conidiophores. It is envisaged that this assay will become established as an important tool in continuing studies into the ecology, aetiology and epidemiology of this poorly understood yet economically damaging plant pathogen.

  16. Genome-Wide Prediction of the Performance of Three-Way Hybrids in Barley.

    PubMed

    Li, Zuo; Philipp, Norman; Spiller, Monika; Stiewe, Gunther; Reif, Jochen C; Zhao, Yusheng

    2017-03-01

    Predicting the grain yield performance of three-way hybrids is challenging. Three-way crosses are relevant for hybrid breeding in barley ( L.) and maize ( L.) adapted to East Africa. The main goal of our study was to implement and evaluate genome-wide prediction approaches of the performance of three-way hybrids using data of single-cross hybrids for a scenario in which parental lines of the three-way hybrids originate from three genetically distinct subpopulations. We extended the ridge regression best linear unbiased prediction (RRBLUP) and devised a genomic selection model allowing for subpopulation-specific marker effects (GSA-RRBLUP: general and subpopulation-specific additive RRBLUP). Using an empirical barley data set, we showed that applying GSA-RRBLUP tripled the prediction ability of three-way hybrids from 0.095 to 0.308 compared with RRBLUP, modeling one additive effect for all three subpopulations. The experimental findings were further substantiated with computer simulations. Our results emphasize the potential of GSA-RRBLUP to improve genome-wide hybrid prediction of three-way hybrids for scenarios of genetically diverse parental populations. Because of the advantages of the GSA-RRBLUP model in dealing with hybrids from different parental populations, it may also be a promising approach to boost the prediction ability for hybrid breeding programs based on genetically diverse heterotic groups. Copyright © 2017 Crop Science Society of America.

  17. 7 CFR 810.202 - Definition of other terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... GRAIN United States Standards for Barley Terms Defined § 810.202 Definition of other terms. (a) Black barley. Barley with black hulls. (b) Broken kernels. Barley with more than 1/4 of the kernel removed. (c... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or...

  18. Comparison of wheat or corn dried distillers grains with solubles on rumen fermentation and nutrient digestibility by feedlot heifers.

    PubMed

    Walter, L J; McAllister, T A; Yang, W Z; Beauchemin, K A; He, M; McKinnon, J J

    2012-04-01

    A 5 × 5 Latin square design trial was conducted to evaluate rumen fermentation and apparent nutrient digestibility in 5 rumen-cannulated heifers (420 ± 6 kg) fed a barley-based finishing diet supplemented with 20 or 40% wheat or corn dried distillers grains with solubles (DDGS). The composition of the control diet was 88.7% rolled barley grain, 5.5% supplement, and 5.8% barley silage (DM basis). Increasing the quantity of corn DDGS in the ration resulted in a quadratic decrease in DMI (P = 0.04) and OM intake (P = 0.05). Rumen pH, pH duration, and area under rumen pH thresholds of 5.8 or 5.5 were not affected (P > 0.05) by treatment. Inclusion of wheat DDGS resulted in a quadratic increase (P = 0.05) in pH area below the cutoff value of 5.2, with the most pronounced effect at 20% inclusion. Wheat DDGS linearly increased (P = 0.01) rumen NH(3)-N concentrations. Increasing the inclusion rate of wheat and corn DDGS resulted in quadratic (P = 0.05) and linear (P = 0.04) decreases in rumen propionate, whereas butyrate increased quadratically (P < 0.01) and linearly (P < 0.01), respectively. Feeding wheat DDGS linearly decreased (P < 0.01) DM and OM digestibility values. Inclusion of corn DDGS increased the digestibility values of ether extract (P = 0.05; quadratic response) and CP (P < 0.01; linear response). Neutral detergent fiber digestibility increased in a linear fashion (P = 0.01) as both wheat and corn DDGS inclusion increased, whereas ADF digestibility increased linearly (P = 0.03) for wheat and quadratically (P = 0.02) for corn DDGS. Increased inclusion of wheat DDGS resulted in a linear decrease in GE digestibility (P = 0.01), whereas increasing corn DDGS inclusion linearly increased (P < 0.01) the DE content of the diet. Feeding both wheat and corn DDGS linearly increased (P = 0.01) the excretion of N and P. In summary, replacement of barley grain with up to 40% wheat or corn DDGS did not mitigate rumen pH conditions associated with mild to moderate

  19. Trichothecene mycotoxins and their determinants in settled dust related to grain production.

    PubMed

    Nordby, Karl-Christian; Halstensen, Anne Straumfors; Elen, Oleif; Clasen, Per-Erik; Langseth, Wenche; Kristensen, Petter; Eduard, Wijnand

    2004-01-01

    We hypothesise that inhalant exposure to mycotoxins causes developmental outcomes and certain hormone-related cancers that are associated with grain farming in an epidemiological study. The aim of the present study was to identify and validate determinants of measured trichothecene mycotoxins in grain dust as work environmental trichothecene exposure indicators. Settled grain dust was collected in 92 Norwegian farms during seasons of 1999 and 2000. Production characteristics and climatic data were studied as determinants of trichothecenes in settled dust samples obtained during the production of barley (N = 59), oats (N = 32), and spring wheat (N = 13). Median concentrations of trichothecenes in grain dust were <20, 54, and < 50 mg/kg (ranges < 20-340, < 30-2400, and < 50-1200) for deoxynivalenol (DON), HT-2 toxin (HT-2) and T-2 toxin (T-2) respectively. Late blight potato rot (fungal) forecasts have been broadcast in Norway to help prevent this potato disease. Fungal forecasts representing wet, temperate, and humid meteorological conditions were identified as strong determinants of trichothecene mycotoxins in settled grain dust in this study. Differences in cereal species, production properties and districts contributed less to explain mycotoxin concentrations. Fungal forecasts are validated as indicators of mycotoxin exposure of grain farmers and their use in epidemiological studies may be warranted.

  20. Barley ROP Binding Kinase1 Is Involved in Microtubule Organization and in Basal Penetration Resistance to the Barley Powdery Mildew Fungus1[W

    PubMed Central

    Huesmann, Christina; Reiner, Tina; Hoefle, Caroline; Preuss, Jutta; Jurca, Manuela E.; Domoki, Mónika; Fehér, Attila; Hückelhoven, Ralph

    2012-01-01

    Certain plant receptor-like cytoplasmic kinases were reported to interact with small monomeric G-proteins of the RHO of plant (ROP; also called RAC) family in planta and to be activated by this interaction in vitro. We identified a barley (Hordeum vulgare) partial cDNA of a ROP binding protein kinase (HvRBK1) in yeast (Saccharomyces cerevisiae) two-hybrid screenings with barley HvROP bait proteins. Protein interaction of the constitutively activated (CA) barley HvROPs CA HvRACB and CA HvRAC1 with full-length HvRBK1 was verified in yeast and in planta. Green fluorescent protein-tagged HvRBK1 appears in the cytoplasm and nucleoplasm, but CA HvRACB or CA HvRAC1 can recruit green fluorescent protein-HvRBK1 to the cell periphery. Barley HvRBK1 is an active kinase in vitro, and activity is enhanced by CA HvRACB or GTP-loaded HvRAC1. Hence, HvRBK1 might act downstream of active HvROPs. Transient-induced gene silencing of barley HvRBK1 supported penetration by the parasitic fungus Blumeria graminis f. sp. hordei, suggesting a function of the protein in basal disease resistance. Transient knockdown of HvRBK1 also influenced the stability of cortical microtubules in barley epidermal cells. Hence, HvRBK1 might function in basal resistance to powdery mildew by influencing microtubule organization. PMID:22415513

  1. Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons.

    PubMed

    Hochleitner, Gernot; Chen, Fei; Blum, Carina; Dalton, Paul D; Amsden, Brian; Groll, Jürgen

    2018-05-01

    Ligaments and tendons are comprised of aligned, crimped collagen fibrils that provide tissue-specific mechanical properties with non-linear extension behaviour, exhibiting low stress at initial strain (toe region behaviour). To approximate this behaviour, we report fibrous scaffolds with sinusoidal patterns by melt electrowriting (MEW) below the critical translation speed (CTS) by exploitation of the natural flow behaviour of the polymer melt. More specifically, we synthesised photopolymerizable poly(L-lactide-co-ε-caprolactone-co-acryloyl carbonate) (p(LLA-co-ε-CL-co-AC)) and poly(ε-caprolactone-co-acryloyl carbonate) (p(ε-CL-co-AC)) by ring-opening polymerization (ROP). Single fibre (fØ = 26.8 ± 1.9 µm) tensile testing revealed a customisable toe region with Young's Moduli ranging from E = 29 ± 17 MPa for the most crimped structures to E = 314 ± 157 MPa for straight fibres. This toe region extended to scaffolds containing multiple fibres, while the sinusoidal pattern could be influenced by printing speed. The synthesized polymers were cytocompatible and exhibited a tensile strength of σ = 26 ± 7 MPa after 10 4 cycles of preloading at 10% strain while retaining the distinct toe region commonly observed in native ligaments and tendon tissue. Damaged tendons and ligaments are serious and frequently occurring injuries worldwide. Recent therapies, including autologous grafts, still have severe disadvantages leading to a demand for synthetic alternatives. Materials envisioned to induce tendon and ligament regeneration should be degradable, cytocompatible and mimic the ultrastructural and mechanical properties of the native tissue. Specifically, we utilised photo-cross-linkable polymers for additive manufacturing (AM) with MEW. In this way, we were able to direct-write cytocompatible fibres of a few micrometres thickness into crimp-structured elastomer scaffolds that mimic the non-linear biomechanical behaviour of

  2. On the inter-stitch interaction in biaxial non-crimp fabrics

    NASA Astrophysics Data System (ADS)

    Colin, David; Bel, Sylvain; Hans, Thorsten; Hartmann, Mathias

    2018-05-01

    Simulation models of fiber reinforcements at the scale of fibers possibly reproduce important deformation mechanisms and can offer predictive capabilities on the macroscopic mechanical behavior. Although potential deformation mechanisms are already listed in the literature, these phenomena should be experimentally investigated to evaluate their relevance in simulation at the scale of fibers. This study focuses on the inter-stitch interaction of Non-Crimp Fabric (NCF) and aims at quantifying the relative motion of the stitching yarns. To this end, controlled shear deformation was introduced on +/-45° biaxial tricot stitched NCF. The stitching yarns have been colored on the backside of the sample while the front face remained uncolored. Therefore, an inter-stitch relative motion can be observed if an uncolored portion of the stitching yarn appears on the back face of the sample. The samples were observed during the experiments with a digital microscope in order to measure the uncolored portion of the yarns on the back face. Thus, the stitching yarn movement can be quantified for various shear angles. A significant relative motion was observed compared to the original stitching length. Based on this study, the authors argue that the inter-stitch sliding is a relevant deformation mechanism for biaxial tricot stitched NCF at the scale of fibers.

  3. Barley stripe mosaic virus: Structure and relationship to the tobamoviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendall, Amy; Williams, Dewight; Bian, Wen

    Barley stripe mosaic virus (BSMV) is the type member of the genus Hordeivirus, rigid, rod-shaped viruses in the family Virgaviridae. We have used fiber diffraction and cryo-electron microscopy to determine the helical symmetry of BSMV to be 23.2 subunits per turn of the viral helix, and to obtain a low-resolution model of the virus by helical reconstruction methods. Features in the model support a structural relationship between the coat proteins of the hordeiviruses and the tobamoviruses. - Highlights: • We report a low-resolution structure of barley stripe mosaic virus. • Barley stripe mosaic virus has 23.2 subunits per turn ofmore » the viral helix. • We compare barley stripe mosaic virus with tobacco mosaic virus.« less

  4. Lipid transfer proteins and protease inhibitors as key factors in the priming of barley responses to Fusarium head blight disease by a biocontrol strain of Pseudomonas fluorescens.

    PubMed

    Petti, Carloalberto; Khan, Mojibur; Doohan, Fiona

    2010-11-01

    Strains of non-pathogenic pseudomonad bacteria, can elicit host defence responses against pathogenic microorganisms. Pseudomonas fluorescens strain MKB158 can protect cereals from pathogenesis by Fusarium fungi, including Fusarium head blight which is an economically important disease due to its association with both yield loss and mycotoxin contamination of grain. Using the 22 K barley Affymetrix chip, trancriptome studies were undertaken to determine the local effect of P. fluorescens strain MKB158 on the transcriptome of barley head tissue, and to discriminate transcripts primed by the bacterium to respond to challenge by Fusarium culmorum, a causal agent of the economically important Fusarium head blight disease of cereals. The bacterium significantly affected the accumulation of 1203 transcripts and primed 74 to positively, and 14 to negatively, respond to the pathogen (P = 0.05). This is the first study to give insights into bacterium priming in the Triticeae tribe of grasses and associated transcripts were classified into 13 functional classes, associated with diverse functions, including detoxification, cell wall biosynthesis and the amplification of host defence responses. In silico analysis of Arabidopsis homologs of bacterium-primed barley genes indicated that, as is the case in dicots, jasmonic acid plays a role in pseudomonad priming of host responses. Additionally, the transcriptome studies described herein also reveal new insights into bacterium-mediated priming of host defences against necrotrophs, including the positive effects on grain filling, lignin deposition, oxidative stress responses, and the inhibition of protease inhibitors and proteins that play a key role in programmed cell death.

  5. Importance of ABA homeostasis under terminal drought stress in regulating grain filling events

    PubMed Central

    Govind, Geetha; Seiler, Christiane; Wobus, Ulrich

    2011-01-01

    Recent studies suggest that abscisic acid (ABA) at its basal level plays an important role during seed set and grain filling events. Under drought stress ABA levels were found to be significantly enhanced in the developing seed. Until now we lacked an understanding of (1) ABA homeostasis in developing seeds under terminal drought and (2) the interactive role of ABA in regulating the starch biosynthesis pathway in developing grains under terminal drought. We have recently reported the possible regulation of ABA homeostasis in source (flag leaf) and sink (developing grains) tissues under post-anthesis drought stress in barley and concluded that significantly enhanced ABA levels in developing grains are due to strong activation of the ABA deconjugation pathway and fine regulation of the ABA biosynthesis-degradation pathway.1 Additionally, we provided evidence for the role of ABA in differential regulation of starch biosynthesis genes and a significant upregulation of starch degradation beta amylase genes under drought, i.e., ABA not only influences the rate of starch accumulation but also starch quality. PMID:21778825

  6. Use of a multifunctional column for the determination of deoxynivalenol in grains, grain products, and processed foods.

    PubMed

    Bao, Lei; Oles, Carolyn J; White, Kevin D; Sapp, Chelsea; Trucksess, Mary W

    2011-01-01

    Deoxynivalenol (DON), also known as vomitoxin, belongs to a class of naturally occurring mycotoxins produced by Fusarium spp. DON, 12, 13-epoxy-3,7 trihydroxytrichothec-9-en-8-one, is one of the most frequently detected mycotoxins in agricultural commodities worldwide. A method consisting of extraction, filtration, column cleanup, and RP-HPLC-UV separation and quantitation was validated for the determination of DON in grains (rice and barley), grain products (whole wheat flour, white flour, wheat germ, and wheat bran), and processed foods (bread, breakfast cereals, and pretzels). A 25 g test portion was extracted with 100 mL acetonitrile-water (84 + 16, v/v). After blending for 3 min, the supernatant was applied to a multifunctional column (MycoSep 225). The purified filtrate (2 mL) was evaporated to dryness and redissolved in the mobile phase. The toxins were then subjected to RP-HPLC-UV analysis. The accuracy and repeatability characteristics of the method were determined. Recoveries of DON added at levels ranging from 0.5 to 1.5 microg/g for all test matrixes were from 75 to 98%. SD and RSD(r) ranged from 0.7 to 11.6% and 0.9 to 12.7%, respectively. Within-laboratory HorRat values were from 0.1 to 0.7 for all matrixes analyzed. The method was found to meet AOAC method performance criteria for grains, grain products, and processed foods. The identity of DON in naturally contaminated test sample extracts was confirmed by HPLC/MS/MS analysis.

  7. Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina.

    PubMed

    Sanna, Aimaro; Li, Sujing; Linforth, Rob; Smart, Katherine A; Andrésen, John M

    2011-11-01

    The pyrolysis of wheat and barley spent grains resulting from bio-ethanol and beer production respectively was investigated at temperatures between 460 and 540 °C using an activated alumina bed. The results showed that the bio-oil yield and quality depend principally on the applied temperature where pyrolysis at 460 °C leaves a bio-oil with lower nitrogen content in comparison with the original spent grains and low oxygen content. The viscosity profile of the spent grains indicated that activated alumina could promote liquefaction and prevent charring of the structure between 400 and 460 °C. The biochar contains about 10-12% of original carbon and 13-20% of starting nitrogen resulting very attractive as a soil amendment and for carbon sequestration. Overall, value can be added to the spent grains opening a new market in bio-fuel production without the needs of external energy. The bio-oil from spent grains could meet about 9% of the renewable obligation in the UK. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Incorporation of Whole, Ancient Grains into a Modern Asian Indian Diet: Practical Strategies to Reduce the Burden of Chronic Disease

    PubMed Central

    Dixit, Anjali A.; Azar, Kristen M. J.; Gardner, Christopher D.; Palaniappan, Latha P.

    2011-01-01

    Refined carbohydrates, such as white rice and white flour, are the mainstay of the modern Asian Indian diet, and may contribute to the rising incidence of type 2 diabetes and cardiovascular disease in this population. Prior to the 1950s, whole grains such as amaranth, barley, brown rice, millet, and sorghum were more commonly used in Asian Indian cooking. These grains and other non-Indian grains such as couscous, quinoa, and spelt are nutritionally advantageous and may be culturally acceptable carbohydrate substitutes for Asian Indians. This review focuses on practical recommendations for culturally sensitive carbohydrate modification in a modern Asian Indian diet, in an effort to reduce type 2 diabetes and cardiovascular disease in this population. PMID:21790614

  9. Assessment of genetic diversity among barley cultivars and breeding lines adapted to the US Pacific Northwest, and its implications in breeding barley for imidazolinone-resistance.

    PubMed

    Rustgi, Sachin; Matanguihan, Janet; Mejías, Jaime H; Gemini, Richa; Brew-Appiah, Rhoda A T; Wen, Nuan; Osorio, Claudia; Ankrah, Nii; Murphy, Kevin M; von Wettstein, Diter

    2014-01-01

    Extensive application of imidazolinone (IMI) herbicides had a significant impact on barley productivity contributing to a continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance from a recently characterized mutation in the 'Bob' barley AHAS (acetohydroxy acid synthase) gene to other food, feed and malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific Northwest (PNW), since it comprises ∼23% (335,000 ha) of the US agricultural land under barley production. To effectively breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic dissimilarity with the 'Bob' AHAS mutant. The six selected genotypes were used to make 29-53 crosses with the AHAS mutant and a range of 358-471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations ranging in size from 2158-2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results, F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A range of 20%-90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele. Results suggested that the mutant can survive up to the 10× field recommended dose of herbicide, and the 8× and 10× herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining barley productivity in the PNW are discussed.

  10. A proteomics survey on wheat susceptibility to Fusarium head blight during grain development

    PubMed Central

    Chetouhi, Cherif; Lecomte, Philippe; Cambon, Florence; Merlino, Marielle; Biron, David Georges

    2014-01-01

    The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains. PMID:25663750

  11. Analysis of enzyme production by submerged culture of Aspergillus oryzae using whole barley.

    PubMed

    Masuda, Susumu; Kikuchi, Kaori; Matsumoto, Yuko; Sugimoto, Toshikazu; Shoji, Hiroshi; Tanabe, Masayuki

    2009-10-01

    We have reported on high enzyme production by submerged culture of Aspergillus kawachii using barley with the husk (whole barley). To elucidate the mechanism underlying this high enzyme production, we performed a detailed analysis. Aspergillus oryzae RIB40 was submerged-cultured using whole barley and milled whole barley. Enzyme production was analyzed in terms of changes in medium components and gene expression levels. When whole barley was used, high production of glucoamylase and alpha-amylase and high gene expression levels of these enzymes were observed. Low ammonium concentrations were maintained with nitrate ion uptake continuing into the late stage using whole barley. These findings suggest that the sustainability of nitrogen metabolism is related to high enzyme production, and that a mechanism other than that associated with the conventional amylase expression system is involved in this relationship.

  12. Development of DArT-based PCR markers for selecting drought-tolerant spring barley.

    PubMed

    Fiust, Anna; Rapacz, Marcin; Wójcik-Jagła, Magdalena; Tyrka, Mirosław

    2015-08-01

    The tolerance of spring barley (Hordeum vulgare L.) cultivars to spring drought is an important agronomic trait affecting crop yield and quality in Poland. Therefore, breeders require new molecular markers to select plants with lower spring drought susceptibility. With the advent of genomic selection technology, simple molecular tools may still be applicable to screen material for markers of the most important traits and in-depth genome scanning. In previous studies, diversity arrays technology (DArT)-based genetic maps were constructed for F2 populations of Polish fodder and malt barley elite breeding lines, and 15 and 18 quantitative trait loci (QTLs) related to spring drought tolerance were identified, respectively. In this paper, we show the results of a conversion of 30 DArT markers corresponding to 11 QTLs into simple sequence repeat (SSR) and sequence tagged site (STS) markers. Twenty-two polymorphic markers were obtained, including 13 DArT-based SSRs. Additionally, 31 SSR markers, located in close proximity to the DArT markers, were selected from the GrainGenes database and tested. Further analyses of 24 advanced breeding lines with different drought tolerances confirmed that five out of the 30 converted markers, as well as three out of the 31 additional SSR markers, were effective in marker-assisted selection for drought tolerance. The possible function of clones related to these markers in drought tolerance is discussed.

  13. Epidemiology and control of rusts of wheat and barley

    USDA-ARS?s Scientific Manuscript database

    Rusts of wheat and barley were monitored throughout the Pacific Northwest (PNW) using trap plots and through field surveys during the 2008 growing season. Through collaborators in other states, stripe rusts of wheat and barley were monitored throughout the US. In 2008, stripe rust occurred in 18 st...

