Science.gov

Sample records for cristaux composites soudes

  1. Fabrication et etude de cristaux photoniques pour les longueurs d'onde de telecommunication optique

    NASA Astrophysics Data System (ADS)

    Aboudihab, Ismail

    Nous avons fabrique et etudie des cristaux photoniques bidimensionnels et tridimensionnels. Les cristaux 3D sont constitues de microbilles de polystyrene autoassemblees. La structure inverse en BaTiO3 a ete aussi fabriquee, ou l'on remplace l'espace entre les microbilles par du BaTiO3, alors que les microbilles sont eliminees. Nous avons essaye en particulier de comprendre les differents phenomenes qui influencent la cristallisation de ces structures afin d'obtenir des films de meilleure qualite. Les cristaux bidimensionnels, constitues de cylindres vides imbibes dans un semiconducteur (As2S3 ou Si), sont obtenus par holographie laser. Nous avons montre que cette technique est tres interessante pour la production en serie de ces structures. Des guides d'ondes, des coupleurs, et des jonctions Y, imbibes dans des cristaux photoniques bidimensionnels, ont aussi ete fabriques. Des mesures optiques et des simulations numeriques ont ete menees dans le but de caracteriser ces structures.

  2. Fabrication de cristaux photoniques par croissance cristalline anisotrope par la méthode aux hydrures

    NASA Astrophysics Data System (ADS)

    Saoudi, R.; Gil-Lafon, E.; Trassoudaine, A.; Castelluci, D.; Ramdani, R. M.; Darraud, C.

    2006-10-01

    Nous avons utilisé la croissance cristalline à morphologie contrôlée pour l'élaboration de cristaux photoniques bidimensionnelles de matériaux III-V sur substrat III V masqué. Appliquée sur GaAs cette méthode a démontré qu'il est possible de faire croître différentes formes de cristaux en jouant sur l'anisotropie de la vitesse de croissance des faces exposées du substrat. Les potentialités de cette technique sont très prometteuses car elle permet d'envisager une fabrication de masse des composants à base de cristaux photoniques.

  3. Anisotropie des coefficients de diffusion dans des cristaux liquides discotiques hexagonaux

    NASA Astrophysics Data System (ADS)

    Daoud, M.; Gharbia, M.; Gharbi, A.

    1994-06-01

    The diffusion constants of dyes in several hexagonal discotic liquid crystals are measured and discussed. For all the liquid crystals studied, these constants are anisotropic : the diffusion in the direction parallel to the columns is faster than that in the perpendicular plane (frac{D_allel}{D_perp}>1). The effects of the length and shape of the chains bound to the triphenylene discs are shown. The effect of the dye molecular size is also described. The study of the diffusion coefficients of hexapentoxytriphenylene (C5HET) as a function of temperature has shown that the activation energies along the columns and perpendicular to the columns are comparable. The main features of dye diffusion in the hexagonal columnar liquid crystals studied are similar to those reported in nematic phases. Les mesures des constantes de diffusion de colorants dans plusieurs cristaux liquides discotiques hexagonaux sont présentées et discutées. Pour tous les cristaux liquides étudiés, ces constantes présentent une anisotropie, avec une diffusion plus rapide parallèlement aux colonnes que perpendiculairement à celles-ci (frac{D_allel}{D_perp}>1). Des effets de longueur et de forme des chaînes branchées sur les disques de triphénylène sont mis en évidence. Il en est de même pour la taille des molécules de colorants. L'étude en fonction de la température a montré que dans le cas de l'hexapentoxytriphénylène (C5HET), les énergies d'activation dans les directions parallèle et perpendiculaire aux colonnes sont comparables. Les caractéristiques de la diffusion de colorants dans les cristaux liquides colonnaires hexagonaux étudiés sont semblables à celles des nématiques.

  4. Convertisseur TEITM hybride à base de cristaux liquides reconfigurable dans la bande [1530 - 1565] nm

    NASA Astrophysics Data System (ADS)

    Benkelfat, B.-E.; Lamkadmi, S.; Meyer, S.; Zou, Q.

    2002-06-01

    Nous montrons la faisabilité d'un convertisseur de polarisation hybride à cristaux liquides offrant une bande passante étroite et pouvant être accordé électro-optiquement sur une large plage de longueur d'onde. Les résultats expérimentaux présentés et discutés concement une structure Solc replié (“folded”) à six étages fonctionnant autour de 1530 nm et présentant une bande d'accordabilité de 10nm.

  5. Développements métrologiques pour cristaux lasers non linéaires

    NASA Astrophysics Data System (ADS)

    Petit, Y.; Segonds, P.; Boulanger, B.

    2006-10-01

    Nous proposons une méthodologie d'étude directe des cristaux bi-fonctionnels présentant des propriétés lasers et non linéaires. Nous avons mesuré les premiers spectres d'émission spontanée en lumière polarisée en fonction de la direction de propagation dans un cristal usiné sous forme de sphère. Nous concevons actuellement une cavité laser de milieu à gain sphérique, afin de stimuler l'émission de luminescence et de mesurer directement les directions d'accord de phase d'auto-génération de second harmonique (auto-SHG).

  6. Élaboration et caractérisation de cristaux dérivés de K{3}Li{2}Nb{5}O{15}

    NASA Astrophysics Data System (ADS)

    Zegzouti, A.; Abalhassain, A.; Elaatmani, M.; Ravez, J.; Chaminade, J. P.

    1996-06-01

    Good quality crystals of K{3}Li{2}Nb{5}O{15} type were grown from the melt followed by method slow cooling using a pseudo-flux method (an excess of K{2}CO{3} and Nb{2}O{5} is present). The crystals were identified by X-ray diffraction, they crystallized with the tungsten bronze-type structure in the tetragonal system at room temperature. The space group is P4bm. Their composition (K{2.82}(Nb O){0.08}Li{1.54}Nb{5}O{15}) was determined by chemical analysis. Dielectric measurements were realized along the [001] and [100] directions in the frequency range from 103 to 3 × 105 Hz. The temperature dependences of dielectric constants \\varepsilon^{prime}_r33 and \\varepsilon^{prime}_r11 and of birefringence Δ n show two maximums at T1\\cong 100 K and T_C\\cong 680 K, the latter being the ferroelectric Curie temperature. Des cristaux de bonne qualité de type K{3}Li{2}Nb{5}O{15} et de structure “bronze” ont été élaborés par fusion et refroidissement lent en présence d'un pseudo-flux (K{2}CO{3} et Nb{2}O{5} en excès). L'analyse chimique montre que leur composition correspond à la formulation K{2,82}(Nb O){0,08}Li{1,54}Nb{5}O{15}. Ces matériaux cristallisent dans le système quadratique à 295 K avec le groupe spatial P4bm. Les mesures diélectriques ont été effectuées selon deux directions [001] et [100], perpendiculaires aux grandes faces des cristaux élaborés. Les variations thermiques de la permittivité et de la biréfringence ont permis de mettre en évidence deux maxima l'un à T1\\cong 100 K selon [100], l'autre à T_C\\cong 680 K selon [001] ; ce dernier correspond à al température de Curie ferroélectrique.

  7. Filtrage fréquentiel par un dispositif à réseau intracavité inscrit sur cristaux liquides

    NASA Astrophysics Data System (ADS)

    Bitauld, D.; Martins, C.; Zaquine, I.; Maruani, A.; Frey, R.; Chevallier, R.; Dupont, L.

    2004-11-01

    Nous proposons une méthode de filtrage reconfigurable sans mouvement mécanique associant un réseau de Bragg intracavité à un réseau de diffraction traditionnel. Un dispositif à cristaux liquides a été réalisé pour tester la validité du modèle théorique.

  8. Étude expérimentale de cristaux photoniques bi-dimensionnels

    NASA Astrophysics Data System (ADS)

    Labilloy, D.

    Experimental study of two-dimensional photonic crystals Photonic bandgap materials (PBGs), the so-called photonic crystals, are structures with a periodic dielectric constant. For strong enough index contrast, it was theoretically predicted that they should prevent light propagation in all directions, because they create spectral regions with zero-density of states. We study the optical properties of two-dimensional photonic crystals etched through waveguiding semiconductor heterostructures. Photoluminescence of quantum wells or quantum dots embedded in the waveguide are used as internal probe source. This technique allows a full characterization of these objects, giving access to quantitative values of the transmission, reflection and diffraction coefficients. Weak transmissions correspond to high reflection or diffraction values, which indicates that light remains guided upon interaction with the crystals, confirming their high potential for integrated optics. These reflectors are next used as cavity mirrors. One-dimensional cavities demonstrate a high finesse through transmission measurements, confirming the low amount of out-of-plane losses. Small volume three-dimensional cavities (sim5 μm^3) are also probed, using the photoluminescence of the emitters placed inside the cavity. Narrow peaks in the photoluminescence spectrum prove the strong confinement and allow to envision applications for spontaneous emission control. Les matériaux à bande interdite de photons (BIPs) ou cristaux photoniques, sont des structures, généralement artificielles, dont l'indice diélectrique varie périodiquement. Lorsque le contraste d'indice est fort, on prédit théoriquement qu'elles doivent empêcher la propagation de la lumière dans toutes les directions en créant des plages spectrales (les bandes interdites) à densité d'état de photons nulle. Nous avons étudié le comportement optique de cristaux photoniques bidimensionnels gravés dans des h

  9. Exaltation de la génération de second harmonique dans les cristaux photoniques à base de nitrures

    NASA Astrophysics Data System (ADS)

    Torres, J.

    2004-09-01

    This work concerns both the experimental and theoretical study of the enhancement of the second harmonic generation in nitrides-based slab photonic crystals. This increase is the combination of two processes contained under the term of quasi-phase matching conditions: (i) the spatial localisation of the electromagnetic fields and (ii) the realization of a phase matching condition between resonant modes at ω and 2ω. The linear characterisation of the optical properties of these slab photonic crystals will determine the angular and spectral conditions that satisfy the quasi-phase matching. Once these conditions determine, a new numerical method based on the scattering matrix formalism is describe. This method highlights an enhancement by 106 of the second harmonic field intensity. Then these numerical results are compared to the one experimentally obtained where a 104 enhancement is measured. This study clearly highlights the potentiality of slab III-N-based photonic crystal for applications in the blue UV range. Les cristaux photoniques sont des structures artificielles dont la modulation périodique de l'indice de réfraction permet d'exalter les phénomènes non linéaires. Cet ouvrage concerne l'étude expérimentale et théorique de l'exaltation de la génération du second harmonique dans les cristaux photoniques planaires à base de nitrures. Cet accroissement est la combinaison de deux processus liés à la périodicité de la constante diélectrique : (i) la localisation spatiale des champs électromagnétiques ; (ii) la réalisation d'une condition d'accord de phase entre les modes à ω et à 2ω. Nous verrons que la caractérisation des propriétés optiques des cristaux photoniques planaires est une étape essentielle permettant de déterminer les conditions angulaires et fréquentielles qui satisfont aux conditions de quasi-accord de phase. Une fois ces conditions déterminées, nous décrirons la nouvelle méthode de modélisation basée sur le

  10. Identification du comportement mécanique de liaisons soudées hétérogènes Ta/TA6V : méthodologie et premiers résultats

    NASA Astrophysics Data System (ADS)

    Delaplanche, D.; Durut, L.; Munier, E.

    2002-12-01

    Le calcul de dimensionnement des structures exige, entre autre, la connaissance du comportement des liaisons soudées. Jusque là modélisées simplement, ces comportements néanmoins complexes peuvent être aujourd'hui pris en compte dans les codes de calcul grâce aux progrès réalisés notamment en terme de performances informatiques. Pour ce faire, il faut mettre en place une méthode permettant d'identifier le comportement des liaisons. Le travail présenté a constitué à étudier la liaison Ta/TA6V soudée par laser YAG impulsionnel.

  11. Etude experimentale de la photoexcitation des colorants de type anthracene, azobenzene et thioindigo dans des matrices de cristaux liquides nematiques et smectiques

    NASA Astrophysics Data System (ADS)

    Saad, Bendaoud

    Nous avons étudié le comportement de différents colorants (tétracène et azobenzènes AZD3, DR1 et D2) dans des matrices de cristaux liquides (E7 et 5CB). Les résultats obtenus ont montré que la réorientation optique des molécules de cristaux liquides se produit à des intensités extrêmement faibles (~1 μW/cm 2). Nous avons attribué cet effet à l'interaction entre les molécules des colorants photoexcitées et celles des cristaux liquides hôtes. Ces interactions se produisent lorsque les molécules dichroïques exçitées transitent entre des états triplets intermédiaires tout en conduisant à la génération d'un nouveau moment optique géant, responsable de la réorientation des molécules. Le changement de la forme de la molécule du colorant, dû à l'isomérisation Trans-Cis , est à l'origine de la création de ce moment. Ce qui distingue notre réorientation moléculaire de celle obtenue sur d'autres systèmes hôtes-dopants est que les molécules sont repoussées du champ électrique de la lumière. Par ailleurs, cette réorientation est accompagnée d'une diffusion anisotrope des molécules excitées. Nous avons aussi étudié le cristal liquide PhBz rendu ferroélectrique en le dopant par des molécules thioindigos. En exploitant l'augmentation de la polarisation spontanée due à la photoisomérisation du colorant, nous avons pu réaliser un hologramme dynamique contrôlable par un champ optique assisté par une tension statique.

  12. Apodisation d'un réflecteur n'utilisant que des lames biréfringentes à cristaux liquides, similaires, par la formation d'un profil spécifique d'indice de réfraction

    NASA Astrophysics Data System (ADS)

    Meyer, S.

    2006-10-01

    A l'aide de lames biréfringentes et similaires les unes des autres, nous fabriquons un réflecteur à bas niveau de lobes secondaires. Pour les bandes de fréquences considérées, l'onde transverse magnétique incidente est réfléchie en une onde transverse électrique. Les lobes secondaires de la réflexion ainsi considérée sont fortement amoindris si les lames à cristaux liquides utilisées sont orientées comme décrit dans ce papier.

  13. Composites

    NASA Astrophysics Data System (ADS)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  14. Composites

    NASA Astrophysics Data System (ADS)

    Chmielewski, M.; Nosewicz, S.; Pietrzak, K.; Rojek, J.; Strojny-Nędza, A.; Mackiewicz, S.; Dutkiewicz, J.

    2014-11-01

    It is commonly known that the properties of sintered materials are strongly related to technological conditions of the densification process. This paper shows the sintering behavior of a NiAl-Al2O3 composite, and its individual components sintered separately. Each kind of material was processed via the powder metallurgy route (hot pressing). The progress of sintering at different stages of the process was tested. Changes in the microstructure were examined using scanning and transmission electron microscopy. Metal-ceramics interface was clean and no additional phases were detected. Correlation between the microstructure, density, and mechanical properties of the sintered materials was analyzed. The values of elastic constants of NiAl/Al2O3 were close to intermetallic ones due to the volume content of the NiAl phase particularly at low densities, where small alumina particles had no impact on the composite's stiffness. The influence of the external pressure of 30 MPa seemed crucial for obtaining satisfactory stiffness for three kinds of the studied materials which were characterized by a high dense microstructure with a low number of isolated spherical pores.

  15. Fabrication et caracterisation de cristaux photoniques pour exaltation de fluorescence

    NASA Astrophysics Data System (ADS)

    Gascon, Annabelle

    2011-12-01

    In today's world, there is a pressing need for point-of-care molecular analysis that is fast, inexpensive and transportable. Lab-on-a- chips are designed to fulfill that need. They are micro-electromechanical systems (MEMS), fabricated with microelectronic techniques, that use the analytes physical properties to detect their presence in liquid samples. This detection can be performed by attaching the analyte to quantum dots. These quantum dots are semiconducting nanoparticles with narrow fluorescence band. In our project, we use a tuneable system with a two-slab photonic crystal that serves as a tuneable optical filter, detecting the presence and wavelength of these quantum dots. Photonic crystals are dielectrics with a variable refractive index, with a period near the visible light wavelength. They are called photonic crystals because they have a photonic band gap just as atomic crystals, periodic structure of atoms, have an electronic band gap. They are photonic because photons instead of electrons propagate through them. They can also enhance fluorescence from quantum dots at the photonic crystals guided resonance wavelength. My project objectives are to: (1) Fabricate two-slab photonic crystal, (2) Characterize photonic crystals, (3) Place quantum dots on photonic crystals, (4) Measure fluorescence enhancement. The device made during this project consists of a silicon wafer on which were deposited a 200 nm silicon nitride layer, then a 200 nm silicon dioxide layer and finally another 200 nm silicon nitride layer. An electron-beam lithography defines the photonic crystals and the MEMS. The photonic crystals are square lattices of holes 180 nm in diameter, at a period of 460 nm, etched through the two silicon nitride slabs. The two slabs are etched in a single step of Reactive Ion Etching (RIE). Then, the silicon under the photonic crystal is etched from the backside up to the nitride by deep-RIE. Finally, the oxide layer is removed in order to completely suspend the two-slab photonic crystal. The M EMS can change the gap between the two slabs in order to tune the guided resonance wavelength. An optical set-up is used to trace the photonic crystals transmission and reflection spectrum, in order to know the guided resonance position. A supercontinuum source illuminates the device at a normal incidence angle for wavelength between 400 nm and 800 nm. High-resolution spectra are obtained with a CCD camera spectrometer. Different types of one-slab photonic crystals are analyzed with this approach: we observe guided resonance peaks near 550 nm, 615 nm and 700 nm. Finally, a quantum dots microdrop is placed on the photonic crystal. The quantum dots emission wavelength matches with the photonic crystal guided resonance. A hyperspectral fluorescence microscope excites quantum dots between 436 nm and 483 nm, detects emission greater than 500 nm and plots a fluorescence wavelength spectrum. This set-up measures and compares the fluorescence of the quantum dots placed on and next to the photonic crystals. Our results show that the fluorescence is 30 times higher on the photonic crystals, but the fluorescence wavelength corresponds neither to the quantum dots emission nor to the photonic crystal guided resonance. In conclusion, this master thesis project demonstrates that it is possible to fabricate two-slab photonic crystals in silicon nitride and to plot their transmission and reflection spectra in order to find their guided resonance position. A fluorescence enhancement is visible, but at a different wavelength than of the quantum dots.

  16. Composites Strengthening.

    DTIC Science & Technology

    1987-11-01

    Composites 8 Deformation in SiC/Al Composites Due To Thermal . Stresses 19 Interfacial Bond Strength in an Aluminum Alloy 6061-SiC Composite 36 The...Effects of Differences in Thermal Coefficients of Expansion in SiC Whisker 6061 Aluminum Composites 43 Thermal Residual Stress in Metal Matrix...INTERFACIAL BOND STRENGTH IN AN ALUMINUM ALLOY 6061-SIC COMPOSITE Y. Flom and R.J. Arsenault, Mat. Sci Eng. 77 (1986) 191. 5. THE EFFECTS OF DIFFERENCES

  17. Wood composites

    Treesearch

    Lars Berglund; Roger M. Rowell

    2005-01-01

    A composite can be defined as two or more elements held together by a matrix. By this definition, what we call “solid wood” is a composite. Solid wood is a three-dimensional composite composed of cellulose, hemicelluloses and lignin (with smaller amounts of inorganics and extractives), held together by a lignin matrix. The advantages of developing wood composites are (...

  18. Electrocatalyst compositions

    DOEpatents

    Mallouk, Thomas E.; Chan, Benny C.; Reddington, Erik; Sapienza, Anthony; Chen, Guoying; Smotkin, Eugene; Gurau, Bogdan; Viswanathan, Rameshkrishnan; Liu, Renxuan

    2001-09-04

    Compositions for use as catalysts in electrochemical reactions are described. The compositions are alloys prepared from two or more elemental metals selected from platinum, molybdenum, osmium, ruthenium, rhodium, and iridium. Also described are electrode compositions including such alloys and electrochemical reaction devices including such catalysts.

  19. Global Composite

    Atmospheric Science Data Center

    2013-04-19

    ... cover from one day to another. The lower panel is a composite in which red, green, and blue radiances from MISR's 70-degree ... In relatively clear ocean areas, the oblique-angle composite is generally brighter than its nadir counterpart due to enhanced ... Mar 2002 Images:  Global Composite location:  Global Images thumbnail:  ...

  20. Composite Materials

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Composites are lighter and stronger than metals. Aramid fibers like Kevlar and Nomex were developed by DuPont Corporation and can be combined in a honeycomb structure which can give an airplane a light, tough structure. Composites can be molded into many aerodynamic shapes eliminating rivets and fasteners. Langley Research Center has tested composites for both aerospace and non-aerospace applications. They are also used in boat hulls, military shelters, etc.

  1. Composites review

    NASA Technical Reports Server (NTRS)

    Hordonneau, A.

    1987-01-01

    The properties and applications of composite materials are reviewed. Glass, carbon, Kevlar, ceramic, whisker, and metal fibers are discussed along with polyester, epoxy, polyimide, Peek, carbon, ceramic, and metal matrices. The quantitative distribution of high technology fiber in various applications is given. The role of aerospace industry in the development and promotion of composite utilization is discussed. Consumption trends indicate a rapid development of the composite market.

  2. Diagnostic compositions

    SciTech Connect

    Burch, W.M.

    1981-07-28

    The invention discloses diagnostic compositions for use in obtaining images of a patient's lungs. The basic components of the composition of the invention are sodium pertechnetate which is radioactive and ethanol. This composition may be combusted and the resulting products cooled or alternatively the composition may be inserted into a pressure vessel with an aerosol. In both cases a gas like mixture results. A particular advantage is that a patient is able to breath the mixture of the invention in a normal way and does not need to undergo any training in inhalation.

  3. Energetic composites

    DOEpatents

    Danen, Wayne C.; Martin, Joe A.

    1993-01-01

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application.

  4. Composite floorpan

    SciTech Connect

    Frutiger, R.L.; Baskar, S.

    1993-02-01

    Composite applications for automotive components have been a topic of increased interest. Some applications--load-bearing composites such as bumpers and leaf springs--have been implemented successfully in production vehicles. On the other hand, semi-structural load-bearing composites such as floorpans have not been investigated as extensively for stiffness, strength, and durability. Past studies have used structural composites to achieve parts consolidation in van crossmembers. A rear floorpan has also been demonstrated in composites. A hybrid vehicle structure consisting of a composite passenger module on a steel frame has been proposed. Assessments of the energy management of full composite front structures have also been reported. There remains a need to assess structural composites for a major load-bearing panel with real-vehicle packaging and design requirements; a floorplan is one such application. This design concept might be used in a space-frame vehicle structure in which composite panels could be used to complete the structure and provide additional torsional rigidity while meeting local strength and stiffness requirements.

  5. Energetic composites

    DOEpatents

    Danen, W.C.; Martin, J.A.

    1993-11-30

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application. 3 figures.

  6. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  7. Body Composition.

    ERIC Educational Resources Information Center

    Mayhew, Jerry L.

    1981-01-01

    Body composition refers to the types and amounts of tissues which make up the body. The most acceptable method for assessing body composition is underwater weighing. A subcutaneous skinfold provides a quantitative measurement of fat below the skin. The skinfold technique permits a valid estimate of the body's total fat content. (JN)

  8. Body Composition.

    ERIC Educational Resources Information Center

    Mayhew, Jerry L.

    1981-01-01

    Body composition refers to the types and amounts of tissues which make up the body. The most acceptable method for assessing body composition is underwater weighing. A subcutaneous skinfold provides a quantitative measurement of fat below the skin. The skinfold technique permits a valid estimate of the body's total fat content. (JN)

  9. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  10. Composite Materials

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Langley Research Center researchers invented an advanced polymer, a chemical compound formed by uniting many small molecules to create a complex molecule with different chemical properties. The material is a thermoplastic polyimide that resists solvents. Other polymers of this generic type are soluble in solvents, thus cannot be used where solvents are present. High Technology Services (HTS), Inc. licensed technology and is engaged in development and manufacture of high performance plastics, resins and composite materials. Techimer Materials Division is using technology for composite matrix resins that offer heat resistance and protection from radiation, electrical and chemical degradation. Applications of new polymer include molding resins, adhesives and matrix resins for fiber reinforced composites.

  11. Compositional Idioms.

    ERIC Educational Resources Information Center

    Pitt, David; Katz, Jerrold J.

    2000-01-01

    Argues that there is a large class of expressions, typified by "plastic flower," stuffed animal," and "kosher bacon," that have a unique semantics combining compositional, idiomatic, and decompositional interpretation. (Author/VWL)

  12. Comparing Composites.

    ERIC Educational Resources Information Center

    Mathras, Michael S.

    1993-01-01

    Presents an activity that models the work of chemical engineers. Students design, fabricate, and perform mechanical tests on plaster matrix composites and compare the strength to mass ratios of several products. (PR)

  13. Comparing Composites.

    ERIC Educational Resources Information Center

    Mathras, Michael S.

    1993-01-01

    Presents an activity that models the work of chemical engineers. Students design, fabricate, and perform mechanical tests on plaster matrix composites and compare the strength to mass ratios of several products. (PR)

  14. Fuel composition

    SciTech Connect

    Badger, S.L.

    1983-09-20

    A composition useful, inter alia, as a fuel, is based on ethyl alcohol denatured with methylisobutyl alcohol and kerosene, which is mixed with xylenes and isopropyl alcohol. The xylenes and isopropyl alcohol act with the denaturizing agents to raise the flash point above that of ethyl alcohol alone and also to mask the odor and color the flame, thus making the composition safer for use as a charcoal lighter or as a fuel for e.g. patio lamps.

  15. Hydride compositions

    DOEpatents

    Lee, Myung, W.

    1994-01-01

    Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

  16. Hydride compositions

    DOEpatents

    Lee, Myung W.

    1995-01-01

    A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.

  17. Manipulation optique spatio-temporelle non resonnante de cristaux liquides nematiques

    NASA Astrophysics Data System (ADS)

    Brasselet, Etienne

    Ce travail est consacre a l'etude theorique et experimentale du comportement structurel et dynamique d'un cristal liquide nematique soumis a deux faisceaux laser superposes de polarisation circulaire. Pour une intensite, une circularite et un sens de propagation quelconque de chacun des deux faisceaux, nous avons obtenu la solution analytique des deformations photoinduites dans le cas ou les deux ondes sont incoherentes. Le cas de deux ondes coherentes est aussi discute. L'arrangement moleculaire calcule est plan ou a trois dimensions, fixe ou en rotation. Nous demontrons la possibilite de manipuler a volonte les deformations tridimensionnelles ou la vitesse de rotation ainsi qu'un comportement multistable a forte intensite, ce qui est impossible avec un seul faisceau. La partie experimentale de ce travail, a necessite l'elaboration d'une technique de mesure, en temps reel, de la rotation et des deformations 3D du cristal liquide. Le controle de la rotation est demontre, lorsque les deux faisceaux portent des moments cinetiques opposes. La mesure des deformations de torsion montre qu'il est possible d'induire, au moyen de deux ondes et de maniere non resonnante, une chiralite macroscopique controlee, sans rotation. Dans le cas particulier d'une seule onde polarisee circulairement, nous avons montre que le regime dynamique induit est la combinaison d'une deformation 3D, d'une precession et d'une oscillation non amortie. A forte intensite, la transition vers un regime fortement reoriente a pu etre explique a l'aide d'un modele qualitatif prenant en consideration les fluctuations de la composante azimutale du couple dielectrique et la non localite de la reponse du cristal liquide. Finalement, la structure "multi-niveaux" des etats fortement reorientes est mise en evidence et le role des deformations a trois dimensions est discute, ce qui permet en particulier d'interpreter l'absence de multistabilite dans le cas d'une seule onde circulaire.

  18. Lubricating compositions

    SciTech Connect

    Harrison, J.J.; Campbell, C.B.

    1993-08-03

    A lubricating composition is described comprising a major amount of oil of lubricating viscosity and a minor amount of an oil-soluble composition selected from the group consisting of: (A) an alkali metal salt of a polyalkenyl succinimide which is the reaction product of (a) a polyalkenyl succinic acid or polyalkenyl succinic anhydride, with (b) an amine selected from the group consisting of polyamines and hydroxy-substituted polyamines; and (B) a mixture comprising: (1) an oil-soluble alkali metal compound; and (2) a polyalkenyl succinimide which is the reaction product of (a) a polyalkenyl succinic acid or polyalkenyl succinic anhydride, with (b) an amine selected from the group consisting of polyamines and hydroxy-substituted polyamines; wherein the polyalkenyl succinic acid and polyalkenyl succinic anhydride are prepared by a thermal reaction, and the lubricating composition has a sufficient amount of basic nitrogen content so that the use of from 7.91 to about 50 mmoles of alkali metal/kg lubricant composition provides for reductions in the lower piston deposits as compared to the lubricant composition not containing alkali.

  19. Composite piston

    NASA Technical Reports Server (NTRS)

    Taylor, Allan H. (Inventor)

    1988-01-01

    A composite piston structure is disclosed which provides a simple and reliable means for joining a carbon-carbon or ceramic piston cap with a metallic piston body. Attachment is achieved by means of a special geometry which compensates for differences in thermal expansion without complicated mechanical fastening devices. The shape employs a flange created by opposed frustoconical shapes with coincident vertices intersecting on the radial centerline of the piston in order to retain the piston cap. The use of carbon-carbon for the piston cap material allows a close fit between the piston and a cylinder wall, eliminating the need for piston rings. The elimination of extra mechanical parts of previous composite pistons provides a lightweight composite piston capable of extended high temperature operation.

  20. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  1. Surfactant compositions

    SciTech Connect

    Novakovic, M.; Abend, P.G.

    1987-09-29

    A surfactant composition is described for subsequent addition to a soap slurring comprising an acyloxy alkane sulfonate salt. The sulfonate salt is present in an amount by weight of about 44 percent of about 56 percent. The polyol is present in an amount by weight of about 2 percent to about 6 percent, and water is present in an amount by weight of 26 to 36 percent. The composition constituting a solid reversible solution at ambient temperature and having a solids content of about 58 to 72 percent, whereby subsequent addition of the surfactant composition to a soap slurry results in formation of a soap/detergent bar having a smooth texture, uniform wear properties and a lack of grittiness.

  2. Photoimageable composition

    DOEpatents

    Simison, Kelby Liv; Dentinger, Paul

    2003-11-11

    The use of selected buffering amines in a photoimageable composition prevents process bias which with conventional photoresists causes designed features to be distorted, especially in corners and high resolution features. It is believed that the amines react with the catalysts, e.g., photoacids, generated to create an inert salt. The presence of the amines also increases resolution. Suitable photoimageable compositions includes: (a) a multifunctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; (b) a photoactive compound; and (c) an amine that is selected from the group consisting of triisobutylamine, 1,8-bis(dimethylamino)naphthalene (also known as PROTON SPONGET.TM.), 2,2'-diazabicyclo[2.2.2] octane and mixtures thereof. The photoimageable composition is particularly suited for producing high aspect ratio metal microstructures.

  3. Photoimageable composition

    DOEpatents

    Dentinger, Paul; Krafick, Karen L.; Simison, Kelby Liv

    2005-02-22

    The use of photoacid generators including an alkoxyphenylphenyliodonium salt and/or bis(t-butylphenyl)iodonium salt in a photoimageable composition helps improve resolution. Suitable photoimageable compositions includes: (a) a multifuctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; and a photoacid generator comprising an alkoxyphenylphenyliodonium salt and/or bis(t-butylphenyl)iodonium salt. Preferred alkoxyphenylphenyliodonium salts include 4-octyloxyphenyl phenyliodonium hexafluoroantimonate and 4-methoxyphenyl phenyliodonium hexafluoroantimonate. The photoimageable composition is particularly suited for producing high aspect ratio microstructures.

  4. Physical composition

    NASA Astrophysics Data System (ADS)

    Healey, Richard

    2013-02-01

    Atomistic metaphysics motivated an explanatory strategy which science has pursued with great success since the scientific revolution. By decomposing matter into its atomic and subatomic parts physics gave us powerful explanations and accurate predictions as well as providing a unifying framework for the rest of science. The success of the decompositional strategy has encouraged a widespread conviction that the physical world forms a compositional hierarchy that physics and other sciences are progressively articulating. But this conviction does not stand up to a closer examination of how physics has treated composition, as a variety of case studies will show.

  5. Composite Cores

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.

