Sample records for critical assembly kuca

  1. ANL Critical Assembly Covariance Matrix Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKnight, Richard D.; Grimm, Karl N.

    2014-01-15

    This report discusses the generation of a covariance matrix for selected critical assemblies that were carried out by Argonne National Laboratory (ANL) using four critical facilities-all of which are now decommissioned. The four different ANL critical facilities are: ZPR-3 located at ANL-West (now Idaho National Laboratory- INL), ZPR-6 and ZPR-9 located at ANL-East (Illinois) and ZPPr located at ANL-West.

  2. Replacing ODCs in a Critical Hand Cleaning Manual Electronics Assembly Operation

    NASA Technical Reports Server (NTRS)

    Bonner, J. K.; Walton, Sharon

    1997-01-01

    The manufacture of high reliability electronics assemblies for spacecraft and ground support equipment still often involves manual assembly processes. In addition, rework and repair of critical assemblies aslo often entails manual assembly processes.

  3. Consistent Pl Analysis of Aqueous Uranium-235 Critical Assemblies

    NASA Technical Reports Server (NTRS)

    Fieno, Daniel

    1961-01-01

    The lethargy-dependent equations of the consistent Pl approximation to the Boltzmann transport equation for slowing down neutrons have been used as the basis of an IBM 704 computer program. Some of the effects included are (1) linearly anisotropic center of mass elastic scattering, (2) heavy element inelastic scattering based on the evaporation model of the nucleus, and (3) optional variation of the buckling with lethargy. The microscopic cross-section data developed for this program covered 473 lethargy points from lethargy u = 0 (10 Mev) to u = 19.8 (0.025 ev). The value of the fission neutron age in water calculated here is 26.5 square centimeters; this value is to be compared with the recent experimental value given as 27.86 square centimeters. The Fourier transform of the slowing-down kernel for water to indium resonance energy calculated here compared well with the Fourier transform of the kernel for water as measured by Hill, Roberts, and Fitch. This method of calculation has been applied to uranyl fluoride - water solution critical assemblies. Theoretical results established for both unreflected and fully reflected critical assemblies have been compared with available experimental data. The theoretical buckling curve derived as a function of the hydrogen to uranium-235 atom concentration for an energy-independent extrapolation distance was successful in predicting the critical heights of various unreflected cylindrical assemblies. The critical dimensions of fully water-reflected cylindrical assemblies were reasonably well predicted using the theoretical buckling curve and reflector savings for equivalent spherical assemblies.

  4. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percher, Catherine

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  5. Development of Measurement Methods for Detection of Special Nuclear Materials using D-D Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Yagi, Takahiro; Pyeon, Cheol Ho; Kimura, Masaharu; Masuda, Kai; Ohgaki, Hideaki

    2015-10-01

    For detection of hidden special nuclear materials (SNMs), we have developed an active neutron-based interrogation system combined with a D-D fusion pulsed neutron source and a neutron detection system. In the detection scheme, we have adopted new measurement techniques simultaneously; neutron noise analysis and neutron energy spectrum analysis. The validity of neutron noise analysis method has been experimentally studied in the Kyoto University Critical Assembly (KUCA), and was applied to a cargo container inspection system by simulation.

  6. Beta- and gamma-dose measurements of the Godiva IV critical assembly.

    PubMed

    Hankins, D E

    1984-03-01

    To aid in the re-evaluation of an exposure that occurred in 1963, information was required on the response of film badges to the beta- and gamma-ray doses from a critical assembly. Of particular interest was the beta spectra from the assembly. The techniques used and the results obtained in this study are of interest to health physicists at facilities where exposures to betas occur. The dose rates from the Los Alamos National Laboratory Godiva IV Critical Assembly were measured at numerous distances from the assembly four and 12 days following a burst. Information was obtained on the beta-particle spectra using absorption curve studies. The beta/gamma dose-rate ratio as a function of distance from the assembly was determined. Shielding provided by various metals, gloves and clothing was measured. The beta- and gamma-ray doses measured were compared with a film packet used in the past at the Nevada Test Site with two types of current TLD personnel badges. Measurements made with a commercial thin-window ion chamber instrument are compared with the dose rates obtained using other dosimeters.

  7. ENDF/B-VII.0 Data Testing Using 1,172 Critical Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechaty, E F; Cullen, D E

    2007-10-01

    In order to test the ENDF/B-VII.0 neutron data library [1], 1,172 critical assemblies from [2] have been calculated using the Monte Carlo transport code TART [3]. TART's 'best' physics was used for all of these calculations; this included continuous energy cross sections, delayed neutrons in their spectrum that is slower than prompt neutrons, unresolved resonance region self-shielding, the thermal scattering (free atom for all materials plus thermal scattering law data S({alpha},{beta}) when available). In this first pass through the assemblies the objective was to 'quickly' test the validity of the ENDF/B-VII.0 data [1], the assembly models as defined in [2]more » and coded for use with TART, and TART's physics treatment [3] of these assemblies. With TART we have the option of running criticality problems until K-eff has been calculated to an acceptable input accuracy. In order to 'quickly' calculate all of these assemblies K-eff was calculated in each case to +/- 0.002. For these calculations the assemblies were divided into ten types based on fuel (mixed, Pu239, U233, U235) and median fission energy (Fast, Midi, Slow). A table is provided that shows a summary of these results. This is followed be details for every assembly, and statistical information about the distribution of K-eff for each type of assembly. After a review of these results to eliminate any obvious errors in ENDF/B data, assembly models, or TART physics, all assemblies will be run again to a higher precision. Only after this second run is finished will we have highly precise results. Until then the results presently here should only be interpreted as approximate values of K-eff with a standard deviation of +/- 0.002; for such a large number of assemblies we expected the results to be approximately normal, with a spread out to several times the standard deviation; see the calculated statistical distributions and their comparisons to a normal distribution.« less

  8. Benchmarking of HEU Mental Annuli Critical Assemblies with Internally Reflected Graphite Cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiaobo, Liu; Bess, John D.; Marshall, Margaret A.

    Three experimental configurations of critical assemblies, performed in 1963 at the Oak Ridge Critical Experiment Facility, which are assembled using three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches) metal annuli with internally reflected graphite cylinder are evaluated and benchmarked. The experimental uncertainties which are 0.00055, 0.00055 and 0.00055 respectively, and biases to the detailed benchmark models which are -0.00179, -0.00189 and -0.00114 respectively, were determined, and the experimental benchmark keff results were obtained for both detailed and simplified model. The calculation results for both detailed and simplified models using MCNP6-1.0 and ENDF VII.1 agree well tomore » the benchmark experimental results with a difference of less than 0.2%. These are acceptable benchmark experiments for inclusion in the ICSBEP Handbook.« less

  9. Critical assembly: A technical history of Los Alamos during the Oppenheimer years, 1943--1945

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoddeson, L.; Henriksen, P.W.; Meade, R.A.

    1993-11-01

    This volume treats the technical research that led to the first atomic bombs. The authors explore how the ``critical assembly`` of scientists, engineers, and military Personnel at Los Alamos collaborated during World War II, blending their traditions to create a new approach to large-scale research. The research was characterized by strong mission orientation, multidisciplinary teamwork, expansion of the scientists` traditional methodology with engineering techniques, and a trail-and-error methodology responding to wartime deadlines. The book opens with an introduction laying out major themes. After a synopsis of the prehistory of the bomb project, from the discovery of nuclear fission to themore » start of the Manhattan Engineer District, and an overview of the early materials program, the book examines the establishment of the Los Alamos Laboratory, the implosion and gun assembly programs, nuclear physics research, chemistry and metallurgy, explosives, uranium and plutonium development, confirmation of spontaneous fission in pile-produced plutonium, the thermonuclear bomb, critical assemblies, the Trinity test, and delivery of the combat weapons.« less

  10. Criticality calculations of the Very High Temperature reactor Critical Assembly benchmark with Serpent and SCALE/KENO-VI

    DOE PAGES

    Bostelmann, Friederike; Hammer, Hans R.; Ortensi, Javier; ...

    2015-12-30

    Within the framework of the IAEA Coordinated Research Project on HTGR Uncertainty Analysis in Modeling, criticality calculations of the Very High Temperature Critical Assembly experiment were performed as the validation reference to the prismatic MHTGR-350 lattice calculations. Criticality measurements performed at several temperature points at this Japanese graphite-moderated facility were recently included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, and represent one of the few data sets available for the validation of HTGR lattice physics. Here, this work compares VHTRC criticality simulations utilizing the Monte Carlo codes Serpent and SCALE/KENO-VI. Reasonable agreement was found between Serpent andmore » KENO-VI, but only the use of the latest ENDF cross section library release, namely the ENDF/B-VII.1 library, led to an improved match with the measured data. Furthermore, the fourth beta release of SCALE 6.2/KENO-VI showed significant improvements from the current SCALE 6.1.2 version, compared to the experimental values and Serpent.« less

  11. THE HOT CRITICAL ASSEMBLY $sub 4$CESAR$sub 4$ (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanguy, P.

    1963-07-01

    With Cesar, the Cadarache Center for Nuclear Studies will be equipped with a zero-power critical assembly, which will enable it to obtain the data necessary for the development of natural uranium, graphite, gas reactors. Reactivity balance, evolution of the reactivity, and deformation of the flux curves are to be studied. These studies will complement those already being done on Marius, but carried out at room temperature; in Cesar the graphite temperature can reach 500 deg C. (auth)

  12. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly

    PubMed Central

    2016-01-01

    Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted. PMID:27019522

  13. Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly

    NASA Technical Reports Server (NTRS)

    Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.

    1971-01-01

    A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7 cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The experimental program consisted basically of measuring the differential neutron spectra and the changes in critical mass that accompanied the stepwise addition of (Li-7)3N, Hf, Ta, and W to a basic core fueled with U metal in a pin-type Ta honeycomb structure. In addition, experimental results were obtained on power distributions, control characteristics, neutron lifetime, and reactivity worths of numerous absorber, structural, and scattering materials.

  14. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    NASA Astrophysics Data System (ADS)

    Kahler, A. C.; MacFarlane, R. E.; Mosteller, R. D.; Kiedrowski, B. C.; Frankle, S. C.; Chadwick, M. B.; McKnight, R. D.; Lell, R. M.; Palmiotti, G.; Hiruta, H.; Herman, M.; Arcilla, R.; Mughabghab, S. F.; Sublet, J. C.; Trkov, A.; Trumbull, T. H.; Dunn, M.

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., "ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data," Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected 235U and 239Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected

  15. In-situ verification techniques for fast critical assembly cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumbach, S.B.; Amundson, P.I.; Roche, C.T.

    1979-01-01

    Active and passive autoradiographic techniques were used to obtain piece counts of fuel plates in fast critical assembly drawers and to verify the assembly loading pattern. Active autoradiography using prompt-fission and fission-product radiation was more successful with uranium fuel while passive autoradiography was more successful with plutonium fuel. A source multiplication technique was used to measure changes in reactivity when small quantities (2-2.5 kg) of fissile material were removed from a subcritical reference core of the Zero Power Plutonium Reactor. Efforts to compensate for unsuccessful. Some compensation was achieved by replacing U-238 with polyethylene. The sensitivity for detection of partiallymore » compensated fuel removed from minimum worth regions was approximately 2.5 kg (fissile) for a core containing 2600 kg (fissile). Substitution of polyethylene was detected with a spectral index which was the ratio of the rate of the In-115 (n,..gamma..) reaction to the rate of the In-115 (n,n') reaction. This spectral index was sensitive to the presence of an 0.64-cm-thick, 5.08-cm-high polyethylene column 10-15 cm away from the indium foil. The reactivity worth of Pu-239 was also obtained as a function of location in the reactor core with the use of an inverse kinetics technique. Reactivity worths for Pu-239 varied from a maximum of 58.67 Ih/kg near the core center to a minimum of 14.86 Ih/kg at the core edge.« less

  16. Characterization of the Caliban and Prospero Critical Assemblies Neutron Spectra for Integral Measurements Experiments

    NASA Astrophysics Data System (ADS)

    Casoli, P.; Authier, N.; Jacquet, X.; Cartier, J.

    2014-04-01

    Caliban and Prospero are two highly enriched uranium metallic core reactors operated on the CEA Center of Valduc. These critical assemblies are suitable for integral experiments, such as fission yields measurements or perturbation measurements, which have been carried out recently on the Caliban reactor. Different unfolding methods, based on activation foils and fission chambers measurements, are used to characterize the reactor spectra and especially the Caliban spectrum, which is very close to a pure fission spectrum.

  17. Transmutation of uranium and thorium in the particle field of the Quinta sub-critical assembly

    NASA Astrophysics Data System (ADS)

    Hashemi-Nezhad, S. R.; Asquith, N. L.; Voronko, V. A.; Sotnikov, V. V.; Zhadan, Alina; Zhuk, I. V.; Potapenko, A.; Husak, Krystsina; Chilap, V.; Adam, J.; Baldin, A.; Berlev, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Kudashkin, I.; Mar'in, I.; Paraipan, M.; Pronskih, V.; Solnyshkin, A.; Tyutyunnikov, S.

    2018-03-01

    The fission rates of natural uranium and thorium were measured in the particle field of Quinta, a 512 kg natural uranium target-blanket sub-critical assembly. The Quinta assembly was irradiated with deuterons of energy 4 GeV from the Nuclotron accelerator of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. Fission rates of uranium and thorium were measured using Gamma spectroscopy and fission track techniques. The production rate of 239Np was also measured. The obtained experimental results were compared with Monte Carlo predictions using the MCNPX 2.7 code employing the physics and fission-evaporation models of INCL4-ABLA, CEM03.03 and LAQGSM03.03. Some of the neutronic characteristics of the Quinta are compared with the "Energy plus Transmutation (EpT)" subcritical assembly, which is composed of a lead target and natU blanket. This comparison clearly demonstrates the importance of target material, neutron moderator and reflector types on the performance of a spallation neutron driven subcritical system. As the dimensions of the Quinta are very close to those of an optimal multi-rod-uranium target, the experimental and Monte Carlo calculation results presented in this paper provide insights on the particle field within a uranium target as well as in Accelerator Driven Systems in general.

  18. Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly.

    PubMed

    Fonseca, Pedro; Romano, Flavio; Schreck, John S; Ouldridge, Thomas E; Doye, Jonathan P K; Louis, Ard A

    2018-04-07

    Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.

  19. Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly

    NASA Astrophysics Data System (ADS)

    Fonseca, Pedro; Romano, Flavio; Schreck, John S.; Ouldridge, Thomas E.; Doye, Jonathan P. K.; Louis, Ard A.

    2018-04-01

    Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.

  20. A Temporospatial Map That Defines Specific Steps at Which Critical Surfaces in the Gag MA and CA Domains Act during Immature HIV-1 Capsid Assembly in Cells

    PubMed Central

    Robinson, Bridget A.; Reed, Jonathan C.; Geary, Clair D.; Swain, J. Victor

    2014-01-01

    ABSTRACT During HIV-1 assembly, Gag polypeptides target to the plasma membrane, where they multimerize to form immature capsids that undergo budding and maturation. Previous mutational analyses identified residues within the Gag matrix (MA) and capsid (CA) domains that are required for immature capsid assembly, and structural studies showed that these residues are clustered on four exposed surfaces in Gag. Exactly when and where the three critical surfaces in CA function during assembly are not known. Here, we analyzed how mutations in these four critical surfaces affect the formation and stability of assembly intermediates in cells expressing the HIV-1 provirus. The resulting temporospatial map reveals that critical MA residues act during membrane targeting, residues in the C-terminal CA subdomain (CA-CTD) dimer interface are needed for the stability of the first membrane-bound assembly intermediate, CA-CTD base residues are necessary for progression past the first membrane-bound intermediate, and residues in the N-terminal CA subdomain (CA-NTD) stabilize the last membrane-bound intermediate. Importantly, we found that all four critical surfaces act while Gag is associated with the cellular facilitators of assembly ABCE1 and DDX6. When correlated with existing structural data, our findings suggest the following model: Gag dimerizes via the CA-CTD dimer interface just before or during membrane targeting, individual CA-CTD hexamers form soon after membrane targeting, and the CA-NTD hexameric lattice forms just prior to capsid release. This model adds an important new dimension to current structural models by proposing the potential order in which key contacts within the immature capsid lattice are made during assembly in cells. IMPORTANCE While much is known about the structure of the completed HIV-1 immature capsid and domains of its component Gag proteins, less is known about the sequence of events leading to formation of the HIV-1 immature capsid. Here we used

  1. 30 CFR 7.45 - Critical characteristics

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.45 Critical characteristics The following critical characteristics shall be inspected or tested on each battery assembly to...

  2. 30 CFR 7.45 - Critical characteristics

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.45 Critical characteristics The following critical characteristics shall be inspected or tested on each battery assembly to...

  3. 30 CFR 7.305 - Critical characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.305 Critical characteristics. The following critical characteristics shall be inspected on each motor assembly to which an...

  4. Analysis of a water moderated critical assembly with anisn-Vitamin C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, L.

    1979-03-01

    A tightly packed water moderated /sup 233/UO/sub 2/--ThO/sub 2/ critical assembly was analyzed with the Vitamin C library and the 1-D S/s n/ code, ANISN (S/sub 8/,P/sub 3/). The purpose of the study was to provide validation of this calculational model as applied to water-cooled hybrid fusion blankets. The quantities compared were the core eigenvalue and various activation shapes. The calculated eigenvalue was 1.02 +- 0.01. The /sup 233/U fission and /sup 232/Th capture shapes were found to be in good agreement (+-5%) with experiment, except near water--metal boundaries where differences up to 24% were observed. No such error peakingmore » was observed in the /sup 232/Th fast fission shape. We conclude that the model provides good volume averaged reaction rates in water-cooled systems. However, care must be exercised near water boundaries where thermally dependent reaction rates are significantly underestimated.« less

  5. Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly

    NASA Technical Reports Server (NTRS)

    Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.

    1972-01-01

    A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The range of the previous experimental investigations has been expanded to include the reactivity effects of:(1) surrounding the reactor with 15.24 cm (6 in.) of polyethylene, (2) reducing the heights of a portion of the upper and lower axial reflectors by factors of 2 and 4, (3) adding 45 kg of W to the core uniformly in two steps, (4) adding 9.54 kg of Ta to the core uniformly, and (5) inserting 2.3 kg of polyethylene into the core proper and determining the effect of a Ta addition on the polyethylene worth.

  6. Evaluation of nine popular de novo assemblers in microbial genome assembly.

    PubMed

    Forouzan, Esmaeil; Maleki, Masoumeh Sadat Mousavi; Karkhane, Ali Asghar; Yakhchali, Bagher

    2017-12-01

    Next generation sequencing (NGS) technologies are revolutionizing biology, with Illumina being the most popular NGS platform. Short read assembly is a critical part of most genome studies using NGS. Hence, in this study, the performance of nine well-known assemblers was evaluated in the assembly of seven different microbial genomes. Effect of different read coverage and k-mer parameters on the quality of the assembly were also evaluated on both simulated and actual read datasets. Our results show that the performance of assemblers on real and simulated datasets could be significantly different, mainly because of coverage bias. According to outputs on actual read datasets, for all studied read coverages (of 7×, 25× and 100×), SPAdes and IDBA-UD clearly outperformed other assemblers based on NGA50 and accuracy metrics. Velvet is the most conservative assembler with the lowest NGA50 and error rate. Copyright © 2017. Published by Elsevier B.V.

  7. Nuclear Criticality Experimental Research Center (NCERC) Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goda, Joetta Marie; Grove, Travis Justin; Hayes, David Kirk

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activitiesmore » that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.« less

  8. Equilibrium polymerization models of re-entrant self-assembly

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-04-01

    As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.

  9. Assembly, alignment and test of the Transiting Exoplanet Survey Satellite (TESS) optical assemblies

    NASA Astrophysics Data System (ADS)

    Balonek, Gregory; Brown, Joshua J.; Andre, James E.; Chesbrough, Christian D.; Chrisp, Michael P.; Dalpiaz, Michael; Lennon, Joseph; Richards, B. C.; Clark, Kristin E.

    2017-08-01

    The Transiting Exoplanet Survey Satellite (TESS) will carry four visible waveband, seven-element, refractive F/1.4 lenses, each with a 34 degree diagonal field of view. This paper describes the methods used for the assembly, alignment and test of the four flight optical assemblies. Prior to commencing the build of the four flight optical assemblies, a Risk Reduction Unit (RRU) was successfully assembled and tested [1]. The lessons learned from the RRU were applied to the build of the flight assemblies. The main modifications to the flight assemblies include the inking of the third lens element stray light mitigation, tighter alignment tolerances, and diamond turning for critical mechanical surfaces. Each of the optical assemblies was tested interferometrically and measured with a low coherence distance measuring interferometer (DMI) to predict the optimal shim thickness between the lens assembly and detector before -75°C environmental testing. In addition to individual test data, environmental test results from prior assemblies allow for the exploration of marginal performance differences between each of the optical assemblies.

  10. Critical Role of the HTLV-1 Capsid N-Terminal Domain for Gag-Gag Interactions and Virus Particle Assembly.

    PubMed

    Martin, Jessica L; Mendonça, Luiza; Marusinec, Rachel; Zuczek, Jennifer; Angert, Isaac; Blower, Ruth J; Mueller, Joachim D; Perilla, Juan R; Zhang, Wei; Mansky, Louis M

    2018-04-25

    The retroviral Gag protein is the main structural protein responsible for virus particle assembly and release. Like human immunodeficiency virus type 1 (HIV-1) Gag, human T-cell leukemia virus type 1 (HTLV-1) has a structurally conserved capsid (CA) domain, including a β-hairpin turn and a centralized coiled-coil-like structure of six α helices in the CA amino-terminal domain (NTD) as well as four α-helices in the CA carboxy-terminal domain (CTD). CA drives Gag oligomerization, which is critical for both immature Gag lattice formation and particle production. The HIV-1 CA CTD has previously been shown to be a primary determinant for CA-CA interactions, and while both the HTLV-1 CA NTD and CTD have been implicated in Gag-Gag interactions, our recent observations have implicated the HTLV-1 CA NTD as encoding key determinants that dictate particle morphology. Here, we have conducted alanine-scanning mutagenesis in the HTLV-1 CA NTD nucleotide-encoding sequences spanning the loop regions and amino acids at the beginning and ends of α-helices due to their structural dissimilarity from the HIV-1 CA NTD structure. We analyzed both Gag subcellular distribution and efficiency of particle production for these mutants. We discovered several important residues (i.e., M17, Q47/F48, and Y61). Modeling implicated that these residues reside at the dimer interface (i.e., M17 and Y61) or at the trimer interface (i.e., Q47/F48). Taken together, these observations highlight the critical role of the HTLV-1 CA NTD in Gag-Gag interactions and particle assembly, which is, to the best of our knowledge, in contrast to HIV-1 and other retroviruses. Importance Retrovirus particle assembly and release from infected cells is driven by the Gag structural protein. Gag-Gag interactions, which form an oligomeric lattice structure at a particle budding site, are essential to the biogenesis of an infectious virus particle. The capsid (CA) domain of Gag is generally thought to possess the key

  11. 30 CFR 7.45 - Critical characteristics

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.45 Critical characteristics The following critical characteristics shall be inspected or tested on each battery assembly to... terminations. (e) Strain relief devices for cables leaving boxes. (f) Type, location, and physical protection...

  12. 30 CFR 7.45 - Critical characteristics

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.45 Critical characteristics The following critical characteristics shall be inspected or tested on each battery assembly to... terminations. (e) Strain relief devices for cables leaving boxes. (f) Type, location, and physical protection...

  13. 30 CFR 7.45 - Critical characteristics

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.45 Critical characteristics The following critical characteristics shall be inspected or tested on each battery assembly to... terminations. (e) Strain relief devices for cables leaving boxes. (f) Type, location, and physical protection...

  14. Sulfur activation at the Little Boy-Comet Critical Assembly: a replica of the Hiroshima bomb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, G.D.; Emery, J.F.; Pace, J.V. III

    1985-04-01

    Studies have been completed on the activation of sulfur by fast neutrons from the Little Boy-Comet Critical Assembly which replicates the general features of the Hiroshima bomb. The complex effects of the bomb's design and construction on leakage of sulfur-activation neutrons were investigated both experimentally and theoretically. Our sulfur activation studies were performed as part of a larger program to provide benchmark data for testing of methods used in recent source-term calculations for the Hiroshima bomb. Source neutrons capable of activating sulfur play an important role in determining neutron doses in Hiroshima at a kilometer or more from the pointmore » of explosion. 37 refs., 5 figs., 6 tabs.« less

  15. Rapid centriole assembly in Naegleria reveals conserved roles for both de novo and mentored assembly.

    PubMed

    Fritz-Laylin, Lillian K; Levy, Yaron Y; Levitan, Edward; Chen, Sean; Cande, W Zacheus; Lai, Elaine Y; Fulton, Chandler

    2016-03-01

    Centrioles are eukaryotic organelles whose number and position are critical for cilia formation and mitosis. Many cell types assemble new centrioles next to existing ones ("templated" or mentored assembly). Under certain conditions, centrioles also form without pre-existing centrioles (de novo). The synchronous differentiation of Naegleria amoebae to flagellates represents a unique opportunity to study centriole assembly, as nearly 100% of the population transitions from having no centrioles to having two within minutes. Here, we find that Naegleria forms its first centriole de novo, immediately followed by mentored assembly of the second. We also find both de novo and mentored assembly distributed among all major eukaryote lineages. We therefore propose that both modes are ancestral and have been conserved because they serve complementary roles, with de novo assembly as the default when no pre-existing centriole is available, and mentored assembly allowing precise regulation of number, timing, and location of centriole assembly. © 2016 Wiley Periodicals, Inc.

  16. Optical critical dimension metrology for directed self-assembly assisted contact hole shrink

    NASA Astrophysics Data System (ADS)

    Dixit, Dhairya; Green, Avery; Hosler, Erik R.; Kamineni, Vimal; Preil, Moshe E.; Keller, Nick; Race, Joseph; Chun, Jun Sung; O'Sullivan, Michael; Khare, Prasanna; Montgomery, Warren; Diebold, Alain C.

    2016-01-01

    Directed self-assembly (DSA) is a potential patterning solution for future generations of integrated circuits. Its main advantages are high pattern resolution (˜10 nm), high throughput, no requirement of high-resolution mask, and compatibility with standard fab-equipment and processes. The application of Mueller matrix (MM) spectroscopic ellipsometry-based scatterometry to optically characterize DSA patterned contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) is described. A regression-based approach is used to calculate the guide critical dimension (CD), DSA CD, height of the PS column, thicknesses of underlying layers, and contact edge roughness of the post PMMA etch DSA contact hole sample. Scanning electron microscopy and imaging analysis is conducted as a comparative metric for scatterometry. In addition, optical model-based simulations are used to investigate MM elements' sensitivity to various DSA-based contact hole structures, predict sensitivity to dimensional changes, and its limits to characterize DSA-induced defects, such as hole placement inaccuracy, missing vias, and profile inaccuracy of the PMMA cylinder.

  17. Evaluation of the Pool Critical Assembly Benchmark with Explicitly-Modeled Geometry using MCNP6

    DOE PAGES

    Kulesza, Joel A.; Martz, Roger Lee

    2017-03-01

    Despite being one of the most widely used benchmarks for qualifying light water reactor (LWR) radiation transport methods and data, no benchmark calculation of the Oak Ridge National Laboratory (ORNL) Pool Critical Assembly (PCA) pressure vessel wall benchmark facility (PVWBF) using MCNP6 with explicitly modeled core geometry exists. As such, this paper provides results for such an analysis. First, a criticality calculation is used to construct the fixed source term. Next, ADVANTG-generated variance reduction parameters are used within the final MCNP6 fixed source calculations. These calculations provide unadjusted dosimetry results using three sets of dosimetry reaction cross sections of varyingmore » ages (those packaged with MCNP6, from the IRDF-2002 multi-group library, and from the ACE-formatted IRDFF v1.05 library). These results are then compared to two different sets of measured reaction rates. The comparison agrees in an overall sense within 2% and on a specific reaction- and dosimetry location-basis within 5%. Except for the neptunium dosimetry, the individual foil raw calculation-to-experiment comparisons usually agree within 10% but is typically greater than unity. Finally, in the course of developing these calculations, geometry that has previously not been completely specified is provided herein for the convenience of future analysts.« less

  18. CHEMO/mechanical energy conversiona via supramolecular self-assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, David G.; Conticello, Vincent

    With the assembly codes for protein/peptide self-assembly sufficiently developed to control these phases, we are positioned to address critical requirements for generating unique self-propagating functional assemblies such as chemical batteries and engines that can be used to extend the capability of living cells. These integrative functional assemblies can then be used within cells to create new functions that will address the world’s energy challenges.

  19. Diversity in virus assembly: biology makes things complicated

    NASA Astrophysics Data System (ADS)

    Zlotnick, Adam

    2008-03-01

    Icosahedral viruses have an elegance of geometry that implies a general path of assembly. However, structure alone provides insufficient information. Cowpea Chlorotic Mottle Virus (CCMV), an important system for studying virus assembly, consists of 90 coat protein (CP) homodimers condensed around an RNA genome. The crystal structure (Speir et al, 1995) reveals that assembly causes burial of hydrophobic surface and formation of β hexamers, the intertwining of N-termini of the CPs surrounding a quasi-sixfold. This structural view leads to reasonable and erroneous predictions: (i) CCMV capsids are extremely stable, and (ii) β hexamer formation is critical to assembly. Experimentally, we have found that capsids are based on a network of extremely weak (4-5 kT) pairwise interactions and that pentamer formation is the critical step in assembly kinetics. Because of the fragility of CP-Cp interaction, we can redirect assembly to generate and dissociate tubular nanostructures. The dynamic behavior of CCMV reflects the requirements and peculiarities of an evolved biological system; it does not necessarily reflect the behavior predicted from a more static picture of the virus.

  20. Structural performance of light-frame roof assemblies. I, Truss assemblies designed for high variability and wood failure

    Treesearch

    R.W. Wolfe; Monica McCarthy

    1989-01-01

    The first report of a three-part series that covers results of a full-scale roof assemblies research program. The focus of this report is the structural performance of truss assemblies comprising trusses with abnormally high stiffness variability and critical joint strength. Results discussed include properties of truss members and connections. individual truss...

  1. Metagenomic Assembly: Overview, Challenges and Applications

    PubMed Central

    Ghurye, Jay S.; Cepeda-Espinoza, Victoria; Pop, Mihai

    2016-01-01

    Advances in sequencing technologies have led to the increased use of high throughput sequencing in characterizing the microbial communities associated with our bodies and our environment. Critical to the analysis of the resulting data are sequence assembly algorithms able to reconstruct genes and organisms from complex mixtures. Metagenomic assembly involves new computational challenges due to the specific characteristics of the metagenomic data. In this survey, we focus on major algorithmic approaches for genome and metagenome assembly, and discuss the new challenges and opportunities afforded by this new field. We also review several applications of metagenome assembly in addressing interesting biological problems. PMID:27698619

  2. Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghee; Pochan, Darrin

    Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.

  3. Critical seeding density improves properties and translatability of self-assembling anatomically shaped knee menisci

    PubMed Central

    Hadidi, Pasha; Yeh, Timothy C.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    A recent development in the field of tissue engineering is the rise of all-biologic, scaffold-free engineered tissues. Since these biomaterials rely primarily upon cells, investigation of initial seeding densities constitutes a particularly relevant aim for tissue engineers. In this study, a scaffold-free method was used to create fibrocartilage in the shape of the rabbit knee meniscus. The objectives of this study were: (i) to determine the minimum seeding density, normalized by an area of 44 mm2, necessary for the self-assembling process of fibrocartilage to occur, (ii) examine relevant biomechanical properties of engineered fibrocartilage, such as tensile and compressive stiffness and strength, and their relationship to seeding density, and (iii) identify a reduced, or optimal, number of cells needed to produce this biomaterial. It was found that a decreased initial seeding density, normalized by the area of the construct, produced superior mechanical and biochemical properties. Collagen per wet weight, glycosaminoglycans per wet weight, tensile properties, and compressive properties were all significantly greater in the 5 million cells per construct group as compared to the historical 20 million cells per construct group. Scanning electron microscopy demonstrated that a lower seeding density results in a denser tissue. Additionally, the translational potential of the self-assembling process for tissue engineering was improved though this investigation, as fewer cells may be used in the future. The results of this study underscore the potential for critical seeding densities to be investigated when researching scaffold-free engineered tissues. PMID:25234157

  4. Measurement of the ^235mU Production Cross Section Using a Critical Assembly*

    NASA Astrophysics Data System (ADS)

    Macri, Robert; Authier, Nicolas; Becker, John; Belier, Gilbert; Bond, Evelyn; Bredeweg, Todd; Glover, S.; Meot, Vincent; Rundberg, Robert; Vieira, David; Wilhelmy, Jerry

    2006-10-01

    Measurements of the creation and destruction cross sections for actinide nuclei constitute an important experimental effort in support of Stockpile Stewardship. In this talk I will give a progress report on the effort to measure the production cross section of the ^235mU isomer integrated over a fission neutron spectrum. This ongoing experiment is fielded at CEA in Valduc, France, taking advantage of the CALIBAN critical assembly. This effort is performed in collaboration with LANL, LLNL, Bruyeres le Chatel, and Valduc staff. This experiment utilizes a technique to measure internal conversion electrons from the ^235mU isomer with the French BIII detector (Bruyeres le Chatel), and involves a substantial chemistry effort (LANL) to prepare targets for irradiation and counting, as well as to remove fission fragments after irradiation. Experimental techniques will be discussed and preliminary data presented. *Work performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory (W-7405-ENG-36) and Lawrence Livermore National Laboratory (W-7405-ENG-48), and CEA-DAM under CEA-DAM NNSA-DOE agreement.

  5. Characterization of the CALIBAN Critical Assembly Neutron Spectra using Several Adjustment Methods Based on Activation Foils Measurement

    NASA Astrophysics Data System (ADS)

    Casoli, Pierre; Grégoire, Gilles; Rousseau, Guillaume; Jacquet, Xavier; Authier, Nicolas

    2016-02-01

    CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to strengthen our knowledge of this spectrum, several adjustment methods based on activation foils measurements are being studied for a few years in the laboratory. Firstly two codes included in the UMG package have been tested and compared: MAXED and GRAVEL. More recently, the CALIBAN cavity spectrum has been studied using CALMAR, a new adjustment tool currently under development at the CEA Center of Cadarache. The article will discuss and compare the results and the quality of spectrum rebuilding obtained with the UMG codes and with the CALMAR software, from a set of activation measurements carried out in the CALIBAN irradiation cavity.

  6. Neutron Activation and Thermoluminescent Detector Responses to a Bare Pulse of the CEA Valduc SILENE Critical Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 11, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). Themore » goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.« less

  7. Steel pin and hanger assembly replacement options : final report.

    DOT National Transportation Integrated Search

    2017-01-01

    A number of steel beam bridges exist in the United States that contain pin and hanger assemblies. Pin and hanger assemblies are fracture critical members whose failure would result in collapse of the bridge or render it unable to perform its expected...