  14. Changes in selected physical property and enzyme activity of rice and barley koji during fermentation and storage.

    PubMed

    Bechman, Allison; Phillips, Robert D; Chen, Jinru

    2012-06-01

    Koji are solid-state fermentation products made by inoculating steamed grains with the spores of fungi, particularly Aspergillus spp. This research was undertaken to identify the fermentation and storage conditions optimal for the production and maintenance of selected hydrolytic enzymes, such as α-amlyase and protease, in koji. Steamed rice and barley were inoculated with 2 × 10 ¹¹ Aspergillus oryzae spores per kilogram of grains and fermented for 118 h in a growth chamber at 28 to 32 °C with controlled relative humidities. Samples were drawn periodically during fermentation and storage at -20, 4, or 32 °C, and α-amylase and protease activity, mold counts, a(w), moisture contents, and pH of collected samples were determined. It was observed that the a(w), moisture contents, and pH of the koji were influenced by the duration of fermentation and temperature of storage. The α-amylase activity of both koji increased as the populations of A. oryzae increased during the exponential growth phase. The enzyme activity of barley koji was significantly higher than that of rice koji, reaching a peak activity of 211.87 or 116.57 U at 46 and 58 h, respectively, into the fermentation process. The enzyme activity in both products started to decrease once the mold culture entered the stationary growth phase. The protease activities of both koji were low and remained relatively stable during fermentation and storage. These results suggest that rice and barley koji can be used as sources of α-amylase and desired enzyme activity can be achieved by controlling the fermentation and storage conditions. Amylases and proteases are 2 important hydrolytic enzymes. In the food industry, these enzymes are used to break down starches and proteins while reducing the viscosity of foods. Although amylases and proteases are found in plants and animals, commercial enzymes are often produced using bacteria or molds through solid state fermentation, which is designed to use natural microbial

  15. Characterizing the Pyrenophora teres f. maculata–Barley Interaction Using Pathogen Genetics

    PubMed Central

    Carlsen, Steven A.; Neupane, Anjan; Wyatt, Nathan A.; Richards, Jonathan K.; Faris, Justin D.; Xu, Steven S.; Brueggeman, Robert S.; Friesen, Timothy L.

    2017-01-01

    Pyrenophora teres f. maculata is the cause of the foliar disease spot form net blotch (SFNB) on barley. To evaluate pathogen genetics underlying the P. teres f. maculata–barley interaction, we developed a 105-progeny population by crossing two globally diverse isolates, one from North Dakota and the other from Western Australia. Progeny were phenotyped on a set of four barley genotypes showing a differential reaction to the parental isolates, then genotyped using a restriction site-associated-genotype-by-sequencing (RAD-GBS) approach. Genetic maps were developed for use in quantitative trait locus (QTL) analysis to identify virulence-associated QTL. Six QTL were identified on five different linkage groups and individually accounted for 20–37% of the disease variation, with the number of significant QTL ranging from two to four for the barley genotypes evaluated. The data presented demonstrate the complexity of virulence involved in the P. teres f. maculata–barley pathosystem and begins to lay the foundation for understanding this important interaction. PMID:28659291

  16. Barley Transformation Using Agrobacterium-Mediated Techniques

    NASA Astrophysics Data System (ADS)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.

  17. Involvement of Alternative Splicing in Barley Seed Germination

    PubMed Central

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3’ splicing (34%-45%), intron retention (32%-34%) and alternative 5’ splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination. PMID:27031341

  18. Leaf rust of cultivated barley: pathology and control.

    PubMed

    Park, Robert F; Golegaonkar, Prashant G; Derevnina, Lida; Sandhu, Karanjeet S; Karaoglu, Haydar; Elmansour, Huda M; Dracatos, Peter M; Singh, Davinder

    2015-01-01

    Leaf rust of barley is caused by the macrocyclic, heteroecious rust pathogen Puccinia hordei, with aecia reported from selected species of the genera Ornithogalum, Leopoldia, and Dipcadi, and uredinia and telia occurring on Hordeum vulgare, H. vulgare ssp. spontaneum, Hordeum bulbosum, and Hordeum murinum, on which distinct parasitic specialization occurs. Although Puccinia hordei is sporadic in its occurrence, it is probably the most common and widely distributed rust disease of barley. Leaf rust has increased in importance in recent decades in temperate barley-growing regions, presumably because of more intensive agricultural practices. Although total crop loss does not occur, under epidemic conditions yield reductions of up to 62% have been reported in susceptible varieties. Leaf rust is primarily controlled by the use of resistant cultivars, and, to date, 21 seedling resistance genes and two adult plant resistance (APR) genes have been identified. Virulence has been detected for most seedling resistance genes but is unknown for the APR genes Rph20 and Rph23. Other potentially new sources of APR have been reported, and additivity has been described for some of these resistances. Approaches to achieving durable resistance to leaf rust in barley are discussed.

  19. Methane production, digestion, ruminal fermentation, nitrogen balance, and milk production of cows fed corn silage- or barley silage-based diets.

    PubMed

    Benchaar, C; Hassanat, F; Gervais, R; Chouinard, P Y; Petit, H V; Massé, D I

    2014-02-01

    This study evaluated the effects of replacing barley silage (BS) with corn silage (CS) in dairy cow diets on enteric CH4 emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio 60:40; dry matter basis) with the forage portion consisting of either barley silage (0% CS; 0% CS and 54.4% BS in the TMR), a 50:50 mixture of both silages (27% CS; 27.2% CS and 27.2% BS in the TMR), or corn silage (54% CS; 0% BS and 54.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of BS) also involved increasing the proportion of corn grain (at the expense of barley grain). Intake and digestibility of dry matter and milk production increased linearly as the proportion of CS increased in the diet. Increasing dietary CS proportion decreased linearly the acetate molar proportion and increased linearly that of propionate. Daily CH4 emissions tended to respond quadratically to increasing proportions of CS in the diet (487, 540, and 523 g/d for 0, 27, and 54% CS, respectively). Methane production adjusted for dry matter or gross energy intake declined as the amount of CS increased in the diet; this effect was more pronounced when cows were fed the 54% CS diet than the 27% CS diet. Increasing the CS proportion in the diet improved N utilization, as reflected by decreases in ruminal ammonia concentration and urinary N excretion and higher use of dietary N for milk protein secretion. Total replacement of BS with CS in dairy cow diets offers a strategy to decrease CH4 energy losses and control N losses without negatively affecting milk performance. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. phiC31 Integrase-Mediated Site-Specific Recombination in Barley

    PubMed Central

    Rubtsova, Myroslava; Kumlehn, Jochen; Gils, Mario

    2012-01-01

    The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F1, even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity. PMID:23024817

  1. Structural comparison of arabinoxylans from two barley side-stream fractions.

    PubMed

    Pitkänen, Leena; Tuomainen, Päivi; Virkki, Liisa; Aseyev, Vladimir; Tenkanen, Maija

    2008-07-09

    The structures of barley ( Hordeum vulgare) arabinoxylans isolated from two industrial side fractions, barley husks (BH) and barley fiber (BF), were characterized. Arabinoxylans were extracted with saturated barium hydroxide after enzymatic pretreatment. Barium hydroxide was selective toward arabinoxylans, and only a minor amount of glucose-containing material was coextracted. Acid methanolysis followed by gas chromatography, 1H NMR spectroscopy, and specific enzymatic treatments followed by anion exchange chromatography with pulse amperometric detection (HPAEC-PAD) revealed that the chemical structure of barley husk arabinoxylan (BHAX) clearly differed from that of barley fiber arabinoxylan (BFAX). BFAX was more branched, containing more beta-D-xylopyranosyl (beta-D-Xylp) residues carrying alpha-L-arabinofuranosyl (alpha-L-Araf) units at both O-2 and O-3 positions. BHAX, on the other hand, contained more 2-O-beta-D-Xyl p-alpha-L-Ara f substituents than BFAX. BHAX and BFAX also differed with respect to the hydrodynamic properties investigated with multidetector size exclusion chromatography. BFAX had a higher weight-average molar mass and larger hydrodynamic volume, the latter indicating less dense conformation than BHAX. Mn, Mw /Mn, Rh, and the Mark-Houwink a value were also determined for both arabinoxylans.

  2. Attaching Thermocouples by Peening or Crimping

    NASA Technical Reports Server (NTRS)

    Murtland, Kevin; Cox, Robert; Immer, Christopher

    2006-01-01

    Two simple, effective techniques for attaching thermocouples to metal substrates have been devised for high-temperature applications in which attachment by such conventional means as welding, screws, epoxy, or tape would not be effective. The techniques have been used successfully to attach 0.005- in. (0.127-mm)-diameter type-S thermocouples to substrates of niobium alloy C-103 and stainless steel 416 for measuring temperatures up to 2,600 F (1,427 C). The techniques are equally applicable to other thermocouple and substrate materials. In the first technique, illustrated in the upper part of the figure, a hole slightly wider than twice the diameter of one thermocouple wire is drilled in the substrate. The thermocouple is placed in the hole, then the edge of the hole is peened in one or more places by use of a punch (see figure). The deformed material at the edge secures the thermocouple in the hole. In the second technique a hole is drilled as in the first technique, then an annular relief area is machined around the hole, resulting in structure reminiscent of a volcano in a crater. The thermocouple is placed in the hole as in the first technique, then the "volcano" material is either peened by use of a punch or crimped by use of sidecutters to secure the thermocouple in place. This second technique is preferable for very thin thermocouples [wire diameter .0.005 in. (.0.127 mm)] because standard peening poses a greater risk of clipping one or both of the thermocouple wires. These techniques offer the following advantages over prior thermocouple-attachment techniques: . Because these techniques involve drilling of very small holes, they are minimally invasive . an important advantage in that, to a first approximation, the thermal properties of surrounding areas are not appreciably affected. . These techniques do not involve introduction of any material, other than the substrate and thermocouple materials, that could cause contamination, could decompose, or oxidize

  3. Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons.

    PubMed

    Moscou, Matthew J; Lauter, Nick; Steffenson, Brian; Wise, Roger P

    2011-07-01

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement

  4. Quantitative and Qualitative Stem Rust Resistance Factors in Barley Are Associated with Transcriptional Suppression of Defense Regulons

    PubMed Central

    Moscou, Matthew J.; Lauter, Nick; Steffenson, Brian; Wise, Roger P.

    2011-01-01

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host–pathogen interaction with enhancement

  5. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley

    PubMed Central

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.

    2012-01-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt

  6. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... weight per bushel (pounds) Sound barley (percent) Maximum Limits of— Damaged kernels 1 (percent) Heat damaged kernels (percent) Foreign material (percent) Broken kernels (percent) Thin barley (percent) U.S... or otherwise of distinctly low quality. 1 Includes heat-damaged kernels. Injured-by-frost kernels and...

  7. Biotype differences for resistance to Russian wheat aphid in barley

    USDA-ARS?s Scientific Manuscript database

    Russian wheat aphid (RWA) is a worldwide insect pest of barley, causing crop losses each year. Previously identified resistant barley lines do not show variable reactions to the eight USA RWA biotypes identified by wheat reactions. However, additional RWA isolates have been identified outside the ...

  8. Genome-Wide Association Analysis of Aluminum Tolerance in Cultivated and Tibetan Wild Barley

    PubMed Central

    Cai, Shengguan; Wu, Dezhi; Jabeen, Zahra; Huang, Yuqing; Huang, Yechang; Zhang, Guoping

    2013-01-01

    Tibetan wild barley (Hordeum vulgare L. ssp. spontaneum), originated and grown in harsh enviroment in Tibet, is well-known for its rich germpalsm with high tolerance to abiotic stresses. However, the genetic variation and genes involved in Al tolerance are not totally known for the wild barley. In this study, a genome-wide association analysis (GWAS) was performed by using four root parameters related with Al tolerance and 469 DArT markers on 7 chromosomes within or across 110 Tibetan wild accessions and 56 cultivated cultivars. Population structure and cluster analysis revealed that a wide genetic diversity was present in Tibetan wild barley. Linkage disequilibrium (LD) decayed more rapidly in Tibetan wild barley (9.30 cM) than cultivated barley (11.52 cM), indicating that GWAS may provide higher resolution in the Tibetan group. Two novel Tibetan group-specific loci, bpb-9458 and bpb-8524 were identified, which were associated with relative longest root growth (RLRG), located at 2H and 7H on barely genome, and could explain 12.9% and 9.7% of the phenotypic variation, respectively. Moreover, a common locus bpb-6949, localized 0.8 cM away from a candidate gene HvMATE, was detected in both wild and cultivated barleys, and showed significant association with total root growth (TRG). The present study highlights that Tibetan wild barley could provide elite germplasm novel genes for barley Al-tolerant improvement. PMID:23922796

  9. Integration of statistical and physiological analyses of adaptation of near-isogenic barley lines.

    PubMed

    Romagosa, I; Fox, P N; García Del Moral, L F; Ramos, J M; García Del Moral, B; Roca de Togores, F; Molina-Cano, J L

    1993-08-01

    Seven near-isogenic barley lines, differing for three independent mutant genes, were grown in 15 environments in Spain. Genotype x environment interaction (G x E) for grain yield was examined with the Additive Main Effects and Multiplicative interaction (AMMI) model. The results of this statistical analysis of multilocation yield-data were compared with a morpho-physiological characterization of the lines at two sites (Molina-Cano et al. 1990). The first two principal component axes from the AMMI analysis were strongly associated with the morpho-physiological characters. The independent but parallel discrimination among genotypes reflects genetic differences and highlights the power of the AMMI analysis as a tool to investigate G x E. Characters which appear to be positively associated with yield in the germplasm under study could be identified for some environments.

  10. The effect of different grain diets on fecal shedding of Escherichia coli O157:H7 by steers.

    PubMed

    Buchko, S J; Holley, R A; Olson, W O; Gannon, V P; Veira, D M

    2000-11-01

    Three groups of six yearling steers (three rumen fistulated plus three nonfistulated) fed one of three different grain diets (85% cracked corn, 15% whole cottonseed and 70% barley, or 85% barley) were inoculated with 10(10) CFU of Escherichia coli O157:H7 strain 3081, and the presence of the inoculated strain was followed in the rumen fluid and feces for a 10-week period. E. coli O157:H7 was rapidly eliminated from the rumen of the animals on all three diets but persisted in the feces of some animals up to 67 days after inoculation, suggesting that the bovine hindgut is the site of E. coli O157:H7 persistence. A significant difference existed in the levels of E. coli O157:H7 shed by the animals among diets on days 5, 7, 49, and 63 after inoculation (P < 0.05). No significant difference was found between the levels shed among diets on days 9 through 42 and on day 67 (P > 0.05). The number of animals that were culture positive for E. coli O157:H7 strain 3081 during the 10-week period was significantly higher for the barley fed group (72 of 114 samplings) as opposed to the corn fed group (44 of 114 samplings) (P < 0.005) and the cottonseed and barley fed group (57 of 114 samplings) (P < 0.05). The fecal pH of the animals fed the corn diet was significantly lower (P < 0.05) than the fecal pH of the animals fed the cottonseed and barley and barley diets, likely resulting in a less suitable environment for E. coli O157:H7 in the hindgut of the corn fed animals. E. coli O157:H7 strain 3081 was present in 3 of 30 (corn, 1 of 10; cottonseed, 1 of 10; barley, 1 of 10) animal drinking water samples, 3 of 30 (corn, 1 of 10; cottonseed, 0 of 10; barley, 2 of 10) water trough biofilm swabs, 5 of 30 (corn, 0 of 10; cottonseed, 2 of 10; barley, 3 of 10) feed samples, and 30 of 30 manure samples taken from the pens during the entire experimental period. Mouth swabs of the steers were also culture positive for E. coli O157:H7 strain 3081 in 30 of 180 samples (corn, 7 of 60

  11. Development and Implementation of High-Throughput SNP Genotyping in Barley

    USDA-ARS?s Scientific Manuscript database

    Approximately 22,000 SNPs were identified from barley ESTs and sequenced amplicons; 4,596 of them were tested for performance in three pilot phase Illumina GoldenGate assays. Pilot phase data from three barley doubled haploid mapping populations supported the production of an initial consensus map, ...

  12. Expression of stress/defense-related genes in barley grown under space environment

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Shagimardanova, Elena; Gusev, Oleg; Bingham, Gail; Levinskikh, Margarita; Sychev, Vladimir

    Plants are exposed to the extreme environment in space, especially space radiation is suspected to induce oxidative stress by generating high-energy free radicals and microgravity would enhance the effect of space radiation, however, current understandings of plant growth and responses on this synergistic effect of radiation and microgravity is limited to a few experiments. In this study, expression of stress/defense-related genes in barley grown under space environment was analyzed by RT-PCR and DNA microarray experiments to understand plant responses and adaptation to space environment and to develop the space stress-tolerant plants. The seeds of barley, Hordeum vulgare L. cv. Haruna nijo, kept in the international space station (ISS) over 4 months, were germinated after 3 days of irrigation in LADA plant growth chamber onboard Russian segment of ISS and the final germination ratio was over 90 %. The height of plants was about 50 to 60 cm and flag leaf has been opened after 26 days of irrigation under 24 hr lighting, showing the similar growth to ground-grown barley. Expression levels of stress/defense-related genes in space-grown barley were compared to those in ground-grown barley by semi-quantitative RT-PCR. In 17 stress/defense-related genes that are up-regulated by oxidative stress or other abiotic stress, only catalase, pathogenesis-related protein 13, chalcone synthase, and phenylalanine ammonia-lyase genes were increased in space-grown barley. DNA microarrya analysis with the GeneChip Barley Genome Array showed the similar expression profiles of the stress/defense-related genes to those by RT-PCR experiment, suggesting that the barley germinated and grown in LADA onboard ISS is not damaged by space environment, especially oxidative stress induced by space radiation and microgravity.

  13. Barley processing, forage:concentrate, and forage length effects on chewing and digesta passage in lactating cows.

    PubMed

    Yang, W Z; Beauchemin, K A; Rode, L M

    2001-12-01

    Dietary factors that alter fermentability, NDF content, or particle size of the diet were evaluated for their effects on chewing behavior and distribution and passage of feed particles in the digestive tract of dairy cows. A double 4 x 4 quasi-Latin square design with a 2(3) factorial arrangement of treatments was used. The dietary factors were: extent of barley grain processing, coarse (1.60 mm) or flat (1.36 mm); forage-to-concentrate ratio (F:C), low (35:65) or high (55:45) (dry matter basis); and forage particle length, long (7.59 mm) or short (6.08 mm). Eight lactating cows with ruminal and duodenal cannulas were offered ad libitum access to total mixed diets. Chewing time, expressed as minutes per day or per kilogram of dry matter or neutral detergent fiber (NDF), was increased with high F:C diets due to increased eating and ruminating times but was decreased when expressed per kilogram of NDF intake from forage. The influence of forage particle length or grain processing on chewing activity was less pronounced than F:C ratio. Chewing activity was positively correlated to proportion of long forage particles in the diet but not to particle length of the diets. Influence of feed particle size on particle size distribution in different sites of the digestive tract was minimal. Particle size distributions of duodenal digesta and feces differed; the proportion of particles retained on the 3.35- or 1.18-mm screens was higher, but proportion of particles that passed through the 1.18-mm screen was lower in duodenal digesta than in feces. Relationships between chewing activities and ruminal pH or fractional passage rate of rumen contents were not significant. These results indicate that particle size of barley-based diets was not a reliable indicator of chewing activity. Forage particle size and NDF content of the diets were more reliable indicators of chewing activity than was the NDF content of forage. Fecal particle size was not an appropriate means of estimating

  14. Spatio-temporal distribution and environmental drivers of Barley yellow dwarf virus and vector abundance in Kansas.

    PubMed

    Enders, Laramy; Hefley, Trevor; Girvin, John; Whitworth, Robert; Smith, Charles

    2018-05-11

    Several aphid species transmit barley yellow dwarf, a globally destructive disease caused by viruses that infect cereal grain crops. Data from >400 samples collected across Kansas wheat fields in 2014 and 2015 were used to develop spatio-temporal models predicting the extent to which landcover, temperature and precipitation affect spring aphid vector abundance and presence of individuals carrying Barley yellow dwarf virus (BYDV). The distribution of Rhopalosiphum padi abundance was not correlated with climate or landcover, but Sitobion avenae abundance was positively correlated to fall temperature and negatively correlated to spring temperature and precipitation. The abundance of Schizaphis graminum was negatively correlated with fall precipitation and winter temperature. The incidence of viruliferous (+BYDV) R. padi was positively correlated with fall precipitation but negatively correlated with winter precipitation. In contrast, the probability of +BYDV S. avenae was unaffected by precipitation but was positively correlated with average fall temperatures and distance to nearest forest or shrubland. R. padi and S. avenae were more prevalent at Eastern sample sites where ground cover is more grassland than cropland, suggesting that grassland may provide over-summering sites for vectors and pose a risk as potential BYDV reservoirs. Nevertheless, land cover patterns were not strongly associated with differences in abundance or probability that viruliferous aphids were present.

  15. A complete ancient RNA genome: identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus

    PubMed Central

    Smith, Oliver; Clapham, Alan; Rose, Pam; Liu, Yuan; Wang, Jun; Allaby, Robin G.

    2014-01-01

    The origins of many plant diseases appear to be recent and associated with the rise of domestication, the spread of agriculture or recent global movements of crops. Distinguishing between these possibilities is problematic because of the difficulty of determining rates of molecular evolution over short time frames. Heterochronous approaches using recent and historical samples show that plant viruses exhibit highly variable and often rapid rates of molecular evolution. The accuracy of estimated evolution rates and age of origin can be greatly improved with the inclusion of older molecular data from archaeological material. Here we present the first reconstruction of an archaeological RNA genome, which is of Barley Stripe Mosaic Virus (BSMV) isolated from barley grain ~750 years of age. Phylogenetic analysis of BSMV that includes this genome indicates the divergence of BSMV and its closest relative prior to this time, most likely around 2000 years ago. However, exclusion of the archaeological data results in an apparently much more recent origin of the virus that postdates even the archaeological sample. We conclude that this viral lineage originated in the Near East or North Africa, and spread to North America and East Asia with their hosts along historical trade routes. PMID:24499968

  16. Pasting and rheological properties of chia composites containing barley flour

    USDA-ARS?s Scientific Manuscript database

    The chia containing omega-3 polyunsaturated fatty acids (omega-3 PUFAs) was composited with barley flour having high ß-glucan content. Both omega-3 PUFAs and ß-glucan are well known for lowering blood cholesterol and preventing coronary heart disease. Barley flour was dry blended with ground chia ...

  17. The effects of whole grains on nutrient digestibilities, growth performance, and cecal short-chain fatty acid concentrations in young chicks fed ground corn-soybean meal diets.

    PubMed

    Biggs, P; Parsons, C M

    2009-09-01

    Five experiments were conducted to evaluate the effects of whole wheat, whole sorghum, or whole barley on nutrient digestibility, growth performance, and cecal short-chain fatty acid concentrations when supplemented primarily at the expense of corn in ground corn-soybean meal control diets. The first 4 experiments utilized New Hampshire x Columbian male chicks. In the first 2 experiments, feeding 5, 10, 15, or 20% whole wheat had no effect on growth performance at 21 d when compared with chicks fed the control diet. The third experiment tested 20, 35, and 50% whole wheat fed from 0 to 21 d of age and showed that a 50% whole wheat diet decreased (P<0.05) 21-d growth and feed efficiency when compared with chicks fed the control diet. In experiment 4, 10 and 20% whole sorghum reduced (P<0.05) growth at 21 d, whereas chicks fed 10 and 20% whole barley had similar weight gains to chicks fed a ground corn-soybean meal diet. The fifth experiment with commercial Ross x Ross male broiler chicks evaluated 10 and 20% whole sorghum or whole barley and 20 and 35% whole wheat. Growth at 21 d was unaffected by any dietary treatment. Feed efficiency was decreased (P<0.05) at 21 d with 20% whole wheat and improved (P<0.05) with 10% whole barley. Feeding whole grains to chicks resulted in an increase in gizzard weight, even as early as 7 d, in all experiments. Chicks fed diets containing 10 to 20% whole wheat generally had increased MEn values at 3 to 4, 7, 14, and 21 d and also had increased amino acid digestibility at 21 d in one experiment. At 21 d, cecal pH and short-chain fatty acid concentrations in all experiments were unaffected by feeding whole grains to chicks. The results of this study indicated that feeding whole wheat, sorghum, or barley increased gizzard weight, and feeding 10 to 20% whole wheat may increase ME and amino acid digestibility.