  6. Composite Riflescope

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Bushnell Division of Bausch & Lomb's Armor-Sight riflescope combines the company's world-renowned optics with a graphite composite (Graphlon VI) developed for space applications. The riflescope is 10 percent lighter than aluminum scopes, and, because its thermal expansion coefficient is near zero, optical distortion from heat and cold extremes is eliminated. It is fogproof and waterproof; advanced multicoated optics provide maximum light transmission to brighten target ranges. Bushnell was assisted by NIAC/USC in searching for technical information on graphic composites and in overcoming difficulties with bonding and porosity.

  7. Phosphorescent compositions, methods of making the compositions, and methods of using the compositions

    DOEpatents

    Jia, Weiyi; Wang, Xiaojun; Jia, George D.; Lewis, Linda; Yen, Laurel C.

    2014-06-24

    Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.

  8. Phosphorescent compositions, methods of making the compositions, and methods of using the compositions

    DOEpatents

    Jia, Weiyi; Wang, Xiaojun; Yen, William; Yen, Laurel C.; Jia, George D.

    2012-12-04

    Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.

  9. Tvashtar Composite

    NASA Image and Video Library

    2007-05-01

    Variations in the appearance of the giant plume from the Tvashtar volcano on Jupiter moon Io are seen in this composite of the best photos taken by the New Horizons Long Range Reconnaissance Imager LORRI during its Jupiter flyby in late February.

  10. Music Composition

    ERIC Educational Resources Information Center

    Helfer, Jason A.

    2015-01-01

    Historically, music programs in K-12 schools have emphasized performance opportunities for children and young people. Until the release of the 1994 National Standards in Music, targeted instruction in composition was frequently overlooked due to the emphasis on performance as well as the expectations of what a school music program ought to produce…

  11. COMPOSITE ELEMENT

    DOEpatents

    Schaner, B.E.; Wolfe, R.A.

    1962-12-18

    Composite fuel eiements of the sandwich type are reported. The invention resides in the use of a layer of graphite on the interfaces of the flssile material and the cladding to prevent interdiffusion of the fissile material and the ciadding material. (AEC)

  12. Pigmented compositions

    SciTech Connect

    Blackwell Jr., J. P.

    1984-10-09

    Poly(arylene sulfide) compositions are pigmented with black carbonaceous pigments selected from at least one of finely divided bituminous coal, carbonized rice hulls, bone blacks, and micropulverized petroleum coke in an amount sufficient to provide the black pigmentation desired with little or no deleterious effect on the mechanical propertiers such as flexural and tensile strengths of the resin.

  13. Atmospheric composition

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1973-01-01

    The earth's atmosphere is made up of a number of gases in different relative amounts. Near sea level and up to about 90 km, the amount of these atmospheric gases in clean, relatively dry air is practically constant. Four of these gases, nitrogen, oxygen, argon, and carbon dioxide, make up 99.99 percent by volume of the atmosphere. Two gases, ozone and water vapor, change in relative amounts, but the total amount of these two is very small compared to the amount of the other gases. The atmospheric composition shown in a table can be considered valid up to 90 km geometric altitude. Above 90 km, mainly because of molecular dissociation and diffusive separation, the composition changes.

  14. Composite Strengthening.

    DTIC Science & Technology

    1985-01-01

    the magnitude of the dislocation density and of the tensile residual stress. In the case of tne 1100 matrix, there is maximum dislocation generation due...samples " produced by ARCO SILAG . These samples were fractured in the scanning Auger microprobe and examined shortly thereafter. When the fracture...5% % A . 153 N. TABLE 2 duced where % is equivalent to the product Flow chart of the compaction of an Al-SiC composite of slip band density N

  15. Chemical Composition

    NASA Astrophysics Data System (ADS)

    May, Willie; Cavanagh, Richard; Turk, Gregory; Winchester, Michael; Travis, John; Smith, Melody; Derose, Paul; Choquette, Steven; Kramer, Gary; Sieber, John; Greenberg, Robert; Lindstrom, Richard; Lamaze, George; Zeisler, Rolf; Schantz, Michele; Sander, Lane; Phinney, Karen; Welch, Michael; Vetter, Thomas; Pratt, Kenneth; Scott, John; Small, John; Wight, Scott; Stranick, Stephan

    Measurements of the chemical compositions of materials and the levels of certain substances in them are vital when assessing and improving public health, safety and the environment, are necessary to ensure trade equity, and are required when monitoring and improving industrial products and services. Chemical measurements play a crucial role in most areas of the economy, including healthcare, food and nutrition, agriculture, environmental technologies, chemicals and materials, instrumentation, electronics, forensics, energy, and transportation.

  16. Composite Javelin

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo at right, a unique, advanced type of javelin is undergoing "flight test." The javelin was designed to meet specifications laid down by the International Amateur Athletic Federation, but it has better stability than conventional javelins, according to college athletes who tested it. Its development incorporated aerodynamic design techniques and a composite material developed by NASA's Langley Research Center for aircraft and spacecraft.

  17. Lubricant compositions

    SciTech Connect

    Johnson, A.L.; Lawson, R.D.; Root, J.C.

    1981-12-15

    Lubricant compositions adapted for use under extreme pressure conditions are disclosed. They comprise a major proportion of a lubricating grease, and a minor proportion of an additive consisting essentially of a solid, oil insoluble arylene sulfide polymer, and a metal salt, particularly an alkali metal or alkaline earth metal salt, particularly an alkali metal or alkaline earth metal salt of a phosphorus acid, for example, mono- or dicalcium phosphate, or an alkali metal or alkaline earth metal carbonate exemplified by calcium carbonate, or a mixture of such a phosphate salt and carbonate.

  18. Emerging Composite Technologies

    NASA Technical Reports Server (NTRS)

    Wright, R.; Austin, R. (Technical Monitor)

    2000-01-01

    The purpose of this presentation is to discuss the external tank composite applications, and composite development as it relates to the the cryogenic tankage, composite repair, cryogenic feedlines, and LO2 compatible composites.

  19. Concrete compositions and methods

    DOEpatents

    Chen, Irvin; Lee, Patricia Tung; Patterson, Joshua

    2015-06-23

    Provided herein are compositions, methods, and systems for cementitious compositions containing calcium carbonate compositions and aggregate. The compositions find use in a variety of applications, including use in a variety of building materials and building applications.

  20. Composite foams

    DOEpatents

    Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.

    1991-01-01

    Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.

  1. Composite foams

    DOEpatents

    Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.

    1990-01-01

    Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.

  2. Composite Tank

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2000-01-01

    A composite tank for containing liquid oxygen and the method of making the same Wherein a water-soluble mandrel having ing the desired tank configuration and a cylindrical protuberance on at least one end is fitted with an inner boss conformance, to the configuration of the mandrel and in outer boss conforming to the configuration of the inner boss, the bosses each having a tubular portion for receiving the protuberance on the mandrel and a spherical portion. The mandrel and the bosses are first coated with a nickel coating. The mandrel is then wrapped with graphite fibers wetted with an epoxy resin and this resin is cured. A layer of insulating foam is then applied to the tank and cured. The insulating foam is machined to a desired concentration and a layer of aramid fibers wetted with a second epoxy resin is wrapped around the tank. The second resin is cured and the water soluble mandrel is washed from inside the tank.

  3. Lubricant composition

    SciTech Connect

    Baile, G.H.

    1980-12-16

    Lubricating compositions and shaped articles composed thereof are described which consist essentially of about 30 to about 60% by weight of an oil of lubricating viscosity, about 20 to about 50% by weight of a high molecular weight polymer, and about 20 about 50% by weight of a heat conductive agent capable of conducting heat away from a bearing surface where it is generated. The high molecular weight polymer may, for example, be polyethylene, having average molecular weights in the range from about 1.0 X 105 to about 5.0 X 106. The oil may be a mineral oil, a diester oil or preferably a synthetic hydrocarbon oil having a viscosity in the range from about 13 to about 1200 mm''/s (Mm2/s) at 38/sup 0/C. (100/sup 0/F.) the heat conductive agent may be powdered zinc oxide, aluminum powder, or equivalents thereof in this invention. The compositions are semi-rigid gels which may be formed in a mold and used as is, or which may be shaped further after molding. The gels are formed by blending the heat conductive agent and polymer and then blending that mixture with the oil and heating to a temperature above the softening temperature of the polymer for a period of time (About 5 to about 75 minutes) sufficient that the mixture will form a firm, tough solid gel on cooling having an oily surface provided by oil exuding from the gel thus producing a lubricative mass operable for extended periods of time. The heat conductive substance dispersed in the gel aids in dissipating heat produced at the bearing surfaces during use thus improving the performance of the gel both in withstanding higher bulk operating temperatures and in resisting breakdown of the gel under prolonged use.

  4. Fatigue of composites

    NASA Technical Reports Server (NTRS)

    Salkind, M. J.

    1972-01-01

    The failure mechanisms in the fatigue of composite materials are analyzed in terms of the requirements for designing fatigue-critical composite structures. Fiber reinforced polymers, fiber reinforced metals, fatigue of composite structures, and composite design considerations are discussed. It is concluded that composite materials offer the engineer the opportunity for tailoring stiffness in different directions for designing dynamic components.

  5. Processing composite materials

    NASA Technical Reports Server (NTRS)

    Baucom, R. M.

    1982-01-01

    The fabrication of several composite structural articles including DC-10 upper aft rudders, L-1011 vertical fins and composite biomedical appliances are discussed. Innovative composite processing methods are included.

  6. Composite powder particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald S. (Inventor); MacDowell, Louis G. (Inventor)

    2009-01-01

    A liquid coating composition including a coating vehicle and composite powder particles disposed within the coating vehicle. Each composite powder particle may include a magnesium component, a zinc component, and an indium component.

  7. Composite Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2017-01-01

    The CTE (Composite Technology for Exploration) Project will develop and demonstrate critical composites technologies with a focus on joints that utilize NASA expertise and capabilities. The project will advance composite technologies providing lightweight structures to support future NASA exploration missions. The CTE project will demonstrate weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware.

  8. Probabilistic composite micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.

    1988-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.

  9. Intraply Hybrid Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1986-01-01

    Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.

  10. Conducting Compositions of Matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    1999-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  11. Conducting Compositions of Matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2001-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  12. Conducting compositions of matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  13. Probabilistic composite micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.

    1988-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.

  14. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

  15. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  16. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  17. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

  18. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Quinlivan, John T.; Wilson, Robert D.; Smith, Peter J.; Johnson, Ronald W.

    1984-01-01

    Toppics addressed include: advanced composites on Boeing commercial aircraft; composite wing durability; damage tolerance technology development; heavily loaded wing panel design; and pressure containment and damage tolerance in fuselages.

  19. Tough Composite Materials

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Compiler); Johnson, N. J. (Compiler); Teichman, L. A. (Compiler)

    1984-01-01

    Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

  20. Detergent gasoline composition

    SciTech Connect

    Biasotti, J.B.; Dille, K.L.; Dorn, P.; Herbstman, S.

    1980-05-27

    A detergent motor fuel composition is provided comprising a primary aliphatic hydrocarbon amino alkylene-substituted asparagine and an N-alkyl-alkylene diamine component. The additive composition consists of from 30 to 70 weight percent of aspargine.

  1. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2007-05-29

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  2. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2006-11-07

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  3. Carbon Fibers and Composites

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1979-01-01

    The basic nature of composite materials is considered. Carbon fiber composites and their area of current and planned application in civil aircraft are discussed, specifically within the framework of the various aspects of risk analysis.

  4. Infiltrated carbon foam composites

    NASA Technical Reports Server (NTRS)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  5. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  6. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  7. Thermoset molecular composites

    DOEpatents

    Benicewicz, Brian C.; Douglas, Elliot P.; Hjelm, Jr., Rex P.

    1996-01-01

    A polymeric composition including a liquid crystalline polymer and a thermosettable liquid crystalline monomer matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms and a polymeric composition including a liquid crystalline polymer and a liquid crystalline thermoset matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms are disclosed.

  8. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  9. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  10. Refiguring Composition through Theory

    ERIC Educational Resources Information Center

    Lynch-Biniek, Amy

    2009-01-01

    In this dissertation, I argue that curricular choices in Composition are overdetermined by the academic labor system and its negative effect on the status of composition theory. Despite the growth of disciplinary knowledge, composition programs are still staffed largely with underpaid and under supported faculty and graduate students, many of whom…

  11. Metal etching composition

    NASA Technical Reports Server (NTRS)

    Otousa, Joseph E. (Inventor); Thomas, Clark S. (Inventor); Foster, Robert E. (Inventor)

    1991-01-01

    The present invention is directed to a chemical etching composition for etching metals or metallic alloys. The composition includes a solution of hydrochloric acid, phosphoric acid, ethylene glycol, and an oxidizing agent. The etching composition is particularly useful for etching metal surfaces in preparation for subsequent fluorescent penetrant inspection.

  12. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  13. Composition: A Media Approach.

    ERIC Educational Resources Information Center

    Tuttle, Frederick B., Jr.

    This book explores the many visually oriented activities that can be used to teach the composition process. Chapter one outlines the format of the book and discusses the composition process in terms of visual perception and reaction to visual stimuli. Chapter two introduces the general aspects of composition that are pertinent to all types of…

  14. Phase change compositions

    DOEpatents

    Salyer, Ival O.

    1989-01-01

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  15. Phase change compositions

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  16. Polymer - Ceramic Composites.

    DTIC Science & Technology

    1988-04-01

    characteristic properties of our composite films are then compared with those of Piezel, a commercially available composite, manufactured by the Daikin Industry...S obtained on PIEZEL (composite of PZT and PVDF copolymer, supplied by Daikin Industries Limited of Japan) are also presented. 1% % .... . ,,, ,,,,~m

  17. Orientation cristalline et répartition des cristaux insulaires à la surface des monocristaux de fer zone fondue

    NASA Astrophysics Data System (ADS)

    Viltange, Micheline

    1980-06-01

    The distribution of stray-grains present on the surface of cylindrical zone-refined iron single-crystals has been studied by means of optical microscopy. Stray-grains are observed on crystals of all orientations, except on one crystal which has a [001] growth axis. Several arrays of grains parallel to the growth axis of a parent crystal are observed along the line of tangency of {100}, {110}, {111} or {211} planes. Many twins are identified by means of X-ray diffraction. In all studied cases, a {211} twinning plane is nearly perpendicular to the surface. This condition is less drastic than the one proposed by Saleeb and Kadečková, according to which nucleation takes place only when a {111} plane is parallel to the surface. The condition proposed here applies to isolated grains as well as to arrays. It explains that twins corresponding to several systems may occur on the surface of a single-crystal. Since the number of actually observed arrays is lower than the theoretical one, it is supposed that localized textures could have an influence during the recrystallization process.

  18. Analyse de la diffusion diffuse donnée par les cristaux de protéines

    NASA Astrophysics Data System (ADS)

    Doucet, J.; Benoit, J.-P.; Faure, P.; Durant, D.

    1992-06-01

    This paper is devoted to the contribution offered by the X-ray diffuse scattering analysis to the problem of plasticity of crystallized protein molecules. We first review the main published results, then we try to perform a synthesis of these results and of new observations that we have obtained on various proteins. Two types of displacements emerge from this review : intramolecular displacements correlated at very short range and long-range correlated intermolecular displacements. The possibility of detecting diffuse scattering resulting from intramolecular displacements correlated within entire parts of proteins is discussed. Cet article est consacré à l'apport de l'analyse de la diffusion diffuse de rayons X au problème de la déformabilité des protéines cristallisées. Nous passons d'abord en revue les principales études publiées, puis nous tentons d'effectuer une synthèse de ces résultats en y incluant des observations nouvelles que nous avons obtenues sur d'autres protéines. Il apparaît que deux types principaux de déplacements affectent les molécules: des déplacements intramoléculaires corrélés seulement à très courte distance et des déplacements intermoléculaires corrélés sur plusieurs mailles. La possibilité de détection de diffusion diffuse provenant de déplacements intramoléculaires corrélés à l'échelle de portions entières de molécules est discutée.

  19. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Klotzsche, M. (Compiler)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.

  20. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  1. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  2. Self-lubricating composite materials

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1980-01-01

    The mechanical properties of two types of self lubricating composites (polymer matrix composites and inorganic composites) are discussed. Specific emphasis is given to the applicability of these composites in the aerospace industry.

  3. Composite Intersection Reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2013-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  4. Composite intersection reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2010-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  5. Investigation of Composite Structures

    NASA Technical Reports Server (NTRS)

    Hyer, Michael W.

    2000-01-01

    This final report consists of a compilation of four separate written documents, three dealing with the response and failure of elliptical composite cylinders to an internal pressure load, and the fourth dealing with the influence of manufacturing imperfections in curved composite panels. The three focused on elliptical cylinders consist of the following: 1 - A paper entitled "Progressive Failure Analysis of Internally Pressurized Elliptical Composite Cylinders," 2 - A paper entitled "Influence of Geometric Nonlinearities on the Response and Failure of Internally Pressurized Elliptical Composite Cylinders," and 3 - A report entitled "Response and Failure of Internally Pressurized Elliptical Composite Cyclinders." The document which deals with the influence of manufacturing imperfections is a paper entitled "Manufacturing Distortions of Curved Composite Panels."

  6. Hydrogen storage compositions

    DOEpatents

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  7. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.

  8. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  9. Suite versus composite statistics

    USGS Publications Warehouse

    Balsillie, J.H.; Tanner, W.F.

    1999-01-01

    Suite and composite methodologies, two statistically valid approaches for producing statistical descriptive measures, are investigated for sample groups representing a probability distribution where, in addition, each sample is probability distribution. Suite and composite means (first moment measures) are always equivalent. Composite standard deviations (second moment measures) are always larger than suite standard deviations. Suite and composite values for higher moment measures have more complex relationships. Very seldom, however, are they equivalent, and they normally yield statistically significant but different results. Multiple samples are preferable to single samples (including composites) because they permit the investigator to examine sample-to-sample variability. These and other relationships for suite and composite probability distribution analyses are investigated and reported using granulometric data.

  10. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  11. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1988-01-01

    A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.

  12. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2001-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  13. Continuous Fiber Ceramic Composites

    SciTech Connect

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  14. Polymer compositions and methods

    SciTech Connect

    Allen, Scott D.; Willkomm, Wayne R.

    2016-09-27

    The present invention encompasses polyurethane compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane foams, thermoplastics and elastomers derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: ##STR00001## In another aspect, the invention provides articles comprising the inventive foam and elastomer compositions as well as methods of making such compositions.

  15. Design of Active Composites

    DTIC Science & Technology

    2009-03-30

    2007 Month: 12 super elastic grade. This FSMA composite is for use as a new airborne actuator. This report focuses both on modeling and...ferromagnetic SMA composites made of Fe and NiTi of super elastic grade, and the composite exhibited both ferromagnetic and super elastic behavior, these...of an equivalent stress-strain formulation originally proposed and now widely accepted Eshelby’s model. For paramagnetic materials (such as TiNi

  16. Composite Fiber Hazards

    DTIC Science & Technology

    1990-12-01

    During grinding on carbon fiber composites , most of the fibers fragment into a nonfibrous dust. Of those particles retaining a fibrous shape...quantity and type of airborne carbon fibers generated from the burning of carbon fiber composites in an airplane crash. In a simulated aircraft fire...It was estimated that following an aiicraft crasl in which carbon fiber composites burned, there would be a release of 5 x 10 fibers ( ɛ om diameter

  17. Interlaminar fracture of composites

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1984-01-01

    Fracture mechanics has been found to be a useful tool for understanding composite delamination. Analyses for calculating strain energy release rates associated with delamination growth have been developed. These analyses successfully characterized delamination onset and growth for particular sources of delamination. Low velocity impact has been found to be the most severe source of composite delamination. A variety of test methods for measuring interlaminar fracture toughness are being developed to identify new composite materials with enhanced delamination resistance.

  18. Bonded composite repair of composite structures

    NASA Astrophysics Data System (ADS)

    Mahler, Mary A.

    Repair and maintenance cost drives a large percentage of the lifetime cost of aircraft structures. Understanding repair issues can lead to a structure that significantly lowers the lifetime cost. Advanced composite materials, while offering the potential to increase aircraft capabilities with minimum weight, are more susceptible to repairable damage than conventional aircraft materials. Improved inspection and repair methods are required to ensure structural integrity and aircraft readiness in the existing operational environment. Many of today's innovative composite designs may result in aircraft structures that are unreasonably difficult to repair. As a first step, technical issues associated with bonded composite repair of composite structures were investigated. An extensive literature review identified many areas where real world composite repairs are being used successfully. An electronic database was developed summarizing the publications found during the literature review. The database includes publication, experimental test results and analytical results of advanced composite bonded repairs. The current analysis of repair does not account for the variations that exist in repair. To facilitate the analysis, a finite element interface was developed to provide analysts with a tool that would create complete finite element models of repaired structures efficiently and in a 3-dimensional view. The finite element models created by the developed interface were successfully correlated to test data for accuracy of the results. Parametric studies were performed using the interface to evaluate effects of repair variables. Thermal impact of repair on the repair panel is one area lacking attention in the repair literature. To understand the impact of heat and thermal gradients of the repair, an analytical investigation was performed to evaluate. the parameters affected by heat. For a solid laminate, the temperature at the adhesive bondline was investigated. The primary

  19. Polyimide composites: Application histories

    NASA Technical Reports Server (NTRS)

    Poveromo, L. M.

    1985-01-01

    Advanced composite hardware exposed to thermal environments above 127 C (260 F) must be fabricated from materials having resin matrices whose thermal/moisture resistance is superior to that of conventional epoxy-matrix systems. A family of polyimide resins has evolved in the last 10 years that exhibits the thermal-oxidative stability required for high-temperature technology applications. The weight and structural benefits for organic-matrix composites can now be extended by designers and materials engineers to include structures exposed to 316 F (600 F). Polyimide composite materials are now commercially available that can replace metallic or epoxy composite structures in a wide range of aerospace applications.

  20. Electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  1. Composition for detecting uranyl

    DOEpatents

    Baylor, Lewis C.; Stephens, Susan M.

    1995-01-01

    A composition for detecting the presence and concentration of a substance such as uranyl, comprising an organohalide covalently bonded to an indicator for said substance. The composition has at least one active OH site for forming a complex with the substance to be detected. The composition is made by reacting equimolar amounts of the indicator and the organohalide in a polar organic solvent. The absorbance spectrum of the composition-uranyl complex is shifted with respect to the absorbance spectrum of the indicator-uranyl complex, to provide better spectral resolution for detecting uranyl.

  2. Lightweight composite launcher pod

    NASA Astrophysics Data System (ADS)

    Hoffmeister, L. D.; Thompson, R. J.

    1984-08-01

    This patent application discloses a lightweight composite launcher pod which includes a multiplicity of elongated launcher tubes that are accurately aligned in a composite material with the composite material having four outer sides with alignment surfaces on three of the sides and bearing and alignment surfaces on the other side, and the lightweight composite launcher pod being capable of serving as the shipping and storage container for rockets before launching of the rockets as well as for launching the rockets therefrom when mounted in a launcher structure.

  3. Reactive composite compositions and mat barriers

    SciTech Connect

    Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  4. Biodegradable synthetic bone composites

    DOEpatents

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  5. Electric Composition Cost Comparison.

    ERIC Educational Resources Information Center

    Joint Committee on Printing, Washington, DC.

    Experience of the U.S. Government Printing Office and others has shown that electronic composition of computer processed data is more economical than printing from camera copy produced by the line printers of digital computers. But electronic composition of data not already being processed by computer is not necessarily economical. This analysis…

  6. The Teaching of Composition.

    ERIC Educational Resources Information Center

    Crowley, Sharon, Ed.

    1976-01-01

    This issue of the "Arizona English Bulletin" includes articles concerned with philosophy, psychology, and procedure in the composition classroom at all levels of instruction. Among the topics considered are contending with critics of composition, the back-to-basics movement, the writing process, writing modules, remedial writing, personalized…

  7. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  8. PAPERS ON COMPOSITION.

    ERIC Educational Resources Information Center

    Northwestern Univ., Evanston, IL. Curriculum Center in English.

    THE SCOPE OF THE NORTHWESTERN UNIVERSITY CURRICULUM CENTER'S RESEARCH PROGRAM IN TEACHING COMPOSITION TO THE BEGINNING WRITER IS DEFINED IN THE EIGHT PAPERS COMPRISING THIS COLLECTION. THE TOPICS FOR THE PAPERS ARE--(1) LIMITING THE AIMS OF TEACHING COMPOSITION IN THE SEVENTH- AND EIGHTH-GRADES TO INCLUDE ONLY NARRATIVE AND DESCRIPTIVE WRITING AND…

  9. Wood thermoplastic composites

    Treesearch

    Daniel F. Caulfield; Craig Clemons; Roger M. Rowell

    2010-01-01

    The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....

  10. Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Mortensen, Andreas; Llorca, Javier

    2010-08-01

    In metal matrix composites, a metal is combined with another, often nonmetallic, phase to produce a novel material having attractive engineering attributes of its own. A subject of much research in the 1980s and 1990s, this class of materials has, in the past decade, increased significantly in variety. Copper matrix composites, layered composites, high-conductivity composites, nanoscale composites, microcellular metals, and bio-derived composites have been added to a palette that, ten years ago, mostly comprised ceramic fiber- or particle-reinforced light metals together with some well-established engineering materials, such as WC-Co cermets. At the same time, research on composites such as particle-reinforced aluminum, aided by novel techniques such as large-cell 3-D finite element simulation or computed X-ray microtomography, has served as a potent vehicle for the elucidation of the mechanics of high-contrast two-phase elastoplastic materials, with implications that range well beyond metal matrix composites.

  11. Molybdenum disilicide matrix composite

    DOEpatents

    Petrovic, John J.; Carter, David H.; Gac, Frank D.

    1990-01-01

    A composition consisting of an intermetallic compound, molybdenum disilicide, which is reinforced with VS silicon carbide whiskers dispersed throughout it and a method of making the reinforced composition. Use of the reinforcing material increases fracture toughness at low temperatures and strength at high temperatures, as compared to pure molybdenum disilicide.

  12. Molybdenum disilicide matrix composite

    DOEpatents

    Petrovic, John J.; Carter, David H.; Gac, Frank D.

    1991-01-01

    A composition consisting of an intermetallic compound, molybdenum disilicide, which is reinforced with VS silicon carbide whiskers dispersed throughout it and a method of making the reinforced composition. Use of the reinforcing material increases fracture toughness at low temperatures and strength at high temperatures, as compared to pure molybdenum disilicide.

  13. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  14. Lightweight Composite Launcher Pod.

    DTIC Science & Technology

    This patent application discloses a lightweight composite launcher pod which includes a multiplicity of elongated launcher tubes that are accurately...alignment surfaces on the other side, and the lightweight composite launcher pod being capable of serving as the shipping and storage container for

  15. Glazer Narrative Composition Scale.

    ERIC Educational Resources Information Center

    Glazer, Joan

    Designed to assess the quality of children's narrative compositions, the Glazer Narrative Composition Scale (GNCS) consists of eighteen scales outlined under plot, theme, setting, characterization, and style. Each scale is scored 1, 2, or 3, depending on how much of the scale element is present in the narrative, with the highest possible score…

  16. Metalworking method for composites

    NASA Technical Reports Server (NTRS)

    Divecha, A. P.

    1976-01-01

    Effective fabrication methods for aluminum/boron and aluminum/graphite composites have been investigated. Drawing and rolling were found to be adaptable to Al/B fabrication. Although graphite composites are not amenable to standard metal processing methods, it may be possible to reduce fabrication costs of Al/C through electron-beam heating.

  17. Composite materials: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, analysis and fabrication techniques for boron-aluminum composite-structure technology is presented and a new method of joining different laminated composites without mechanical fasteners is proposed. Also discussed is a low-cost procedure for rigidifying expanded honeycomb tubing and piping simulations. A brief note on patent information is added.

  18. Rewriting in Advanced Composition.

    ERIC Educational Resources Information Center

    Stone, William B.

    A college English instructor made an informal comparison of rewriting habits of students in a freshman composition course and two advanced composition courses. Notes kept on student rewriting focused on this central question: given peer and instructor response to their papers and a choice as to what and how to rewrite, what will students decide to…

  19. The Teaching of Composition.

    ERIC Educational Resources Information Center

    Crowley, Sharon, Ed.

    1976-01-01

    This issue of the "Arizona English Bulletin" includes articles concerned with philosophy, psychology, and procedure in the composition classroom at all levels of instruction. Among the topics considered are contending with critics of composition, the back-to-basics movement, the writing process, writing modules, remedial writing, personalized…

  20. Species Composition (SC)

    Treesearch

    John F. Caratti

    2006-01-01

    The FIREMON Species Composition (SC) method is used to provide ocular estimates of cover and height measurements for plant species on a macroplot. The SC method provides plant species composition and coverage estimates to describe a stand or plant community and can be used to document changes over time. It is suited for a wide variety of vegetation types and is...

  1. Wood thermoplastic composites

    Treesearch

    Daniel F. Caulfield; Craig Clemons; Rodney E. Jacobson; Roger M. Rowell

    2005-01-01

    The term “wood-plastic composites” refers to any number of composites that contain wood (of any form) and either thermoset or thermoplastic polymers. Thermosets or thermoset polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins, such as epoxies and phenolics, plastics with which the forest products industry is most familiar (...

  2. Probabilistic Fiber Composite Micromechanics

    NASA Technical Reports Server (NTRS)

    Stock, Thomas A.

    1996-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. The variables in which uncertainties are accounted for include constituent and void volume ratios, constituent elastic properties and strengths, and fiber misalignment. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material property variations induced by random changes expected at the material micro level. Regression results are presented to show the relative correlation between predictor and response variables in the study. These computational procedures make possible a formal description of anticipated random processes at the intra-ply level, and the related effects of these on composite properties.

  3. [Advanced Composites Technology Initiatives

    NASA Technical Reports Server (NTRS)

    Julian, Mark R.

    2002-01-01

    This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.

  4. Versatile composite amplifier configuration

    NASA Astrophysics Data System (ADS)

    Gift, Stephan J. G.; Maundy, Brent

    2015-06-01

    This paper describes a versatile composite amplifier in which a current feedback amplifier (CFA) drives an operational amplifier (OPA). In the conventional OPA-CFA composite amplifier, an OPA drives a CFA resulting in a composite structure that combines the DC input stability of the OPA and the high speed capability of the CFA. The proposed composite configuration combines different features of the CFA and OPA, specifically the constant bandwidth property of the CFA and the high power and high current output capacity of the OPA. The new circuit is easily implemented in the standard inverting and non-inverting configurations using commercially available devices, and the accuracy and constant bandwidth features were experimentally verified. Local feedback around the associated CFA ensures that the proposed composite amplifier possesses a higher level of bandwidth constancy than a single CFA.

  5. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko, David J.

    2004-07-13

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  6. Ceramic-silicide composites

    SciTech Connect

    Petrovic, J.J.

    1998-12-01

    The area of ceramic-silicide composites represents a merging of structural ceramics and structural silicides. Such ceramic-silicide composites can possess the desirable characteristics of both classes of compounds. Important structural ceramics are materials such as Si{sub 3}N{sub 4}, SiC, Al{sub 2}O{sub 3}, and ZrO{sub 2}, which possess covalent, ionic, or mixed covalent-ionic atomic bonding. An important structural silicide is MoSi{sub 2}, which possesses mixed covalent-metallic bonding. The arena of ceramic-silicide composites encompasses both composites where the structural silicide is the matrix and the structural ceramic is the reinforcement, and composites where the structural ceramic is the matrix and the structural silicide is the reinforcement. In the former area, MoSi{sub 2}-SiC, MoSi{sub 2}-ZrO{sub 2}, and MoSi{sub 2}-Al{sub 2}O{sub 3} composites are discussed. In the latter area, Si{sub 3}N{sub 4}-MoSi{sub 2} composites are described.

  7. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  8. Fracture of composite-adhesive-composite systems

    NASA Technical Reports Server (NTRS)

    Ripling, E. J.; Santner, J. S.; Crosley, P. B.

    1984-01-01

    This program was undertaken to initiate the development of a test method for testing adhesive joints in metal-adhesive-composite systems. The uniform double cantilever beam (UDCB) and the width tapered beam (WTB) specimen geometries were evaluated for measuring Mode I fracture toughness in these systems. The WTB specimen is the preferred geometry in spite of the fact that it is more costly to machine than the UDCB specimen. The use of loading tabs attached to thin sheets of composites proved to be experimentally unsatisfactory. Consequently, a new system was developed to load thin sheets of adherends. This system allows for the direct measurement of displacement along the load line. In well made joints separation occurred between the plies rather than in the adhesive.