  8. Extracellular chloride signals collagen IV network assembly during basement membrane formation

    PubMed Central

    Cummings, Christopher F.; Pedchenko, Vadim; Brown, Kyle L.; Colon, Selene; Rafi, Mohamed; Jones-Paris, Celestial; Pokydeshava, Elena; Liu, Min; Pastor-Pareja, Jose C.; Stothers, Cody; Ero-Tolliver, Isi A.; McCall, A. Scott; Vanacore, Roberto; Bhave, Gautam; Santoro, Samuel; Blackwell, Timothy S.; Zent, Roy; Pozzi, Ambra

    2016-01-01

    Basement membranes are defining features of the cellular microenvironment; however, little is known regarding their assembly outside cells. We report that extracellular Cl− ions signal the assembly of collagen IV networks outside cells by triggering a conformational switch within collagen IV noncollagenous 1 (NC1) domains. Depletion of Cl− in cell culture perturbed collagen IV networks, disrupted matrix architecture, and repositioned basement membrane proteins. Phylogenetic evidence indicates this conformational switch is a fundamental mechanism of collagen IV network assembly throughout Metazoa. Using recombinant triple helical protomers, we prove that NC1 domains direct both protomer and network assembly and show in Drosophila that NC1 architecture is critical for incorporation into basement membranes. These discoveries provide an atomic-level understanding of the dynamic interactions between extracellular Cl− and collagen IV assembly outside cells, a critical step in the assembly and organization of basement membranes that enable tissue architecture and function. Moreover, this provides a mechanistic framework for understanding the molecular pathobiology of NC1 domains. PMID:27216258

  9. BamA β16C strand and periplasmic turns are critical for outer membrane protein insertion and assembly.

    PubMed

    Gu, Yinghong; Zeng, Yi; Wang, Zhongshan; Dong, Changjiang

    2017-11-21

    Outer membrane (OM) β-barrel proteins play important roles in importing nutrients, exporting wastes and conducting signals in Gram-negative bacteria, mitochondria and chloroplasts. The outer membrane proteins (OMPs) are inserted and assembled into the OM by OMP85 family proteins. In Escherichia coli , the β-barrel assembly machinery (BAM) contains four lipoproteins such as BamB, BamC, BamD and BamE, and one OMP BamA, forming a 'top hat'-like structure. Structural and functional studies of the E. coli BAM machinery have revealed that the rotation of periplasmic ring may trigger the barrel β1C-β6C scissor-like movement that promote the unfolded OMP insertion without using ATP. Here, we report the BamA C-terminal barrel structure of Salmonella enterica Typhimurium str. LT2 and functional assays, which reveal that the BamA's C-terminal residue Trp, the β16C strand of the barrel and the periplasmic turns are critical for the functionality of BamA. These findings indicate that the unique β16C strand and the periplasmic turns of BamA are important for the outer membrane insertion and assembly. The periplasmic turns might mediate the rotation of the periplasmic ring to the scissor-like movement of BamA β1C-β6C, triggering the OMP insertion. These results are important for understanding the OMP insertion in Gram-negative bacteria, as well as in mitochondria and chloroplasts. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Scalable Directed Self-Assembly Using Ultrasound Waves

    DTIC Science & Technology

    2015-09-04

    SECURITY CLASSIFICATION OF: We aim to understand how ultrasound waves can be used to create organized patterns of nanoparticles in a host medium such...as a polymer matrix material. The critical difference between the ultrasound technology studied in this project, and other directed self-assembly...of nanoparticles dispersed in a host medium are assembled by means of standing ultrasound waves. Additionally, we have obtained experimental

  11. Metal Ion-Assembled Micro-Collagen Heterotrimers

    PubMed Central

    LeBruin, Lyndelle Toni; Banerjee, Sunandan; O'Rourke, Bruce Delany; Case, Martin Ashley

    2011-01-01

    Collagen mimetic peptides (CMPs) provide critical insight into the assembly, stability and structure of the triple helical collagen protein. The majority of natural fibrous collagens are aab or abc heterotrimers, yet few examples of heterotrimeric CMPs have been reported. Previously CMP heterotrimers have only been accessible by total syntheses or by introducing complementary interstrand electrostatic or steric interactions. Here we describe an abc CMP heterotrimer in which each contributing CMP consists of only three amino acids: glycine, proline and 4-hydroxyproline. Assembly of the heterotrimeric triple helix is directed by a combination of metal-ion coordination to set the relative register of the CMPs, and minimization of valence frustration to direct heterotrimerization. Assembly of the four-component mixture is facile and extremely rapid, and equilibration to the abc heterotrimer occurs within a few hours at modestly elevated temperatures. The melting temperatures of the metal-assembled collagen trimers are higher by some 30 °C than the apopeptide assemblies. Two iterations of the design are described, and the outcomes suggest possibilities for designing self-assembling abc and abb heterotrimers. PMID:21590759

  12. Nondeterministic self-assembly of two tile types on a lattice.

    PubMed

    Tesoro, S; Ahnert, S E

    2016-04-01

    Self-assembly is ubiquitous in nature, particularly in biology, where it underlies the formation of protein quaternary structure and protein aggregation. Quaternary structure assembles deterministically and performs a wide range of important functions in the cell, whereas protein aggregation is the hallmark of a number of diseases and represents a nondeterministic self-assembly process. Here we build on previous work on a lattice model of deterministic self-assembly to investigate nondeterministic self-assembly of single lattice tiles and mixtures of two tiles at varying relative concentrations. Despite limiting the simplicity of the model to two interface types, which results in 13 topologically distinct single tiles and 106 topologically distinct sets of two tiles, we observe a wide variety of concentration-dependent behaviors. Several two-tile sets display critical behaviors in the form of a sharp transition from bound to unbound structures as the relative concentration of one tile to another increases. Other sets exhibit gradual monotonic changes in structural density, or nonmonotonic changes, while again others show no concentration dependence at all. We catalog this extensive range of behaviors and present a model that provides a reasonably good estimate of the critical concentrations for a subset of the critical transitions. In addition, we show that the structures resulting from these tile sets are fractal, with one of two different fractal dimensions.

  13. Effect of a dual-purpose cask payload increment of spent fuel assemblies from VVER 1000 Bushehr Nuclear Power Plant on basket criticality.

    PubMed

    Rezaeian, M; Kamali, J

    2017-01-01

    Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B 4 C) were investigated, and the minimum required receptacle pitch of the basket was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Direct assembling methodologies for high-throughput bioscreening

    PubMed Central

    Rodríguez-Dévora, Jorge I.; Shi, Zhi-dong; Xu, Tao

    2012-01-01

    Over the last few decades, high-throughput (HT) bioscreening, a technique that allows rapid screening of biochemical compound libraries against biological targets, has been widely used in drug discovery, stem cell research, development of new biomaterials, and genomics research. To achieve these ambitions, scaffold-free (or direct) assembly of biological entities of interest has become critical. Appropriate assembling methodologies are required to build an efficient HT bioscreening platform. The development of contact and non-contact assembling systems as a practical solution has been driven by a variety of essential attributes of the bioscreening system, such as miniaturization, high throughput, and high precision. The present article reviews recent progress on these assembling technologies utilized for the construction of HT bioscreening platforms. PMID:22021162

  15. Whiteness and Critical Pedagogy

    ERIC Educational Resources Information Center

    Allen, Ricky Lee

    2004-01-01

    The purpose of this article is to rethink critical pedagogy by imagining it from a race-radical perspective that owes its lineage to scholars like W. E. B. Du Bois. The author assembles a critical pedagogy that hopes to contribute to both the transformation of white identity and the abolition of white supremacy. He draws from the roots of critical…

  16. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  17. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models

    PubMed Central

    Rajasekaran, Sanguthevar

    2013-01-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is Ω(log(n)log(log(n))) (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing Θ(log(n)log(log(n))) unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio (α:β), with high probability, using Θ(α + β) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85–94, 2009)—which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling. This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP ’09, Springer-Verlag, pp 235

  18. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    PubMed

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235

  19. Critical Contribution of Tyr15 in the HIV-1 Integrase (IN) in Facilitating IN Assembly and Nonenzymatic Function through the IN Precursor Form with Reverse Transcriptase.

    PubMed

    Takahata, Tatsuro; Takeda, Eri; Tobiume, Minoru; Tokunaga, Kenzo; Yokoyama, Masaru; Huang, Yu-Lun; Hasegawa, Atsuhiko; Shioda, Tatsuo; Sato, Hironori; Kannagi, Mari; Masuda, Takao

    2017-01-01

    sites targeted by INSTI, have been discovered. Importantly, ALLINIs affect the nonenzymatic role(s) of HIV-1 IN, providing a rationale for the development of next-generation IN inhibitors with a mechanism that is distinct from that of INSTI. Here, we demonstrate that Tyr15 in the HIV-1 IN NTD plays a critical role during IN assembly by facilitating the hydrophobic interaction of the NTD with the other domains of IN. Importantly, we found that the functional assembly of IN through its fusion form with RT is critical for IN to exert its nonenzymatic function. Our results provide a novel mechanistic insight into the nonenzymatic function of HIV-1 IN and its prevention. Copyright © 2016 American Society for Microbiology.

  20. Fuel assembly design for APR1400 with low CBC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hah, Chang Joo, E-mail: changhah@kings.ac.kr

    2015-04-29

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gdmore » rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to Δk{sub TARGET}. A set of new designed fuel assembly satisfies an objective function, min [f=∑{sub i}(Δk{sub FA}−Δk{sub i})], and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to Δk{sub TARGET} as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.« less

  1. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  2. Critical factors for assembling a high volume of DNA barcodes

    PubMed Central

    Hajibabaei, Mehrdad; deWaard, Jeremy R; Ivanova, Natalia V; Ratnasingham, Sujeevan; Dooh, Robert T; Kirk, Stephanie L; Mackie, Paula M; Hebert, Paul D.N

    2005-01-01

    Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified. PMID:16214753

  3. Peptide self-assembly: thermodynamics and kinetics.

    PubMed

    Wang, Juan; Liu, Kai; Xing, Ruirui; Yan, Xuehai

    2016-10-21

    Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.

  4. Initial condition of stochastic self-assembly

    NASA Astrophysics Data System (ADS)

    Davis, Jason K.; Sindi, Suzanne S.

    2016-02-01

    The formation of a stable protein aggregate is regarded as the rate limiting step in the establishment of prion diseases. In these systems, once aggregates reach a critical size the growth process accelerates and thus the waiting time until the appearance of the first critically sized aggregate is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation is a central step of many physical, chemical, and biological process. Previous studies have examined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the assumption that at time t =0 the system was in the all-monomer state. However, in order to compare to in vivo biological experiments where protein constituents inherited by a newly born cell likely contain intermediate aggregates, other possibilities must be considered. We consider one such possibility by conditioning the unique ergodic size distribution on subcritical aggregate sizes; this least-informed distribution is then used as an initial condition. We make the claim that this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield significantly different averaged waiting times relative to the all-monomer condition under various models of assembly.

  5. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.

    PubMed

    Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh

    2017-08-14

    Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.

  6. Criticality Safety Evaluation for the TACS at DAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percher, C. M.; Heinrichs, D. P.

    2011-06-10

    Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, Guidance for Nuclear Criticality Safety Engineer Training and Qualification. This document is a criticality safety evaluation of the training activities and operations associated with HS-3201-P, Nuclear Criticality 4-Day Training Course (Practical). This course was designed to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program1. The hands-on, or laboratory, portion of the course will utilizemore » the Training Assembly for Criticality Safety (TACS) and will be conducted in the Device Assembly Facility (DAF) at the Nevada Nuclear Security Site (NNSS). The training activities will be conducted by Lawrence Livermore National Laboratory following the requirements of an Integrated Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of an LLNL Certified Fissile Material Handler.« less

  7. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Astrophysics Data System (ADS)

    Alhorn, Dean C.

    2005-02-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  8. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2005-01-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  9. Development of an Advanced Recycle Filter Tank Assembly for the ISS Urine Processor Assembly

    NASA Technical Reports Server (NTRS)

    Link, Dwight E., Jr.; Carter, Donald Layne; Higbie, Scott

    2010-01-01

    Recovering water from urine is a process that is critical to supporting larger crews for extended missions aboard the International Space Station. Urine is collected, preserved, and stored for processing into water and a concentrated brine solution that is highly toxic and must be contained to avoid exposure to the crew. The brine solution is collected in an accumulator tank, called a Recycle Filter Tank Assembly (RFTA) that must be replaced monthly and disposed in order to continue urine processing operations. In order to reduce resupply requirements, a new accumulator tank is being developed that can be emptied on orbit into existing ISS waste tanks. The new tank, called the Advanced Recycle Filter Tank Assembly (ARFTA) is a metal bellows tank that is designed to collect concentrated brine solution and empty by applying pressure to the bellows. This paper discusses the requirements and design of the ARFTA as well as integration into the urine processor assembly.

  10. Toward high throughput optical metamaterial assemblies.

    PubMed

    Fontana, Jake; Ratna, Banahalli R

    2015-11-01

    Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.

  11. Measuring the efficiency of control rods in the RBMK critical assembly using a model of RKI-1 reactimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhitarev, V. E., E-mail: vejitarev@yandex.ru; Lebedev, G. V.; Sergevnin, A. Yu.

    2016-12-15

    The efficiency of control rods of the RBMK critical assembly is measured in a series of experiments. The aim of measurements is to determine the characteristics of the model of an RKI-1 reactimeter. The RKI-1 reactimeter is intended for measuring the efficiency of control rods when, according to conditions of operation, the metrological certification of results of an experiment is required. Complications with the metrological certification of reactimeters arise owing to the fact that usually calculated corrections to the results of measurements are required. When the RKI-1 reactimeter is used, there is no need to introduce calculated corrections; the resultmore » of measurements is given with the indication of substantiated errors. In connection with this, the metrological certification of the results of measurements using the RKI-1 reactimeter is simplified.« less

  12. Research to Assembly Scheme for Satellite Deck Based on Robot Flexibility Control Principle

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Hu, Ruiqin; Xiao, Zhengyi; Zhao, Jingjing; Fang, Zhikai

    2018-03-01

    Deck assembly is critical quality control point in final satellite assembly process, and cable extrusion and structure collision problems in assembly process will affect development quality and progress of satellite directly. Aimed at problems existing in deck assembly process, assembly project scheme for satellite deck based on robot flexibility control principle is proposed in this paper. Scheme is introduced firstly; secondly, key technologies on end force perception and flexible docking control in the scheme are studied; then, implementation process of assembly scheme for satellite deck is described in detail; finally, actual application case of assembly scheme is given. Result shows that compared with traditional assembly scheme, assembly scheme for satellite deck based on robot flexibility control principle has obvious advantages in work efficiency, reliability and universality aspects etc.

  13. Crystal structure of an HIV assembly and maturation switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Jonathan M.; Zadrozny, Kaneil K.; Chrustowicz, Jakub

    Virus assembly and maturation proceed through the programmed operation of molecular switches, which trigger both local and global structural rearrangements to produce infectious particles. HIV-1 contains an assembly and maturation switch that spans the C-terminal domain (CTD) of the capsid (CA) region and the first spacer peptide (SP1) of the precursor structural protein, Gag. The crystal structure of the CTD-SP1 Gag fragment is a goblet-shaped hexamer in which the cup comprises the CTD and an ensuing type II β-turn, and the stem comprises a 6-helix bundle. The β-turn is critical for immature virus assembly and the 6-helix bundle regulates proteolysismore » during maturation. This bipartite character explains why the SP1 spacer is a critical element of HIV-1 Gag but is not a universal property of retroviruses. Our results also indicate that HIV-1 maturation inhibitors suppress unfolding of the CA-SP1 junction and thereby delay access of the viral protease to its substrate.« less

  14. Self-assembly behaviours of peptide-drug conjugates: influence of multiple factors on aggregate morphology and potential self-assembly mechanism

    NASA Astrophysics Data System (ADS)

    Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng

    2018-04-01

    Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug (S)-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.

  15. Self-assembly behaviours of peptide-drug conjugates: influence of multiple factors on aggregate morphology and potential self-assembly mechanism.

    PubMed

    Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng

    2018-04-01

    Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug ( S )-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.

  16. Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuecheng; Li, Bo; Li, Songsong

    Advances in supramolecular assembly have enabled the design and synthesis of functional materials with well-defined structures across multiple length scales. Biopolymer-synthetic hybrid materials can assemble into supramolecular structures with a broad range of structural and functional diversity through precisely controlled noncovalent interactions between subunits. Despite recent progress, there is a need to understand the mechanisms underlying the assembly of biohybrid/synthetic molecular building blocks, which ultimately control the emergent properties of hierarchical assemblies. Here in this work, we study the concentration-driven self-assembly and gelation of π-conjugated synthetic oligopeptides containing different π-conjugated cores (quaterthiophene and perylene diimide) using a combination of particlemore » tracking microrheology, confocal fluorescence microscopy, optical spectroscopy, and electron microscopy. Our results show that π-conjugated oligopeptides self-assemble into β-sheet-rich fiber-like structures at neutral pH, even in the absence of electrostatic screening of charged residues. A critical fiber formation concentration c fiber and a critical gel concentration c gel are determined for fiber-forming π-conjugated oligopeptides, and the linear viscoelastic moduli (storage modulus G' and loss modulus G") are determined across a wide range of peptide concentrations. These results suggest that the underlying chemical structure of the synthetic π-conjugated cores greatly influences the self-assembly process, such that oligopeptides appended to π-conjugated cores with greater torsional flexibility tend to form more robust fibers upon increasing peptide concentration compared to oligopeptides with sterically constrained cores. Overall, our work focuses on the molecular assembly of π-conjugated oligopeptides driven by concentration, which is controlled by a combination of enthalpic and entropic interactions between oligopeptide subunits.« less

  17. Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides

    DOE PAGES

    Zhou, Yuecheng; Li, Bo; Li, Songsong; ...

    2017-08-17

    Advances in supramolecular assembly have enabled the design and synthesis of functional materials with well-defined structures across multiple length scales. Biopolymer-synthetic hybrid materials can assemble into supramolecular structures with a broad range of structural and functional diversity through precisely controlled noncovalent interactions between subunits. Despite recent progress, there is a need to understand the mechanisms underlying the assembly of biohybrid/synthetic molecular building blocks, which ultimately control the emergent properties of hierarchical assemblies. Here in this work, we study the concentration-driven self-assembly and gelation of π-conjugated synthetic oligopeptides containing different π-conjugated cores (quaterthiophene and perylene diimide) using a combination of particlemore » tracking microrheology, confocal fluorescence microscopy, optical spectroscopy, and electron microscopy. Our results show that π-conjugated oligopeptides self-assemble into β-sheet-rich fiber-like structures at neutral pH, even in the absence of electrostatic screening of charged residues. A critical fiber formation concentration c fiber and a critical gel concentration c gel are determined for fiber-forming π-conjugated oligopeptides, and the linear viscoelastic moduli (storage modulus G' and loss modulus G") are determined across a wide range of peptide concentrations. These results suggest that the underlying chemical structure of the synthetic π-conjugated cores greatly influences the self-assembly process, such that oligopeptides appended to π-conjugated cores with greater torsional flexibility tend to form more robust fibers upon increasing peptide concentration compared to oligopeptides with sterically constrained cores. Overall, our work focuses on the molecular assembly of π-conjugated oligopeptides driven by concentration, which is controlled by a combination of enthalpic and entropic interactions between oligopeptide subunits.« less

  18. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Polyethylene Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 19, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). Themore » goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube and the Rocky Flats detects neutrons via charged particles produced in a thin 6LiF disc depositing energy in a Si solid state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.« less

  19. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Lead Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Thomas Martin; Celik, Cihangir; Isbell, Kimberly McMahan

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 13, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). Themore » goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube, and the Rocky Flats detects neutrons via charged particles produced in a thin 6LiF disc, depositing energy in a Si solid-state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.« less

  20. Modeling the assembly order of multimeric heteroprotein complexes

    PubMed Central

    Esquivel-Rodriguez, Juan; Terashi, Genki; Christoffer, Charles; Shin, Woong-Hee

    2018-01-01

    Protein-protein interactions are the cornerstone of numerous biological processes. Although an increasing number of protein complex structures have been determined using experimental methods, relatively fewer studies have been performed to determine the assembly order of complexes. In addition to the insights into the molecular mechanisms of biological function provided by the structure of a complex, knowing the assembly order is important for understanding the process of complex formation. Assembly order is also practically useful for constructing subcomplexes as a step toward solving the entire complex experimentally, designing artificial protein complexes, and developing drugs that interrupt a critical step in the complex assembly. There are several experimental methods for determining the assembly order of complexes; however, these techniques are resource-intensive. Here, we present a computational method that predicts the assembly order of protein complexes by building the complex structure. The method, named Path-LzerD, uses a multimeric protein docking algorithm that assembles a protein complex structure from individual subunit structures and predicts assembly order by observing the simulated assembly process of the complex. Benchmarked on a dataset of complexes with experimental evidence of assembly order, Path-LZerD was successful in predicting the assembly pathway for the majority of the cases. Moreover, when compared with a simple approach that infers the assembly path from the buried surface area of subunits in the native complex, Path-LZerD has the strong advantage that it can be used for cases where the complex structure is not known. The path prediction accuracy decreased when starting from unbound monomers, particularly for larger complexes of five or more subunits, for which only a part of the assembly path was correctly identified. As the first method of its kind, Path-LZerD opens a new area of computational protein structure modeling and will be

  1. Modeling the assembly order of multimeric heteroprotein complexes.

    PubMed

    Peterson, Lenna X; Togawa, Yoichiro; Esquivel-Rodriguez, Juan; Terashi, Genki; Christoffer, Charles; Roy, Amitava; Shin, Woong-Hee; Kihara, Daisuke

    2018-01-01

    Protein-protein interactions are the cornerstone of numerous biological processes. Although an increasing number of protein complex structures have been determined using experimental methods, relatively fewer studies have been performed to determine the assembly order of complexes. In addition to the insights into the molecular mechanisms of biological function provided by the structure of a complex, knowing the assembly order is important for understanding the process of complex formation. Assembly order is also practically useful for constructing subcomplexes as a step toward solving the entire complex experimentally, designing artificial protein complexes, and developing drugs that interrupt a critical step in the complex assembly. There are several experimental methods for determining the assembly order of complexes; however, these techniques are resource-intensive. Here, we present a computational method that predicts the assembly order of protein complexes by building the complex structure. The method, named Path-LzerD, uses a multimeric protein docking algorithm that assembles a protein complex structure from individual subunit structures and predicts assembly order by observing the simulated assembly process of the complex. Benchmarked on a dataset of complexes with experimental evidence of assembly order, Path-LZerD was successful in predicting the assembly pathway for the majority of the cases. Moreover, when compared with a simple approach that infers the assembly path from the buried surface area of subunits in the native complex, Path-LZerD has the strong advantage that it can be used for cases where the complex structure is not known. The path prediction accuracy decreased when starting from unbound monomers, particularly for larger complexes of five or more subunits, for which only a part of the assembly path was correctly identified. As the first method of its kind, Path-LZerD opens a new area of computational protein structure modeling and will be

  2. 2009 Community College Futures Assembly Focus: Leading Change--Leading in an Uncertain Environment

    ERIC Educational Resources Information Center

    Campbell, Dale F.; Morris, Phillip A.

    2009-01-01

    The Community College Futures Assembly has served as a national, independent policy thinktank since 1995. Its purpose is to articulate the critical issues facing American community colleges and recognize innovative programs. Convening annually in January in Orlando, Florida, the Assembly offers a learning environment where tough questions are…

  3. Assembly: a resource for assembled genomes at NCBI

    PubMed Central

    Kitts, Paul A.; Church, Deanna M.; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G.; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D.; Pruitt, Kim D.; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  4. Hepatitis E virus capsid protein assembles in 4M urea in the presence of salts.

    PubMed

    Yang, Chunyan; Pan, Huirong; Wei, Minxi; Zhang, Xiao; Wang, Nan; Gu, Ying; Du, Hailian; Zhang, Jun; Li, Shaowei; Xia, Ningshao

    2013-03-01

    The hepatitis E virus (HEV) capsid protein has been demonstrated to be able to assemble into particles in vitro. However, this process and the mechanism of protein-protein interactions during particle assembly remain unclear. In this study, we investigated the assembly mechanism of HEV structural protein subunits, the capsid protein p239 (aa368-606), using analytical ultracentrifugation. It was the first to observe that the p239 can form particles in 4M urea as a result of supplementation with salt, including ammonium sulfate [(NH₄)₂SO₄], sodium sulfate (Na₂SO₄), sodium chloride (NaCl), and ammonium chloride (NH₄Cl). Interestingly, it is the ionic strength that determines the efficiency of promoting particle assembly. The assembly rate was affected by temperature and salt concentration. When (NH₄)₂SO₄ was used, assembling intermediates of p239 with sedimentation coefficient values of approximately 5 S, which were mostly dodecamers, were identified for the first time. A highly conserved 28-aa region (aa368-395) of p239 was found to be critical for particle assembly, and the hydrophobic residues Leu³⁷², Leu³⁷⁵, and Leu³⁹⁵ of p239 was found to be critical for particle assembly, which was revealed by site-directed mutagenesis. This study provides new insights into the assembly mechanism of native HEV, and contributes a valuable basis for further investigations of protein assembly by hydrophobic interactions under denaturing conditions. Copyright © 2012 The Protein Society.

  5. JEFF-3.1, ENDF/B-VII and JENDL-3.3 Critical Assemblies Benchmarking With the Monte Carlo Code TRIPOLI

    NASA Astrophysics Data System (ADS)

    Sublet, Jean-Christophe

    2008-02-01

    ENDF/B-VII.0, the first release of the ENDF/B-VII nuclear data library, was formally released in December 2006. Prior to this event the European JEFF-3.1 nuclear data library was distributed in April 2005, while the Japanese JENDL-3.3 library has been available since 2002. The recent releases of these neutron transport libraries and special purpose files, the updates of the processing tools and the significant progress in computer power and potency, allow today far better leaner Monte Carlo code and pointwise library integration leading to enhanced benchmarking studies. A TRIPOLI-4.4 critical assembly suite has been set up as a collection of 86 benchmarks taken principally from the International Handbook of Evaluated Criticality Benchmarks Experiments (2006 Edition). It contains cases for a variety of U and Pu fuels and systems, ranging from fast to deep thermal solutions and assemblies. It covers cases with a variety of moderators, reflectors, absorbers, spectra and geometries. The results presented show that while the most recent library ENDF/B-VII.0, which benefited from the timely development of JENDL-3.3 and JEFF-3.1, produces better overall results, it suggest clearly also that improvements are still needed. This is true in particular in Light Water Reactor applications for thermal and epithermal plutonium data for all libraries and fast uranium data for JEFF-3.1 and JENDL-3.3. It is also true to state that other domains, in which Monte Carlo code are been used, such as astrophysics, fusion, high-energy or medical, radiation transport in general benefit notably from such enhanced libraries. It is particularly noticeable in term of the number of isotopes, materials available, the overall quality of the data and the much broader energy range for which evaluated (as opposed to modeled) data are available, spanning from meV to hundreds of MeV. In pointing out the impact of the different nuclear data at the library but also the isotopic levels one could not help

  6. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-IIImore » is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  7. Alignment and assembly process for primary mirror subsystem of a spaceborne telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Chang, Sheng-Hsiung; Chang, Chen-Peng; Lin, Yu-Chuan; Chin, Chi-Chieh; Pan, Hsu-Pin; Huang, Ting-Ming

    2015-11-01

    In this study, a multispectral spaceborne Cassegrain telescope was developed. The telescope was equipped with a primary mirror with a 450-mm clear aperture composed of Zerodur and lightweighted at a ratio of approximately 50% to meet both thermal and mass requirements. Reducing the astigmatism was critical for this mirror. The astigmatism is caused by gravity effects, the bonding process, and deformation from mounting the main structure of the telescope (main plate). This article presents the primary mirror alignment, mechanical ground-supported equipment (MGSE), assembly process, and optical performance test used to assemble the primary mirror. A mechanical compensated shim is used as the interface between the bipod flexure and main plate. The shim was used to compensate for manufacturer errors found in components and differences between local coplanarity errors to prevent stress while the bipod flexure was screwed to the main plate. After primary mirror assembly, an optical performance test method called a bench test with an algorithm was used to analyze the astigmatism caused by the gravity effect and deformation from the mounting or supporter. The tolerance conditions for the primary mirror assembly require the astigmatism caused by gravity and mounting force deformation to be less than P-V 0.02 λ at 632.8 nm. The results demonstrated that the designed MGSE used in the alignment and assembly processes met the critical requirements for the primary mirror assembly of the telescope.

  8. Self-assembled nanolaminate coatings (SV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflectivemore » coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV

  9. Nuclear reactor removable radial shielding assembly having a self-bowing feature

    DOEpatents

    Pennell, William E.; Kalinowski, Joseph E.; Waldby, Robert N.; Rylatt, John A.; Swenson, Daniel V.

    1978-01-01

    A removable radial shielding assembly for use in the periphery of the core of a liquid-metal-cooled fast-breeder reactor, for closing interassembly gaps in the reactor core assembly load plane prior to reactor criticality and power operation to prevent positive reactivity insertion. The assembly has a lower nozzle portion for inserting into the core support and a flexible heat-sensitive bimetallic central spine surrounded by blocks of shielding material. At refueling temperature and below the spine is relaxed and in a vertical position so that the tolerances permitted by the interassembly gaps allow removal and replacement of the various reactor core assemblies. During an increase in reactor temperature from refueling to hot standby, the bimetallic spine expands, bowing the assembly toward the core center line, exerting a radially inward gap-closing-force on the above core load plane of the reactor core assembly, closing load plane interassembly gaps throughout the core prior to startup and preventing positive reactivity insertion.

  10. Mars aerobrake assembly simulation

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Lee, Gordon K. F.; Garvey, John

    1992-01-01

    On-orbit assembly operation simulations in neutral buoyancy conditions are presently undertaken by a partial/full-scale Mars mission aerobrake mockup, whose design, conducted in the framework of an engineering senior students' design project, involved several levels of constraints for critical physical and operational features. Allowances had to be made for the auxiliary constraints introduced by underwater testing, as well as the subsegmenting required for overland shipment to the neutral-buoyancy testing facility. This mockup aerobrake's fidelity is determined by the numerous, competing design objectives.

  11. CSM docked DAP/orbital assembly bending interaction-axial case

    NASA Technical Reports Server (NTRS)

    Turnbull, J. F.; Jones, J. E.

    1972-01-01

    A digital autopilot which can provide attitude control for the entire Skylab orbital assembly using the service module reaction control jets is described. An important consideration is the potential interaction of the control system with the bending modes of the orbital assembly. Two aspects of this potential interaction were considered. The first was the possibility that bending induced rotations feeding back through the attitude sensor into the control system could produce an instability or self-sustained oscillation. The second was whether the jet activity commanded by the control system could produce excessive loads at any of the critical load points of the orbital assembly. Both aspects were studied by using analytic techniques and by running simulations on the all-digital simulator.

  12. Dismantlement of the TSF-SNAP Reactor Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peretz, Fred J

    2009-01-01

    This paper describes the dismantlement of the Tower Shielding Facility (TSF)?Systems for Nuclear Auxiliary Power (SNAP) reactor, a SNAP-10A reactor used to validate radiation source terms and shield performance models at Oak Ridge National Laboratory (ORNL) from 1967 through 1973. After shutdown, it was placed in storage at the Y-12 National Security Complex (Y-12), eventually falling under the auspices of the Highly Enriched Uranium (HEU) Disposition Program. To facilitate downblending of the HEU present in the fuel elements, the TSF-SNAP was moved to ORNL on June 24, 2006. The reactor assembly was removed from its packaging, inspected, and the sodium-potassiummore » (NaK) coolant was drained. A superheated steam process was used to chemically react the residual NaK inside the reactor assembly. The heat exchanger assembly was removed from the top of the reactor vessel, and the criticality safety sleeve was exchanged for a new safety sleeve that allowed for the removal of the vessel lid. A chain-mounted tubing cutter was used to separate the lid from the vessel, and the 36 fuel elements were removed and packaged in four U.S. Department of Transportation 2R/6M containers. The fuel elements were returned to Y-12 on July 13, 2006. The return of the fuel elements and disposal of all other reactor materials accomplished the formal objectives of the dismantlement project. In addition, a project model was established for the handling of a fully fueled liquid-metal?cooled reactor assembly. Current criticality safety codes have been benchmarked against experiments performed by Atomics International in the 1950s and 1960s. Execution of this project provides valuable experience applicable to future projects addressing space and liquid-metal-cooled reactors.« less

  13. Multilayer block copolymer meshes by orthogonal self-assembly

    PubMed Central

    Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2016-01-01

    Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218

  14. Recreating America's Community Colleges: Critical Policy Issues Facing America's Community Colleges

    ERIC Educational Resources Information Center

    Honeyman, David S.; Sullivan, Michael D.

    2006-01-01

    During the conduct of the 2004 Community Colleges Futures Assembly, sponsored by the University of Florida, delegates to the meeting identified three critical policy issues facing America's community colleges and challenged the delegates attending the 2005 Assembly to debate these issues and make recommendations. A total of 252 higher-education…

  15. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    PubMed

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  16. Characterization of the Arabidopsis Augmin Complex Uncovers Its Critical Function in the Assembly of the Acentrosomal Spindle and Phragmoplast Microtubule Arrays[W

    PubMed Central

    Hotta, Takashi; Kong, Zhaosheng; Ho, Chin-Min Kimmy; Zeng, Cui Jing Tracy; Horio, Tetsuya; Fong, Sophia; Vuong, Trang; Lee, Yuh-Ru Julie; Liu, Bo

    2012-01-01

    Plant cells assemble the bipolar spindle and phragmoplast microtubule (MT) arrays in the absence of the centrosome structure. Our recent findings in Arabidopsis thaliana indicated that AUGMIN subunit3 (AUG3), a homolog of animal dim γ-tubulin 3, plays a critical role in γ-tubulin–dependent MT nucleation and amplification during mitosis. Here, we report the isolation of the entire plant augmin complex that contains eight subunits. Among them, AUG1 to AUG6 share low sequence similarity with their animal counterparts, but AUG7 and AUG8 share homology only with proteins of plant origin. Genetic analyses indicate that the AUG1, AUG2, AUG4, and AUG5 genes are essential, as stable mutations in these genes could only be transmitted to heterozygous plants. The sterile aug7-1 homozygous mutant in which AUG7 expression is significantly reduced exhibited pleiotropic phenotypes of seriously retarded vegetative and reproductive growth. The aug7-1 mutation caused delocalization of γ-tubulin in the mitotic spindle and phragmoplast. Consequently, spindles were abnormally elongated, and their poles failed to converge, as MTs were splayed to discrete positions rendering deformed arrays. In addition, the mutant phragmoplasts often had disorganized MT bundles with uneven edges. We conclude that assembly of MT arrays during plant mitosis depends on the augmin complex, which includes two plant-specific subunits. PMID:22505726

  17. GFinisher: a new strategy to refine and finish bacterial genome assemblies

    NASA Astrophysics Data System (ADS)

    Guizelini, Dieval; Raittz, Roberto T.; Cruz, Leonardo M.; Souza, Emanuel M.; Steffens, Maria B. R.; Pedrosa, Fabio O.

    2016-10-01

    Despite the development in DNA sequencing technology, improving the number and the length of reads, the process of reconstruction of complete genome sequences, the so called genome assembly, is still complex. Only 13% of the prokaryotic genome sequencing projects have been completed. Draft genome sequences deposited in public databases are fragmented in contigs and may lack the full gene complement. The aim of the present work is to identify assembly errors and improve the assembly process of bacterial genomes. The biological patterns observed in genomic sequences and the application of a priori information can allow the identification of misassembled regions, and the reorganization and improvement of the overall de novo genome assembly. GFinisher starts generating a Fuzzy GC skew graphs for each contig in an assembly and follows breaking down the contigs in critical points in order to reassemble and close them using jFGap. This has been successfully applied to dataset from 96 genome assemblies, decreasing the number of contigs by up to 86%. GFinisher can easily optimize assemblies of prokaryotic draft genomes and can be used to improve the assembly programs based on nucleotide sequence patterns in the genome. The software and source code are available at http://gfinisher.sourceforge.net/.

  18. GFinisher: a new strategy to refine and finish bacterial genome assemblies.

    PubMed

    Guizelini, Dieval; Raittz, Roberto T; Cruz, Leonardo M; Souza, Emanuel M; Steffens, Maria B R; Pedrosa, Fabio O

    2016-10-10

    Despite the development in DNA sequencing technology, improving the number and the length of reads, the process of reconstruction of complete genome sequences, the so called genome assembly, is still complex. Only 13% of the prokaryotic genome sequencing projects have been completed. Draft genome sequences deposited in public databases are fragmented in contigs and may lack the full gene complement. The aim of the present work is to identify assembly errors and improve the assembly process of bacterial genomes. The biological patterns observed in genomic sequences and the application of a priori information can allow the identification of misassembled regions, and the reorganization and improvement of the overall de novo genome assembly. GFinisher starts generating a Fuzzy GC skew graphs for each contig in an assembly and follows breaking down the contigs in critical points in order to reassemble and close them using jFGap. This has been successfully applied to dataset from 96 genome assemblies, decreasing the number of contigs by up to 86%. GFinisher can easily optimize assemblies of prokaryotic draft genomes and can be used to improve the assembly programs based on nucleotide sequence patterns in the genome. The software and source code are available at http://gfinisher.sourceforge.net/.