  18. 7 CFR 810.805 - Special grades and special grade requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... grain. Mixed grain in which barley predominates and that contains more than 4.0 percent of fungus-damaged and/or mold-damaged barley kernels. (b) Ergoty mixed grain. (1) Mixed grain in which rye or wheat... than 0.10 percent ergot. (c) Garlicky mixed grain. (1) Mixed grain in which wheat, rye, or triticale...

  19. Biotesting of radioactively contaminated forest soils using barley-based bioassay

    NASA Astrophysics Data System (ADS)

    Mel'nikova, T. V.; Polyakova, L. P.; Oudalova, A. A.

    2017-01-01

    Findings from radioactivity and phytotoxicity study are presented for soils from nine study-sites of the Klintsovsky Forestry located in the Bryansk region that were radioactively contaminated after the Chernobyl accident. According to the bioassay based on barley as test-species, stimulating effect of the soils analyzed is revealed for biological indexes of the length of barley roots and sprouts. From data on 137Cs specific activities in soils and plant biomass, the migration potential of radionuclide in the "soil-plant" system is assessed as a transfer factor. With correlation analysis, an impact of 137Cs in soil on the biological characteristics of barley is estimated.

  20. Production of Ethanol From Newly Developed and Improved Winter Barley Cultivars.

    PubMed

    Nghiem, Nhuan P; Brooks, Wynse S; Griffey, Carl A; Toht, Matthew J

    2017-05-01

    Winter barley has attracted strong interest as a potential feedstock for fuel ethanol production in regions with mild winter climate such as the mid-Atlantic and northeastern USA. Ten recently developed and improved winter barley cultivars and breeding lines including five hulled and five hull-less lines were experimentally evaluated for potential ethanol production. The five hulled barley lines included three released cultivars (Thoroughbred, Atlantic, and Secretariat) and two breeding lines (VA09B-34 and VA11B-4). The five hull-less lines also included three released cultivars (Eve, Dan, and Amaze 10) and two breeding lines (VA08H-65 and VA13H-34). On the average, the hull-less barley cultivars produced more ethanol per unit mass because of their higher starch and β-glucan contents. However, since the hulled barley cultivars had higher agronomic yield, the potential ethanol production per acre of land for the two types were approximately equal. Among the ten cultivars tested, the hull-less cultivar Amaze 10 was the best one for ethanol production. The ethanol yield values obtained for this cultivar were 2.61 gal per bushel and 292 gal per acre.

  1. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...

  2. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...

  3. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...

  4. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... designate both a fall final planting date and a spring final planting date, and for which the actuarial... planted spring barley. 6. If you elect this endorsement for winter barley, the contract change, cancellation, and termination dates applicable to wheat in the county will be applicable to all your spring and...

  5. The Influence of Roentgen Radiation and Thermic Neutrons Upon Cereals and Corn; L'INFLUENCE DE L'IRRADIATION AVEC DES RAYONS X ET DES NEUTRONS THERMIQUES SUR LES GRAINES DE CEREALES ET DE MAIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priadcenco, Al.; Melacrinos, A.; Avramoaie, P.

    1959-10-31

    Seeds from several species of wheat, barley, oats, and corn of Rumanian origin were irradiated with different intensities of x radiation and thermal neutrons. The results showed that radiation inhibits the germination of the grains. The plants from the irradiated grains have a slower growth and development, a prolongment of the vegetative cycle, a pronounced sterility, and a greater sensitivity to diseases. The detailed results are tabulated. (J.S.R.)

  6. Boron Stress Responsive MicroRNAs and Their Targets in Barley

    PubMed Central

    Ozhuner, Esma; Eldem, Vahap; Ipek, Arif; Okay, Sezer; Sakcali, Serdal; Zhang, Baohong; Boke, Hatice; Unver, Turgay

    2013-01-01

    Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress. PMID:23555702

  7. 40 CFR 180.439 - Thifensulfuron methyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... million Barley, grain 0.05 Barley, hay 0.8 Barley, straw 0.10 Canola, seed 0.02 Corn, field, forage 0.10 Corn, field, grain 0.05 Corn, field, stover 0.10 Cotton, gin byproducts 0.02 Cotton, undelinted seed 0... Soybean 0.10 Wheat, forage 2.5 Wheat, grain 0.05 Wheat, hay 0.7 Wheat, straw 0.10 (b) Section 18 emergency...

  8. Effect of sprouted barley grain supplementation of an herbage-based or haylage-based diet on ruminal fermentation and methane output in continuous culture.

    PubMed

    Hafla, A N; Soder, K J; Brito, A F; Rubano, M D; Dell, C J

    2014-12-01

    A 4-unit dual-flow continuous-culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane (CH4) output. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement using 7 d for diet adaptation and 3 d for sample collection. Experimental diets were (1) 55.5 g of herbage dry matter (DM) + 4.5 g of SB DM, (2) 56.0 g of herbage DM + 4.0 g of BG DM, (3) 55.5 g of haylage DM + 4.5 g of SB DM, and (4) 56.0 g of haylage DM + 4.0 g of BG DM. Forages were fed at 0730, 1030, 1400, and 1900 h, whereas SB and BG were fed at 0730 and 1400 h. Gas samples for CH₄ analysis were collected at 0725, 0900, 1000, 1355, 1530, and 1630 h on d 8, 9, and 10. Fluid samples were taken once daily on d 8, 9, and 10 for pH measurements and for ammonia-N and VFA analysis and analyzed for DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber for determination of nutrient digestibilities and estimation of bacterial protein synthesis. Orthogonal contrasts were used to compare the effect of forage source (haylage vs. herbage), supplement (BG vs. SB), and the forage × supplement interaction. Apparent and true DM and organic matter digestibilities as well as apparent crude protein digestibility were not affected by forage source. However, true DM digestibility was greatest for diets supplemented with SB. Apparent neutral and acid detergent fiber digestibilities of herbage-based diets were higher than haylage-based diets but fiber digestibility was not affected by supplement. Diets supplemented with SB had higher mean and minimum pH than BG; however, maximum pH was not affected by diet. Supplementation with BG produced a greater concentration of total VFA compared with diets supplemented with SB. Haylage

  9. Brewer's spent grain: a valuable feedstock for industrial applications.

    PubMed

    Mussatto, Solange I

    2014-05-01

    Brewer's spent grain (BSG) is the most abundant by-product generated from the beer-brewing process, representing approximately 85% of the total by-products obtained. This material is basically constituted by the barley grain husks obtained as solid residue after the wort production. Since BSG is rich in sugars and proteins, the main and quickest alternative for elimination of this industrial by-product has been as animal feed. However, BSG is a raw material of interest for application in different areas because of its low cost, large availability throughout the year and valuable chemical composition. In the last decade, many efforts have been directed towards the reuse of BSG, taking into account the incentive that has been given to recycle the wastes and by-products generated by industrial activities. Currently, many interesting and advantageous methods for application of BSG in foods, in energy production and in chemical and biotechnological processes have been reported. The present study presents and discusses the most recent perspectives for BSG application in such areas. © 2013 Society of Chemical Industry.

  10. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.

    PubMed Central

    Beier, Sebastian; Himmelbach, Axel; Colmsee, Christian; Zhang, Xiao-Qi; Barrero, Roberto A.; Zhang, Qisen; Li, Lin; Bayer, Micha; Bolser, Daniel; Taudien, Stefan; Groth, Marco; Felder, Marius; Hastie, Alex; Šimková, Hana; Staňková, Helena; Vrána, Jan; Chan, Saki; Muñoz-Amatriaín, María; Ounit, Rachid; Wanamaker, Steve; Schmutzer, Thomas; Aliyeva-Schnorr, Lala; Grasso, Stefano; Tanskanen, Jaakko; Sampath, Dharanya; Heavens, Darren; Cao, Sujie; Chapman, Brett; Dai, Fei; Han, Yong; Li, Hua; Li, Xuan; Lin, Chongyun; McCooke, John K.; Tan, Cong; Wang, Songbo; Yin, Shuya; Zhou, Gaofeng; Poland, Jesse A.; Bellgard, Matthew I.; Houben, Andreas; Doležel, Jaroslav; Ayling, Sarah; Lonardi, Stefano; Langridge, Peter; Muehlbauer, Gary J.; Kersey, Paul; Clark, Matthew D.; Caccamo, Mario; Schulman, Alan H.; Platzer, Matthias; Close, Timothy J.; Hansson, Mats; Zhang, Guoping; Braumann, Ilka; Li, Chengdao; Waugh, Robbie; Scholz, Uwe; Stein, Nils; Mascher, Martin

    2017-01-01

    Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. ‘Morex’ was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX). PMID:28448065

  11. Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression.

    PubMed

    Galuszka, Petr; Frébortová, Jitka; Werner, Tomás; Yamada, Mamoru; Strnad, Miroslav; Schmülling, Thomas; Frébort, Ivo

    2004-10-01

    The cloning of two novel genes that encode cytokinin oxidase/dehydrogenase (CKX) in barley is described in this work. Transformation of both genes into Arabidopsis and tobacco showed that at least one of the genes codes for a functional enzyme, as its expression caused a cytokinin-deficient phenotype in the heterologous host plants. Additional cloning of two gene fragments, and an in silico search in the public expressed sequence tag clone databases, revealed the presence of at least 13 more members of the CKX gene family in barley and wheat. The expression of three selected barley genes was analyzed by RT-PCR and found to be organ-specific with peak expression in mature kernels. One barley CKX (HvCKX2) was characterized in detail after heterologous expression in tobacco. Interestingly, this enzyme shows a pH optimum at 4.5 and a preference for cytokinin ribosides as substrates, which may indicate its vacuolar targeting. Different substrate specificities, and the pH profiles of cytokinin-degrading enzymes extracted from different barley tissues, are also presented.

  12. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase.

    PubMed

    Peña, Pamela A; Quach, Truyen; Sato, Shirley; Ge, Zhengxiang; Nersesian, Natalya; Dweikat, Ismail M; Soundararajan, Madhavan; Clemente, Tom

    2017-12-01

    The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.

  13. Cold-Specific Induction of a Dehydrin Gene Family Member in Barley.

    PubMed Central

    Van Zee, K.; Chen, F. Q.; Hayes, P. M.; Close, T. J.; Chen, THH.

    1995-01-01

    An interval on barley (Hordeum vulgare L.) chromosome 7 accounting for significant quantitative trait locus effects for winter hardiness were detected in a winter (Dicktoo) x spring (Morex) barley population (P.M. Hayes, T. Blake, T.H.H. Chen, S. Tragoonrung, F. Chen, A. Pan, and B. Liu [1993] Genome 36: 66-71). Two members of the barley dehydrin gene family, Dhn1 and Dhn2, were located within the region defining the winter hardiness quantitative trait locus effect (A. Pan, P.M. Hayes, F. Chen, T. Blake, T.H.H. Chen, T.T.S. Wright, I. Karsai, Z. Bedo [1994] Theor Appl Genet 89: 900-910). To investigate the possible role of Dhn1 and Dhn2 in winter hardiness, we examined the expression pattern of six barley dehydrin gene family members in shoot tissue in response to cold temperature. Incubation of 3-week-old barley plants at 2[deg]C resulted in a rapid induction of a single 86-kD polypeptide that was recognized by an antiserum against a peptide conserved in the dehydrin gene family. Northern blot analysis confirmed the induction of an mRNA corresponding to Dhn5. The expression patterns of cold-induced dehydrins in shoot tissue for Dicktoo and Morex were identical under the conditions studied, in spite of the known phenotypic differences in their winter hardiness. These results, together with the allelic structure of selected high- and low-survival lines, suggest that the Dicktoo alleles at the Dhn1 and Dhn2 may not be the primary determinants of winter hardiness in barley. PMID:12228540

  14. Diversity and Evolution of Disease Resistance Genes in Barley (Hordeum vulgare L.)

    PubMed Central

    Andersen, Ethan J.; Ali, Shaukat; Reese, R. Neil; Yen, Yang; Neupane, Surendra; Nepal, Madhav P.

    2016-01-01

    Plant disease resistance genes (R-genes) play a critical role in the defense response to pathogens. Barley is one of the most important cereal crops, having a genome recently made available, for which the diversity and evolution of R-genes are not well understood. The main objectives of this research were to conduct a genome-wide identification of barley Coiled-coil, Nucleotide-binding site, Leucine-rich repeat (CNL) genes and elucidate their evolutionary history. We employed a Hidden Markov Model using 52 Arabidopsis thaliana CNL reference sequences and analyzed for phylogenetic relationships, structural variation, and gene clustering. We identified 175 barley CNL genes nested into three clades, showing (a) evidence of an expansion of the CNL-C clade, primarily due to tandem duplications; (b) very few members of clade CNL-A and CNL-B; and (c) a complete absence of clade CNL-D. Our results also showed that several of the previously identified mildew locus A (MLA) genes may be allelic variants of two barley CNL genes, MLOC_66581 and MLOC_10425, which respond to powdery mildew. Approximately 23% of the barley CNL genes formed 15 gene clusters located in the extra-pericentromeric regions on six of the seven chromosomes; more than half of the clustered genes were located on chromosomes 1H and 7H. Higher average numbers of exons and multiple splice variants in barley relative to those in Arabidopsis and rice may have contributed to a diversification of the CNL-C members. These results will help us understand the evolution of R-genes with potential implications for developing durable resistance in barley cultivars. PMID:27168720

  15. Production of ethanol from newly developed and improved winter barley cultivars

    USDA-ARS?s Scientific Manuscript database

    Winter barley has attracted strong interest as a potential feedstock for fuel ethanol production in regions with mild winter climates such as the mid-Atlantic and northeastern United States. Ten recently developed and improved winter barley cultivars and breeding lines, including five hulled and fiv...

  16. Effectiveness of rabbit manure biofertilizer in barley crop yield.

    PubMed

    Islas-Valdez, Samira; Lucho-Constantino, Carlos A; Beltrán-Hernández, Rosa I; Gómez-Mercado, René; Vázquez-Rodríguez, Gabriela A; Herrera, Juan M; Jiménez-González, Angélica

    2017-11-01

    The quality of biofertilizers is usually assessed only in terms of the amount of nutrients that they supply to the crops and their lack of viable pathogens and phytotoxicity. The goal of this study was to determine the effectiveness of a liquid biofertilizer obtained from rabbit manure in terms of presence of pathogens, phytotoxicity, and its effect on the grain yield and other agronomic traits of barley (Hordeum vulgare L.). Environmental effects of the biofertilizer were also evaluated by following its influence on selected soil parameters. We applied the biofertilizer at five combinations of doses and timings each and in two application modes (foliar or direct soil application) within a randomized complete block design with three replicates and using a chemical fertilizer as control. The agronomic traits evaluated were plant height, root length, dry weight, and number of leaves and stems at three growth stages: tillering, jointing, and flowering. The effectiveness of the biofertilizer was significantly modified by the mode of application, the growth stage of the crop, and the dose of biofertilizer applied. The results showed that the foliar application of the biofertilizer at the tillering stage produced the highest increase in grain yield (59.7 %, p < 0.10). The use of the biofertilizer caused significant changes in soil, particularly concerning pH, EC, Ca, Zn, Mg, and Mn. It is our view that the production and use of biofertilizers are a reliable alternative to deal with a solid waste problem while food security is increased.

  17. Transcriptome analysis of trichothecene-induced gene expression in barley.

    PubMed

    Boddu, Jayanand; Cho, Seungho; Muehlbauer, Gary J

    2007-11-01

    Fusarium head blight, caused primarily by Fusarium graminearum, is a major disease problem on barley (Hordeum vulgare L.). Trichothecene mycotoxins produced by the fungus during infection increase the aggressiveness of the fungus and promote infection in wheat (Triticum aestivum L.). Loss-of-function mutations in the TRI5 gene in F. graminearum result in the inability to synthesize trichothecenes and in reduced virulence on wheat. We examined the impact of pathogen-derived trichothecenes on virulence and the transcriptional differences in barley spikes infected with a trichothecene-producing wild-type strain and a loss-of-function tri5 trichothecene nonproducing mutant. Disease severity, fungal biomass, and floret necrosis and bleaching were reduced in spikes inoculated with the tri5 mutant strain compared with the wild-type strain, indicating that the inability to synthesize trichothecenes results in reduced virulence in barley. We detected 63 transcripts that were induced during trichothecene accumulation, including genes encoding putative trichothecene detoxification and transport proteins, ubiquitination-related proteins, programmed cell death-related proteins, transcription factors, and cytochrome P450s. We also detected 414 gene transcripts that were designated as basal defense response genes largely independent of trichothecene accumulation. Our results show that barley exhibits a specific response to trichothecene accumulation that can be separated from the basal defense response. We propose that barley responds to trichothecene accumulation by inducing at least two general responses. One response is the induction of genes encoding trichothecene detoxification and transport activities that may reduce the impact of trichothecenes. The other response is to induce genes encoding proteins associated with ubiquitination and cell death which may promote successful establishment of the disease.

  18. Effects of barley β-glucan-enriched flour fractions on the glycaemic index of bread.

    PubMed

    Finocchiaro, Franca; Ferrari, Barbara; Gianinetti, Alberto; Scazzina, Francesca; Pellegrini, Nicoletta; Caramanico, Rosita; Salati, Claudia; Shirvanian, Vigen; Stanca, Antonio Michele

    2012-02-01

    The aim of this research was to evaluate β-glucan-enriched flours, obtained from barleys with either normal or waxy starch, for their effects on the glycaemic index (GI) and the quality of bread. Rheological results confirmed that when barley flour was included in the dough the overall quality of bread slightly worsened. However, positive consequences on glycaemia were obtained with the normal starch barley: the GI of all-wheat bread (82.8 ± 7.2) was significantly reduced (57.2 ± 7.9) when 40% of wheat flour was substituted with β-glucan-enriched barley flour (6.0% ± 0.1 β-glucan in the final flour blend). In contrast, this positive effect was significantly reduced (GI: 70.1 ± 9.1) when 40% of wheat flour was substituted with the β-glucan-enriched flour of a waxy barley (CDC Alamo; 6.6 ± 0.2 β-glucan in the final flour blend), suggesting that the ability of β-glucans to lower the GI was affected by the barley starch-type.

  19. Feeding performance and life table parameters of Khapra Beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) on various barley cultivars.

    PubMed

    Golizadeh, A; Abedi, Z

    2017-10-01

    The Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is a common pest of cereal grains and other stored products. In this study, the effects of ten barley cultivars (Abidar, Bahman, Line20, Line22, Line30, Lisuei, Lokht11, Makuyi, Sahand, and Sahraa) were evaluated on life table parameters and nutritional indices of T. granarium under the following laboratory conditions: 33 ± 1°C, 60 ± 5% RH, and a photoperiod of 14: 10 (L: D) h. Life history parameters of T. granarium could be appropriate indices in resistance and susceptibility evaluation of barley cultivars. The maximum survival rate of immature stages was observed on Makuyi and Lisuei cultivars and the minimum rate was on Abidar and Line22 cultivars. The shortest development time was on Makuyi cultivar and the longest on Line22 cultivar. Pupal weight was ranged from 2.56 mg on Lokht11 to 4.86 mg on Makuyi. Fecundity and egg-hatching rates were highest on Lisuei cultivar and the adults were long-lived on Makuyi cultivar. The highest r m values were observed on Makuyi and Lisuei cultivars but lower value of it resulted from rearing of T. granarium on Line22 cultivar (0.0350 female per female day-1). The results showed that T. granarium larvae fed on Makuyi cultivar had higher values of relative consumption rate and relative growth rate. The results indicated that Makuyi and Lisuei cultivars were relatively susceptible barley cultivars and Line22 was the most inappropriate cultivar for feeding of T. granarium, which could prove useful in the development of Integrated Pest Management programs for this pest.

  20. Endosperm structure affects the malting quality of barley (Hordeum vulgare L.).

    PubMed

    Holopainen, Ulla R M; Wilhelmson, Annika; Salmenkallio-Marttila, Marjatta; Peltonen-Sainio, Pirjo; Rajala, Ari; Reinikainen, Pekka; Kotaviita, Erja; Simolin, Helena; Home, Silja

    2005-09-07

    Twenty-seven barley (Hordeum vulgare L.) samples collected from growing sites in Scandinavia in 2001 and 2002 were examined to study the effect of endosperm structure on malting behavior. Samples were micromalted, and several malt characteristics were measured. Samples were classified as having a mealier or steelier endosperm on the basis of light transflectance (LTm). Because endosperm structure is greatly dependent on protein content, three barley sample pairs with similar protein contents were chosen for further analysis. During malting, the steelier barley samples produced less root mass, but showed higher respiration losses and higher activities of starch-hydrolyzing enzymes. Malts made from steelier barley had a less friable structure, with more urea-soluble D hordein and more free amino nitrogen and soluble protein. The reason for these differences may lie in the structure or localization of the hordeins as well as the possible effects of endosperm packing on water uptake and movement of enzymes.