  9. Composite ion exchange materials

    SciTech Connect

    Amarasinghe, S.; Zook, L.; Leddy, J.

    1994-12-31

    Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

  10. Physical Chemical Studies on Molecular Composite Compositions

    DTIC Science & Technology

    1993-02-20

    McCrone , L. B., Deity, J. G., Polarized Light Microscopy, McCrone Research Institute, Chicago (1987). 32. Wolfe, W. L., In Handbook of Optics, Optical...are discussed. The rheology of miscible blends of the rodlike chains with flexibie or semiflexible chains is discussed using a model accounting for...vii PHYSICAL- CHEMICAL STUDIES ON RODLIKE POLYMER COMPOSITIONS The following is a final report for work of AFOSR-89--0125, covering the period January

  11. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  12. Composite foam structures

    NASA Technical Reports Server (NTRS)

    Williams, Brian E. (Inventor); Brockmeyer, Jerry (Inventor); Tuffias, Robert H. (Inventor)

    2005-01-01

    A composite rigid foam structure that has a skin or coating on at least one of its surfaces. The skin is formed in situ by thermal spray techniques. The skin is bonded substantially throughout the surface of the porous substrate to the peripheries of the pores. The skin on the average does not penetrate the surface of the substrate by more than the depth of about 2 to 5 pores. Thus, thermal spraying the skin onto the rigid foam produces a composite that is tightly and uniformly bonded together without unduly increasing the weight of the composite structure. Both thermal conductivity and bonding are excellent.

  13. Flexible composite radiation detector

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  14. Hard metal composition

    DOEpatents

    Sheinberg, Haskell

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  15. Hard metal composition

    DOEpatents

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  16. Nanocellulose electroconductive composites

    NASA Astrophysics Data System (ADS)

    Shi, Zhijun; Phillips, Glyn O.; Yang, Guang

    2013-03-01

    Cellulose-based electroconductive composites can be prepared by combining conducting electroactive materials with hydrophilic biocompatible cellulose. Inorganic nanoparticles, such as metal ions and oxides, carbon nanotubes, graphene and graphene oxide, conducting polymers, and ionic liquids (through doping, blending or coating) can be introduced into the cellulose matrix. Such composites can form a biocompatible interface for microelectronic devices, and provide a biocompatible matrix or scaffold for electrically stimulated drug release devices, implantable biosensors, and neuronal prostheses. Here the benefits of combining conventional and bacterial cellulose with these electroactive composites are described and future applications are considered.

  17. Composite beam builder

    NASA Technical Reports Server (NTRS)

    Poveromo, L. M.; Muench, W. K.; Marx, W.; Lubin, G.

    1981-01-01

    The building block approach to large space structures is discussed, and the progress made in constructing aluminum beams is noted. It is pointed out that composites will also be required in space structures because they provide minimal distortion characteristics during thermal transients. A composite beam builder currently under development is discussed, with attention given to cap forming and the fastening of cross-braces. The various composite materials being considered are listed, along with certain of their properties. The need to develop continuous forming stock up to 300 m long is stressed.

  18. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  19. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  20. Nanocellulose electroconductive composites.

    PubMed

    Shi, Zhijun; Phillips, Glyn O; Yang, Guang

    2013-04-21

    Cellulose-based electroconductive composites can be prepared by combining conducting electroactive materials with hydrophilic biocompatible cellulose. Inorganic nanoparticles, such as metal ions and oxides, carbon nanotubes, graphene and graphene oxide, conducting polymers, and ionic liquids (through doping, blending or coating) can be introduced into the cellulose matrix. Such composites can form a biocompatible interface for microelectronic devices, and provide a biocompatible matrix or scaffold for electrically stimulated drug release devices, implantable biosensors, and neuronal prostheses. Here the benefits of combining conventional and bacterial cellulose with these electroactive composites are described and future applications are considered.

  1. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  2. Electrically conductive composite material

    SciTech Connect

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  3. Composite metal membrane

    DOEpatents

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  4. Composite metal membrane

    DOEpatents

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  6. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

  7. Composite Structural Materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1984-01-01

    The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

  8. Grounding compositional symbols: no composition without discrimination.

    PubMed

    Greco, Alberto; Carrea, Elena

    2012-05-01

    The classical computational conception of meaning has been challenged by the idea that symbols must be grounded on sensorimotor processes. A difficult question arises from the fact that grounding representations cannot be symbolic themselves but, in order to support compositionality, should work as primitives. This implies that they should be precisely identifiable and strictly connected with discriminable perceptual features. Ideally, each representation should correspond to a single discriminable feature. The present study was aimed at exploring whether feature discrimination is a fundamental requisite for grounding compositional symbols. We studied this problem by using Integral stimuli, composed of two interacting and not separable features. Such stimuli were selected in Experiment 1 as pictures whose component features are easily or barely discriminable (Separable or Integral) on the basis of psychological distance metrics (City-block or Euclidean) computed from similarity judgments. In Experiment 2, either each feature was associated with one word of a two-word expression, or the whole stimulus with a single word. In Experiment 3, the procedure was reversed and words or expressions were associated with whole pictures or separate features. Results support the hypothesis that single words are best grounded by Integral stimuli and composite expressions by Separable stimuli, where a strict association of single words with discriminated features is possible.

  9. Composite Overview and Composite Aerocover Overview

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne; Tate, LaNetra; Dokos, Adam; Taylor, Brian; Brown, Chad

    2014-01-01

    Materials Science Division within the Engineering Directorate tasked by the Ares Launch Vehicle Division (LX-V) and the Fluids Testing and Technology Development Branch (NE-F6) to design, fabricate and test an aerodynamic composite shield for potential Heavy Lift Launch Vehicle infusion and a composite strut that will serve as a pathfinder in evaluating calorimeter data for the CRYOSTAT (cryogenic on orbit storage and transfer) Project. ATP project is to carry the design and development of the aerodynamic composite cover or "bracket" from cradle to grave including materials research, purchasing, design, fabrication, testing, analysis and presentation of the final product. Effort consisted of support from the Materials Testing & Corrosion Control Branch (NE-L2) for mechanical testing, the Prototype Development Branch (NE-L3) for CAD drawing, design/analysis, and fabrication, Materials & Processes Engineering Branch (NE-L4) for project management and materials selection; the Applied Physics Branch (NE-LS) for NDE/NDI support; and the Chemical Analysis Branch (NE-L6) for developmental systems evaluation. Funded by the Ares Launch Vehicle Division and the Fluids Testing and Technology Development Branch will provide ODC

  10. Entropy and Composition.

    ERIC Educational Resources Information Center

    Freund, John

    1980-01-01

    Demonstrates that the second law of thermodynamics imposes a fundamental constraint upon the process of composition; examines the consequences of this constraint for writers and teachers of writing. (DD)

  11. Sintered composite filter

    DOEpatents

    Bergman, W.

    1986-05-02

    A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  12. Advances in Composites Technology

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Dexter, H. B.

    1985-01-01

    A significant level of research is currently focused on the development of tough resins and high strain fibers in an effort to gain improved damage tolerance. Moderate success has been achieved with the development of new resins such as PEEK and additional improvements look promising with new thermoplastic resins. Development of innovative material forms such as 2-D and 3-D woven fabrics and braided structural subelements is also expected to improve damage tolerance and durability of composite hardware. The new thrust in composites is to develop low cost manufacturing and design concepts to lower the cost of composite hardware. Processes being examined include automated material placement, filament winding, pultrusion, and thermoforming. The factory of the future will likely incorporate extensive automation in all aspects of manufacturing composite components.

  13. Composite Thin Films

    SciTech Connect

    Martin, Peter M.

    2003-02-01

    Composites are one of more versatile types of materials, and can be characterized as multicomponent, or multiphase, mixtures. They can have unique structural, optical, electrical and magnetic properties not possible with a simple single component material. One of the best known composite materials is fiberglass, which is composed of glass fibers in a polymer matrix. This family of materials and thin films is highly disordered and inhomogeneous on a microstructural scale. Nanocrystalline and nanoclusters are now actively being investigated. The inhomogeneities can be fibers, clusters of atoms or molecules, grains with different crystalline phases (nanocrystalline clusters), inclusions with different electrical and magnetic properties. Note that the particles can have the same composition as the host material, but will have a different structural geometry. Carbon-carbon composites are a good example, where carbon fibers or threads are incorporated into carbonaceous resin

  14. Composite flexible blanket insulation

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Lowe, David M. (Inventor)

    1994-01-01

    An improved composite flexible blanket insulation is presented comprising top silicon carbide having an interlock design, wherein the reflective shield is composed of single or double aluminized polyimide and wherein the polyimide film has a honeycomb pattern.

  15. Layered Composite Analysis Capability

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.; Cole, J. G.

    1985-01-01

    Laminated composite material construction is gaining popularity within industry as an attractive alternative to metallic designs where high strength at reduced weights is of prime consideration. This has necessitated the development of an effective analysis capability for the static, dynamic and buckling analyses of structural components constructed of layered composites. Theoretical and user aspects of layered composite analysis and its incorporation into CSA/NASTRAN are discussed. The availability of stress and strain based failure criteria is described which aids the user in reviewing the voluminous output normally produced in such analyses. Simple strategies to obtain minimum weight designs of composite structures are discussed. Several example problems are presented to demonstrate the accuracy and user convenient features of the capability.

  16. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  17. Composition for detecting uranyl

    DOEpatents

    Baylor, L.C.; Stephens, S.M.

    1994-01-01

    The present invention relates to an indicator composition for use in spectrophotometric detection of a substance in a solution, and a method for making the composition. Useful indicators are sensitive to the particular substance being measured, but are unaffected by the fluid and other chemical species that may be present in the fluid. Optical indicators are used to measure the uranium concentration of process solutions in facilities for extracting uranium from ores, production of nuclear fuels, and reprocessing of irradiated fuels. The composition comprises an organohalide covalently bonded to an indicator for the substance, in such a manner that the product is itself an indicator that provides increased spectral resolution for detecting the substance. The indicator is preferably arsenazo III and the organohalide is preferably cyanuric chloride. These form a composition that is ideally suited for detecting uranyl.

  18. NEUTRONIC REACTOR FUEL COMPOSITION

    DOEpatents

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  19. Graphene-based composites.

    PubMed

    Huang, Xiao; Qi, Xiaoying; Boey, Freddy; Zhang, Hua

    2012-01-21

    Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

  20. ION COMPOSITION ELUCIDATION (ICE)

    EPA Science Inventory



    Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer to simultaneously determine exact masses and relative isotopic abundances from mass peak profiles. These can be determined more accurately and at higher sensitivity ...

  1. Composites at KSC

    NASA Technical Reports Server (NTRS)

    Cox, Sarah

    2015-01-01

    This is a short presentation on the Composites work that has recently been performed in the Materials Science Divisionat Kennedy Space Center. Topics include Residual Stress, Repair, and Plant Habitat Growth Chamber Fabrication.

  2. Entropy and Composition.

    ERIC Educational Resources Information Center

    Freund, John

    1980-01-01

    Demonstrates that the second law of thermodynamics imposes a fundamental constraint upon the process of composition; examines the consequences of this constraint for writers and teachers of writing. (DD)

  3. Composites Damage Tolerance Workshop

    NASA Technical Reports Server (NTRS)

    Gregg, Wayne

    2006-01-01

    The Composite Damage Tolerance Workshop included participants from NASA, academia, and private industry. The objectives of the workshop were to begin dialogue in order to establish a working group within the Agency, create awareness of damage tolerance requirements for Constellation, and discuss potential composite hardware for the Crew Launch Vehicle (CLV) Upper Stage (US) and Crew Module. It was proposed that a composites damage tolerance working group be created that acts within the framework of the existing NASA Fracture Control Methodology Panel. The working group charter would be to identify damage tolerance gaps and obstacles for implementation of composite structures into manned space flight systems and to develop strategies and recommendations to overcome these obstacles.

  4. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    James, A. M.

    1984-01-01

    Topics addressed include: strength and hygrothermal response of L-1011 fin components; wing fuel containment and damage tolerance development; impact dynamics; acoustic transmission; fuselage structure; composite transport wing technology development; spar/assembly concepts.

  5. Lightweight polymer concrete composites

    SciTech Connect

    Fontana, J.J.; Steinberg, M.; Reams, W.

    1985-08-01

    Lightweight polymer concrete composites have been developed with excellent insulating properties. The composites consist of lightweight aggregates such as expanded perlites, multicellular glass nodules, or hollow alumina silicate microspheres bound together with unsaturated polyester or epoxy resins. These composites, known as Insulating Polymer Concrete (IPC), have thermal conductivites from 0.09 to 0.19 Btu/h-ft-/sup 0/F. Compressive strengths, dependent upon the aggregates used, range from 1000 to 6000 psi. These materials can be precast or cast-in-place on concrete substrates. Recently, it has been demonstrated that these materials can also be sprayed onto concrete and other substrates. An overlay application of IPC is currently under way as dike insulation at an LNG storage tank facility. The composites have numerous potentials in the construction industry such as insulating building blocks or prefabricated insulating wall panels.

  6. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

  7. Probabilistic Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1997-01-01

    Probabilistic composite design is described in terms of a computational simulation. This simulation tracks probabilistically the composite design evolution from constituent materials, fabrication process, through composite mechanics and structural components. Comparisons with experimental data are provided to illustrate selection of probabilistic design allowables, test methods/specimen guidelines, and identification of in situ versus pristine strength, For example, results show that: in situ fiber tensile strength is 90% of its pristine strength; flat-wise long-tapered specimens are most suitable for setting ply tensile strength allowables: a composite radome can be designed with a reliability of 0.999999; and laminate fatigue exhibits wide-spread scatter at 90% cyclic-stress to static-strength ratios.

  8. Epoxy/Fluoroether Composites

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Taylor, M. S.

    1986-01-01

    Composite materials made from unfilled and glass-fiber-reinforced epoxy toughened by copolymerization with elastomeric prepolymers of perfluoroalkyl ether diacyl fluoride (EDAF). Improved properties due to hydrogen bonding between rubber phase and epoxy matrix, plus formation of rubberlike phase domains that molecularly interpenetrate with epoxy matrix. With optimum rubber content, particle size, and particle shape, entire molecular structure reinforced and toughened. Improved composites also show increased failure strength, stiffness, glass-transition temperature, and resistance to water.

  9. Polyarylether composition and membrane

    DOEpatents

    Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  10. Microvascular Autonomic Composites

    DTIC Science & Technology

    2012-01-06

    characterization of carbon nanotube yarns, 3-D braids, and their composites. SAMPE Journal 43: 6-19. Bogdanovich A and Mohamed MH. 2009. Three-Dimensional... carbon in red and bromine in yellow. The fracture surfaces were analyzed by SEM to show film was indistinguishable from the matrix, but by using the...nature, the mother of composite materials, applying microvascular technology to create skin, cartilages, tendons, bones and teeth. Cellulose fiber

  11. Optimization of composite structures

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.

    1982-01-01

    Structural optimization is introduced and examples which illustrate potential problems associated with optimized structures are presented. Optimized structures may have very low load carrying ability for an off design condition. They tend to have multiple modes of failure occurring simultaneously and can, therefore, be sensitive to imperfections. Because composite materials provide more design variables than do metals, they allow for more refined tailoring and more extensive optimization. As a result, optimized composite structures can be especially susceptible to these problems.

  12. Interleaved Bismaleimide Composites

    DTIC Science & Technology

    1992-12-01

    400°F temperature range. Bismaleimide ( BMI ) composites possess the required strength and heat stability properties. Thus these materials have received...and film-resin interdiffu- sion provides a good combination of toughness and in-plane properties [6]. Interleaved BMI composites have also been...machine. vii NAW’.ADWAR-92102-60 INTRODUCTION The goal of this program was to characterize interleaving as a method to improve damage tolerance in BMI

  13. Repairs of composite structures

    NASA Astrophysics Data System (ADS)

    Roh, Hee Seok

    Repair on damaged composite panels was conducted. To better understand adhesively bonded repair, the study investigates the effect of design parameters on the joint strength. The design parameters include bondline length, thickness of adherend and type of adhesive. Adhesives considered in this study were tested to measure their tensile material properties. Three types of adhesively bonded joints, single strap, double strap, and single lap joint were considered under changing bondline lengths, thickness of adherend and type of adhesive. Based on lessons learned from bonded joints, a one-sided patch repair method for composite structures was conducted. The composite patch was bonded to the damaged panel by either film adhesive FM-73M or paste adhesive EA-9394 and the residual strengths of the repaired specimens were compared under varying patch sizes. A new repair method using attachments has been suggested to enhance the residual strength. Results obtained through experiments were analyzed using finite element analysis to provide a better repair design and explain the experimental results. It was observed that the residual strength of the repaired specimen was affected by patch length. Method for rapid repairs of damaged composite structures was investigated. The damage was represented by a circular hole in a composite laminated plate. Pre-cured composite patches were bonded with a quick-curing commercial adhesive near (rather than over) the hole. Tensile tests were conducted on specimens repaired with various patch geometries. The test results showed that, among the methods investigated, the best repair method restored over 90% of the original strength of an undamaged panel. The interfacial stresses in the adhesive zone for different patches were calculated in order to understand the efficiencies of the designs of these patch repairs. It was found that the composite patch that yielded the best strength had the lowest interfacial peel stress between the patch and

  14. Epoxy/Fluoroether Composites

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Taylor, M. S.

    1986-01-01

    Composite materials made from unfilled and glass-fiber-reinforced epoxy toughened by copolymerization with elastomeric prepolymers of perfluoroalkyl ether diacyl fluoride (EDAF). Improved properties due to hydrogen bonding between rubber phase and epoxy matrix, plus formation of rubberlike phase domains that molecularly interpenetrate with epoxy matrix. With optimum rubber content, particle size, and particle shape, entire molecular structure reinforced and toughened. Improved composites also show increased failure strength, stiffness, glass-transition temperature, and resistance to water.

  15. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  16. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  17. Comet composition and Lab

    NASA Astrophysics Data System (ADS)

    Bockelée-Morvan, Dominique; Biver, Nicolas

    2016-10-01

    Comet composition and properties provide information on chemical and physical processes that occurred in the early Solar system, 4.6 Gyr ago. The study of comets and of star-forming regions both help for a better understanding of the formation of planetary systems. A review of our present knowledge of cometary composition is presented. We also discuss laboratory studies that would be helpful for data analysis.

  18. Composite weak bosons

    SciTech Connect

    Suzuki, M.

    1988-04-01

    Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.

  19. Composite desiccant structure

    DOEpatents

    Fraioli, Anthony V.; Schertz, William W.

    1987-01-01

    A composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  20. Composite desiccant structure

    DOEpatents

    Fraioli, A.V.; Schertz, W.W.

    1984-06-06

    This patent discloses a composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  1. Multifracture of ceramic composites

    SciTech Connect

    Weitsman, Y.J.; Zhu, H.

    1992-03-01

    This work presents a mechanistic model for the multifracture process of uniaxially reinforced fibrous ceramic composites under monotonically increasing tension parallel to the fiber direction. The model employs an energy criterion to account for the progression of matrix cracks, bridged by intact fibers, and Weibull failure statistics to relate the failure of the fibers. Consideration is given to the interactions between the foregoing failure processes as well as to the effects of various material parameters on the response of the composite.

  2. Multipurpose composite flywheel

    SciTech Connect

    Ginsburg, B.R.

    1984-11-01

    The twin disk composite flywheel shows that the techniques that were developed at Rocketdyne to successfully design, fabricate, and test high-speed rotating machinery (turbopumps) for rocket engines could be used to develop advanced flywheels. This flywheel not only demonstrates that successful mating of metal flywheel characteristics (high torque and ruggedness) and composite flywheel characteristics (lightweight and high energy density) can be achieved, but the unique design lends itself to easy adaptation to other configurations.

  3. Bonded and Stitched Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart F. (Inventor); Dial, William B. (Inventor)

    2014-01-01

    A method of forming a composite structure can include providing a plurality of composite panels of material, each composite panel having a plurality of holes extending through the panel. An adhesive layer is applied to each composite panel and a adjoining layer is applied over the adhesive layer. The method also includes stitching the composite panels, adhesive layer, and adjoining layer together by passing a length of a flexible connecting element into the plurality of holes in the composite panels of material. At least the adhesive layer is cured to bond the composite panels together and thereby form the composite structure.

  4. Self reinforcing polymer composites

    SciTech Connect

    Kenig, S.

    1993-12-31

    In the advent of liquid crystalline polymers (LCPs), self reinforcing polymer composites comprising a polymer matrix and an LCP reinforcement, have become a reality. The so called self reinforcement is due to the LCPs orientability characteristics resulting from their rigid molecular backbone and anisotropy structure in the fluid state. Orientation development takes place during melt processing of the LCP composite blends where shear as well as elongational flows occur prior to consolidation to the solid state. By proper flow control anisotropy develops and in-situ composites are obtained. Polymer composites comprising self-reinforcement by LCPs during processing induced flow, were analyzed and studied with respect to their orientation development and resultant mechanical properties. The analysis commenced with the hydrodynamics of immiscible fluids in shear and elongational flows. Based on the analysis, orientation and morphology development in capillary extrusion was studied, using a variety of thermoplastic polymer matrices like amorphous and crystalline polyamides, polycarbonate and polyester in conjunction of a naphthalene based thermotropic LCP. Based on the flow-morphology relationship the amorphous polyamide/LCP composite was further investigated as it exhibited enhanced properties. Laminated composites based on LCP/amorphous polyamide were developed composed of unidirectional extruded and drawn sheets that were subsequently compression molded. Unidirectional, +45/{minus}45 and quasi-isotropic laminates were prepared and analyzed as to their microstructure and mechanical properties.

  5. Tribology of polymer composites

    SciTech Connect

    Friedrich, K.

    1993-12-31

    Polymer composites are more and more used as structural components which are very often subjected to friction and wear loadings under use. This overview describes the following cases: (1) short fiber/thermoplastic matrix composites and their friction and wear properties as a function of both microstructural composition and external testing conditions. Special attention is focused on the effects of different polymer matrices, fiber reinforcements, and additional internal lubricants on the coefficient of friction and the specific wear rate of these materials when sliding against hard steel counterparts. Further effects on these tribological properties due to changes in testing temperature, sliding speed and contact pressure are outlined; (2) results of sliding wear experiments with continuous glass, carbon or aramid fiber/polymer matrix composites against steel counterparts. They were used to develop a hypothetical model composite with optimum wear resistance. This was achieved for hybrids with carbon fibers parallel and aramid fibers normal to the sliding direction of the counterpart; and (3) the friction and wear performance of thin layer composites strengthened with steel backeners to sustain very high pressure loadings during sliding wear.

  6. Advanced composites technology

    SciTech Connect

    DeTeresa, S J; Groves, S E; Sanchez, R J

    1998-10-01

    The development of fiber composite components in next-generation munitions, such as sabots for kinetic energy penetrators and lightweight cases for advanced artillery projectiles, relies on design trade-off studies using validated computer code simulations. We are developing capabilities to determine the failure of advanced fiber composites under multiaxial stresses to critically evaluate three-dimensional failure models and develop new ones if necessary. The effects of superimposed hydrostatic pressure on failure of composites are being investigated using a high-pressure testing system that incorporates several unique features. Several improvements were made to the system this year, and we report on the first tests of both isotropic and fiber composite materials. The preliminary results indicate that pressure has little effect on longitudinal compression strength of unidirectional composites, but issues with obtaining reliable failures in these materials still remain to be resolved. The transverse compression strength was found to be significantly enhanced by pressure, and the trends observed for this property and the longitudinal strength are in agreement with recent models for failure of fiber composites.

  7. Measuring atmospheric composition change

    NASA Astrophysics Data System (ADS)

    Laj, P.; Klausen, J.; Bilde, M.; Plaß-Duelmer, C.; Pappalardo, G.; Clerbaux, C.; Baltensperger, U.; Hjorth, J.; Simpson, D.; Reimann, S.; Coheur, P.-F.; Richter, A.; De Mazière, M.; Rudich, Y.; McFiggans, G.; Torseth, K.; Wiedensohler, A.; Morin, S.; Schulz, M.; Allan, J. D.; Attié, J.-L.; Barnes, I.; Birmili, W.; Cammas, J. P.; Dommen, J.; Dorn, H.-P.; Fowler, D.; Fuzzi, S.; Glasius, M.; Granier, C.; Hermann, M.; Isaksen, I. S. A.; Kinne, S.; Koren, I.; Madonna, F.; Maione, M.; Massling, A.; Moehler, O.; Mona, L.; Monks, P. S.; Müller, D.; Müller, T.; Orphal, J.; Peuch, V.-H.; Stratmann, F.; Tanré, D.; Tyndall, G.; Abo Riziq, A.; Van Roozendael, M.; Villani, P.; Wehner, B.; Wex, H.; Zardini, A. A.

    Scientific findings from the last decades have clearly highlighted the need for a more comprehensive approach to atmospheric change processes. In fact, observation of atmospheric composition variables has been an important activity of atmospheric research that has developed instrumental tools (advanced analytical techniques) and platforms (instrumented passenger aircrafts, ground-based in situ and remote sensing stations, earth observation satellite instruments) providing essential information on the composition of the atmosphere. The variability of the atmospheric system and the extreme complexity of the atmospheric cycles for short-lived gaseous and aerosol species have led to the development of complex models to interpret observations, test our theoretical understanding of atmospheric chemistry and predict future atmospheric composition. The validation of numerical models requires accurate information concerning the variability of atmospheric composition for targeted species via comparison with observations and measurements. In this paper, we provide an overview of recent advances in instrumentation and methodologies for measuring atmospheric composition changes from space, aircraft and the surface as well as recent improvements in laboratory techniques that permitted scientific advance in the field of atmospheric chemistry. Emphasis is given to the most promising and innovative technologies that will become operational in the near future to improve knowledge of atmospheric composition. Our current observation capacity, however, is not satisfactory to understand and predict future atmospheric composition changes, in relation to predicted climate warming. Based on the limitation of the current European observing system, we address the major gaps in a second part of the paper to explain why further developments in current observation strategies are still needed to strengthen and optimise an observing system not only capable of responding to the requirements of

  8. Impetus of composite mechanics on test methods for fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1978-01-01

    The impetus of composite mechanics on composite test methods and/or on interpreting test results is described by using examples from composite micromechanics, composite macromechanics and laminate theory. The specific examples included contributions such as criteria for selecting resin matrices for improved composite strength, the 10 deg off-axis tensile test, criteria for configuring hybrids and superhybrids for improved impact resistance and the reduced bending rigidities concept for buckling and vibration analyses.

  9. Multilayer Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of

  10. Compositionally Driven Dynamos

    NASA Astrophysics Data System (ADS)

    Soderlund, K. M.; Schubert, G.

    2014-12-01

    It is generally believed that compositional convection driven by inner core solidification is the main driver of the geodynamo. Thermal evolution considerations make it likely that compositional convection is also behind the present dynamos of Mercury and Ganymede as well as the early dynamos in the Moon, Mars and smaller solar system bodies. Compositional buoyancy can arise in several different ways, for example, through inner core solidification and FeS flotation with upward mixing and through freezing out and sinking of iron snow near the core-mantle boundary or deeper within the core. The mode of core cooling and freezing depends on conditions of temperature and pressure in the core and the concentration of light elements such as sulfur. Different distributions of compositional buoyancy will give rise to different patterns of core convection and dynamo magnetic fields. We report here the first results of a systematic study of the distribution of compositional buoyancy on the dynamo-generated magnetic fields, with an emphasis on Mars' core evolution due to iron rain.

  11. Composites: A viable option

    NASA Technical Reports Server (NTRS)

    Mccarty, John E.

    1991-01-01

    While it sounded great to be asked to talk about composites, I found it difficult to select subject areas that would be of real interest. My choice is based on saying some things about where the maturity of the composite aircraft structures is today and what that means in terms of future criteria for application. This focus was the basis for my title selection. The other issue that will be addressed was requested by NASA and focuses on composites structures cost. This fits well with the state-of-the-art interpretations I will discuss first, since the cost issue must be viewed from both the current status and future points of view. The difficulty in presenting something in these areas is not in the subjects themselves but in trying to present a real world viewpoint to an audience of composite experts. So, with recognition of the expertise of the audience, I hope you will see something in this presentation about how to view composite aircraft structure.

  12. Terahertz plasmonic composites.

    PubMed

    Nemat-Nasser, Syrus C; Amirkhizi, Alireza V; Padilla, Willie J; Basov, Dimitri N; Nemat-Nasser, Sia; Bruzewicz, Derek; Whitesides, George

    2007-03-01

    The dielectric response of a polymer matrix composite can be substantially modified and tuned within a broad frequency band by integrating within the material an artificial plasmon medium composed of periodically distributed, very thin, electrically conducting wires. In the microwave regime, such plasmon/polymer composites have been studied analytically, computationally, and experimentally. This work reports the design, fabrication, and characterization of similar composites for operation at terahertz frequencies. Such composites require significant reduction in the thickness and spacing of the wires. We used numerical modeling to design artificial effective plasmonic media with turn-on frequencies in the terahertz range. Prototype samples were produced by lithographically embedding very thin gold strips into a PDMS [poly(dimethylsiloxane)] matrix. These samples were characterized with a Fourier-transform infrared interferometer using the frequency-dependent transmission and Kramers-Kronig relations to determine the electromagnetic properties. We report the characterization results for a sample, demonstrating excellent agreement between theory, computer design, and experiment. To our knowledge this is the first demonstration of the possibility of creating composites with tuned dielectric response at terahertz frequencies.

  13. Composite mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1987-01-01

    Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.

  14. Composite mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1989-01-01

    Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.

  15. Nanostructured metal-polyaniline composites

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  16. Composite mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1989-01-01

    Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.

  17. Composite materials for space structures

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Sykes, G. F.; Bowles, D. E.

    1985-01-01

    The use of advanced composites for space structures is reviewed. Barriers likely to limit further applications of composites are discussed and highlights of research to improve composites are presented. Developments in composites technology which could impact spacecraft systems are reviewed to identify technology needs and opportunities.

  18. Proof test methodology for composites

    NASA Technical Reports Server (NTRS)

    Wu, Edward M.; Bell, David K.

    1992-01-01

    The special requirements for proof test of composites are identified based on the underlying failure process of composites. Two proof test methods are developed to eliminate the inevitable weak fiber sites without also causing flaw clustering which weakens the post-proof-test composite. Significant reliability enhancement by these proof test methods has been experimentally demonstrated for composite strength and composite life in tension. This basic proof test methodology is relevant to the certification and acceptance of critical composite structures. It can also be applied to the manufacturing process development to achieve zero-reject for very large composite structures.

  19. Carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.

    1992-01-01

    The current applications of C-C composites extend to aircraft brakes, rocket nozzles, missile nosetips, and leading edges of the Space Shuttle. More advanced, secondary and even primary structure applications in cyclic, high-temperature oxidizing environments depend on effective oxidation protection for repeated missions. Accounts are presently given of state-of-the-art methods in substrate fabrication, carbon deposition, and SiC and Si3N4 protective coatings. Attention is given to current levels of high temperature oxidation protection for various mission and vehicle types, as well as to performance projections for C-C composites used by a representative National Aerospace Plane airframe structure. Future technology requirements in C-C composites are projected.

  20. Track recording plastic compositions

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory (Inventor)

    1983-01-01

    Improved nuclear track recording plastic compositions are provided which exhibit greatly decreased surface roughness when etched to produce visible tracks of energetic nuclear particles which have passed into and/or through said plastic. The improved compositions incorporate a small quantity of a phthalic acid ester into the major plastic component which is derived from the polymerization of monomeric di-ethylene glycol bis allyl carbonate. Di-substituted phthalic acid esters are preferred as the added component, with the further perference that the ester substituent has a chain length of 2 or more carbon atoms. The inclusion of the phthalic acid ester to an extent of from about 1-2% by weight of the plastic compositions is sufficient to drastically reduce the surface roughness ordinarily produced when the track recording plastic is contacted by etchants.

  1. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  2. Gas-composition tester

    SciTech Connect

    Karpukhin, V.V.; Kulikov, A.V.; Trusov, S.V.