  19. Neutron spectrum determination in a sub-critical assembly using the multi-disc neutron activation technique

    NASA Astrophysics Data System (ADS)

    Koseoglou, P.; Vagena, E.; Stoulos, S.; Manolopoulou, M.

    2016-09-01

    Neutron spectrum of the sub-critical nuclear assembly-reactor of Aristotle University of Thessaloniki was measured at three radial distances from the reactor core. The neutron activation technique was applied irradiating 15 thick foils - disc of various elements at each position. The data of 38 (n, γ), (n, p) and (n, α) reactions were analyzed for specific activity determination. Discs instead of foils were used due to the relevant low neutron flux, so the gamma self-absorption as well as the neutron self-shielding factors has been calculated using GEANT simulations in order to determine the activity induced. The specific activities calculated for all isotopes studied were the input to the SANDII code, which was built specifically for the neutron spectrum de-convolution when the neutron activation technique is used. For the optimization of the results a technique was applied in order to minimize the influence of the initial-"guessed" spectrum shape SANDII uses. The neutron spectrum estimated presents a peak in the regions of (i) thermal neutrons ranged between 0.001 and 1 eV peaking at neutron energy ∼0.1 eV and (ii) fast neutrons ranged between 0.1 and 20 MeV peaking at neutron energy ∼1.2 MeV. The reduction of thermal neutrons is higher than the fast one as the distance from the reactor core increases since thermal neutrons capture by natural U-fuel has higher cross section than the fast neutrons.

  20. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  1. Role of proton balance in formation of self-assembled chitosan nanoparticles.

    PubMed

    Dey, Anomitra; Kamat, Aditya; Nayak, Sonal; Danino, Dganit; Kesselman, Ellina; Dandekar, Prajakta; Jain, Ratnesh

    2018-06-01

    Researchers have explored the ability of chitosan to form nanoparticles, to suit varying applications, ranging from wound-healing to gene delivery. Ionic gelation is a widely used method for formulating chitosan nanoparticles, where self-assembly plays a crucial role. This self-assembly is initially promoted by hydrophilic-hydrophobic parity amongst individual chitosan residues, along with electrostatic and Van der Waals interactions with the cross-linker. However, until now the intrinsic ability of chitosan to self-assemble is not widely studied; hence, we investigate the self-assembly of chitosan, based on proton balance between its protonated and deprotonated residues, to promote facile nanoparticle synthesis. This is one of the first reports that highlights subtle but critical influence of proton balance in the chitosan polymer on the formation of chitosan nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Framework for Defining and Assessing Benefits of a Modular Assembly Design Approach for Exploration Systems

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Collins, Timothy J.; Moe, Rud V.; Doggett,. William R.

    2006-01-01

    A comprehensive modular assembly system model has been proposed that extends the art from modular hardware, to include in-space assembly, servicing and repair and it s critical components of infrastructure, agents and assembly operations. Benefits of modular assembly have been identified and a set of metrics defined that extends the art beyond the traditional measures of performance, with emphasis on criteria that allow life-cycle mission costs to be used as a figure of merit (and include all substantive terms that have an impact on the evaluation). The modular assembly approach was used as a basis for developing a Solar Electric Transfer Vehicle (SETV) concept and three modular assembly scenarios were developed. The modular assembly approach also allows the SETV to be entered into service much earlier than competing conventional configurations and results in a great deal of versatility in accommodating different launch vehicle payload capabilities, allowing for modules to be pre-assembled before launch or assembled on orbit, without changing the space vehicle design.

  3. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T.

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less

  4. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins

    DOE PAGES

    Jang, Yeongseon; Choi, Won Tae; Heller, William T.; ...

    2017-07-27

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less

  5. Evaluation of Cask Drop Criticality Issues at K Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GOLDMANN, L.H.

    An analysis of ability of Multi-canister Overpack (MCO) to withstand drops at K Basin without exceeding the criticality design requirements. Report concludes the MCO will function acceptably. The spent fuel currently residing in the 105 KE and 105 KW storage basins will be placed in fuel storage baskets which will be loaded into the MCO cask assembly. During the basket loading operations the MCO cask assembly will be positioned near the bottom of the south load out pit (SLOP). The loaded MCO cask will be lifted from the SLOP transferred to the transport trailer and delivered to the Cold Vacuummore » Drying Facility (CVDF). In the wet condition there is a potential for criticality problems if significant changes in the designed fuel configurations occur. The purpose of this report is to address structural issues associated with criticality design features for MCO cask drop accidents in the 105 KE and 105 KW facilities.« less

  6. An Approach to Self-Assembling Swarm Robots Using Multitree Genetic Programming

    PubMed Central

    An, Jinung

    2013-01-01

    In recent days, self-assembling swarm robots have been studied by a number of researchers due to their advantages such as high efficiency, stability, and scalability. However, there are still critical issues in applying them to practical problems in the real world. The main objective of this study is to develop a novel self-assembling swarm robot algorithm that overcomes the limitations of existing approaches. To this end, multitree genetic programming is newly designed to efficiently discover a set of patterns necessary to carry out the mission of the self-assembling swarm robots. The obtained patterns are then incorporated into their corresponding robot modules. The computational experiments prove the effectiveness of the proposed approach. PMID:23861655

  7. An approach to self-assembling swarm robots using multitree genetic programming.

    PubMed

    Lee, Jong-Hyun; Ahn, Chang Wook; An, Jinung

    2013-01-01

    In recent days, self-assembling swarm robots have been studied by a number of researchers due to their advantages such as high efficiency, stability, and scalability. However, there are still critical issues in applying them to practical problems in the real world. The main objective of this study is to develop a novel self-assembling swarm robot algorithm that overcomes the limitations of existing approaches. To this end, multitree genetic programming is newly designed to efficiently discover a set of patterns necessary to carry out the mission of the self-assembling swarm robots. The obtained patterns are then incorporated into their corresponding robot modules. The computational experiments prove the effectiveness of the proposed approach.

  8. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  9. Fast assembly of ordered block copolymer nanostructures through microwave annealing.

    PubMed

    Zhang, Xiaojiang; Harris, Kenneth D; Wu, Nathanael L Y; Murphy, Jeffrey N; Buriak, Jillian M

    2010-11-23

    Block copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The technique involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density. The approach is applied to the commonly used poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) and poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) families of block copolymers, and it is found that the substrate resistivity, solvent environment, and anneal temperature all critically influence the self-assembly process. For selected systems, highly ordered patterns were achieved in less than 3 min. In addition, we establish the compatibility of the technique with directed assembly by graphoepitaxy.

  10. Molecular Origins of Thermal Transitions in Polyelectrolyte Assemblies

    NASA Astrophysics Data System (ADS)

    Yildirim, Erol; Zhang, Yanpu; Antila, Hanne S.; Lutkenhaus, Jodie L.; Sammalkorpi, Maria; Aalto Team; Texas A&M Team

    2015-03-01

    Polyelectrolyte (PE) multilayers and complexes formed from oppositely charged polymers can exhibit extraordinary superhydrophobicity, mechanical strength and responsiveness resulting in applications ranging functional membranes, optics, sensors and drug delivery. Depending on the assembly conditions, PE assemblies may undergo a thermal transition from glassy to soft behavior under heating. Our earlier work using thermal analysis measurements shows a distinct thermal transition for PE layer-by-layer (LbL) systems assembled with added salt but no analogous transition in films assembled without added salt or dry systems. These findings raise interesting questions on the nature of the thermal transition; here, we explore its molecular origins through characterization of the PE aggregates by temperature-controlled all-atom molecular dynamics simulations. We show via molecular simulations the thermal transition results from the existence of an LCST (lower critical solution temperature) in the PE systems: the diffusion behavior, hydrogen bond formation, and bridging capacity of water molecules plasticizing the complex changes at the transition temperature. We quantify the behavior, map its chemistry specificity through comparison of strongly and weakly charged PE complexes, and connect the findings to our interrelated QCM-D experiments.

  11. ZPPR-20 phase D : a cylindrical assembly of polyethylene moderated U metal reflected by beryllium oxide and polyethylene.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lell, R.; Grimm, K.; McKnight, R.

    The Zero Power Physics Reactor (ZPPR) fast critical facility was built at the Argonne National Laboratory-West (ANL-W) site in Idaho in 1969 to obtain neutron physics information necessary for the design of fast breeder reactors. The ZPPR-20D Benchmark Assembly was part of a series of cores built in Assembly 20 (References 1 through 3) of the ZPPR facility to provide data for developing a nuclear power source for space applications (SP-100). The assemblies were beryllium oxide reflected and had core fuel compositions containing enriched uranium fuel, niobium and rhenium. ZPPR-20 Phase C (HEU-MET-FAST-075) was built as the reference flight configuration.more » Two other configurations, Phases D and E, simulated accident scenarios. Phase D modeled the water immersion scenario during a launch accident, and Phase E (SUB-HEU-MET-FAST-001) modeled the earth burial scenario during a launch accident. Two configurations were recorded for the simulated water immersion accident scenario (Phase D); the critical configuration, documented here, and the subcritical configuration (SUB-HEU-MET-MIXED-001). Experiments in Assembly 20 Phases 20A through 20F were performed in 1988. The reference water immersion configuration for the ZPPR-20D assembly was obtained as reactor loading 129 on October 7, 1988 with a fissile mass of 167.477 kg and a reactivity of -4.626 {+-} 0.044{cents} (k {approx} 0.9997). The SP-100 core was to be constructed of highly enriched uranium nitride, niobium, rhenium and depleted lithium. The core design called for two enrichment zones with niobium-1% zirconium alloy fuel cladding and core structure. Rhenium was to be used as a fuel pin liner to provide shut down in the event of water immersion and flooding. The core coolant was to be depleted lithium metal ({sup 7}Li). The core was to be surrounded radially with a niobium reactor vessel and bypass which would carry the lithium coolant to the forward inlet plenum. Immediately inside the reactor vessel was a

  12. Orientation-controlled parallel assembly at the air-water interface

    NASA Astrophysics Data System (ADS)

    Park, Kwang Soon; Hao Hoo, Ji; Baskaran, Rajashree; Böhringer, Karl F.

    2012-10-01

    This paper presents an experimental and theoretical study with statistical analysis of a high-yield, orientation-specific fluidic self-assembly process on a preprogrammed template. We demonstrate self-assembly of thin (less than few hundred microns in thickness) parts, which is vital for many applications in miniaturized platforms but problematic for today's pick-and-place robots. The assembly proceeds row-by-row as the substrate is pulled up through an air-water interface. Experiments and analysis are presented with an emphasis on the combined effect of controlled surface waves and magnetic force. For various gap values between a magnet and Ni-patterned parts, magnetic force distributions are generated using Monte Carlo simulation and employed to predict assembly yield. An analysis of these distributions shows that a gradual decline in yield following the probability density function can be expected with degrading conditions. The experimentally determined critical magnetic force is in good agreement with a derived value from a model of competing forces acting on a part. A general set of design guidelines is also presented from the developed model and experimental data.

  13. Structural insight into TPX2-stimulated microtubule assembly

    PubMed Central

    2017-01-01

    During mitosis and meiosis, microtubule (MT) assembly is locally upregulated by the chromatin-dependent Ran-GTP pathway. One of its key targets is the MT-associated spindle assembly factor TPX2. The molecular mechanism of how TPX2 stimulates MT assembly remains unknown because structural information about the interaction of TPX2 with MTs is lacking. Here, we determine the cryo-electron microscopy structure of a central region of TPX2 bound to the MT surface. TPX2 uses two flexibly linked elements (’ridge’ and ‘wedge’) in a novel interaction mode to simultaneously bind across longitudinal and lateral tubulin interfaces. These MT-interacting elements overlap with the binding site of importins on TPX2. Fluorescence microscopy-based in vitro reconstitution assays reveal that this interaction mode is critical for MT binding and facilitates MT nucleation. Together, our results suggest a molecular mechanism of how the Ran-GTP gradient can regulate TPX2-dependent MT formation. PMID:29120325

  14. The microviridae: Diversity, assembly, and experimental evolution.

    PubMed

    Doore, Sarah M; Fane, Bentley A

    2016-04-01

    The Microviridae, comprised of ssDNA, icosahedral bacteriophages, are a model system for studying morphogenesis and the evolution of assembly. Historically limited to the φX174-like viruses, recent results demonstrate that this richly diverse family is broadly divided into two groups. The defining feature appears to be whether one or two scaffolding proteins are required for assembly. The single-scaffolding systems contain an internal scaffolding protein, similar to many dsDNA viruses, and have a more complex coat protein fold. The two-scaffolding protein systems (φX174-like) encode an internal and external species, as well as an additional structural protein: a spike on the icosahedral vertices. Here, we discuss recent in silico and in vivo evolutionary analyses conducted with chimeric viruses and/or chimeric proteins. The results suggest 1) how double scaffolding systems can evolve into single and triple scaffolding systems; and 2) how assembly is the critical factor governing adaptation and the maintenance of species boundaries. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Regulation of corneal stroma extracellular matrix assembly.

    PubMed

    Chen, Shoujun; Mienaltowski, Michael J; Birk, David E

    2015-04-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Regulation of Corneal Stroma Extracellular Matrix Assembly

    PubMed Central

    Chen, Shoujun; Mienaltowski, Michael J.; Birk, David E.

    2014-01-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. PMID:25819456

  17. 40 CFR 1033.630 - Staged-assembly and delegated assembly exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Staged-assembly and delegated assembly... Staged-assembly and delegated assembly exemptions. (a) Staged assembly. You may ask us to provide a... assembly. This paragraph (b) applies where the engine manufacturer/remanufacturer does not complete...

  18. 40 CFR 1033.630 - Staged-assembly and delegated assembly exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Staged-assembly and delegated assembly... Staged-assembly and delegated assembly exemptions. (a) Staged assembly. You may ask us to provide a... assembly. This paragraph (b) applies where the engine manufacturer/remanufacturer does not complete...

  19. 40 CFR 1033.630 - Staged-assembly and delegated assembly exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Staged-assembly and delegated assembly... Staged-assembly and delegated assembly exemptions. (a) Staged assembly. You may ask us to provide a... assembly. This paragraph (b) applies where the engine manufacturer/remanufacturer does not complete...

  20. 40 CFR 1033.630 - Staged-assembly and delegated assembly exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Staged-assembly and delegated assembly... Staged-assembly and delegated assembly exemptions. (a) Staged assembly. You may ask us to provide a... assembly. This paragraph (b) applies where the engine manufacturer/remanufacturer does not complete...

  1. Assembly constraints drive co-evolution among ribosomal constituents.

    PubMed

    Mallik, Saurav; Akashi, Hiroshi; Kundu, Sudip

    2015-06-23

    Ribosome biogenesis, a central and essential cellular process, occurs through sequential association and mutual co-folding of protein-RNA constituents in a well-defined assembly pathway. Here, we construct a network of co-evolving nucleotide/amino acid residues within the ribosome and demonstrate that assembly constraints are strong predictors of co-evolutionary patterns. Predictors of co-evolution include a wide spectrum of structural reconstitution events, such as cooperativity phenomenon, protein-induced rRNA reconstitutions, molecular packing of different rRNA domains, protein-rRNA recognition, etc. A correlation between folding rate of small globular proteins and their topological features is known. We have introduced an analogous topological characteristic for co-evolutionary network of ribosome, which allows us to differentiate between rRNA regions subjected to rapid reconstitutions from those hindered by kinetic traps. Furthermore, co-evolutionary patterns provide a biological basis for deleterious mutation sites and further allow prediction of potential antibiotic targeting sites. Understanding assembly pathways of multicomponent macromolecules remains a key challenge in biophysics. Our study provides a 'proof of concept' that directly relates co-evolution to biophysical interactions during multicomponent assembly and suggests predictive power to identify candidates for critical functional interactions as well as for assembly-blocking antibiotic target sites. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. ZPR-6 assembly 7 high {sup 240} PU core : a cylindrical assemby with mixed (PU, U)-oxide fuel and a central high {sup 240} PU zone.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lell, R. M.; Schaefer, R. W.; McKnight, R. D.

    Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactormore » physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of

  3. 30 CFR 7.405 - Critical characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cable Splice Kits § 7.405 Critical characteristics. (a) A sample from each production run, batch, or lot of manufactured electric cable, signaling cable, or splice made from a splice kit shall be flame... cable or splice and a sample of the cable or splice kit assembly shall be visually inspected or tested...

  4. 30 CFR 7.405 - Critical characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cable Splice Kits § 7.405 Critical characteristics. (a) A sample from each production run, batch, or lot of manufactured electric cable, signaling cable, or splice made from a splice kit shall be flame... cable or splice and a sample of the cable or splice kit assembly shall be visually inspected or tested...

  5. The assembly of MreB, a prokaryotic homolog of actin.

    PubMed

    Esue, Osigwe; Cordero, Maria; Wirtz, Denis; Tseng, Yiider

    2005-01-28

    MreB, a major component of the bacterial cytoskeleton, exhibits high structural homology to its eukaryotic counterpart actin. Live cell microscopy studies suggest that MreB molecules organize into large filamentous spirals that support the cell membrane and play a key shape-determining function. However, the basic properties of MreB filament assembly remain unknown. Here, we studied the assembly of Thermotoga maritima MreB triggered by ATP in vitro and compared it to the well-studied assembly of actin. These studies show that MreB filament ultrastructure and polymerization depend crucially on temperature as well as the ions present on solution. At the optimal growth temperature of T. maritima, MreB assembly proceeded much faster than that of actin, without nucleation (or nucleation is highly favorable and fast) and with little or no contribution from filament end-to-end annealing. MreB exhibited rates of ATP hydrolysis and phosphate release similar to that of F-actin, however, with a critical concentration of approximately 3 nm, which is approximately 100-fold lower than that of actin. Furthermore, MreB assembled into filamentous bundles that have the ability to spontaneously form ring-like structures without auxiliary proteins. These findings suggest that despite high structural homology, MreB and actin display significantly different assembly properties.

  6. Transportation of part supply improvement in agricultural machinery assembly plant

    NASA Astrophysics Data System (ADS)

    Saysaman, Anusit; Chutima, Parames

    2018-02-01

    This research focused on the problem caused by the transportation of part supply in agricultural machinery assembly plant in Thailand, which is one of the processes that are critical to the whole production process. If poorly managed, it will affect transportation of part supply, the emergence of sink cost, quality problems, and the ability to respond to the needs of the customers in time. Since the competition in the agricultural machinery market is more intense, the efficiency of part transportation process has to be improved. In this study, the process of transporting parts of the plant was studied and it was found that the efficiency of the process of transporting parts from the sub assembly line to its main assembly line was 83%. The approach to the performance improvement is done by using the Lean tool to limit wastes based on the ECRS principle and applying pull production system by changing the transportation method to operate as milkrun for transportation of parts to synchronize with the part demands of the main assembly line. After the transportation of parts from sub-assembly line to the main assembly line was improved, the efficiency raised to 98% and transportation process cost was saved to 540,000 Baht per year.

  7. 2010 Community College Futures Assembly Focus: Effective Leadership-Addressing the Graduation Challenge in the 21st Century

    ERIC Educational Resources Information Center

    Campbell, Dale F.; Yu, Hongwei

    2010-01-01

    The Community College Futures Assembly has served as a national independent policy think tank since 1995. Its purpose is to articulate the critical issues facing American community colleges and recognize innovative programs. Convening annually in January in Orlando, Florida, the Assembly provides an interactive learning environment where tough…

  8. Rewriting nature's assembly manual for a ssRNA virus.

    PubMed

    Patel, Nikesh; Wroblewski, Emma; Leonov, German; Phillips, Simon E V; Tuma, Roman; Twarock, Reidun; Stockley, Peter G

    2017-11-14

    Satellite tobacco necrosis virus (STNV) is one of the smallest viruses known. Its genome encodes only its coat protein (CP) subunit, relying on the polymerase of its helper virus TNV for replication. The genome has been shown to contain a cryptic set of dispersed assembly signals in the form of stem-loops that each present a minimal CP-binding motif AXXA in the loops. The genomic fragment encompassing nucleotides 1-127 is predicted to contain five such packaging signals (PSs). We have used mutagenesis to determine the critical assembly features in this region. These include the CP-binding motif, the relative placement of PS stem-loops, their number, and their folding propensity. CP binding has an electrostatic contribution, but assembly nucleation is dominated by the recognition of the folded PSs in the RNA fragment. Mutation to remove all AXXA motifs in PSs throughout the genome yields an RNA that is unable to assemble efficiently. In contrast, when a synthetic 127-nt fragment encompassing improved PSs is swapped onto the RNA otherwise lacking CP recognition motifs, assembly is partially restored, although the virus-like particles created are incomplete, implying that PSs outside this region are required for correct assembly. Swapping this improved region into the wild-type STNV1 sequence results in a better assembly substrate than the viral RNA, producing complete capsids and outcompeting the wild-type genome in head-to-head competition. These data confirm details of the PS-mediated assembly mechanism for STNV and identify an efficient approach for production of stable virus-like particles encapsidating nonnative RNAs or other cargoes. Copyright © 2017 the Author(s). Published by PNAS.

  9. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    NASA Technical Reports Server (NTRS)

    Chopra, Arsh; Ramirez, Gustavo A.; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 mRad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  10. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    NASA Technical Reports Server (NTRS)

    Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  11. An Assembly Funnel Makes Biomolecular Complex Assembly Efficient

    PubMed Central

    Zenk, John; Schulman, Rebecca

    2014-01-01

    Like protein folding and crystallization, the self-assembly of complexes is a fundamental form of biomolecular organization. While the number of methods for creating synthetic complexes is growing rapidly, most require empirical tuning of assembly conditions and/or produce low yields. We use coarse-grained simulations of the assembly kinetics of complexes to identify generic limitations on yields that arise because of the many simultaneous interactions allowed between the components and intermediates of a complex. Efficient assembly occurs when nucleation is fast and growth pathways are few, i.e. when there is an assembly “funnel”. For typical complexes, an assembly funnel occurs in a narrow window of conditions whose location is highly complex specific. However, by redesigning the components this window can be drastically broadened, so that complexes can form quickly across many conditions. The generality of this approach suggests assembly funnel design as a foundational strategy for robust biomolecular complex synthesis. PMID:25360818

  12. Detection of Intermediates And Kinetic Control During Assembly of Bacteriophage P22 Procapsid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuma, R.; Tsuruta, H.; French, K.H.

    2009-05-26

    Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter {approx} 50 nm). In this work, we explore the possibility of controlling the outcome of assembly by scaffolding protein engineering. The scaffolding protein exists in monomer-dimer-tetramer equilibrium. We address the role of monomers and dimers in assembly by using three different scaffolding proteins with altered monomer-dimer equilibriummore » (weak dimer, covalent dimer, monomer). The progress and outcome of assembly was monitored by time-resolved X-ray scattering, which allowed us to distinguish between closed shells and incomplete assembly intermediates. Binding of scaffolding monomer activates the coat protein for assembly. Excess dimeric scaffolding protein resulted in rapid nucleation and kinetic trapping yielding incomplete shells. Addition of monomeric wild-type scaffold with excess coat protein completed these metastable shells. Thus, the monomeric scaffolding protein plays an essential role in the elongation phase by activating the coat and effectively lowering its critical concentration for assembly.« less

  13. Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler

    NASA Technical Reports Server (NTRS)

    Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel

    2017-01-01

    This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called digital materials. We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.

  14. Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler

    NASA Technical Reports Server (NTRS)

    Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel

    2017-01-01

    This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called "digital materials." We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.

  15. Analysis of large space structures assembly: Man/machine assembly analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Procedures for analyzing large space structures assembly via three primary modes: manual, remote and automated are outlined. Data bases on each of the assembly modes and a general data base on the shuttle capabilities to support structures assembly are presented. Task element times and structure assembly component costs are given to provide a basis for determining the comparative economics of assembly alternatives. The lessons learned from simulations of space structures assembly are detailed.

  16. Electron cryo-microscopy structure of Ebola nucleoprotein reveals a mechanism for nucleocapsid-like assembly

    PubMed Central

    Su, Zhaoming; Wu, Chao; Shi, Liuqing; Luthra, Priya; Pintilie, Grigore D.; Johnson, Britney; Porter, Justin R.; Ge, Peng; Chen, Muyuan; Liu, Gai; Frederick, Thomas E.; Binning, Jennifer M.; Bowman, Gregory R.; Zhou, Z. Hong; Basler, Christopher F.; Gross, Michael L.; Leung, Daisy W.

    2018-01-01

    Summary Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22–α23. Biochemical, biophysical, and mutational analysis revealed inter-eNP contacts within α22–α23 are critical for viral NC-assembly and regulate viral RNA synthesis. These observations suggest that the N-terminus and α22–α23 of eNP function as context dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target. PMID:29474922

  17. Consistent criticality and radiation studies of Swiss spent nuclear fuel: The CS2M approach.

    PubMed

    Rochman, D; Vasiliev, A; Ferroukhi, H; Pecchia, M

    2018-06-15

    In this paper, a new method is proposed to systematically calculate at the same time canister loading curves and radiation sources, based on the inventory information from an in-core fuel management system. As a demonstration, the isotopic contents of the assemblies come from a Swiss PWR, considering more than 6000 cases from 34 reactor cycles. The CS 2 M approach consists in combining four codes: CASMO and SIMULATE to extract the assembly characteristics (based on validated models), the SNF code for source emission and MCNP for criticality calculations for specific canister loadings. The considered cases cover enrichments from 1.9 to 5.0% for the UO 2 assemblies and 4.8% for the MOX, with assembly burnup values from 7 to 74 MWd/kgU. Because such a study is based on the individual fuel assembly history, it opens the possibility to optimize canister loadings from the point-of-view of criticality, decay heat and emission sources. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. One step DNA assembly for combinatorial metabolic engineering.

    PubMed

    Coussement, Pieter; Maertens, Jo; Beauprez, Joeri; Van Bellegem, Wouter; De Mey, Marjan

    2014-05-01

    The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Desmosome Assembly and Disassembly Are Membrane Raft-Dependent

    PubMed Central

    Faundez, Victor; Koval, Michael; Mattheyses, Alexa L.; Kowalczyk, Andrew P.

    2014-01-01

    Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV. PMID:24498201

  20. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.

    PubMed

    Zhu, Guizhi; Hu, Rong; Zhao, Zilong; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2013-11-06

    DNA nanotechnology has been extensively explored to assemble various functional nanostructures for versatile applications. Mediated by Watson-Crick base-pairing, these DNA nanostructures have been conventionally assembled through hybridization of many short DNA building blocks. Here we report the noncanonical self-assembly of multifunctional DNA nanostructures, termed as nanoflowers (NFs), and the versatile biomedical applications. These NFs were assembled from long DNA building blocks generated via rolling circle replication (RCR) of a designer template. NF assembly was driven by liquid crystallization and dense packaging of building blocks, without relying on Watson-Crick base-pairing between DNA strands, thereby avoiding the otherwise conventional complicated DNA sequence design. NF sizes were readily tunable in a wide range, by simply adjusting such parameters as assembly time and template sequences. NFs were exceptionally resistant to nuclease degradation, denaturation, or dissociation at extremely low concentration, presumably resulting from the dense DNA packaging in NFs. The exceptional biostability is critical for biomedical applications. By rational design, NFs can be readily incorporated with myriad functional moieties. All these properties make NFs promising for versatile applications. As a proof-of-principle demonstration, in this study, NFs were integrated with aptamers, bioimaging agents, and drug loading sites, and the resultant multifunctional NFs were demonstrated for selective cancer cell recognition, bioimaging, and targeted anticancer drug delivery.

  1. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications

    PubMed Central

    Zhu, Guizhi; Hu, Rong; Zhao, Zilong; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2013-01-01

    DNA nanotechnology has been extensively explored to assemble various functional nanostructures for versatile applications. Mediated by Watson-Crick base-pairing, these DNA nanostructures have been conventionally assembled through hybridization of many short DNA building blocks. Here we report the noncanonical self-assembly of multifunctional DNA nanostructures, termed as nanoflowers (NFs), and the versatile biomedical applications. These NFs were assembled from long DNA building blocks generated via Rolling Circle Replication (RCR) of a designer template. NF assembly was driven by liquid crystallization and dense packaging of building blocks, without relying on Watson-Crick base-pairing between DNA strands, thereby avoiding the otherwise conventional complicated DNA sequence design. NF sizes were readily tunable in a wide range, by simply adjusting such parameters as assembly time and template sequences. NFs were exceptionally resistant to nuclease degradation, denaturation, or dissociation at extremely low concentration, presumably resulting from the dense DNA packaging in NFs. The exceptional biostability is critical for biomedical applications. By rational design, NFs can be readily incorporated with myriad functional moieties. All these properties make NFs promising for versatile applications. As a proof-of-principle demonstration, in this study, NFs were integrated with aptamers, bioimaging agents, and drug loading sites, and the resultant multifunctional NFs were demonstrated for selective cancer cell recognition, bioimaging, and targeted anticancer drug delivery. PMID:24164620

  2. Clean then Assemble Versus Assemble then Clean: Several Comparisons

    NASA Technical Reports Server (NTRS)

    Welker, Roger W.

    2004-01-01

    Cleanliness of manufactured parts and assemblies is a significant issue in many industries including disk drives, semiconductors, aerospace, and medical devices. Clean manufacturing requires cleanroom floor space and cleaning technology that are both expensive to own and expensive to operate. Strategies to reduce these costs are an important consideration. One strategy shown to be effective at reducing costs is to assemble parts into subassemblies and then clean the subassembly, rather than clean the individual parts first and then assemble them. One advantage is that assembly outside of the cleanroom reduces the amount of cleanroom floor space and its associated operating cost premium. A second advantage is that this strategy reduces the number of individual parts that must be cleaned prior to assembly, reducing the number of cleaning baskets, handling and, possibly, reducing the number of cleaners. The assemble then clean strategy also results in a part that is significantly cleaner because contamination generated during the assembly steps are more effectively removed that normally can be achieved by hand wiping after assembly in the cleanroom.

  3. Initial Validation of Robotic Operations for In-Space Assembly of a Large Solar Electric Propulsion Transport Vehicle

    NASA Technical Reports Server (NTRS)

    Komendera, Erik E.; Dorsey, John T.

    2017-01-01

    Developing a capability for the assembly of large space structures has the potential to increase the capabilities and performance of future space missions and spacecraft while reducing their cost. One such application is a megawatt-class solar electric propulsion (SEP) tug, representing a critical transportation ability for the NASA lunar, Mars, and solar system exploration missions. A series of robotic assembly experiments were recently completed at Langley Research Center (LaRC) that demonstrate most of the assembly steps for the SEP tug concept. The assembly experiments used a core set of robotic capabilities: long-reach manipulation and dexterous manipulation. This paper describes cross-cutting capabilities and technologies for in-space assembly (ISA), applies the ISA approach to a SEP tug, describes the design and development of two assembly demonstration concepts, and summarizes results of two sets of assembly experiments that validate the SEP tug assembly steps.

  4. Plasma Pyrolysis Assembly Regeneration Evaluation

    NASA Technical Reports Server (NTRS)

    Medlen, Amber; Abney, Morgan B.; Miller, Lee A.

    2011-01-01

    In April 2010 the Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS). This technology requires hydrogen to recover oxygen from carbon dioxide. This results in the production of water and methane. Water is electrolyzed to provide oxygen to the crew. Methane is vented to space resulting in a loss of valuable hydrogen and unreduced carbon dioxide. This is not critical for ISS because of the water resupply from Earth. However, in order to have enough oxygen for long-term missions, it will be necessary to recover the hydrogen to maximize oxygen recovery. Thus, the Plasma Pyrolysis Assembly (PPA) was designed to recover hydrogen from methane. During operation, the PPA produces small amounts of carbon that can ultimately reduce performance by forming on the walls and windows of the reactor chamber. The carbon must be removed, although mechanical methods are highly inefficient, thus chemical methods are of greater interest. The purpose of this effort was to determine the feasibility of chemically removing the carbon from the walls and windows of a PPA reactor using a pure carbon dioxide stream.

  5. The space station assembly phase: Flight telerobotic servicer feasibility, volume 1

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.

    1987-01-01

    The question is addressed which was raised by the Critical Evaluation Task Force (CETF) analysis of the space station: if a Flight Telerobotic Servicer (FTS) of a given technical risk could be built for use during space station assembly, could it save significant extravehicular (EVA) resources. Key issues and trade-offs associated with using an FTS to aid in space station assembly phase tasks such as construction and servicing are identified. A methodology is presented that incorporates assessment of candidate assembly phase tasks, telerobotics performance capabilities, development costs, operational constraints (STS and proximity operations), maintenance, attached payloads, and polar platforms. A discussion of the issues is presented with focus on potential FTS roles: (1) as a research-oriented test bed to learn more about space usage of telerobotics; (2) as a research-based test bed with an experimental demonstration orientation and limited assembly and servicing applications; or (3) as an operational system to augment EVA, to aid the construction of the space station, and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations. During the course of the study, the baseline configuration was modified into Phase 1 (a station assembled in 12 flights), and Phase 2 (a station assembled over a 30 flight period) configuration.

  6. ZPR-3 Assembly 11 : A cylindrical sssembly of highly enriched uranium and depleted uranium with an average {sup 235}U enrichment of 12 atom % and a depleted uranium reflector.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lell, R. M.; McKnight, R. D.; Tsiboulia, A.

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physicsmore » benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 11 (ZPR-3/11) was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 12 at.% and a depleted uranium reflector. Approximately 79.7% of the total fissions in this assembly occur above 100 keV, approximately 20.3% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 8 in the Cross Section Evaluation Working

  7. CRITICAL EXPERIMENT TANK (CET) REACTOR HAZARDS SUMMARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becar, N.J.; Kunze, J.F.; Pincock, G..D.

    1961-03-31

    The Critical Experiment Tank (CET) reactor assembly, the associated systems, and the Low Power Test Facility in which the reactor is to be operated are described. An evaluation and summary of the hazards associated with the operation of the CET reactor in the LPTF at the ldsho Test Station are also presented. (auth)

  8. Metagenome assembly through clustering of next-generation sequencing data using protein sequences.

    PubMed

    Sim, Mikang; Kim, Jaebum

    2015-02-01

    The study of environmental microbial communities, called metagenomics, has gained a lot of attention because of the recent advances in next-generation sequencing (NGS) technologies. Microbes play a critical role in changing their environments, and the mode of their effect can be solved by investigating metagenomes. However, the difficulty of metagenomes, such as the combination of multiple microbes and different species abundance, makes metagenome assembly tasks more challenging. In this paper, we developed a new metagenome assembly method by utilizing protein sequences, in addition to the NGS read sequences. Our method (i) builds read clusters by using mapping information against available protein sequences, and (ii) creates contig sequences by finding consensus sequences through probabilistic choices from the read clusters. By using simulated NGS read sequences from real microbial genome sequences, we evaluated our method in comparison with four existing assembly programs. We found that our method could generate relatively long and accurate metagenome assemblies, indicating that the idea of using protein sequences, as a guide for the assembly, is promising. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Facile "modular assembly" for fast construction of a highly oriented crystalline MOF nanofilm.

    PubMed

    Xu, Gang; Yamada, Teppei; Otsubo, Kazuya; Sakaida, Shun; Kitagawa, Hiroshi

    2012-10-10

    The preparation of crystalline, ordered thin films of metal-organic frameworks (MOFs) will be a critical process for MOF-based nanodevices in the future. MOF thin films with perfect orientation and excellent crystallinity were formed with novel nanosheet-structured components, Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin], by a new "modular assembly" strategy. The modular assembly process involves two steps: a "modularization" step is used to synthesize highly crystalline "modules" with a nanosized structure that can be conveniently assembled into a thin film in the following "assembly" step. With this method, MOF thin films can easily be set up on different substrates at very high speed with controllable thickness. This new approach also enabled us to prepare highly oriented crystalline thin films of MOFs that cannot be prepared in thin-film form by traditional techniques.