  1. Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis1[W

    PubMed Central

    Weichert, Nicola; Saalbach, Isolde; Weichert, Heiko; Kohl, Stefan; Erban, Alexander; Kopka, Joachim; Hause, Bettina; Varshney, Alok; Sreenivasulu, Nese; Strickert, Marc; Kumlehn, Jochen; Weschke, Winfriede; Weber, Hans

    2010-01-01

    Increasing grain sink strength by improving assimilate uptake capacity could be a promising approach toward getting higher yield. The barley (Hordeum vulgare) sucrose transporter HvSUT1 (SUT) was expressed under control of the endosperm-specific Hordein B1 promoter (HO). Compared with the wild type, transgenic HOSUT grains take up more sucrose (Suc) in vitro, showing that the transgene is functional. Grain Suc levels are not altered, indicating that Suc fluxes are influenced rather than steady-state levels. HOSUT grains have increased percentages of total nitrogen and prolamins, which is reflected in increased levels of phenylalanine, tyrosine, tryptophan, isoleucine, and leucine at late grain development. Transcript profiling indicates specific stimulation of prolamin gene expression at the onset of storage phase. Changes in gene expression and metabolite levels related to carbon metabolism and amino acid biosynthesis suggest deregulated carbon-nitrogen balance, which together indicate carbon sufficiency and relative depletion of nitrogen. Genes, deregulated together with prolamin genes, might represent candidates, which respond positively to assimilate supply and are related to sugar-starch metabolism, cytokinin and brassinosteroid functions, cell proliferation, and sugar/abscisic acid signaling. Genes showing inverse expression patterns represent potential negative regulators. It is concluded that HvSUT1 overexpression increases grain protein content but also deregulates the metabolic status of wheat (Triticum aestivum) grains, accompanied by up-regulated gene expression of positive and negative regulators related to sugar signaling and assimilate supply. In HOSUT grains, alternating stimulation of positive and negative regulators causes oscillatory patterns of gene expression and highlights the capacity and great flexibility to adjust wheat grain storage metabolism in response to metabolic alterations. PMID:20018590

  2. Barley Coleoptile Peroxidases. Purification, Molecular Cloning, and Induction by Pathogens1

    PubMed Central

    Kristensen, Brian Kåre; Bloch, Helle; Rasmussen, Søren Kjærsgaard

    1999-01-01

    A cDNA clone encoding the Prx7 peroxidase from barley (Hordeum vulgare L.) predicted a 341-amino acid protein with a molecular weight of 36,515. N- and C-terminal putative signal peptides were present, suggesting a vacuolar location of the peroxidase. Immunoblotting and reverse-transcriptase polymerase chain reaction showed that the Prx7 protein and mRNA accumulated abundantly in barley coleoptiles and in leaf epidermis inoculated with powdery mildew fungus (Blumeria graminis). Two isoperoxidases with isoelectric points of 9.3 and 7.3 (P9.3 and P7.3, respectively) were purified to homogeneity from barley coleoptiles. P9.3 and P7.3 had Reinheitszahl values of 3.31 and 2.85 and specific activities (with 2,2′-azino-di-[3-ethyl-benzothiazoline-6-sulfonic acid], pH 5.5, as the substrate) of 11 and 79 units/mg, respectively. N-terminal amino acid sequencing and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry peptide analysis identified the P9.3 peroxidase activity as due to Prx7. Tissue and subcellular accumulation of Prx7 was studied using activity-stained isoelectric focusing gels and immunoblotting. The peroxidase activity due to Prx7 accumulated in barley leaves 24 h after inoculation with powdery mildew spores or by wounding of epidermal cells. Prx7 accumulated predominantly in the epidermis, apparently in the vacuole, and appeared to be the only pathogen-induced vacuolar peroxidase expressed in barley tissues. The data presented here suggest that Prx7 is responsible for the biosynthesis of antifungal compounds known as hordatines, which accumulate abundantly in barley coleoptiles. PMID:10364401

  3. Strengths and Limitations of Operational Use of 1 Km EO Biophysical Products for Regional Prediction of Grain Yelds in Europe (wheat, barley and maize)

    NASA Astrophysics Data System (ADS)

    Meroni, M.; LEO, O.; Lopez-Lozano, R.; Baruth, B.; Duveiller, G.; Garcia-Condado, S.; Hooker, J.; Seguini, L.

    2014-12-01

    The site-specific relationship between EO indicators and actual crop yields has been explored in many different studies, describing semi-empirical regression models between spatially aggregated biophysical parameters or vegetation indices and observed yields (from field measurements or official statistics). However, when considering larger extensions -from countries to continents- agro-climatic conditions and crop management may differ substantially among regions, and these differences may greatly influence the relationship between biophysical indicators and the observed yields, which may be also driven by limiting factors other than green biomass formation. The present study aims to better assess the contribution of EO indicators within an operational crop yield forecasting system in Europe and neighbouring countries, by evaluating how these above mentioned geographic differences influence the relationship between biophysical indicators and crop yield. We therefore explore, as a first step, the correspondence between fAPAR time-series (1999-2013) and the inter-annual yield variability of wheat, barley and grain maize, at sub-national level across Europe (270-450 Administrative Units, depending on crop). In a second step, we map the agro-climatic contexts in which EO indicators better explain the observed yield inter-annual variability, identify the influence of some meteorological events on the fAPAR -yield relationship and provide some recommendations for further investigation. The results indicate that in water-limited environments (e.g. Mediterranean and Black Sea areas), fAPAR is highly correlated with yields whereas in northern Europe, crop yield appears much less limited by leaf area expansion along the season, and the relationship between yield and EO products becomes more difficult to interpret.

  4. Fusariotoxicosis from barley in British Columbia. I. Natural occurrence and diagnosis.

    PubMed

    Greenway, J A; Puls, R

    1976-01-01

    Clinical sickness was observed in domestic ducks, geese, horses and swine during October 1973. All species showed upper alimentary distress with mortalities occurring in the geese. Barley derived from a common source had been fed. Examination of the barley revealed invasion by Fusarium spp and detection of a high level of dermatitic fusariotoxins.

  5. Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat.

    PubMed

    Rey, Elodie; Abrouk, Michael; Keeble-Gagnère, Gabriel; Karafiátová, Miroslava; Vrána, Jan; Balzergue, Sandrine; Soubigou-Taconnat, Ludivine; Brunaud, Véronique; Martin-Magniette, Marie-Laure; Endo, Takashi R; Bartoš, Jan; Appels, Rudi; Doležel, Jaroslav

    2018-03-06

    Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Starch bioengineering affects cereal grain germination and seedling establishment

    PubMed Central

    Hebelstrup, Kim H.; Blennow, Andreas

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated for both HP and AO lines as compared with the WT. At late seedling establishment stages, specific sugars were rapidly consumed in the AO line. α-Amylase activity was distinctly suppressed in both the HP and the AO lines. Pre-germination β-amylase deposition was low in the AO grains and β-amylase was generally suppressed in both HP and AO lines throughout germination. As further supported by scanning electron microscopy and histochemical analyses on grain and seedlings, it was concluded that inadequate starch granule deposition in combination with the suppressed hydrolase activity leads to temporal and compensating re-direction of starch, sugar, and protein catabolism important to maintain metabolic dynamics during grain germination and seedling establishment. PMID:24642850

  7. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    PubMed

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  8. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    PubMed Central

    Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M.

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley. PMID:28407006

  9. Gene Deletion in Barley Mediated by LTR-retrotransposon BARE

    PubMed Central

    Shang, Yi; Yang, Fei; Schulman, Alan H.; Zhu, Jinghuan; Jia, Yong; Wang, Junmei; Zhang, Xiao-Qi; Jia, Qiaojun; Hua, Wei; Yang, Jianming; Li, Chengdao

    2017-01-01

    A poly-row branched spike (prbs) barley mutant was obtained from soaking a two-rowed barley inflorescence in a solution of maize genomic DNA. Positional cloning and sequencing demonstrated that the prbs mutant resulted from a 28 kb deletion including the inflorescence architecture gene HvRA2. Sequence annotation revealed that the HvRA2 gene is flanked by two LTR (long terminal repeat) retrotransposons (BARE) sharing 89% sequence identity. A recombination between the integrase (IN) gene regions of the two BARE copies resulted in the formation of an intact BARE and loss of HvRA2. No maize DNA was detected in the recombination region although the flanking sequences of HvRA2 gene showed over 73% of sequence identity with repetitive sequences on 10 maize chromosomes. It is still unknown whether the interaction of retrotransposons between barley and maize has resulted in the recombination observed in the present study. PMID:28252053

  10. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    PubMed

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA. © 2013 Institute of Food Technologists®

  11. Identification of a negative regulator of gibberellin action, HvSPY, in barley.

    PubMed Central

    Robertson, M; Swain, S M; Chandler, P M; Olszewski, N E

    1998-01-01

    To broaden our understanding of the molecular mechanisms of gibberellin (GA) action, we isolated a spindly clone (HvSPY) from barley cultivar Himalaya and tested whether the HvSPY protein would modulate GA action in barley aleurone. The HvSPY cDNA showed high sequence identity to Arabidopsis SPY along its entire length, and the barley protein functionally complemented the spy-3 mutation. HvSPY and SPY proteins showed sequence relatedness with animal O-linked N-acetylglucosamine transferases (OGTs), suggesting that they may also have OGT activity. HvSPY has a locus distinct from that of Sln, a mutation that causes the constitutive GA responses of slender barley, which phenotypically resembles Arabidopsis spy mutants. The possibility that the HvSPY gene encodes a negative regulator of GA action was tested by expressing HvSPY in a barley aleurone transient assay system. HvSPY coexpression largely abolished GA3-induced activity of an alpha-amylase promoter. Surprisingly, HvSPY coexpression increased reporter gene activity from an abscisic acid (ABA)-inducible gene promoter (dehydrin), even in the absence of exogenous ABA. These results show that HvSPY modulates the transcriptional activities of two hormonally regulated promoters: negatively for a GA-induced promoter and positively for an ABA-induced promoter. PMID:9634587

  12. Initial Effects of Differently Treated Biogas Residues from Municipal and Industrial Wastes on Spring Barley Yield Formation

    PubMed Central

    Prays, Nadia; Kaupenjohann, Martin

    2016-01-01

    Soil application of biogas residues (BGRs) is important for closing nutrient cycles. This study examined the efficiency and impact on yields and yield formation of solid-liquid separated residues from biodegradable municipal and industrial wastes (bio-waste) in comparison to complete BGRs, nitrification inhibitor, agricultural BGRs, mineral fertilizer and unfertilized plots as control. The experiment was set up as a randomized block design on silt loam Cambisol. Biogas residues from four biogas plants were evaluated. Plants per m², ears per plant, grains per ear and thousand grain weight (TGW) were measured at harvest. Fertilization with BGRs resulted in similar biomass yields compared with mineral fertilizer. Mineral fertilizer (71 dt/ha) and plots fertilized with liquid fraction (59–62 dt/ha) indicated a trend to higher yields than solid fraction or complete BGR due to its high ammonia content. Liquid fractions and fraction with nitrification inhibitor induced fewer plants per m² than corresponding solid and complete variants due to a potential phytotoxicity of high NH4-N concentration during germination. However, barley on plots fertilized with liquid fraction compensated the disadvantages at the beginning during the vegetation period and induced higher grain yields than solid fraction. This was attributable to a higher number of ears per plant and grains per ear. In conclusion, BGRs from biodegradable municipal and industrial wastes can be used for soil fertilization and replace considerable amounts of mineral fertilizer. Our study showed that direct application of the liquid fraction of BGR is the most suitable strategy to achieve highest grain yields. Nevertheless potential phytotoxicity of the high NH4-N concentration in the liquid fraction should be considered. PMID:27116355

  13. Compositional equivalence of barleys differing only in low and normal phytate levels

    USDA-ARS?s Scientific Manuscript database

    Recent breeding advances have led to the development of several barley lines with reduced levels of phytate. One of them was further developed and released as a hulless low phytate cultivar (Clearwater). Because barley oil contains high levels of tocotrienols and other functional lipids, we conduc...

  14. Heterogeneity of Powdery Mildew Resistance Revealed in Accessions of the ICARDA Wild Barley Collection

    PubMed Central

    Dreiseitl, Antonin

    2017-01-01

    The primary genepool of barley comprises two subspecies – wild barley (Hordeum vulgare subsp. spontaneum) and cultivated barley H. vulgare. subsp. vulgare. The former originated 5.5 million years ago in southwest Asia and is the immediate ancestor of cultivated barley, which arose around 10,000 years ago. In this study, the specific resistance of a set of 146 wild barley accessions, maintained by the International Center for Agriculture Research in the Dry Areas (ICARDA), to 32 isolates of barley powdery mildew caused by Blumeria graminis f. sp. hordei was evaluated. The set comprised 146 heterogeneous accessions of a previously tested collection. Seed was obtained by single seed descent and each accession was usually represented by five single plant progenies. In total, 687 plant progenies were tested. There were 211 phenotypes of resistance among the accessions, 87 of which were found in single plants, while 202 plants contained the eight most common phenotypes. The most frequent phenotype was found in 56 plants that were susceptible to all pathogen isolates, whereas the second most frequent phenotype, which occurred in 46 plants, was resistant to all isolates. The broad resistance diversity that was revealed is of practical importance and is an aid to determining the extent and role of resistance in natural ecosystems. PMID:28261253

  15. Effect of maturity at harvest for whole-crop barley and oat on dry matter intake, sorting, and digestibility when fed to beef cattle.

    PubMed

    Rosser, C L; Beattie, A D; Block, H C; McKinnon, J J; Lardner, H A; Górka, P; Penner, G B

    2016-02-01

    The objectives were to evaluate the effect of harvest maturity of whole-crop oat (Study 1) and whole-crop barley (Study 2) on forage intake and sorting, ruminal fermentation, ruminal digestibility, and total tract digestibility when fed to beef heifers. In Study 1, 3 ruminally cannulated heifers (417 ± 5 kg) were used in a 3 × 3 Latin square design with 24-d periods. Whole-crop oat forage harvested at the late milk (LMILK), hard dough (HD), or ripe (RP) stages was fed for ad libitum intake and heifers were supplemented (1% of BW) with alfalfa pellets, barley grain, canola meal, and a mineral and vitamin pellet. Maturity at harvest for whole-crop oat did not affect ( ≥ 0.058) forage intake, DE intake, amount of forage refused, ruminal short-chain fatty acid concentration, or digestibility of DM, OM, NDF, and ADF. Ruminal starch digestibility decreased ( < 0.001) from 92.6% at the LMILK stage to 90.0% at the RP stage, with total tract starch digestibility decreasing ( = 0.043) from 95.8% at the LMILK stage to 94.8% at the RP stage. Ruminal CP digestibility was reduced at the HD stage compared with the LMILK and RP stages ( < 0.001). Mean ruminal pH was greatest for the LMILK stage (6.36; = 0.003) compared with the HD and RP stages (6.30 and 6.28, respectively). In Study 2, 6 ruminally cannulated heifers (273 ± 16 kg) were used in a replicated 3 × 3 Latin square design with 24-d periods. Dietary treatments included ad libitum access to whole-crop barley harvested at the LMILK, HD, or RP stage and a constant rate (0.8% BW) of supplement containing alfalfa pellets, barley grain, canola meal, and a mineral and vitamin pellet. Dry matter intake, ruminal content mass, and feeding behavior were not affected by harvest maturity ( ≥ 0.16). There was a decrease in total tract digestibility of DM, OM, and NDF observed at the HD stage compared with the LMILK and RP stages ( ≤ 0.004). Ruminal NDF digestibility decreased from 69.7% at the LMILK stage to 54.4% at the HD

  16. Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome

    PubMed Central

    2013-01-01

    Background There is growing evidence for the prevalence of copy number variation (CNV) and its role in phenotypic variation in many eukaryotic species. Here we use array comparative genomic hybridization to explore the extent of this type of structural variation in domesticated barley cultivars and wild barleys. Results A collection of 14 barley genotypes including eight cultivars and six wild barleys were used for comparative genomic hybridization. CNV affects 14.9% of all the sequences that were assessed. Higher levels of CNV diversity are present in the wild accessions relative to cultivated barley. CNVs are enriched near the ends of all chromosomes except 4H, which exhibits the lowest frequency of CNVs. CNV affects 9.5% of the coding sequences represented on the array and the genes affected by CNV are enriched for sequences annotated as disease-resistance proteins and protein kinases. Sequence-based comparisons of CNV between cultivars Barke and Morex provided evidence that DNA repair mechanisms of double-strand breaks via single-stranded annealing and synthesis-dependent strand annealing play an important role in the origin of CNV in barley. Conclusions We present the first catalog of CNVs in a diploid Triticeae species, which opens the door for future genome diversity research in a tribe that comprises the economically important cereal species wheat, barley, and rye. Our findings constitute a valuable resource for the identification of CNV affecting genes of agronomic importance. We also identify potential mechanisms that can generate variation in copy number in plant genomes. PMID:23758725

  17. Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.)

    PubMed Central

    Zhou, Gaofeng; Broughton, Sue; Zhang, Xiao-Qi; Ma, Yanling; Zhou, Meixue; Li, Chengdao

    2016-01-01

    Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al3+ resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley. PMID:27064793

  18. Genomic Regions Influencing Seminal Root Traits in Barley.

    PubMed

    Robinson, Hannah; Hickey, Lee; Richard, Cecile; Mace, Emma; Kelly, Alison; Borrell, Andrew; Franckowiak, Jerome; Fox, Glen

    2016-03-01

    Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.). Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH) population (ND24260 × 'Flagship') comprising 330 lines genotyped with diversity array technology (DArT) markers were evaluated for seminal root angle (deviation from vertical) and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL) for seminal root traits (root angle, two QTL; root number, five QTL) were detected in the DH population. A major QTL influencing both root angle and root number (/) was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L.), and sorghum [ (L.) Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley. Copyright © 2016 Crop Science Society of America.

  19. Physical and sensory characterization and consumer preference of corn and barley-fed beef.

    PubMed

    Wismer, W V; Okine, E K; Stein, A; Seibel, M R; Goonewardene, L A

    2008-11-01

    Steaks from corn-fed and barley-fed beef were characterized by a trained panel, which rated corn-fed beef higher (p<0.05) for tenderness attributes and overall flavor intensity. Canadian consumers preferred (p<0.01) cooked and raw steaks from barley-fed beef, while Mexican consumers showed no preference (p>0.05) for either type of finished beef. Japanese consumers showed a preference (p<0.05) for the appearance of raw barley-fed steaks but a preference for cooked corn-fed steaks (p<0.05). No differences (p>0.05) were observed for Warner-Bratzler shear, marbling scores, cooking losses or Hunter colorimeter values. There was a trend for higher concentrations (p<0.08) of the saturated fatty acids in the barley treatment, but no differences (p>0.10) in mono or polyunsaturated fatty acids.

  20. The Genetic Architecture of Barley Plant Stature

    PubMed Central

    Alqudah, Ahmad M.; Koppolu, Ravi; Wolde, Gizaw M.; Graner, Andreas; Schnurbusch, Thorsten

    2016-01-01

    Plant stature in temperate cereals is predominantly controlled by tillering and plant height as complex agronomic traits, representing important determinants of grain yield. This study was designed to reveal the genetic basis of tillering at five developmental stages and plant height at harvest in 218 worldwide spring barley (Hordeum vulgare L.) accessions under greenhouse conditions. The accessions were structured based on row-type classes [two- vs. six-rowed] and photoperiod response [photoperiod-sensitive (Ppd-H1) vs. reduced photoperiod sensitivity (ppd-H1)]. Phenotypic analyses of both factors revealed profound between group effects on tiller development. To further verify the row-type effect on the studied traits, Six-rowed spike 1 (vrs1) mutants and their two-rowed progenitors were examined for tiller number per plant and plant height. Here, wild-type (Vrs1) plants were significantly taller and had more tillers than mutants suggesting a negative pleiotropic effect of this row-type locus on both traits. Our genome-wide association scans further revealed highly significant associations, thereby establishing a link between the genetic control of row-type, heading time, tillering, and plant height. We further show that associations for tillering and plant height are co-localized with chromosomal segments harboring known plant stature-related phytohormone and sugar-related genes. This work demonstrates the feasibility of the GWAS approach for identifying putative candidate genes for improving plant architecture. PMID:27446200

  1. Degradation parameters of amaranth, barley and quinoa in alpacas fed grass hay.

    PubMed

    Nilsen, B; Johnston, N P; Stevens, N; Robinson, T F

    2015-10-01

    This study was conducted to determine the compartment 1 (C1) characteristics of alpacas (fistulated male, 7 ± 1.5 years old, 61 ± 5 kg BW) fed grass hay (GH) supplemented with amaranth (AM), quinoa (Q) and barley (B) grains. Alpacas were provided water ad libitum while housed in metabolism crates. The GH and GH plus treatments were fed at 0700 every day. Treatment periods were for 14 days in which GH or GH plus one of the grain treatments were randomly allocated. On day 14, volatile fatty acids (VFA), pH and ammonia nitrogen (NH3 -N) were determined at 1, 3, 6, 10, 14, 18 and 24 h post-feeding. C1 degradation of each feed component was also determined with the alpacas being fed GH only and the samples incubated for 0, 2, 4, 8, 14, 24, 48 and 72 h. Dry matter (DM), neutral detergent fibre (NDF) and crude protein (CP) were determined and were divided into three categories: a = immediately soluble; b = the non-soluble but degradable; and u = non-degradable/unavailable, potential extent of degradation (PE), degradation rate (c) and effective degradation (ED). C1 passage rate was determined using acid detergent insoluble ash as a marker and was calculated to be 5.5%∙h-1. Total DM intake was highest (p < 0.05) for B and resulted in a higher (p < 0.05) CP intake. GH and AM were different in mean pH (6.81 and 6.66, respectively). B NH3 -N was greater (p < 0.05) than the other treatments. Total VFA was greatest (p < 0.05) for AM, with the greatest composition differences being a shift form acetate percentage to butyrate. DM, NDF and CP degradation was different across the treatments, where PE and ED were higher (p < 0.05) for the grain treatments. The pseudo-grains AM and Q had similar C1 degradation characteristics to B. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  2. Wheat is more potent than corn or barley for dietary mitigation of enteric methane emissions from dairy cows.

    PubMed

    Moate, P J; Williams, S R O; Jacobs, J L; Hannah, M C; Beauchemin, K A; Eckard, R J; Wales, W J

    2017-09-01

    Wheat is the most common concentrate fed to dairy cows in Australia, but few studies have examined the effects of wheat feeding on enteric methane emissions, and no studies have compared the relative potencies of wheat, corn, and barley for their effects on enteric methane production. In this 35-d experiment, 32 Holstein dairy cows were offered 1 of 4 diets: a corn diet (CRN) of 10.0 kg of dry matter (DM)/d of single-rolled corn grain, 1.8 kg of DM/d of canola meal, 0.2 kg of DM/d of minerals, and 11.0 kg of DM/d of chopped alfalfa hay; a wheat diet (WHT) similar to the CRN diet but with the corn replaced by single-rolled wheat; a barley diet (SRB) similar to the CRN diet but with the corn replaced by single-rolled barley; and a barley diet (DRB) similar to the CRN diet but with the corn replaced by double-rolled barley. Individual cow feed intakes, milk yields, and milk compositions were measured daily but reported for the last 5 d of the experiment. During the last 5 d of the experiment, individual cow methane emissions were measured using the SF 6 tracer technique for all cows, and ruminal fluid pH was continuously measured by intraruminal sensors for 3 cows in each treatment group. The average DM intake of cows offered the CRN, WHT, SRB, and DRB diets was 22.2, 21.1, 22.6, and 22.6 kg/d. The mean energy-corrected milk of cows fed the WHT diet was less than that of cows fed the other diets. This occurred because the milk fat percentage of cows fed the WHT diet was significantly less than that of cows fed the other diets. The mean methane emissions and methane yields of cows fed the WHT diet were also significantly less than those of cows fed the other diets. Indeed, the CRN, SRB, and DRB diets were associated with 49, 73, and 78% greater methane emissions, respectively, compared with the emissions from the WHT diet. Methane yield was found to be most strongly related to the minimum daily ruminal fluid pH. This study showed that although the inclusion of wheat in

  3. Study of fluorescence quenching of Barley α-amylase

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Shanthi, B.; Bhuvanapriya, T.