    1986-06-01

    This paper describes a device for testing the gas composition that measures the percent composition of air in the Freon. The instrument operates by recording the variation of the value of a capacitor when the dielectric constant of the gas mixture between its places is changed. The device consists of a unit with capacitors, a circuit for measuring capacitance difference, and a gas system. The accuracy of measurement of Freon concentration, which is 0.3% under normal conditions, corresponds to an accuracy of determination of the relative variation of the refractive index of 7 X 10/sup -6/. The described device can also be used to determine the percent composition of other two-component gas mixtures with different refractive indices.

  3. /h-BN Composite

    NASA Astrophysics Data System (ADS)

    Yang, Wanli; Shi, Zhongqi; Wang, Hailong; Qiao, Guanjun; Li, Yongfeng; Yang, Jianfeng; Jin, Zhihao

    2014-10-01

    This paper presented a rapid nitridation route to fabricate reaction-bonded Si3N4/h-BN ceramic composite by the addition of ZrO2. The effects of ZrO2 on the silicon nitridation behavior, microstructure, and mechanical properties of the composite were investigated. The results showed that ZrO2 could effectively promote the nitridation of silicon and significantly influence the microstructure and mechanical properties of the composite. The best nitridation result, almost full conversion, was achieved when the ZrO2 content was 8 wt.%, and the outstanding mechanical properties were also exhibited at this condition. TG-DTA and thermodynamic analyses revealed that the inter-conversion between ZrO2 catalyst and ZrN metastable phase could effectively inhibit microzone melting of silicon and make the fresh surfaces of silicon particles exposed to nitrogen, and consequently accelerated the nitridation of silicon.

  4. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  5. Silicone-containing composition

    SciTech Connect

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  6. Ceramic composite coating

    DOEpatents

    Wicks, George G.

    1997-01-01

    A thin, room-temperature-curing, ceramic composite for coating and patching etal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

  7. Ceramic composite coating

    DOEpatents

    Wicks, G.G.

    1997-01-21

    A thin, room-temperature-curing, ceramic composite for coating and patching metal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

  8. Alumina clay compositions

    SciTech Connect

    Holmgren, J.S.; Gembicki, S.A.; Schoonover, M.W.; Kocal, J.A.

    1992-05-19

    This patent describes a composition consisting essentially of a layered clay homogeneously dispersed in an inorganic oxide matrix, such that the clay layers are completely surrounded by the inorganic oxide matrix, the inorganic oxide selected from the group consisting of alumina, titania, silica, zirconia, P{sub 2}O{sub 5} and mixtures thereof. This patent also describes a process of preparing a composition consisting essentially of a layered clay homogeneously dispersed in an inorganic oxide matrix, the process comprising mixing a clay with a hydrosol of a precursor of the inorganic oxide, forming spherical particles from the clay containing hydrosol and calcining the particles to form a composition comprising a clay homogeneously dispersed in an inorganic oxide matrix, such that the clay layers are completely surrounded by the inorganic oxide matrix.

  9. Chemical composition of Mars

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Anders, E.

    1979-01-01

    The chemical composition of Mars is estimated from the cosmochemical model of Ganapathy and Anders (1974) with additional petrological and geophysical constraints. The model assumes that planets and chondrites underwent the same fractionation processes in the solar nebula, and constraints are imposed by the abundance of the heat-producing elements, U, Th and K, the volatile-rich component and the high density of the mantle. Global abundances of 83 elements are presented, and it is noted that the mantle is an iron-rich garnet wehrlite, nearly identical to the bulk moon composition of Morgan at al. (1978) and that the core is sulfur poor (3.5% S). The comparison of model compositions for the earth, Venus, Mars, the moon and a eucrite parent body suggests that volatile depletion correlates mainly with size rather than with radial distance from the sun.

  10. Modified Composite Materials Workshop

    NASA Technical Reports Server (NTRS)

    Dicus, D. L. (Compiler)

    1978-01-01

    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

  11. Saccharide antifreeze compositions

    DOEpatents

    Walters, Kent; Duman, John G; Serianni, Anthony S

    2013-12-10

    The invention provides an antifreeze glycolipid compounds and composition comprising a polysaccharide moiety of Formula I; ##STR00001## wherein D-Manp represents a D-mannopyranose moiety, D-Xylp represents a D-xylopyranose moiety, and n is about 5 to about 70; and one or more lipid moieties covalently linked to the polysaccharide moiety of Formula I or electrostatically associated with the polysaccaride moiety for Formula I. The antifreeze glycolipid compounds and compositions can be used for a variety of industrial, agricultural, medical, and cosmetic applications where recrystallization-inhibition, cyroprotection, or cryopreservation is desired. The antifreeze glycolipid compounds or compositions can be used as, for example, as cryoprotectants for tissue preservation and transplantation, improving the texture of processed frozen food and frozen meats, frostbit protection, crop protection, and green alternatives for land vehicle antifreeze and aircraft de-icing.

  12. Fractography of composite delamination

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.

    1989-01-01

    Delamination is a major failure mode of carbon fiber organic matrix composites. It can occur under a variety of loading conditions. Efforts to develop predictive models of the delamination of carbon fiber composites are hampered by a lack of information about the micromechanics of impact damage and delamination growth. Crack formation and propagation in these materials cannot be observed in sufficient detail to determine micro-damage using currently available nondestructive methods such as acoustic backscattering or x ray imaging. Consequently, destructive methods are required. Delamination of composites in Mode I, Mode II and after low energy impact loads were investigated using metallographic techniques of potting the failed specimens, sectioning and examining the cut sections for damage modes.

  13. Unibody Composite Pressurized Structure

    NASA Technical Reports Server (NTRS)

    Rufer, Markus; Conger, Robert; Bauer, Thomas; Newman, John

    2013-01-01

    An integrated, generic unibody composite pressurized structure (UCPS) combined with a positive expulsion device (PED), consisting of an elastomeric bladder for monopropellant hydrazine, has been quasi-standardized for spacecraft use. The combination functions as an all-composite, non-metallic, propellant tank with bladder. The integrated UCPS combines several previous innovations - specifically, the linerless, all-composite cryogenic tank technology; all-composite boss; resin formulation; and integrated stringer system. The innovation combines the UCPS with an integrated propellant management device (PMD), the PED or bladder, to create an entirely unique system for in-space use. The UCPS is a pressure vessel that incorporates skirts, stringers, and other structures so that it is both an in-space hydrazine tank, and also a structural support system for a spacecraft in a single, all-composite unit. This innovation builds on the progress in the development of a previous SBIR (Small Business Innovation Research) Phase I with Glenn Research Center and an SBIR III with Johnson Space Center that included the fabrication of two 42-in. (˜107-cm) diameter all-composite cryogenic (LOX and liquid methane) UCPS test tanks for a lunar lander. This Phase II provides hydra zine compatibility testing of the elastomeric bladder, a see-through PED to validate the expulsion process and model, and a complete UCPS-based PED with stringers and skirts that will be used to conduct initial qualification and expulsion tests. This extends the UCPS technology to include hydrazine-based, in-space pro - pulsion applications and can also be used for electric propulsion. This innovation creates a system that, in comparison to the traditional approach, is lower in weight, cost, volume, and production time; is stronger; and is capable of much higher pressures. It also has fewer failure modes, and is applicable to both chemical and electric propulsion systems.

  14. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko; David J.

    2007-05-08

    The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

  15. Thermoforming of thermoplastic composites

    NASA Astrophysics Data System (ADS)

    McKillop, Brian E.

    Although originally devised for forming unreinfored thermoplastics in sheet form, thermoforming it has been successfully adapted to continuous reinforced thermoplastic composite materials. The conversion rate of this technique is limited only by how fast heat can be added to the thermoplastic matrix to bring it to the processing temperature and the rate at which heat can be removed from the material after the forming process has been completed. Load-to-load cycle times of four minutes have been demonstrated. Processing procedures, equipment, tooling, design consideration and applications are presented to demonstrate that thermoplastic composites can be successfully thermoformed into practical shapes.

  16. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  17. High temperature composites

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1995-01-01

    The purpose of this paper is to review the current state of the development of new composite materials for advanced aircraft engines. The advantages and disadvantages of Ti-base, NiAl-base, and MoSi2-base composites as replacements for today's Ni-base superalloys are discussed from the standpoint of key technical issues, current status, and future directions. Results describing progress in both improved understanding of the mechanisms of deformation and fracture, and improved material performance will be covered.

  18. Composition for radiation shielding

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  19. Metal matrix composite structures

    SciTech Connect

    Krivov, G.A.; Beletsky, V.M.; Gribkov, A.N.

    1993-12-31

    High strength-weight properties, stiffness and fatigue resistance characteristics together with low sensitivity to stress concentration make metal matrix composites (MMC) rather promising for their use in structures. Metal matrix composites consist of a matrix (aluminum, magnesium, titanium and their alloys are the most frequently used) and reinforcers (carbon and boron fibers, high-strength steel wire, silicon carbide whiskers, etc.). This work considers various types of MMC and their applications in structures. The methods of structure production from metal matrix CM of aluminum-boron system with the help of machining, deformation, part joining by welding and riveting are given.

  20. Multifunctional materials and composites

    DOEpatents

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  1. Kevlar reinforced neoprene composites

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Daniels, J. G.; White, W. T.; Thompson, L. M.; Clemons, L. M.

    1985-01-01

    Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating Kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of Kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi).

  2. Kevlar reinforced neoprene composites

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Daniels, J. G.; White, W. T.; Thompson, L. M.; Clemons, L. M.

    1985-01-01

    Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating Kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of Kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi).

  3. Generic composite flywheel designs

    NASA Technical Reports Server (NTRS)

    Steele, R. S.

    1984-01-01

    Fiber reinforced composites belong to a new class of materials and allow great flexibility in flywheel design. The most efficient flywheel may no longer have the classic Stodola taper and indeed, may not even be round. Some of the flywheel designs that have been developed in the past are discussed. Although choice of material, mounts and service requirements often dictate the final design choice for a particular application, the composite flywheels in this paper are classified within a geometric framework, a simple stress analysis of a circular disk is carried out.

  4. Fatigue behaviour of composites

    NASA Astrophysics Data System (ADS)

    Hartwig, G.; Hübner, R.; Knaak, S.; Pannkoke, C.

    An important design parameter for cyclically loaded structures (e.g. transport vessels) is the fatigue endurance limit. The cryogenic fatigue behaviour with different types of fibres and matrices has been investigated. The main emphasis it put on the behaviour of fibre dominated properties. It is surprising that the fatigue strength even of unidirectional fibre composites is strongly influenced by the matrix type. This will be discussed for carbon fibre composites with thermoplastic and duroplastic matrices under tensile and shear loading. For crossplies (with non-woven fabrics) the interaction between laminates controls the fatigue behaviour. The interaction depends on the matrix type and is different for tensile and shear loading.

  5. Damage Tolerance of Composites

    NASA Technical Reports Server (NTRS)

    Hodge, Andy

    2007-01-01

    Fracture control requirements have been developed to address damage tolerance of composites for manned space flight hardware. The requirements provide the framework for critical and noncritical hardware assessment and testing. The need for damage threat assessments, impact damage protection plans, and nondestructive evaluation are also addressed. Hardware intended to be damage tolerant have extensive coupon, sub-element, and full-scale testing requirements in-line with the Building Block Approach concept from the MIL-HDBK-17, Department of Defense Composite Materials Handbook.

  6. Bipartite Composite Fermion States

    NASA Astrophysics Data System (ADS)

    Sreejith, G. J.; Tőke, C.; Wójs, A.; Jain, J. K.

    2011-08-01

    We study a class of ansatz wave functions in which composite fermions form two correlated “partitions.” These “bipartite” composite fermion states are demonstrated to be very accurate for electrons in a strong magnetic field interacting via a short-range 3-body interaction potential over a broad range of filling factors. Furthermore, this approach gives accurate approximations for the exact Coulomb ground state at 2+3/5 and 2+4/7 and is thus a promising candidate for the observed fractional quantum Hall states at the hole conjugate fractions at 2+2/5 and 2+3/7.

  7. Bipartite composite fermion States.

    PubMed

    Sreejith, G J; Toke, C; Wójs, A; Jain, J K

    2011-08-19

    We study a class of ansatz wave functions in which composite fermions form two correlated "partitions." These "bipartite" composite fermion states are demonstrated to be very accurate for electrons in a strong magnetic field interacting via a short-range 3-body interaction potential over a broad range of filling factors. Furthermore, this approach gives accurate approximations for the exact Coulomb ground state at 2+3/5 and 2+4/7 and is thus a promising candidate for the observed fractional quantum Hall states at the hole conjugate fractions at 2+2/5 and 2+3/7.

  8. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  9. Abrasion resistant composition

    DOEpatents

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    2014-05-13

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to the metal matrix.

  10. Composites in armor.

    PubMed

    Hogg, Paul J

    2006-11-17

    Composite materials are traditionally regarded as materials that can save energy in large structures associated with transport. They are used to produce lightweight structures for fuel-efficient aircraft such as the new Boeing 787 Dreamliner; lightweight cars from Lotus, Ferrari and TVR; and high-speed trains, speedboats, and racing yachts. Now, however, some of the most interesting applications of composites are those where the materials are used to save lives and protect property by absorbing the energy of projectiles, impacts, and crashes.

  11. Cork Composites: A Review

    PubMed Central

    Gil, Luís

    2009-01-01

    Cork is a material which has been used for mankind for the last 5,000 years and it is a strategic material used for multiple applications, from wine bottles to aeronautics. Many of current cork materials are composites, in particular cork materials for floor and wall coverings and several other building and industrial applications. Recent developments in cork research have shifted from the classical cork-wine relationship to quality and environmental issues, exploitation of cork industry residues and new cork based materials. In recent years a number of new cork based composite materials were developed.

  12. Review: Resin Composite Filling

    PubMed Central

    Chan, Keith H. S.; Mai, Yanjie; Kim, Harry; Tong, Keith C. T.; Ng, Desmond; Hsiao, Jimmy C. M.

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  13. Generic composite flywheel designs

    SciTech Connect

    Steele, R.S.

    1984-11-01

    Fiber reinforced composites belong to a new class of materials and allow great flexibility in flywheel design. The most efficient flywheel may no longer have the classic Stodola taper and indeed, may not even be round. Some of the flywheel designs that have been developed in the past are discussed. Although choice of material, mounts and service requirements often dictate the final design choice for a particular application, the composite flywheels in this paper are classified within a geometric framework, a simple stress analysis of a circular disk is carried out.

  14. Hybridized polymer matrix composite

    NASA Technical Reports Server (NTRS)

    Stern, B. A.; Visser, T.

    1981-01-01

    Under certain conditions of combined fire and impact, graphite fibers are released to the atmosphere by graphite fiber composites. The retention of graphite fibers in these situations is investigated. Hybrid combinations of graphite tape and cloth, glass cloth, and resin additives are studied with resin systems. Polyimide resins form the most resistant composites and resins based on simple novolac epoxies the least resistant of those tested. Great improvement in the containment of the fibers is obtained in using graphite/glass hybrids, and nearly complete prevention of individual fiber release is made possible by the use of resin additives.

  15. etude experimentale de la propagation de fissures de fatigue dans la zone affectee thermiquement de joints soudes de roues de turbines hydrauliques

    NASA Astrophysics Data System (ADS)

    Trudel, Alexandre

    This thesis presents the results of a comprehensive experimental study on the fatigue crack propagation behavior in aqueous environment of the heat affected zone of CA6NM stainless steel hydraulic turbine runner welds. The initial objective of this project was to determine the fatigue crack growth properties of the heat affected zone. To achieve this, standardized fatigue crack growth tests in aqueous environment were performed to determine the crack growth threshold DeltaKth, and the Paris relationship constants C and m of the heat affected zone. Given potential experimental uncertainties arising from the growth of a crack confined to the heat affected zone, fatigue crack growth tests in an aqueous environment at constant stress intensity factor range (DeltaK) were performed so that the crack would propagate across the heat affected zone. These tests allowed to better appreciate the fatigue crack growth resistance variation between the three zones of the weld, i.e., the filler metal, the heat affected zone and the base metal. Various experimental objectives were supplemented to these two primary objectives. A CA6NM plate was welded to generate a layer of filler metal over its entire surface. The welded plate was cut in two equal pieces, one of which was post-weld heat treated in order to study the effect of this treatment on the fatigue crack growth behavior. Compact tension type fatigue specimens were machined from the welded plates. Rectangular samples were also collected to allow the characterization of the weld. Metallographic observations and X-ray diffraction measurements of the three zones of the weld (filler metal, heat affected zone and base metal) were conducted in order to characterize the microstructure. This microstructural characterization combined with metallographic observations of the crack path profiles were useful in assessing the microstructural effects acting on the fatigue crack growth behavior of the weld. Microhardness measurements were carried out across the weld in order to quantify the heat affected zone width and to allow a relative mechanical characterization of the three weld zones. Residual stresses were measured in fatigue specimens to determine their influence on the fatigue crack growth behavior. Finally, the fracture surfaces were observed using a scanning electron microscope in order to identify the main fracture mechanisms. This work led to several conclusions about the fatigue crack growth behavior in aqueous environment of hydraulic turbine runner welds, and especially in the heat affected zone. First, the measured crack tip tensile residual stresses inhibited crack closure, which resulted in a deteriorated resistance to fatigue crack growth. On the other hand, the beneficial effect of post-weld heat treatment was explained by its ability to sufficiently reduce the tensile residual stresses to allow crack closure to occur. Secondly, the martensitic microstructure of the three weld zones was identified as influencing the fatigue crack growth behavior. The varying martensite coarseness between the three weld zones influenced the path of the crack. A fine martensitic microstructure, as observed in the weld metal, resulted in a linear crack path, while a coarse microstructure, as observed in the heat affected zone and base metal, resulted in a tortuous crack path. The degree of crack path tortuosity was related to the fatigue crack growth resistance, which revealed that a coarse martensitic microstructure that leads to a tortuous crack path, promotes toughening by local mixed modes of crack advance and roughness-induced crack closure. Thirdly, when the crack propagated in the heat affected zone, a tendency to gradually deviate towards the base metal was observed. This behavior was rationalized by considering the yield strength mismatch between the three weld zones. The yield strength decreased in the heat affected zone from filler metal to base metal. Finally, the presence of residual and/or reformed austenite in the three zones of the weld, as well as the occurrence of an intergranular fracture mechanism in the heat affected zone and base metal were identified as having a negligible influence on the fatigue crack growth behavior in the amounts measured. The main conclusion of this study is that the heat affected zone is only slightly less resistant to fatigue crack growth than the base metal. This was attributed to its somewhat finer microstructure that leads to a less tortuous crack path. It is rather the weld-induced residual stresses that dominantly affect the growth of fatigue cracks in hydraulic turbine runner welds. From a practical point of view, the results of this research allow to assert that the turbine runner welding process combined with a post-weld heat treatment produce a weld with good resistance to fatigue crack growth. (Abstract shortened by UMI.).

  16. Modelisation numerique des phenomenes physiques du soudage par friction-malaxage et comportement en fatigue de joints soudes en aluminium 7075-T6

    NASA Astrophysics Data System (ADS)

    Gemme, Frederic

    The aim of the present research project is to increase the amount of fundamental knowledge regarding the process by getting a better understanding of the physical phenomena involved in friction stir welding (FSW). Such knowledge is required to improve the process in the context of industrial applications. In order to do so, the first part of the project is dedicated to a theoretical study of the process, while the microstructure and the mechanical properties of welded joints obtained in different welding conditions are measured and analyzed in the second part. The combination of the tool rotating and translating movements induces plastic deformation and heat generation of the welded material. The material thermomechanical history is responsible for metallurgical phenomena occurring during FSW such as recrystallization and precipitate dissolution and coarsening. Process modelling is used to reproduce this thermomechanical history in order to predict the influence of welding on the material microstructure. It is helpful to study heat generation and heat conduction mechanisms and to understand how joint properties are related to them. In the current work, a finite element numerical model based on solid mechanics has been developed to compute the thermomechanical history of the welded material. The computation results were compared to reference experimental data in order to validate the model and to calibrate unknown physical parameters. The model was used to study the effect of the friction coefficient on the thermomechanical history. Results showed that contact conditions at the workpiece/tool interface have a strong effect on relative amounts of heat generated by friction and by plastic deformation. The comparison with the experimental torque applied by the tool for different rotational speeds has shown that the friction coefficient decreases when the rotational speed increases. Consequently, heat generation is far more important near the material/tool interface and the material deformation is shallower, increasing the lack of penetration probability. The variation of thermomechanical conditions with regards to the rotational speed is responsible for the variation of the nugget shape, as recrystallization conditions are not reached in the same volume of material. The second part of the research project was dedicated to a characterization of the welded joints microstructure and mechanical properties. Sound joints were obtained by using a manufacturing procedure involving process parameters optimization and quality control of the joint integrity. Five different combinations of rotational and advancing speeds were studied. Microstructure observations have shown that the rotational speed has an effect on recrystallization conditions because of the variation of the contact conditions at the material/tool interface. On the other hand, the advancing speed has a strong effect on the precipitation state in the heat affected zone (HAZ). The heat input increases when the advancing speed decreases. The material softening in the HAZ is then more pronounced. Mechanical testing of the welded joints showed that the fatigue resistance increases when the rotational speed increases and the advancing speed decreases. The fatigue resistance of FSW joints mainly depends on the ratio of the advancing speed on the rotational speed, called the welding pitch k. When the welding pitch is high (k ≥ 0,66 mm/rev), the fatigue resistance depends on crack initiation at the root of circular grooves left by the tool on the weld surface. The size of these grooves is directly related to the welding pitch. When the welding pitch is low (k ≤ 0,2 mm/rev), the heat input is high and the fatigue resistance is limited by the HAZ softening. The fatigue resistance is optimized when k stands in the 0,25-0,30 mm/rev range. Outside that range, the presence of small lateral lips is critical. The results of the characterization part of the project showed that the effects of the applied vertical force on the formation of lateral lips should be submitted to further investigations. The elimination of the lateral lip, which could be achieved with a more precise adjustment of the vertical force, could lead to an improved fatigue resistance. The elimination of lateral lips, but also the circular grooves left by the tool, may be obtained by developing an appropriate surfacing technique and could lead to an improved fatigue resistance without reducing the advancing speed. (Abstract shortened by UMI.)

  17. Scale, Composition, and Technology

    ERIC Educational Resources Information Center

    Victor, Peter A.

    2009-01-01

    Scale (gross domestic product), composition (goods and services), and technology (impacts per unit of goods and services) in combination are the proximate determinants in an economy of the resources used, wastes generated, and land transformed. In this article, we examine relationships among these determinants to understand better the contribution…

  18. Adaptive multifunctional composites

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Inman, Daniel J.

    2013-05-01

    The adaptive multifunctional composite structure studied here is to address two issues remaining in lightweight structural composites required by many engineering applications. The first is to add additional functionality to multifunctional composites and the second is to provide adaptive damping in structures that cover a wide range of frequencies and temperatures. Because of its potential for practical payoffs, passive structural damping can find wide application through the use of high-damping viscoelastic polymers or elastomers. However, all passive damping using these damping materials suffer from failing at certain temperatures and in certain frequency ranges. The extreme environments often seen by engineering systems provide high temperature, which is exactly where damping levels in structures reduce causing unacceptable vibrations. In addition, as loading frequencies reduce damping levels also fall off, and many loads experienced by large structures are low frequency. The proposed research addresses increasing the range of effectiveness of damping by addressing the temperature and frequency dependence of material damping by using a multifunctional composite system containing an active element. Previous research has yielded a finite element model of linear viscoelastic material and structural behavior that captures characteristic frequency-dependent behavior, continuing research has addressed the accommodation of temperature dependence, and the examination of the new concept of `electronic damping' or `e-damping'. The resulting modeling approach is validated through experimental validation.

  19. Schroeder Composition Scale.

    ERIC Educational Resources Information Center

    Schroeder, Thomas S.

    Designed to describe the writing behaviors of elementary and junior high school children, the Schroeder Composition Scale is an analytic scale. For eleven of the criteria in the scale, the scoring is simply "yes" or "no" indicating whether the writing does or does not have the characteristic. Five other items identify…

  20. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  1. NUCLEAR FUEL COMPOSITION

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.

    1960-05-31

    A novel reactor composition for use in a self-sustaining fast nuclear reactor is described. More particularly, a fuel alloy comprising thorium and uranium-235 is de scribed, the uranium-235 existing in approximately the same amount that it is found in natural uranium, i.e., 1.4%.

  2. Cicero and English Composition.

    ERIC Educational Resources Information Center

    Halloran, S. Michael

    The influence of Cicero on the teaching of English composition is slight and in all likelihood diminishing. Among Cicero's beliefs were that rhetoric is the highest of vocations, thought and expression have an essential unity, the question "How should I live?" is paramount, the ideal orator maintains a unity of contemplation and action,…

  3. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  4. Film as Composition.

    ERIC Educational Resources Information Center

    Costanzo, William

    1986-01-01

    Describes the development of a freshman English program based on the analogy of film as composition and discusses implications of this program for other teachers of writing at a time when television and movies are giving unprecedented competition to the printed page for students' attention. (HTH)

  5. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  6. Food composition databases

    USDA-ARS?s Scientific Manuscript database

    Food composition is the determination of what is in the foods we eat and is the critical bridge between nutrition, health promotion and disease prevention and food production. Compilation of data into useable databases is essential to the development of dietary guidance for individuals and populat...

  7. Emotional Subjects for Composition.

    ERIC Educational Resources Information Center

    Micciche, Laura R.

    Metaphors such as "gypsy academics,""freeway flyers," and "contingent laborers," ascribed by compositionists to their work and its conditions, comment on the low status of composition specialists and teachers in academic hierarchies. Work is the activity around which a profession forms, and, as such, it produces…

  8. Fire-Resistant Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1983-01-01

    Resin blend produces high-char-yield, low-smoke composites. Diglycidyl Ether of Bis-(4-Hydroxyphenyl)-Fluorene is prepared by reacting epichlorohydrin and sodium hydroxide with 9,9-bis(hydroxyphenyl) fluorene. End of reaction determined by gas or liquid chromatography, mass spectroscopy or infrared techniques. Used to manufacture printed circuit boards and panels for buildings, ships and aircraft.

  9. Development of polysilsesquioxane composites

    NASA Technical Reports Server (NTRS)

    Srinivasan, K.; Tiwari, S. N.

    1990-01-01

    Polymer composites are increasingly being required to operate for prolonged durations at higher temperatures than in the past. Hence there have been increased efforts devoted to synthesizing and characterizing polymers capable of withstanding temperatures greater than 300 C for long periods. Several such organic polymers have been investigated in recent times. This research effort seeks to enquire if inorganic polymers can be utilized to provide the same result. Ceramics have long been recognized as providing superior thermal properties for demanding applications. However, the extremely high softening temperatures preclude their being shaped into complex shapes through melt processing techniques common to organic polymers. One approach towards solving this problem has been through the development of preceramic polymers. These are capable of being processed in the polymeric state with ease, and subsequently being pyrolyzed to ceramic structures. This experimental study is aimed at studying the feasibility of using preceramic polymers (that have not been subject to the pyrolysis step) as high performance composite matrices for high temperature applications. A preliminary study of this nature is not geared towards optimizing mechanical properties suitable for such composites. Rather, this study attempts to process such resins in composite form and suitably characterize their properties.

  10. Saliva composition and exercise.

    PubMed

    Chicharro, J L; Lucía, A; Pérez, M; Vaquero, A F; Ureña, R

    1998-07-01

    Little attention has been directed toward identifying the changes which occur in salivary composition in response to exercise. To address this, our article first refers to the main aspects of salivary gland physiology. A knowledge of the neural control of salivary secretion is especially important for the understanding of the effects of exertion on salivary secretion. Both salivary output and composition depend on the activity of the autonomic nervous system and any modification of this activity can be observed indirectly by alternations in the salivary excretion. The effects of physical activity (with reference to factors such as exercise intensity and duration, or type of exercise protocol) on salivary composition are then considered. Exercise might indeed induce changes in several salivary components such as immunoglobulins, hormones, lactate, proteins and electrolytes. Saliva composition might therefore be used as an alternative noninvasive indicator of the response of the different body tissues and systems to physical exertion. In this respect, the response of salivary amylase and salivary electrolytes to incremental levels of exercise is of particular interest. Beyond a certain intensity of exercise, and coinciding with the accumulation of blood lactate (anaerobic threshold or AT), a 'saliva threshold' (Tsa) does indeed exist. Tsa is the point during exercise at which the levels of salivary alpha-amylase and electrolytes (especially Na+) also begin to rise above baseline levels. The occurrence of the 2 thresholds (AT and Tsa) might, in turn, be attributable to the same underlying mechanism, that of increased adrenal sympathetic activity at high exercise intensities.

  11. TEACHING COMPOSITION WITH FILM.

    ERIC Educational Resources Information Center

    COURSEN, HERBERT R., JR.

    A COMPOSITION PROGRAM DESIGNED TO GIVE UPWARD BOUND STUDENTS A FEELING OF SUCCESS WAS BASED ON FILMS WHICH THE STUDENTS VIEWED, DISCUSSED, AND WROTE ABOUT. THE FILMS FELL ROUGHLY INTO THE CATEGORIES OF SOCIAL PROBLEMS, POLITICS AND PROPAGANDA, AND ART AND MUSIC. FOLLOWING CLASS DISCUSSIONS, STUDENTS WERE REQUIRED MERELY TO "WRITE ABOUT THE…

  12. Hybrid composite laminate structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F. (Inventor)

    1977-01-01

    An invention which relates to laminate structures and specifically to essentially anisotropic fiber composite laminates is described. Metal foils are selectively disposed within the laminate to produce increased resistance to high velocity impact, fracture, surface erosion, and other stresses within the laminate.

  13. Gasoline Composition in 2008

    EPA Science Inventory

    Gasoline composition in the U.S is determined by factors related to crude oil source, refinery capacity, geography and regulatory factors. Major regulation derived from the Clean Air Act and its amendments determines the benzene and former oxygenate requirements for reformulated...

  14. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  15. Composite Load Model Evaluation

    SciTech Connect

    Lu, Ning; Qiao, Hong

    2007-09-30

    The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

  16. Composite deformable mirror.

    NASA Astrophysics Data System (ADS)

    Kuo, C. P.; Wada, B. K.

    1989-09-01

    The development of a lightweight one meter composite mirror that can be controlled and adjusted on-orbit, is presented. The data in this paper show that long wave distortion errors can be corrected by using embedded piezoelectric ceramic actuators. The proposed concepts were verified by both mathematical simulations and laboratory experiments.

  17. Silver alloy compositions

    SciTech Connect

    Berhard, M.; Sivertsen, J.T.

    1990-11-27

    This patent describes a silver alloy composition. It comprises essentially all of the following parts by weight: about 89-93.5% silver, about 0.01-2% silicon, about 0.001-2% boron, about 0.5-5% zinc, about 0.5-6% copper, about 0.25-2% tin, and about 0.01-1.25% indium.

  18. High strength composites evaluation

    SciTech Connect

    Marten, S.M.

    1992-02-01

    A high-strength, thick-section, graphite/epoxy composite was identified. The purpose of this development effort was to evaluate candidate materials and provide LANL with engineering properties. Eight candidate materials (Samples 1000, 1100, 1200, 1300, 1400, 1500, 1600, and 1700) were chosen for evaluation. The Sample 1700 thermoplastic material was the strongest overall.

  19. Futurism: Framework for Composition.

    ERIC Educational Resources Information Center

    Keroack, Elizabeth Carros; Marquis, Leah Keating

    Noting that the study of the future has been neglected within the language arts framework, this paper proposes a curriculum unit that uses such study as a vehicle to develop composition skills. The paper provides the following information: the general objectives of the unit; evaluation methods; general humanistic themes to be studied; materials;…

  20. Scale, Composition, and Technology

    ERIC Educational Resources Information Center

    Victor, Peter A.