  10. Small-Molecule Effectors of Hepatitis B Virus Capsid Assembly Give Insight into Virus Life Cycle▿

    PubMed Central

    Bourne, Christina; Lee, Sejin; Venkataiah, Bollu; Lee, Angela; Korba, Brent; Finn, M. G.; Zlotnick, Adam

    2008-01-01

    The relationship between the physical chemistry and biology of self-assembly is poorly understood, but it will be critical to quantitatively understand infection and for the design of antivirals that target virus genesis. Here we take advantage of heteroaryldihydropyrimidines (HAPs), which affect hepatitis B virus (HBV) assembly, to gain insight and correlate in vitro assembly with HBV replication in culture. Based on a low-resolution crystal structure of a capsid-HAP complex, a closely related series of HAPs were designed and synthesized. These differentially strengthen the association between neighboring capsid proteins, alter the kinetics of assembly, and give rise to aberrant structures incompatible with a functional capsid. The chemical nature of the HAP variants correlated well with the structure of the HAP binding pocket. The thermodynamics and kinetics of in vitro assembly had strong and predictable effects on product morphology. However, only the kinetics of in vitro assembly had a strong correlation with inhibition of HBV replication in HepG2.2.15 cells; there was at best a weak correlation between assembly thermodynamics and replication. The correlation between assembly kinetics and virus suppression implies a competition between successful assembly and misassembly, small molecule induced or otherwise. This is a predictive and testable model for the mechanism of action of assembly effectors. PMID:18684823

  11. Role of Histone Acetylation in the Assembly and Modulation of Chromatin Structures

    PubMed Central

    Annunziato, Anthony T.; Hansen, Jeffrey C.

    2000-01-01

    The acetylation of the core histone N-terminal “tail” domains is now recognized as a highly conserved mechanism for regulating chromatin functional states. The following article examines possible roles of acetylation in two critically important cellular processes: replication-coupled nucleosome assembly, and reversible transitions in chromatin higher order structure. After a description of the acetylation of newly synthesized histones, and of the likely acetyltransferases involved, an overview of histone octamer assembly is presented. Our current understanding of the factors thought to assemble chromatin in vivo is then described. Genetic and biochemical investigations of the function the histone tails, and their acetylation, in nucleosome assembly are detailed, followed by an analysis of the importance of histone deacetylation in the maturation of newly replicated chromatin. In the final section the involvement of the histone tail domains in chromatin higher order structures is addressed, along with the role of histone acetylation in chromatin folding. Suggestions for future research are offered in the concluding remarks. PMID:11097424

  12. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.

    PubMed

    Ma, Hongmin; Hao, Jingcheng

    2011-11-01

    Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011

  13. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria

    PubMed Central

    Chahales, Peter; Thanassi, David G.

    2015-01-01

    Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities such as biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hairlike fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections. PMID:26542038

  14. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  15. Feedbacks between community assembly and habitat selection shape variation in local colonization

    USGS Publications Warehouse

    Kraus, J.M.; Vonesh, J.R.

    2010-01-01

    1. Non-consumptive effects of predators are increasingly recognized as important drivers of community assembly and structure. Specifically, habitat selection responses to top predators during colonization and oviposition can lead to large differences in aquatic community structure, composition and diversity. 2. These differences among communities due to predators may develop as communities assemble, potentially altering the relative quality of predator vs. predator-free habitats through time. If so, community assembly would be expected to modify the subsequent behavioural responses of colonists to habitats containing top predators. Here, we test this hypothesis by manipulating community assembly and the presence of fish in experimental ponds and measuring their independent and combined effects on patterns of colonization by insects and amphibians. 3. Assembly modified habitat selection of dytscid beetles and hylid frogs by decreasing or even reversing avoidance of pools containing blue-spotted sunfish (Enneacanthus gloriosus). However, not all habitat selection responses to fish depended on assembly history. Hydrophilid beetles and mosquitoes avoided fish while chironomids were attracted to fish pools, regardless of assembly history. 4. Our results show that community assembly causes taxa-dependent feedbacks that can modify avoidance of habitats containing a top predator. Thus, non-consumptive effects of a top predator on community structure change as communities assemble and effects of competitors and other predators combine with the direct effects of top predators to shape colonization. 5. This work reinforces the importance of habitat selection for community assembly in aquatic systems, while illustrating the range of factors that may influence colonization rates and resulting community structure. Directly manipulating communities both during colonization and post-colonization is critical for elucidating how sequential processes interact to shape communities.

  16. Inlet nozzle assembly

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  17. Inlet nozzle assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  18. Multifunctional Self-Assembled Monolayers for Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Cernetic, Nathan

    Organic field effect transistors (OFETs) have the potential to reach commercialization for a wide variety of applications such as active matrix display circuitry, chemical and biological sensing, radio-frequency identification devices and flexible electronics. In order to be commercially competitive with already at-market amorphous silicon devices, OFETs need to approach similar performance levels. Significant progress has been made in developing high performance organic semiconductors and dielectric materials. Additionally, a common route to improve the performance metric of OFETs is via interface modification at the critical dielectric/semiconductor and electrode/semiconductor interface which often play a significant role in charge transport properties. These metal oxide interfaces are typically modified with rationally designed multifunctional self-assembled monolayers. As means toward improving the performance metrics of OFETs, rationally designed multifunctional self-assembled monolayers are used to explore the relationship between surface energy, SAM order, and SAM dipole on OFET performance. The studies presented within are (1) development of a multifunctional SAM capable of simultaneously modifying dielectric and metal surface while maintaining compatibility with solution processed techniques (2) exploration of the relationship between SAM dipole and anchor group on graphene transistors, and (3) development of self-assembled monolayer field-effect transistor in which the traditional thick organic semiconductor is replaced by a rationally designed self-assembled monolayer semiconductor. The findings presented within represent advancement in the understanding of the influence of self-assembled monolayers on OFETs as well as progress towards rationally designed monolayer transistors.

  19. Engineering aqueous fiber assembly into silk-elastin-like protein polymers.

    PubMed

    Zeng, Like; Jiang, Linan; Teng, Weibing; Cappello, Joseph; Zohar, Yitshak; Wu, Xiaoyi

    2014-07-01

    Self-assembled peptide/protein nanofibers are valuable 1D building blocks for creating complex structures with designed properties and functions. It is reported that the self-assembly of silk-elastin-like protein polymers into nanofibers or globular aggregates in aqueous solutions can be modulated by tuning the temperature of the protein solutions, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model is proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores--affected by the size of the silk blocks and the charge of the elastin blocks--plays a critical role in the assembly of silk-elastin nanofibers. Furthermore, enhanced hydrophobic interactions between the elastin blocks at elevated temperatures greatly influence the nanoscale features of silk-elastin nanofibers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spatial Extent of Charge Repulsion Regulates Assembly Pathways for Lysozyme Amyloid Fibrils

    PubMed Central

    Hill, Shannon E.; Miti, Tatiana; Richmond, Tyson; Muschol, Martin

    2011-01-01

    Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic

  1. jsc2018m000297_Investigation_Seeks_to_Create_Self-Assembling_Materials-MP4

    NASA Image and Video Library

    2018-05-14

    Investigation Seeks to Create Self-Assembling Materials------ As we travel farther into space, clever solutions to problems like engine part malfunctions and other possible mishaps will be a vital part of the planning process. 3D printing, or additive manufacturing, is an emerging technology that may be used to custom-create mission-critical parts. An integral piece of this process is understanding how particle shape, size distribution and packing behavior affect the manufacturing process. The Advanced Colloids Experiment-Temperature-7 investigation (ACE-T-7) aboard the International Space Station explores the feasibility of creating self-assembling microscopic particles for use in the manufacturing of materials during spaceflight. Read more about ACE-T-& here: https://www.nasa.gov/feature/investigation-seeks-to-create-self-assembling-materials

  2. Two criteria for the selection of assembly plans - Maximizing the flexibility of sequencing the assembly tasks and minimizing the assembly time through parallel execution of assembly tasks

    NASA Technical Reports Server (NTRS)

    Homem De Mello, Luiz S.; Sanderson, Arthur C.

    1991-01-01

    The authors introduce two criteria for the evaluation and selection of assembly plans. The first criterion is to maximize the number of different sequences in which the assembly tasks can be executed. The second criterion is to minimize the total assembly time through simultaneous execution of assembly tasks. An algorithm that performs a heuristic search for the best assembly plan over the AND/OR graph representation of assembly plans is discussed. Admissible heuristics for each of the two criteria introduced are presented. Some implementation issues that affect the computational efficiency are addressed.

  3. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly

    PubMed Central

    Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min

    2017-01-01

    The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena. PMID:28266537

  4. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly

    NASA Astrophysics Data System (ADS)

    Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min

    2017-03-01

    The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.

  5. Architecture and assembly of the Bacillus subtilis spore coat.

    PubMed

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  6. Architecture and Assembly of the Bacillus subtilis Spore Coat

    PubMed Central

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  7. Self-assembly in Dipolar Fluids

    NASA Astrophysics Data System (ADS)

    Ronti, Michela; Kantorovich, Sofia

    We are studying low temperature structural transitions in dipolar hard spheres (DHS), combining grand-canonical Monte Carlo simulations and direct analytical theoretical calculations. DHS is characterized by long-range anisotropic interactions: it consists of a point dipole at the center of a hard sphere. We are interested in low temperature and low density phase behaviour of DHS systems. From a theoretical point of view the process of self-assembly is not responsible for a phase transition; this belief was completely reverted by theoretical studies showing that the process of self-assembly is alone capable to induce phase transition. On the other hand in the last years it was proved that no sign of critical behaviour is observed, implementing efficient and tailored Monte Carlo algorithms. Moreover a theoretical approach based on Density Functional Theory was developed: a series of structural transitions were discovered providing evidence of a hierarchy in the structures on cooling. We are performing free-energy calculations in order to draw the phase diagram of DHS model. Comparing the numerical results with the theoretical ones shed light on the scenario of temperature induced structural transitions in magnetic nanocolloids. Etn-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).

  8. Mounting for Fabrication, Metrology, and Assembly of Full Shell Grazing Incidence Optics

    NASA Technical Reports Server (NTRS)

    Roche, Jacqueline M.; Gubarev, Mikhail V.; O'Dell, Stephen L.; Kolodziejczak, Jeffery; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.

    2014-01-01

    Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on full-shell grazing-incidence mirrors, during all processes leading to flight mirror assemblies. Here we report initial results of this study.

  9. Sensor mount assemblies and sensor assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David H

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and themore » tooth is formed on the second end of the first finger.« less

  10. Firearm trigger assembly

    DOEpatents

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  11. Portable propellant cutting assembly, and method of cutting propellant with assembly

    NASA Technical Reports Server (NTRS)

    Sharp, Roger A. (Inventor); Hoskins, Shawn W. (Inventor); Payne, Brett D. (Inventor)

    2002-01-01

    A propellant cutting assembly and method of using the assembly to cut samples of solid propellant in a repeatable and consistent manner is disclosed. The cutting assembly utilizes two parallel extension beams which are shorter than the diameter of a central bore of an annular solid propellant grain and can be loaded into the central bore. The assembly is equipped with retaining heads at its respective ends and an adjustment mechanism to position and wedge the assembly within the central bore. One end of the assembly is equipped with a cutting blade apparatus which can be extended beyond the end of the extension beams to cut into the solid propellant.

  12. Atomistic Design and Simulations of Nanoscale Machines and Assembly

    NASA Technical Reports Server (NTRS)

    Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.

    2000-01-01

    Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.

  13. Multiple mechanisms of early plant community assembly with stochasticity driving the process.

    PubMed

    Marteinsdóttir, Bryndís; Svavarsdóttir, Kristín; Thórhallsdóttir, Thóra Ellen

    2018-01-01

    Initial plant establishment is one of the most critical phases in ecosystem development, where an early suite of physical (environmental filtering), biological (seed limitation, species interactions) and stochastic factors may affect successional trajectories and rates. While functional traits are commonly used to study processes that influence plant community assembly in late successional communities, few studies have applied them to primary succession. The objective here was to determine the importance of these factors in shaping early plant community assembly on a glacial outwash plain, Skeiðarársandur, in SE Iceland using a trait based approach. We used data on vascular plant assemblages at two different spatial scales (community and neighborhood) sampled in 2005 and 2012, and compiled a dataset on seven functional traits linked to species dispersal abilities, establishment, and persistence for all species within these assemblages. Trait-based null model analyses were used to determine the processes that influenced plant community assembly from the regional species pool into local communities, and to determine if the importance of these processes in community assembly was dependent on local environment or changed with time. On the community scale, for most traits, random processes dominated the assembly from the regional species pool. However, in some communities, there was evidence of non-random assembly in relation to traits linked to species dispersal abilities, persistence, and establishment. On the neighborhood scale, assembly was mostly random. The relative importance of different processes varied spatially and temporally and the variation was linked to local soil conditions. While stochasticity dominated assembly patterns of our early successional communities, there was evidence of both seed limitation and environmental filtering. Our results indicated that as soil conditions improved, environmental constraints on assembly became weaker and the

  14. Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly

    PubMed Central

    Andreou, Andreas I.

    2018-01-01

    Synthetic biology builds upon the foundation of engineering principles, prompting innovation and improvement in biotechnology via a design-build-test-learn cycle. A community-wide standard in DNA assembly would enable bio-molecular engineering at the levels of predictivity and universality in design and construction that are comparable to other engineering fields. Golden Gate Assembly technology, with its robust capability to unidirectionally assemble numerous DNA fragments in a one-tube reaction, has the potential to deliver a universal standard framework for DNA assembly. While current Golden Gate Assembly frameworks (e.g. MoClo and Golden Braid) render either high cloning capacity or vector toolkit simplicity, the technology can be made more versatile—simple, streamlined, and cost/labor-efficient, without compromising capacity. Here we report the development of a new Golden Gate Assembly framework named Mobius Assembly, which combines vector toolkit simplicity with high cloning capacity. It is based on a two-level, hierarchical approach and utilizes a low-frequency cutter to reduce domestication requirements. Mobius Assembly embraces the standard overhang designs designated by MoClo, Golden Braid, and Phytobricks and is largely compatible with already available Golden Gate part libraries. In addition, dropout cassettes encoding chromogenic proteins were implemented for cost-free visible cloning screening that color-code different cloning levels. As proofs of concept, we have successfully assembled up to 16 transcriptional units of various pigmentation genes in both operon and multigene arrangements. Taken together, Mobius Assembly delivers enhanced versatility and efficiency in DNA assembly, facilitating improved standardization and automation. PMID:29293531

  15. Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly.

    PubMed

    Andreou, Andreas I; Nakayama, Naomi

    2018-01-01

    Synthetic biology builds upon the foundation of engineering principles, prompting innovation and improvement in biotechnology via a design-build-test-learn cycle. A community-wide standard in DNA assembly would enable bio-molecular engineering at the levels of predictivity and universality in design and construction that are comparable to other engineering fields. Golden Gate Assembly technology, with its robust capability to unidirectionally assemble numerous DNA fragments in a one-tube reaction, has the potential to deliver a universal standard framework for DNA assembly. While current Golden Gate Assembly frameworks (e.g. MoClo and Golden Braid) render either high cloning capacity or vector toolkit simplicity, the technology can be made more versatile-simple, streamlined, and cost/labor-efficient, without compromising capacity. Here we report the development of a new Golden Gate Assembly framework named Mobius Assembly, which combines vector toolkit simplicity with high cloning capacity. It is based on a two-level, hierarchical approach and utilizes a low-frequency cutter to reduce domestication requirements. Mobius Assembly embraces the standard overhang designs designated by MoClo, Golden Braid, and Phytobricks and is largely compatible with already available Golden Gate part libraries. In addition, dropout cassettes encoding chromogenic proteins were implemented for cost-free visible cloning screening that color-code different cloning levels. As proofs of concept, we have successfully assembled up to 16 transcriptional units of various pigmentation genes in both operon and multigene arrangements. Taken together, Mobius Assembly delivers enhanced versatility and efficiency in DNA assembly, facilitating improved standardization and automation.

  16. Seal assembly

    DOEpatents

    Johnson, Roger Neal; Longfritz, William David

    2001-01-01

    A seal assembly that seals a gap formed by a groove comprises a seal body, a biasing element, and a connection that connects the seal body to the biasing element to form the seal assembly. The seal assembly further comprises a concave-shaped center section and convex-shaped contact portions at each end of the seal body. The biasing element is formed from an elastic material and comprises a convex-shaped center section and concave-shaped biasing zones that are opposed to the convex-shaped contact portions. The biasing element is adapted to be compressed to change a width of the seal assembly from a first width to a second width that is smaller than the first width. In the compressed state, the seal assembly can be disposed in the groove. After release of the compressing force, the seal assembly expands. The contact portions will move toward a surface of the groove and the biasing zones will move into contact with another surface of the groove. The biasing zones will bias the contact portions of the seal body against the surface of the groove.

  17. Dynamic Nanoparticles Assemblies

    PubMed Central

    WANG, LIBING; XU, LIGUANG; KUANG, HUA; XU, CHUANLAI; KOTOV, NICHOLAS A.

    2012-01-01

    CONSPECTUS Importance Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Classification Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions

  18. Safety Criticality Standards Using the French CRISTAL Code Package: Application to the AREVA NP UO{sub 2} Fuel Fabrication Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doucet, M.; Durant Terrasson, L.; Mouton, J.

    2006-07-01

    Criticality safety evaluations implement requirements to proof of sufficient sub critical margins outside of the reactor environment for example in fuel fabrication plants. Basic criticality data (i.e., criticality standards) are used in the determination of sub critical margins for all processes involving plutonium or enriched uranium. There are several criticality international standards, e.g., ARH-600, which is one the US nuclear industry relies on. The French Nuclear Safety Authority (DGSNR and its advising body IRSN) has requested AREVA NP to review the criticality standards used for the evaluation of its Low Enriched Uranium fuel fabrication plants with CRISTAL V0, the recentlymore » updated French criticality evaluation package. Criticality safety is a concern for every phase of the fabrication process including UF{sub 6} cylinder storage, UF{sub 6}-UO{sub 2} conversion, powder storage, pelletizing, rod loading, assembly fabrication, and assembly transportation. Until 2003, the accepted criticality standards were based on the French CEA work performed in the late seventies with the APOLLO1 cell/assembly computer code. APOLLO1 is a spectral code, used for evaluating the basic characteristics of fuel assemblies for reactor physics applications, which has been enhanced to perform criticality safety calculations. Throughout the years, CRISTAL, starting with APOLLO1 and MORET 3 (a 3D Monte Carlo code), has been improved to account for the growth of its qualification database and for increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating a modern basic microscopic cross section set based on JEF2.2 and the comprehensive APOLLO2 and MORET 4 codes. APOLLO2 is well suited for criticality standards calculations as it includes a sophisticated self shielding approach, a P{sub ij} flux determination, and a 1D transport (S{sub n}) process. CRISTAL V0 is the result of more than five years of development work focusing on

  19. SM, TVIS Chassis Assembly, Treadmill Belt Assembly, Top

    NASA Image and Video Library

    2002-01-01

    jsc2002e38738 (2002) --- Top view of the Treadmill Belt Assembly on the Treadmill Vibration Isolation System (TVIS) Chassis Assembly for use in the International Space Station (ISS) Service Module (SM).

  20. Programmed Nanomaterial Assemblies in Large Scales: Applications of Synthetic and Genetically- Engineered Peptides to Bridge Nano-Assemblies and Macro-Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Hiroshi

    Work is reported in these areas: Large-scale & reconfigurable 3D structures of precise nanoparticle assemblies in self-assembled collagen peptide grids; Binary QD-Au NP 3D superlattices assembled with collagen-like peptides and energy transfer between QD and Au NP in 3D peptide frameworks; Catalytic peptides discovered by new hydrogel-based combinatorial phage display approach and their enzyme-mimicking 2D assembly; New autonomous motors of metal-organic frameworks (MOFs) powered by reorganization of self-assembled peptides at interfaces; Biomimetic assembly of proteins into microcapsules on oil-in-water droplets with structural reinforcement via biomolecular recognition-based cross-linking of surface peptides; and Biomimetic fabrication of strong freestanding genetically-engineered collagen peptide filmsmore » reinforced by quantum dot joints. We gained the broad knowledge about biomimetic material assembly from nanoscale to microscale ranges by coassembling peptides and NPs via biomolecular recognition. We discovered: Genetically-engineered collagen-like peptides can be self-assembled with Au NPs to generate 3D superlattices in large volumes (> μm{sup 3}); The assembly of the 3D peptide-Au NP superstructures is dynamic and the interparticle distance changes with assembly time as the reconfiguration of structure is triggered by pH change; QDs/NPs can be assembled with the peptide frameworks to generate 3D superlattices and these QDs/NPs can be electronically coupled for the efficient energy transfer; The controlled assembly of catalytic peptides mimicking the catalytic pocket of enzymes can catalyze chemical reactions with high selectivity; and, For the bacteria-mimicking swimmer fabrication, peptide-MOF superlattices can power translational and propellant motions by the reconfiguration of peptide assembly at the MOF-liquid interface.« less

  1. Analysis of benchmark critical experiments with ENDF/B-VI data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, J. Jr.; Kahler, A.C.

    1991-12-31

    Several clean critical experiments were analyzed with ENDF/B-VI data to assess the adequacy of the data for U{sup 235}, U{sup 238} and oxygen. These experiments were (1) a set of homogeneous U{sup 235}-H{sub 2}O assemblies spanning a wide range of hydrogen/uranium ratio, and (2) TRX-1, a simple, H{sub 2}O-moderated Bettis lattice of slightly-enriched uranium metal rods. The analyses used the Monte Carlo program RCP01, with explicit three-dimensional geometry and detailed representation of cross sections. For the homogeneous criticals, calculated k{sub crit} values for large, thermal assemblies show good agreement with experiment. This supports the evaluated thermal criticality parameters for U{supmore » 235}. However, for assemblies with smaller H/U ratios, k{sub crit} values increase significantly with increasing leakage and flux-spectrum hardness. These trends suggest that leakage is underpredicted and that the resonance eta of the ENDF/B-VI U{sup 235} is too large. For TRX-1, reasonably good agreement is found with measured lattice parameters (reaction-rate ratios). Of primary interest is rho28, the ratio of above-thermal to thermal U{sup 238} capture. Calculated rho28 is 2.3 ({+-} 1.7) % above measurement, suggesting that U{sup 238} resonance capture remains slightly overpredicted with ENDF/B-VI. However, agreement is better than observed with earlier versions of ENDF/B.« less

  2. Comparison of three assembly strategies for a heterozygous seedless grapevine genome assembly.

    PubMed

    Patel, Sagar; Lu, Zhixiu; Jin, Xiaozhu; Swaminathan, Padmapriya; Zeng, Erliang; Fennell, Anne Y

    2018-01-17

    De novo heterozygous assembly is an ongoing challenge requiring improved assembly approaches. In this study, three strategies were used to develop de novo Vitis vinifera 'Sultanina' genome assemblies for comparison with the inbred V. vinifera (PN40024 12X.v2) reference genome and a published Sultanina ALLPATHS-LG assembly (AP). The strategies were: 1) a default PLATANUS assembly (PLAT_d) for direct comparison with AP assembly, 2) an iterative merging strategy using METASSEMBLER to combine PLAT_d and AP assemblies (MERGE) and 3) PLATANUS parameter modifications plus GapCloser (PLAT*_GC). The three new assemblies were greater in size than the AP assembly. PLAT*_GC had the greatest number of scaffolds aligning with a minimum of 95% identity and ≥1000 bp alignment length to V. vinifera (PN40024 12X.v2) reference genome. SNP analysis also identified additional high quality SNPs. A greater number of sequence reads mapped back with zero-mismatch to the PLAT_d, MERGE, and PLAT*_GC (>94%) than was found in the AP assembly (87%) indicating a greater fidelity to the original sequence data in the new assemblies than in AP assembly. A de novo gene prediction conducted using seedless RNA-seq data predicted > 30,000 coding sequences for the three new de novo assemblies, with the greatest number (30,544) in PLAT*_GC and only 26,515 for the AP assembly. Transcription factor analysis indicated good family coverage, but some genes found in the VCOST.v3 annotation were not identified in any of the de novo assemblies, particularly some from  the MYB and ERF families. The PLAT_d and PLAT*_GC had a greater number of synteny blocks with the V. vinifera (PN40024 12X.v2) reference genome than AP or MERGE. PLAT*_GC provided the most contiguous assembly with only 1.2% scaffold N, in contrast to AP (10.7% N), PLAT_d (6.6% N) and Merge (6.4% N). A PLAT*_GC pseudo-chromosome assembly with chromosome alignment to the reference genome V. vinifera, (PN40024 12X.v2) provides new information

  3. New self-assembly strategies for next generation lithography

    NASA Astrophysics Data System (ADS)

    Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.

    2010-04-01

    Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.

  4. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering.

    PubMed

    Zhang, Shichao; Xing, Malcolm; Li, Bingyun

    2018-06-01

    Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL) self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.

  5. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing.

    PubMed

    Paramonov, Sergey E; Jun, Ho-Wook; Hartgerink, Jeffrey D

    2006-06-07

    The role of hydrogen bonding and amphiphilic packing in the self-assembly of peptide-amphiphiles (PAs) was investigated using a series of 26 PA derivatives, including 19 N-methylated variants and 7 alanine mutants. These were studied by circular dichroism spectroscopy, a variety of Fourier transform infrared spectroscopies, rheology, and vitreous ice cryo-transmission electron microscopy. From these studies, we have been able to determine which amino acids are critical for the self-assembly of PAs into nanofibers, why the nanofiber is favored over other possible nanostructures, the orientation of hydrogen bonding with respect to the nanofiber axis, and the constraints placed upon the portion of the peptide most intimately associated with the biological environment. Furthermore, by selectively eliminating key hydrogen bonds, we are able to completely change the nanostructure resulting from self-assembly in addition to modifying the macroscopic mechanical properties associated with the assembled gel. This study helps to clarify the mechanism of self-assembly for peptide amphiphiles and will thereby help in the design of future generations of PAs.

  6. Fuel injection assembly for use in turbine engines and method of assembling same

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-03-24

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes a plurality of tube assemblies, wherein each of the tube assemblies includes an upstream portion and a downstream portion. Each tube assembly includes a plurality of tubes that extend from the upstream portion to the downstream portion or from the upstream portion through the downstream portion. At least one injection system is coupled to at least one tube assembly of the plurality of tube assemblies. The injection system includes a fluid supply member that extends from a fluid source to the downstream portion of the tube assembly. The fluid supply member includes a first end portion located in the downstream portion of the tube assembly, wherein the first end portion has at least one first opening for channeling fluid through the tube assembly to facilitate reducing a temperature therein.

  7. Water droplets as template for next-generation self-assembled poly-(etheretherketone) with cardo membranes.

    PubMed

    Gugliuzza, Annarosa; Aceto, Marianna Carmela; Macedonio, Francesca; Drioli, Enrico

    2008-08-28

    Next generation PEEK-WC membranes have been fabricated by using an innovative self-assembly technique. Patterned architectures have been achieved via a solvent-reduced and water-assisted process, resulting in honeycomb packed geometry. The membranes exhibit monodisperse pores with size and shape comparable to those left by templating water droplets. Influencing factors for the formation of self-assembled poly-(etheretherketone) with Cardo [PEEK-WC] membranes have been evaluated, identifying the critical parameters for nucleation, growth, and propagation of the droplet-mobile arrays through the overall films. Structure-transport relationships have been discussed according to the results achieved from the implementation of membrane distillation processes, yielding indication about the suitability of self-assembled PEEK-WC films to work as interfaces in contactor operations.

  8. The mechanics and design of a lightweight three-dimensional graphene assembly

    PubMed Central

    Qin, Zhao; Jung, Gang Seob; Kang, Min Jeong; Buehler, Markus J.

    2017-01-01

    Recent advances in three-dimensional (3D) graphene assembly have shown how we can make solid porous materials that are lighter than air. It is plausible that these solid materials can be mechanically strong enough for applications under extreme conditions, such as being a substitute for helium in filling up an unpowered flight balloon. However, knowledge of the elastic modulus and strength of the porous graphene assembly as functions of its structure has not been available, preventing evaluation of its feasibility. We combine bottom-up computational modeling with experiments based on 3D-printed models to investigate the mechanics of porous 3D graphene materials, resulting in new designs of carbon materials. Our study reveals that although the 3D graphene assembly has an exceptionally high strength at relatively high density (given the fact that it has a density of 4.6% that of mild steel and is 10 times as strong as mild steel), its mechanical properties decrease with density much faster than those of polymer foams. Our results provide critical densities below which the 3D graphene assembly starts to lose its mechanical advantage over most polymeric cellular materials. PMID:28070559

  9. Criticality assessment of LLRWDF closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrack, A.G.; Weber, J.H.; Woody, N.D.

    1992-10-06

    During the operation of the Low Level Radioactive Waste Disposal Facility (LLRWDF), large amounts (greater than 100 kg) of enriched uranium (EU) were buried. This EU came primarily from the closing and decontamination of the Naval Fuels Facility in the time period from 1987--1989. Waste Management Operations (WMO) procedures were used to keep the EU boxes separated to prevent possible criticality during normal operation. Closure of the LLRWDF is currently being planned, and waste stabilization by Dynamic Compaction (DC) is proposed. Dynamic compaction will crush the containers in the LLRWDF and result in changes in their geometry. Research of themore » LLRWDF operations and record keeping practices have shown that the EU contents of trenches are known, but details of the arrangement of the contents cannot be proven. Reviews of the trench contents, combined with analysis of potential critical configurations, revealed that some portions of the LLRWDF can be expected to be free of criticality concerns while other sections have credible probabilities for the assembly of a critical mass, even in the uncompacted configuration. This will have an impact on the closure options and which trenches can be compacted.« less

  10. Role of Surface Charge Density in Nanoparticle-templated Assembly of Bromovirus Protein Cages

    PubMed Central

    Daniel, Marie-Christine; Tsvetkova, Irina B.; Quinkert, Zachary T.; Murali, Ayaluru; De, Mrinmoy; Rotello, Vincent M.; Kao, C. Cheng; Dragnea, Bogdan

    2010-01-01

    Self-assembling icosahedral protein cages have potencially useful physical and chemical characteristics for a variety of nanotechnology applications, ranging from therapeutic or diagnostic vectors to building blocks for hierarchical materials. For application-specific functional control of protein cage assemblies, a deeper understanding of the interaction between the protein cage and its payload is necessary. Protein-cage encapsulated nanoparticles, with their well-defined surface chemistry, allow for systematic control over key parameters of encapsulation such as the surface charge, hydrophobicity, and size. Independent control over these variables allows experimental testing of different assembly mechanism models. Previous studies done with Brome mosaic virus capsids and negatively-charged gold nanoparticles indicated that the result of the self-assembly process depends on the diameter of the particle. However, in these experiments, the surface-ligand density was maintained at saturation levels, while the total charge and the radius of curvature remained coupled variables, making the interpretation of the observed dependence on the core size difficult. The current work furnishes evidence of a critical surface charge density for assembly through an analysis aimed at decoupling the surface charge the core size. PMID:20575505

  11. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    PubMed Central

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  12. Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo

    PubMed Central

    Katz, Ben; Oberacker, Tina; Richter, David; Tzadok, Hanan; Peters, Maximilian; Minke, Baruch; Huber, Armin

    2013-01-01

    Summary Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP–TRPL heteromultimers in cell culture and in vitro has been reported. However, functional in vivo assays have shown that each channel functions independently of the other. Therefore, the issue of whether TRP and TRPL form heteromultimers in vivo is still unclear. In the present study we investigated the ability of TRP and TRPL to form heteromultimers, and the structural requirements for channel assembly, by studying assembly of GFP-tagged TRP and TRPL channels and chimeric TRP and TRPL channels, in vivo. Interaction studies of tagged and native channels as well as native and chimeric TRP–TRPL channels using co-immunoprecipitation, immunocytochemistry and electrophysiology, critically tested the ability of TRP and TRPL to interact. We found that TRP and TRPL assemble exclusively as homomultimeric channels in their native environment. The above analyses revealed that the transmembrane regions of TRP and TRPL do not determine assemble specificity of these channels. However, the C-terminal regions of both TRP and TRPL predominantly specify the assembly of homomeric TRP and TRPL channels. PMID:23687378

  13. Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo.

    PubMed

    Katz, Ben; Oberacker, Tina; Richter, David; Tzadok, Hanan; Peters, Maximilian; Minke, Baruch; Huber, Armin

    2013-07-15

    Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP-TRPL heteromultimers in cell culture and in vitro has been reported. However, functional in vivo assays have shown that each channel functions independently of the other. Therefore, the issue of whether TRP and TRPL form heteromultimers in vivo is still unclear. In the present study we investigated the ability of TRP and TRPL to form heteromultimers, and the structural requirements for channel assembly, by studying assembly of GFP-tagged TRP and TRPL channels and chimeric TRP and TRPL channels, in vivo. Interaction studies of tagged and native channels as well as native and chimeric TRP-TRPL channels using co-immunoprecipitation, immunocytochemistry and electrophysiology, critically tested the ability of TRP and TRPL to interact. We found that TRP and TRPL assemble exclusively as homomultimeric channels in their native environment. The above analyses revealed that the transmembrane regions of TRP and TRPL do not determine assemble specificity of these channels. However, the C-terminal regions of both TRP and TRPL predominantly specify the assembly of homomeric TRP and TRPL channels.

  14. Fuel injection assembly for use in turbine engines and method of assembling same

    DOEpatents

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  15. AutoAssemblyD: a graphical user interface system for several genome assemblers.

    PubMed

    Veras, Adonney Allan de Oliveira; de Sá, Pablo Henrique Caracciolo Gomes; Azevedo, Vasco; Silva, Artur; Ramos, Rommel Thiago Jucá

    2013-01-01

    Next-generation sequencing technologies have increased the amount of biological data generated. Thus, bioinformatics has become important because new methods and algorithms are necessary to manipulate and process such data. However, certain challenges have emerged, such as genome assembly using short reads and high-throughput platforms. In this context, several algorithms have been developed, such as Velvet, Abyss, Euler-SR, Mira, Edna, Maq, SHRiMP, Newbler, ALLPATHS, Bowtie and BWA. However, most such assemblers do not have a graphical interface, which makes their use difficult for users without computing experience given the complexity of the assembler syntax. Thus, to make the operation of such assemblers accessible to users without a computing background, we developed AutoAssemblyD, which is a graphical tool for genome assembly submission and remote management by multiple assemblers through XML templates. AssemblyD is freely available at https://sourceforge.net/projects/autoassemblyd. It requires Sun jdk 6 or higher.

  16. Self Assembled Particles

    NASA Technical Reports Server (NTRS)

    Palacci, Jeremie (Inventor); Pine, David J. (Inventor); Chaikin, Paul Michael (Inventor); Sacanna, Stefano (Inventor)

    2017-01-01

    A self-assembling structure using non-equilibrium driving forces leading to 'living crystals' and other maniputable particles with a complex dynamics. The dynamic self-assembly assembly results from a competition between self-propulsion of particles and an attractive interaction between the particles. As a result of non-equilibrium driving forces, the crystals form, grow, collide, anneal, repair themselves and spontaneously self-destruct, thereby enabling reconfiguration and assembly to achieve a desired property.

  17. Probe tip heating assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, Roger William; Oh, Yunje

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably receivedmore » and clamped within the socket.« less

  18. The Teaching of Critical Thinking Skills by Academic Librarians.

    ERIC Educational Resources Information Center

    Goetzfridt, Nicholas J.