    2012-05-01

    The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (Kg &Ke) have been calculated. From the calculated binding constants (Kg &Ke) the free energy changes for the ground (ΔGg) and excited (ΔGe) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.

  4. Classification of Fusarium-Infected Korean Hulled Barley Using Near-Infrared Reflectance Spectroscopy and Partial Least Squares Discriminant Analysis

    PubMed Central

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Oh, Kyoungmin; Yoo, Hyeonchae; Ham, Hyeonheui; Kim, Moon S.

    2017-01-01

    The purpose of this study is to use near-infrared reflectance (NIR) spectroscopy equipment to nondestructively and rapidly discriminate Fusarium-infected hulled barley. Both normal hulled barley and Fusarium-infected hulled barley were scanned by using a NIR spectrometer with a wavelength range of 1175 to 2170 nm. Multiple mathematical pretreatments were applied to the reflectance spectra obtained for Fusarium discrimination and the multivariate analysis method of partial least squares discriminant analysis (PLS-DA) was used for discriminant prediction. The PLS-DA prediction model developed by applying the second-order derivative pretreatment to the reflectance spectra obtained from the side of hulled barley without crease achieved 100% accuracy in discriminating the normal hulled barley and the Fusarium-infected hulled barley. These results demonstrated the feasibility of rapid discrimination of the Fusarium-infected hulled barley by combining multivariate analysis with the NIR spectroscopic technique, which is utilized as a nondestructive detection method. PMID:28974012

  5. 77 FR 41284 - Azoxystrobin; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ..., ornamentals, flower gardens, vegetables, fruit and nut trees, berries and vines) and recreational (golf... Asparagus 0.04 Atemoya 2.0 Avocado 2.0 Banana * Barley, bran 6.0 Barley, forage 25 Barley, grain 3.0 Barley...

  6. Transient Overexpression of HvSERK2 Improves Barley Resistance to Powdery Mildew.

    PubMed

    Li, Yingbo; Li, Qingwei; Guo, Guimei; He, Ting; Gao, Runhong; Faheem, Muhammad; Huang, Jianhua; Lu, Ruiju; Liu, Chenghong

    2018-04-18

    Somatic embryogenesis receptor-like kinases (SERKs) play an essential role in plant response to pathogen infection. Here we identified three SERK genes ( HvSERK1/2/3 ) from barley, and aimed to determine their implication in defense responses to barley powdery mildew ( Bgh ). Although HvSERK1/2/3 share the characteristic domains of the SERK family, only HvSERK2 was significantly induced in barley leaves during Bgh infection. The expression of HvSERK2 was rapidly induced by hydrogen peroxide (H₂O₂) treatment, but not by treatment with salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), or abscisic acid (ABA). Bioinformatics analysis of the cloned HvSERK2 promoter revealed that it contains several elements responsible for defense responses against pathogens. Promoter functional analysis showed that the HvSERK2 promoter was induced by Bgh and H₂O₂. Subcellular localization analysis of HvSERK2 indicated that it is mainly located on the plasma membrane. Transient overexpression of HvSERK2 in epidermal cells of the susceptible barley cultivar Hua 30 reduced the Bgh haustorium index from 58.6% to 43.2%. This study suggests that the HvSERK2 gene plays a positive role in the improvement of barley resistance to powdery mildew, and provides new insight into the function of SERK genes in the biotic stress response of plants.

  7. The 1980 US/Canada wheat and barley exploratory experiment. Volume 2: Addenda

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.

    1983-01-01

    Three study areas supporting the U.S./Canada Wheat and Barley Exploratory Experiment are discussed including an evaluation of the experiment shakedown test analyst labeling results, an evaluation of the crop proportion estimate procedure 1A component, and the evaluation of spring wheat and barley crop calendar models for the 1979 crop year.

  8. The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley

    PubMed Central

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R.

    2013-01-01

    Background and Aims Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species. Methods HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Key Results and Conclusions Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants. PMID:23798600

  9. The barley MATE gene, HvAACT1, increases citrate efflux and Al(3+) tolerance when expressed in wheat and barley.

    PubMed

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R

    2013-08-01

    Aluminium is toxic in acid soils because the soluble Al(3+) inhibits root growth. A mechanism of Al(3+) tolerance discovered in many plant species involves the release of organic anions from root apices. The Al(3+)-activated release of citrate from the root apices of Al(3+)-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al(3+) tolerance of these important cereal species. HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al(3+) tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al(3+) tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al(3+) tolerance of important crop plants.

  10. Geographical and environmental determinants of the genetic structure of wild barley in southeastern Anatolia.

    PubMed

    Pournosrat, Reza; Kaya, Selma; Shaaf, Salar; Kilian, Benjamin; Ozkan, Hakan

    2018-01-01

    Despite the global value of barley, compared to its wild progenitor, genetic variation in this crop has been drastically reduced due to the process of domestication, selection and improvement. In the medium term, this will negatively impact both the vulnerability and yield stability of barley against biotic and abiotic stresses under climate change. Returning to the crop wild relatives (CWR) as sources of new and beneficial alleles is a clear option for enhancing the resilience of diversity and adaptation to climate change. Southeastern Anatolia constitutes an important part of the natural distribution of wild barley in the Fertile Crescent where important crops were initially domesticated. In this study, we investigated genetic diversity in a comprehensive collection of 281 geo-referenced wild barley individuals from 92 collection sites with sample sizes ranging from 1 to 9 individuals per site, collected from southeastern Anatolia and 131 domesticated genotypes from 49 different countries using 40 EST-SSR markers. A total of 375 alleles were detected across entire collection, of which 283 were carried by domesticated genotypes and 316 alleles were present in the wild gene pool. The number of unique alleles in the wild and in the domesticated gene pool was 92 and 59, respectively. The population structure at K = 3 suggested two groups of wild barley namely G1-W consisting wild barley genotypes from the western part and G1-E comprising those mostly from the eastern part of the study area, with a sharp separation from the domesticated gene pool. The geographic and climatic factors jointly showed significant effects on the distribution of wild barley. Using a Latent Factor Mixed Model, we identified four candidate loci potentially involved in adaptation of wild barley to three environmental factors: temperature seasonality, mean temperature of driest quarter, and precipitation of coldest quarter. These loci are probably the targets of genomic regions, with potential

  11. Geographical and environmental determinants of the genetic structure of wild barley in southeastern Anatolia

    PubMed Central

    Shaaf, Salar; Kilian, Benjamin

    2018-01-01

    Despite the global value of barley, compared to its wild progenitor, genetic variation in this crop has been drastically reduced due to the process of domestication, selection and improvement. In the medium term, this will negatively impact both the vulnerability and yield stability of barley against biotic and abiotic stresses under climate change. Returning to the crop wild relatives (CWR) as sources of new and beneficial alleles is a clear option for enhancing the resilience of diversity and adaptation to climate change. Southeastern Anatolia constitutes an important part of the natural distribution of wild barley in the Fertile Crescent where important crops were initially domesticated. In this study, we investigated genetic diversity in a comprehensive collection of 281 geo-referenced wild barley individuals from 92 collection sites with sample sizes ranging from 1 to 9 individuals per site, collected from southeastern Anatolia and 131 domesticated genotypes from 49 different countries using 40 EST-SSR markers. A total of 375 alleles were detected across entire collection, of which 283 were carried by domesticated genotypes and 316 alleles were present in the wild gene pool. The number of unique alleles in the wild and in the domesticated gene pool was 92 and 59, respectively. The population structure at K = 3 suggested two groups of wild barley namely G1-W consisting wild barley genotypes from the western part and G1-E comprising those mostly from the eastern part of the study area, with a sharp separation from the domesticated gene pool. The geographic and climatic factors jointly showed significant effects on the distribution of wild barley. Using a Latent Factor Mixed Model, we identified four candidate loci potentially involved in adaptation of wild barley to three environmental factors: temperature seasonality, mean temperature of driest quarter, and precipitation of coldest quarter. These loci are probably the targets of genomic regions, with potential

  12. Preventive and Therapeutic Role of Functional Ingredients of Barley Grass for Chronic Diseases in Human Beings

    PubMed Central

    Du, Juan; Yang, Xiaomeng; Li, Xia; Li, Ling; Zhou, Yan; Yang, Tao

    2018-01-01

    Barley grass powder is the best functional food that provides nutrition and eliminates toxins from cells in human beings; however, its functional ingredients have played an important role as health benefit. In order to better cognize the preventive and therapeutic role of barley grass for chronic diseases, we carried out the systematic strategies for functional ingredients of barley grass, based on the comprehensive databases, especially the PubMed, Baidu, ISI Web of Science, and CNKI, between 2008 and 2017. Barley grass is rich in functional ingredients, such as gamma-aminobutyric acid (GABA), flavonoids, saponarin, lutonarin, superoxide dismutase (SOD), K, Ca, Se, tryptophan, chlorophyll, vitamins (A, B1, C, and E), dietary fiber, polysaccharide, alkaloid, metallothioneins, and polyphenols. Barley grass promotes sleep; has antidiabetic effect; regulates blood pressure; enhances immunity; protects liver; has anti-acne/detoxifying and antidepressant effects; improves gastrointestinal function; has anticancer, anti-inflammatory, antioxidant, hypolipidemic, and antigout effects; reduces hyperuricemia; prevents hypoxia, cardiovascular diseases, fatigue, and constipation; alleviates atopic dermatitis; is a calcium supplement; improves cognition; and so on. These results support that barley grass may be one of the best functional foods for preventive chronic diseases and the best raw material of modern diet structure in promoting the development of large health industry and further reveal that GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan mechanism of barley grass have preventive and therapeutic role for chronic diseases. This paper can be used as a scientific evidence for developing functional foods and novel drugs for barley grass for preventive chronic diseases.

  13. 40 CFR 180.332 - Metribuzin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)-one) and its triazinone metabolites in or on food commodities: Commodity Parts per million Alfalfa, forage 2.0 Alfalfa, hay 7.0 Asparagus 0.1 Barley, grain 0.75 Barley, hay 7.0 Barley, pearled barley 3.0...

  14. 40 CFR 180.292 - Picloram; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., grain 0.5 Barley, pearled barley 3.0 Barley, straw 1.0 Cattle, fat 0.4 Cattle, meat 0.4 Cattle, meat byproducts 15 Egg 0.05 Goat, fat 0.4 Goat, meat 0.4 Goat, meat byproducts 15 Grain, aspirated fractions 4.0 Grass, forage 400 Grass, hay 225 Hog, fat 0.05 Hog, meat 0.05 Hog, meat byproducts 0.05 Horse, fat 0.4...

  15. 40 CFR 180.292 - Picloram; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., grain 0.5 Barley, pearled barley 3.0 Barley, straw 1.0 Cattle, fat 0.4 Cattle, meat 0.4 Cattle, meat byproducts 15 Egg 0.05 Goat, fat 0.4 Goat, meat 0.4 Goat, meat byproducts 15 Grain, aspirated fractions 4.0 Grass, forage 400 Grass, hay 225 Hog, fat 0.05 Hog, meat 0.05 Hog, meat byproducts 0.05 Horse, fat 0.4...

  16. 40 CFR 180.292 - Picloram; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., grain 0.5 Barley, pearled barley 3.0 Barley, straw 1.0 Cattle, fat 0.4 Cattle, meat 0.4 Cattle, meat byproducts 15 Egg 0.05 Goat, fat 0.4 Goat, meat 0.4 Goat, meat byproducts 15 Grain, aspirated fractions 4.0 Grass, forage 400 Grass, hay 225 Hog, fat 0.05 Hog, meat 0.05 Hog, meat byproducts 0.05 Horse, fat 0.4...

  17. 40 CFR 180.377 - Diflubenzuron; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Parts per million Almond, hulls 6.0 Barley, grain 0.06 Barley, hay 3.0 Barley, straw 1.8 Brassica, leafy greens, subgroup 5B 9.0 Cattle, meat byproducts 0.15 Citrus, oil 32 Fruit, citrus, group 10-10 3.0 Fruit... Peanut, refined oil 0.20 Pear 0.50 Pepper 1.0 Pistachio 0.06 Rice, grain 0.02 Rice, straw 0.8 Sheep, meat...

  18. Methylobacterium Species Promoting Rice and Barley Growth and Interaction Specificity Revealed with Whole-Cell Matrix-Assisted Laser Desorption / Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF/MS) Analysis

    PubMed Central

    Tani, Akio; Sahin, Nurettin; Fujitani, Yoshiko; Kato, Akiko; Sato, Kazuhiro; Kimbara, Kazuhide

    2015-01-01

    Methylobacterium species frequently inhabit plant surfaces and are able to utilize the methanol emitted from plants as carbon and energy sources. As some of the Methylobacterium species are known to promote plant growth, significant attention has been paid to the mechanism of growth promotion and the specificity of plant–microbe interactions. By screening our Methylobacterium isolate collection for the high growth promotion effect in vitro, we selected some candidates for field and pot growth tests for rice and barley, respectively. We found that inoculation resulted in better ripening of rice seeds, and increased the size of barley grains but not the total yield. In addition, using whole-cell matrix-assister laser desorption/ionization- time-of-flight mass spectrometry (MALDI-TOF/MS) analysis, we identified and classified Methylobacterium isolates from Methylobacterium-inoculated rice plants. The inoculated species could not be recovered from the rice plants, and in some cases, the Methylobacterium community structure was affected by the inoculation, but not with predomination of the inoculated species. The isolates from non-inoculated barley of various cultivars grown in the same field fell into just two species. These results suggest that there is a strong selection pressure at the species level of Methylobacterium residing on a given plant species, and that selection of appropriate species that can persist on the plant is important to achieve growth promotion. PMID:26053875

  19. Invited review: summary of steam-flaking corn or sorghum grain for lactating dairy cows.

    PubMed

    Theurer, C B; Huber, J T; Delgado-Elorduy, A; Wanderley, R

    1999-09-01

    Nineteen lactation trials (43 grain processing comparisons) are summarized, in addition to digestibility and postabsorptive metabolism studies. The net energy for lactation (NEL) of steam-flaked corn or sorghum grain is about 20% greater than the NEL for dry-rolled corn or sorghum. Based on lactational performance, steam-flaked sorghum grain is of equal value to steam-flaked corn, and steam-flaked corn is superior to steam-rolled corn. Steam-flaking of corn or sorghum compared to steam-rolling of corn or dry-rolling of corn or sorghum consistently improves milk production and milk protein yield. This result is because of a much greater proportion of dietary starch fermented in the rumen, enhanced digestibility of the smaller fraction of dietary starch reaching the small intestine, and increased total starch digestion. Steam-flaking increases cycling of urea to the gut, microbial protein flow to the small intestine, and estimated mammary uptake of amino acids. Steam-rolling compared to dry-rolling of barley or wheat did not alter total starch digestibilities in two trials, one with each grain source. Lactation studies with these processing comparisons have not been reported. Most cited studies have been with total mixed rations (TMR) and alfalfa hay as the principal forage. Additional studies are needed with lactating cows fed steam-flaked corn or sorghum in TMR containing alfalfa or corn silage. Optimal flake density of steam-processed corn or sorghum grain appears to be about 360 g/L (approximately 28 lb/bu).

  20. Metabolic Architecture of the Cereal Grain and Its Relevance to Maximize Carbon Use Efficiency.

    PubMed

    Rolletschek, Hardy; Grafahrend-Belau, Eva; Munz, Eberhard; Radchuk, Volodymyr; Kartäusch, Ralf; Tschiersch, Henning; Melkus, Gerd; Schreiber, Falk; Jakob, Peter M; Borisjuk, Ljudmilla

    2015-11-01

    Here, we have characterized the spatial heterogeneity of the cereal grain's metabolism and demonstrated how, by integrating a distinct set of metabolic strategies, the grain has evolved to become an almost perfect entity for carbon storage. In vivo imaging revealed light-induced cycles in assimilate supply toward the ear/grain of barley (Hordeum vulgare) and wheat (Triticum aestivum). In silico modeling predicted that, in the two grain storage organs (the endosperm and embryo), the light-induced shift in solute influx does cause adjustment in metabolic flux without changes in pathway utilization patterns. The enveloping, leaf-like pericarp, in contrast, shows major shifts in flux distribution (starch metabolism, photosynthesis, remobilization, and tricarboxylic acid cycle activity) allow to refix 79% of the CO2 released by the endosperm and embryo, allowing the grain to achieve an extraordinary high carbon conversion efficiency of 95%. Shading experiments demonstrated that ears are autonomously able to raise the influx of solutes in response to light, but with little effect on the steady-state levels of metabolites or transcripts or on the pattern of sugar distribution within the grain. The finding suggests the presence of a mechanism(s) able to ensure metabolic homeostasis in the face of short-term environmental fluctuation. The proposed multicomponent modeling approach is informative for predicting the metabolic effects of either an altered level of incident light or a momentary change in the supply of sucrose. It is therefore of potential value for assessing the impact of either breeding and/or biotechnological interventions aimed at increasing grain yield. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene

    PubMed Central

    Brinch-Pedersen, Henrik

    2013-01-01

    The phytase activity in food and feedstuffs is an important nutritional parameter. Members of the Triticeae tribe accumulate purple acid phosphatase phytases (PAPhy) during grain filling. This accumulation elevates mature grain phytase activities (MGPA) up to levels between ~650 FTU/kg for barley and 6000 FTU/kg for rye. This is notably more than other cereals. For instance, rice, maize, and oat have MGPAs below 100 FTU/kg. The cloning and characterization of the PAPhy gene complement from wheat, barley, rye, einkorn, and Aegilops tauschii is reported here. The Triticeae PAPhy genes generally consist of a set of paralogues, PAPhy_a and PAPhy_b, and have been mapped to Triticeae chromosomes 5 and 3, respectively. The promoters share a conserved core but the PAPhy_a promoter have acquired a novel cis-acting regulatory element for expression during grain filling while the PAPhy_b promoter has maintained the archaic function and drives expression during germination. Brachypodium is the only sequenced Poaceae sharing the PAPhy duplication. As for the Triticeae, the duplication is reflected in a high MGPA of ~4200 FTU/kg in Brachypodium. The sequence conservation of the paralogous loci on Brachypodium chromosomes 1 and 2 does not extend beyond the PAPhy gene. The results indicate that a single-gene segmental duplication may have enabled the evolution of high MGPA by creating functional redundancy of the parent PAPhy gene. This implies that similar MGPA levels may be out of reach in breeding programs for some Poaceae, e.g. maize and rice, whereas Triticeae breeders should focus on PAPhy_a. PMID:23918958

  2. Genetic differentiation and geographical Relationship of Asian barley landraces using SSRs

    PubMed Central

    Naeem, Rehan; Dahleen, Lynn; Mirza, Bushra

    2011-01-01

    Genetic diversity in 403 morphologically distinct landraces of barley (Hordeum vulgare L. subsp. vulgare) originating from seven geographical zones of Asia was studied using simple sequence repeat (SSR) markers from regions of medium to high recombination in the barley genome. The seven polymorphic SSR markers representing each of the chromosomes chosen for the study revealed a high level of allelic diversity among the landraces. Genetic richness was highest in those from India, followed by Pakistan while it was lowest for Uzbekistan and Turkmenistan. Out of the 50 alleles detected, 15 were unique to a geographic region. Genetic diversity was highest for landraces from Pakistan (0.70 ± 0.06) and lowest for those from Uzbekistan (0.18 ± 0.17). Likewise, polymorphic information content (PIC) was highest for Pakistan (0.67 ± 0.06) and lowest for Uzbekistan (0.15 ± 0.17). Diversity among groups was 40% compared to 60% within groups. Principal component analysis clustered the barley landraces into three groups to predict their domestication patterns. In total 51.58% of the variation was explained by the first two principal components of the barley germplasm. Pakistan landraces were clustered separately from those of India, Iran, Nepal and Iraq, whereas those from Turkmenistan and Uzbekistan were clustered together into a separate group. PMID:21734828

  3. The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression

    PubMed Central

    Baker, Katie; Bayer, Micha; Cook, Nicola; Dreißig, Steven; Dhillon, Taniya; Russell, Joanne; Hedley, Pete E; Morris, Jenny; Ramsay, Luke; Colas, Isabelle; Waugh, Robbie; Steffenson, Brian; Milne, Iain; Stephen, Gordon; Marshall, David; Flavell, Andrew J

    2014-01-01

    The low-recombining pericentromeric region of the barley genome contains roughly a quarter of the genes of the species, embedded in low-recombining DNA that is rich in repeats and repressive chromatin signatures. We have investigated the effects of pericentromeric region residency upon the expression, diversity and evolution of these genes. We observe no significant difference in average transcript level or developmental RNA specificity between the barley pericentromeric region and the rest of the genome. In contrast, all of the evolutionary parameters studied here show evidence of compromised gene evolution in this region. First, genes within the pericentromeric region of wild barley show reduced diversity and significantly weakened purifying selection compared with the rest of the genome. Second, gene duplicates (ohnolog pairs) derived from the cereal whole-genome duplication event ca. 60MYa have been completely eliminated from the barley pericentromeric region. Third, local gene duplication in the pericentromeric region is reduced by 29% relative to the rest of the genome. Thus, the pericentromeric region of barley is a permissive environment for gene expression but has restricted gene evolution in a sizeable fraction of barley's genes. PMID:24947331

  4. Staining paraffin embedded sections of scald of barley before paraffin removal.

    PubMed

    Xi, K; Burnett, P A

    1997-07-01

    Staining of paraffin embedded sections with periodic acid-Schiff reagent and fast green before paraffin removal resulted in differentiation of barley seed and leaf tissue from fungal structures of Rhynchosporium secalis. Crystal violet, toluidine blue O and antiline blue also successfully stained fungal structures of R. secalis in barley leaf tissues. Staining of embedded sections before paraffin removal allows simple processing of a series of sections, saves time and reduces solvent consumption.

  5. Antifungal activities of Bacillus thuringiensis isolates on barley and cucumber powdery mildews.

    PubMed

    Choi, Gyung Ja; Kim, Jin-Cheol; Jang, Kyoung Soo; Lee, Dong-Hyun

    2007-12-01

    Fourteen Bacillus thuringiensis isolates having both insecticidal activity and in vitro antifungal activity were selected and tested for in vivo antifungal activity against tomato late blight, wheat leaf rust, tomato gray mold, and barley powdery mildew in growth chambers. All the isolates represented more than 70% disease control efficacy against at least one of four plant diseases. Specifically, 12 isolates exhibited strong control activity against barley powdery mildew. Under glasshouse conditions, four (50-02, 52-08, 52-16, and 52- 18) of the isolates also displayed potent control efficacy against cucumber powdery mildew. To our knowledge, this is the first report of B. thuringiensis isolates that have disease control efficacy against powdery mildew of barley and cucumber as well as insecticidal activity.