    2009-01-01

    Scale (gross domestic product), composition (goods and services), and technology (impacts per unit of goods and services) in combination are the proximate determinants in an economy of the resources used, wastes generated, and land transformed. In this article, we examine relationships among these determinants to understand better the contribution…

  1. Futurism: Framework for Composition.

    ERIC Educational Resources Information Center

    Keroack, Elizabeth Carros; Marquis, Leah Keating

    Noting that the study of the future has been neglected within the language arts framework, this paper proposes a curriculum unit that uses such study as a vehicle to develop composition skills. The paper provides the following information: the general objectives of the unit; evaluation methods; general humanistic themes to be studied; materials;…

  2. Underwater Scene Composition

    ERIC Educational Resources Information Center

    Kim, Nanyoung

    2009-01-01

    In this article, the author describes an underwater scene composition for elementary-education majors. This project deals with watercolor with crayon or oil-pastel resist (medium); the beauty of nature represented by fish in the underwater scene (theme); texture and pattern (design elements); drawing simple forms (drawing skill); and composition…

  3. Composites Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Gregg, Wayne

    2008-01-01

    This slide presentation reviews the development of MSFC-RQMT-3479 for requirements for fracture control of composites to be used in the Constellation program. This effort is part of the development of a revision of NASA-STD-5019(A), which will include MSFC-RQMT-3479. Examples of the requirement criteria and implementation are given.

  4. Underwater Scene Composition

    ERIC Educational Resources Information Center

    Kim, Nanyoung

    2009-01-01

    In this article, the author describes an underwater scene composition for elementary-education majors. This project deals with watercolor with crayon or oil-pastel resist (medium); the beauty of nature represented by fish in the underwater scene (theme); texture and pattern (design elements); drawing simple forms (drawing skill); and composition…

  5. Gasoline Composition in 2008

    EPA Science Inventory

    Gasoline composition in the U.S is determined by factors related to crude oil source, refinery capacity, geography and regulatory factors. Major regulation derived from the Clean Air Act and its amendments determines the benzene and former oxygenate requirements for reformulated...

  6. LITERATURE SPARKS COMPOSITION.

    ERIC Educational Resources Information Center

    MANDLEBAUM, NAOMI

    LITERATURE, BEING READILY AVAILABLE AS PART OF THE CURRICULUM, IS A VALUABLE TOOL FOR INSTRUCTING STUDENTS IN COMPOSITION. THE USE OF LITERATURE CAN STIMULATE DISCUSSIONS AND EFFECTIVE WRITING AMONG STUDENTS OF VARIOUS GRADE AND ABILITY LEVELS. INTEREST IS GENERATED BY KEEPING THE CLASSWORK RELEVANT TO THE LIVES OF THE STUDENTS, AND THINKING IS…

  7. Lightweight Composite Intertank Structure

    NASA Technical Reports Server (NTRS)

    Mehle, Greg V.

    1995-01-01

    Report presents results of study for proposed lightweight composite material alternative to present semimonocoque aluminum intertank structure for advanced launch vehicles. Proposed structure integrated assembly of sandwich panels made of laminated epoxy-matrix/carbon-fiber skins, and aluminum honeycomb core.

  8. Croissance en surfusion de métaborate de baryum par la méthode Czochralski

    NASA Astrophysics Data System (ADS)

    Maillard, A.; Moussambi, H.; Klein, R. S.; Polgar, K.

    2003-06-01

    La génération d'U.V. à partir de cristaux de métaborate de Baryum en phase basse température (β-BBO, β-BaB2O4) nécessite l'obtention de cristaux de bonne qualité exempts d'impureté. Afin d'obtenir des cristaux de haute pureté, nous proposons de réaliser la croissance dans un bain en surfusion dont la composition est celle de BBO sans ajout de solvant tel que Na2O. Un ensemble de paramètres est proposé pour assurer la croissance de la phase β, présentant les propriétés non linéaires requises. Cette méthode de croissance de β-BBO s'apparente à celle décrite par Kouta [1]. L'interprétation différente de la compréhension de la croissance dans un bain en surfusion nous permet de proposer des paramètres beaucoup moins extrêmes que ceux de l'équipe japonaise Ainsi les gradients de température sont divisés par deux, passant de 1200°/cm à 600°/cm. De ce fait les conditions extrêmes sont ramenées à des conditions de croissance plus classiques.

  9. Chaos as compositional order

    NASA Astrophysics Data System (ADS)

    Angharad Pound, Eleri

    Composition is a combination of determined combinations of notes, durations and timbres usually decided upon in advance by a composer who plans carefully the sounds she desires. There is also always an element of chance present in acoustic music due to the 'human' element of the performance in that the performers will add their own interpretation of the dynamics and errors in terms of precise durations and pitches. Some composers have exploited this chance element more than others, allowing more space within the composition for the performers to make choices during the course of the piece. Composers such as Cage and Bussotti offer varying degrees of freedom within pieces resulting in unpredictability of the resulting sound of the composition. Other composers attempt to control as far as possible every parameter of the music as seen in serialist composers such as Webern and Boulez. This paper is delivered from the point of view of a composer who is intrigued by the relationship between the notation and the resultant sound, specifically, in terms of the relationship between the written elements determined by the composer and the unpredictability that arises due to those elements which cannot or are deliberately not written. These elements are then l to the interpretation and/or choice of the performer during the performance resulting in a composition which differs sonically from performance to performance. Chaos offers this combination of determination and the appearance of disorder: a clear structure within which are a number of elaborate chaotic-appearing options. The paper will focus on a composition-in-progress for voices which will offer the performers some choices based on the idea of sensitivity on initial conditions. Each singer will be provided with a set of headphones through which they will be fed a choice of pitches, the choices made for the first few pitches will determine the choices provided to the singer later on in the composition. The paper will

  10. Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2008-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.

  11. Elemental composition of Ceres

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Yamashita, N.; Toplis, M. J.; McSween, H. Y., Jr.; Schorghofer, N.; Marchi, S.; Feldman, W. C.; Castillo, J. C.; Forni, O.; Lawrence, D. J.; Ammannito, E.; Ehlmann, B. L.; Sizemore, H. G.; Joy, S. P.; Polanskey, C. A.; Rayman, M.; Raymond, C. A.; Russell, C. T.

    2016-12-01

    The elemental composition of Ceres' regolith to depths of several decimeters within broad spatial regions is determined from global, low-altitude mapping data acquired by Dawn's Gamma Ray and Neutron Detector (GRaND). GRaND is sensitive to specific elements such as H, C, O, Si, K, Fe and compositional parameters, including the neutron macroscopic absorption cross section and average atomic mass of the regolith. We use elemental data acquired by GRaND to constrain regolith physical and chemical properties, and geochemical processes underlying Ceres' formation and evolution. Forward modeling and spatial deconvolution of mapped neutron counting data enable comparisons with high-resolution data sets, including absorption bands associated with OH and ammonium observed by Dawn's Visible and InfraRed mapping spectrometer (VIR), and geophysical models of the distribution of near-surface water ice. The GRaND data show that Ceres regolith is hydrogen rich, with an elemental composition similar to aqueously altered carbonaceous chondrites and consistent with the observation of widespread hydrated minerals by VIR. Decreased neutron counts at high latitude indicate that water ice is present beneath the surface in broad surface regions within depths sensed by GRaND as anticipated by ice stability models. If aqueous alteration of accreted materials was pervasive within Ceres' interior, processes such as large-scale convection may have separated brine-rich liquids from solid residues resulting in chemical fractionation. If so, then the elemental composition of the regolith should be different from Ceres' bulk. We test this hypothesis by comparing the elemental composition of Ceres' regolith to carbonaceous chondrites that underwent isochemical alteration on smaller parent bodies. The analysis considers potential contamination of the regolith by exogenic materials following Ceres' formation.

  12. Aluminum Metal Matrix Composites

    SciTech Connect

    Hunt, Warren; Herling, Darrell R.

    2004-02-01

    Metal matrix composites comprise a relatively wide range of materials defined by the metal matrix, reinforcement type, and reinforcement geometry. In the area of the matrix, most metallic systems have been explored for use in metal matrix composites, including Al, Be, Mg, Ti, Fe, Ni, Co, and Ag. By far, the largest usage is in aluminum matrix composites. From a reinforcement perspective, the materials used are typically ceramics since they provide a very desirable combination of stiffness, strength, and relatively low density. Candidate reinforcement materials include SiC, Al2O3, B4C, TiC, TiB2, graphite, and a number of other ceramics. In addition, there has been work on metallic materials as reinforcements, notably W and steel fibers. The morphology of the reinforcement material is another variable of importance in metal matrix composites. The three major classes of reinforcement morphology are continuous fiber, chopped fiber or whisker, and particulate. Typically, the selection of the reinforcement morphology is determined by the desired property/cost combination. Generally, continuous fiber reinforced MMCs provide the highest properties in the direction of the fiber orientation but are the most expensive. Chopped fiber and whisker reinforced materials can produce significant property improvements in the plane or direction of their orientation, at somewhat lower cost. Particulates provide a comparatively more moderate but isotropic increase in properties and are typically available at the lowest cost. By adding to the three variables of metallic matrix, reinforcement material, and reinforcement morphology the further options of reinforcement volume fraction, orientation, and matrix alloy composition and heat treatment, it is apparent that there is a very wide range of available material combinations and resultant properties. This paper will focus on how MMCs have been applied in specific application areas.

  13. Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites

    DOEpatents

    Podtburg, Eric R.

    1999-01-01

    An oxide superconductor composite having improved texture and durability. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor.

  14. Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites

    DOEpatents

    Podtburg, E.R.

    1999-06-22

    An oxide superconductor composite having improved texture and durability is disclosed. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor. 1 fig.

  15. Compositions Fumigenes en Feuilles (Sheets of Smoke Composition),

    DTIC Science & Technology

    1979-07-01

    COMPOSITIONS FIJMIGENES ENFEUILLES ’ V T ~&5 : G.)Couture at A.(Roy CENTRE DE RECHERCHES POUR LA DEFENSE DEFENCE RESEARCH ESTABLISHMENT VALCARTIER Tel...418) 844-4271 Quebec, Canada July/juillet 1979 UNCLASSI FIED -~ -wwwww r---- NON CLASSIFIE i RESUME On a mis au point une composition pyrotechnique...sous forme de feuilles flexibles et minces. Cette composition , de type composite a base de liant polym~rique et produisant une fum~e blanche, offre

  16. Giant magnetostrictive composites

    NASA Astrophysics Data System (ADS)

    Duenas, Terrisa Ann

    The limitation of magnetostrictive composites has been in their low magnetostrictive response when compared to their monolithic counterparts. In this dissertation research is presented describing the methods and analysis used to create a giant magnetostrictive composite (GMC) producing giant strains at low fields, exhibiting magnetization ``jumping'' and the ΔE effect. This composite combines the giant magnetostrictive material, Terfenol-D (Tb0.3Dy0.7Fe2) in particle form, with a nonmetallic binder and is capable of producing strains (at room temperature) exceeding 1000 ppm at a nominal field of 1.5 kOe mechanically unloaded and 1200 ppm at 8 MPa preload (2.5 kOe). Several studies leading to the high response of this composite are presented. A connectivity study shows that a [1-3] connected composite produces 50% more strain than a [0-3] composite. A resin study indicates that the lower the viscosity of the resin, the greater the magnetostrictive response; this is attributed to the removal of voids during degassing. A void study correlates the increase in voids to the decrease in strain response. A model is used to correlate analysis with experimental results within 10% accuracy and shows that an optimal volume fraction exists based on the properties of the binder. Using a Polyscience Spurr low- viscosity (60 cps) binder this volume fraction is nominally 20%; this optimum is attributed to the balance of epoxy contracting on the particle (built-in preload) and the actuation delivered by the magnetostrictive material. In addition to the connectivity, resin, void, and volume-fraction study, particle size and gradation studies are presented. Widely dispersed (<106, <212, <300 μm), narrowly dispersed (<45, (90-106), (275-300) μm), and an optimized bimodal (18.7% of (45-90) μm with 81.3% of (250-300) μm) particle distributions are studied. Results show that the larger the particle size, the higher the magnetostrictive response; this is attributed to the reduction of

  17. Optimal Composite Curing System

    NASA Astrophysics Data System (ADS)

    Handel, Paul; Guerin, Daniel

    The Optimal Composite Curing System (OCCS) is an intelligent control system which incorporates heat transfer and resin kinetic models coupled with expert knowledge. It controls the curing of epoxy impregnated composites, preventing part overheating while maintaining maximum cure heatup rate. This results in a significant reduction in total cure time over standard methods. The system uses a cure process model, operating in real-time, to determine optimal cure profiles for tool/part configurations of varying thermal characteristics. These profiles indicate the heating and cooling necessary to insure a complete cure of each part in the autoclave in the minimum amount of time. The system coordinates these profiles to determine an optimal cure profile for a batch of thermally variant parts. Using process specified rules for proper autoclave operation, OCCS automatically controls the cure process, implementing the prescribed cure while monitoring the operation of the autoclave equipment.

  18. Composite drill pipe

    DOEpatents

    Leslie, James C [Fountain Valley, CA; Leslie, II, James C.; Heard, James [Huntington Beach, CA; Truong, Liem , Josephson; Marvin, Neubert [Huntington Beach, CA; Hans, [Anaheim, CA

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  19. Kevlar reinforced neoprene composites

    SciTech Connect

    Penn, B.G.; Daniels, J.G.; White, W.T.; Thompson, L.M.; Clemons, L.M.

    1985-04-01

    Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi). 1 reference, 2 tables.

  20. Composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  1. Composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  2. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    London, A.

    1981-01-01

    Design approaches and materials are described from which are fabricated pyrostatic graphite/epoxy (Gr/Ep) laminates that show improved retention of graphite particulates when subjected to burning. Sixteen hybridized plus two standard Gr/Ep laminates were designed, fabricated, and tested in an effort to eliminate the release of carbon (graphite) fiber particles from burned/burning, mechanically disturbed samples. The term pyrostatic is defined as meaning mechanically intact in the presence of fire. Graphite particulate retentive laminates were constructed whose constituent materials, cost of fabrication, and physical and mechanical properties were not significantly different from existing Gr/Ep composites. All but one laminate (a Celion graphite/bis-maleimide polyimide) were based on an off-the-shelf Gr/Ep, the AS-1/3501-5A system. Of the 16 candidates studied, four thin (10-ply) and four thick (50-ply) hybridized composites are recommended.

  3. Radiation shielding composition

    DOEpatents

    Quapp, W.J.; Lessing, P.A.

    1998-07-28

    A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

  4. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    2000-12-26

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  5. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    1998-01-01

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  6. Composition for radiation shielding

    DOEpatents

    Kronberg, J.W.

    1994-08-02

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  7. Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    HyComp(R), Inc. development a line of high temperature carbon fiber composite products to solve wear problems in the harsh environment of steel and aluminum mills. WearComp(R), self-lubricating composite wear liners and bushings, combines carbon graphite fibers with a polyimide binder. The binder, in conjunction with the fibers, provides the slippery surface, one that demands no lubrication, yet wears at a very slow rate. WearComp(R) typically lasts six to ten times longer than aluminum bronze. Unlike bronze, WearComp polishes the same surface and imparts a self-lube film for years of service. It is designed for continuous operation at temperatures of 550 degrees Fahrenheit and can operate under high compressive loads.

  8. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  9. Electrical conductive composite lubricants

    NASA Astrophysics Data System (ADS)

    Tatarchuk, Bruce J.; Wehrman, Ken A.; Yang Zhang, Teh-Shing Lee, Krishnagopalan, Gopal A.

    1995-01-01

    In power and electronic systems, electrical contact resistance is a major issue. For mechanical connections and sliding contacts, power losses and electrical noise are critical concerns. These issues are of particular interest to all industrial members of the Auburn CCDS. Research has been conducted to develop a variety of contact materials, both for solid lubricant films and composite paper lubricants. A combination of low electrical resistance, good lubricating properties, long wear-life, and low sliding electrical noise was achieved using a metal-cellulose composite paper with dichalcogenide powders entrapped in the porous paper matrix. Advancements in developing these conductive lubricants can increase contact lifetime and reliability in many space and terrestrial applications.

  10. The composition of comets

    NASA Technical Reports Server (NTRS)

    Jessberger, E. K.; Kissel, J.; Rahe, J.

    1989-01-01

    The present discussion of recent studies concerning cometary composition gives attention to the results obtained by in situ measurements of Comet Halley's dust composition by Vega 1's impact mass spectrometer, which discovered a mineral fraction that appears to be CI chondritic, as well as an organic fraction consisting of highly unsaturated hydrocarbons. The mineral fraction of comets appears to form a core that is embedded in essentially organic material; the spectroscopic invisibility of carbon is due to its presence in the cometary dust. The mass of most dust particles is found to be in the 10 to the -12th to 10 to the -14th g range. A considerable fraction of the dust grains serves as an extended source of gas in the inner coma.

  11. Additive composition, for gasoline

    SciTech Connect

    Vataru, M.

    1989-01-10

    An admixture is described that comprises Diesel fuel and an additive composition added thereto which is between about 0.05 to about 2.0 percent by weight of the fuel, the composition comprising: (a) between about 0.05 and 25% relative weight parts of an organic peroxide, and (b) between about 0.1 and 25% relative weight parts of detergent selected from the component group that consists of: (i) fatty amines; (ii) ethoxylated and propoxylated derivatives of fatty amines; (iii) fatty diamines; (iv) fatty imidazlines; (v) polymeric amines and derivatives thereof; (vi) combination of one or more of the (i) through (v) components with carboxylic acid or acids having from three to forth carbon atoms, (c) from about 99.0 to about 50% by weight of a hydrocarbon solvent.

  12. Probiotics and microbiota composition.

    PubMed

    Sanders, Mary Ellen

    2016-06-02

    Accumulated evidence, corroborated by a new systematic review by Kristensen et al. (Genome Med 8:52, 2016), suggests that probiotics do not significantly impact the fecal microbiota composition of healthy subjects. Nevertheless, physiological benefits have been associated with probiotic consumption by healthy people. Some studies have suggested that probiotics may impact the function of colonizing microbes, although this needs to be further studied. An alternative hypothesis is that probiotics may promote homeostasis of the gut microbiota, rather than change its composition. This hypothesis warrants investigation as a possible mechanism for how probiotics may benefit healthy people.Please see related article: http://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0300-5 .

  13. Composite circumstellar dust grains

    NASA Astrophysics Data System (ADS)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  14. Erosion of composite ceramics

    SciTech Connect

    Routbort, J.L.

    1992-08-01

    The theoretical basis to describe solid-particle erosion of monolithic ceramics is well developed. In many cases, the models can account for the impact velocity, impact angle and erodent-size dependencies of the steady-state erosion rate. In addition, the models account for effects of materials parameters such as fracture toughness and hardness. Steady-state erosion measurements on a wide variety of composite ceramics, including SiC whisker-reinforced Al[sub 2]O[sub 3], Si[sub 3]N[sub 4] containing Si[sub 3]N[sub 4] or SiC whiskers, Y[sub 2]O[sub 3]-stabilized ZrO[sub 2] reinforced with SiC whiskers, and duplex-microstructure Si[sub 3]N[sub 4] have been reported. The theories developed for monolithic ceramics are, however, less successful in describing the results for composites.

  15. Erosion of composite ceramics

    SciTech Connect

    Routbort, J.L.

    1992-08-01

    The theoretical basis to describe solid-particle erosion of monolithic ceramics is well developed. In many cases, the models can account for the impact velocity, impact angle and erodent-size dependencies of the steady-state erosion rate. In addition, the models account for effects of materials parameters such as fracture toughness and hardness. Steady-state erosion measurements on a wide variety of composite ceramics, including SiC whisker-reinforced Al{sub 2}O{sub 3}, Si{sub 3}N{sub 4} containing Si{sub 3}N{sub 4} or SiC whiskers, Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} reinforced with SiC whiskers, and duplex-microstructure Si{sub 3}N{sub 4} have been reported. The theories developed for monolithic ceramics are, however, less successful in describing the results for composites.

  16. Uncharged positive electrode composition

    DOEpatents

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  17. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  18. Hydrolytic degradation of dental composites.

    PubMed

    Söderholm, K J; Zigan, M; Ragan, M; Fischlschweiger, W; Bergman, M

    1984-10-01

    The leakage of filler elements from four composites after storage in water was investigated by use of atomic absorption spectrophotometry. The results confirmed previous findings that leaching of silicon from different composites is strongly dependent on filler composition. Consideration of the total filler surface of each composite material indicated that quartz as well as pyrolytic silica-containing composites leached less silicon than did composites containing fillers of strontium and/or barium glasses. A correlation between leakage and crack formation in the matrix appeared to exist for all composites except for the microfilled resin. These cracks were explained as a result of osmotic pressure built up at the matrix-filler interface due to hydrolytic degradation of the filler. Of the investigated materials, the microfilled resin was found to be the most stable material in a wet environment with respect to crack formation. This finding was explained by filler composition, filler form, and the specific structure of the microfilled resin.

  19. Compensation law in composites

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Lavergne, C.; Lacabanne, C.

    1993-12-01

    The experimental resolution of the α retardation / relaxation mode of model composites epoxy resin- glass beads has been performed using Thermo Stimulated Creep (TSCr) and Thermo Stimulated Currents (TSC) spectroscopies. The distributed retardation / relaxation times τ are found to obey a compensation law, which is characteristic of cooperative movements liberated at the vicinity of T g. The T c and τ c compensation parameters reveal that the microstructure is strongly linked to the nature of the interface.

  20. Composite airfoil assembly

    DOEpatents

    Garcia-Crespo, Andres Jose

    2015-03-03

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  1. Composite Defect Significance.

    DTIC Science & Technology

    1982-07-13

    A12i 299 COMPOSITE DEFECT SIGNIFICANCE(U) MATERIALS SCIENCES 1/1 \\ CORP SPRING HOUSE PA S N CHATTERJEE ET AL. 13 JUL 82 MSC/TFR/1288/il87 NADC-80848...Directorate 30 Sensors & Avionics Technology Directorate 40 Communication & Navigation Technology Directorate 50 Software Computer Directorate 60 Aircraft ...instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use

  2. Polymer film composite transducer

    DOEpatents

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  3. High energy fuel compositions

    SciTech Connect

    Fisher, D.H.

    1983-07-19

    A high density liquid hydrocarbon fuel composition is disclosed, singularly suited for propelling turbojet limited volume missile systems designed for shipborne deployment. The contemplated fuels are basically composed of the saturated analogues of dimers of methyl cyclopentadiene and of dicyclopentadiene and optionally include the saturated analogues of the co-trimers of said dienes or the trimers of cyclopentadiene. The various dimers and trimers are combined in a relative relationship to provide optimal performing fuels for the indicated purpose.

  4. Precision Composite Space Structures

    DTIC Science & Technology

    2007-10-15

    243-246. [D.128]. Kaddour AS, Soden PD, Hinton MJ. Failure of ± 55 degree filament wound glass/epoxy composite tubes under biaxial compression. J...Corporation. The T-joint was modified to include an adhesively bonded sheet of titanium foil that would induce measurable distortions of the...properties. Most all of these were found to be directed at progressive failure analysis and lacked the fidelity needed to be useful for dimensional

  5. Free radical explosive composition

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  6. Compound composite odontoma

    PubMed Central

    Girish, G; Bavle, Radhika M; Singh, Manish Kumar; Prasad, Sahana N

    2016-01-01

    The term odontoma has been used as a descriptor for any tumor of odontogenic origin. It is a growth in which both epithelial and mesenchymal cells exhibits complete differentiation. Odontomas are considered as hamartomas rather than true neoplasm. They are usually discovered on routine radiographic examination. Odontomas, according to the World Health Organization, are classified into complex odontoma and compound odontomas. The present paper reports a case of compound composite odontomas. PMID:27194882

  7. Compound composite odontoma.

    PubMed

    Girish, G; Bavle, Radhika M; Singh, Manish Kumar; Prasad, Sahana N

    2016-01-01

    The term odontoma has been used as a descriptor for any tumor of odontogenic origin. It is a growth in which both epithelial and mesenchymal cells exhibits complete differentiation. Odontomas are considered as hamartomas rather than true neoplasm. They are usually discovered on routine radiographic examination. Odontomas, according to the World Health Organization, are classified into complex odontoma and compound odontomas. The present paper reports a case of compound composite odontomas.

  8. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  9. Synergistic lubricating compositions

    SciTech Connect

    King, J.

    1980-07-08

    A synergistic lubricating composition a lubricant selected from the group consisting of base lubricating oils and greases having admixed with the lubricant a friction reducing amount of a synergistic mixture of 1 to 99% weight molybdenum disulfide and 99 to 1% weight of a polymer of thiadiazoledithiols. The lubricant is a base lubricating grease selected from the group consisting of lithium grease, clay grease, silicone grease and aluminum complex grease.

  10. Solid state electrochemical composite

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2009-06-30

    Provided is a composite electrochemical device fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems including oxygen generation system.

  11. Diamondlike flake composites

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1984-01-01

    A carbon coating is vacuum arc deposited on a smooth surface of a target which is simultaneously ion beam sputtered. The bombarding ions have sufficient energy to create diamond bonds. Spalling occurs as the carbon deposit thickens. The resulting diamond-like carbon flakes are mixed with a binder or matrix material to form a composite material having improved thermal, electrical, mechanical, and tribological properties when used in aerospace structures and components.

  12. Thin film composite electrolyte

    DOEpatents

    Schucker, Robert C.

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  13. Iron aluminide composites

    SciTech Connect

    Schneibel, J.H.

    1999-07-01

    Iron aluminides with the B2 structure are highly oxidation and corrosion resistant. They are thermodynamically compatible with a wide range of ceramics such as TiC, WC, TiB{sub 2}, and ZrB{sub 2}. In addition, liquid iron aluminides wet these ceramics very well. Therefore, FeAl/ceramic composites may be produced by techniques such as liquid phase sintering of powder mixtures, or pressureless melt infiltration of ceramic powders with liquid FeAl. These techniques, the resulting microstructures, and their advantages as well as limitations are described. Iron aluminide composites can be very strong. Room temperature flexure strengths as high as 1.8 GPa have been observed for FeAl/WC. Substantial gains in strength of elevated temperatures (1,073 K) have also been demonstrated. Above 40 vol.% WC the room temperature flexure strength becomes flaw-limited. This is thought to be due to processing flaws and limited interfacial strength. The fracture toughness of FeAl/WC is unexpectedly high and follows a rule of mixtures. Interestingly, sufficiently thin ({lt}1 {micro}m) FeAl ligaments between adjacent WC particles fracture not by cleavage, but in a ductile manner. For these thin ligaments the dislocation pile-ups formed during deformation are not long enough to nucleate cleavage fracture, and their fracture mode is therefore ductile. For several reasons, this brittle-to-ductile size transition does not improve the fracture toughness of the composites significantly. However, since no cleavage cracks are nucleated in sufficiently thin FeAl ligaments, slow crack growth due to ambient water vapor does not occur. Therefore, as compared to monolithic iron aluminides, environmental embrittlement is dramatically reduced in iron aluminide composites.

  14. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  15. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  16. Composite thermal insulator

    SciTech Connect

    Ishihara, Sh.; Yamamoto, R.; Yoneno, H.

    1985-01-08

    The disclosure is directed to a composite thermal insulator including a Freon gas expanded plastic, and an evacuated powder insulation. The present invention provides a composite thermal insulator light in weight and having a superior heat insulating performance over a long period through replacement of a thick metallic container conventionally used for the evacuated powder insulation and considered indispensable for withstanding a load at one atmospheric pressure and for preventing vacuum leakage, by a film-like plastic container, with activated carbon disposed in it. More specifically, the composite thermal insulator of the present invention includes a Freon gas expanded plastic, a film-like plastic container evacuated to form a vacuum in its interior, and directly contacting and/or covered by the expanded plastic, and activated carbon or inorganic powder containing activated carbon tightly enclosed in the plastic container, light in weight, having a heat conductivity lower than 0.01 kcal/mh/sup 0/ C. and a mechanical strength sufficient for actual use, with almost no variations with time in the heat insulating property.

  17. Exceptional composite dark matter

    NASA Astrophysics Data System (ADS)

    Ballesteros, Guillermo; Carmona, Adrián; Chala, Mikael

    2017-07-01

    We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G_2. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z_2 symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV.

  18. Tripartite composite fermion states

    NASA Astrophysics Data System (ADS)

    Sreejith, G. J.; Wu, Ying-Hai; Wójs, A.; Jain, J. K.

    2013-06-01

    The Read-Rezayi wave function is one of the candidates for the fractional quantum Hall effect at filling fraction ν=2+⅗, and thereby also its hole conjugate at 2+⅖. We study a general class of tripartite composite fermion wave functions, which reduce to the Rezayi-Read ground state and quasiholes for appropriate quantum numbers, but also allow a construction of wave functions for quasiparticles and neutral excitations by analogy to the standard composite fermion theory. We present numerical evidence in finite systems that these trial wave functions capture well the low energy physics of a four-body model interaction. We also compare the tripartite composite fermion wave functions with the exact Coulomb eigenstates at 2+⅗, and find reasonably good agreement. The ground state as well as several excited states of the four-body interaction are seen to evolve adiabatically into the corresponding Coulomb states for N=15 particles. These results support the plausibility of the Read-Rezayi proposal for the 2+⅖ and 2+⅗ fractional quantum Hall effect. However, certain other proposals also remain viable, and further study of excitations and edge states will be necessary for a decisive establishment of the physical mechanism of these fractional quantum Hall states.

  19. Tomography of dental composites

    NASA Astrophysics Data System (ADS)

    Drummond, J. L.; De Carlo, F.; Sun, K. B.; Bedran-Russo, A.; Koin, P.; Kotche, M.; Super, B. J.

    2006-08-01

    The intent of this study was to quantify the fracture surface area of dental composites subjected to different aging media. Dental composites, a combination of a resin and glass filler particles, were examined using a high resolution microtomography system developed at beamline 2-BM of the Advanced Photon Source (APS). The composite specimens were 2 mm in diameter and 3 mm in height subjected to a compression load. The initial data set of images was taken with no load, then the load was incrementally increased, a new scan taken, repeatedly, until failure occurred. The images obtained from the tomography scans were reconstructed and analyzed to provide a 3D representation of the crack. This reconstruction involved determining the total solid area, the total area which includes the crack interfaces, and then just the total crack interface area. A ratio was then determined between the control and the loaded specimen. The specimens were aged in various media for 3 months. Preliminary 3D analysis corresponded to previous studies with respect to the aging media and load, i.e., higher loads and aging in ethanol resulted in weaker materials and in this case increased crack areas and compression of the material. When sufficient samples are processed (at present N=6) this 3D analysis will allow statistical comparison of crack area. Supported by NIDCR grant DE07979. Use of the APS was supported by the U.S. DOE, Office of Science, Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

  20. Adaptive Composite Map Projections.

    PubMed

    Jenny, B

    2012-12-01

    All major web mapping services use the web Mercator projection. This is a poor choice for maps of the entire globe or areas of the size of continents or larger countries because the Mercator projection shows medium and higher latitudes with extreme areal distortion and provides an erroneous impression of distances and relative areas. The web Mercator projection is also not able to show the entire globe, as polar latitudes cannot be mapped. When selecting an alternative projection for information visualization, rivaling factors have to be taken into account, such as map scale, the geographic area shown, the map's height-to-width ratio, and the type of cartographic visualization. It is impossible for a single map projection to meet the requirements for all these factors. The proposed composite map projection combines several projections that are recommended in cartographic literature and seamlessly morphs map space as the user changes map scale or the geographic region displayed. The composite projection adapts the map's geometry to scale, to the map's height-to-width ratio, and to the central latitude of the displayed area by replacing projections and adjusting their parameters. The composite projection shows the entire globe including poles; it portrays continents or larger countries with less distortion (optionally without areal distortion); and it can morph to the web Mercator projection for maps showing small regions.

  1. Method for manufacturing lightning strike mitigation composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, K. Ranji (Inventor); Campbell, Jeffrey (Inventor)

    2012-01-01

    A method for manufacturing a composite material utilizes a tooling material having a desired shape. The surface of the tooling material is coated with a composite film that includes a conductive filler material. A composite composition is introduced into contact with the surface of the tooling material to form a desired shape. The composite composition is processed to produce the composite material, and the composite material has a conductive composite surface layer that includes the conductive filler material.

  2. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  3. High temperature polymer concrete compositions

    SciTech Connect

    Fontana, J.J.; Reams, W.

    1985-02-19

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers is a liquid system.

  4. Starch-filled polymer composites

    USDA-ARS?s Scientific Manuscript database

    This report describes the development of degradable polymer composites that can be made at room temperature without special equipments. The developed composites are made from ethyl cyanoacrylate and starch. The polymer composites produced by this procedure contain 60 wt% of starch with compressive s...