    Teaching critical thinking is a relatively new dimension of bibliographic instruction (BI) in the academic environment. It marks a departure from the teaching of "user skills" in which the primary concern is enabling library patrons to determine the appropriateness of reference tools and to use those tools effectively. This report assembles a…

  19. High-Rate Assembly of Nanomaterials on Insulating Surfaces Using Electro-Fluidic Directed Assembly.

    PubMed

    Yilmaz, Cihan; Sirman, Asli; Halder, Aditi; Busnaina, Ahmed

    2017-08-22

    Conductive or semiconducting nanomaterials-based applications such as electronics and sensors often require direct placement of such nanomaterials on insulating surfaces. Most fluidic-based directed assembly techniques on insulating surfaces utilize capillary force and evaporation but are diffusion limited and slow. Electrophoretic-based assembly, on the other hand, is fast but can only be utilized for assembly on a conductive surface. Here, we present a directed assembly technique that enables rapid assembly of nanomaterials on insulating surfaces. The approach leverages and combines fluidic and electrophoretic assembly by applying the electric field through an insulating surface via a conductive film underneath. The approach (called electro-fluidic) yields an assembly process that is 2 orders of magnitude faster compared to fluidic assembly. By understanding the forces on the assembly process, we have demonstrated the controlled assembly of various types of nanomaterials that are conducting, semiconducting, and insulating including nanoparticles and single-walled carbon nanotubes on insulating rigid and flexible substrates. The presented approach shows great promise for making practical devices in miniaturized sensors and flexible electronics.

  20. A method for development of efficient 3D models for neutronic calculations of ASTRA critical facility using experimental information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balanin, A. L.; Boyarinov, V. F.; Glushkov, E. S.

    The application of experimental information on measured axial distributions of fission reaction rates for development of 3D numerical models of the ASTRA critical facility taking into account azimuthal asymmetry of the assembly simulating a HTGR with annular core is substantiated. Owing to the presence of the bottom reflector and the absence of the top reflector, the application of 2D models based on experimentally determined buckling is impossible for calculation of critical assemblies of the ASTRA facility; therefore, an alternative approach based on the application of the extrapolated assembly height is proposed. This approach is exemplified by the numerical analysis ofmore » experiments on measurement of efficiency of control rods mockups and protection system (CPS).« less

  1. Drive piston assembly for a valve actuator assembly

    DOEpatents

    Sun, Zongxuan

    2010-02-23

    A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.

  2. Microfluidic assembly blocks.

    PubMed

    Rhee, Minsoung; Burns, Mark A

    2008-08-01

    An assembly approach for microdevice construction using prefabricated microfluidic components is presented. Although microfluidic systems are convenient platforms for biological assays, their use in the life sciences is still limited mainly due to the high-level fabrication expertise required for construction. This approach involves prefabrication of individual microfluidic assembly blocks (MABs) in PDMS that can be readily assembled to form microfluidic systems. Non-expert users can assemble the blocks on glass slides to build their devices in minutes without any fabrication steps. In this paper, we describe the construction and assembly of the devices using the MAB methodology, and demonstrate common microfluidic applications including laminar flow development, valve control, and cell culture.

  3. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2005-01-01

    the number of integrity sensors will be significant. Thus simple, low cost sensors are integral to the success of this concept. This paper will address these issues and will propose a novel concept for assembling space structures autonomously. The paper will present Several autonomous assembly methods. Core technologies required to achieve in space assembly will be discussed and novel techniques for communicating, sensing, docking and assembly will be detailed. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Finally, these technologies can also be applied to other systems both on earth and extraterrestrial environments.

  4. Gradated assembly of multiple proteins into supramolecular nanomaterials

    NASA Astrophysics Data System (ADS)

    Hudalla, Gregory A.; Sun, Tao; Gasiorowski, Joshua Z.; Han, Huifang; Tian, Ye F.; Chong, Anita S.; Collier, Joel H.

    2014-08-01

    Biomaterials exhibiting precise ratios of different bioactive protein components are critical for applications ranging from vaccines to regenerative medicine, but their design is often hindered by limited choices and cross-reactivity of protein conjugation chemistries. Here, we describe a strategy for inducing multiple different expressed proteins of choice to assemble into nanofibres and gels with exceptional compositional control. The strategy employs ‘βTail’ tags, which allow for good protein expression in bacteriological cultures, yet can be induced to co-assemble into nanomaterials when mixed with additional β-sheet fibrillizing peptides. Multiple different βTail fusion proteins could be inserted into peptide nanofibres alone or in combination at predictable, smoothly gradated concentrations, providing a simple yet versatile route to install precise combinations of proteins into nanomaterials. The technology is illustrated by achieving precisely targeted hues using mixtures of fluorescent proteins, by creating nanofibres bearing enzymatic activity, and by adjusting antigenic dominance in vaccines.

  5. Charged triblock copolymer self-assembly into charged micelles

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao; Zhang, Ke; Zhu, Jiahua; Wooley, Karen; Pochan, Darrin; Department of Material Science; Engineering University of Delaware Team; Department of Chemistry Texas A&M University Collaboration

    2011-03-01

    Micelles were formed through the self-assembly of amphiphlic block copolymer poly(acrylic acid)-block-poly(methyl acrylate)-block-polystyrene (PAA-PMA-PS). ~Importantly, the polymer is complexed with diamine molecules in pure THF solution prior to water titration solvent processing-a critical aspect in the control of final micelle geometry. The addition of diamine triggers acid-base complexation ~between the carboxylic acid PAA side chains and amines. ~Remarkably uniform spheres were found to form close-packed patterns when forced into dried films and thin, solvated films when an excess of amine was used in the polymer assembly process. Surface properties and structural features of these hexagonal-packed spherical micelles with charged corona have been explored by various characterization methods including Transmission Electron Microscopy (TEM), cryogenic TEM, z-potential analysis and Dynamic Light Scattering. The forming mechanism for this pattern and morphology changes against external stimulate such as salt will be discussed.

  6. Assembly of an FtsZ Mutant Deficient in GTPase Activity Has Implications for FtsZ Assembly and the Role of the Z Ring in Cell Division

    PubMed Central

    Mukherjee, Amit; Saez, Cristian; Lutkenhaus, Joe

    2001-01-01

    FtsZ, the ancestral homologue of eukaryotic tubulins, assembles into the Z ring, which is required for cytokinesis in prokaryotic cells. Both FtsZ and tubulin have a GTPase activity associated with polymerization. Interestingly, the ftsZ2 mutant is viable, although the FtsZ2 mutant protein has dramatically reduced GTPase activity due to a glycine-for-aspartic acid substitution within the synergy loop. In this study, we have examined the properties of FtsZ2 and found that the reduced GTPase activity is not enhanced by DEAE-dextran-induced assembly, indicating it has a defective catalytic site. In the absence of DEAE-dextran, FtsZ2 fails to assemble unless supplemented with wild-type FtsZ. FtsZ has to be at or above the critical concentration for copolymerization to occur, indicating that FtsZ is nucleating the copolymers. The copolymers formed are relatively stable and appear to be stabilized by a GTP-cap. These results indicate that FtsZ2 cannot nucleate assembly in vitro, although it must in vivo. Furthermore, the stability of FtsZ-FtsZ2 copolymers argues that FtsZ2 polymers would be stable, suggesting that stable FtsZ polymers are able to support cell division. PMID:11717278

  7. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  8. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  9. Structural assembly in space

    NASA Technical Reports Server (NTRS)

    Stokes, J. W.; Pruett, E. C.

    1980-01-01

    A cost algorithm for predicting assembly costs for large space structures is given. Assembly scenarios are summarized which describe the erection, deployment, and fabrication tasks for five large space structures. The major activities that impact total costs for structure assembly from launch through deployment and assembly to scientific instrument installation and checkout are described. Individual cost elements such as assembly fixtures, handrails, or remote minipulators are also presented.

  10. Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution.

    PubMed

    Edwards-Gayle, Charlotte J C; Greco, Francesca; Hamley, Ian W; Rambo, Robert P; Reza, Mehedi; Ruokolainen, Janne; Skoulas, Dimitrios; Iatrou, Hermis

    2018-01-08

    We investigate the self-assembly of two telechelic star polymer-peptide conjugates based on poly(ethylene oxide) (PEO) four-arm star polymers capped with oligotyrosine. The conjugates were prepared via N-carboxy anhydride-mediated ring-opening polymerization from PEO star polymer macroinitiators. Self-assembly occurs above a critical aggregation concentration determined via fluorescence probe assays. Peptide conformation was examined using circular dichroism spectroscopy. The structure of self-assembled aggregates was probed using small-angle X-ray scattering and cryogenic transmission electron microscopy. In contrast to previous studies on linear telechelic PEO-oligotyrosine conjugates that show self-assembly into β-sheet fibrils, the star architecture suppresses fibril formation and micelles are generally observed instead, a small population of fibrils only being observed upon pH adjustment. Hydrogelation is also suppressed by the polymer star architecture. These peptide-functionalized star polymer solutions are cytocompatible at sufficiently low concentration. These systems present tyrosine at high density and may be useful in the development of future enzyme or pH-responsive biomaterials.

  11. Fibrillar α-Synuclein and Huntingtin Exon 1 Assemblies Are Toxic to the Cells

    PubMed Central

    Pieri, Laura; Madiona, Karine; Bousset, Luc; Melki, Ronald

    2012-01-01

    The aggregation of alpha-synuclein (α-syn) and huntingtin (htt) into fibrillar assemblies in nerve and glial cells is a molecular hallmark of Parkinson's and Huntington's diseases. Within the aggregation process, prefibrillar and fibrillar oligomeric species form. Prefibrillar assemblies rather than fibrils are nowadays considered cytotoxic. However, recent reports describing spreading of fibrillar assemblies from one cell to another, in cell cultures, animal models, and brains of grafted patients suggest a critical role for fibrillar assemblies in pathogenesis. Here we compare the cytotoxic effect of defined and comparable particle concentrations of on-assembly pathway oligomeric and fibrillar α-syn and Htt fragment corresponding to the first exon of the protein (HttEx1). We show that homogeneous populations of α-syn and HttEx1 fibrils, rather than their precursor on-assembly pathway oligomers, are highly toxic to cultured cells and induce apoptotic cell death. We document the reasons that make fibrils toxic. We show that α-syn and HttEx1 fibrils bind and permeabilize lipid vesicles. We also show that fibrils binding to the plasma membrane in cultured cells alter Ca2+ homeostasis. Overall, our data indicate that fibrillar α-syn and HttEx1, rather than their precursor oligomers, are highly cytotoxic, the toxicity being associated to their ability to bind and permeabilize the cell membranes. PMID:22735540

  12. Membrane module assembly

    DOEpatents

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  13. Yeast Mitoribosome Large Subunit Assembly Proceeds by Hierarchical Incorporation of Protein Clusters and Modules on the Inner Membrane.

    PubMed

    Zeng, Rui; Smith, Erin; Barrientos, Antoni

    2018-03-06

    Mitoribosomes are specialized for the synthesis of hydrophobic membrane proteins encoded by mtDNA, all essential for oxidative phosphorylation. Despite their linkage to human mitochondrial diseases and the recent cryoelectron microscopy reconstruction of yeast and mammalian mitoribosomes, how they are assembled remains obscure. Here, we dissected the yeast mitoribosome large subunit (mtLSU) assembly process by systematic genomic deletion of 44 mtLSU proteins (MRPs). Analysis of the strain collection unveiled 37 proteins essential for functional mtLSU assembly, three of which are critical for mtLSU 21S rRNA stability. Hierarchical cluster analysis of mtLSU subassemblies accumulated in mutant strains revealed co-operative assembly of protein sets forming structural clusters and preassembled modules. It also indicated crucial roles for mitochondrion-specific membrane-binding MRPs in anchoring newly transcribed 21S rRNA to the inner membrane, where assembly proceeds. Our results define the yeast mtLSU assembly landscape in vivo and provide a foundation for studies of mitoribosome assembly across evolution. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies

    Treesearch

    Samuel V. Glass

    2010-01-01

    Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.

  15. Distinct roles for Arp2/3 regulators in actin assembly and endocytosis.

    PubMed

    Galletta, Brian J; Chuang, Dennis Y; Cooper, John A

    2008-01-01

    The Arp2/3 complex is essential for actin assembly and motility in many cell processes, and a large number of proteins have been found to bind and regulate it in vitro. A critical challenge is to understand the actions of these proteins in cells, especially in settings where multiple regulators are present. In a systematic study of the sequential multicomponent actin assembly processes that accompany endocytosis in yeast, we examined and compared the roles of WASp, two type-I myosins, and two other Arp2/3 activators, along with that of coronin, which is a proposed inhibitor of Arp2/3. Quantitative analysis of high-speed fluorescence imaging revealed individual functions for the regulators, manifested in part by novel phenotypes. We conclude that Arp2/3 regulators have distinct and overlapping roles in the processes of actin assembly that drive endocytosis in yeast. The formation of the endocytic actin patch, the creation of the endocytic vesicle, and the movement of the vesicle into the cytoplasm display distinct dependencies on different Arp2/3 regulators. Knowledge of these roles provides insight into the in vivo relevance of the dendritic nucleation model for actin assembly.

  16. Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies.

    PubMed

    Forgacs, Gabor; Newman, Stuart A; Hinner, Bernhard; Maier, Christian W; Sackmann, Erich

    2003-02-01

    We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition in terms of percolation theory. The viscoelastic parameters (storage modulus G' and loss modulus G") were measured as a function of time for five different frequencies ranging from omega = 0.2 rad/s to 6.9 rad/s. We found that at the gel point both G' and G" obey a scaling law, with the critical exponent Delta = 0.7 and a critical loss angle being independent of frequency as predicted by percolation theory. Gelation of collagen thus represents a second order phase transition.

  17. Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuo; Cao, Mengmeng; Guo, Yang; Zhao, Lili; Wang, Jingfeng; Jia, Xue; Li, Jianguo; Wang, Conghui; Gabriel, Gülsah; Xue, Qinghua; Yi, Yonghong; Cui, Sheng; Jin, Qi; Wang, Jianwei; Deng, Tao

    2014-02-01

    The ribonucleoprotein (RNP) of the influenza A virus is responsible for the transcription and replication of viral RNA in the nucleus. These processes require interplay between host factors and RNP components. Here, we report that the Fragile X mental retardation protein (FMRP) targets influenza virus RNA synthesis machinery and facilitates virus replication both in cell culture and in mice. We demonstrate that FMRP transiently associates with viral RNP and stimulates viral RNP assembly through RNA-mediated interaction with the nucleoprotein. Furthermore, the KH2 domain of FMRP mediates its association with the nucleoprotein. A point mutation (I304N) in the KH2 domain, identified from a Fragile X syndrome patient, disrupts the FMRP-nucleoprotein association and abolishes the ability of FMRP to participate in viral RNP assembly. We conclude that FMRP is a critical host factor used by influenza viruses to facilitate viral RNP assembly. Our observation reveals a mechanism of influenza virus RNA synthesis and provides insights into FMRP functions.

  18. Classification of self-assembling protein nanoparticle architectures for applications in vaccine design

    NASA Astrophysics Data System (ADS)

    Indelicato, G.; Burkhard, P.; Twarock, R.

    2017-04-01

    We introduce here a mathematical procedure for the structural classification of a specific class of self-assembling protein nanoparticles (SAPNs) that are used as a platform for repetitive antigen display systems. These SAPNs have distinctive geometries as a consequence of the fact that their peptide building blocks are formed from two linked coiled coils that are designed to assemble into trimeric and pentameric clusters. This allows a mathematical description of particle architectures in terms of bipartite (3,5)-regular graphs. Exploiting the relation with fullerene graphs, we provide a complete atlas of SAPN morphologies. The classification enables a detailed understanding of the spectrum of possible particle geometries that can arise in the self-assembly process. Moreover, it provides a toolkit for a systematic exploitation of SAPNs in bioengineering in the context of vaccine design, predicting the density of B-cell epitopes on the SAPN surface, which is critical for a strong humoral immune response.

  19. LightAssembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads.

    PubMed

    El-Metwally, Sara; Zakaria, Magdi; Hamza, Taher

    2016-11-01

    The deluge of current sequenced data has exceeded Moore's Law, more than doubling every 2 years since the next-generation sequencing (NGS) technologies were invented. Accordingly, we will able to generate more and more data with high speed at fixed cost, but lack the computational resources to store, process and analyze it. With error prone high throughput NGS reads and genomic repeats, the assembly graph contains massive amount of redundant nodes and branching edges. Most assembly pipelines require this large graph to reside in memory to start their workflows, which is intractable for mammalian genomes. Resource-efficient genome assemblers combine both the power of advanced computing techniques and innovative data structures to encode the assembly graph efficiently in a computer memory. LightAssembler is a lightweight assembly algorithm designed to be executed on a desktop machine. It uses a pair of cache oblivious Bloom filters, one holding a uniform sample of [Formula: see text]-spaced sequenced [Formula: see text]-mers and the other holding [Formula: see text]-mers classified as likely correct, using a simple statistical test. LightAssembler contains a light implementation of the graph traversal and simplification modules that achieves comparable assembly accuracy and contiguity to other competing tools. Our method reduces the memory usage by [Formula: see text] compared to the resource-efficient assemblers using benchmark datasets from GAGE and Assemblathon projects. While LightAssembler can be considered as a gap-based sequence assembler, different gap sizes result in an almost constant assembly size and genome coverage. https://github.com/SaraEl-Metwally/LightAssembler CONTACT: sarah_almetwally4@mans.edu.egSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  1. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  2. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  3. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  4. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Seats, seat belt assemblies, and seat belt assembly anchorages. 393.93 Section 393.93 Transportation Other Regulations Relating to Transportation... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses...

  5. Biomineralization of a Self-assembled, Soft-Matrix Precursor: Enamel

    NASA Astrophysics Data System (ADS)

    Snead, Malcolm L.

    2015-04-01

    Enamel is the bioceramic covering of teeth, a composite tissue composed of hierarchical organized hydroxyapatite crystallites fabricated by cells under physiologic pH and temperature. Enamel material properties resist wear and fracture to serve a lifetime of chewing. Understanding the cellular and molecular mechanisms for enamel formation may allow a biology-inspired approach to material fabrication based on self-assembling proteins that control form and function. A genetic understanding of human diseases exposes insight from nature's errors by exposing critical fabrication events that can be validated experimentally and duplicated in mice using genetic engineering to phenocopy the human disease so that it can be explored in detail. This approach led to an assessment of amelogenin protein self-assembly that, when altered, disrupts fabrication of the soft enamel protein matrix. A misassembled protein matrix precursor results in loss of cell-to-matrix contacts essential to fabrication and mineralization.

  6. Assembly-directed antivirals differentially bind quasiequivalent pockets to modify hepatitis B virus capsid tertiary and quaternary structure.

    PubMed

    Katen, Sarah P; Tan, Zhenning; Chirapu, Srinivas Reddy; Finn, M G; Zlotnick, Adam

    2013-08-06

    Hepatitis B virus (HBV) is a major cause of liver disease. Assembly of the HBV capsid is a critical step in virus production and an attractive target for new antiviral therapies. We determined the structure of HBV capsid in complex with AT-130, a member of the phenylpropenamide family of assembly effectors. AT-130 causes tertiary and quaternary structural changes but does not disrupt capsid structure. AT-130 binds a hydrophobic pocket that also accommodates the previously characterized heteroaryldihydropyrimidine compounds but favors a unique quasiequivalent location on the capsid surface. Thus, this pocket is a promiscuous drug-binding site and a likely target for different assembly effectors with a broad range of mechanisms of activity. That AT-130 successfully decreases virus production by increasing capsid assembly rate without disrupting capsid structure delineates a paradigm in antiviral design, that disrupting reaction timing is a viable strategy for assembly effectors of HBV and other viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Membrane module assembly

    DOEpatents

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  8. Material selection and assembly method of battery pack for compact electric vehicle

    NASA Astrophysics Data System (ADS)

    Lewchalermwong, N.; Masomtob, M.; Lailuck, V.; Charoenphonphanich, C.

    2018-01-01

    Battery packs become the key component in electric vehicles (EVs). The main costs of which are battery cells and assembling processes. The battery cell is indeed priced from battery manufacturers while the assembling cost is dependent on battery pack designs. Battery pack designers need overall cost as cheap as possible, but it still requires high performance and more safety. Material selection and assembly method as well as component design are very important to determine the cost-effectiveness of battery modules and battery packs. Therefore, this work presents Decision Matrix, which can aid in the decision-making process of component materials and assembly methods for a battery module design and a battery pack design. The aim of this study is to take the advantage of incorporating Architecture Analysis method into decision matrix methods by capturing best practices for conducting design architecture analysis in full account of key design components critical to ensure efficient and effective development of the designs. The methodology also considers the impacts of choice-alternatives along multiple dimensions. Various alternatives for materials and assembly techniques of battery pack are evaluated, and some sample costs are presented. Due to many components in the battery pack, only seven components which are positive busbar and Z busbar are represented in this paper for using decision matrix methods.

  9. 2010 Critical Success Factors for the North Carolina Community College System. Twenty First Annual Report

    ERIC Educational Resources Information Center

    North Carolina Community College System (NJ1), 2010

    2010-01-01

    First mandated by the North Carolina General Assembly in 1989 (S.L. 1989; C. 752; S. 80), the Critical Success Factors report has evolved into the major accountability document for the North Carolina Community College System. This twenty first annual report on the critical success factors is the result of a process undertaken to streamline and…

  10. Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane

    PubMed Central

    Pak, Alexander J.; Grime, John M. A.; Sengupta, Prabuddha; Chen, Antony K.; Durumeric, Aleksander E. P.; Srivastava, Anand; Yeager, Mark; Briggs, John A. G.; Lippincott-Schwartz, Jennifer; Voth, Gregory A.

    2017-01-01

    The packaging and budding of Gag polyprotein and viral RNA is a critical step in the HIV-1 life cycle. High-resolution structures of the Gag polyprotein have revealed that the capsid (CA) and spacer peptide 1 (SP1) domains contain important interfaces for Gag self-assembly. However, the molecular details of the multimerization process, especially in the presence of RNA and the cell membrane, have remained unclear. In this work, we investigate the mechanisms that work in concert between the polyproteins, RNA, and membrane to promote immature lattice growth. We develop a coarse-grained (CG) computational model that is derived from subnanometer resolution structural data. Our simulations recapitulate contiguous and hexameric lattice assembly driven only by weak anisotropic attractions at the helical CA–SP1 junction. Importantly, analysis from CG and single-particle tracking photoactivated localization (spt-PALM) trajectories indicates that viral RNA and the membrane are critical constituents that actively promote Gag multimerization through scaffolding, while overexpression of short competitor RNA can suppress assembly. We also find that the CA amino-terminal domain imparts intrinsic curvature to the Gag lattice. As a consequence, immature lattice growth appears to be coupled to the dynamics of spontaneous membrane deformation. Our findings elucidate a simple network of interactions that regulate the early stages of HIV-1 assembly and budding. PMID:29114055

  11. Crystalline modification of a rare earth nucleating agent for isotactic polypropylene based on its self-assembly.

    PubMed

    Zhang, Yuanming; Sun, Tingting; Jiang, Wei; Han, Guangting

    2018-05-01

    In this paper, the crystalline modification of a rare earth nucleating agent (WBG) for isotactic polypropylene (PP) based on its supramolecular self-assembly was investigated by differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscopy. In addition, the relationship between the self-assembly structure of the nucleating agent and the crystalline structure, as well as the possible reason for the self-assembly behaviour, was further studied. The structure evolution of WBG showed that the self-assembly structure changed from a needle-like structure to a dendritic structure with increase in the content of WBG. When the content of WBG exceeded a critical value (0.4 wt%), it self-assembled into a strip structure. This revealed that the structure evolution of WBG contributed to the K β and the crystallization morphology of PP with different content of WBG. In addition, further studies implied that the behaviour of self-assembly was a liquid-solid transformation of WBG, followed by a liquid-liquid phase separation of molten isotactic PP and WBG. The formation of the self-assembly structure was based on the free molecules by hydrogen bond dissociation while being heated, followed by aggregation into another structure by hydrogen bond association while being cooled. Furthermore, self-assembly behaviour depends largely on the interaction between WBG themselves.

  12. Ion-Specific Control of the Self-Assembly Dynamics of a Nanostructured Protein Lattice

    DOE PAGES

    Rad, Behzad; Haxton, Thomas K.; Shon, Albert; ...

    2014-12-10

    Self-assembling proteins offer a potential means of creating nanostructures with complex structure and function. However, using self-assembly to create nanostructures with long-range order whose size is tunable is challenging, because the kinetics and thermodynamics of protein interactions depend sensitively on solution conditions. Here we systematically investigate the impact of varying solution conditions on the self-assembly of SbpA, a surface-layer protein from Lysinibacillus sphaericus that forms two-dimensional nanosheets. Using high-throughput light scattering measurements, we mapped out diagrams that reveal the relative yield of self-assembly of nanosheets over a wide range of concentrations of SbpA and Ca 2+. These diagrams revealed amore » localized region of optimum yield of nanosheets at intermediate Ca 2+ concentration. Replacement of Mg 2+ or Ba 2+ for Ca 2+ indicates that Ca 2+ acts both as a specific ion that is required to induce self-assembly and as a general divalent cation. In addition, we use competitive titration experiments to find that 5 Ca 2+ bind to SbpA with an affinity of 67.1 ± 0.3 μM. Finally, we show via modeling that nanosheet assembly occurs by growth from a negligibly small critical nucleus. We also chart the dynamics of nanosheet size over a variety of conditions. In conclusion, our results demonstrate control of the dynamics and size of the self-assembly of a nanostructured lattice, the constituents of which are one of a class of building blocks able to form novel hybrid nanomaterials.« less

  13. Dynamics of dissipative self-assembly of particles interacting through oscillatory forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagliazucchi, M.; Szleifer, I.

    Dissipative self-assembly is the formation of ordered structures far from equilibrium, which continuously uptake energy and dissipate it into the environment. Due to its dynamical nature, dissipative self-assembly can lead to new phenomena and possibilities of self-organization that are unavailable to equilibrium systems. Understanding the dynamics of dissipative self-assembly is required in order to direct the assembly to structures of interest. In the present work, Brownian dynamics simulations and analytical theory were used to study the dynamics of self-assembly of a mixture of particles coated with weak acids and bases under continuous oscillations of the pH. The pH of themore » system modulates the charge of the particles and, therefore, the interparticle forces oscillate in time. This system produces a variety of self-assembled structures, including colloidal molecules, fibers and different types of crystalline lattices. The most important conclusions of our study are: (i) in the limit of fast oscillations, the whole dynamics (and not only those at the non-equilibrium steady state) of a system of particles interacting through time-oscillating interparticle forces can be described by an effective potential that is the time average of the time-dependent potential over one oscillation period; (ii) the oscillation period is critical to determine the order of the system. In some cases the order is favored by very fast oscillations while in others small oscillation frequencies increase the order. In the latter case, it is shown that slow oscillations remove kinetic traps and, thus, allow the system to evolve towards the most stable non-equilibrium steady state.« less

  14. Latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  15. Bearing assemblies, apparatuses, and motor assemblies using the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, Timothy N.; Cooley, Craig H.; Knuteson, Cody W.

    2015-12-29

    Various embodiments of the invention relate to bearing assemblies, apparatuses and motor assemblies that include geometric features configured to impart a selected amount of heat transfer and/or hydrodynamic film formation. In an embodiment, a bearing assembly may include a plurality of superhard bearing pads distributed circumferentially about an axis. At least some of the plurality of superhard bearing pads may include a plurality of sub-superhard bearing elements defining a bearing surface. At least some of the plurality of sub-superhard bearing elements may be spaced from one another by one or more voids to impart a selected amount of heat transfermore » and hydrodynamic film formation thereon during operation. The bearing assembly may also include a support ring that carries the plurality of superhard bearing pads. In addition, at least a portion of the sub-superhard bearing elements may extend beyond the support ring.« less

  16. Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly.

    PubMed

    Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia

    2017-11-10

    In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field-a relationship which we capture, along with other features of the assembly process, in a 'phase diagram'. In doing so, we set out initial design rules to build custom made assemblies. Moreover, these assemblies can be made flexible thanks to the hinged contacts of their particle building blocks. This flexibility, combined with the superparamagnetic nature of the architectures, renders our assembly method particularly appropriate for the construction of complex actuators at a scale hitherto not possible.

  17. Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures.

    PubMed

    Imura, Tomohiro; Ohta, Noboru; Inoue, Katsuaki; Yagi, Naoto; Negishi, Hideyuki; Yanagishita, Hiroshi; Kitamoto, Dai

    2006-03-08

    Self-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.0x10(-6) M for MEL-A and 6.0x10(-6) M for MEL-B. Moreover, the self-assembled structure of MEL-A above a CAC(II) value of 2.0x10(-5) M was found to drastically change into sponge structures (L3) composed of a network of randomly connected bilayers that are usually obtained from a complicated multicomponent "synthetic" surfactant system. Interestingly, the average water-channel diameter of the sponge structure was 100 nm. This is relatively large compared with those obtained from "synthetic" surfactant systems. In addition, MEL-B, which has a hydroxyl group at the C-4' position on mannose instead of an acetyl group, gives only one CAC; the self-assembled structure of MEL-B seems to gradually move from LUV to multilamellar vesicles (MLV) with lattice constants of 4.4 nm, depending on the concentration. Furthermore, the lyotropic-liquid-crystal-phase observation at high concentrations demonstrates the formation of an inverted hexagonal phase (H2) for MEL-A, together with a lamella phase (L(alpha)) for MEL-B, indicating a difference between MEL-A and MEL-B molecules in the spontaneous curvature of the assemblies. These results clearly show that the difference in spontaneous curvature caused by the single acetyl group on the head group probably decides the direction of self-assembly of glycolipid biosurfactants. The

  18. Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.

    NASA Astrophysics Data System (ADS)

    Dholakia, Geetha; Kuo, Steven; Allen, E. L.

    2007-03-01

    Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.

  19. Retroviral Gag protein-RNA interactions: Implications for specific genomic RNA packaging and virion assembly.

    PubMed

    Olson, Erik D; Musier-Forsyth, Karin

    2018-03-31

    Retroviral Gag proteins are responsible for coordinating many aspects of virion assembly. Gag possesses two distinct nucleic acid binding domains, matrix (MA) and nucleocapsid (NC). One of the critical functions of Gag is to specifically recognize, bind, and package the retroviral genomic RNA (gRNA) into assembling virions. Gag interactions with cellular RNAs have also been shown to regulate aspects of assembly. Recent results have shed light on the role of MA and NC domain interactions with nucleic acids, and how they jointly function to ensure packaging of the retroviral gRNA. Here, we will review the literature regarding RNA interactions with NC, MA, as well as overall mechanisms employed by Gag to interact with RNA. The discussion focuses on human immunodeficiency virus type-1, but other retroviruses will also be discussed. A model is presented combining all of the available data summarizing the various factors and layers of selection Gag employs to ensure specific gRNA packaging and correct virion assembly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Three Dimensional Assembly in Directed Self-assembly of Block Copolymers

    DOE PAGES

    Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing; ...

    2016-09-02

    The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.

  1. Fire resistant PV shingle assembly

    DOEpatents

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  2. Agents, assemblers, and ANTS: scheduling assembly with market and biological software mechanisms

    NASA Astrophysics Data System (ADS)

    Toth-Fejel, Tihamer T.

    2000-06-01

    Nanoscale assemblers will need robust, scalable, flexible, and well-understood mechanisms such as software agents to control them. This paper discusses assemblers and agents, and proposes a taxonomy of their possible interaction. Molecular assembly is seen as a special case of general assembly, subject to many of the same issues, such as the advantages of convergent assembly, and the problem of scheduling. This paper discusses the contract net architecture of ANTS, an agent-based scheduling application under development. It also describes an algorithm for least commitment scheduling, which uses probabilistic committed capacity profiles of resources over time, along with realistic costs, to provide an abstract search space over which the agents can wander to quickly find optimal solutions.

  3. Neural assembly computing.

    PubMed

    Ranhel, João

    2012-06-01

    Spiking neurons can realize several computational operations when firing cooperatively. This is a prevalent notion, although the mechanisms are not yet understood. A way by which neural assemblies compute is proposed in this paper. It is shown how neural coalitions represent things (and world states), memorize them, and control their hierarchical relations in order to perform algorithms. It is described how neural groups perform statistic logic functions as they form assemblies. Neural coalitions can reverberate, becoming bistable loops. Such bistable neural assemblies become short- or long-term memories that represent the event that triggers them. In addition, assemblies can branch and dismantle other neural groups generating new events that trigger other coalitions. Hence, such capabilities and the interaction among assemblies allow neural networks to create and control hierarchical cascades of causal activities, giving rise to parallel algorithms. Computing and algorithms are used here as in a nonstandard computation approach. In this sense, neural assembly computing (NAC) can be seen as a new class of spiking neural network machines. NAC can explain the following points: 1) how neuron groups represent things and states; 2) how they retain binary states in memories that do not require any plasticity mechanism; and 3) how branching, disbanding, and interaction among assemblies may result in algorithms and behavioral responses. Simulations were carried out and the results are in agreement with the hypothesis presented. A MATLAB code is available as a supplementary material.

  4. Space assembly fixtures and aids

    NASA Technical Reports Server (NTRS)

    Bloom, K. A.; Lillenas, A. N.

    1980-01-01

    Concepts and requirements for assembly fixtures and aids necessary for the assembly and maintenance of spare platforms were studied. Emphasis was placed on erectable and deployable type structures with the shuttle orbiter as the assembly base. Both single and multiple orbiter flight cases for the platform assembly were considered. Applicable space platform assembly studies were reviewed to provide a data base for establishing the assembly fixture and aids design requirements, assembly constraints, and the development of representative design concepts. Conclusions indicated that fixture requirements will vary with platform size. Larger platforms will require translation relative to the orbiter RMS working volume. The installation of platform payloads and subsystems (e.g., utility distribution) must also be considered in the specification of assembly fixtures and aids.

  5. Application of NASTRAN to a fluid solids unit in the petroleum industry. [plenum/cyclone/dipleg assembly

    NASA Technical Reports Server (NTRS)

    Nelson, N. W.

    1975-01-01

    The application of NASTRAN to the design of a fluid solids unit plenum/cyclone/dipleg assembly is described. The major loads considered are thermal, pressure, and gravity. Such applications are of interest in the petroleum industry since the equipment described is historically critical.

  6. Peptides at the Interface: Self-Assembly of Amphiphilic Designer Peptides and Their Membrane Interaction Propensity

    PubMed Central

    2016-01-01

    Self-assembling amphiphilic designer peptides have been successfully applied as nanomaterials in biomedical applications. Understanding molecular interactions at the peptide–membrane interface is crucial, since interactions at this site often determine (in)compatibility. The present study aims to elucidate how model membrane systems of different complexity (in particular single-component phospholipid bilayers and lipoproteins) respond to the presence of amphiphilic designer peptides. We focused on two short anionic peptides, V4WD2 and A6YD, which are structurally similar but showed a different self-assembly behavior. A6YD self-assembled into high aspect ratio nanofibers at low peptide concentrations, as evidenced by synchrotron small-angle X-ray scattering and electron microscopy. These supramolecular assemblies coexisted with membranes without remarkable interference. In contrast, V4WD2 formed only loosely associated assemblies over a large concentration regime, and the peptide promoted concentration-dependent disorder on the membrane arrangement. Perturbation effects were observed on both membrane systems although most likely induced by different modes of action. These results suggest that membrane activity critically depends on the peptide’s inherent ability to form highly cohesive supramolecular structures. PMID:27741400

  7. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  8. Evaluation of ENDF/B-IV and Hansen--Roach /sup 233/U cross sections for use in criticality calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeany, S.R.; Jenkins, J.D.