  6. Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis

    PubMed Central

    Taketa, Shin; Yuo, Takahisa; Tonooka, Takuji; Tsumuraya, Yoichi; Inagaki, Yoshiaki; Haruyama, Naoto; Larroque, Oscar; Jobling, Stephen A.

    2012-01-01

    (1,3;1,4)-β-D-glucans (mixed-linkage glucans) are found in tissues of members of the Poaceae (grasses), and are particularly high in barley (Hordeum vulgare) grains. The present study describes the isolation of three independent (1,3;1,4)-β-D-glucanless (betaglucanless; bgl) mutants of barley which completely lack (1,3;1,4)-β-D-glucan in all the tissues tested. The bgl phenotype cosegregates with the cellulose synthase like HvCslF6 gene on chromosome arm 7HL. Each of the bgl mutants has a single nucleotide substitution in the coding region of the HvCslF6 gene resulting in a change of a highly conserved amino acid residue of the HvCslF6 protein. Microsomal membranes isolated from developing endosperm of the bgl mutants lack detectable (1,3;1,4)-β-D-glucan synthase activity indicating that the HvCslF6 protein is inactive. This was confirmed by transient expression of the HvCslF6 cDNAs in Nicotiana benthamiana leaves. The wild-type HvCslF6 gene directed the synthesis of high levels of (1,3;1,4)-β-D-glucans, whereas the mutant HvCslF6 proteins completely lack the ability to synthesize (1,3;1,4)-β-D-glucans. The fine structure of the (1,3;1,4)-β-D-glucan produced in the tobacco leaf was also very different from that found in cereals having an extremely low DP3/DP4 ratio. These results demonstrate that, among the seven CslF and one CslH genes present in the barley genome, HvCslF6 has a unique role and is the key determinant controlling the biosynthesis of (1,3;1,4)-β-D-glucans. Natural allelic variation in the HvCslF6 gene was found predominantly within introns among 29 barley accessions studied. Genetic manipulation of the HvCslF6 gene could enable control of (1,3;1,4)-β-D-glucans in accordance with the purposes of use. PMID:21940720

  7. Hulled and hull-less barley grains with the genetic trait for low-phytic acid increased the apparent total-tract digestibility of phosphorus and calcium in diets for young swine.

    PubMed

    Veum, T L; Raboy, V

    2016-03-01

    A 35-d experiment was conducted using 63 crossbred pigs (35 barrows and 28 gilts) with an initial average BW of 7.0 kg and age of 28 d to evaluate the efficacy of the low-phytic acid (LPA) genetic trait in hulled or hull-less barley in isocaloric diets. Hulled barleys were the normal barley (NB) cultivar Harrington and the near-isogenic LPA mutant 955 (M955) with P availabilities of 36 and 95%, respectively. Hull-less lines were produced by crossing NB and the LPA mutant 422 line with a hull-less line, producing hull-less NB (HNB) and hull-less mutant 422 (HM422) with P availabilities of 41 and 66%, respectively. Pigs were in individual metabolism cages or pens for Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35). Diets defined as NB, HNB, HM422, or M955 with no added inorganic P (iP) had available P (aP) concentrations of 0.27, 0.28, 0.35, and 0.40% for Phase 1 and 0.15, 0.17, 0.23, and 0.31% for Phase 2, respectively. Only diet M955 was adequate in aP. Therefore, iP was added to the P-deficient diets to make diets NB + iP, HNB + iP, and HM422 + iP with aP equal to that in diet M955. Overall (d 0 to 35), ADG and G:F were greater ( < 0.01) for pigs fed diet M955 or the diets with added iP than for pigs fed the NB diet. Serum tartrate-resistant acid phosphatase activity on d 34 was greater ( < 0.01) for pigs fed the NB or HNB diets than for pigs fed the other diets. Bone breaking strength and P absorption (g/d) were greater ( < 0.01) for pigs fed diet M955 or the diets with iP than for pigs fed the NB or HNB diets. Pigs fed diet M955 absorbed greater ( < 0.01) percentages of P and Ca and had less ( < 0.01) fecal excretion of P (g/d and %) and Ca (%) than pigs fed the other diets. In conclusion, the LPA genetic trait was effective in hulled and hull-less barley in isocaloric diets fed to young pigs. Pigs fed the diet with LPA M955 consumed 31% less P and excreted 78% less fecal P and 30% less fecal Ca than pigs fed the diet with NB + iP that was equal to diet M955 in a

  8. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.).

    PubMed

    Li, Haobing; Vaillancourt, René; Mendham, Neville; Zhou, Meixue

    2008-08-27

    Resistance to soil waterlogging stress is an important plant breeding objective in high rainfall or poorly drained areas across many countries in the world. The present study was conducted to identify quantitative trait loci (QTLs) associated with waterlogging tolerance (e.g. leaf chlorosis, plant survival and biomass reduction) in barley and compare the QTLs identified across two seasons and in two different populations using a composite map constructed with SSRs, RFLP and Diversity Array Technology (DArT) markers. Twenty QTLs for waterlogging tolerance related traits were found in the two barley double haploid (DH) populations. Several of these QTLs were validated through replication of experiments across seasons or by co-location across populations. Some of these QTLs affected multiple waterlogging tolerance related traits, for example, QTL Qwt4-1 contributed not only to reducing barley leaf chlorosis, but also increasing plant biomass under waterlogging stress, whereas other QTLs controlled both leaf chlorosis and plant survival. Improving waterlogging tolerance in barley is still at an early stage compared with other traits. QTLs identified in this study have made it possible to use marker assisted selection (MAS) in combination with traditional field selection to significantly enhance barley breeding for waterlogging tolerance. There may be some degree of homoeologous relationship between QTLs controlling barley waterlogging tolerance and that in other crops as discussed in this study.

  9. Golgi Localized Barley MTP8 Proteins Facilitate Mn Transport

    PubMed Central

    Pedas, Pai; Schiller Stokholm, Michaela; Hegelund, Josefine Nymark; Ladegård, Anne Hald; Schjoerring, Jan Kofod; Husted, Søren

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF) family in the cereal species barley (Hordeum vulgare). Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP) are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species. PMID:25486417

  10. Comparative Proteomic Analysis of Aluminum Tolerance in Tibetan Wild and Cultivated Barleys

    PubMed Central

    Dai, Huaxin; Cao, Fangbin; Chen, Xianhong; Zhang, Mian; Ahmed, Imrul Mosaddek; Chen, Zhong-Hua; Li, Chengdao; Zhang, Guoping; Wu, Feibo

    2013-01-01

    Aluminum (Al) toxicity is a major limiting factor for plant production in acid soils. Wild barley germplasm is rich in genetic diversity and may provide elite genes for crop Al tolerance improvement. The hydroponic-experiments were performed to compare proteomic and transcriptional characteristics of two contrasting Tibetan wild barley genotypes Al- resistant/tolerant XZ16 and Al-sensitive XZ61 as well as Al-resistant cv. Dayton. Results showed that XZ16 had less Al uptake and translocation than XZ61 and Dayton under Al stress. Thirty-five Al-tolerance/resistance-associated proteins were identified and categorized mainly in metabolism, energy, cell growth/division, protein biosynthesis, protein destination/storage, transporter, signal transduction, disease/defense, etc. Among them, 30 were mapped on barley genome, with 16 proteins being exclusively up-regulated by Al stress in XZ16, including 4 proteins (S-adenosylmethionine-synthase 3, ATP synthase beta subunit, triosephosphate isomerase, Bp2A) specifically expressed in XZ16 but not Dayton. The findings highlighted the significance of specific-proteins associated with Al tolerance, and verified Tibetan wild barley as a novel genetic resource for Al tolerance. PMID:23691047

  11. Landscape genomics reveal signatures of local adaptation in barley (Hordeum vulgare L.)

    PubMed Central

    Abebe, Tiegist D.; Naz, Ali A.; Léon, Jens

    2015-01-01

    Land plants are sessile organisms that cannot escape the adverse climatic conditions of a given environment. Hence, adaptation is one of the solutions to surviving in a challenging environment. This study was aimed at detecting adaptive loci in barley landraces that are affected by selection. To that end, a diverse population of barley landraces was analyzed using the genotyping by sequencing approach. Climatic data for altitude, rainfall and temperature were collected from 61 weather sites near the origin of selected landraces across Ethiopia. Population structure analysis revealed three groups whereas spatial analysis accounted significant similarities at shorter geographic distances (< 40 Km) among barley landraces. Partitioning the variance between climate variables and geographic distances indicated that climate variables accounted for most of the explainable genetic variation. Markers by climatic variables association analysis resulted in altogether 18 and 62 putative adaptive loci using Bayenv and latent factor mixed model (LFMM), respectively. Subsequent analysis of the associated SNPs revealed putative candidate genes for plant adaptation. This study highlights the presence of putative adaptive loci among barley landraces representing original gene pool of the farming communities. PMID:26483825

  12. Overexpression of HvHGGT Enhances Tocotrienol Levels and Antioxidant Activity in Barley.

    PubMed

    Chen, Jianshu; Liu, Cuicui; Shi, Bo; Chai, Yuqiong; Han, Ning; Zhu, Muyuan; Bian, Hongwu

    2017-06-28

    Vitamin E is a potent lipid-soluble antioxidant and essential nutrient for human health. Tocotrienols are the major form of vitamin E in seeds of most monocots. It has been known that homogentisate geranylgeranyl transferase (HGGT) catalyzes the committed step of tocotrienol biosynthesis. In the present study, we generated transgenic barley overexpressing HvHGGT under endogenous D-Hordein promoter (proHor). Overexpression of HvHGGT increased seed size and seed weight in transgenic barley. Notably, total tocotrienol content increased by 10-15% in seeds of transgenic lines, due to the increased levels of δ-, β-, and γ-tocotrienol, but not α-tocotrienol. Total tocopherol content decreased by 14-18% in transgenic lines, compared to wild type. The antioxidant activity of seeds was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and lipid peroxidation assays. Compared to wild type, radical scavenging activity of seed extracts was enhanced by 17-18% in transgenic lines. Meanwhile, the lipid peroxidation level was decreased by about 20% in transgenic barley seeds. Taken together, overexpression of HvHGGT enhanced the tocotrienol levels and antioxidant capacity in barley seeds.

  13. Modeling light and temperature effects on leaf emergence in wheat and barley

    NASA Technical Reports Server (NTRS)

    Volk, T.; Bugbee, B.

    1991-01-01

    Phenological development affects canopy structure, radiation interception, and dry matter production; most crop simulation models therefore incorporate leaf emergence rate as a basic parameter. A recent study examined leaf emergence rate as a function of temperature and daylength among wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Leaf emergence rate and phyllochron were modeled as functions of temperature alone, daylength alone, and the interaction between temperature and daylength. The resulting equations contained an unwieldy number of constants. Here we simplify by reducing the constants by > 70%, and show leaf emergence rate as a single response surface with temperature and daylength. In addition, we incorporate the effect of photosynthetic photon flux into the model. Generic fits for wheat and barley show cultivar differences less than +/- 5% for wheat and less than +/- 10% for barley. Barley is more sensitive to daylength changes than wheat for common environmental values of daylength, which may be related to the difference in sensitivity to daylength between spring and winter cultivars. Differences in leaf emergence rate between cultivars can be incorporated into the model by means of a single, nondimensional factor for each cultivar.

  14. Computer image analysis in caryopses quality evaluation as exemplified by malting barley

    NASA Astrophysics Data System (ADS)

    Koszela, K.; Raba, B.; Zaborowicz, M.; Przybył, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Przybył, J.

    2015-07-01

    One of the purposes to employ modern technologies in agricultural and food industry is to increase the efficiency and automation of production processes, which helps improve productive effectiveness of business enterprises, thus making them more competitive. Nowadays, a challenge presents itself for this branch of economy, to produce agricultural and food products characterized by the best parameters in terms of quality, while maintaining optimum production and distribution costs of the processed biological material. Thus, several scientific centers seek to devise new and improved methods and technologies in this field, which will allow to meet the expectations. A new solution, under constant development, is to employ the so-called machine vision which is to replace human work in both quality and quantity evaluation processes. An indisputable advantage of employing the method is keeping the evaluation unbiased while improving its rate and, what is important, eliminating the fatigue factor of the expert. This paper elaborates on the topic of quality evaluation by marking the contamination in malting barley grains using computer image analysis and selected methods of artificial intelligence [4-5].

  15. Development of functional spaghetti enriched in bioactive compounds using barley coarse fraction obtained by air classification.

    PubMed

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Messia, Maria Cristina; Marconi, Emanuele; Caboni, Maria Fiorenza

    2011-09-14

    Barley byproducts obtained by air classification have been used to produce a different barley functional spaghetti, which were compared to different commercial whole semolina samples. Total, insoluble, and soluble fiber and β-glucan contents of the barley spaghetti were found to be greater than those of commercial samples. Furthermore, it was proved that barley spaghetti reached the FDA requirements, which could allow these pastas to deserve the health claims "good source of dietary fiber" and "may reduce the risk of heart disease". When the barley coarse fraction was used, a flavan-3-ols enrichment and an increase of antioxidant activity were reported, while commercial samples showed the absence of flavan-3-ols and a higher presence of phenolic acids and tannins. Whole semolina commercial spaghetti had a significantly higher content of phenolic acids than semolina spaghetti samples. Besides, it was observed that when vital gluten was added to the spaghetti formulation, phenolic compounds were blocked in the gluten network and were partially released during the cooking process.

  16. Adaptation of barley to mild winters: A role for PPDH2

    PubMed Central

    2011-01-01

    Background Understanding the adaptation of cereals to environmental conditions is one of the key areas in which plant science can contribute to tackling challenges presented by climate change. Temperature and day length are the main environmental regulators of flowering and drivers of adaptation in temperate cereals. The major genes that control flowering time in barley in response to environmental cues are VRNH1, VRNH2, VRNH3, PPDH1, and PPDH2 (candidate gene HvFT3). These genes from the vernalization and photoperiod pathways show complex interactions to promote flowering that are still not understood fully. In particular, PPDH2 function is assumed to be limited to the ability of a short photoperiod to promote flowering. Evidence from the fields of biodiversity, ecogeography, agronomy, and molecular genetics was combined to obtain a more complete overview of the potential role of PPDH2 in environmental adaptation in barley. Results The dominant PPDH2 allele is represented widely in spring barley cultivars but is found only occasionally in modern winter cultivars that have strong vernalization requirements. However, old landraces from the Iberian Peninsula, which also have a vernalization requirement, possess this allele at a much higher frequency than modern winter barley cultivars. Under field conditions in which the vernalization requirement of winter cultivars is not satisfied, the dominant PPDH2 allele promotes flowering, even under increasing photoperiods above 12 h. This hypothesis was supported by expression analysis of vernalization-responsive genotypes. When the dominant allele of PPDH2 was expressed, this was associated with enhanced levels of VRNH1 and VRNH3 expression. Expression of these two genes is needed for the induction of flowering. Therefore, both in the field and under controlled conditions, PPDH2 has an effect of promotion of flowering. Conclusions The dominant, ancestral, allele of PPDH2 is prevalent in southern European barley germplasm

  17. Effect of co-milled wheat, green gram and barley on the rheological and quality characteristics of cookies.

    PubMed

    Tulse, Siddharth B; V, Reshma; Rajiv, Jyotsna; Sakhare, Suresh D

    2015-10-01

    Studies were carried out on the co-milling of wheat (W), green gram (GG) and barley (BR) grains using a roller milling system. The co-milled straight run flours obtained by varying proportions of wheat, barley and green gram WGGBR-1 (90:5:5), WGGBR-2 (80:10:10) and WGGBR-3 (70:15:15) were used in the cookie baking experiments. As the amount of GG and BR increased in blend, water absorption increased (56.5-58.4%) and dough stability and extensibility values decreased (104-92 mm). Hardness of cookie doughs and spread ratio (7.70-6.00) of cookies decreased and breaking strength values increased from 2900 to 3700 g in cookies made using co-milled blends WGGBR-1, WGGBR-2 and WGGBR-3. The highest breaking strength value (3700 g), large islands, gummy mouth feel and lowest overall quality score of 51.5 were recorded for cookies made with blend WGGBR-3 indicating that the cookies had unacceptable hard texture. The optimum blend for cookies was WGGBR-2 (80:10:10) and the cookies possessed slightly small islands, crisp, light texture and a pleasant taste. These cookies had 12.30 and 8.00% protein and dietary fibre as against the control cookie values of 8 and 4%, respectively. The in vitro protein digestibility of the control cookies was 61% and it was 51% for cookies made with WGGBR-2 blend. © The Author(s) 2014.

  18. Registration of 'Dan' winter hulless barley

    USDA-ARS?s Scientific Manuscript database

    Dan’ (Reg. No. CV- , PI 659066) six-rowed winter hulless barley (Hordeum vulgare L.) was developed and released by the Virginia Agricultural Experiment Station in March 2009. Dan was derived from the cross VA96-41-17 / SC872143. It was released for production in the eastern United States, as a poten...

  19. Registration of ‘Secretariat’ winter barley

    USDA-ARS?s Scientific Manuscript database

    Secretariat’ (PI 673931) is a six-row hulled winter feed barley (Hordeum vulgare L.) cultivar developed by the Virginia Agricultural Experiment Station and released in May 2014. Secretariat, formerly designated VA08B-85, was derived from the cross VA00B-199 / VA00B-259 and was developed using a mod...

  20. Evaluation of the stability of a nanoremediation strategy using barley plants.

    PubMed

    Gil-Díaz, M; González, A; Alonso, J; Lobo, M C

    2016-01-01

    This study evaluated the effectiveness of nZVI in reducing the availability of Cd, Cr or Zn in polluted soils. The influence of this nanoremediation process on the development of barley plants as well as its impact on soil properties and the stability of the metal immobilization afterwards were also evaluated in a greenhouse experiment. The application of nZVI reduced the availability of these metals in the soil, but the effectiveness of the immobilization and its stability depended on the metal chemical characteristics. Cadmium distribution in soil fractions showed an important change after the barley crop, favoring the immobilization of Cd in RS fraction for both nZVI-treated and untreated soils. The Cr immobilization was stable over the time studied and the doses of Cr were lethal for the barley plants. In contrast, the decrease of Cr availability reached after the nZVI treatment induced a reduction of soil phytotoxicity and an improvement in the development of the plants, which were able to complete their growing period. The Zn immobilization with nZVI was stable over time, but its effectiveness was moderate, and the growth of barley plants was poorer than that observed in the cases of Cd and Cr. Thus the best results of metal immobilization with nZVI were obtained for Cr-polluted soils. There was no overall increase of Fe in barley plants from nZVI-treated soils. In relation to the soil, no negative effects on its physico-chemical properties were observed after the time exposure with nZVI. Taking into account these results we can conclude that the use of nZVI is a promising remediation strategy, and its effectiveness would be conditioned to the soil properties and the bioavailable metal concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. 76 FR 61287 - Request for Public Comment on the United States Standards for Barley

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... barley marketing and define U.S. barley quality in the domestic and global marketplace. The standards define commonly used industry terms; contain basic principles governing the application of standards... standards using approved methodologies and can be applied at any point in the marketing chain. Furthermore...

  2. Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers.

    PubMed

    Chełkowski, Jerzy; Tyrka, Mirosław; Sobkiewicz, Andrzej

    2003-01-01

    Current information on barley resistance genes available from scientific papers and on-line databases is summarised. The recent literature contains information on 107 major resistance genes (R genes) against fungal pathogens (excluding powdery mildew), pathogenic viruses and aphids identified in Hordeum vulgare accessions. The highest number of resistance genes was identified against Puccinia hordei, Rhynchosporium secalis, and the viruses BaYMV and BaMMV, with 17, 14 and 13 genes respectively. There is still a lot of confusion regarding symbols for R genes against powdery mildew. Among the 23 loci described to date, two regions Mla and Mlo comprise approximately 31 and 25 alleles. Over 50 R genes have already been localised and over 30 mapped on 7 barley chromosomes. Four barley R genes have been cloned recently: Mlo, Rpg1, Mla1 and Mla6, and their structures (sequences) are available. The paper presents a catalogue of barley resistance gene symbols, their chromosomalocation and the list of available DNA markers useful in characterising cultivars and breeding accessions.

  3. Optimization of microwave-assisted extraction of flavonoids from young barley leaves

    NASA Astrophysics Data System (ADS)

    Gao, Tian; Zhang, Min; Fang, Zhongxiang; Zhong, Qifeng

    2017-01-01

    A central composite design combined with response surface methodology was utilized to optimise microwave-assisted extraction of flavonoids from young barley leaves. The results showed that using water as solvent, the optimum conditions of microwave-assisted extraction were extracted twice at 1.27 W g-1 microwave power and liquid-solid ratio 34.02 ml g-1 for 11.12 min. The maximum extraction yield of flavonoids (rutin equivalents) was 80.78±0.52%. Compared with conventional extraction method, the microwave-assisted extraction was more efficient as the extraction time was only 6.18% of conventional extraction, but the extraction yield of flavonoids was increased by 5.47%. The main flavonoid components from the young barley leaf extract were probably 33.36% of isoorientin-7-O-glueoside and 54.17% of isovitexin-7-O-glucoside, based on the HPLC-MS analysis. The barley leaf extract exhibited strong reducing power as well as the DPPH radical scavenging capacity.

  4. Changes in isovitexin-O-glycosylation during the development of young barley plants.

    PubMed

    Brauch, Dominic; Porzel, Andrea; Schumann, Erika; Pillen, Klaus; Mock, Hans-Peter

    2018-04-01

    Phenylpropanoids are a class of plant natural products that have many biological functions, including stress defence. In barley, phenylpropanoids have been described as having protective properties against excess UV-B radiation and have been linked to resistance to pathogens. Although the phenylpropanoid composition of barley has recently been addressed in more detail, the biosynthesis and regulation of this pathway have not been fully established. Barley introgression lines, such as the S42IL-population offer a set of genetically diverse plants that enable the correlation of metabolic data to distinct genetic regions on the barley genome and, subsequently, identification of relevant genes. The phenylpropanoid profiles of the first and third leaf of barley seedlings in Scarlett and four members of the S42IL-population were obtained by LC-MS. Comparison of the leaf profiles revealed a change in the glycosylation pattern of the flavone-6-C-glucoside isovitexin in the elite cultivar Scarlett. The change was characterized by the stepwise decrease in isovitexin-7-O-glucoside (saponarin) and an increase in isovitexin-2″-O-β-D-glucoside content. The lines S42IL-101-, -177 and -178 were completely devoid of isovitexin-2″-O-β-D-glucoside. Parallel glucosyltransferase assays were consistent with the observed metabolic patterns. The genetic region responsible for this metabolic effect was located on chromosome 1H between 0.21 and 15.08 cM, encompassing 505 gene candidates in the genome of the sequenced cultivar Morex. Only one of these genes displayed sequence similarity with glucosyltransferases of plant secondary metabolism that possessed the characteristic PSPG motif. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways.