  5. Continuous carbon nanotube reinforced composites.

    PubMed

    Ci, L; Suhr, J; Pushparaj, V; Zhang, X; Ajayan, P M

    2008-09-01

    Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.

  6. Composition and the Elementary Teacher.

    ERIC Educational Resources Information Center

    Parkinson, Thomas F.

    1964-01-01

    A course in advanced composition and analytical reading designed for elementary school teachers is proposed. Stressing the importance of literary appreciation of works of exceptional merit, the author returns to the systematic study of English composition using literature as the basis of the composition course. Some of the authors mentioned are…

  7. Static solar heat storage composition

    SciTech Connect

    Phillips, H.J.

    1981-09-08

    A composition for the storage of heat energy utilizing the heat of fusion of the composition. The composition includes a salthydrate, a nucleating agent and a porous solid. The porous solid is selected from calcium sulfate hemihydrate and soluble calcium sulfate anhydride.

  8. [Composition Programs for Secondary Schools.

    ERIC Educational Resources Information Center

    Weathers, Winston; And Others

    Three articles describe three programs for the improved teaching of prose composition. Winston Weathers in "Prose Composition and Modern Awareness" (from "Oklahoma English Bulletin," 1968) argues that English teachers need to be more innovative in the teaching of composition and more willing to accept a variety of writing habits, procedures, and…

  9. Desensitization of metastable intermolecular composites

    SciTech Connect

    Busse, James R.; Dye, Robert C.; Foley, Timothy J.; Higa, Kelvin T.; Jorgensen, Betty S.; Sanders, Victor E.; Son, Steven F.

    2011-04-26

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  10. Honeycomb-laminate composite structure

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Parker, J. A. (Inventor)

    1977-01-01

    A honeycomb-laminate composite structure was comprised of: (1) a cellular core of a polyquinoxaline foam in a honeycomb structure, and (2) a layer of a noncombustible fibrous material impregnated with a polyimide resin laminated on the cellular core. A process for producing the honeycomb-laminate composite structure and articles containing the honeycomb-laminate composite structure is described.

  11. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  12. Materiaux composites supraconducteurs

    NASA Astrophysics Data System (ADS)

    Kerjouan, Philippe; Boterel, Florence; Lostec, Jean; Bertot, Jean-Paul; Haussonne, Jean-Marie

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developped in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa2CU3O{7-δ} material. We first realized a composite material glass/YBa2CU3O{7-δ}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa2CU3O{7-δ} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. Les nouveaux matériaux supraconducteurs à haute température critique ont potentiellement un rôle important à jouer dans le domaine de l'électronique et de l'électrotechnique. En particulier, le dépôt d'oxydes supraconducteurs sur divers types de substrats est une technologie amenée à se développer. Nous avons donc entrepris une étude dont l'objet est la réalisation de conducteurs sérigraphiés sur alumine et composés essentiellement du matériau YBa2CU3O{7-δ}. Nous avons tout d'abord cherché à réaliser un composite verre/YBa2CU3O{7-δ}, par analogie au principe de réalisation de couches conductrices sérigraphiées, le verre permettant d'obtenir une liaison physico-chimique avec le substrat. Une étude préliminaire a permis de réaliser divers matériaux composites massifs, utilisant différentes familles de verres. Ces matériaux massifs, se présentant sous la forme de barreaux de

  13. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  14. Inorganic composites for space applications

    NASA Technical Reports Server (NTRS)

    Malmendier, J. W.

    1984-01-01

    The development of inorganic composite materials for space applications is reviewed. The composites do not contain any organic materials, and therefore, are not subject to degradation by ultraviolet radiation, volatilization of constituents, or embrittlement at low temperatures. The composites consist of glass, glass/ceramics or ceramic matrices, reinforced by refractory whiskers or fibers. Such composites have the low thermal expansion, refractories, chemical stability and other desirable properties usually associated with the matrix materials. The composites also have a degree of toughness which is extraordinary for refractory inorganic materials.

  15. Composite inlays: a systematic review.

    PubMed

    Grivas, E; Roudsari, R V; Satterthwaite, J D

    2014-09-01

    The purpose of this study is to review the available literature related to composite inlays. Electronic databases published up to November 2013 were searched. Studies that evaluate composite resin inlays for the restoration of posterior teeth were selected. The studies should compare composite inlays against gold inlays, ceramic inlays and direct composite fillings regarding longevity, aesthetic quality and postoperative sensitivity or comparing the clinical effectiveness of them on premolars versus molars or on 1-2 surface preparations versus multi-surface preparations. Despite the heterogeneity of the available clinical trials composite inlays seem to be an effective method for the restoration of posterior teeth.

  16. Micromechanics for particulate reinforced composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.

    1996-01-01

    A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.

  17. Probabilistic Design of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2006-01-01

    A formal procedure for the probabilistic design evaluation of a composite structure is described. The uncertainties in all aspects of a composite structure (constituent material properties, fabrication variables, structural geometry, and service environments, etc.), which result in the uncertain behavior in the composite structural responses, are included in the evaluation. The probabilistic evaluation consists of: (1) design criteria, (2) modeling of composite structures and uncertainties, (3) simulation methods, and (4) the decision-making process. A sample case is presented to illustrate the formal procedure and to demonstrate that composite structural designs can be probabilistically evaluated with accuracy and efficiency.

  18. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  19. Chemical composition of Mars

    USGS Publications Warehouse

    Morgan, J.W.; Anders, E.

    1979-01-01

    The composition of Mars has been calculated from the cosmochemical model of Ganapathy and Anders (1974) which assumes that planets and chondrites underwent the same 4 fractionation processes in the solar nebula. Because elements of similar volatility stay together in these processes, only 4 index elements (U, Fe, K and Tl or Ar36) are needed to calculate the abundances of all 83 elements in the planet. The values chosen are U = 28 ppb, K = 62 ppm (based on K U = 2200 from orbital ??-spectrometry and on thermal history calculations by Tokso??z and Hsui (1978) Fe = 26.72% (from geophysical data), and Tl = 0.14 ppb (from the Ar36 and Ar40 abundances measured by Viking). The mantle of Mars is an iron-rich [Mg/(Mg + Fe) = 0.77] garnet wehrlite (?? = 3.52-3.54 g/cm3), similar to McGetchin and Smyth's (1978) estimate but containing more Ca and Al. It is nearly identical to the bulk Moon composition of Morgan et al. (1978b). The core makes up 0.19 of the planet and contains 3.5% S-much less than estimated by other models. Volatiles have nearly Moon-like abundances, being depleted relative to the Earth by factors of 0.36 (K-group, Tcond = 600-1300 K) or 0.029 (Tl group, Tcond < 600 K). The water abundance corresponds to a 9 m layer, but could be higher by as much as a factor of 11. Comparison of model compositions for 5 differentiated planets (Earth, Venus, Mars, Moon, and eucrite parent body) suggests that volatile depletion correlates mainly with size rather than with radial distance from the Sun. However, the relatively high volatile content of shergottites and some chondrites shows that the correlation is not simple; other factors must also be involved. ?? 1979.

  20. European Composite Honeycomb Material

    NASA Astrophysics Data System (ADS)

    Tschepe, Christoph; Sauerbrey, Martin; Klebor, Maximillian; Henriksen, Torben

    2014-06-01

    A European CFRP honeycomb material for high demanding structure applications like antenna reflectors and optical benches was developed in the frame of an ESA GSTP project.The composite honeycomb was designed according to requirements defined by the European space industry. A developed manufacturing technique based on prepreg moulding enables the production of homogeneous CFRP honeycomb blocks. All characteristic material properties, including compression, tension and shear strength and CTE, were determined in a comprehensive verification test campaign. Competitiveness to comparable products was further verified by a representative breadboard.

  1. Composite turbine bucket assembly

    DOEpatents

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  2. Advanced Composite Pistons

    NASA Technical Reports Server (NTRS)

    Taylor, Allan H.; Ransone, Philip O.

    1990-01-01

    New concept involving improved configuration of reinforcing fibers and improved fabrication process proposed to improve thermal and mechanical properties of composite piston structures. Reduces amount of labor necessary to manufacture piston structures, with attendant reductions in costs. Single knitted-carbon-fiber sock used to form external surfaces of piston. Advantages include elimination of heavy dependence on inherently weak interlaminar properties of carbon-carbon; ease of automation to reduce fabrication costs; readily modifiable architecture to vary mechanical properties to desired values; and reduction in number of elements required to fabricate pistons. Advantage of piston structures lies in applications where light weight and high specific performance primary considerations.

  3. Composite prepreg application device

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A. (Inventor); Marchello, Joseph M. (Inventor)

    1996-01-01

    A heated shoe and cooled pressure roller assembly for composite prepreg application is provided. The shoe assembly includes a heated forward contact surface having a curved pressure surface. The following cooled roller provides a continuous pressure to the thermoplastic while reducing the temperature to approximately 5.degree. C. below glass transition temperature. Electric heating coils inside the forward portion of the shoe heat a thermoplastic workpiece to approximately 100.degree. C. above the glass transition. Immediately following the heated contact surface, a cooled roller cools the work. The end sharpened shape of the heated shoe trailing edge tends to prevent slag buildup and maintain a uniform, relaxed stress fabrication.

  4. Causality and Composite Structure

    SciTech Connect

    Joglekar, Satish D.

    2007-10-03

    In this talk, we discuss the question of whether a composite structure of elementary particles, with a length scale 1/{lambda}, can leave observable effects of non-locality and causality violation at higher energies (but {<=}{lambda}); employing a model-independent approach based on Bogoliubov-Shirkov formulation of causality. We formulate a condition which must be fulfilled for the derived theory to be causal, if the fundamental theory is so; and analyze it to exhibit possibilities which fulfil and which violate the condition. We comment on how causality violating amplitudes can arise.

  5. AMPTE ion composition results

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Hamilton, D. C.

    1987-01-01

    The CHEM and SULEICA experiments on the AMPTE/CCE and IRM spacecraft have been used to identify ion species of solar wind as well as of ionospheric origin and to meaasure their distribution functions in the energy range of 1-315 keV/e. This paper reviews current observations of the composition of magnetospheric ions in the bulk of the ring current and in the near-earth plasma sheet during both quiet and disturbed times, as well as in the near-noon magnetosheath at times when the magnetosphere is compressed.

  6. Angular Asteroid Composite

    NASA Image and Video Library

    2017-02-10

    This composite of 25 images of asteroid 2017 BQ6 was generated with radar data collected using NASA's Goldstone Solar System Radar in California's Mojave Desert. The images were gathered on Feb. 7, 2017, between 8:39 and 9:50 p.m. PST (11:39 p.m. EST and 12:50 a.m., Feb. 7), revealing an irregular, angular-appearing asteroid about 660 feet (200 meters) in size that rotates about once every three hours. The images have resolutions as fine as 12 feet (3.75 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21452

  7. Toughening of Zirconia composites

    SciTech Connect

    Burlingame, N.H.

    1980-06-01

    The addition of a ZrO/sub 2/ dispersion can significantly enhance the toughness of a ceramic matrix material. The toughness improvement is due to a stress reduction at the tip of a propagating crack which is the result of a preferential martensitic transformation of ZrO/sub 2/ particles in the stress field of the crack. From thermodynamic considerations and experimental observations the toughening effect is show to be strongly dependent on the ZrO/sub 2/ particle size. The effect of variations in temperature, composition and matrix materials are demonstrated, and analyzed in respect to the resultant deviations in the particle size toughening effect.

  8. Impact damage of composites

    NASA Technical Reports Server (NTRS)

    Wu, Hsi-Young T.; Springer, George S.

    1986-01-01

    A model is described for estimating the impact damage of fiber reinforced composite plates. The displacements and stresses are calculated by a three dimensional transient, finite element method of solution of the governing equations applicable to a linearly elastic body. The region in which damage occurs is estimated using the Tsai-Wu failure criterion. A computer code was developed which can be used to calculate the impact force, displacements and velocities of the plate and the impact body, stresses and strains in the plate, and the damage area. Sample numerical results are presented illustrating the type of information provided by the code. Comparisons between measured and calculated damage areas are also given.

  9. Molybdenum disilicide composites

    DOEpatents

    Rodriguez, Robert P.; Petrovic, John J.

    2001-01-01

    Molybdenum disilicide/.beta.'-Si.sub.6-z Al.sub.z O.sub.z N.sub.8-z, wherein z=a number from greater than 0 to about 5, composites are made by use of in situ reactions among .alpha.-silicon nitride, molybdenum disilicide, and aluminum. Molybdenum disilicide within a molybdenum disilicide/.beta.'-Si.sub.6-z Al.sub.z O.sub.z N.sub.8-z eutectoid matrix is the resulting microstructure when the invention method is employed.

  10. Composite Flexible Blanket Insulation

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Pitts, William C. (Inventor); Goldstein, Howard E. (Inventor); Sawko, Paul M. (Inventor)

    1991-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with the currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems are useful in providing lightweight insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  11. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  12. Composite prepreg application device

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A. (Inventor); Marchello, Joseph M. (Inventor)

    1995-01-01

    A heated shoe and cooled pressure roller assembly for composite prepreg application is provided. The shoe assembly includes a heated forward contact surface having a curved pressure surface. The following cooled roller provides a continuous pressure to the thermoplastic while reducing the temperature to approximately 5 C below glass transition temperature. Electric heating coils inside the forward portion of the shoe heat a thermoplastic workpiece to approximately 100 C above the glass transition. Immediately following the heated contact surface, a cooled roller cools the work. The end sharpened shape of the heated shoe trailing edge tends to prevent slag buildup and maintain a uniform, relaxed stress fabrication.

  13. Morphing soft magnetic composites.

    PubMed

    Nguyen, Vinh Quang; Ahmed, Anansa S; Ramanujan, Raju V

    2012-08-08

    Magnet filler-polymer matrix composites (Magpol) are an emerging class of morphing materials. Applications of Magpol can include artificial muscles, drug delivery, adaptive optics and self healing structures. Advantages of Magpol include remote contactless actuation, several actuation modes, high actuation strain and strain rate, self-sensing and quick response. The actuation modes of Magpol, its dynamic properties, work output and transduction characteristics are described. Analogies between Magpol actuation and phase transformations are presented. As an illustration of Magpol actuation, a proof of concept artificial muscle is presented. Current applications and future prospects are described.

  14. Composite Tiedown Fastener

    NASA Technical Reports Server (NTRS)

    Ng, Gim Shek

    1993-01-01

    Taut fastener formed from flat tape and buckles. Flexible, tiedown composite fastener for joining two or more material panels or other structural components dispensed from roll and cut to desired length. Fastener made partly of polyvinyl chloride or other resilient synthetic material and designed for joining components for which snug all-around fits required. Easily installed and removed by hand without use of tools. Potential application extends to many areas. One use of fastener is to bind pages and covers together to make book. Also utilized to provide energy-absorbing and breakaway structural fasteners for fail-safe vehicles in crashes.

  15. PCM Composite Cold Plate.

    DTIC Science & Technology

    1996-04-01

    packaging design for phase change materials (PCMs) used in thermal management. To control expansion stress, conventional PCM heat sinks have strong encapsulation that weighs more than the PCM they contain. The objective of this work is to develop PCM heat sinks configured as thin sandwich plates, in which the mass of the encapsulation is a small fraction of the PCM mass. The design is based on a lightweight carbon fiber core that has suitable mechanical, thermal, and capillary properties. PCM composite plates were fabricated with dimensions 15x15x0.6 cm3 and with a

  16. Working Toward Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pavel; Gorelik, Olga; Hadjiev, Victor G.; Scott, Carl D.; Files, Bradley S.

    2001-01-01

    One of the most attractive applications of single-wall carbon nanotubes (SWNT) is found in the area of structural materials. Nanotubes have a unique combination of high strength, modulus, and elongation to failure, and therefore have potential to significantly enhance the mechanical properties of today's composites. This is especially attractive for the aerospace industry looking for any chance to save weight. This is why NASA has chosen to tackle this difficult application of SWNT. Nanotube properties differ significantly from that of conventional carbon fibers, and a whole new set of problems, including adhesion and dispersion in the adhesive polymer matrix, must be resolved in order to engineer superior composite materials. From recent work on a variety of applications it is obvious that the wide range of research in nanotubes will lead to advances in physics, chemistry, and engineering. However, the possibility of ultralightweight structures is what causes dreamers to really get excited. One of the important issues in composite engineering is aspect ratio of the fibers, since it affects load transfer in composites. Nanotube length was a gray area for years, since they are formed in bundles, making it impossible to monitor individual nanotube length. Even though bundles are observed to be tens and hundreds of microns long, they can be built of relatively short tubes weakly bound by Van der Waals forces. Nanotube length can be affected by subsequent purification and ultrasound processing, which has been necessary in order to disperse nanotubes and introduce them into a polymer matrix. Some calculations show that nanotubes with 10(exp 5) aspect ratio may be necessary to achieve good load transfer. We show here that nanotubes produced in our laser system are as much as tens of microns long and get cut into lengths of hundreds of nanometers during ultrasound processing. Nanotube length was measured by AFM on pristine nanotube specimens as well, as after sonication

  17. Composition of the Earth.

    PubMed

    Anderson, D L

    1989-01-20

    New estimates of solar composition, compared to earlier measurements, are enriched in Fe and Ca relative to Mg, Al, and Si. The Fe/Si and Ca/Al atomic ratios are 30 to 40 percent higher than chondritic values. These changes necessitate a revision in the cosmic abundances and in the composition of the nebula from which the planets accreted (which have been based on chondritic values). These new values imply that the mantle could contain about 15 weight percent FeO and more CaMgSi(2)O(6) than has been supposed. Geophysical data are consistent with a dense, FeO-rich lower mantle and a CaMgSi(2)O(6) (diopside)-rich transition region. FeO contents of 13 to 18 weight percent appear to be typical of the mantles of bodies in the inner solar system. The oldest komatiites (high-temperature MgO-rich magmas) have a similar chemistry to the derived mantle. These results favor a chemically zoned mantle.

  18. Composite Bear Canister

    NASA Technical Reports Server (NTRS)

    Chung, W. Richard; Jara, Steve; Suffel, Susan

    2003-01-01

    To many national park campers and mountain climbers saving their foods in a safe and unbreakable storage container without worrying being attacked by a bear is a challenging task. In some parks, the park rangers have mandated that park visitors rent a bear canister for their food storage. Commercially available bear canisters are made of ABS plastic, weigh 2.8 pounds, and have a 180 cubic inch capacity for food storage. A new design with similar capacity was conducted in this study to reduce its weight and make it a stiffer and stronger canister. Two prototypes incorporating carbon prepreg with and without honeycomb constructions were manufactured using hand lay-up and vacuum bag forming techniques. A 6061-T6-aluminum ring was machined to dimensions in order to reinforce the opening area of the canister. Physical properties (weight and volume) along with mechanical properties (flexural strength and specific allowable moment) of the newly fabricated canisters are compared against the commercial ones. The composite canister weighs only 56% of the ABS one can withstand 9 times of the force greater. The advantages and limitations of using composite bear canisters will be discussed in the presentation.

  19. Lunar atmospheric composition experiment

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    Apollo 17 carried a miniature mass spectrometer, called the Lunar Atmospheric Composition Experiment (LACE), to the moon as part of the Apollo Lunar Surface Experiments Package (ALSEP) to study the composition and variations in the lunar atmosphere. The instrument was successfully deployed in the Taurus-Littrow Valley with its entrance aperture oriented upward to intercept and measure the downward flux of gases at the lunar surface. During the ten lunations that the LACE operated, it produced a large base of data on the lunar atmosphere, mainly collected at night time. It was found that thermal escape is the most rapid loss mechanism for hydrogen and helium. For heavier gases, photoionization followed by acceleration through the solar wind electric field accounted for most of the loss. The dominant gases on the moosn were argon and helium, and models formed for their distribution are described in detail. It is concluded that most of the helium in the lunar atmosphere is of solar wind origin, and that there also exist very small amounts of methane, ammonia, and carbon dioxide.

  20. Rocks as poroelastic composites

    SciTech Connect

    Berryman, J G

    1998-04-30

    In Biot's theory of poroelasticity, elastic materials contain connected voids or pores and these pores may be filled with fluids under pressure. The fluid pressure then couples to the mechanical effects of stress or strain applied externally to the solid matrix. Eshelby's formula for the response of a single ellipsoidal elastic inclusion in an elastic whole space to a strain imposed at infinity is a very well-known and important result in elasticity. Having a rigorous generalization of Eshelby's results valid for poroelasticity means that the hard part of Eshelby' work (in computing the elliptic integrals needed to evaluate the fourth-rank tensors for inclusions shaped like spheres, oblate and prolate spheroids, needles and disks) can be carried over from elasticity to poroelasticity - and also thermoelasticity - with only trivial modifications. Effective medium theories for poroelastic composites such as rocks can then be formulated easily by analogy to well-established methods used for elastic composites. An identity analogous to Eshelby's classic result has been derived [Physical Review Letters 79:1142-1145 (1997)] for use in these more complex and more realistic problems in rock mechanics analysis. Descriptions of the application of this result as the starting point for new methods of estimation are presented.

  1. General composite Higgs models

    NASA Astrophysics Data System (ADS)

    Marzocca, David; Serone, Marco; Shu, Jing

    2012-08-01

    We construct a general class of pseudo-Goldstone composite Higgs models, within the minimal SO(5)/SO(4) coset structure, that are not necessarily of moose-type. We characterize the main properties these models should have in order to give rise to a Higgs mass around 125 GeV. We assume the existence of relatively light and weakly coupled spin 1 and 1/2 resonances. In absence of a symmetry principle, we introduce the Minimal Higgs Potential (MHP) hypothesis: the Higgs potential is assumed to be one-loop dominated by the SM fields and the above resonances, with a contribution that is made calculable by imposing suitable generalizations of the first and second Weinberg sum rules. We show that a 125 GeV Higgs requires light, often sub-TeV, fermion resonances. Their presence can also be important for the models to successfully pass the electroweak precision tests. Interestingly enough, the latter can also be passed by models with a heavy Higgs around 320 GeV. The composite Higgs models of the moose-type considered in the literature can be seen as particular limits of our class of models.

  2. Composite hot drape forming

    NASA Astrophysics Data System (ADS)

    Ott, Thomas

    1994-02-01

    This program was initiated to replace labor-intensive ply-by-ply layup of composite I-beam posts and angle stiffeners used in the Space Station Freedom (SSF) rack structure. Hot drape forming (HDF) has been successfully implemented by BCAG for 777 composite I-stringers and by Bell Helicopter/Textron for the V-22 I-stingers. The two companies utilize two vastly different approaches to the I-beam fabrication process. A drape down process is used by Bell Helicopter where the compacted ply charge is placed on top of a forming mandrel and heated. When the heated ply charge reached a set temperature, vacuum pressure is applied and the plies are formed over the mandrel. The BCAG 777 process utilizes an inverted forming process where the ply stack is placed on a forming table and the mandrel is inverted and placed upon the ply stack. A heating and vacuum bladder underneath the ply stack form the play stack up onto the mandrels after reaching the temperature setpoint. Both methods have their advantages, but the drape down process was selected for SSF because it was more versatile and could be fabricated from readily available components.

  3. Lipid composition of cyanidium.

    PubMed

    Allen, C F; Good, P; Holton, R W

    1970-11-01

    The major lipids in Cyanidium caldarium Geitler are monogalactosyl diglyceride, digalactosyl diglyceride, plant sulfolipid, lecithin, phosphatidyl glycerol, phosphatidyl inositol, and phosphatidyl ethanolamine. Fatty acid composition varies appreciably among the lipids, but the major ones are palmitic acid, oleic acid, linoleic acid, and moderate amounts of stearic acid. Trace amounts of other acids in the C(14) to C(20) range were also present. Moderate amounts of linolenic acid were found in two strains, but not in a third. The proportion of saturated acid is relatively high in all lipids ranging from about a third in monogalactosyl diglyceride to three-fourths in sulfolipid. This may be a result of the high growth temperature. Lipases forming lysosulfolipid, and lysophosphatidyl glycerol are active in ruptured cells; galactolipid is degraded with loss of both acyl residues. Thus the lipid and fatty acid composition of Cyanidium more closely resembles that of green algae than that of the blue-green algae, although there are differences of possible phylogenetic interest.

  4. Developing photorefractive glass composites

    NASA Astrophysics Data System (ADS)

    Duignan, Jason P.; Taylor, Lesley L.; Cook, Gary

    2002-01-01

    The production of a transparent photorefractive glass composite would offer a useful alternative to bulk crystal materials. We aim to produce such a material by incorporating single domain photorefractive Fe:LiNbO3 particles into a refractive index matched glass host. This glass host is also required to be chemically compatible with the photorefractive material. This compatibility will ensure that the Fe:LiNbO3 particles added to the host glass will remain in the intended crystalline phase and not simply dissolve in the glass. Due to the high refractive index of the Fe:LiNbO3 (no equals 2.35 532 nm), producing a chemically compatible and refractive index matched glass host is technically challenging. By examining common Tellurite, Bismuthate, and Gallate glasses as a starting point and then developing new and hybrid glasses, we have succeeded in producing a chemically compatible glass host and also a refractive index matched glass host. We have produced preliminary glass composite samples which contain a large amount of Fe:LiNbO3. We are currently able to retain nearly 90% of the incorporated Fe:LiNbO3 in the correct crystalline phase, a substantial improvement over previous work conducted in this area in recent years. In this paper we present our progress and findings in this area.

  5. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2016-11-15

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  6. Composite oxygen transport membrane

    DOEpatents

    Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.

    2016-11-08

    A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.

  7. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  8. Metallic threaded composite fastener

    NASA Technical Reports Server (NTRS)

    Dunn, Thomas J. (Inventor)

    1992-01-01

    A metallic threaded composite fastener, particularly suited for high temperature applications, has a body member made of high temperature resistant composite material with a ceramic coating. The body member has a head portion configured to be installed in a countersunk hole and a shank portion which is noncircular and tapered. One part of the shank may be noncircular and the other part tapered, or the two types of surface could be combined into a frustum of a noncircular cone. A split collar member made of high strength, high temperature tolerant metal alloy is split into two halves and the interior of the halves are configured to engage the shank. The exterior of the collar has a circumferential groove which receives a lock ring to secure the collar halves to the shank. In the assembled condition torque may be transmitted from the body to the split collar by the engaged noncircular portions to install and remove the fastener assembly into or from a threaded aperture and shear loads in the collar threads are transferred to the shank tapered portion as a combination of radial compression and axial tension loads. Thus, tension loads may be applied to the fastener shank without damaging the ceramic coating.

  9. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Hoggatt, J. T.; Symonds, W. A.

    1980-01-01

    The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.

  10. Vesta's Elemental Composition

    NASA Technical Reports Server (NTRS)

    Prettyman, T. H.; Beck, A. W.; Feldman, W. C.; Lawrence, D. J.; McCoy, T. J.; McSween, H. Y.; Mittlefehldt, D. W.; Peplowski, P. N.; Raymond, C. A.; Reedy, R. C.; Russell, C. T.; Titus, T. N.; Toplis, M. J.; Yamashita, N.

    2014-01-01

    Many lines of evidence (e.g. common geochemistry, chronology, O-isotope trends, and the presence of different HED rock types in polymict breccias) indicate that the howardite, eucrite, and diogenite (HED) meteorites originated from a single parent body. Meteorite studies show that this protoplanet underwent igneous differentiation to form a metallic core, an ultramafic mantle, and a basaltic crust. A spectroscopic match between the HEDs and 4 Vesta along with a plausible mechanism for their transfer to Earth, perhaps as chips off V-type asteroids ejected from Vesta's southern impact basin, supports the consensus view that many of these achondritic meteorites are samples of Vesta's crust and upper mantle. The HED-Vesta connection was put to the test by the NASA Dawn mission, which spent a year in close proximity to Vesta. Measurements by Dawn's three instruments, redundant Framing Cameras (FC), a Visible-InfraRed (VIR) spectrometer, and a Gamma Ray and Neutron Detector (GRaND), along with radio science have strengthened the link. Gravity measurements by Dawn are consistent with a differentiated, silicate body, with a dense Fe-rich core. The range of pyroxene compositions determined by VIR overlaps that of the howardites. Elemental abundances determined by nuclear spectroscopy are also consistent with HED-compositions. Observations by GRaND provided a new view of Vesta inaccessible by telescopic observations. Here, we summarize the results of Dawn's geochemical investigation of Vesta and their implications.

  11. Microstructural design of fiber composites

    NASA Astrophysics Data System (ADS)

    Chou, Tsu-Wei

    The optimum performance design of composite microstructures is discussed. The forces driving progress in fiber composites are examined, and recent developments in the mechanics of laminated composites are surveyed, emphasizing thick laminates, hygrothermal effects, and thermal transient effects. The strength of continuous-fiber composites is discussed, presenting analyses of local load redistribution due to fiber breakages and treatments of statistical tensile strength theories. Modes of failure of laminated composites are examined. Elastic, physical, and viscoelastic properties as well as the strength and fracture behavior of short-fiber composites are studied, and it is shown how the performance of composites can be controlled by selecting material systems and their geometric distributions. 2D textile structural composites based on woven, knitted, and braided preforms are considered, and techniques for analyzing and modeling the thermomechanical behavior of 2D textile composites are presented. Recent developments in the processing of 3D textile preforms are introduced and the processing-microstructure relationship is demonstrated. Finite elastic deformation of flexible composites is addressed.

  12. Probabilistic assessment of composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Shiao, Michael C.

    1993-01-01

    A methodology and attendant computer code were developed and are used to computationally simulate the uncertain behavior of composite structures. The uncertain behavior includes buckling loads, stress concentration factors, displacements, stress/strain, etc., which are the consequences of the inherent uncertainties (scatter) in the primitive (independent random) variables (constituent, ply, laminate, and structural) that describe the composite structures. The computer code is IPACS (Integrated Probabilistic Assessment of Composite Structures). IPACS can simulate both composite mechanics and composite structural behavior. Application to probabilistic composite mechanics is illustrated by its use to evaluate the uncertainties in the major Poisson's ratio and in laminate stiffness and strength. IPACS' application to probabilistic structural analysis is illustrated by its used to evaluate the uncertainties in the buckling of a composite plate, the stress concentration factor in a composite panel, and the vertical displacement and ply stress in a composite aircraft wing segment. IPACS' application to probabilistic design is illustrated by its use to assess the thin composite shell (pipe).

  13. Composite components on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.

    1980-01-01

    Commercial aircraft manufacturers are making production commitments to composite structure for future aircraft and modifications to current production aircraft. Flight service programs with advanced composites sponsored by NASA during the past 10 years are described. Approximately 2.5 million total composite component flight hours have been accumulated since 1970 on both commercial transports and helicopters. Design concepts with significant mass savings were developed, appropriate inspection and maintenance procedures were established, and satisfactory service was achieved for the various composite components. A major NASA/U.S. industry technology program to reduce fuel consumption of commercial transport aircraft through the use of advanced composites was undertaken. Ground and flight environmental effects on the composite materials used in the flight service programs supplement the flight service evaluation.

  14. Precursor polymer compositions comprising polybenzimidazole

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  15. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  16. Kevlar and carbon composites compared

    SciTech Connect

    Demmler, A.W.

    1985-02-01

    Characteristics of advanced composites are investigated. The fibers considered are Kevlar and carbon. The greatest advantage of composites over metals is emphasized, and lies in their permitting designers to obtain properties in exactly the locations desired. Kevlar replaced S-glass on the Trident 2 missile, saving 800 lbs. and adding 800 miles to its range. Military aircraft builders find that advanced carbon composites more often than not win out over Kevlar.

  17. Composite Materials for Structural Design.

    DTIC Science & Technology

    1981-02-01

    Conditioning of Cross-Ply Graphite/Epoxy Laminates." In Advances in Composite Materials (Proceedings of 3rd International Con- ference on Composite Materials...Chairman of Advisory Committee: Dr. W. L. Bradley An epoxy resin commonly used in advanced composite materials for aerospace application was tested...34, Vought Corp. Advanced Technology Center Final Report, Aug. 1978. Contract No. N00019-77-C-0369 with the Department of the Navy. 2. Williams, M.L., et al

  18. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  19. Porous block nanofiber composite filters

    SciTech Connect

    Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold

    2016-08-09

    Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).