    Eleven /sup 233/U solution critical assemblies spanning an H//sup 233/U ratio range of 40 to 2000 and an unreflected metal /sup 233/U assembly were calculated with ENDF/B-IV and Hansen--Roach cross sections. Results from these calculations are compared with the experimental results and with each other. An increasing disagreement is observed between calculations with ENDF/B and Hansen--Roach data with decreasing H//sup 233/U ratio, indicative of large differences in their intermediate-energy cross sections. The Hansen--Roach cross sections appeared to give reasonably good agreement with experiments over the whole range, whereas the ENDF/B calculations yielded high values for k/sub eff/ on assemblies ofmore » low moderation. It is concluded that serious problems exist in the ENDF/B-IV representation of the /sup 233/U cross sections in the intermediate energy range and that further evaluation of this nuclide is warranted. In addition, it is recommended that an experimental program be undertaken to obtain /sup 233/U criticality data at low H//sup 233/U ratios for verification of generalized criticality safety guidelines. 3 figures, 15 tables.« less

  9. Conformal dip-coating of patterned surfaces for capillary die-to-substrate self-assembly

    NASA Astrophysics Data System (ADS)

    Mastrangeli, M.; Ruythooren, W.; Van Hoof, C.; Celis, J.-P.

    2009-04-01

    Capillarity-driven self-assembly of small chips onto planar target substrates is a promising alternative to robotic pick-and-place assembly. It critically relies on the selective deposition of thin fluid films on patterned binding sites, which is anyway normally non-conformal. We found that the addition of a thin wetting sidewall, surrounding the entire site perimeter, enables the conformal fluid coverage of arbitrarily shaped sites through dip-coating, significantly improves the reproducibility of the coating process and strongly reduces its sensitivity to surface defects. In this paper we support the feasibility and potential of this method by demonstrating the conformal dip-coating of square and triangular sites conditioned with combinations of different hydrophobic and hydrophilic surface chemistries. We present both experimental and simulative evidence of the advantages brought by the introduction of the wetting boundary on film coverage accuracy. Application of our surface preparation method to capillary self-assembly could result in higher precision in die-to-substrate registration and larger freedom in site shape design.

  10. Swipe transfer assembly

    DOEpatents

    Christiansen, Robert M.; Mills, William C.

    1992-01-01

    The swipe transfer assembly is a mechanical assembly which is used in conjunction with glove boxes and other sealed containments. It is used to pass small samples into or out of glove boxes without an open breach of the containment, and includes a rotational cylinder inside a fixed cylinder, the inside cylinder being rotatable through an arc of approximately 240.degree. relative to the outer cylinder. An offset of 120.degree. from end to end allows only one port to be opened at a time. The assembly is made of stainless steel or aluminum and clear acrylic plastic to enable visual observation. The assembly allows transfer of swipes and smears from radiological and other specially controlled environments.

  11. A spectroscopic and thermodynamic study of porphyrin/DNA supramolecular assemblies.

    PubMed Central

    Pasternack, R F; Goldsmith, J I; Szép, S; Gibbs, E J

    1998-01-01

    Assemblies of trans-bis(N-methylpyridinium-4-yl)diphenylporphine ions on the surface of calf thymus DNA have been studied using several spectroscopic techniques: absorbance, circular dichroism, and resonance light scattering. The aggregation equilibrium can be treated as a two-state system-monomer and assembly-each bound to the nucleic acid template. The aggregate absorption spectrum in the Soret region is resolved into two bands of Lorentzian line shape, while the DNA-bound monomer spectrum in this region is composed of two Gaussian bands. The Beer-Lambert law is obeyed by both porphyrin forms. The assembly is also characterized by an extremely large, bisignate induced circular dichroism (CD) profile and by enhanced resonance light scattering (RLS). Both the CD and RLS intensities depend linearly on aggregate concentration. The RLS result is consistent with a model for the aggregates as being either of a characteristic size or of a fixed distribution of sizes, independent of total porphyrin concentration or ionic strength. Above threshold values of concentration and ionic strength, the mass action expression for the equilibrium has a particularly simple form: K' = cac-1; where cac is defined as the "critical assembly concentration."offe dependence of the cac upon temperature and ionic strength (NaCl) has been investigated at a fixed DNA concentration. The value of the cac scales as the inverse square of the sodium chloride concentration and, from temperature dependence studies, the aggregation process is shown to be exothermic. PMID:9675203

  12. Fission matrix-based Monte Carlo criticality analysis of fuel storage pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farlotti, M.; Ecole Polytechnique, Palaiseau, F 91128; Larsen, E. W.

    2013-07-01

    Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simplemore » problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)« less

  13. Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Panchao; Wu, Bin; Li, Tao

    A 2.9 nm molybdenum oxide cluster {Mo 132} (Formula: [Mo VI 72Mo V 60O 372(CH 3COO) 30(H 2O) 72] 42-) can be obtained by reducing ammonium molybdate with hydrazine sulfate in weakly acidic CH 3COOH/CH 3COO- buffers. This reaction has been monitored by time-resolved UV-Vis, 1H-NMR, small angle X-ray/neutron scattering, and X-ray absorption near edge structure spectroscopy. The growth of {Mo 132} cluster shows a typical sigmoid curve, suggesting a multi-step assembly mechanism for this reaction. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordinationmore » effect of the acetate groups. Once the concentration of {Mo V 2(acetate)} reaches a critical value, it triggers the assembly of Mo V and Mo VI species into {Mo 132} clusters. Parameters such as the type and amount of reducing agent, the pH, the type of cation, and the type of organic ligand in the reaction buffer, have been studied for the roles they play in the formation of the target clusters.Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo 132} (formula: [Mo VI 72Mo V 60O 372(CH 3COO) 30(H 2O) 72] 42), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general multistep self-assembly mechanism for the formation of giant molecular clusters. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {Mo V 2(acetate)} structures under the coordination effect of the acetate groups. Once the

  14. Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters

    DOE PAGES

    Yin, Panchao; Wu, Bin; Li, Tao; ...

    2016-07-26

    A 2.9 nm molybdenum oxide cluster {Mo 132} (Formula: [Mo VI 72Mo V 60O 372(CH 3COO) 30(H 2O) 72] 42-) can be obtained by reducing ammonium molybdate with hydrazine sulfate in weakly acidic CH 3COOH/CH 3COO- buffers. This reaction has been monitored by time-resolved UV-Vis, 1H-NMR, small angle X-ray/neutron scattering, and X-ray absorption near edge structure spectroscopy. The growth of {Mo 132} cluster shows a typical sigmoid curve, suggesting a multi-step assembly mechanism for this reaction. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordinationmore » effect of the acetate groups. Once the concentration of {Mo V 2(acetate)} reaches a critical value, it triggers the assembly of Mo V and Mo VI species into {Mo 132} clusters. Parameters such as the type and amount of reducing agent, the pH, the type of cation, and the type of organic ligand in the reaction buffer, have been studied for the roles they play in the formation of the target clusters.Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo 132} (formula: [Mo VI 72Mo V 60O 372(CH 3COO) 30(H 2O) 72] 42), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general multistep self-assembly mechanism for the formation of giant molecular clusters. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {Mo V 2(acetate)} structures under the coordination effect of the acetate groups. Once the

  15. Anisotropic nanomaterials: structure, growth, assembly, and functions

    PubMed Central

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  16. Hinge assembly

    DOEpatents

    Vandergriff, David Houston

    1999-01-01

    A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.

  17. SWAP-Assembler 2: Optimization of De Novo Genome Assembler at Large Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jintao; Seo, Sangmin; Balaji, Pavan

    2016-08-16

    In this paper, we analyze and optimize the most time-consuming steps of the SWAP-Assembler, a parallel genome assembler, so that it can scale to a large number of cores for huge genomes with the size of sequencing data ranging from terabyes to petabytes. According to the performance analysis results, the most time-consuming steps are input parallelization, k-mer graph construction, and graph simplification (edge merging). For the input parallelization, the input data is divided into virtual fragments with nearly equal size, and the start position and end position of each fragment are automatically separated at the beginning of the reads. Inmore » k-mer graph construction, in order to improve the communication efficiency, the message size is kept constant between any two processes by proportionally increasing the number of nucleotides to the number of processes in the input parallelization step for each round. The memory usage is also decreased because only a small part of the input data is processed in each round. With graph simplification, the communication protocol reduces the number of communication loops from four to two loops and decreases the idle communication time. The optimized assembler is denoted as SWAP-Assembler 2 (SWAP2). In our experiments using a 1000 Genomes project dataset of 4 terabytes (the largest dataset ever used for assembling) on the supercomputer Mira, the results show that SWAP2 scales to 131,072 cores with an efficiency of 40%. We also compared our work with both the HipMER assembler and the SWAP-Assembler. On the Yanhuang dataset of 300 gigabytes, SWAP2 shows a 3X speedup and 4X better scalability compared with the HipMer assembler and is 45 times faster than the SWAP-Assembler. The SWAP2 software is available at https://sourceforge.net/projects/swapassembler.« less

  18. The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly.

    PubMed

    Schlaitz, Anne-Lore; Srayko, Martin; Dammermann, Alexander; Quintin, Sophie; Wielsch, Natalie; MacLeod, Ian; de Robillard, Quentin; Zinke, Andrea; Yates, John R; Müller-Reichert, Thomas; Shevchenko, Andrei; Oegema, Karen; Hyman, Anthony A

    2007-01-12

    Microtubule behavior changes during the cell cycle and during spindle assembly. However, it remains unclear how these changes are regulated and coordinated. We describe a complex that targets the Protein Phosphatase 2A holoenzyme (PP2A) to centrosomes in C. elegans embryos. This complex includes Regulator of Spindle Assembly 1 (RSA-1), a targeting subunit for PP2A, and RSA-2, a protein that binds and recruits RSA-1 to centrosomes. In contrast to the multiple functions of the PP2A catalytic subunit, RSA-1 and RSA-2 are specifically required for microtubule outgrowth from centrosomes and for spindle assembly. The centrosomally localized RSA-PP2A complex mediates these functions in part by regulating two critical mitotic effectors: the microtubule destabilizer KLP-7 and the C. elegans regulator of spindle assembly TPXL-1. By regulating a subset of PP2A functions at the centrosome, the RSA complex could therefore provide a means of coordinating microtubule outgrowth from centrosomes and kinetochore microtubule stability during mitotic spindle assembly.

  19. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  20. Mechanisms of Virus Assembly

    PubMed Central

    Perlmutter, Jason D.; Hagan, Michael F.

    2015-01-01

    Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid, and in some cases surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assembles within their host cells and in vitro. We describe the thermodynamics and kinetics for assembly of protein subunits into icosahedral capsid shells, and how these are modified in cases where the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques that have been used to characterize capsid assembly, and we highlight aspects of virus assembly which are likely to receive significant attention in the near future. PMID:25532951

  1. Manipulating the ABCs of self-assembly via low-χ block polymer design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Alice B.; Bates, Christopher M.; Lee, Byeongdu

    Block polymer self-assembly typically translates molecular chain connectivity into mesoscale structure by exploiting incompatible blocks with large interaction parameters (χ ij). In this report, we demonstrate that the converse approach, encoding low-χ interactions in ABC bottlebrush triblock terpolymers (χ AC ≲ 0), promotes organization into a unique mixed-domain lamellar morphology which we designate LAM P. Transmission electron microscopy indicates that LAMP exhibits ACBC domain connectivity, in contrast to conventional three-domain lamellae (LAM 3) with ABCB periods. Complementary small angle X-ray scattering experiments reveal a strongly decreasing domain spacing with increasing total molar mass. Self-consistent field theory reinforces these observations andmore » predicts that LAM P is thermodynamically stable below a critical χ AC, above which LAM 3 emerges. Both experiments and theory expose close analogies to ABA triblock copolymer phase behavior, collectively suggesting that low-χ interactions between chemically similar or distinct blocks intimately influence self-assembly. Furthermore, these conclusions provide new opportunities in block polymer design with potential consequences spanning all self-assembling soft materials.« less

  2. Manipulating the ABCs of self-assembly via low-χ block polymer design

    DOE PAGES

    Chang, Alice B.; Bates, Christopher M.; Lee, Byeongdu; ...

    2017-06-06

    Block polymer self-assembly typically translates molecular chain connectivity into mesoscale structure by exploiting incompatible blocks with large interaction parameters (χ ij). In this report, we demonstrate that the converse approach, encoding low-χ interactions in ABC bottlebrush triblock terpolymers (χ AC ≲ 0), promotes organization into a unique mixed-domain lamellar morphology which we designate LAM P. Transmission electron microscopy indicates that LAMP exhibits ACBC domain connectivity, in contrast to conventional three-domain lamellae (LAM 3) with ABCB periods. Complementary small angle X-ray scattering experiments reveal a strongly decreasing domain spacing with increasing total molar mass. Self-consistent field theory reinforces these observations andmore » predicts that LAM P is thermodynamically stable below a critical χ AC, above which LAM 3 emerges. Both experiments and theory expose close analogies to ABA triblock copolymer phase behavior, collectively suggesting that low-χ interactions between chemically similar or distinct blocks intimately influence self-assembly. Furthermore, these conclusions provide new opportunities in block polymer design with potential consequences spanning all self-assembling soft materials.« less

  3. Nup53 Is Required for Nuclear Envelope and Nuclear Pore Complex Assembly

    PubMed Central

    Hawryluk-Gara, Lisa A.; Platani, Melpomeni; Santarella, Rachel

    2008-01-01

    Transport across the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs). These structures are composed of various subcomplexes of proteins that are each present in multiple copies and together establish the eightfold symmetry of the NPC. One evolutionarily conserved subcomplex of the NPC contains the nucleoporins Nup53 and Nup155. Using truncation analysis, we have defined regions of Nup53 that bind to neighboring nucleoporins as well as those domains that target Nup53 to the NPC in vivo. Using this information, we investigated the role of Nup53 in NE and NPC assembly using Xenopus egg extracts. We show that both events require Nup53. Importantly, the analysis of Nup53 fragments revealed that the assembly activity of Nup53 depleted extracts could be reconstituted using a region of Nup53 that binds specifically to its interacting partner Nup155. On the basis of these results, we propose that the formation of a Nup53–Nup155 complex plays a critical role in the processes of NPC and NE assembly. PMID:18256286

  4. Manipulating the ABCs of self-assembly via low-χ block polymer design

    PubMed Central

    Chang, Alice B.; Lee, Byeongdu; Garland, Carol M.; Jones, Simon C.; Matsen, Mark W.

    2017-01-01

    Block polymer self-assembly typically translates molecular chain connectivity into mesoscale structure by exploiting incompatible blocks with large interaction parameters (χij). In this article, we demonstrate that the converse approach, encoding low-χ interactions in ABC bottlebrush triblock terpolymers (χAC ≲ 0), promotes organization into a unique mixed-domain lamellar morphology, which we designate LAMP. Transmission electron microscopy indicates that LAMP exhibits ACBC domain connectivity, in contrast to conventional three-domain lamellae (LAM3) with ABCB periods. Complementary small-angle X-ray scattering experiments reveal a strongly decreasing domain spacing with increasing total molar mass. Self-consistent field theory reinforces these observations and predicts that LAMP is thermodynamically stable below a critical χAC, above which LAM3 emerges. Both experiments and theory expose close analogies to ABA′ triblock copolymer phase behavior, collectively suggesting that low-χ interactions between chemically similar or distinct blocks intimately influence self-assembly. These conclusions provide fresh opportunities for block polymer design with potential consequences spanning all self-assembling soft materials. PMID:28588139

  5. Influence of C-H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly.

    PubMed

    Ji, Wei; Liu, Guofeng; Li, Zijian; Feng, Chuanliang

    2016-03-02

    For CH···O hydrogen bonds in assembled structures and the applications, one of the critical issues is how molecular spatial structures affect their interaction modes as well as how to translate the different modes into the macroscopic properties of materials. Herein, coumarin-derived isomeric hydrogelators with different spatial structures are synthesized, where only nitrogen atoms locate at the ortho, meso, or para position in the pyridine ring. The gelators can self-assemble into single crystals and nanofibrous networks through CH···O interactions, which are greatly influenced by nitrogen spatial positions in the pyridine ring, leading to the different self-assembly mechanisms, packing modes, and properties of the nanofibrous networks. Typically, different cell proliferation rates are obtained on the different CH···O bonds driving nanofibrous structures, implying that tiny variation of the stereo-position of nitrogen atoms can be sensitively detected by cells. The study paves a novel way to investigate the influence of isomeric molecular assembly on macroscopic properties and functions of materials.

  6. Optimized Assembly of a Multifunctional RNA-Protein Nanostructure in a Cell-Free Gene Expression System.

    PubMed

    Schwarz-Schilling, Matthaeus; Dupin, Aurore; Chizzolini, Fabio; Krishnan, Swati; Mansy, Sheref S; Simmel, Friedrich C

    2018-04-11

    Molecular complexes composed of RNA molecules and proteins are promising multifunctional nanostructures for a wide variety of applications in biological cells or in artificial cellular systems. In this study, we systematically address some of the challenges associated with the expression and assembly of such hybrid structures using cell-free gene expression systems. As a model structure, we investigated a pRNA-derived RNA scaffold functionalized with four distinct aptamers, three of which bind to proteins, streptavidin and two fluorescent proteins, while one binds the small molecule dye malachite green (MG). Using MG fluorescence and Förster resonance energy transfer (FRET) between the RNA-scaffolded proteins, we assess critical assembly parameters such as chemical stability, binding efficiency, and also resource sharing effects within the reaction compartment. We then optimize simultaneous expression and coassembly of the RNA-protein nanostructure within a single-compartment cell-free gene expression system. We demonstrate expression and assembly of the multicomponent nanostructures inside of emulsion droplets and their aptamer-mediated localization onto streptavidin-coated substrates, plus the successful assembly of the hybrid structures inside of bacterial cells.

  7. Core/coil assembly for use in superconducting magnets and method for assembling the same

    DOEpatents

    Kassner, David A.

    1979-01-01

    A core/coil assembly for use in a superconducting magnet of the focusing or bending type used in syncronous particle accelerators comprising a coil assembly contained within an axial bore of the stacked, washer type, carbon steel laminations which comprise the magnet core assembly, and forming an interference fit with said laminations at the operating temperature of said magnet. Also a method for making such core/coil assemblies comprising the steps of cooling the coil assembly to cryogenic temperatures and drawing it rapidly upwards into the bore of said stacked laminations.

  8. Superstructure based on β-CD self-assembly induced by a small guest molecule†

    PubMed Central

    De Sousa, Frederico B.; Lima, Ana C.; Denadai, Ângelo M. L.; Anconi, Cleber P. A.; De Almeida, Wagner B.; Novato, Willian T. G.; Dos Santos, Hélio F.; Drum, Chester L.; Langer, Robert

    2014-01-01

    The size, shape and surface chemistry of nanoparticles play an important role in cellular interaction. Thus, the main objective of the present study was the determination of the β-cyclodextrin (β-CD) self-assembly thermodynamic parameters and its structure, aiming to use these assemblies as a possible controlled drug release system. Light scattering measurements led us to obtain the β-CD’s critical aggregation concentration (cac) values, and consequently the thermodynamic parameters of the β-CD spontaneous self-assembly in aqueous solution: ΔaggGo = − 16.31 kJ mol−1, ΔaggHo = − 26.48 kJ mol−1 and TΔaggSo = − 10.53 kJ mol−1 at 298.15 K. Size distribution of the self-assembled nanoparticles below and above cac was 1.5 nm and 60–120 nm, respectively. The number of β-CD molecules per cluster and the second virial coefficient were identified through Debye’s plot and molecular dynamic simulations proposed the three-fold assembly for this system below cac. Ampicillin (AMP) was used as a drug model in order to investigate the key role of the guest molecule in the self-assembly process and the β-CD:AMP supramolecular system was studied in solution, aiming to determine the structure of the supramolecular aggregate. Results obtained in solution indicated that the β-CD’s cac was not affected by adding AMP. Moreover, different complex stoichiometries were identified by nuclear magnetic resonance and isothermal titration calorimetry experiments. PMID:22234498

  9. Hierarchical charge distribution controls self-assembly process of silk in vitro

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Zhang, Cencen; Liu, Lijie; Kaplan, David L.; Zhu, Hesun; Lu, Qiang

    2015-12-01

    Silk materials with different nanostructures have been developed without the understanding of the inherent transformation mechanism. Here we attempt to reveal the conversion road of the various nanostructures and determine the critical regulating factors. The regulating conversion processes influenced by a hierarchical charge distribution were investigated, showing different transformations between molecules, nanoparticles and nanofibers. Various repulsion and compressive forces existed among silk fibroin molecules and aggregates due to the exterior and interior distribution of charge, which further controlled their aggregating and deaggregating behaviors and finally formed nanofibers with different sizes. Synergistic action derived from molecular mobility and concentrations could also tune the assembly process and final nanostructures. It is suggested that the complicated silk fibroin assembly processes comply a same rule based on charge distribution, offering a promising way to develop silk-based materials with designed nanostructures.

  10. The Influencing Factor Analysis on the Performance Evaluation of Assembly Line Balancing Problem Level 1 (SALBP-1) Based on ANOVA Method

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Hu, Jiangnan

    2017-06-01

    Industry 4.0 and lean production has become the focus of manufacturing. A current issue is to analyse the performance of the assembly line balancing. This study focus on distinguishing the factors influencing the assembly line balancing. The one-way ANOVA method is applied to explore the significant degree of distinguished factors. And regression model is built to find key points. The maximal task time (tmax ), the quantity of tasks (n), and degree of convergence of precedence graph (conv) are critical for the performance of assembly line balancing. The conclusion will do a favor to the lean production in the manufacturing.

  11. Hinge assembly

    DOEpatents

    Vandergriff, D.H.

    1999-08-31

    A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.

  12. Nuclear core and fuel assemblies

    DOEpatents

    Downs, Robert E.

    1981-01-01

    A fast flux nuclear core of a plurality of rodded, open-lattice assemblies having a rod pattern rotated relative to a rod support structure pattern. Elongated fuel rods are oriented on a triangular array and laterally supported by grid structures positioned along the length of the assembly. Initial inter-assembly contact is through strongbacks at the corners of the support pattern and peripheral fuel rods between adjacent assemblies are nested so as to maintain a triangular pitch across a clearance gap between the other portions of adjacent assemblies. The rod pattern is rotated relative to the strongback support pattern by an angle .alpha. equal to sin .sup.-1 (p/2c), where p is the intra-assembly rod pitch and c is the center-to-center spacing among adjacent assemblies.

  13. Coherent assembly of heterostructures in ternary and quaternary carbonitrides

    NASA Astrophysics Data System (ADS)

    Caicedo, J. C.; Aperador, W.; Saldarriaga, W.

    2018-05-01

    In this study, ternary and quaternary carbonitride heterostructure systems were grown on silicon (100) substrates in order to investigate coherent assembly in TiCN/TiNbCN. The heterostructure films were grown using the reactive r. f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n), while maintaining a constant total coating thickness (∼3 μm). The heterostructures were characterized by high angle X-ray diffraction (HA-XRD) and low angle X-ray diffraction, while the TiCN and TiNbCN layers were analyzed by X-ray photoelectron spectroscopy and transmission electron microscopy. The HA-XRD results indicated preferential growth in the face-centered cubic (111) crystal structure for the [TiCN/TiNbCN]n heterostructures. The maximum coherent assembly was observed with the presence of satellite peaks. Thus, ternary and quaternary carbonitride films were designed and deposited on Si (100) substrates with bilayer periods (Λ) in a broad range from nanometers to hundreds of nanometers in order to study the structural evolution and coherent assembly progress as the bilayer thickness decreased. We determined physical properties comprising the critical angle (θc) (0.362°), electronic density (ρe) (0.521 × 1033 el/m3), dispersion coefficient (δ) (0.554 el/m3), and refractive index (n) (0.999944) as functions of the number of bilayers (n).

  14. Regulated assembly and disassembly of the yeast telomerase quaternary complex

    PubMed Central

    Tucey, Timothy M.

    2014-01-01

    The enzyme telomerase, which elongates chromosome termini, is a critical factor in determining long-term cellular proliferation and tissue renewal. Hence, even small differences in telomerase levels can have substantial consequences for human health. In budding yeast, telomerase consists of the catalytic Est2 protein and two regulatory subunits (Est1 and Est3) in association with the TLC1 RNA, with each of the four subunits essential for in vivo telomerase function. We show here that a hierarchy of assembly and disassembly results in limiting amounts of the quaternary complex late in the cell cycle, following completion of DNA replication. The assembly pathway, which is driven by interaction of the Est3 telomerase subunit with a previously formed Est1–TLC1–Est2 preassembly complex, is highly regulated, involving Est3-binding sites on both Est2 and Est1 as well as an interface on Est3 itself that functions as a toggle switch. Telomerase subsequently disassembles by a mechanistically distinct pathway due to dissociation of the catalytic subunit from the complex in every cell cycle. The balance between the assembly and disassembly pathways, which dictate the levels of the active holoenzyme in the cell, reveals a novel mechanism by which telomerase (and hence telomere homeostasis) is regulated. PMID:25240060

  15. Assembly planning based on subassembly extraction

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Shin, Yeong Gil

    1990-01-01

    A method is presented for the automatic determination of assembly partial orders from a liaison graph representation of an assembly through the extraction of preferred subassemblies. In particular, the authors show how to select a set of tentative subassemblies by decomposing a liaison graph into a set of subgraphs based on feasibility and difficulty of disassembly, how to evaluate each of the tentative subassemblies in terms of assembly cost using the subassembly selection indices, and how to construct a hierarchical partial order graph (HPOG) as an assembly plan. The method provides an approach to assembly planning by identifying spatial parallelism in assembly as a means of constructing temporal relationships among assembly operations and solves the problem of finding a cost-effective assembly plan in a flexible environment. A case study of the assembly planning of a mechanical assembly is presented.

  16. A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage

    PubMed Central

    Moggs, Jonathan G.; Grandi, Paola; Quivy, Jean-Pierre; Jónsson, Zophonías O.; Hübscher, Ulrich; Becker, Peter B.; Almouzni, Geneviève

    2000-01-01

    Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This nucleosome assembly pathway involves the histone chaperone chromatin assembly factor 1 (CAF-1). The largest subunit (p150) of this factor interacts directly with proliferating cell nuclear antigen (PCNA), and critical regions for this interaction on both proteins have been mapped. To isolate proteins specifically recruited during DNA repair, damaged DNA linked to magnetic beads was used. The binding of both PCNA and CAF-1 to this damaged DNA was dependent on the number of DNA lesions and required ATP. Chromatin assembly linked to the repair of single-strand breaks was disrupted by depletion of PCNA from a cell-free system. This defect was rescued by complementation with recombinant PCNA, arguing for role of PCNA in mediating chromatin assembly linked to DNA repair. We discuss the importance of the PCNA–CAF-1 interaction in the context of DNA damage processing and checkpoint control. PMID:10648606

  17. Minimus: a fast, lightweight genome assembler.

    PubMed

    Sommer, Daniel D; Delcher, Arthur L; Salzberg, Steven L; Pop, Mihai

    2007-02-26

    Genome assemblers have grown very large and complex in response to the need for algorithms to handle the challenges of large whole-genome sequencing projects. Many of the most common uses of assemblers, however, are best served by a simpler type of assembler that requires fewer software components, uses less memory, and is far easier to install and run. We have developed the Minimus assembler to address these issues, and tested it on a range of assembly problems. We show that Minimus performs well on several small assembly tasks, including the assembly of viral genomes, individual genes, and BAC clones. In addition, we evaluate Minimus' performance in assembling bacterial genomes in order to assess its suitability as a component of a larger assembly pipeline. We show that, unlike other software currently used for these tasks, Minimus produces significantly fewer assembly errors, at the cost of generating a more fragmented assembly. We find that for small genomes and other small assembly tasks, Minimus is faster and far more flexible than existing tools. Due to its small size and modular design Minimus is perfectly suited to be a component of complex assembly pipelines. Minimus is released as an open-source software project and the code is available as part of the AMOS project at Sourceforge.

  18. Evaluation of Cadmium Ratio and Foil Activation Measurements for a Beryllium-Reflected Assembly of U(93.15)O 2 Fuel Rods (1.506-cm Triangular Pitch)

    DOE PAGES

    Marshall, Margaret A.

    2014-11-04

    A series of small, compact critical assembly (SCCA) experiments were completed from 1962 to 1965 at Oak Ridge National Laboratory’s Critical Experiments Facility (ORCEF) in support of the Medium-Power Reactor Experiments (MPRE) program. Initial experiments, performed in November and December of 1962, consisted of a core of un-moderated stainless-steel tubes, each containing 26 UOIdaho National Laboratory (INL), Idaho Falls, ID (United States) fuel pellets, surrounded by a graphite reflector. Measurements were performed to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. The graphite reflectors were then changed to beryllium reflectors. For the beryllium reflected assemblies, the fuel wasmore » in 1.506-cm-triangular and 7-tube clusters leading to two critical configurations. Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements, performed on the 1.506-cm-array critical configuration, have been evaluated and are described in this paper.« less

  19. Hyper-Assembly of Self-Assembled Glycoclusters Mediated by Specific Carbohydrate-Carbohydrate Interactions.

    PubMed

    Yan, Gengwei; Yamaguchi, Takumi; Suzuki, Tatsuya; Yanaka, Saeko; Sato, Sota; Fujita, Makoto; Kato, Koichi

    2017-05-04

    Hybridization of a self-assembled, spherical complex with oligosaccharides containing Lewis X, a functional trisaccharide displayed on various cell surfaces, yielded well-defined glycoclusters. The self-assembled glycoclusters exhibited homophilic hyper-assembly in aqueous solution in a Ca 2+ -dependent manner through specific carbohydrate-carbohydrate interactions, offering a structural scaffold for functional biomimetic systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Measure Guideline: Water Management at Tub and Shower Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, B.

    2011-12-01

    Due to the high concentrations of water and the consequential risk of water damage to the home's structure a comprehensive water management system is imperative to protect the building assemblies underlying the finish surround of tub and shower areas. This guide shows how to install fundamental waterproofing strategies to prevent water related issues at shower and tub areas. When conducting a total gut rehab of a structure or constructing a new home, best practice installation and detailing for effective waterproofing are critically important at bathtub and shower assemblies. Water management issues in a structure may go unrecognized for long periods,more » so that when they are finally observed, the damage from long-term water exposure is extensive. A gut rehab is often undertaken when a home has experienced a natural disaster or when the homeowners are interested in converting an old, high-energy-use building into a high-quality, efficient structure that meets or exceeds one of the national energy standards, such as ENERGY STAR or LEED for homes. During a gut rehab, bath areas need to be replaced with diligent attention to detail. Employing effective water management practices in the installation and detailing of tub and shower assemblies will minimize or eliminate water issues within the building cavities and on the finished surfaces. A residential tub-and-shower surround or shower-stall assembly is designed to handle a high volume of water - 2.5 gallons per minute, with multiple baths occurring during a typical day. Transitions between dissimilar materials and connections between multiple planes must be installed with care to avoid creating a pathway for water to enter the building assemblies. Due to the high volume of water and the consequential risk of water damage to the home's structure, a comprehensive water management system is imperative to protect the building assemblies underlying the finish surround of tub and shower areas. At each stage of

  1. Automated assembly in space

    NASA Technical Reports Server (NTRS)

    Srivastava, Sandanand; Dwivedi, Suren N.; Soon, Toh Teck; Bandi, Reddy; Banerjee, Soumen; Hughes, Cecilia

    1989-01-01

    The installation of robots and their use of assembly in space will create an exciting and promising future for the U.S. Space Program. The concept of assembly in space is very complicated and error prone and it is not possible unless the various parts and modules are suitably designed for automation. Certain guidelines are developed for part designing and for an easy precision assembly. Major design problems associated with automated assembly are considered and solutions to resolve these problems are evaluated in the guidelines format. Methods for gripping and methods for part feeding are developed with regard to the absence of gravity in space. The guidelines for part orientation, adjustments, compliances and various assembly construction are discussed. Design modifications of various fasteners and fastening methods are also investigated.

  2. Overview of International Space Station Carbon Dioxide Removal Assembly On-Orbit Operations and Performance

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2013-01-01

    Controlling Carbon Dioxide (CO2) partial pressure in the habitable vehicle environment is a critical part of operations on the International Space Station (ISS). On the United States segment of ISS, CO2 levels are primarily controlled by the Carbon Dioxide Removal Assembly (CDRA). There are two CDRAs on ISS; one in the United States Laboratory module, and one in the Node3 module. CDRA has been through several significant operational issues, performance issues and subsequent re-design of various components, primarily involving the Desiccant Adsorbent Bed (DAB) assembly and Air Selector Valves (ASV). This paper will focus on significant operational and performance issues experienced by the CDRA team from 2008-2012.

  3. MYBPH inhibits NM IIA assembly via direct interaction with NMHC IIA and reduces cell motility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosono, Yasuyuki; Usukura, Jiro; Yamaguchi, Tomoya

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer MYBPH inhibits NMHC IIA assembly and cell motility. Black-Right-Pointing-Pointer MYBPH interacts to assembly-competent NM IIA. Black-Right-Pointing-Pointer MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA. -- Abstract: Actomyosin filament assembly is a critical step in tumor cell migration. We previously found that myosin binding protein H (MYBPH) is directly transactivated by the TTF-1 lineage-survival oncogene in lung adenocarcinomas and inhibits phosphorylation of the myosin regulatory light chain (RLC) of non-muscle myosin IIA (NM IIA) via direct interaction with Rho kinase 1 (ROCK1). Here, we report that MYBPH also directly interacts with an additional molecule, non-muscle myosinmore » heavy chain IIA (NMHC IIA), which was found to occur between MYBPH and the rod portion of NMHC IIA. MYBPH inhibited NMHC IIA assembly and reduced cell motility. Conversely, siMYBPH-induced increased motility was partially, yet significantly, suppressed by blebbistatin, a non-muscle myosin II inhibitor, while more profound effects were attained by combined treatment with siROCK1 and blebbistatin. Electron microscopy observations showed well-ordered paracrystals of NMHC IIA reflecting an assembled state, which were significantly less frequently observed in the presence of MYBPH. Furthermore, an in vitro sedimentation assay showed that a greater amount of NMHC IIA was in an unassembled state in the presence of MYBPH. Interestingly, treatment with a ROCK inhibitor that impairs transition of NM IIA from an assembly-incompetent to assembly-competent state reduced the interaction between MYBPH and NMHC IIA, suggesting that MYBPH has higher affinity to assembly-competent NM IIA. These results suggest that MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA, and negatively regulates actomyosin organization at 2 distinct steps, resulting in firm inhibition of NM IIA assembly.« less

  4. Selected Lessons Learned through the ISS Design, Development, Assembly, and Operations: Applicability to International Cooperation for Standardization

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2009-01-01

    This slide presentation reviews selected lessons that were learned during the design, development, assembly and operation of the International Space Station. The critical importance of standards and common interfaces is emphasized to create a common operation environment that can lead to flexibility and adaptability.

  5. A New Chicken Genome Assembly Provides Insight into Avian Genome Structure.

    PubMed

    Warren, Wesley C; Hillier, LaDeana W; Tomlinson, Chad; Minx, Patrick; Kremitzki, Milinn; Graves, Tina; Markovic, Chris; Bouk, Nathan; Pruitt, Kim D; Thibaud-Nissen, Francoise; Schneider, Valerie; Mansour, Tamer A; Brown, C Titus; Zimin, Aleksey; Hawken, Rachel; Abrahamsen, Mitch; Pyrkosz, Alexis B; Morisson, Mireille; Fillon, Valerie; Vignal, Alain; Chow, William; Howe, Kerstin; Fulton, Janet E; Miller, Marcia M; Lovell, Peter; Mello, Claudio V; Wirthlin, Morgan; Mason, Andrew S; Kuo, Richard; Burt, David W; Dodgson, Jerry B; Cheng, Hans H

    2017-01-05

    The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts. Copyright © 2017 Warren et al.

  6. Method and apparatus for assembling a permanent magnet pole assembly

    DOEpatents

    Carl, Jr., Ralph James; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Scotia, NY; Dawson, Richard Nils [Voorheesville, NY; Qu, Ronghai [Clifton Park, NY; Avanesov, Mikhail Avramovich [Moscow, RU

    2009-08-11

    A pole assembly for a rotor, the pole assembly includes a permanent magnet pole including at least one permanent magnet block, a plurality of laminations including a pole cap mechanically coupled to the pole, and a plurality of laminations including a base plate mechanically coupled to the pole.