    PubMed

    Manova, Vasilissa; Georgieva, Ralitsa; Borisov, Borislav; Stoilov, Lubomir

    2016-10-01

    Barley stress response to ultraviolet radiation (UV) has been intensively studied at both the physiological and morphological level. However, the ability of barley genome to repair UV-induced lesions at the DNA level is far less characterized. In this study, we have investigated the relative contribution of light-dependent and dark DNA repair pathways for the efficient elimination of cyclobutane pyrimidine dimers (CPDs) from the genomic DNA of barley leaf seedlings. The transcriptional activity of barley CPD photolyase gene in respect to the light-growth conditions and UV-C irradiation of the plants has also been analyzed. Our results show that CPDs induced in the primary barley leaf at frequencies potentially damaging DNA at the single-gene level are removed efficiently and exclusively by photorepair pathway, whereas dark repair is hardly detectable, even at higher CPD frequency. A decrease of initially induced CPDs under dark is observed but only after prolonged incubation, suggesting the activation of light-independent DNA damage repair and/or tolerance mechanisms. The green barley seedlings possess greater capacity for CPD photorepair than the etiolated ones, with efficiency of CPD removal dependent on the intensity and quality of recovering light. The higher repair rate of CPDs measured in the green leaves correlates with the higher transcriptional activity of barley CPD photolyase gene. Visible light and UV-C radiation affect differentially the expression of CPD photolyase gene particularly in the etiolated leaves. We propose that the CPD repair potential of barley young seedlings may influence their response to UV-stress. © 2016 Scandinavian Plant Physiology Society.

  6. iTAG Barley: A 9-12 classroom module to explore gene expression and segregation using Oregon Wolfe Barley

    USDA-ARS?s Scientific Manuscript database

    The Oregon Wolfe Barleys (OWBs) are a model resource for genetics research and instruction (http://barleyworld.org/oregonwolfe ; http://wheat.pw.usda.gov/ggpages/OWB_gallery/ISS-OWB/index.htm). The population of 94 doubled haploid lines was developed from an F1 of a cross between dominant and reces...

  7. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat.

    PubMed

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8 ) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici . Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei . Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  8. Redox-dependent interaction between thaumatin-like protein and β-glucan influences malting quality of barley.

    PubMed

    Singh, Surinder; Tripathi, Rajiv K; Lemaux, Peggy G; Buchanan, Bob B; Singh, Jaswinder

    2017-07-18

    Barley is the cornerstone of the malting and brewing industry. It is known that 250 quantitative trait loci (QTLs) of the grain are associated with 19 malting-quality phenotypes. However, only a few of the contributing genetic components have been identified. One of these, on chromosome 4H, contains a major malting QTL, QTL2, located near the telomeric region that accounts, respectively, for 28.9% and 37.6% of the variation in the β-glucan and extract fractions of malt. In the current study, we dissected the QTL2 region using an expression- and microsynteny-based approach. From a set of 22 expressed sequence tags expressed in seeds at the malting stage, we identified a candidate gene, TLP8 ( thaumatin-like protein 8 ), which was differentially expressed and influenced malting quality. Transcript abundance and protein profiles of TLP8 were studied in different malt and feed varieties using quantitative PCR, immunoblotting, and enzyme-linked immunosorbent assay (ELISA). The experiments demonstrated that TLP8 binds to insoluble (1, 3, 1, 4)-β-D glucan in grain extracts, thereby facilitating the removal of this undesirable polysaccharide during malting. Further, the binding of TLP8 to β-glucan was dependent on redox. These findings represent a stride forward in our understanding of the malting process and provide a foundation for future improvements in the final beer-making process.

  9. 2012 Mississippi Valley Uniform Regional Barley Nursery

    USDA-ARS?s Scientific Manuscript database

    It was a much better year for the barley nursery than last year when only four locations were able to contribute useable data for the report. Much drier weather prevailed during this growing season. The reader is referred to the "Nursery Conditions" section immediately following thi...

  10. Using ATR-FT/IR molecular spectroscopy to detect effects of blend DDGS inclusion level on the molecular structure spectral and metabolic characteristics of the proteins in hulless barley

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewei; Yu, Peiqiang

    2012-09-01

    The objectives of this study were to investigate the effects of inclusion of a bioethanol co-product of blend DDGS (wheat:corn = 70%:30%) on protein molecular structure spectral and metabolic characteristics in hulless barley-based feed using ATR-FT/IR molecular spectroscopy. Hulless barley grain with the blend DDGS were mixed in the five ratios. The results showed that when blend DDGS was included at an increased ratio, predicted truly absorbed protein supply was highly and linearly increased (P < 0.05) from 98 to 245 g kg-1 DM and degraded protein balance was increased (P < 0.05) from -1 to 75 g kg-1 DM. The ratio of amide I to II peak area was increased (P < 0.05) in the original combination samples but decreased (P < 0.05) in the in situ 48 h residue samples. The ratio of α-helix to β-sheet peak height was quadratically changed with increasing inclusion rate of blend DDGS in the original samples, but no difference among the in situ 48 h residue samples, indicating completion of protein degradation. No correlation was found between protein 2nd structures and protein nutrient profiles not only for the original combination samples (except NPN) but also for in situ 48 h residue samples. This study may provide information on how protein molecular structure and metabolic characteristic changes after feed combination and how more effectively utilize hulless barley and blend co-products for dairy and beef cattle.

  11. Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with beta-glucan.

    PubMed

    Bourdon, I; Yokoyama, W; Davis, P; Hudson, C; Backus, R; Richter, D; Knuckles, B; Schneeman, B O

    1999-01-01

    Fiber regulates the rate and site of lipid and carbohydrate digestion and absorption and thus can modify the alimentary responses to a meal. When fiber sources containing viscous polysaccharides are included in a meal, a slower rate of carbohydrate and lipid absorption will modify the alimentary hormone and lipid responses. We investigated in 11 healthy men the response of insulin, glucose, cholecystokinin, and lipid to 2 test meals containing beta-glucan. One of the meals was high in fiber (15.7 g) and the other meal was low in fiber (5.0 g). The low-fiber meal contained pasta made with wheat flour. The high-fiber meals contained pasta prepared by replacing 40% of the wheat with 2 types of barley flour: barley naturally high in beta-glucan and the other a flour enriched in beta-glucan during processing. Plasma glucose and insulin concentrations increased significantly after all meals but the insulin response was more blunted after the barley-containing meals. The test meals were low in fat (25% of energy) but elicited an increase in plasma triacylglycerol and cholecystokinin. Cholecystokinin remained elevated for a longer time after the barley-containing meals. After the low-fiber meal, plasma cholesterol concentrations did not change significantly; however, 4 h after the barley-containing meals, the cholesterol concentration dropped below the fasting concentration and was significantly lower than that after the low-fiber meal. Carbohydrate was more slowly absorbed from the 2 high-fiber meals. Consumption of the barley-containing meals appeared to stimulate reverse cholesterol transport, which may contribute to the cholesterol-lowering ability of barley.

  12. 40 CFR 180.665 - Sedaxane; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., grain 0.01 Barley, hay 0.04 Barley, straw 0.01 Canola, seed 0.01 Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.01 Oat, forage 0.015...

  13. 40 CFR 180.665 - Sedaxane; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., grain 0.01 Barley, hay 0.04 Barley, straw 0.01 Canola, seed 0.01 Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.01 Oat, forage 0.015...

  14. Chlorine inactivation of fungal spores on cereal grains.

    PubMed

    Andrews, S; Pardoel, D; Harun, A; Treloar, T

    1997-04-01

    Although 0.4% chlorine for 2 min has been recommended for surface disinfection of food samples before direct plating for fungal enumeration, this procedure may not be adequate for highly contaminated products. The effectiveness of a range of chlorine solutions was investigated using barley samples artificially contaminated with four different concentrations of Aspergillus flavus. A. niger, A. ochraceus, Eurotium repens, Penicillium brevicompactum P. chrysogenum and Cladosporium cladosporioides. At initial contamination levels greater than 10(4)/g, 0.4% chlorine did not inactivate sufficient spores to produce less than 20% contamination. Of the test fungi, ascospores of E. repens were the most resistant to chlorine inactivation, whereas the conidia of C. cladosporioides were the most sensitive. Rinsing the samples with 70% ethanol improved the effectiveness of the recommended surface disinfection procedure. However, some ethanol appears to permeate into the grains and may inactivate sensitive internal fungi, although a minimal effect only was observed on wheat infected with Alternaria.

  15. Genetic dissection of barley morphology and development.

    PubMed

    Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Houston, Kelly; Radovic, Slobodanka; Shahinnia, Fahimeh; Vendramin, Vera; Morgante, Michele; Stein, Nils; Waugh, Robbie

    2011-02-01

    Since the early 20th century, barley (Hordeum vulgare) has been a model for investigating the effects of physical and chemical mutagens and for exploring the potential of mutation breeding in crop improvement. As a consequence, extensive and well-characterized collections of morphological and developmental mutants have been assembled that represent a valuable resource for exploring a wide range of complex and fundamental biological processes. We constructed a collection of 881 backcrossed lines containing mutant alleles that induce a majority of the morphological and developmental variation described in this species. After genotyping these lines with up to 3,072 single nucleotide polymorphisms, comparison to their recurrent parent defined the genetic location of 426 mutant alleles to chromosomal segments, each representing on average <3% of the barley genetic map. We show how the gene content in these segments can be predicted through conservation of synteny with model cereal genomes, providing a route to rapid gene identification.

  16. Metabolic Architecture of the Cereal Grain and Its Relevance to Maximize Carbon Use Efficiency1[OPEN

    PubMed Central

    Rolletschek, Hardy; Grafahrend-Belau, Eva; Munz, Eberhard; Radchuk, Volodymyr; Kartäusch, Ralf; Tschiersch, Henning; Melkus, Gerd; Schreiber, Falk; Jakob, Peter M.; Borisjuk, Ljudmilla

    2015-01-01

    Here, we have characterized the spatial heterogeneity of the cereal grain’s metabolism and demonstrated how, by integrating a distinct set of metabolic strategies, the grain has evolved to become an almost perfect entity for carbon storage. In vivo imaging revealed light-induced cycles in assimilate supply toward the ear/grain of barley (Hordeum vulgare) and wheat (Triticum aestivum). In silico modeling predicted that, in the two grain storage organs (the endosperm and embryo), the light-induced shift in solute influx does cause adjustment in metabolic flux without changes in pathway utilization patterns. The enveloping, leaf-like pericarp, in contrast, shows major shifts in flux distribution (starch metabolism, photosynthesis, remobilization, and tricarboxylic acid cycle activity) allow to refix 79% of the CO2 released by the endosperm and embryo, allowing the grain to achieve an extraordinary high carbon conversion efficiency of 95%. Shading experiments demonstrated that ears are autonomously able to raise the influx of solutes in response to light, but with little effect on the steady-state levels of metabolites or transcripts or on the pattern of sugar distribution within the grain. The finding suggests the presence of a mechanism(s) able to ensure metabolic homeostasis in the face of short-term environmental fluctuation. The proposed multicomponent modeling approach is informative for predicting the metabolic effects of either an altered level of incident light or a momentary change in the supply of sucrose. It is therefore of potential value for assessing the impact of either breeding and/or biotechnological interventions aimed at increasing grain yield. PMID:26395842

  17. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew.

    PubMed

    Eichmann, Ruth; Bischof, Melanie; Weis, Corina; Shaw, Jane; Lacomme, Christophe; Schweizer, Patrick; Duchkov, Dimitar; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2010-09-01

    BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death-provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.

  18. Alternative Splicing of Barley Clock Genes in Response to Low Temperature

    PubMed Central

    Calixto, Cristiane P. G.; Simpson, Craig G.; Waugh, Robbie; Brown, John W. S.

    2016-01-01

    Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement. PMID:27959947

  19. A Transgenic Transcription Factor (TaDREB3) in Barley Affects the Expression of MicroRNAs and Other Small Non-Coding RNAs

    PubMed Central

    Hackenberg, Michael; Shi, Bu-Jun; Gustafson, Perry; Langridge, Peter

    2012-01-01

    Transcription factors (TFs), microRNAs (miRNAs), small interfering RNAs (siRNAs) and other functional non-coding small RNAs (sRNAs) are important gene regulators. Comparison of sRNA expression profiles between transgenic barley over-expressing a drought tolerant TF (TaDREB3) and non-transgenic control barley revealed many group-specific sRNAs. In addition, 42% of the shared sRNAs were differentially expressed between the two groups (|log2| >1). Furthermore, TaDREB3-derived sRNAs were only detected in transgenic barley despite the existence of homologous genes in non-transgenic barley. These results demonstrate that the TF strongly affects the expression of sRNAs and siRNAs could in turn affect the TF stability. The TF also affects size distribution and abundance of sRNAs including miRNAs. About half of the sRNAs in each group were derived from chloroplast. A sRNA derived from tRNA-His(GUG) encoded by the chloroplast genome is the most abundant sRNA, accounting for 42.2% of the total sRNAs in transgenic barley and 28.9% in non-transgenic barley. This sRNA, which targets a gene (TC245676) involved in biological processes, was only present in barley leaves but not roots. 124 and 136 miRNAs were detected in transgenic and non-transgenic barley, respectively. miR156 was the most abundant miRNA and up-regulated in transgenic barley, while miR168 was the most abundant miRNA and up-regulated in non-transgenic barley. Eight out of 20 predicted novel miRNAs were differentially expressed between the two groups. All the predicted novel miRNA targets were validated using a degradome library. Our data provide an insight into the effect of TF on the expression of sRNAs in barley. PMID:22870277

  20. Barley stripe mosaic virus (BSMV) as a virus-induced gene silencing vector in maize seedlings

    USDA-ARS?s Scientific Manuscript database

    Barley stripe mosaic virus (BSMV; genus Hordeivirus family Virgaviridae) was the first reported and still widely used virus-induced gene silencing (VIGS) vector for monocotyledons. The utility of the virus as VIGS vector has been demonstrated in monocotyledonous hosts including wheat and barley. Des...

  1. Influence of jet-cooking Prowashonupana barley flour on phenolic composition, antioxidant activities, and viscoelastic properties

    USDA-ARS?s Scientific Manuscript database

    The influence of jet-cooking Prowashonupana barley flour on total phenolic contents, antioxidant activities, water holding capacities, and viscoelastic properties was studied. Barley flour was jet-cooked without or with pH adjustment at 7, 9, or 11. Generally, the free phenolic content and antioxi...

  2. 40 CFR 180.253 - Methomyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Asparagus 2 None Avocado 2 None Barley, grain 1 None Barley, hay 10 None Barley, straw 10 None Bean, dry, seed 0.1 None Bean, forage 10 None Bean, succulent 2 None Beet, garden, tops 6 None Bermudagrass...

  3. 40 CFR 180.253 - Methomyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Asparagus 2 None Avocado 2 None Barley, grain 1 None Barley, hay 10 None Barley, straw 10 None Bean, dry, seed 0.1 None Bean, forage 10 None Bean, succulent 2 None Beet, garden, tops 6 None Bermudagrass...

  4. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  5. Community dynamics and metabolite target analysis of spontaneous, backslopped barley sourdough fermentations under laboratory and bakery conditions.

    PubMed

    Harth, Henning; Van Kerrebroeck, Simon; De Vuyst, Luc

    2016-07-02

    Barley flour is not commonly used for baking because of its negative effects on bread dough rheology and loaf volume. However, barley sourdoughs are promising ingredients to produce improved barley-based breads. Spontaneous barley sourdough fermentations were performed through backslopping (every 24h, 10days) under laboratory (fermentors, controlled temperature of 30°C, high dough yield of 400) and bakery conditions (open vessels, ambient temperature of 17-22°C, low dough yield of 200), making use of the same batch of flour. They differed in pH evolution, microbial community dynamics, and lactic acid bacteria (LAB) species composition. After ten backsloppings, the barley sourdoughs were characterized by the presence of the LAB species Lactobacillus fermentum, Lactobacillus plantarum, and Lactobacillus brevis in the case of the laboratory productions (fast pH decrease, pH<4.0 after two backslopping steps), and of Leuconostoc citreum, Leuconostoc mesenteroides, Weissella confusa and Weissella cibaria in the case of the bakery productions (slow pH decrease, pH4.0 after eight backslopping steps). In both sourdough productions, Saccharomyces cerevisiae was the sole yeast species. Breads made with wheat flour supplemented with 20% (on flour basis) barley sourdough displayed a firmer texture, a smaller volume, and an acceptable flavour compared with all wheat-based reference breads. Hence, representative strains of the LAB species mentioned above, adapted to the environmental conditions they will be confronted with, may be selected as starter cultures for the production of stable barley sourdoughs and flavourful breads. Copyright © 2016. Published by Elsevier B.V.

  6. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    PubMed Central

    Brod, Eva; Øgaard, Anne Falk; Krogstad, Tore; Haraldsen, Trond Knapp; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP) and an unfertilized control (NoP) in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil) and pH 6.2 (limed soil). In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥fish sludge ≥wood ash ≥meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare). The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilization and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers. PMID:27243015

  7. Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques.

    PubMed

    Ebrahimi-Najafabadi, Heshmatollah; Leardi, Riccardo; Oliveri, Paolo; Casolino, Maria Chiara; Jalali-Heravi, Mehdi; Lanteri, Silvia

    2012-09-15

    The current study presents an application of near infrared spectroscopy for identification and quantification of the fraudulent addition of barley in roasted and ground coffee samples. Nine different types of coffee including pure Arabica, Robusta and mixtures of them at different roasting degrees were blended with four types of barley. The blending degrees were between 2 and 20 wt% of barley. D-optimal design was applied to select 100 and 30 experiments to be used as calibration and test set, respectively. Partial least squares regression (PLS) was employed to build the models aimed at predicting the amounts of barley in coffee samples. In order to obtain simplified models, taking into account only informative regions of the spectral profiles, a genetic algorithm (GA) was applied. A completely independent external set was also used to test the model performances. The models showed excellent predictive ability with root mean square errors (RMSE) for the test and external set equal to 1.4% w/w and 0.8% w/w, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Mutagenesis of Saccharomyces cerevisiae by sodium azide activated in barley.

    PubMed

    Velemínský, J; Silhánková, L; Smiovská, V; Gichner, T

    1979-07-01

    Concentrated dialysate of the extract prepared from barley seeds treated with sodium azide increased up to 100--200 times the frequency of forward mutations to cycloheximide resistance in the excision-deficient UV-sensitive heploid strain rad2-5 of Saccharomyces cerevisiae, when applied to growing cells in complete medium at pH 4.2. Only a slight increase of mutation frequency (less than 4 times) was found in the haploid RAD+ strain treated in the same way as well as in haploid RAD+ and rad2-5 strains treated directly by sodium azide. In contrast with the barley-activated sodium azide, UV irradiation was more effective in the induction of cycloheximide resistance in the RAD+ strain than in the RAD2-5 mutant. The dialysate from azide-treated barley seeds, applied at both pH 4.2 and pH 9, also significantly increased the frequency of locus-specific suppressor mutations to isoleucine independence and -- to a lesser extent -- reversions and/or gene conversions in the trp5 locus in growing cells of the diploid strain D7. The dialysate was also mutagenic in resting cells of strains D7 and rad2-5 but with lower effectiveness.

  9. Transposition of the maize transposable element Ac in barley (Hordeum vulgare L.).

    PubMed

    Scholz, S; Lörz, H; Lütticke, S

    2001-01-01

    Transposition of the maize autonomous element Ac (Activator) was investigated in barley (Hordeum vulgare L.) with the aim of developing a transposon tagging system for the latter. The Ac element was introduced into meristematic tissue of barley by microprojectile bombardment. Transposon activity was then examined in the resulting transgenic plants. Multiple excision events were detected in leaf tissue of all plant lines. The mobile elements generated empty donor sites with small DNA sequence alterations, similar to those found in maize. Reintegration of Ac at independent genomic loci in somatic tissue was demonstrated by isolation of new element-flanking regions by AIMS-PCR (amplification of insertion-mutagenized sites). In addition, transmission of transposed Ac elements to progeny plants was confirmed. The results indicate that the introduced Ac element is able to transpose in barley. This is a first step towards the establishment of a transposon tagging system in this economically important crop.

  10. Elucidation of the origin of 'agriocrithon' based on domestication genes questions the hypothesis that Tibet is one of the centers of barley domestication.

    PubMed

    Pourkheirandish, Mohammad; Kanamori, Hiroyuki; Wu, Jianzhong; Sakuma, Shun; Blattner, Frank R; Komatsuda, Takao

    2018-05-01

    Wild barley forms a two-rowed spike with a brittle rachis whereas domesticated barley has two- or six-rowed spikes with a tough rachis. Like domesticated barley, 'agriocrithon' forms a six-rowed spike; however, the spike is brittle as in wild barley, which makes the origin of agriocrithon obscure. Haplotype analysis of the Six-rowed spike 1 (vrs1) and Non-brittle rachis 1 (btr1) and 2 (btr2) genes was conducted to infer the origin of agriocrithon barley. Some agriocrithon barley accessions (eu-agriocrithon) carried Btr1 and Btr2 haplotypes that are not found in any cultivars, implying that they are directly derived from wild barley through a mutation at the vrs1 locus. Other agriocrithon barley accessions (pseudo-agriocrithon) carried Btr1 or Btr2 from cultivated barley, thus implying that they originated from hybridization between six-rowed landraces carrying btr1Btr2 and Btr1btr2 genotypes followed by recombination to produce Btr1Btr2. All materials we collected from Tibet belong to pseudo-agriocrithon and thus do not support the Tibetan Plateau as being a center of barley domestication. Tracing the evolutionary history of these allelic variants revealed that eu-agriocrithon represents six-rowed barley lineages that were selected by early farmers, once in south-eastern Turkmenistan (vrs1.a1) and again in the eastern part of Uzbekistan (vrs1.a4). © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  11. The impact of short-term UV irradiation on grains of sensitive and tolerant cereal genotypes studied by EPR.

    PubMed

    Kurdziel, Magdalena; Filek, Maria; Łabanowska, Maria

    2018-05-01

    UV irradiation has ionisation character and leads to the generation of reactive oxygen species (ROS). The destructive character of ROS was observed among others during interaction of cereal grains with ozone and was caused by changes in structures of biomolecules leading to the formation of stable organic radicals. That effect was more evident for stress sensitive genotypes. In this study we investigated the influence of UV irradiation on cereal grains originating from genotypes with different tolerance to oxidative stress. Grains and their parts (endosperm, embryo and seed coat) of barley, wheat and oat were subjected to short-term UV irradiation. It was found that UV caused the appearance of various kinds of reactive species (O 2 -• , H 2 O 2 ) and stable radicals (semiquinone, phenoxyl and carbon-centred). Simultaneously, lipid peroxidation occurred and the organic structure of Mn(II) and Fe(III) complexes become disturbed. UV irradiation causes damage of main biochemical structures of plant tissues, the effect is more significant in sensitive genotypes. In comparison with ozone treatment, UV irradiation leads to stronger destruction of biomolecules in grains and their parts. It is caused by the high energy of UV light, facilitating easier breakage of molecular bonds in biochemical compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Characterization of barley Prp1 gene and its expression during seed development and under abiotic stress.