  20. Surface analysis in composite bonding

    NASA Technical Reports Server (NTRS)

    Messick, D. L.; Wightman, J. P.

    1983-01-01

    X ray photoelectron spectroscopy and contact angle measurements on graphite fiber composites pretreated in a number of different ways including mechanical, chemical, and light irradiation were analyzed. Data acquired on surface contamination as a result of fabrication techniques provides answers to the strength and durability of adhesively bonded composites. These techniques were shown to provide valuable information on surface analysis of pretreated composites prior to adhesive bonding and following lap shear fracture.

  1. Compressive strength of unidirectional composites

    SciTech Connect

    Lo, K.H.; Chim, E.S.M. )

    1992-08-01

    A combined analytical and semiempirical approach is used to obtain a simple equation for predicting the compressive strength of unidirectional composites. The formulation is based on the concept of microbuckling of a representative volume element in the composite, with the effect of shear deformation included. The validity of the equation proposed here is supported by good correlation with experimental data for E-glass, carbon, and boron fiber composites. 129 refs.

  2. Graphene-ionic liquid composites

    DOEpatents

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  3. Alumina-based ceramic composite

    DOEpatents

    Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.

    1996-01-01

    An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite.

  4. Impact Damage to Composite Structures

    DTIC Science & Technology

    1986-02-01

    Security Classification of Document UNCLASSIFIED 6. Title IMPACT DAMAGE TO COMPOSITE STRUCTURES 7. Presented at 8. Authar(s)/Editor(s) Various 10...materials Composite structures Structural analysis Mechanical properties Impact strength Damage 14. Abstract The Structures and Materials Panel...POSTGRADUATE SCHOOL MOMTEREY, CAL1F.QRN.IA 9,19ili AGARD-R-729 AGARD REPORT No.729 Impact Damage to Composite Structures * DISTRIBUTION AND AVAILABILITY

  5. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  6. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Henshaw, J.

    1983-01-01

    Methods of improving the fire resistance of graphite epoxy composite laminates were investigated with the objective of reducing the volume of loose graphite fibers disseminated into the airstream as the result of a high intensity aircraft fuel fire. Improvements were sought by modifying the standard graphite epoxy systems without significantly negating their structural effectiveness. The modifications consisted primarily of an addition of a third constituent material such as glass fibers, glass flakes, carbon black in a glassy resin. These additions were designed to encourage coalescense of the graphite fibers and thereby reduce their aerodynamic float characteristics. A total of 38 fire tests were conducted on thin (1.0 mm) and thick (6.0 mm) hybrid panels.

  7. Multi-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1976-01-01

    Resin matrix composites having improved resistance to foreign object damage in gas turbine engine fan blade applications were developed. Materials evaluated include epoxy matrix graphite/glass and boron/glass hybrids, thermoplastic matrix boron/glass hybrids, and superhybrids consisting of graphite/epoxy, boron/aluminum, and titanium alloy sheets. Static, pendulum impact, and ballistic impact test results are reported for all materials. Superhybrid blade like specimens are shown to be capable of withstanding relatively severe ballistic impacts from gelatin spheres without fracture. The effects of ply configuration and projectile angle of incidence on impact behavior are described. Predictions of surface strains during ballistic impact are presented and shown to be in reasonable agreement with experimental measurements.

  8. Watching how composites grow

    SciTech Connect

    Ashley, S.

    1993-07-01

    This article reports on a powerful x-ray analysis technique that has been developed to let researchers see, in three dimensions and microscopic detail, inside a ceramic composite as it is forming. The high-resolution imaging technique, called X-ray tomographic microscopy (XTM), is similar to medical computed tomography (CT) in which physicians take X-ray images of a patient's body from different angles and then reconstruct the data computationally into three-dimensional pictures of organs. The new method appears to have significant application in fields ranging from materials science to medical bone studies of osteoporosis--situations in which investigators need to visualize the microscopic behavior of complex materials.

  9. Composite telescope technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2014-07-01

    We report the development of optical mirrors based on polymer matrix composite materials. Advantages of this technology are low cost and versatility. By using appropriate combinations of polymers and various metallic and nonmetallic particles and fibers, the properties of the materials can be tailored to suit a wide variety of applications. We report the fabrication and testing of flat and curved mirrors made with metal powders, multiple mirrors replicated with high degree of uniformity from the same mandrels, cryogenic testing, mirrors made of ferromagnetic materials that can be actively or adaptively controlled by non-contact actuation, optics with very smooth surfaces made by replication, and by spincasting. We discuss development of a new generation of ultra-compact, low power active optics and 3D printing of athermal telescopes.

  10. Novel high explosive compositions

    DOEpatents

    Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

    1968-04-16

    This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

  11. Multifunctional Composite Structures

    DTIC Science & Technology

    2010-03-01

    37  Fig. 25  Structure mesh for multi-material systems .................................................... 38  Fig. 26...Actuators Magnetic  fields  can  be  created  by  currents  flowing  through  fiber  networks   or  embedded conductors within composites. These magnetic...models  for  such  systems   is  difficult  in  conventional  finite  element  analysis  software.  A  method  that  does  not  require  conforming mesh

  12. AGNs with composite spectra.

    NASA Astrophysics Data System (ADS)

    Veron, P.; Goncalves, A. C.; Veron-Cetty, M.-P.

    1997-03-01

    The use of the Baldwin et al. (1981PASP...93....5B) or Veilleux & Osterbrock (1987ApJS...63..295V) diagnostic diagrams allows the unambiguous classification of the nuclear emission line regions of most galaxies into one of three categories: nuclear HII regions or starbursts, Seyfert 2 galaxies and Liners. However, a small fraction of them have a "transition" spectrum. We present spectral observations of 15 "transition" objects at high-dispersion (66Å/mm) around the Hα, [NII]λλ6548,6584 and/or Hβ, [OIII]λλ4959,5007 emission lines. We show that most of these spectra are composite, due to the simultaneous presence on the slit of a Seyfert nucleus and a HII region. Seyfert 2s and Liners seem to occupy relatively small and distinct volumes in the three-dimensional space λ5007/Hβ, λ6584/Hα, λ6300/Hα.

  13. Superalloy composition modeling

    NASA Technical Reports Server (NTRS)

    Barefoot, J.; Jarrett, R.; Sanchez, J.; Tien, J.

    1982-01-01

    Development of a predictive method for determination of the gamma/gamma prime phase fields, i.e., gamma prime volume fraction as a function of the multicomponent composition, is described. The cluster variation method used for binary alloys in which the precipitated phase is coherent with the matrix phase is extended for application to the multicomponent coherent gamma/gamma prime nickel-based superalloys. It is shown that the cluster variation method can accurately describe the equilibrium (incoherent) gamma/gamma prime phase fields in the binary Ni-Al phase diagram. The gamma/gamma prime phase field for the Ni-Cr-Al ternary phase diagram is computed as a function of temperature. A reasonable fit results between the calculated and the experimental diagrams. The modeling of the six-component Ni-Cr-Al-Co-Mo-Ti base superalloy and the effect of Ni substitution of Co are discussed.

  14. Composite Fuselage Technology

    NASA Technical Reports Server (NTRS)

    Lagace, Paul A.

    1999-01-01

    Work was conducted over a ten-year period to address the central issue of damage in primary load-bearing aircraft composite structure, specifically fuselage structure. This included the three facets of damage resistance, damage tolerance, and damage arrest. Experimental, analytical, and numerical work was conducted in order to identify and better understand the mechanisms that control the structural behavior of fuselage structures in their response to the three aspects of damage. Furthermore, work was done to develop straightforward design methodologies that can be employed by structural designers in preliminary design stages to make intelligent choices concerning the material, layup, and structural configurations so that a more efficient structure with structural integrity can be designed and built. Considerable progress was made towards achieving these goals via this work. In regard to damage tolerance considerations, the following were identified as important effects: composite layup and associated orthotropy/structural anisotropy, specifics of initial local damage mechanisms, role of longitudinal versus hoop stress, and large deformation and associated geometric nonlinearity. Means were established to account for effects of radius and for the nonlinear response. In particular, nondimensional parameters were identified to characterize the importance of nonlinearity in the response of pressurized cylinders. This led to the establishment of a iso-nonlinear-error plot for reference in structural design. Finally, in the case of damage tolerance, the general approach of the original methodology to predict the failure pressure involving extending basic plate failure data by accounting for the local stress intensification was accomplished for the general case by accounting for the mechanisms noted by utilizing the capability of the STAGS finite element code and numerically calculating the local stress intensification for the particular configuration to be considered

  15. Mercury Transit (Composite Image)

    NASA Image and Video Library

    2017-09-28

    On May 9, 2016, Mercury passed directly between the sun and Earth. This event – which happens about 13 times each century – is called a transit. NASA’s Solar Dynamics Observatory, or SDO, studies the sun 24/7 and captured the entire seven-and-a-half-hour event. This composite image of Mercury’s journey across the sun was created with visible-light images from the Helioseismic and Magnetic Imager on SDO. Image Credit: NASA's Goddard Space Flight Center/SDO/Genna Duberstein NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Hygrothermal properties of composites

    NASA Technical Reports Server (NTRS)

    Arsenovic, Petar

    1996-01-01

    The testing procedure and acceptance criteria for outgassing selection of materials to be used in spacecraft has been reviewed. Outgassing testing should be conducted according to ASTM Standard E 595-90. In general, materials with CVCM less than or equal to 0.10% and TML less than or equal to 1.00% are acceptable for space applications. Next, test data on several types of graphite-epoxy composite materials are presented over time at various relative humidity levels at room temperature for moisture absorption, and under vacuum at several temperatures for moisture desorption (outgassing). The data can be accurately represented by simple equations which are useful for materials characterization. Finally, a laser dilatometer systems of extremely high sensitivity and accuracy was assembled and used to measure the coefficient of thermal expansion (CTE) of several types of graphite-epoxy structures, culminating in the ability to perform loading and thermal expansion tests on a prototype optical bench.

  17. Surface composition of Hyperion.

    PubMed

    Cruikshank, D P; Dalton, J B; Dalle Ore, C M; Bauer, J; Stephan, K; Filacchione, G; Hendrix, A R; Hansen, C J; Coradini, A; Cerroni, P; Tosi, F; Capaccioni, F; Jaumann, R; Buratti, B J; Clark, R N; Brown, R H; Nelson, R M; McCord, T B; Baines, K H; Nicholson, P D; Sotin, C; Meyer, A W; Bellucci, G; Combes, M; Bibring, J-P; Langevin, Y; Sicardy, B; Matson, D L; Formisano, V; Drossart, P; Mennella, V

    2007-07-05

    Hyperion, Saturn's eighth largest icy satellite, is a body of irregular shape in a state of chaotic rotation. The surface is segregated into two distinct units. A spatially dominant high-albedo unit having the strong signature of H2O ice contrasts with a unit that is about a factor of four lower in albedo and is found mostly in the bottoms of cup-like craters. Here we report observations of Hyperion's surface in the ultraviolet and near-infrared spectral regions with two optical remote sensing instruments on the Cassini spacecraft at closest approach during a fly-by on 25-26 September 2005. The close fly-by afforded us the opportunity to obtain separate reflectance spectra of the high- and low-albedo surface components. The low-albedo material has spectral similarities and compositional signatures that link it with the surface of Phoebe and a hemisphere-wide superficial coating on Iapetus.

  18. Moving particle composition analyzer

    NASA Technical Reports Server (NTRS)

    Auer, S. O. (Inventor)

    1976-01-01

    A mass spectrometry apparatus for analyzing the composition of moving microscopic particles is introduced. The apparatus includes a capacitor with a front electrode upon which the particles impinge, a back electrode, and a solid dielectric sandwiched between the front and back electrodes. In one embodiment, the electrodes and dielectric are arcuately shaped as concentric peripheral segments of different spheres having a common center and different radii. The front electrode and dielectric together have a thickness such that an impinging particle can penetrate them. In a second embodiment, the capacitor has planar, parallel electrodes, in which case the ejected positive ions are deflected downstream of a planar grid by a pair of spaced, arcuate capacitor plates having a region between them through which the ejected ions travel.

  19. Composite shell spacecraft seat

    NASA Technical Reports Server (NTRS)

    Barackman, Victor J. (Inventor); Pulley, John K. (Inventor); Simon, Xavier D. (Inventor); McKee, Sandra D. (Inventor)

    2008-01-01

    A two-part seat (10) providing full body support that is specific for each crew member (30) on an individual basis. The two-part construction for the seat (10) can accommodate many sizes and shapes for crewmembers (30) because it is reconfigurable and therefore reusable for subsequent flights. The first component of the two-part seat construction is a composite shell (12) that surrounds the crewmember's entire body and is generically fitted to their general size in height and weight. The second component of the two-part seat (10) is a cushion (20) that conforms exactly to the specific crewmember's entire body and gives total body support in more complex environment.

  20. The MG Composite

    PubMed Central

    Burns, Ted M.; Conaway, Mark; Sanders, Donald B.

    2010-01-01

    Objective: To study the concurrent and construct validity and test-retest reliability in the practice setting of an outcome measure for myasthenia gravis (MG). Methods: Eleven centers participated in the validation study of the Myasthenia Gravis Composite (MGC) scale. Patients with MG were evaluated at 2 consecutive visits. Concurrent and construct validities of the MGC were assessed by evaluating MGC scores in the context of other MG-specific outcome measures. We used numerous potential indicators of clinical improvement to assess the sensitivity and specificity of the MGC for detecting clinical improvement. Test-retest reliability was performed on patients at the University of Virginia. Results: A total of 175 patients with MG were enrolled at 11 sites from July 1, 2008, to January 31, 2009. A total of 151 patients were seen in follow-up. Total MGC scores showed excellent concurrent validity with other MG-specific scales. Analyses of sensitivities and specificities of the MGC revealed that a 3-point improvement in total MGC score was optimal for signifying clinical improvement. A 3-point improvement in the MGC also appears to represent a meaningful improvement to most patients, as indicated by improved 15-item myasthenia gravis quality of life scale (MG-QOL15) scores. The psychometric properties were no better for an individualized subscore made up of the 2 functional domains that the patient identified as most important to treat. The test-retest reliability coefficient of the MGC was 98%, with a lower 95% confidence interval of 97%, indicating excellent test-retest reliability. Conclusions: The Myasthenia Gravis Composite is a reliable and valid instrument for measuring clinical status of patients with myasthenia gravis in the practice setting and in clinical trials. PMID:20439845

  1. Composite coatings improve engines

    SciTech Connect

    Funatani, K.; Kurosawa, K. )

    1994-12-01

    About 40% of the power loss in engine systems is attributed to the adverse effects of friction in reciprocating engine components. Over half of this power loss is caused by friction between pistons, piston rings, and cylinder bores. In addition, engine parts may be attacked by corrosive gasoline substitutes such as liquid propane gas and alcohol/gasoline mixtures. To solve both friction and corrosion problems, Nihon Parkerizing Co. has improved the nickel-phosphorus based ceramic composite (NCC) plating technology that was developed for cylinder bores and pistons by Suzuki Motor Co. in the mid 1970s. Iron and nickel-based composite plating technologies have been investigated since the early 1970s, and a few have been used on small two-stroke motorcycle, outboard marine, snowmobile, and some luxury passenger car engine components. Both nickel- and iron-base plating processes are used on cylinders and pistons because they offer excellent wear and corrosion resistance. Nickel-base films have higher corrosion resistance than those based on iron, and are capable of withstanding the corrosive conditions characteristic of high methanol fuels. Unfortunately, they experience a decrease in hardness as operating temperatures increase. However, NCC coatings with phosphorus additions have high hardness even under severe operating conditions, and hardness increases upon exposure to elevated temperatures. In addition to high hardness and corrosion resistance, NCC coatings provide a low friction coefficient, which contributes to the reduction of friction losses between sliding components. When used in low-quality or alcohol fuels, the corrosion resistance of NCC coatings is far higher than that of Fe-P plating. Additionally, the coatings reduce wall and piston temperature, wear of ring groove and skirt, and carbon deposit formation, and they improve output power and torque. These advantages all contribute to the development of light and efficient engines with better fuel mileage.

  2. Composite multiphase groundwater model

    SciTech Connect

    Kim, Joon Hyun.

    1989-01-01

    A general comprehensive mathematical model using the composite multi-phase approach to describe groundwater flow and pollution was developed. The comprehensive governing equation was derived from the simple mass balance of chemical species over all the phases in schematic elementary volume, and traditional ground water governing equations are explained from it. An attempt was made to include the complicated aspects of physical chemical and biological processes such as mass fraction, compressibility, capillarity, dispersion, gravity, relative permeability, viscosity, sorption, interfacial mass change and chemical and biological reactions. To make the analysis possible, assumptions have been made for continuous flow of each phase and instantaneous equilibrium for partition. The resulting system of nonlinear governing and constitutive equations was solved numerically. To handle the irregular geometry, complex boundary conditions and many different governing equations with simple modifications, the upstream weighted finite element method was adopted. By using the dynamic allocation of arrays, the code is flexible to work on an IBM 3090 Vector Facility, workstations and PC's for one, two and three dimensional problems. To reduce the computation time and storage requirements, decoupling of the system equations, banded global matrix and vector and parallel processing were used. The program was structured to facilitate inclusion of additional future constitutive equations. To demonstrate the model's versatility, several hypothetical problems were simulated: unsaturated flow through an embankment; one and two dimensional solute transport; one, two, three dimensional multiphase flow; composite multiphase flow and contaminant migration. The instability and convergence criteria of the nonlinear problems were studied. Parameter dependency of the model was also studied.

  3. Hydroprocessing catalyst composition

    SciTech Connect

    Apelian, M.R.; Degnan, T.F. Jr.; Marler, D.O.; Mazzone, D.N.

    1993-07-13

    A bifunctional hydroprocessing catalyst is described which comprises a metal component having hydrogenation/dehydrogenation functionality and a support component comprising an inorganic, non-layered, porous, crystalline phase material having pores with diameters of at least about 13 [angstrom] and exhibiting, after calcination, an X-ray diffraction pattern with at least one peak with a relative intensity of 100 at a d-spacing greater than about 18 [angstrom], the catalyst having a surface area S, where S, expressed in m[sup 2].g[sup [minus]1], is defined by the equation: S[ge]600-13.3X where X is the total metals loading in weight percent and is least 12 weight percent. A second hydroprocessing catalyst is described according to claim 1 in which the crystalline phase has a composition expressed as follows: M[sub n/q](W[sub a]X[sub b]Y[sub c]Z[sub d]O[sub h]) wherein M is one or more ions; n is the charge of the composition excluding M expressed as oxides; q is the weighted molar average valence of M; n/q is the number of moles or mole fraction of M; W is one or more divalent elements; X is one or more trivalent elements; Y is one or more tetravalent elements; Z is one or more pentavalent elements; a, b, c, and d are mole fraction of W, X, Y, and Z, respectively, h is a number of from 1 to 2.5; and (a+b+c+d) = 1. A third hydroprocessing catalyst is described according to claim 1 in which the catalyst is at least one base metal of Group VIA, VIIA or VIIIA of the Periodic Table.

  4. Custom Machines Advance Composite Manufacturing

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here is a brief list of materials that NASA will not be using to construct spacecraft: wood, adobe, fiberglass, bone. While it might be obvious why these materials would not make for safe space travel, they do share a common characteristic with materials that may well be the future foundation of spacecraft design: They all are composites. Formed of two or more unlike materials - such as cellulose and lignin in the case of wood, or glass fibers and plastic resin in the case of fiberglass-composites provide enhanced mechanical and physical properties through the combination of their constituent materials. For this reason, composites are used in everything from buildings, bathtubs, and countertops to boats, racecars, and sports equipment. NASA continually works to develop new materials to enable future space missions - lighter, less expensive materials that can still withstand the extreme demands of space travel. Composites such as carbon fiber materials offer promising solutions in this regard, providing strength and stiffness comparable to metals like aluminum but with less weight, allowing for benefits like better fuel efficiency and simpler propulsion system design. Composites can also be made fatigue tolerant and thermally stable - useful in space where temperatures can swing hundreds of degrees. NASA has recently explored the use of composites for aerospace applications through projects like the Composite Crew Module (CCM), a composite-constructed version of the aluminum-lithium Multipurpose Crew Capsule. The CCM was designed to give NASA engineers a chance to gain valuable experience developing and testing composite aerospace structures.

  5. Computational micromechanics of woven composites

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Saigal, Sunil; Zeng, Xiaogang

    1991-01-01

    The bounds on the equivalent elastic material properties of a composite are presently addressed by a unified energy approach which is valid for both unidirectional and 2D and 3D woven composites. The unit cell considered is assumed to consist, first, of the actual composite arrangement of the fibers and matrix material, and then, of an equivalent pseudohomogeneous material. Equating the strain energies due to the two arrangements yields an estimate of the upper bound for the material equivalent properties; successive increases in the order of displacement field that is assumed in the composite arrangement will successively produce improved upper bound estimates.

  6. Composite membrane with integral rim

    DOEpatents

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  7. Recycling of aluminum matrix composites

    SciTech Connect

    Nishida, Yoshinori; Izawa, Norihisa; Kuramasu, Yukio

    1999-03-01

    Separation of matrix metals in composites was tried on alumina short fiber-reinforced aluminum and 6061 alloy composites and SiC whisker-reinforced 6061 alloy composite for recycling. It is possible to separate molten matrix metals from fibers in the composites using fluxes that are used for melt treatment to remove inclusions. About 50 vol pct of the matrix metals was separated from the alumina short fiber-reinforced composites. The separation ratio of the matrix from the SiC whisker-reinforced 6061 alloy composite was low and about 20 vol pct. The separation mechanism was discussed thermodynamically using interface free energies. Since the flux/fiber interface energy is smaller than the aluminum/fiber interface energy, the replacement of aluminum with fluxes in composites takes place easily. Gases released by the decomposition of fluxes act an important role in pushing out the molten matrix metal from the composite. The role was confirmed by the great amount cavity formed in the composite after the matrix metal flowed out.

  8. Multilayer Electroactive Polymer Composite Material

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  9. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  10. A Discipline's Composition: A Citation Analysis of Composition Studies

    ERIC Educational Resources Information Center

    Coffey, Daniel P.

    2006-01-01

    Citation patterns in the field of composition studies are analyzed and compared with patterns in other humanities fields. Results showed marked differences in citation patterns between composition studies and other humanities fields, including literary studies. Librarians can use this information to forge more productive relationships with…

  11. Application of Composite Mechanics to Composites Enhanced Concrete Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Gotsis, Pascal K.

    2006-01-01

    A new and effective method is described to design composites to repair damage or enhance the overload strength of concrete infrastructures. The method is based on composite mechanics which is available in computer codes. It is used to simulate structural sections made from reinforced concrete which are typical in infrastructure as well as select reinforced concrete structures. The structural sections are represented by a number of layers through the thickness where different layers are used in concrete, and for the composite. The reinforced concrete structures are represented with finite elements where the element stiffness parameters are from the structural sections which are represented by composite mechanics. The load carrying capability of the structure is determined by progressive structural fracture. Results show up to 40 percent improvements for damage and for overload enhancement with relatively small laminate thickness for the structural sections and up to three times for the composite enhanced select structures (arches and domes).

  12. Electrodeposition of nickel composite coatings

    NASA Astrophysics Data System (ADS)

    Borkar, Tushar

    Pulse electrodeposition (PC) and pulse reverse electrodeposition (PRC) bring a new era in improving the surface properties of metals. These processes are associated with many advantages, such as reduction in porosity, low level of inclusions, and higher deposition rates compared to direct current (DC) electrodeposition process. There is much more flexibility in varying three basic parameters which are, pulse current density, on time, and off time in pulse electrodeposition resulting in unique composition and microstructure of coating being deposited. In this work, nickel matrix composite coatings were synthesized by co-depositing nano particles (Al2O3, SiC, and ZrO2) from Watts bath. To get detailed insight into effect of processing parameters on the microstructure, mechanical, and tribological properties of the composite coatings, the coatings were also fabricated using DC, PC, and PRC techniques. Also, the effect of bath loading on the level of reinforcement in the coating was investigated for Ni-Al2O 3 composite coatings. Furthermore an attempt was made to produce Ni-CNT coatings by pulse electrodeposition method. Pure nickel coatings were also prepared for comparison. Composite coatings deposited using PC and PRC techniques exhibited significant improvement in microhardness and wear resistance. The presence of nanoparticles in the composite coating seems to prohibit the columnar growth of the nickel grains resulting in random/weak texture and smaller thickness of the composite coatings. Ni-Al2O3 composite coatings show maximum hardness and wear resistance compared to Ni-SiC and Ni-ZrO 2 composite coatings. As Al2O3 content in electroplating bath increases, Microhardness and wear resistance of composite coatings increases but thickness of the coatings decreases due to nanoparticles obstructing grain growth. The Ni-CNT composite coatings exhibited significantly improved microhardness compared to pure nickel coatings.

  13. Primordial Compositions of Refractory Inclusions

    SciTech Connect

    Grossman, L; Simon, S B; Rai, V K; Thiemens, M H; Hutcheon, I D; Williams, R W; Galy, A; Ding, T; Fedkin, A V; Clayton, R N; Mayeda, T K

    2008-02-20

    Bulk chemical and oxygen, magnesium and silicon isotopic compositions were measured for each of 17 Types A and B refractory inclusions from CV3 chondrites. After bulk chemical compositions were corrected for non-representative sampling in the laboratory, the Mg and Si isotopic compositions of each inclusion were used to calculate its original chemical composition assuming that the heavy-isotope enrichments of these elements are due to Rayleigh fractionation that accompanied their evaporation from CMAS liquids. The resulting pre-evaporation chemical compositions are consistent with those predicted by equilibrium thermodynamic calculations for high-temperature nebular condensates but only if different inclusions condensed from nebular regions that ranged in total pressure from 10{sup -6} to 10{sup -1} bar, regardless of whether they formed in a system of solar composition or in one enriched in OC dust relative to gas by a factor of ten relative to solar composition. This is similar to the range of total pressures predicted by dynamic models of the solar nebula for regions whose temperatures are in the range of silicate condensation temperatures. Alternatively, if departure from equilibrium condensation and/or non-representative sampling of condensates in the nebula occurred, the inferred range of total pressure could be smaller. Simple kinetic modeling of evaporation successfully reproduces observed chemical compositions of most inclusions from their inferred pre-evaporation compositions, suggesting that closed-system isotopic exchange processes did not have a significant effect on their isotopic compositions. Comparison of pre-evaporation compositions with observed ones indicates that 80% of the enrichment in refractory CaO + Al{sub 2}O{sub 3} relative to more volatile MgO + SiO{sub 2} is due to initial condensation and 20% due to subsequent evaporation for both Type A and Type B inclusions.

  14. Rigidified pneumatic composites

    NASA Astrophysics Data System (ADS)

    van Dessel, Steven

    2000-10-01

    The overall objective of the research presented in this dissertation was to address global issues of adequate housing for all and the need for more sustainable human settlement. In order to address these, the emerging technology of rigidified pneumatic composites was investigated. Rigidified pneumatic composites (RPC) are defined as thin flexible membrane structures that are pneumatically deployed. After deployment, these structures harden due to chemical or physical change of the membrane. Because of this change, these structures do no longer require pneumatic pressure to maintain their shape. For the first time, a systematic listing of the various means available to develop polymeric materials useful in RPC technology is presented. With the aim to reduce the cost of RPC structures, a new material was proposed, developed, and evaluated. This material involved the formation of a semi-interpenetrating polymer network based on poly vinyl chloride and an acrylate based reactive plasticizer. The economical and environmental performances of RPC structures using this new material were assessed by means of a case study. In this study, the performance of RPC technology was compared with that of a typical wood light frame structure in the application of a small single-family house. The study indicated that the cost of ownership in present day value for the RPC structure was approximately 33% less than the cost of a comparable wood light frame structure. The study also indicated that significant environmental benefits exist with the use of RPC structures. It was found that the RPC structure used significantly less resources compared to the wood light frame structure. About 3.5 times less materials coming from non-renewable fossil resources, about 2.5 times less materials coming from trees, and about 19 times less materials coming from inorganic resources was used in the RPC structure relative to the wood light frame structure. The study concluded with pointing out various

  15. Composite Thermal Switch

    NASA Technical Reports Server (NTRS)

    McDonald, Robert; Brawn, Shelly; Harrison, Katherine; O'Toole, Shannon; Moeller, Michael

    2011-01-01

    Lithium primary and lithium ion secondary batteries provide high specific energy and energy density. The use of these batteries also helps to reduce launch weight. Both primary and secondary cells can be packaged as high-rate cells, which can present a threat to crew and equipment in the event of external or internal short circuits. Overheating of the cell interior from high current flows induced by short circuits can result in exothermic reactions in lithium primary cells and fully charged lithium ion secondary cells. Venting of the cell case, ejection of cell components, and fire have been reported in both types of cells, resulting from abuse, cell imperfections, or faulty electronic control design. A switch has been developed that consists of a thin layer of composite material made from nanoscale particles of nickel and Teflon that conducts electrons at room temperature and switches to an insulator at an elevated temperature, thus interrupting current flow to prevent thermal runaway caused by internal short circuits. The material is placed within the cell, as a thin layer incorporated within the anode and/or the cathode, to control excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect. The safety of high-rate cells is thus improved, preventing serious injury to personnel and sensitive equipment located near the battery. The use of recently available nanoscale particles of nickel and Teflon permits an improved, homogeneous material with the potential to be fine-tuned to a unique switch temperature, sufficiently below the onset of a catastrophic chemical reaction. The smaller particles also permit the formation of a thinner control film layer (<50 m), which can be incorporated into commercial high-rate lithium primary and secondary cells. The innovation permits incorporation in current lithium and lithium-ion cell designs with a minimal impact on cell weight and volume. The composite thermal

  16. Foamable molding compositions

    SciTech Connect

    Dijk, A.V.; Sie, S.T.

    1989-07-25

    This patent describes a process for the preparation of hydrocarbons from synthesis gas comprising hydrogen and carbon monoxide, with a reduction in the production of durene which comprises contacting the synthesis gas, at hydrocarbon synthesis conditions, with a catalyst composition. The composition comprises: at lease one metal or compound of metal from Group 2b and at least one metal or compound of metal from Grouop 6b of the Periodic Table of Elements and a crystalline aluminum silicate crystallized from an aqueous alkaline crystallization mixture comprising at lease one silicon compound comprising SiO/sub 2/, at lease one aluminum compound comprising Al/sub 2/C/sub 3/, at least one compound of a metal selected from Group 1a (MX) of the Periodic Table of Elements wherein MX represents at least one M/sub n/Z and at least one MOH in which M represents an alkali metal ion, Z represents an anion of a mineral acid and n satisfies the electroneutrality of the compound M/sub n/Z and organic nitrogen compounds comprising pyridine or a compound of pyridine represented by the formula (RN) wherein RN is selected from the group consisting of pyridine, alkyl pyridine, alkyl substituted pyridimes and amino pyridimes and wherein the alkyl groups comprise from one to four carbon atoms and an organic quaternary ammonium compound represented by the formula R/sub 4/NY wherein in R/sub 4/NY the R groups comprise four of the same or different groups having from one to twenty carbon atoms selected from alkyl groups, substituted alkyl groups or combinations thereof, wherein the substituents on the alkyl groups are hydroxy and/or halogen, and Y represents an anion of a mineral acid or hydroxyl ion, in the following mole ratios: RN:R/sub 4/NY=1-1000 SiO/sub 2/:R/sub 4/NY=10-5000 SiO/sub 2/:Al/sub 2/O/sub 3/=50-300 SiO/sub 2/:MX<15 and H/sub 2/O:SiO/sub 2/=5-100.

  17. Composites from wood and plastics

    Treesearch

    Craig Clemons

    2010-01-01

    Composites made from thermoplastics and fillers or reinforcements derived from wood or other natural fibers are a dynamic research area encompassing a wide variety of composite materials. For example, as the use of biopolymers grows, wood and other natural fiber sources are being investigated as renewable sources of fillers and reinforcements to modify performance....

  18. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  19. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  20. Evaluation of Long Composite Struts

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Oremont, Leonard; Barnard, Ansley

    2011-01-01

    Carbon-epoxy tapered struts are structurally efficient and offer opportunities for weight savings on aircraft and spacecraft structures. Seven composite struts were designed, fabricated and experimentally evaluated through uniaxial loading. The design requirements, analytical predictions and experimental results are presented. Struts with a tapered composite body and corrugated titanium end fittings successfully supported their design ultimate loads with no evidence of failure.