  7. Kinetics of Surface-Driven Self-Assembly and Fatigue-Induced Disassembly of a Virus-Based Nanocoating.

    PubMed

    Valbuena, Alejandro; Mateu, Mauricio G

    2017-02-28

    Self-assembling protein layers provide a "bottom-up" approach for precisely organizing functional elements at the nanoscale over a large solid surface area. The design of protein sheets with architecture and physical properties suitable for nanotechnological applications may be greatly facilitated by a thorough understanding of the principles that underlie their self-assembly and disassembly. In a previous study, the hexagonal lattice formed by the capsid protein (CA) of human immunodeficiency virus (HIV) was self-assembled as a monomolecular layer directly onto a solid substrate, and its mechanical properties and dynamics at equilibrium were analyzed by atomic force microscopy. Here, we use atomic force microscopy to analyze the kinetics of self-assembly of the planar CA lattice on a substrate and of its disassembly, either spontaneous or induced by materials fatigue. Both self-assembly and disassembly of the CA layer are cooperative reactions that proceed until a phase equilibrium is reached. Self-assembly requires a critical protein concentration and is initiated by formation of nucleation points on the substrate, followed by lattice growth and eventual merging of CA patches into a continuous monolayer. Disassembly of the CA layer showed hysteresis and appears to proceed only after large enough defects (nucleation points) are formed in the lattice, whose number is largely increased by inducing materials fatigue that depends on mechanical load and its frequency. Implications of the kinetic results obtained for a better understanding of self-assembly and disassembly of the HIV capsid and protein-based two-dimensional nanomaterials and the design of anti-HIV drugs targeting (dis)assembly and biocompatible nanocoatings are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Backward assembly planning with DFA analysis

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan (Inventor)

    1995-01-01

    An assembly planning system that operates based on a recursive decomposition of assembly into subassemblies, and analyzes assembly cost in terms of stability, directionality, and manipulability to guide the generation of preferred assembly plans is presented. The planning in this system incorporates the special processes, such as cleaning, testing, labeling, etc. that must occur during the assembly, and handles nonreversible as well as reversible assembly tasks through backward assembly planning. In order to increase the planning efficiency, the system avoids the analysis of decompositions that do not correspond to feasible assembly tasks. This is achieved by grouping and merging those parts that can not be decomposable at the current stage of backward assembly planning due to the requirement of special processes and the constraint of interconnection feasibility. The invention includes methods of evaluating assembly cost in terms of the number of fixtures (or holding devices) and reorientations required for assembly, through the analysis of stability, directionality, and manipulability. All these factors are used in defining cost and heuristic functions for an AO* search for an optimal plan.

  9. Backward assembly planning with DFA analysis

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan (Inventor)

    1992-01-01

    An assembly planning system that operates based on a recursive decomposition of assembly into subassemblies is presented. The planning system analyzes assembly cost in terms of stability, directionality, and manipulability to guide the generation of preferred assembly plans. The planning in this system incorporates the special processes, such as cleaning, testing, labeling, etc., that must occur during the assembly. Additionally, the planning handles nonreversible, as well as reversible, assembly tasks through backward assembly planning. In order to decrease the planning efficiency, the system avoids the analysis of decompositions that do not correspond to feasible assembly tasks. This is achieved by grouping and merging those parts that can not be decomposable at the current stage of backward assembly planning due to the requirement of special processes and the constraint of interconnection feasibility. The invention includes methods of evaluating assembly cost in terms of the number of fixtures (or holding devices) and reorientations required for assembly, through the analysis of stability, directionality, and manipulability. All these factors are used in defining cost and heuristic functions for an AO* search for an optimal plan.

  10. Magnetic latch trigger for inherent shutdown assembly

    DOEpatents

    Sowa, Edmund S.

    1976-01-01

    An inherent shutdown assembly for a nuclear reactor is provided. A neutron absorber is held ready to be inserted into the reactor core by a magnetic latch. The latch includes a magnet whose lines of force are linked by a yoke of material whose Curie point is at the critical temperature of the reactor at which the neutron absorber is to be inserted into the reactor core. The yoke is in contact with the core coolant or fissionable material so that when the coolant or the fissionable material increase in temperature above the Curie point the yoke loses its magnetic susceptibility and the magnetic link is broken, thereby causing the absorber to be released into the reactor core.

  11. Drosophila vitelline membrane assembly: A critical role for an evolutionarily conserved cysteine in the “VM domain” of sV23

    PubMed Central

    Wu, T; Manogaran, A.L; Beauchamp, J.M.; Waring, G.L.

    2010-01-01

    The vitelline membrane (VM), the oocyte proximal layer of the Drosophila eggshell, contains four major proteins (VMPs) that possess a highly conserved “VM domain” which includes three precisely spaced, evolutionarily conserved, cysteines (CX7CX8C). Focusing on sV23, this study showed that the three cysteines are not functionally equivalent. While substitution mutations at the first (C123S) or third (C140S) cysteines were tolerated, females with a substitution at the second position (C131S) were sterile. Fractionation studies showed sV23 incorporates into a large disulfide linked network well after its secretion ceases, suggesting post-depositional mechanisms are in place to restrict disulfide bond formation until late oogenesis, when the oocyte no longer experiences large volume increases. Affinity chromatography utilizing histidine tagged sV23 alleles revealed small sV23 disulfide linked complexes during the early stages of eggshell formation that included other VMPs, namely sV17 and Vml. The early presence but late loss of these associations in an sV23 double cysteine mutant suggests reorganization of disulfide bonds may underlie the regulated growth of disulfide-linked networks in the vitelline membrane. Found within the context of a putative thioredoxin active site (CXXS) C131, the critical cysteine in sV23, may play an important enzymatic role in isomerizing intermolecular disulfide bonds during eggshell assembly. PMID:20832396

  12. Elasticity-dependent fast underwater adhesion demonstrated by macroscopic supramolecular assembly.

    PubMed

    Ju, Guannan; Cheng, Mengjiao; Guo, Fengli; Zhang, Qian; Shi, Feng

    2018-05-30

    Macroscopic supramolecular assembly (MSA) is a recent progress in supramolecular chemistry to associate visible building blocks through non-covalent interactions in a multivalent manner. Although various substrates (e. g. hydrogels, rigid materials) have been used, a general design rule of building blocks in MSA systems and interpretation of the assembly mechanism are still lacking and urgently in demand. Here we design three model systems with varied modulus and correlated the MSA probability with the elasticity. Based on the effects of substrate deformability on multivalency, we have proposed an elastic-modulus-dependent rule that building blocks below a critical modulus of 2.5 MPa can achieve MSA for the used host/guest system. Moreover, this MSA rule applies well to the design of materials applicable for fast underwater adhesion: Soft substrates (0.5 MPa) can achieve underwater adhesion within 10 s with one magnitude higher strength than that of rigid substrates (2.5 MPa). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Scoring-and-unfolding trimmed tree assembler: concepts, constructs and comparisons.

    PubMed

    Narzisi, Giuseppe; Mishra, Bud

    2011-01-15

    Mired by its connection to a well-known -complete combinatorial optimization problem-namely, the Shortest Common Superstring Problem (SCSP)-historically, the whole-genome sequence assembly (WGSA) problem has been assumed to be amenable only to greedy and heuristic methods. By placing efficiency as their first priority, these methods opted to rely only on local searches, and are thus inherently approximate, ambiguous or error prone, especially, for genomes with complex structures. Furthermore, since choice of the best heuristics depended critically on the properties of (e.g. errors in) the input data and the available long range information, these approaches hindered designing an error free WGSA pipeline. We dispense with the idea of limiting the solutions to just the approximated ones, and instead favor an approach that could potentially lead to an exhaustive (exponential-time) search of all possible layouts. Its computational complexity thus must be tamed through a constrained search (Branch-and-Bound) and quick identification and pruning of implausible overlays. For his purpose, such a method necessarily relies on a set of score functions (oracles) that can combine different structural properties (e.g. transitivity, coverage, physical maps, etc.). We give a detailed description of this novel assembly framework, referred to as Scoring-and-Unfolding Trimmed Tree Assembler (SUTTA), and present experimental results on several bacterial genomes using next-generation sequencing technology data. We also report experimental evidence that the assembly quality strongly depends on the choice of the minimum overlap parameter k. SUTTA's binaries are freely available to non-profit institutions for research and educational purposes at http://www.bioinformatics.nyu.edu.

  14. Community assembly of a euryhaline fish microbiome during salinity acclimation.

    PubMed

    Schmidt, Victor T; Smith, Katherine F; Melvin, Donald W; Amaral-Zettler, Linda A

    2015-05-01

    Microbiomes play a critical role in promoting a range of host functions. Microbiome function, in turn, is dependent on its community composition. Yet, how microbiome taxa are assembled from their regional species pool remains unclear. Many possible drivers have been hypothesized, including deterministic processes of competition, stochastic processes of colonization and migration, and physiological 'host-effect' habitat filters. The contribution of each to assembly in nascent or perturbed microbiomes is important for understanding host-microbe interactions and host health. In this study, we characterized the bacterial communities in a euryhaline fish and the surrounding tank water during salinity acclimation. To assess the relative influence of stochastic versus deterministic processes in fish microbiome assembly, we manipulated the bacterial species pool around each fish by changing the salinity of aquarium water. Our results show a complete and repeatable turnover of dominant bacterial taxa in the microbiomes from individuals of the same species after acclimation to the same salinity. We show that changes in fish microbiomes are not correlated with corresponding changes to abundant taxa in tank water communities and that the dominant taxa in fish microbiomes are rare in the aquatic surroundings, and vice versa. Our results suggest that bacterial taxa best able to compete within the unique host environment at a given salinity appropriate the most niche space, independent of their relative abundance in tank water communities. In this experiment, deterministic processes appear to drive fish microbiome assembly, with little evidence for stochastic colonization. © 2015 John Wiley & Sons Ltd.

  15. Multi-position photovoltaic assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2003-03-18

    The invention is directed to a PV assembly, for use on a support surface, comprising a base, a PV module, a multi-position module support assembly, securing the module to the base at shipping and inclined-use angles, a deflector, a multi-position deflector support securing the deflector to the base at deflector shipping and deflector inclined-use angles, the module and deflector having opposed edges defining a gap therebetween. The invention permits transport of the PV assemblies in a relatively compact form, thus lowering shipping costs, while facilitating installation of the PV assemblies with the PV module at the proper inclination.

  16. Adult Competency Education Kit. Basic Skills in Speaking, Math, and Reading for Employment. Part P: ACE Competency Based Job Descriptions: #77--Secretary; #78--Keypunch Operator; Assembly Worker Core Job Description; #82--Electronics Assembler; #83--Printed Circuit Assembler; #84--Micro Electronics Assembler; #85--Chassis Assembler; #87--Machinist Apprentice.

    ERIC Educational Resources Information Center

    San Mateo County Office of Education, Redwood City, CA. Career Preparation Centers.

    This thirteenth of fifteen sets of Adult Competency Education (ACE) Competency Based Job Descriptions in the ACE kit contains job descriptions for Secretary, Keypunch Operator, Electronics Assembler, Printed Circuit Assembler, Micro Electronincs Assembler, Chassis Assembler, and Machinist Apprentice. Each begins with a fact sheet that includes…

  17. Organised surfactant assemblies in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Sanz-Medel, Alfredo; Fernandez de la Campa, Maria del Rosario; Gonzalez, Elisa Blanco; Fernandez-Sanchez, Maria Luisa

    1999-02-01

    The use of surfactant-based organised assemblies in analytical atomic spectroscopy is extensively and critically reviewed along three main lines: first, the ability of organised media to enhance detection of atomic spectroscopic methods by favourable manipulation of physical and chemical properties of the sample solution second, the extension of separation mechanisms by resorting to organised media and third a discussion of synergistic combinations of liquid chromatography separations and atomic detectors via the use of vesicular mobile phases. Changes in physical properties of sample solutions aspirated in atomic spectrometry by addition of surfactants can be advantageously used in at least four different ways: (i) to improve nebulisation efficiency; (ii) to enhance wettability of solid surfaces used for atomisation; (iii) to improve compatibility between aqueous and organic phases; and (iv) to achieve good dispersion of small particles in "slurry" techniques. Controversial results and statements published so far are critically discussed. The ability of surfactant-based organised assemblies, such as micelles and vesicles, to organise reactants at the molecular level has also been applied to enhance the characteristics of chemical generation of volalite species of metals and semi-metals (e.g., hydride or ethylide generation of As, Pb, Cd, Se, Sn, and cold vapour Hg generation) used in atomic methods. Enhancements in efficiency/transport of volatile species, increases in the reaction kinetics, stabilisation of some unstable species and changes in the selectivity of the reactions by surfactants are dealt with. Non-chromatographic cloud-point separations to design pre-concentration procedures with subsequent metal determination by atomic methods are addressed along with chromatographic separations of expanded scope by addition of surfactants to the conventional aqueous mobile phases of reversed-phase high-performance liquid chromatography. Finally, the synergistic

  18. Flashback resistant pre-mixer assembly

    DOEpatents

    Laster, Walter R [Oviedo, FL; Gambacorta, Domenico [Oviedo, FL

    2012-02-14

    A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.

  19. Stochastic Community Assembly: Does It Matter in Microbial Ecology?

    PubMed

    Zhou, Jizhong; Ning, Daliang

    2017-12-01

    Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research. Copyright © 2017 American Society for Microbiology.

  20. Overcoming the Coupling Dilemma in DNA-Programmable Nanoparticle Assemblies by "Ag+ Soldering".

    PubMed

    Wang, Huiqiao; Li, Yulin; Liu, Miao; Gong, Ming; Deng, Zhaoxiang

    2015-05-20

    Strong coupling between nanoparticles is critical for facilitating charge and energy transfers. Despite the great success of DNA-programmable nanoparticle assemblies, the very weak interparticle coupling represents a key barrier to various applications. Here, an extremely simple, fast, and highly efficient process combining DNA-programming and molecular/ionic bonding is developed to address this challenge, which exhibits a seamless fusion with DNA nanotechnology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Composite turbine bucket assembly

    DOEpatents

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  2. A coarse-grained model of microtubule self-assembly

    NASA Astrophysics Data System (ADS)

    Regmi, Chola; Cheng, Shengfeng

    Microtubules play critical roles in cell structures and functions. They also serve as a model system to stimulate the next-generation smart, dynamic materials. A deep understanding of their self-assembly process and biomechanical properties will not only help elucidate how microtubules perform biological functions, but also lead to exciting insight on how microtubule dynamics can be altered or even controlled for specific purposes such as suppressing the division of cancer cells. Combining all-atom molecular dynamics (MD) simulations and the essential dynamics coarse-graining method, we construct a coarse-grained (CG) model of the tubulin protein, which is the building block of microtubules. In the CG model a tubulin dimer is represented as an elastic network of CG sites, the locations of which are determined by examining the protein dynamics of the tubulin and identifying the essential dynamic domains. Atomistic MD modeling is employed to directly compute the tubulin bond energies in the surface lattice of a microtubule, which are used to parameterize the interactions between CG building blocks. The CG model is then used to study the self-assembly pathways, kinetics, dynamics, and nanomechanics of microtubules.

  3. TOOL ASSEMBLY WITH BI-DIRECTIONAL BEARING

    DOEpatents

    Longhurst, G.E.

    1961-07-11

    A two-direction motion bearing which is incorporated in a refueling nuclear fuel element trsnsfer tool assembly is described. A plurality of bi- directional bearing assembliesare fixed equi-distantly about the circumference of the transfer tool assembly to provide the tool assembly with a bearing surface- for both axial and rotational motion. Each bi-directional bearing assembly contains a plurality of circumferentially bulged rollers mounted in a unique arrangement which will provide a bearing surface for rotational movement of the tool assembly within a bore. The bi-direc tional bearing assembly itself is capable of rational motion and thus provides for longitudinal movement of the tool assembly.

  4. Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin.

    PubMed

    Sims, Jennifer K; Wade, Paul A

    2011-09-01

    During chromosome duplication, it is essential to replicate not only the DNA sequence, but also the complex nucleoprotein structures of chromatin. Pericentric heterochromatin is critical for silencing repetitive elements and plays an essential structural role during mitosis. However, relatively little is understood about its assembly and maintenance during replication. The Mi2/NuRD chromatin remodeling complex tightly associates with actively replicating pericentric heterochromatin, suggesting a role in its assembly. Here we demonstrate that depletion of the catalytic ATPase subunit CHD4/Mi-2β in cells with a dampened DNA damage response results in a slow-growth phenotype characterized by delayed progression through S phase. Furthermore, we observe defects in pericentric heterochromatin maintenance and assembly. Our data suggest that chromatin assembly defects are sensed by an ATM-dependent intra-S phase chromatin quality checkpoint, resulting in a temporal block to the transition from early to late S phase. These findings implicate Mi-2β in the maintenance of chromatin structure and proper cell cycle progression.

  5. TOM9.2 Is a Calmodulin-Binding Protein Critical for TOM Complex Assembly but Not for Mitochondrial Protein Import in Arabidopsis thaliana.

    PubMed

    Parvin, Nargis; Carrie, Chris; Pabst, Isabelle; Läßer, Antonia; Laha, Debabrata; Paul, Melanie V; Geigenberger, Peter; Heermann, Ralf; Jung, Kirsten; Vothknecht, Ute C; Chigri, Fatima

    2017-04-03

    The translocon on the outer membrane of mitochondria (TOM) facilitates the import of nuclear-encoded proteins. The principal machinery of mitochondrial protein transport seems conserved in eukaryotes; however, divergence in the composition and structure of TOM components has been observed between mammals, yeast, and plants. TOM9, the plant homolog of yeast Tom22, is significantly smaller due to a truncation in the cytosolic receptor domain, and its precise function is not understood. Here we provide evidence showing that TOM9.2 from Arabidopsis thaliana is involved in the formation of mature TOM complex, most likely by influencing the assembly of the pore-forming subunit TOM40. Dexamethasone-induced RNAi gene silencing of TOM9.2 results in a severe reduction in the mature TOM complex, and the assembly of newly imported TOM40 into the complex is impaired. Nevertheless, mutant plants are fully viable and no obvious downstream effects of the loss of TOM complex, i.e., on mitochondrial import capacity, were observed. Furthermore, we found that TOM9.2 can bind calmodulin (CaM) in vitro and that CaM impairs the assembly of TOM complex in the isolated wild-type mitochondria, suggesting a regulatory role of TOM9.2 and a possible integration of TOM assembly into the cellular calcium signaling network. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  6. Non-muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction.

    PubMed

    Zhang, Wenwu; Gunst, Susan J

    2017-07-01

    Non-muscle (NM) and smooth muscle (SM) myosin II are both expressed in smooth muscle tissues, however the role of NM myosin in SM contraction is unknown. Contractile stimulation of tracheal smooth muscle tissues stimulates phosphorylation of the NM myosin heavy chain on Ser1943 and causes NM myosin filament assembly at the SM cell cortex. Expression of a non-phosphorylatable NM myosin mutant, NM myosin S1943A, in SM tissues inhibits ACh-induced NM myosin filament assembly and SM contraction, and also inhibits the assembly of membrane adhesome complexes during contractile stimulation. NM myosin regulatory light chain (RLC) phosphorylation but not SM myosin RLC phosphorylation is regulated by RhoA GTPase during ACh stimulation, and NM RLC phosphorylation is required for NM myosin filament assembly and SM contraction. NM myosin II plays a critical role in airway SM contraction that is independent and distinct from the function of SM myosin. The molecular function of non-muscle (NM) isoforms of myosin II in smooth muscle (SM) tissues and their possible role in contraction are largely unknown. We evaluated the function of NM myosin during contractile stimulation of canine tracheal SM tissues. Stimulation with ACh caused NM myosin filament assembly, as assessed by a Triton solubility assay and a proximity ligation assay aiming to measure interactions between NM myosin monomers. ACh stimulated the phosphorylation of NM myosin heavy chain on Ser1943 in tracheal SM tissues, which can regulate NM myosin IIA filament assembly in vitro. Expression of the non-phosphorylatable mutant NM myosin S1943A in SM tissues inhibited ACh-induced endogenous NM myosin Ser1943 phosphorylation, NM myosin filament formation, the assembly of membrane adhesome complexes and tension development. The NM myosin cross-bridge cycling inhibitor blebbistatin suppressed adhesome complex assembly and SM contraction without inhibiting NM myosin Ser1943 phosphorylation or NM myosin filament assembly. Rho

  7. Permanent magnet assembly

    DOEpatents

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  8. Computer Tomography Analysis of Fastrac Composite Thrust Chamber Assemblies

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2000-01-01

    Computed tomography (CT) inspection has been integrated into the production process for NASA's Fastrac composite thrust chamber assemblies (TCAs). CT has been proven to be uniquely qualified to detect the known critical flaw for these nozzles, liner cracks that are adjacent to debonds between the liner and overwrap. CT is also being used as a process monitoring tool through analysis of low density indications in the nozzle overwraps. 3d reconstruction of CT images to produce models of flawed areas is being used to give program engineers better insight into the location and nature of nozzle flaws.

  9. C-terminal motifs in promyelocytic leukemia protein isoforms critically regulate PML nuclear body formation.

    PubMed

    Li, Chuang; Peng, Qiongfang; Wan, Xiao; Sun, Haili; Tang, Jun

    2017-10-15

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs), which are sub-nuclear protein structures, are involved in a variety of important cellular functions. PML-NBs are assembled by PML isoforms, and contact between small ubiquitin-like modifiers (SUMOs) with the SUMO interaction motif (SIM) are critically involved in this process. PML isoforms contain a common N-terminal region and a variable C-terminus. However, the contribution of the C-terminal regions to PML-NB formation remains poorly defined. Here, using high-resolution microscopy, we show that mutation of the SIM distinctively influences the structure of NBs formed by each individual PML isoform, with that of PML-III and PML-V minimally changed, and PML-I and PML-IV dramatically impaired. We further identify several C-terminal elements that are important in regulating NB structure and provide strong evidence to suggest that the 8b element in PML-IV possesses a strong ability to interact with SUMO-1 and SUMO-2, and critically participates in NB formation. Our findings highlight the importance of PML C-termini in NB assembly and function, and provide molecular insight into the PML-NB assembly of each distinctive isoform. © 2017. Published by The Company of Biologists Ltd.

  10. Non-latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A non-latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes a permanent magnet and an electromagnet. The respective sections are arranged in separate locations or cavities in the assembly. The switch has a "normal" position and is selectively switched by an overriding electromagnetic assembly. The switch returns to the "normal" position when the overriding electromagnetic assembly is inactive.

  11. Some assembly required: leveraging Web science to understand and enable team assembly

    PubMed Central

    Contractor, Noshir

    2013-01-01

    Recent advances on the Web have generated unprecedented opportunities for individuals around the world to assemble into teams. And yet, because of the Web, the nature of teams and how they are assembled has changed radically. Today, many teams are ad hoc, agile, distributed, transient entities that are assembled from a larger primordial network of relationships within virtual communities. These assemblages possess the potential to unleash the high levels of creativity and innovation necessary for productively addressing many of the daunting challenges confronting contemporary society. This article argues that Web science is particularly well suited to help us realize this potential by making a substantial interdisciplinary intellectual investment in (i) advancing theories that explain our socio-technical motivations to form teams, (ii) the development of new analytic methods and models to untangle the unique influences of these motivations on team assembly, (iii) harvesting, curating and leveraging the digital trace data offered by the Web to test our models, and (iv) implementing recommender systems that use insights gleaned from our richer theoretical understanding of the motivations that lead to effective team assembly. PMID:23419854

  12. Some assembly required: leveraging Web science to understand and enable team assembly.

    PubMed

    Contractor, Noshir

    2013-03-28

    Recent advances on the Web have generated unprecedented opportunities for individuals around the world to assemble into teams. And yet, because of the Web, the nature of teams and how they are assembled has changed radically. Today, many teams are ad hoc, agile, distributed, transient entities that are assembled from a larger primordial network of relationships within virtual communities. These assemblages possess the potential to unleash the high levels of creativity and innovation necessary for productively addressing many of the daunting challenges confronting contemporary society. This article argues that Web science is particularly well suited to help us realize this potential by making a substantial interdisciplinary intellectual investment in (i) advancing theories that explain our socio-technical motivations to form teams, (ii) the development of new analytic methods and models to untangle the unique influences of these motivations on team assembly, (iii) harvesting, curating and leveraging the digital trace data offered by the Web to test our models, and (iv) implementing recommender systems that use insights gleaned from our richer theoretical understanding of the motivations that lead to effective team assembly.

  13. Next Generation Sequence Assembly with AMOS

    PubMed Central

    Treangen, Todd J; Sommer, Dan D; Angly, Florent E; Koren, Sergey; Pop, Mihai

    2011-01-01

    A Modular Open-Source Assembler (AMOS) was designed to offer a modular approach to genome assembly. AMOS includes a wide range of tools for assembly, including lightweight de novo assemblers Minimus and Minimo, and Bambus 2, a robust scaffolder able to handle metagenomic and polymorphic data. This protocol describes how to configure and use AMOS for the assembly of Next Generation sequence data. Additionally, we provide three tutorial examples that include bacterial, viral, and metagenomic datasets with specific tips for improving assembly quality. PMID:21400694

  14. Community trait overdispersion due to trophic interactions: concerns for assembly process inference

    PubMed Central

    Petchey, Owen L.

    2016-01-01

    The expected link between competitive exclusion and community trait overdispersion has been used to infer competition in local communities, and trait clustering has been interpreted as habitat filtering. Such community assembly process inference has received criticism for ignoring trophic interactions, as competition and trophic interactions might create similar trait patterns. While other theoretical studies have generally demonstrated the importance of predation for coexistence, ours provides the first quantitative demonstration of such effects on assembly process inference, using a trait-based ecological model to simulate the assembly of a competitive primary consumer community with and without the influence of trophic interactions. We quantified and contrasted trait dispersion/clustering of the competitive communities with the absence and presence of secondary consumers. Trophic interactions most often decreased trait clustering (i.e. increased dispersion) in the competitive communities due to evenly distributed invasions of secondary consumers and subsequent competitor extinctions over trait space. Furthermore, effects of trophic interactions were somewhat dependent on model parameters and clustering metric. These effects create considerable problems for process inference from trait distributions; one potential solution is to use more process-based and inclusive models in inference. PMID:27733548

  15. Brazed Joints Design and Allowables: Discuss Margins of Safety in Critical Brazed Structures

    NASA Technical Reports Server (NTRS)

    FLom, Yury

    2009-01-01

    This slide presentation tutorial discusses margins of safety in critical brazed structures. It reviews: (1) the present situation (2) definition of strength (3) margins of safety (4) design allowables (5) mechanical testing (6) failure criteria (7) design flowchart (8) braze gap (9) residual stresses and (10) delayed failures. This presentation addresses the strength of the brazed joints, the methods of mechanical testing, and our ability to evaluate the margins of safety of the brazed joints as it applies to the design of critical and expensive brazed assemblies.

  16. Integrating genome assemblies with MAIA

    PubMed Central

    Nijkamp, Jurgen; Winterbach, Wynand; van den Broek, Marcel; Daran, Jean-Marc; Reinders, Marcel; de Ridder, Dick

    2010-01-01

    Motivation: De novo assembly of a eukaryotic genome with next-generation sequencing data is still a challenging task. Over the past few years several assemblers have been developed, often suitable for one specific type of sequencing data. The number of known genomes is expanding rapidly, therefore it becomes possible to use multiple reference genomes for assembly projects. We introduce an assembly integrator that makes use of all available data, i.e. multiple de novo assemblies and mappings against multiple related genomes, by optimizing a weighted combination of criteria. Results: The developed algorithm was applied on the de novo sequencing of the Saccharomyces cerevisiae CEN.PK 113-7D strain. Using Solexa and 454 read data, two de novo and three comparative assemblies were constructed and subsequently integrated, yielding 29 contigs, covering more than 12 Mbp; a drastic improvement compared with the single assemblies. Availability: MAIA is available as a Matlab package and can be downloaded from http://bioinformatics.tudelft.nl Contact: j.f.nijkamp@tudelft.nl PMID:20823304

  17. Assembling Transgender Moments

    ERIC Educational Resources Information Center

    Greteman, Adam J.

    2017-01-01

    In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…

  18. Constrained space camera assembly

    DOEpatents

    Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.

    1999-05-11

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.

  19. Constrained space camera assembly

    DOEpatents

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  20. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  1. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  2. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  3. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  4. Trace Water as Prominent Factor to Induce Peptide Self-Assembly: Dynamic Evolution and Governing Interactions in Ionic Liquids.

    PubMed

    Wang, Juan; Yuan, Chengqian; Han, Yuchun; Wang, Yilin; Liu, Xiaomin; Zhang, Suojiang; Yan, Xuehai

    2017-11-01

    The interaction between water and biomolecules including peptides is of critical importance for forming high-level architectures and triggering life's functions. However, the bulk aqueous environment has limitations in detecting the kinetics and mechanisms of peptide self-assembly, especially relating to interactions of trace water. With ionic liquids (ILs) as a nonconventional medium, herein, it is discovered that trace amounts of water play a decisive role in triggering self-assembly of a biologically derived dipeptide. ILs provide a suitable nonaqueous environment, enabling us to mediate water content and follow the dynamic evolution of peptide self-assembly. The trace water is found to be involved in the assembly process of dipeptide, especially leading to the formation of stable noncovalent dipeptide oligomers in the early stage of nucleation, as evident by both experimental studies and theoretical simulations. The thermodynamics of the growth process is mainly governed by a synergistic effect of hydrophobic interaction and hydrogen bonds. Each step of assembly presents a different trend in thermodynamic energy. The dynamic evolution of assembly process can be efficiently mediated by changing trace water content. The decisive role of trace water in triggering and mediating self-assembly of biomolecules provides a new perspective in understanding supramolecular chemistry and molecular self-organization in biology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Centrioles: some self-assembly required.

    PubMed

    Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F

    2008-12-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.

  6. Representations of mechanical assembly sequences

    NASA Technical Reports Server (NTRS)

    Homem De Mello, Luiz S.; Sanderson, Arthur C.

    1991-01-01

    Five types of representations for assembly sequences are reviewed: the directed graph of feasible assembly sequences, the AND/OR graph of feasible assembly sequences, the set of establishment conditions, and two types of sets of precedence relationships. (precedence relationships between the establishment of one connection between parts and the establishment of another connection, and precedence relationships between the establishment of one connection and states of the assembly process). The mappings of one representation into the others are established. The correctness and completeness of these representations are established. The results presented are needed in the proof of correctness and completeness of algorithms for the generation of mechanical assembly sequences.

  7. Dynamic pathways for viral capsid assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, Michael F.; Chandler, David

    2006-02-09

    We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss themore » relationship between these mechanisms and experimental evaluations of capsid assembly processes.« less

  8. Next generation sequence assembly with AMOS.

    PubMed

    Treangen, Todd J; Sommer, Dan D; Angly, Florent E; Koren, Sergey; Pop, Mihai

    2011-03-01

    A Modular Open-Source Assembler (AMOS) was designed to offer a modular approach to genome assembly. AMOS includes a wide range of tools for assembly, including the lightweight de novo assemblers Minimus and Minimo, and Bambus 2, a robust scaffolder able to handle metagenomic and polymorphic data. This protocol describes how to configure and use AMOS for the assembly of Next Generation sequence data. Additionally, we provide three tutorial examples that include bacterial, viral, and metagenomic datasets with specific tips for improving assembly quality. © 2011 by John Wiley & Sons, Inc.

  9. Osteopontin Regulates Hepatitis C Virus (HCV) Replication and Assembly by Interacting with HCV Proteins and Lipid Droplets and by Binding to Receptors αVβ3 and CD44.

    PubMed

    Iqbal, Jawed; Sarkar-Dutta, Mehuli; McRae, Steven; Ramachandran, Akshaya; Kumar, Binod; Waris, Gulam

    2018-07-01

    Hepatitis C virus (HCV) replication and assembly occur at the specialized site of endoplasmic reticulum (ER) membranes and lipid droplets (LDs), respectively. Recently, several host proteins have been shown to be involved in HCV replication and assembly. In the present study, we demonstrated the important relationship among osteopontin (OPN), the ER, and LDs. OPN is a secreted phosphoprotein, and overexpression of OPN in hepatocellular carcinoma (HCC) tissue can lead to invasion and metastasis. OPN expression is also enhanced in HCV-associated HCC. Our recent studies have demonstrated the induction, proteolytic cleavage, and secretion of OPN in response to HCV infection. We also defined the critical role of secreted OPN in human hepatoma cell migration and invasion through binding to receptors integrin αVβ3 and CD44. However, the role of HCV-induced OPN in the HCV life cycle has not been elucidated. In this study, we showed a significant reduction in HCV replication, assembly, and infectivity in HCV-infected cells transfected with small interfering RNA (siRNA) against OPN, αVβ3, and CD44. We also observed the association of endogenous OPN with HCV proteins (NS3, NS5A, NS4A/B, NS5B, and core). Confocal microscopy revealed the colocalization of OPN with HCV NS5A and core in the ER and LDs, indicating a possible role for OPN in HCV replication and assembly. Interestingly, the secreted OPN activated HCV replication, infectivity, and assembly through binding to αVβ3 and CD44. Collectively, these observations provide evidence that HCV-induced OPN is critical for HCV replication and assembly. IMPORTANCE Recently, our studies uncovered the critical role of HCV-induced endogenous and secreted OPN in migration and invasion of hepatocytes. However, the role of OPN in the HCV life cycle has not been elucidated. In this study, we investigated the importance of OPN in HCV replication and assembly. We demonstrated that endogenous OPN associates with HCV NS3, NS5A, NS5B, and

  10. Subtle charge balance controls surface-nucleated self-assembly of designed biopolymers.

    PubMed

    Charbonneau, Céline; Kleijn, J Mieke; Cohen Stuart, Martien A

    2014-03-25

    We report the surface-nucleated self-assembly into fibrils of a biosynthetic amino acid polymer synthesized by the yeast Pichia pastoris. This polymer has a block-like architecture, with a central silk-like block labeled SH, responsible for the self-assembly into fibrils, and two collagen-like random coil end blocks (C) that colloidally stabilize the fibers in aqueous solution. The silk-like block contains histidine residues (pKa≈6) that are positively charged in the low pH region, which hinders self-assembly. In aqueous solution, CSHC self-assembles into fibers above a pH-dependent critical nucleation concentration Ccb. Below Ccb, where no self-assembly occurs in solution, fibril formation can be induced by a negatively charged surface (silica) in the pH range of 3.5-7. The density of the fibers at the surface and their length are controlled by a subtle balance in charge between the protein polymer and the silica surface, which is evidenced from the dependence on pH. With increasing number density of the fibers at the surface, their average length decreases. The results can be explained on the basis of a nucleation-and-growth mechanism: the surface density of fibers depends on the rate of nucleation, while their growth rate is limited by transport of proteins from solution. Screening of the charges on the surface and histidine units by adding NaCl influences the nucleation-and-growth process in a complicated fashion: at low pH, the growth is improved, while at high pH, the nucleation is limited. Under conditions where nucleation in the bulk solution is not possible, growth of the surface-nucleated fibers into the solution--away from the surface--can still occur.

  11. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  12. Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions.

    PubMed

    Senol Cali, Damla; Kim, Jeremie S; Ghose, Saugata; Alkan, Can; Mutlu, Onur

    2018-04-02

    Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating accurate genome assemblies. The tools used for nanopore sequence analysis are of critical importance, as they should overcome the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for nanopore sequence analysis to understand their advantages, disadvantages and performance bottlenecks. It is important to understand where the current tools do not perform well to develop better tools. To this end, we (1) analyze the multiple steps and the associated tools in the genome assembly pipeline using nanopore sequence data, and (2) provide guidelines for determining the appropriate tools for each step. Based on our analyses, we make four key observations: (1) the choice of the tool for basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology. (2) Read-to-read overlap finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap has a lower memory usage, and it is faster than GraphMap. (3) There is a trade-off between accuracy and performance when deciding on the appropriate tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick initial assembly, and further polishing can be applied on top of it to increase the accuracy, which leads to faster overall assembly. (4) The state-of-the-art polishing tool, Racon, generates high-quality consensus sequences while providing a significant speedup over another polishing tool, Nanopolish. We analyze various combinations of different tools and expose the trade-offs between accuracy, performance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners in making conscious

  13. Static Electricity-Responsive Supramolecular Assembly.

    PubMed

    Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki

    2017-12-01

    Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dynamic Multi-Component Hemiaminal Assembly

    PubMed Central

    You, Lei; Long, S. Reid; Lynch, Vincent M.