    PubMed

    Jiang, Qian-Tao; Liu, Tao; Ma, Jian; Wei, Yu-Ming; Lu, Zhen-Xiang; Lan, Xiu-Jin; Dai, Shou-Fen; Zheng, You-Liang

    2011-10-01

    The pre-mRNA processing (Prp1) gene encodes a spliceosomal protein. It was firstly identified in fission yeast and plays a regular role during spliceosome activation and cell cycle. Plant Prp1 genes have only been identified from rice, Sorghum and Arabidopsis thaliana. In this study, we reported the identification and isolation of a novel Prp1 gene from barley, and further explored its expressional pattern by using real-time quantitative RTPCR, promoter prediction and analysis of microarray data. The putative barley Prp1 protein has a similar primary structure features to those of other known Prp1 protein in this family. The results of amino acid comparison indicated that Prp1 protein of barley and other plant species has a highly conserved 30 termnal region while their 50 sequences greatly varied. The results of expressional analysis revealed that the expression level of barley Prp1 gene is always stable in different vegetative tissues, except it is up-regulated at the mid- and late stages of seed development or under the condition of cold stress. This kind of expressional pattern for barley Prp1 is also supported by our results of comparison of microarray data from barley, rice and Arabidopsis. For the molecular mechanism of its expressional pattern, we conclude that the expression of Prp1 gene may be up-regulated by the increase of pre-mRNAs and not be constitutive or ubiquitous.

  13. Effect of natural flocculants on purity and properties of β-glucan extracted from barley and oat.

    PubMed

    Kurek, Marcin Andrzej; Karp, Sabina; Stelmasiak, Adrian; Pieczykolan, Ewelina; Juszczyk, Karolina; Rieder, Anne

    2018-05-15

    In this study, β-glucan was extracted from wholegrain oat and barley flours by a novel extraction and purification method employing natural flocculants (chitosan, guar gum and gelatin). The use of flocculants decreased the total amount of extracted gum, which was highest in control samples (9.07 and 7.9% for oat and barley, respectively). The β-glucan specific yield, however, increased with the use of chitosan and guar gum, which were able to remove protein and ash impurities resulting in gums with a higher purity.The highest concentration of chitosan (0.6 %) resulted in gums with the highest β-glucan content (82.0 ± 0.23 and 79.0 ± 0.19 for barley and oat, respectively) and highest β-glucan specific yield (96.9 and 93.3 % for oat and barley, respectively). Explanation is in R&D section. The use of gelatin was not successful. All gum samples had a high content of total dietary fiber (>74%) and a high water holding capacity (4.6-7.4 g/g), but differed in apparent viscosity, which was highest for the oat sample extracted with 0.6% chitosan. This sample also showed the highest β-glucan molecular weight among the oat samples, which were in general 10-fold higher than for the barley samples. Among the barley samples, β-glucan molecular weight was highest for the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat

    PubMed Central

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L.; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F.; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A.; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus. PMID:28018377

  15. Effect of β-glucan-rich barley flour fraction on rheology and quality of frozen yeasted dough.

    PubMed

    Hamed, Abdelmagid; Ragaee, Sanaa; Abdel-Aal, El-Sayed M

    2014-12-01

    Research has shown that prolonged frozen storage of bread dough reduces the quality of the end product. In this study, the effect of air-classified barley flour fraction rich in β-glucan (approximately 25%) on rheology and quality of frozen yeasted bread dough was investigated. Wheat flour (W) was replaced by air-classified barley flour fraction (B) at 10% without or with 1.4% vital gluten to produce β-glucan enriched barley dough (WB) or barley dough plus gluten (WB + G). Dough products were stored at -18 ºC for 8 wk and their rheological properties were investigated weekly. During frozen storage dough extensibility increased, while elastic and viscous moduli decreased. Differential scanning calorimeter and nuclear magnetic resonance data indicated that WB and WB + G dough products contained approximately 10% less freezable water and 9% more bound water compared to the control dough (W). β-Glucan enriched dough also exhibited less changes in gluten network as shown by SEM photographs. The addition of air-classified barley flour fraction at 10% in frozen dough reduced deterioration effects caused by frozen storage via minimizing water redistribution and maintaining rheological properties of frozen dough. © 2014 Institute of Food Technologists®

  16. Enzymatic fractionation of SAA-pretreated barley straw for production of fuel ethanol and astaxanthin as a value-added co-product

    USDA-ARS?s Scientific Manuscript database

    Barley straw was used to demonstrate a process for production of ethanol and astaxanthin as a value-added co-product. Barley straw was pretreated by soaking in aqueous ammonia (SAA) using the previously determined optimum conditions. The pretreated barley straw was first hydrolyzed with Accellerase®...

  17. Safeguarding world wheat and barley production against Russian wheat aphid: An international pre-breeding initiative

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid (RWA), Diuraphis noxia, is one of the most damaging insect pests of wheat and barley throughout the World. This aphid, although is not yet present in Australia, is extremely damaging with up to 70% yield loses in wheat and barley producing lands, causing significant financia...

  18. Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA

    NASA Astrophysics Data System (ADS)

    Rong, Youmin; Zhang, Zhen; Zhang, Guojun; Yue, Chen; Gu, Yafei; Huang, Yu; Wang, Chunming; Shao, Xinyu

    2015-04-01

    The laser brazing (LB) is widely used in the automotive industry due to the advantages of high speed, small heat affected zone, high quality of welding seam, and low heat input. Welding parameters play a significant role in determining the bead geometry and hence quality of the weld joint. This paper addresses the optimization of the seam shape in LB process with welding crimping butt of 0.8 mm thickness using back propagation neural network (BPNN) and genetic algorithm (GA). A 3-factor, 5-level welding experiment is conducted by Taguchi L25 orthogonal array through the statistical design method. Then, the input parameters are considered here including welding speed, wire speed rate, and gap with 5 levels. The output results are efficient connection length of left side and right side, top width (WT) and bottom width (WB) of the weld bead. The experiment results are embed into the BPNN network to establish relationship between the input and output variables. The predicted results of the BPNN are fed to GA algorithm that optimizes the process parameters subjected to the objectives. Then, the effects of welding speed (WS), wire feed rate (WF), and gap (GAP) on the sum values of bead geometry is discussed. Eventually, the confirmation experiments are carried out to demonstrate the optimal values were effective and reliable. On the whole, the proposed hybrid method, BPNN-GA, can be used to guide the actual work and improve the efficiency and stability of LB process.

  19. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley.

    PubMed

    Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2016-07-01

    Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. A Barley ROP GTPase ACTIVATING PROTEIN Associates with Microtubules and Regulates Entry of the Barley Powdery Mildew Fungus into Leaf Epidermal Cells[C][W

    PubMed Central

    Hoefle, Caroline; Huesmann, Christina; Schultheiss, Holger; Börnke, Frederik; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2011-01-01

    Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry. PMID:21685259

  1. Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases

    PubMed Central

    Cambra, Inés; Hernández, David; Diaz, Isabel; Martinez, Manuel

    2012-01-01

    C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed. PMID:22615948

  2. Antidepressant-like effects of young green barley leaf (Hordeum vulgare L.) in the mouse forced swimming test.

    PubMed

    Yamaura, Katsunori; Nakayama, Noriyuki; Shimada, Maki; Bi, Yuanyuan; Fukata, Hideki; Ueno, Koichi

    2012-01-01

    Young green barley leaf is one of the richest sources of antioxidants and has been widely consumed for health management in Japan. In this study, we examined whether oral administration of young green barley leaf has an antidepressant effect on the forced swimming test in mice. Mice were individually forced to swim in an open cylindrical container, one hour after oral administration of young green barley leaf (400 or 1000 mg / kg) or imipramine (100 mg / kg). Expression of mRNA for nerve growth factor (NGF), brain-derived neurotrophic factor, and glucocorticoid receptor in the brain was analyzed using real-time quantitative polymerase chain reaction (PCR). There was a significant antidepressant-like effect in the forced swimming test; both 400 and 1000 mg / kg young green barley leaves, as well as the positive control imipramine (100 mg / kg), reduced the immobility duration compared to the vehicle group. The expression of mRNA for NGF detected in the hippocampus immediately after the last swimming test was higher than that in the non-swimming group (Nil). Oral administration of imipramine suppressed this increase to the level of the Nil group. Young green barley leaf (400 and 1000 mg / kg) also showed a moderate decrease in the expression of mRNA for NGF, in a dose-dependent manner. Oral administration of young green barley leaf is able to produce an antidepressant-like effect in the forced swimming test. Consequently it is possible that the antidepressant-like effects of the young green barley leaf are, at least in part, mediated by an inhibition of the increase in the hippocampus levels of NGF.

  3. Microbiological and technological characterization of sourdoughs destined for bread-making with barley flour.

    PubMed

    Zannini, Emanuele; Garofalo, Cristiana; Aquilanti, Lucia; Santarelli, Sara; Silvestri, Gloria; Clementi, Francesca

    2009-10-01

    The aim of the present study was the microbiological and technological characterization of laboratory- made sourdoughs for use in barley-flour-based bread-making. A defined multi-strain starter culture consisting of selected lactic acid bacteria (LAB) and yeasts from wheat sourdoughs was inoculated into three flour-water mixtures, composed of: (i) 100% wheat flour (ii) 50% wheat flour and 50% hull-less barley flour (composite flour); (iii) 100% hull-less barley flour. After two months of continuous propagation, the chemical characteristics of the three sourdoughs were investigated by measuring: pH, total titratable acidity and concentrations of various microbial metabolites by HPLC (i.e. lactic, acetic, phenyllactic and butyric acids and diacetyl). The microbial traits were studied through viable counts, isolation and typing of LAB and yeasts and PCR-DGGE analyses. Only Saccharomyces cerevisiae and Lactobacillus plantarum were detectable in the sourdoughs together with other lactobacilli species which were different depending on the type of flour blend used. The molecular typing of the isolates highlighted that only a few strains among those initially inoculated prevailed. The volume increases of the three types of sourdough were also investigated and a correlation was seen between an increase in the barley flour content and a reduction in the dough volume.

  4. Alkylresorcinols in selected Polish rye and wheat cereals and whole-grain cereal products.

    PubMed

    Kulawinek, Mariola; Jaromin, Anna; Kozubek, Arkadiusz; Zarnowski, Robert

    2008-08-27

    The alkylresorcinol content and homologue composition in selected Polish rye and wheat cultivars and selected whole-grain cereal products were determined in this study. Cereal grains and whole-grain cereal products were extracted with acetone, whereas bread types were extracted with hot 1-propanol. The average alkylresorcinol content in tested rye (approximately 1100 mg/kg DM) and wheat (approximately 800 mg/kg DM) grains harvested in Poland was within the range previously reported in Swedish and Finnish samples. The total alkylresorcinol content in tested cereal products available on the Polish market varied from very low levels in barley grain-based foods up to 3000 mg/kg DM in wheat bran. The total alkylresorcinol content in 14 bread samples extracted with hot 1-propanol varied from approximately 100 mg/kg DM in whole bread made with honey up to approximately 650 mg/kg DM in whole-rye bread. Calculated ratios of C17:0 to C21:0 homologues, a useful parameter previously used to distinguish between rye and wheat cereals and their derived products, was about 1.2-1.4 in rye products, about 0.2 in wheat products, and varied between 0.2 and 0.6 in cereal-derived products containing a mixture of whole rye and/or wheat. The data set obtained were subsequently compared using cluster and principal component analysis, which allowed the tested cereal products to be classified into two major groups consisting of whole-rye or whole-wheat products, respectively. On the basis of that approach, mixed cereal products containing rye and wheat bran or whole rye and wheat flour were grouped between those two well-defined clusters. Our work not only provides a detailed examination of alkylresorcinols in selected Polish rye and wheat cultivars and selected whole-grain cereal products, but also demonstrates that this type of analysis accompanied by the use of proper statistical algorithms offers an objective way to evaluate the quality of whole-grain rye and/or wheat and their derived

  5. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond

    PubMed Central

    Mascher, Martin; Richmond, Todd A; Gerhardt, Daniel J; Himmelbach, Axel; Clissold, Leah; Sampath, Dharanya; Ayling, Sarah; Steuernagel, Burkhard; Pfeifer, Matthias; D'Ascenzo, Mark; Akhunov, Eduard D; Hedley, Pete E; Gonzales, Ana M; Morrell, Peter L; Kilian, Benjamin; Blattner, Frank R; Scholz, Uwe; Mayer, Klaus FX; Flavell, Andrew J; Muehlbauer, Gary J; Waugh, Robbie; Jeddeloh, Jeffrey A; Stein, Nils

    2013-01-01

    Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA-coding exome reduces barley genomic complexity more than 50-fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA-coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping-by-sequencing and genetic diversity analyzes. PMID:23889683

  6. Husk to caryopsis adhesion in barley is influenced by pre- and post-anthesis temperatures through changes in a cuticular cementing layer on the caryopsis.

    PubMed

    Brennan, M; Shepherd, T; Mitchell, S; Topp, C F E; Hoad, S P

    2017-10-23

    At ripeness, the outer husk of "covered" barley grains firmly adheres to the underlying caryopsis. A cuticular cementing layer on the caryopsis is required for husk adhesion, however the quality of adhesion varies significantly among cultivars which produce the cementing layer, resulting in the economically important malting defect, grain skinning. The composition of the cementing layer, and grain organ development have been hypothesised to influence the quality of husk adhesion. Plants of Hordeum vulgare 'Concerto' were grown at different temperatures pre- and post-anthesis to effect changes in the development of the husk, caryopsis and cuticular cementing layer, to determine how these variables influence the quality of husk-to-caryopsis adhesion. Warm conditions pre-anthesis decreased the quality of husk adhesion, and consequently increased the incidence of grain skinning. Cool post-anthesis conditions further decreased the quality of husk adhesion. The composition of the cementing layer, rather than its structure, differed with respect to husk adhesion quality. This cementing layer was produced at the late milk stage, occurring between nine and 29 days post-anthesis, conditional on the temperature-dependent growth rate. The compounds octadecanol, tritriacontane, campesterol and β-sitosterol were most abundant in caryopses with high-quality husk adhesion. The differences in adhesion quality were not due to incompatible husk and caryopsis dimensions affecting organ contact. This study shows that husk-to-caryopsis adhesion is dependent on cementing layer composition, and implies that this composition is regulated by temperature before, and during grain development. Understanding this regulation will be key to improving husk-to-caryopsis adhesion.

  7. 40 CFR 180.668 - Sulfoxaflor; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Parts per million Almond, hulls 6.0 Barley, grain 0.40 Barley, hay 1.0 Barley, straw 2.0 Bean, dry seed 0.20 Bean, succulent 4.0 Beet, sugar, dried pulp 0.07 Beet, sugar, molasses 0.25 Berry, low growing...

  8. 40 CFR 180.668 - Sulfoxaflor; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Parts per million Almond, hulls 6.0 Barley, grain 0.40 Barley, hay 1.0 Barley, straw 2.0 Bean, dry seed 0.20 Bean, succulent 4.0 Beet, sugar, dried pulp 0.07 Beet, sugar, molasses 0.25 Berry, low growing...

  9. 78 FR 32155 - Difenzoquat; Order Revoking Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... the following commodities: Barley, bran; barley, grain; barley, straw; cattle, fat; cattle, meat; cattle, meat byproducts; goat, fat; goat, meat; goat, meat byproducts; hog, fat; hog, meat; hog, meat byproducts; horse, fat; horse, meat; horse, meat byproducts; poultry, fat; poultry, meat; poultry, meat...

  10. Global Landscape of a Co-Expressed Gene Network in Barley and its Application to Gene Discovery in Triticeae Crops

    PubMed Central

    Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo

    2011-01-01

    Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/. PMID:21441235

  11. Toxic micromycetes in grain raw material during its processing.

    PubMed

    Lugauskas, Albinas; Raila, Algirdas; Railiene, Marija; Raudoniene, Vita

    2006-01-01

    In 2003-2005 micromycetes were isolated and identified from wheat, barley, rye, buckwheat grain brought into mills or from processing enterprises. Contamination of the produced flour with micromycete propagules (cfu g(-1)), changes in micromycete diversity and abundance in the course of flour storage, preparation and baking of bread, production of groats or other food products and fodder were determined. Most attention was given to widely distributed micromycetes, known producers of toxins: Alternaria alternata, Aspergillus candidus, A. clavatus, A. flavus, A. fumigatus, A. niger, A. oryzae, A. (=Eurotium) repens, Fusarium culmorum, F. equiseti, F. graminearum, F. moniliforme, F. oxysporum, F. poae, F. sporotrichioides, Penicillium brevicompactum, P. chrysogenum, P. cyclopium, P. daleae, P. expansum, P. funiculosum, P. roqueforti, P. urticae, P. verruculosum, P. viridicatum, Phoma exiqua, Rhizomucor pusillus, Rhizopus stolonifer, Trichothecium roseum. Abilities of these micromycetes to produce secondary toxic metabolites were determined as well as possible hazard caused to people consuming the contaminated products.

  12. Sequencing of 15,622 gene-bearing BACs clarifies the gene-dense regions of the barley genome

    USDA-ARS?s Scientific Manuscript database

    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework....

  13. Integration of β-glucan fibre rich fractions from barley and mushrooms to form healthy extruded snacks.

    PubMed

    Brennan, Margaret A; Derbyshire, Emma; Tiwari, Brijesh K; Brennan, Charles S

    2013-03-01

    β-glucan is a commonly researched plant cell wall component that when incorporated into food products has been associated with cholesterol and glycaemic response reductions. This study focusses on β-glucan rich fractions from barley and mushroom used in the production of extruded ready to eat snacks. Inclusion of barley β-glucan rich fractions and mushroom β-glucan fractions at 10 % levels increased the total dietary fibre content of extrudates compared to the control (P < 0.05). Product expansion increased with the introduction of both barley and mushroom fraction (P < 0.05) which in turn resulted in a reduction in product hardness (P < 0.05). In vitro digestion protocol illustrated that inclusion of barley and mushroom β-glucan rich fractions manipulated the starch digestibility profile and hence rate of glucose release during digestion compared to the control sample. This in turn resulted in a significant (P < 0.05) reduction in potential glycaemic response of the samples of between 20 and 25 % for barley β-glucan rich fractions and between 17 and 25 % for mushroom β-glucan rich fractions. We conclude that the inclusion of these fractions could be utilised by the food industry to manipulate the glycaemic response of extruded snack products.

  14. Nitrate Transport Is Independent of NADH and NAD(P)H Nitrate Reductases in Barley Seedlings 1

    PubMed Central

    Warner, Robert L.; Huffaker, Ray C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings. PMID:11537465

  15. Gravimorphism in rice and barley: promotion of leaf elongation by vertical inversion in agravitropically growing plants.

    PubMed

    Abe, K; Takahashi, H; Suge, H

    1998-12-01

    We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2-15 of both elongated and non-elongated internodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11-15 only elongated internodes but not at nodes 2-10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants of serpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.

  16. Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley1[W][OA

    PubMed Central

    Trevaskis, Ben; Tadege, Million; Hemming, Megan N.; Peacock, W. James; Dennis, Elizabeth S.; Sheldon, Candice

    2007-01-01

    Analysis of the functions of Short Vegetative Phase (SVP)-like MADS-box genes in barley (Hordeum vulgare) indicated a role in determining meristem identity. Three SVP-like genes are expressed in vegetative tissues of barley: Barley MADS1 (BM1), BM10, and Vegetative to Reproductive Transition gene 2. These genes are induced by cold but are repressed during floral development. Ectopic expression of BM1 inhibited spike development and caused floral reversion in barley, with florets at the base of the spike replaced by tillers. Head emergence was delayed in plants that ectopically express BM1, primarily by delayed development after the floral transition, but expression levels of the barley VRN1 gene (HvVRN1) were not affected. Ectopic expression of BM10 inhibited spike development and caused partial floral reversion, where florets at the base of the spike were replaced by inflorescence-like structures, but did not affect heading date. Floral reversion occurred more frequently when BM1 and BM10 ectopic expression lines were grown in short-day conditions. BM1 and BM10 also inhibited floral development and caused floral reversion when expressed in Arabidopsis (Arabidopsis thaliana). We conclude that SVP-like genes function to suppress floral meristem identity in winter cereals. PMID:17114273

  17. Effect of barley flour, crude cinnamon, and their combination on glycemia, dyslipidemia, and adipose tissue hormones in type 2 diabetic rats.

    PubMed

    Shatwan, Israa Ali; Ahmed, Lamiaa Ali; Badkook, Maha Mohamed

    2013-07-01

    This study aimed to evaluate the effects of barley flour, crude cinnamon, and their combination on blood glucose, serum insulin, serum lipid profile, and serum adipose tissue hormones in streptozotocin-induced diabetic rats. Male Wistar rats (n=35) were divided into five groups: nondiabetic, diabetic, diabetic group fed 5% cinnamon, diabetic group fed 30% barley, and diabetic group fed 5% cinnamon and 30% barley. Fasting blood glucose, insulin, lipid profile, adiponectin, and leptin were measured after 8 weeks. Blood glucose significantly decreased in all treated diabetic rats compared with the diabetic group. Serum insulin and high-density lipoprotein significantly increased, while cholesterol, triglycerides, and low-density lipoprotein were significantly decreased after 8 weeks. Adiponectin significantly increased, while leptin significantly decreased with administration of either cinnamon, barley, or their combination. No significant differences were observed among the three treated groups on all parameters. A cinnamon and barley combination caused obvious improvement in insulin-positive cells of pancreatic tissue. In conclusion, consuming diets containing either cinnamon, barley, or their combination regulates blood glucose, lipid profile, and adipose tissue hormones in type 2 diabetic rats. The most effective treatment was the cinnamon and barley combination.

  18. Internal Water Balance of Barley Under Soil Moisture Stress 1

    PubMed Central

    Millar, Agustin A.; Duysen, Murray E.; Wilkinson, Guy E.

    1968-01-01

    Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments. Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied. The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions. PMID:16656869

  19. Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL.

    PubMed

    Romero, Cynara C T; Vermeulen, Jasper P; Vels, Anton; Himmelbach, Axel; Mascher, Martin; Niks, Rients E

    2018-05-01

    Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgt SC and SusBgt DC , with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.

  20. 40 CFR 180.565 - Thiamethoxam; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., hulls 1.2 Artichoke, globe 0.45 Avocado 0.40 Barley, grain 0.30 Barley, hay 0.40 Barley, straw 0.40 Bean..., meat byproducts 0.04 Cattle, meat 0.02 Citrus, dried pulp 0.60 ppm Coffee, bean, green 1 0.05 Corn...