  1. A Guidebook for Teaching Composition.

    ERIC Educational Resources Information Center

    Stanford, Gene; Smith, Marie

    In contrast to many books that outline in a general way the "best" method for teaching composition and that suggest a few exercises to implement it, this guidebook on expository writing attempts to be comprehensive and emphasizes practicality. Chapters deal with how to organize a composition program, how to mark student papers, and how to teach…

  2. Electrospun Fibers for Composites Applications

    DTIC Science & Technology

    2014-02-01

    and tensile testing. While the nanofibers did not dramatically stiffen the resulting composites, they provided insight as to the impact of the...interfaces argues for further investigation. 15. SUBJECT TERMS electrospinning, nanofiber , composite, hyperbranched polymer, SEM 16. SECURITY...vast class of materials and, as a technology, impact everything from the automotive and construction fields to biotechnology. In recent years, one area

  3. ENGLISH WRITING, APPROACHES TO COMPOSITION.

    ERIC Educational Resources Information Center

    Euclid English Demonstration Center, OH.

    THIS COLLECTION OF PAPERS BY STAFF MEMBERS OF THE EUCLID ENGLISH DEMONSTRATION CENTER FOCUSES ON APPROACHES TO THE TEACHING OF COMPOSITION IN THE JUNIOR HIGH SCHOOL. THE PAPERS ARE (1) "LITERATURE AND COMPOSITION," BY JAMES F. MCCAMPBELL, (2) "COMPOSING--EPIPHANY AND DETAIL," BY JOSEPH DYESS, (3) "THE LANGUAGE COMPOSITION…

  4. Teaching Composition Theory in Canada.

    ERIC Educational Resources Information Center

    Graves, Roger

    1995-01-01

    Describes one teacher's experience of teaching composition theory on the graduate level at a Canadian university. Explains that there are only two rhetoric and composition programs in Canada and that, generally, Canadian universities have been slow to make the transition from neocolonialism to postcolonialism. (TB)

  5. Nanoparticle release from dental composites.

    PubMed

    Van Landuyt, K L; Hellack, B; Van Meerbeek, B; Peumans, M; Hoet, P; Wiemann, M; Kuhlbusch, T A J; Asbach, C

    2014-01-01

    Dental composites typically contain high amounts (up to 60 vol.%) of nanosized filler particles. There is a current concern that dental personnel (and patients) may inhale nanosized dust particles (<100 nm) during abrasive procedures to shape, finish or remove restorations but, so far, whether airborne nanoparticles are released has never been investigated. In this study, composite dust was analyzed in real work conditions. Exposure measurements of dust in a dental clinic revealed high peak concentrations of nanoparticles in the breathing zone of both dentist and patient, especially during aesthetic treatments or treatments of worn teeth with composite build-ups. Further laboratory assessment confirmed that all tested composites released very high concentrations of airborne particles in the nanorange (>10(6)cm(-3)). The median diameter of airborne composite dust varied between 38 and 70 nm. Electron microscopic and energy dispersive X-ray analysis confirmed that the airborne particles originated from the composite, and revealed that the dust particles consisted of filler particles or resin or both. Though composite dust exhibited no significant oxidative reactivity, more toxicological research is needed. To conclude, on manipulation with the bur, dental composites release high concentrations of nanoparticles that may enter deeply into the lungs. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1979-08-01

    block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS; MICROCAPSULES ; SOFT FILLERS; ELASTuMER COMPOSITES 20,_ ABSTRACT ’Continue on reverse side...approaches were pursued toward making such microcapsules . One approach involves coaxial extrusion of a catalyzed elastomer precursor and core liquid into a...fabrication of maxillofacial prostheses. The projected composite systems are elastomeric-shelled, liquid-filled microcapsules . Two experimental approaches were

  7. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1992-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the perselective layer. The invention also provides high performance membranes with optimized properties.

  8. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1991-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the permselective layer. The invention also provides high performance membranes with optimized properties.

  9. Composite membranes for fluid separations

    DOEpatents

    Blume, Ingo; Peinemann, Klaus-Viktor; Pinnau, Ingo; Wijmans, Johannes G.

    1990-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the permselective layer. The invention also provides high performance membranes with optimized properties.

  10. Microstress Analysis of Periodic Composites

    NASA Technical Reports Server (NTRS)

    Walker, Kevin P.; Freed, Alan D.; Jordan, Eric H.

    1991-01-01

    Local elastic fields in the unit cell of a periodic composite are examined numerically with an integral equation approach. Techniques of Fourier series and Green's functions are used to construct the integral equations. Numerical solutions are obtained using the Fourier series approach with rectangular subvolume elements. Specific results are given for a tungsten/copper metal matrix composite.

  11. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  12. Surface decontamination compositions and methods

    DOEpatents

    Wright,; Karen, E [Idaho Falls, ID; Cooper, David C [Idaho Falls, ID; Peterman, Dean R [Idaho Falls, ID; Demmer, Ricky L [Idaho Falls, ID; Tripp, Julia L [Pocatello, ID; Hull, Laurence C [Idaho Falls, ID

    2011-03-29

    Clay-based compositions capable of absorbing contaminants from surfaces or objects having surface faces may be applied to a surface and later removed, the removed clay-based compositions absorbing at least a portion of the contaminant from the surface or object to which it was applied.

  13. Teacher's Guide for Freshman Composition.

    ERIC Educational Resources Information Center

    Daiker, Donald A.; Hayes, Mary F.

    Prepared for use by graduate students who are teaching their first courses in freshman composition, this guide offers principles, strategies, and activities that are adaptable to a variety of composition programs. The 44 daily lesson plans are arranged in 16 week-long units and cover such topics as sentence combining, participles, absolutes,…

  14. PMR Composites Of Increased Toughness

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.; Bowles, Kenneth J.

    1988-01-01

    Toughness increased without sacrificing processability or hot strength. Resin composition provides best overall balance of composite toughness and retention of mechanical properties at 600 degree F (316 degree C) with processability obtained by substituting 20 mole percent of diamine used in PMR-15 resins with diamine containing twice number of flexible phenyl connecting groups.

  15. Glassy composition for hermetic seals

    DOEpatents

    Wilder, Jr., James A.

    1980-01-01

    The invention relates to a glassy composition adaptable for sealing to aluminum-based alloys to form a hermetically-sealed insulator body. The composition may either be employed as a glass or, after devitrifying heat treatment, as a glass-ceramic.

  16. Orff + Technology = Composition for Kids.

    ERIC Educational Resources Information Center

    Vennemeyer, Jim

    1999-01-01

    Contends that music teachers can assist their elementary students in composing music using Orff techniques and computer technology. Describes (1) a unit on musical composition that begins with information on rhythm, melody, and form, (2) a demonstration for using the equipment, and (3) the composition process. Addresses obstacles to overcome and…

  17. Nanocellulose reinforcement of Transparent Composites

    Treesearch

    Joshua Steele; Hong Dong; James F. Snyder; Josh A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    In this work, we evaluate the impact of nanocellulose reinforcement on transparent composite properties. Due to the small diameter, high modulus, and high strength of cellulose nanocrystals, transparent composites that utilize these materials should show improvement in bulk mechanical performances without a corresponding reduction in optical properties. In this study...

  18. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  19. Nondestructive Characterization of Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1993-01-01

    Increasingly, composite materials are applied to fracture-critical structures of aircraft and spacecraft...Ultrasonics offer the most capable inspection technology and recently developed techniques appear to improve this technology significantly... Recent progress in ultrasonic NDE of composites will be reviewed.

  20. Five Empirically Based Composition Skills.

    ERIC Educational Resources Information Center

    Marzano, Robert J.; DiStefano, Philip

    Seven hundred and fifty compositions, randomly selected from National Assessment of Educational Progress essays written by 9-, 13- and 17-year-olds, were analyzed in a study of the skills that go into the writing of a good composition. The essays were first rated as high, medium, or low in quality. A total of 43 different indices reported or…

  1. Compositions of constructed microbial mats

    DOEpatents

    Bender, Judith A.; Phillips, Peter C.

    1999-01-01

    Compositions and methods of use of constructed microbial mats, comprising cyanobacteria and purple autotrophic bacteria and an organic nutrient source, in a laminated structure, are described. The constructed microbial mat is used for bioremediation of different individual contaminants and for mixed or multiple contaminants, and for production of beneficial compositions and molecules.

  2. Lessons learned for composite structures

    NASA Technical Reports Server (NTRS)

    Whitehead, R. S.

    1991-01-01

    Lessons learned for composite structures are presented in three technology areas: materials, manufacturing, and design. In addition, future challenges for composite structures are presented. Composite materials have long gestation periods from the developmental stage to fully matured production status. Many examples exist of unsuccessful attempts to accelerate this gestation period. Experience has shown that technology transition of a new material system to fully matured production status is time consuming, involves risk, is expensive and should not be undertaken lightly. The future challenges for composite materials require an intensification of the science based approach to material development, extension of the vendor/customer interaction process to include all engineering disciplines of the end user, reduced material costs because they are a significant factor in overall part cost, and improved batch-to-batch pre-preg physical property control. Historical manufacturing lessons learned are presented using current in-service production structure as examples. Most producibility problems for these structures can be traced to their sequential engineering design. This caused an excessive emphasis on design-to-weight and schedule at the expense of design-to-cost. This resulted in expensive performance originated designs, which required costly tooling and led to non-producible parts. Historically these problems have been allowed to persist throughout the production run. The current/future approach for the production of affordable composite structures mandates concurrent engineering design where equal emphasis is placed on product and process design. Design for simplified assembly is also emphasized, since assembly costs account for a major portion of total airframe costs. The future challenge for composite manufacturing is, therefore, to utilize concurrent engineering in conjunction with automated manufacturing techniques to build affordable composite structures

  3. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Treesearch

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  4. Micromechanics for ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    The fiber substructuring concepts and the micromechanics equations that are embedded in the Ceramic Matrix Composite Analyzer (CEMCAN) computer code are described as well as the code itself, its current features and capabilities, and some examples to demonstrate the code's versatility. The methodology is equally applicable to metal matrix and polymer matrix composites. The prediction of ply mechanical and thermal properties agree very well with the existing models in the Integrated Composite Analyzer and the Ceramic Matrix Composite Analyzer, lending credence to the fiber substructuring approach. Fiber substructuring can capture greater local detail than conventional unit-cell-based micromechanical theories. It offers promise in simulating complex aspects of micromechanics in ceramic matrix composites.

  5. Dimensionally stable metallic hydride composition

    DOEpatents

    Heung, Leung K.

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  6. Assuring Life in Composite Systems

    NASA Technical Reports Server (NTRS)

    Chamis, Christos c.

    2008-01-01

    A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.

  7. Titanium matrix composites: Mechanical behavior

    SciTech Connect

    Mall, S.; Nicholas, T.

    1997-12-31

    Because of their unique mix of properties and behavior in high-performance applications, Titanium Matrix Composites are presently the focus of special research and development activity. This new book presents a review of current technology on the mechanical behavior of these materials. Each chapter was prepared specifically for this new book by one or more specialists in this subject. This book is divided into the following chapters: (1) Introduction; (2) Monotonic Response; (3) Micromechanical Theories for Inelastic Fibrous Composite Materials; (4) Interfaces in Metal Matrix Composites; (5) Fatigue Failure Mechanisms in TMCs; (6) Fatigue and Thermomechanical Fatigue Life Prediction; (7) Creep Behavior of Fiber Reinforced Titanium Matrix Composites; (8) Fatigue Crack Growth; (9) Notch Strength of Titanium Matrix Composites; and (10) Micromechanical Analysis and Modeling.

  8. Failure models for textile composites

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    1995-01-01

    The goals of this investigation were to: (1) identify mechanisms of failure and determine how the architecture of reinforcing fibers in 3D woven composites controlled stiffness, strength, strain to failure, work of fracture, notch sensitivity, and fatigue life; and (2) to model composite stiffness, strength, and fatigue life. A total of 11 different angle and orthogonal interlock woven composites were examined. Composite properties depended on the weave architecture, the tow size, and the spatial distributions and strength of geometrical flaws. Simple models were developed for elastic properties, strength, and fatigue life. A more complicated stochastic model, called the 'Binary Model,' was developed for damage tolerance and ultimate failure. These 3D woven composites possessed an extraordinary combination of strength, damage tolerance, and notch insensitivity.

  9. Experimental applications of smart composites

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Yang, Qiang; MacDonald, Douglas O.; Westhaver, Paul A. D.

    1997-03-01

    The issues of fabrication, evaluation and experimental testing of smart composites are discussed. The technology for the fabrication of fiber reinforced polymer composites with embedded fiber optic sensors is developed. Smart composites are produced by a custom built pultruder. It is shown that the mechanical properties of pultruded carbon reinforced composites with and without optical fiber are superior to that of pultruded glass analogue. The embedded optical fibers do not have significant effect on the tensile properties of pultruded FRP, but they deteriorate the shear strength of composites. Polyimide coating on optical fiber results in a good interface between optical fiber and host material; whereas acrylate coating cannot withstand the high production temperature and causes sever debonding of optical fiber and resin. The specific application in view is the use of smart reinforcements for innovative concrete structures.

  10. Alumina-Reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  11. Tensile properties of textile composites

    NASA Technical Reports Server (NTRS)

    Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm

    1992-01-01

    The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.

  12. Failure models for textile composites

    SciTech Connect

    Cox, B.

    1995-08-01

    The goals of this investigation were to: (1) identify mechanisms of failure and determine how the architecture of reinforcing fibers in 3D woven composites controlled stiffness, strength, strain to failure, work of fracture, notch sensitivity, and fatigue life; and (2) to model composite stiffness, strength, and fatigue life. A total of 11 different angle and orthogonal interlock woven composites were examined. Composite properties depended on the weave architecture, the tow size, and the spatial distributions and strength of geometrical flaws. Simple models were developed for elastic properties, strength, and fatigue life. A more complicated stochastic model, called the `Binary Model,` was developed for damage tolerance and ultimate failure. These 3D woven composites possessed an extraordinary combination of strength, damage tolerance, and notch insensitivity.

  13. Sapphire reinforced alumina matrix composites

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Setlock, John A.

    1994-01-01

    Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.

  14. Composite fan blade

    SciTech Connect

    Farr, J.D.

    1993-08-31

    A composite fan blade is described for a prop fan engine comprising: a support disk having a plurality of hinge lugs formed therein, the disk being connected to an engine drive means; a bushing element; a fan blade formed from a first set of radially oriented unidirectional layers of fibers, the first set of layers of fibers being wrapped around the bushing element to form an elongated front side, an elongated back side, and a portion encompassing the bushing element; a blade platform formed from a second set of unidirectional layers of fibers having a first and a second end which are both wrapped around respective resin filler elements to form resin filled support pockets, the second set of unidirectional layers of fibers being wrapped around the portion of the fan blade encompassing the bushing element to place the resin filled support pockets against the portion of the fan blade encompassing the bushing element, wherein the fan blade and the blade platform form a fan blade assembly, the fan blade assembly having a plurality of hinge slots formed therein; and a pin element extending through the hinge formed by the plurality of hinge lugs in the support disk and the plurality of hinge slots in the fan blade assembly for attaching the fan blade assembly to the support disk.

  15. Notch strength of composites

    NASA Technical Reports Server (NTRS)

    Whitney, J. M.

    1983-01-01

    The notch strength of composites is discussed. The point stress and average stress criteria relate the notched strength of a laminate to the average strength of a relatively long tensile coupon. Tests of notched specimens in which microstrain gages have been placed at or near the edges of the holes have measured strains much larger that those measured in an unnotched tensile coupon. Orthotropic stress concentration analyses of failed notched laminates have also indicated that failure occurred at strains much larger than those experienced on tensile coupons with normal gage lengths. This suggests that the high strains at the edge of a hole can be related to the very short length of fiber subjected to these strains. Lockheed has attempted to correlate a series of tests of several laminates with holes ranging from 0.19 to 0.50 in. Although the average stress criterion correlated well with test results for hole sizes equal to or greater than 0.50 in., it over-estimated the laminate strength in the range of hole sizes from 0.19 to 0.38 in. It thus appears that a theory is needed that is based on the mechanics of failure and is more generally applicable to the range of hole sizes and the varieties of laminates found in aircraft construction.

  16. Deployable Soft Composite Structures.

    PubMed

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-02-19

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.

  17. Deployable Soft Composite Structures

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-02-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.

  18. The Advanced Composition Explorer

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Burlaga, L. F.; Cummings, A. C.; Feldman, W. C.; Frain, W. E.; Geiss, J.; Gloeckler, G.; Gold, R. E.; Hovestadt, D.; Krimigis, S. M.

    1989-01-01

    The Advanced Composition Explorer (ACE) was recently selected as one of two new Explorer-class missions to be developed for launch during the mid-1990's. ACE will observe particles of solar, interplanetary, interstellar, and galactic origins, spanning the energy range from that of the solar wind (approx. 1 keV/nucleon) to galactic cosmic ray energies (several hundred MeV/nucleon). Definitive studies will be made of the abundance of nearly all isotopes from H to Zn (1 less than or = Z less than or = 30), with exploratory isotope studies extending to Zr (Z = 40). To accomplish this, the ACE payload includes six high-resolution spectrometers, each designed to provide the optimum charge, mass, or charge-state resolution in its particular energy range, and each having a geometry factor optimized for the expected flux levels, so as to provide a collecting power a factor of 10 to 1000 times greater than previous or planned experiments. The payload also includes several instruments of standard design that will monitor solar wind and magnetic field conditions and energetic H, He, and electron fluxes. The scientific objectives, instrumentation, spacecraft, and mission approach that were defined for ACE during the Phase-A study period are summarized.

  19. Multifunctional sandwich composites

    NASA Astrophysics Data System (ADS)

    Vaidya, Uday K.

    2003-10-01

    Sandwich composites find increasing use as flexural load bearing lightweight sub-elements in air/space vehicles, rail/ground transportation, marine and sporting goods. The core in these applications is usually balsa wood, foam or honeycomb with laminated carbon or glass facesheets. A limitation of traditional sandwich onfigurations is that the space in the core becomes inaccessible once the facesheets are bonded in place. Significant multi-functional benefits can be obtained by making either the facesheets or the core, space accessible. Multi-functionality is generally referred to as value added to the structure that enhances functions beyond traditional load bearing. Such functions may include sound/vibration damping, ability to route wires or embed sensors. The present work reviews recent work done in enhancing the functionality of the core by use of the space in the core. The damage created by impact to sandwich constructions is always a limiting issue in design. In the present work, low velocity impact (LVI) response of newer/multi-functional sandwich constructions has been studied. Concepts of increasing sandwich core functionality have been reported.

  20. Optimizing haemodialysate composition

    PubMed Central

    Locatelli, Francesco; La Milia, Vincenzo; Violo, Leano; Del Vecchio, Lucia; Di Filippo, Salvatore

    2015-01-01

    Survival and quality of life of dialysis patients are strictly dependent on the quality of the haemodialysis (HD) treatment. In this respect, dialysate composition, including water purity, plays a crucial role. A major aim of HD is to normalize predialysis plasma electrolyte and mineral concentrations, while minimizing wide swings in the patient's intradialytic plasma concentrations. Adequate sodium (Na) and water removal is critical for preventing intra- and interdialytic hypotension and pulmonary edema. Avoiding both hyper- and hypokalaemia prevents life-threatening cardiac arrhythmias. Optimal calcium (Ca) and magnesium (Mg) dialysate concentrations may protect the cardiovascular system and the bones, preventing extraskeletal calcifications, severe secondary hyperparathyroidism and adynamic bone disease. Adequate bicarbonate concentration [HCO3−] maintains a stable pH in the body fluids for appropriate protein and membrane functioning and also protects the bones. An adequate dialysate glucose concentration prevents severe hyperglycaemia and life-threating hypoglycaemia, which can lead to severe cardiovascular complications and a worsening of diabetic comorbidities. PMID:26413285

  1. Deployable Soft Composite Structures

    PubMed Central

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-01-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762

  2. Fractography of composite delamination

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.

    1990-01-01

    The microdamage that occurs for Mode 1 and Mode 2 delamination was examined by potting delaminated specimens in a clear epoxy, sectioning through the damage, polishing the cut sections and examining using light microscopy. For Mode 1 delamination of unidirectional carbon fiber reinforced plastic (CFRP) composites, the major observation was fiber bridging including large ligaments of fiber bundles. The Mode 2 delamination of unidirectional laminates revealed a very narrow crack opening with only occasional fiber bridging. Impact testing by repetitive impacts with increasing energy was studied and it was found that this technique does not discern changes in the type of damage with increasing cumulative impact energy. Instead, the changes in the impact response, notably stiffness, are the result of changes in the extent of damage. For laminates with a brittle thermoplastic matrix, 3501-6, there were distinct changes in stiffness that corresponded to the development of through the thickness damage and then to the extension of the damage to the specimen edges. For PEEK and polycarbonate, the changes in stiffness were not as abrupt as for the thermoset. None the less, the damage progressed in the same manner.

  3. Asteroid Composite Tape

    NASA Astrophysics Data System (ADS)

    1998-07-01

    This is a composite tape showing 10 short segments primarily about asteroids. The segments have short introductory slides, which include brief descriptions about the shots. The segments are: (1) Radar movie of asteroid 1620 Geographos; (2) Animation of the trajectories of Toutatis and Earth (3) Animation of a landing on Toutatis; (4) Simulated encounter of an asteroid with Earth, includes a simulated impact trajectory; (5) An animated overview of the Manrover vehicle; (6) The Near Earth Asteroid Tracking project, includes a photograph of USAF Station in Hawaii, and animation of Earth approaching 4179 Toutatis and the asteroid Gaspara; (7) live video of the anchor tests of the Champoleon anchoring apparatus; (8) a second live video of the Champoleon anchor tests showing anchoring spikes, and collision rings; (9) An animated segment with narration about the Stardust mission with sound, which describes the mission to fly close to a comet, and capture cometary material for return to Earth; (10) live video of the drop test of a Stardust replica from a hot air balloon; this includes sound but is not narrated.

  4. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  5. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  6. Damage Arresting Composites

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Davis, Pamela A.

    2015-01-01

    Under NASA's Environmentally Responsible Aviation Project (ERA) the most promising vehicle concepts and technologies that can simultaneously reduce aircraft fuel use, community noise, and emissions are being evaluated. Two key factors to accomplishing these goals are reducing structural weight and moving away from the traditional tube and wing aircraft configuration to a shape that has improved lift and less drag. The hybrid wing body (HWB) configuration produces more lift and less drag by smoothly joining the wings to the center fuselage section so it provides aerodynamic advantages. This shape, however, presents structural challenges with its pressurized, non-circular cabin subjected to aerodynamic flight loads. In the HWB, the structure of the center section where the passenger cabin would be located must support large in-plane loads as well as internal pressure on nearly-flat panels and right-angle joints. This structural arrangement does not lend itself to simple, efficient designs. Traditional aluminum and even state-of-the-art composites do not provide a solution to this challenge.

  7. Towards a Compositional SPIN

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Giannakopoulou, Dimitra

    2006-01-01

    This paper discusses our initial experience with introducing automated assume-guarantee verification based on learning in the SPIN tool. We believe that compositional verification techniques such as assume-guarantee reasoning could complement the state-reduction techniques that SPIN already supports, thus increasing the size of systems that SPIN can handle. We present a "light-weight" approach to evaluating the benefits of learning-based assume-guarantee reasoning in the context of SPIN: we turn our previous implementation of learning for the LTSA tool into a main program that externally invokes SPIN to provide the model checking-related answers. Despite its performance overheads (which mandate a future implementation within SPIN itself), this approach provides accurate information about the savings in memory. We have experimented with several versions of learning-based assume guarantee reasoning, including a novel heuristic introduced here for generating component assumptions when their environment is unavailable. We illustrate the benefits of learning-based assume-guarantee reasoning in SPIN through the example of a resource arbiter for a spacecraft. Keywords: assume-guarantee reasoning, model checking, learning.

  8. Delamination of Composite Cylinders

    NASA Astrophysics Data System (ADS)

    Davies, Peter; Carlsson, Leif A.

    The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.

  9. Optimizing the Composition of Elastomer Composites for the Fracture Energy

    NASA Astrophysics Data System (ADS)

    Nurullaev, E. M.; Ermilov, A. S.

    2016-05-01

    On the basis of a computer program developed, optimization of the main parameters of the composition and molecular structure of a three-dimensionally cross-linked elastomer composite for the fracture energy in uniaxial tension is investigated. By a numerical simulation — varying the structural parameters and molecular structure — the maximum value of fracture energy is found (the direct problem); for a given value of fracture energy, the required parameters of the composition are determined (the inverse problem). The solutions to the problems considered can be used in the engineering practice in creating frost-resistant moisture-proof coatings and expansion joints of asphalt highways.

  10. Novel Lignocellulosic Composites

    NASA Astrophysics Data System (ADS)

    Peresin, Maria Soledad

    2011-12-01

    mechanical strength after cycling of relative humidity was observed in the CN-loaded PVA webs. Target applications for these ultra high surface area webs include the manufacture of sensors and selectively permeable membranes, in which case, their high hydrophilicity can be detrimental in applications were aqueous media is involved. In order to overcome this problem, we proposed a vapor phase, acid catalyzed crosslinking reaction, using maleic anhydride and posterior temperature curing. Interactions of the modified composite webs with solvent of different polarities were analyzed, as well as their mechanical integrity after water immersion, morphological, thermal, and chemical properties before and after modification. Finally, mixtures of cellulose acetate, dissolved in a mixture of acetone and dimethylacetamide, with different degrees of substitution were electrospun, obtaining nanofiber webs of various compositions. The fibers were reinforced with CNC, and also effectively deacetylated via alkaline hydrolysis, to obtain purely cellulosic webs. The effect of deacetylation on morphology and thermal behavior was evaluated using a variety of techniques. Results showed that thermal, surface and chemical properties of the fibers were drastically changed after deacetylation to cellulose; however, the morphological structure was preserved. Finally, the presence of CNC in the CA and regenerated cellulose polymeric matrix induced an increase in hydrophilicity on the electrospun webs, as revealed by water contact angle results.

  11. Halliburton Composite Bridge Plug Assembly

    SciTech Connect

    Starbuck, J.M.; Luttrell, C.R.; Aramayo, G.

    2005-01-15

    The overall objectives of this CRADA were to assist Halliburton in analyzing a composite bridge plug and to determine why their original design was failing in the field. In Phase 1, finite element analyses were done on the original composite slip design and several alternative designs. The composite slip was the component in the bridge plug that was failing. The finite element code ABAQUS was used for these calculations and I-DEAS was used as the pre- and post-processor in the analyses. Several different designs and materials were analyzed and recommendations were made towards improving the design. In Phase 2, the objective was to develop finite element models that would accurately represent the deformations in the entire all-composite 4-1/2' diameter bridge plug assembly. The finite element code LS-DYNA was used and the results from this effort were intended to expand Halliburton's composite design and analysis capabilities with regard to developing future composite components for downhole tools. In addition to the finite element modeling, this effort involved the utilization of micromechanics to determine the necessary composite material properties that were needed as input for finite element codes.

  12. Fiber reinforced PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1978-01-01

    Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.

  13. Composites for Exploration Upper Stage

    NASA Technical Reports Server (NTRS)

    Fikes, J. C.; Jackson, J. R.; Richardson, S. W.; Thomas, A. D.; Mann, T. O.; Miller, S. G.

    2016-01-01

    The Composites for Exploration Upper Stage (CEUS) was a 3-year, level III project within the Technology Demonstration Missions program of the NASA Space Technology Mission Directorate. Studies have shown that composites provide important programmatic enhancements, including reduced weight to increase capability and accelerated expansion of exploration and science mission objectives. The CEUS project was focused on technologies that best advanced innovation, infusion, and broad applications for the inclusion of composites on future large human-rated launch vehicles and spacecraft. The benefits included near- and far-term opportunities for infusion (NASA, industry/commercial, Department of Defense), demonstrated critical technologies and technically implementable evolvable innovations, and sustained Agency experience. The initial scope of the project was to advance technologies for large composite structures applicable to the Space Launch System (SLS) Exploration Upper Stage (EUS) by focusing on the affordability and technical performance of the EUS forward and aft skirts. The project was tasked to develop and demonstrate critical composite technologies with a focus on full-scale materials, design, manufacturing, and test using NASA in-house capabilities. This would have demonstrated a major advancement in confidence and matured the large-scale composite technology to a Technology Readiness Level 6. This project would, therefore, have bridged the gap for providing composite application to SLS upgrades, enabling future exploration missions.

  14. La biréfringence électriquement contrôlée dans les cristaux liquides nématiques.

    PubMed

    Hareng, M; Assouline, G; Leiba, E

    1972-12-01

    This work reports the effects of a pulsed voltage on the field alignment of a nematic liquid crystal that is initially homeotropic. This excitation presents the same effect as a continuously applied voltage of amplitude V if a relation between the height of the pulses and the amplitude V is satisfied. The application of a magnetic field perpendicularly to the cell increases the threshold voltage and decreases the response time of the nematic.

  15. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D; Swank, William D.

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  16. Combustible structural composites and methods of forming combustible structural composites

    SciTech Connect

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  17. Ileal microbiota composition of broilers fed various commercial diet compositions.

    PubMed

    van der Hoeven-Hangoor, E; van der Vossen, J M B M; Schuren, F H J; Verstegen, M W A; de Oliveira, J E; Montijn, R C; Hendriks, W H

    2013-10-01

    Microbiota plays a role in the release and absorption of nutrients from feed components, thereby affecting digesta composition and moisture content of the excreta. The objective of the current study was to determine the effects of 5 different diets varying in ingredients (medium-chain fatty acids, nonstarch polysaccharides, and starch) on the microbiota composition of ileal digesta of broiler chickens and excreta DM content. Each treatment was repeated 6 times in cages each containing 18 Ross 308 broilers, with growth performance measured from 0 to 34 d of age and excreta DM and ileal microbiota composition analyzed at 34 d of age. Microbiota composition was evaluated using a novel ribosomal RNA microarray technology containing 370 different probes covering various genera, groups of microbial species, and individual species of the chicken gut microbiota, of which 321 had a signal above the background threshold. Replacing part of the animal fat and soybean oil in the wheat-based diet with medium-chain fatty acids (MCFA; 0.3% C10 and 2.7% C12) improved feed efficiency compared with the other dietary treatments. This coincided with a suppression of gram-positive bacteria belonging to the phylum of the Firmicutes, including Lactobacillus species, and species belonging to the family of the Enterococcaceae and Micrococcaceae, whereas the gram-negative bacteria belonging to the family of the Enterobacteriaceae were promoted. None of the other diets used in the present study notably changed the ileal digesta bacteria composition. Excreta DM content was not affected by dietary treatment. The variation between individual birds per dietary treatment was more pronounced than variation caused by feed composition, with the exception of the digesta microbiota of the birds fed the MCFA diet. It is concluded that a diet with MCFA significantly changes the ileal microbiota composition, whereas the effect of the other diets on the composition of the microbiota and excreta DM content

  18. Composite material and method for production of improved composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1996-01-01

    A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.

  19. Compounds, compositions, pharmaceutical compositions, and methods of use

    DOEpatents

    Hammond, Gerald B.; Jin, Zhuang; Bates, Paula J.; Reyes-Reyes, Elsa Merit

    2016-11-15

    Certain embodiments of the invention include compositions comprising a compound of Formula (I), and salts, isomers, and derivatives thereof. Pharmaceutical compositions of some embodiments of the present invention comprise a compound of Formula (I), and salts, isomers, and derivatives thereof. Other embodiments of this invention include methods for treating disease (e.g., cancer) and methods for administering a compound of Formula (I), and salts, isomers, and derivatives thereof.

  20. Composites 2000: An International Symposium on Composite Materials

    DTIC Science & Technology

    2000-06-26

    characteristics other than in-plane will be reflected to design of CMC components. Keys for Stronger and More Endurable CMC Several important technologies...apparatus was I placed in a circular polariscope to observe the interfacial failure sequence. The high concentration of photoelastic fringes at the crack...from "string and glue." Considerable enthusiasm was generated for composite materials, as reflected by slogans such as "the age of composites," the