    2012-01-01

    A simple approach to generating in situ metal templated tris-(2-picolyl)amine-like multi-component assemblies with potential applications in molecular recognition and sensing is reported. The assembly is based on the reversible covalent association between di-(2-picolyl)amine and aldehydes. Zinc ion is the best for inducing assembly among the metal salts investigated, while 2-picolinaldehyde is the best among the heterocyclic aldehydes studied. Although an equilibrium constant of 6.6 * 103 M-1 was measured for the assembly formed by 2-picolinaldehdye, di-(2-picolyl)amine, and zinc triflate, the equilibrium constants for other systems are in the 102 M-1 range. X-ray structural analysis revealed that zinc adopts a trigonal bipyramidal geometry within the assembled ligand. The diversity and equilibrium of the assemblies are readily altered by simply changing concentrations, varying components, or adding counter anions. PMID:21919095

  15. Pressure-equalizing PV assembly and method

    DOEpatents

    Dinwoodie, Thomas L.

    2004-10-26

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  16. Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems

    NASA Astrophysics Data System (ADS)

    Li, Mao; Ishihara, Shinsuke; Ji, Qingmin; Akada, Misaho; Hill, Jonathan P.; Ariga, Katsuhiko

    2012-10-01

    Current nanotechnology based on top-down nanofabrication may encounter a variety of drawbacks in the near future so that development of alternative methods, including the so-called bottom-up approach, has attracted considerable attention. However, the bottom-up strategy, which often relies on spontaneous self-assembly, might be inefficient in the development of the requisite functional materials and systems. Therefore, assembly processes controlled by external stimuli might be a plausible strategy for the development of bottom-up nanotechnology. In this review, we demonstrate a paradigm shift from self-assembly to commanded assembly by describing several examples of assemblies of typical functional molecules, i.e. porphyrins and fullerenes. In the first section, we describe recent progress in the design and study of self-assembled and co-assembled supramolecular architectures of porphyrins and fullerenes. Then, we show examples of assembly induced by external stimuli. We emphasize the paradigm shift from self-assembly to commanded assembly by describing the recently developed electrochemical-coupling layer-by-layer (ECC-LbL) methodology.

  17. Multi-Robot Assembly Strategies and Metrics.

    PubMed

    Marvel, Jeremy A; Bostelman, Roger; Falco, Joe

    2018-02-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.

  18. Multi-Robot Assembly Strategies and Metrics

    PubMed Central

    MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE

    2018-01-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234

  19. Spacecraft System Integration and Test: SSTI Lewis critical design audit

    NASA Technical Reports Server (NTRS)

    Brooks, R. P.; Cha, K. K.

    1995-01-01

    The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.

  20. Role of Small Subunit in Mediating Assembly of Red-type Form I Rubisco

    PubMed Central

    Joshi, Jidnyasa; Mueller-Cajar, Oliver; Tsai, Yi-Chin C.; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. PMID:25371207

  1. Design and Analysis of the Aperture Shield Assembly for a Space Solar Receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Trinh, Tuan; Westelaken, William; Krystkowiak, Christopher; Avanessian, Vahe; Kerslake, Thomas W.

    1997-01-01

    A joint U.S./Russia program has been conducted to design, develop, fabricate, launch, and operate the world's first space solar dynamic power system on the Russian Space Station Mir. The goal of the program was to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station (ISS). The major components of the system include a solar receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a solar concentrator, a radiator, a thermal control system, and a Space Shuttle carrier. Unfortunately, the mission was demanifested from the ISS Phase 1 Space Shuttle Program in 1996. However, NASA Lewis is proposing to use the fabricated flight hardware as part of an all-American flight demonstration on the ISS in 2002. The present paper concerns the design and analysis of the solar receiver aperture shield assembly. The aperture shield assembly comprises the front face of the cylindrical receiver and is located at the focal plane of the solar concentrator. The aperture shield assembly is a critical component that protects the solar receiver structure from highly concentrated solar fluxes during concentrator off-pointing events. A full-size aperture shield assembly was fabricated. This unit was essentially identical to the flight configuration, with the exception of materials substitution. In addition, a thermal shock test aperture shield assembly was fabricated. This test article utilized the flight materials and was used for high-flux testing in the solar simulator test rig at NASA Lewis. This testing is described in a companion paper.

  2. Managing design for manufacture and assembly in the development of MEMS-based products

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Yao; Narasimhan, Nachchinarkkinian; Hariz, Alex J.

    2006-12-01

    Design for manufacturability, assembly and reliability of MEMS products is being applied to a multitude of novel MEMS products to make up for the lack of "Standard Process for MEMS" concept. The latter has proved a major handicap in commercialization of MEMS devices when compared to integrated circuits products. Furthermore, an examination of recent engineering literature seems to suggest convergence towards the development of the design for manufacturability and reliability of MEMS products. This paper will highlight the advantages and disadvantages of conventional techniques that have been pursued up to this point to achieve commercialization of MEMS products, identify some of the problems slowing down development, and explore measures that could be taken to try to address those problems. Successful commercialization critically depends on packaging and assembly, manufacturability, and reliability for micro scale products. However, a methodology that appropriately shadows next generation knowledge management will undoubtedly address most of the critical problems that are hampering development of MEMS industries. Finally this paper will also identify contemporary issues that are challenging the industry in regards to product commercialization and will recommend appropriate measures based on knowledge flow to address those shortcomings and lay out plans to expedient and successful paths to market.

  3. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs formore » off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is

  4. 48 CFR 239.7409 - Special assembly.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Special assembly. 239.7409... Services 239.7409 Special assembly. (a) Special assembly is the designing, manufacturing, arranging... general use equipment. (b) Special assembly rates and charges shall be based on estimated costs. The...

  5. 48 CFR 239.7409 - Special assembly.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Special assembly. 239.7409... Services 239.7409 Special assembly. (a) Special assembly is the designing, manufacturing, arranging... general use equipment. (b) Special assembly rates and charges shall be based on estimated costs. The...

  6. 48 CFR 239.7409 - Special assembly.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Special assembly. 239.7409... Services 239.7409 Special assembly. (a) Special assembly is the designing, manufacturing, arranging... general use equipment. (b) Special assembly rates and charges shall be based on estimated costs. The...

  7. 48 CFR 239.7409 - Special assembly.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Special assembly. 239.7409... Services 239.7409 Special assembly. (a) Special assembly is the designing, manufacturing, arranging... general use equipment. (b) Special assembly rates and charges shall be based on estimated costs. The...

  8. 48 CFR 239.7409 - Special assembly.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Special assembly. 239.7409... Services 239.7409 Special assembly. (a) Special assembly is the designing, manufacturing, arranging... general use equipment. (b) Special assembly rates and charges shall be based on estimated costs. The...

  9. Integrated thruster assembly program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program is reported which has provided technology for a long life, high performing, integrated ACPS thruster assembly suitable for use in 100 typical flights of a space shuttle vehicle over a ten year period. The four integrated thruster assemblies (ITA) fabricated consisted of: propellant injector; a capacitive discharge, air gap torch type igniter assembly; fast response igniter and main propellant valves; and a combined regen-dump film cooled chamber. These flightweight 6672 N (1500 lb) thruster assemblies employed GH2/GO2 as propellants at a chamber pressure of 207 N/sq cm (300 psia). Test data were obtained on thrusted performance, thermal and hydraulic characteristics, dynamic response in pulsing, and cycle life. One thruster was fired in excess of 42,000 times.

  10. Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication

    PubMed Central

    Priemel, Tobias; Degtyar, Elena; Dean, Mason N.; Harrington, Matthew J.

    2017-01-01

    Protein-based biogenic materials provide important inspiration for the development of high-performance polymers. The fibrous mussel byssus, for instance, exhibits exceptional wet adhesion, abrasion resistance, toughness and self-healing capacity–properties that arise from an intricate hierarchical organization formed in minutes from a fluid secretion of over 10 different protein precursors. However, a poor understanding of this dynamic biofabrication process has hindered effective translation of byssus design principles into synthetic materials. Here, we explore mussel byssus assembly in Mytilus edulis using a synergistic combination of histological staining and confocal Raman microspectroscopy, enabling in situ tracking of specific proteins during induced thread formation from soluble precursors to solid fibres. Our findings reveal critical insights into this complex biological manufacturing process, showing that protein precursors spontaneously self-assemble into complex architectures, while maturation proceeds in subsequent regulated steps. Beyond their biological importance, these findings may guide development of advanced materials with biomedical and industrial relevance. PMID:28262668

  11. Thermo-responsive human α-elastin self-assembled nanoparticles for protein delivery.

    PubMed

    Kim, Jae Dong; Jung, Youn Jae; Woo, Chang Hee; Choi, Young Chan; Choi, Ji Suk; Cho, Yong Woo

    2017-01-01

    Self-assembled nanoparticles based on PEGylated human α-elastin were prepared as a potential vehicle for sustained protein delivery. The α-elastin was extracted from human adipose tissue and modified with methoxypolyethyleneglycol (mPEG) to control particle size and enhance the colloidal stability. The PEGylated human α-elastin showed sol-to-particle transition with a lower critical solution temperature (LCST) of 25°C-40°C in aqueous media. The PEGylated human α-elastin nanoparticles (PhENPs) showed a narrow size distribution with an average diameter of 330±33nm and were able to encapsulate significant amounts of insulin and bovine serum albumin (BSA) upon simple mixing at low temperature in water and subsequent heating to physiological temperature. The release profiles of insulin and BSA showed sustained release for 72h. Overall, the thermo-responsive self-assembled PhENPs provide a useful tool for a range of protein delivery and tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Modeling of block copolymer dry etching for directed self-assembly lithography

    NASA Astrophysics Data System (ADS)

    Belete, Zelalem; Baer, Eberhard; Erdmann, Andreas

    2018-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) is a promising alternative technology to overcome the limits of patterning for the semiconductor industry. DSA exploits the self-assembling property of BCPs for nano-scale manufacturing and to repair defects in patterns created during photolithography. After self-assembly of BCPs, to transfer the created pattern to the underlying substrate, selective etching of PMMA (poly (methyl methacrylate)) to PS (polystyrene) is required. However, the etch process to transfer the self-assemble "fingerprint" DSA patterns to the underlying layer is still a challenge. Using combined experimental and modelling studies increases understanding of plasma interaction with BCP materials during the etch process and supports the development of selective process that form well-defined patterns. In this paper, a simple model based on a generic surface model has been developed and an investigation to understand the etch behavior of PS-b-PMMA for Ar, and Ar/O2 plasma chemistries has been conducted. The implemented model is calibrated for etch rates and etch profiles with literature data to extract parameters and conduct simulations. In order to understand the effect of the plasma on the block copolymers, first the etch model was calibrated for polystyrene (PS) and poly (methyl methacrylate) (PMMA) homopolymers. After calibration of the model with the homopolymers etch rate, a full Monte-Carlo simulation was conducted and simulation results are compared with the critical-dimension (CD) and selectivity of etch profile measurement. In addition, etch simulations for lamellae pattern have been demonstrated, using the implemented model.

  13. Solar collector-skylight assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dame, R.E.

    1984-10-09

    A solar collector-skylight assembly having movable parabolic concentrators wherein, in one position the parabolic concentrators direct solar energy to a collector to heat fluid circulating therethrough to thereby provide a solar heater; and when the concentrators are moved to another position, the assembly functions as a skylight wherein the solar energy is allowed to pass through the collector, to thereby illuminate the interior of a building upon which the solar collector-skylight assembly is mounted.

  14. Pressure equalizing photovoltaic assembly and method

    DOEpatents

    Dinwoodie, Thomas L [Piedmont, CA

    2003-05-27

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the peripheral edge of the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  15. Coarse-grained Simulations of Viral Assembly

    NASA Astrophysics Data System (ADS)

    Elrad, Oren M.

    2011-12-01

    The formation of viral capsids is a marvel of natural engineering and design. A large number (from 60 to thousands) of protein subunits assemble into complete, reproducible structures under a variety of conditions while avoiding kinetic and thermodynamic traps. Small single-stranded RNA viruses not only assemble their coat proteins in this fashion but also package their genome during the self-assembly process. Recent experiments have shown that the coat proteins are competent to assemble not merely around their own genomes but heterologous RNA, synthetic polyanions and even functionalized gold nanoparticles. Remarkably these viruses can even assemble around cargo not commensurate with their native state by adopting different morphologies. Understanding the properties that confer such exquisite precision and flexibility to the assembly process could aid biomedical research in the search for novel antiviral remedies, drug-delivery vehicles and contrast agents used in bioimaging. At the same time, viral assembly provides an excellent model system for the development of a statistical mechanical understanding of biological self-assembly, in the hopes of that we will identify some universal principles that underly such processes. This work consists of computational studies using coarse-grained representations of viral coat proteins and their cargoes. We find the relative strength of protein-cargo and protein-protein interactions has a profound effect on the assembly pathway, in some cases leading to assembly mechanisms that are markedly different from those found in previous work on the assembly of empty capsids. In the case of polymeric cargo, we find the first evidence for a previously theorized mechanism in which the polymer actively participates in recruiting free subunits to the assembly process through cooperative polymer-protein motions. We find that successful assembly is non-monotonic in protein-cargo affinity, such affinity can be detrimental to assembly if it

  16. Blade attachment assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, andmore » retains the blade in the adaptor member, and the assembly in the rotor wheel.« less

  17. Assembly Test Article (ATA)

    NASA Technical Reports Server (NTRS)

    Ricks, Glen A.

    1988-01-01

    The assembly test article (ATA) consisted of two live loaded redesigned solid rocket motor (RSRM) segments which were assembled and disassembled to simulate the actual flight segment stacking process. The test assembly joint was flight RSRM design, which included the J-joint insulation design and metal capture feature. The ATA test was performed mid-November through 24 December 1987, at Kennedy Space Center (KSC), Florida. The purpose of the test was: certification that vertical RSRM segment mating and separation could be accomplished without any damage; verification and modification of the procedures in the segment stacking/destacking documents; and certification of various GSE to be used for flight assembly and inspection. The RSRM vertical segment assembly/disassembly is possible without any damage to the insulation, metal parts, or seals. The insulation J-joint contact area was very close to the predicted values. Numerous deviations and changes to the planning documents were made to ensure the flight segments are effectively and correctly stacked. Various GSE were also certified for use on flight segments, and are discussed in detail.

  18. Clean assembly and integration techniques for the Hubble Space Telescope High Fidelity Mechanical Simulator

    NASA Technical Reports Server (NTRS)

    Hughes, David W.; Hedgeland, Randy J.

    1994-01-01

    A mechanical simulator of the Hubble Space Telescope (HST) Aft Shroud was built to perform verification testing of the Servicing Mission Scientific Instruments (SI's) and to provide a facility for astronaut training. All assembly, integration, and test activities occurred under the guidance of a contamination control plan, and all work was reviewed by a contamination engineer prior to implementation. An integrated approach was followed in which materials selection, manufacturing, assembly, subsystem integration, and end product use were considered and controlled to ensure that the use of the High Fidelity Mechanical Simulator (HFMS) as a verification tool would not contaminate mission critical hardware. Surfaces were cleaned throughout manufacturing, assembly, and integration, and reverification was performed following major activities. Direct surface sampling was the preferred method of verification, but access and material constraints led to the use of indirect methods as well. Although surface geometries and coatings often made contamination verification difficult, final contamination sampling and monitoring demonstrated the ability to maintain a class M5.5 environment with surface levels less than 400B inside the HFMS.

  19. 16 CFR 1508.8 - Assembly instructions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Assembly instructions. 1508.8 Section 1508.8... REQUIREMENTS FOR FULL-SIZE BABY CRIBS § 1508.8 Assembly instructions. (a) Cribs, when shipped other than completely assembled, shall be accompanied by detailed instructions that include an assembly drawing, a list...

  20. 49 CFR 572.192 - Head assembly.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Head assembly. 572.192 Section 572.192... Test Dummy, Small Adult Female § 572.192 Head assembly. (a) The head assembly consists of the head (180...) of this section, the head assembly shall meet performance requirements specified in paragraph (c) of...

  1. 16 CFR 1508.8 - Assembly instructions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Assembly instructions. 1508.8 Section 1508.8... REQUIREMENTS FOR FULL-SIZE BABY CRIBS § 1508.8 Assembly instructions. (a) Cribs, when shipped other than completely assembled, shall be accompanied by detailed instructions that include an assembly drawing, a list...

  2. 49 CFR 572.192 - Head assembly.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Head assembly. 572.192 Section 572.192... Dummy, Small Adult Female § 572.192 Head assembly. (a) The head assembly consists of the head (180-1000...) of this section, the head assembly shall meet performance requirements specified in paragraph (c) of...

  3. 49 CFR 572.182 - Head assembly.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Head assembly. 572.182 Section 572.182... Test Dummy, 50th Percentile Adult Male § 572.182 Head assembly. (a) The head assembly consists of the..., the head assembly shall meet performance requirements specified in paragraph (c) of this section. (b...

  4. 49 CFR 572.182 - Head assembly.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Head assembly. 572.182 Section 572.182... Dummy, 50th Percentile Adult Male § 572.182 Head assembly. (a) The head assembly consists of the head... assembly shall meet performance requirements specified in paragraph (c) of this section. (b) Test procedure...

  5. 49 CFR 572.182 - Head assembly.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Head assembly. 572.182 Section 572.182... Dummy, 50th Percentile Adult Male § 572.182 Head assembly. (a) The head assembly consists of the head... assembly shall meet performance requirements specified in paragraph (c) of this section. (b) Test procedure...

  6. 49 CFR 572.192 - Head assembly.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Head assembly. 572.192 Section 572.192... Test Dummy, Small Adult Female § 572.192 Head assembly. (a) The head assembly consists of the head (180...) of this section, the head assembly shall meet performance requirements specified in paragraph (c) of...

  7. 49 CFR 572.192 - Head assembly.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Head assembly. 572.192 Section 572.192... Dummy, Small Adult Female § 572.192 Head assembly. (a) The head assembly consists of the head (180-1000...) of this section, the head assembly shall meet performance requirements specified in paragraph (c) of...

  8. 49 CFR 572.182 - Head assembly.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Head assembly. 572.182 Section 572.182... Dummy, 50th Percentile Adult Male § 572.182 Head assembly. (a) The head assembly consists of the head... assembly shall meet performance requirements specified in paragraph (c) of this section. (b) Test procedure...

  9. 49 CFR 572.182 - Head assembly.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Head assembly. 572.182 Section 572.182... Test Dummy, 50th Percentile Adult Male § 572.182 Head assembly. (a) The head assembly consists of the..., the head assembly shall meet performance requirements specified in paragraph (c) of this section. (b...

  10. 49 CFR 572.192 - Head assembly.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Head assembly. 572.192 Section 572.192... Dummy, Small Adult Female § 572.192 Head assembly. (a) The head assembly consists of the head (180-1000...) of this section, the head assembly shall meet performance requirements specified in paragraph (c) of...

  11. Pultrusion Die Assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L. (Inventor); Johnson, Gary S. (Inventor); Frye, Mark W. (Inventor); Stanfield, Clarence E. (Inventor)

    1988-01-01

    This invention relates generally to pultrusion die assemblies, and more particularly, to a pultrusion die assembly which incorporates a plurality of functions in order to produce a continuous, thin composite fiber reinforced thermoplastic material. The invention is useful for making high performance thermoplastic composite materials in sheets which can be coiled on a spool and stored for further processing.

  12. Advanced gray rod control assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drudy, Keith J; Carlson, William R; Conner, Michael E

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber tomore » enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.« less

  13. 33 CFR 154.500 - Hose assemblies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Hose assemblies. 154.500 Section... assemblies. Each hose assembly used for transferring oil or hazardous material must meet the following requirements: (a) The minimum design burst pressure for each hose assembly must be at least four times the sum...

  14. 33 CFR 154.500 - Hose assemblies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Hose assemblies. 154.500 Section... assemblies. Each hose assembly used for transferring oil or hazardous material must meet the following requirements: (a) The minimum design burst pressure for each hose assembly must be at least four times the sum...

  15. 33 CFR 154.500 - Hose assemblies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Hose assemblies. 154.500 Section... assemblies. Each hose assembly used for transferring oil or hazardous material must meet the following requirements: (a) The minimum design burst pressure for each hose assembly must be at least four times the sum...

  16. 33 CFR 154.500 - Hose assemblies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hose assemblies. 154.500 Section... assemblies. Each hose assembly used for transferring oil or hazardous material must meet the following requirements: (a) The minimum design burst pressure for each hose assembly must be at least four times the sum...

  17. 33 CFR 154.500 - Hose assemblies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Hose assemblies. 154.500 Section... assemblies. Each hose assembly used for transferring oil or hazardous material must meet the following requirements: (a) The minimum design burst pressure for each hose assembly must be at least four times the sum...

  18. Methanation assembly using multiple reactors

    DOEpatents

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  19. Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula.

    PubMed

    Moll, Karen M; Zhou, Peng; Ramaraj, Thiruvarangan; Fajardo, Diego; Devitt, Nicholas P; Sadowsky, Michael J; Stupar, Robert M; Tiffin, Peter; Miller, Jason R; Young, Nevin D; Silverstein, Kevin A T; Mudge, Joann

    2017-08-04

    Third generation sequencing technologies, with sequencing reads in the tens- of kilo-bases, facilitate genome assembly by spanning ambiguous regions and improving continuity. This has been critical for plant genomes, which are difficult to assemble due to high repeat content, gene family expansions, segmental and tandem duplications, and polyploidy. Recently, high-throughput mapping and scaffolding strategies have further improved continuity. Together, these long-range technologies enable quality draft assemblies of complex genomes in a cost-effective and timely manner. Here, we present high quality genome assemblies of the model legume plant, Medicago truncatula (R108) using PacBio, Dovetail Chicago (hereafter, Dovetail) and BioNano technologies. To test these technologies for plant genome assembly, we generated five assemblies using all possible combinations and ordering of these three technologies in the R108 assembly. While the BioNano and Dovetail joins overlapped, they also showed complementary gains in continuity and join numbers. Both technologies spanned repetitive regions that PacBio alone was unable to bridge. Combining technologies, particularly Dovetail followed by BioNano, resulted in notable improvements compared to Dovetail or BioNano alone. A combination of PacBio, Dovetail, and BioNano was used to generate a high quality draft assembly of R108, a M. truncatula accession widely used in studies of functional genomics. As a test for the usefulness of the resulting genome sequence, the new R108 assembly was used to pinpoint breakpoints and characterize flanking sequence of a previously identified translocation between chromosomes 4 and 8, identifying more than 22.7 Mb of novel sequence not present in the earlier A17 reference assembly. Adding Dovetail followed by BioNano data yielded complementary improvements in continuity over the original PacBio assembly. This strategy proved efficient and cost-effective for developing a quality draft assembly

  20. 49 CFR 572.186 - Abdomen assembly.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Abdomen assembly. 572.186 Section 572.186... Test Dummy, 50th Percentile Adult Male § 572.186 Abdomen assembly. (a) The abdomen assembly (175-5000) is part of the dummy assembly shown in drawing 175-0000 including load sensors specified in § 572.189...

  1. 49 CFR 572.186 - Abdomen assembly.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Abdomen assembly. 572.186 Section 572.186... Dummy, 50th Percentile Adult Male § 572.186 Abdomen assembly. (a) The abdomen assembly (175-5000) is part of the dummy assembly shown in drawing 175-0000 including load sensors specified in § 572.189(e...

  2. 49 CFR 572.186 - Abdomen assembly.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Abdomen assembly. 572.186 Section 572.186... Dummy, 50th Percentile Adult Male § 572.186 Abdomen assembly. (a) The abdomen assembly (175-5000) is part of the dummy assembly shown in drawing 175-0000 including load sensors specified in § 572.189(e...

  3. Astrophysics space systems critical technology needs

    NASA Technical Reports Server (NTRS)

    Gartrell, C. F.

    1982-01-01

    This paper addresses an independent assessment of space system technology needs for future astrophysics flight programs contained within the NASA Space Systems Technology Model. The critical examination of the system needs for the approximately 30 flight programs in the model are compared to independent technology forecasts and possible technology deficits are discussed. These deficits impact the developments needed for spacecraft propulsion, power, materials, structures, navigation, guidance and control, sensors, communications and data processing. There are also associated impacts upon in-orbit assembly technology and space transportation systems. A number of under-utilized technologies are highlighted which could be exploited to reduce cost and enhance scientific return.

  4. The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattiroli, Francesca; Gu, Yajie; Balsbaugh, Jeremy L.

    Nucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4)2 deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging. Using hydrogen-deuterium exchange coupled to mass spectrometry, combined with in vitro and in vivo mutagenesis studies, we identified the regions involved in the direct interaction between the yeast CAF-1 subunits, and mapped the CAF-1 domains responsible for H3-H4 binding. The large subunit, Cac1 organizes the assembly of CAF-1. Strikingly, H3-H4 binding is mediated by a compositemore » interface, shaped by Cac1-bound Cac2 and the Cac1 acidic region. Cac2 is indispensable for productive histone binding, while deletion of Cac3 has only moderate effects on H3-H4 binding and nucleosome assembly. These results define direct structural roles for yeast CAF-1 subunits and uncover a previously unknown critical function of the middle subunit in CAF-1.« less

  5. EMMA: An Extensible Mammalian Modular Assembly Toolkit for the Rapid Design and Production of Diverse Expression Vectors.

    PubMed

    Martella, Andrea; Matjusaitis, Mantas; Auxillos, Jamie; Pollard, Steven M; Cai, Yizhi

    2017-07-21

    Mammalian plasmid expression vectors are critical reagents underpinning many facets of research across biology, biomedical research, and the biotechnology industry. Traditional cloning methods often require laborious manual design and assembly of plasmids using tailored sequential cloning steps. This process can be protracted, complicated, expensive, and error-prone. New tools and strategies that facilitate the efficient design and production of bespoke vectors would help relieve a current bottleneck for researchers. To address this, we have developed an extensible mammalian modular assembly kit (EMMA). This enables rapid and efficient modular assembly of mammalian expression vectors in a one-tube, one-step golden-gate cloning reaction, using a standardized library of compatible genetic parts. The high modularity, flexibility, and extensibility of EMMA provide a simple method for the production of functionally diverse mammalian expression vectors. We demonstrate the value of this toolkit by constructing and validating a range of representative vectors, such as transient and stable expression vectors (transposon based vectors), targeting vectors, inducible systems, polycistronic expression cassettes, fusion proteins, and fluorescent reporters. The method also supports simple assembly combinatorial libraries and hierarchical assembly for production of larger multigenetic cargos. In summary, EMMA is compatible with automated production, and novel genetic parts can be easily incorporated, providing new opportunities for mammalian synthetic biology.

  6. Allosteric Control of Icosahedral Capsid Assembly

    PubMed Central

    Lazaro, Guillermo R.

    2017-01-01

    During the lifecycle of a virus, viral proteins and other components self-assemble to form an ordered protein shell called a capsid. This assembly process is subject to multiple competing constraints, including the need to form a thermostable shell while avoiding kinetic traps. It has been proposed that viral assembly satisfies these constraints through allosteric regulation, including the interconversion of capsid proteins among conformations with different propensities for assembly. In this article we use computational and theoretical modeling to explore how such allostery affects the assembly of icosahedral shells. We simulate assembly under a wide range of protein concentrations, protein binding affinities, and two different mechanisms of allosteric control. We find that, above a threshold strength of allosteric control, assembly becomes robust over a broad range of subunit binding affinities and concentrations, allowing the formation of highly thermostable capsids. Our results suggest that allostery can significantly shift the range of protein binding affinities that lead to successful assembly, and thus should be accounted for in models that are used to estimate interaction parameters from experimental data. PMID:27117092

  7. Self-assembly: Misfits unite

    NASA Astrophysics Data System (ADS)

    Grason, Gregory M.

    2017-12-01

    The spontaneous assembly of particulate or molecular 'building blocks' into larger architectures underlies structure formation in many biological and synthetic materials. Shape frustration of ill-fitting blocks holds a surprising key to more regular assemblies.

  8. Self-Assembly: How Nature Builds

    ERIC Educational Resources Information Center

    Jones, M. Gail; Falvo, Michael R.; Broadwell, Bethany; Dotger, Sharon

    2006-01-01

    Self-assembly or spontaneous assembly is a process in which materials build themselves without assistance. This process plays a central role in the construction of biological structures and materials such as cells, viruses, and bone, and also in abiotic processes like phase transitions and crystal formation. The principles of self-assembly help…

  9. Using process monitor wafers to understand directed self-assembly defects

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Her, YoungJun; Delgadillo, Paulina R.; Vandenbroeck, Nadia; Gronheid, Roel; Chan, Boon Teik; Hashimoto, Yukio; Romo, Ainhoa; Somervell, Mark; Nafus, Kathleen; Nealey, Paul F.

    2013-03-01

    As directed self-assembly (DSA) has gained momentum over the past few years, questions about its application to high volume manufacturing have arisen. One of the major concerns is about the fundamental limits of defectivity that can be attained with the technology. If DSA applications demonstrate defectivity that rivals of traditional lithographic technologies, the pathway to the cost benefits of the technology creates a very compelling case for its large scale implementation. To address this critical question, our team at IMEC has established a process monitor flow to track the defectivity behaviors of an exemplary chemo-epitaxy application for printing line/space patterns. Through establishing this baseline, we have been able to understand both traditional lithographic defect sources in new materials as well as new classes of assembly defects associated with DSA technology. Moreover, we have explored new materials and processing to lower the level of the defectivity baseline. The robustness of the material sets and process is investigated as well. In this paper, we will report the understandings learned from the IMEC DSA process monitor flow.

  10. Chemical reactions directed Peptide self-assembly.

    PubMed

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  11. Latch assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederickson, James R.; Harper, William H.; Perez, Raymond

    1986-01-01

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing.

  12. Latch assembly

    DOEpatents

    Frederickson, J.R.; Harper, W.H.; Perez, R.

    1984-08-17

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing. 2 figs.

  13. The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation.

    PubMed

    Mavromatis, Konstantinos; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, Alex; Clum, Alicia; Goodwin, Lynne; Woyke, Tanja; Lapidus, Alla; Klenk, Hans Peter; Cottingham, Robert W; Kyrpides, Nikos C

    2012-01-01

    The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).

  14. Development of a 10 m quasi-isotropic strand assembled from 2G wires

    NASA Astrophysics Data System (ADS)

    Kan, Changtao; Wang, Yinshun; Hou, Yanbing; Li, Yan; Zhang, Han; Fu, Yu; Jiang, Zhe

    2018-03-01

    Quasi-isotropic strands made of second generation (2G) high temperature superconducting (HTS) wires are attractive to applications of high-field magnets at low temperatures and power transmission cables at liquid nitrogen temperature in virtue of their high current carrying capability and well mechanical property. In this contribution, a 10 m length quasi-isotropic strand is manufactured and successfully tested in liquid nitrogen to verify the feasibility of an industrial scale production of the strand by the existing cabling technologies. The strand with copper sheath consists of 72 symmetrically assembled 2G wires. The uniformity of critical properties of long quasi-isotropic strands, including critical current and n-value, is very important for their using. Critical currents as well as n-values of the strand are measured every 1 m respectively and compared with the simulation results. Critical current and n-value of the strand are calculated basing on the self-consistent model solved by the finite element method (FEM). Effects of self-field on the critical current and n-value distributions in wires of the strand are analyzed in detail. The simulation results show good agreement with the experimental data and the 10 m quasi-isotropic strand has good critical properties uniformity.

  15. 49 CFR 572.112 - Head assembly.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Head assembly. 572.112 Section 572.112... 50th Percentile Male § 572.112 Head assembly. The head assembly consists of the head (drawing 78051-61X...) accelerometers that are mounted in conformance to § 572.36 (c). (a) Test procedure. (1) Soak the head assembly in...

  16. 49 CFR 572.112 - Head assembly.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Head assembly. 572.112 Section 572.112... 50th Percentile Male § 572.112 Head assembly. The head assembly consists of the head (drawing 78051-61X...) accelerometers that are mounted in conformance to § 572.36 (c). (a) Test procedure. (1) Soak the head assembly in...

  17. 49 CFR 572.112 - Head assembly.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Head assembly. 572.112 Section 572.112... 50th Percentile Male § 572.112 Head assembly. The head assembly consists of the head (drawing 78051-61X...) accelerometers that are mounted in conformance to § 572.36 (c). (a) Test procedure. (1) Soak the head assembly in...

  18. 49 CFR 572.112 - Head assembly.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Head assembly. 572.112 Section 572.112... 50th Percentile Male § 572.112 Head assembly. The head assembly consists of the head (drawing 78051-61X...) accelerometers that are mounted in conformance to § 572.36 (c). (a) Test procedure. (1) Soak the head assembly in...

  19. 49 CFR 572.112 - Head assembly.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Head assembly. 572.112 Section 572.112... 50th Percentile Male § 572.112 Head assembly. The head assembly consists of the head (drawing 78051-61X...) accelerometers that are mounted in conformance to § 572.36 (c). (a) Test procedure. (1) Soak the head assembly in...

  20. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  1. Recommended design and fabrication sequence of AMTEC test assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, A.; Kumar, V.; Noravian, H.

    1998-01-01

    A series of previous OSC papers described: 1) a novel methodology for the coupled thermal, fluid flow, and electrical analysis of multitube AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells; 2) the application of that methodology to determine the effect of numerous design variations on the cell{close_quote}s performance, leading to selection and performance characterization of an OSC-recommended cell design; and 3) the design, analysis, and characterization of an OSC-generated power system design combining sixteen of the above AMTEC cells with two or three GPHS (General Purpose Heat Source) radioisotope heat source modules, and the applicability of those power systems to future spacemore » missions ({ital e.g.} Pluto Express and Europa Orbiter) under consideration by NASA. The OSC system design studies demonstrated the critical importance of the thermal insulation subsystem, and culminated in a design in which the eight AMTEC cells on each end of the heat source stack are embedded in Min-K fibrous insulation, and the Min-K and the GPHS modules are surrounded by graded-length Mo multifoil insulation. The present paper depicts the OSC-recommended AMTEC cell and generator designs, and identifies the need for an electrically heated (scaled-down but otherwise prototypic) test assembly for the experimental validation of the generator{close_quote}s system performance predictions. It then describes the design of an OSC-recommended test assembly consisting of an electrical heater enclosed in a graphite box to simulate the radioisotope heat source, four series-connected prototypic AMTEC cells of the OSC-recommended configuration, and a prototypic hybrid insulation package consisting of Min-K and graded-length Mo multifoils. Finally, the paper describes and illustrates an OSC-recommended detailed fabrication sequence and procedure for the above cell and test assembly. That fabrication procedure is being implemented by AMPS, Inc. with the support of DOE

  2. Inverse Problem in Self-assembly

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei

    2012-02-01

    By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.

  3. Centriolar satellite– and hMsd1/SSX2IP-dependent microtubule anchoring is critical for centriole assembly

    PubMed Central

    Hori, Akiko; Peddie, Christopher J.; Collinson, Lucy M.; Toda, Takashi

    2015-01-01

    Centriolar satellites are numerous electron-dense granules dispersed around the centrosome. Mutations in their components are linked to various human diseases, but their molecular roles remain elusive. In particular, the significance of spatial communication between centriolar satellites and the centrosome is unknown. hMsd1/SSX2IP localizes to both the centrosome and centriolar satellites and is required for tethering microtubules to the centrosome. Here we show that hMsd1/SSX2IP-mediated microtubule anchoring is essential for proper centriole assembly and duplication. On hMsd1/SSX2IP knockdown, the centriolar satellites become stuck at the microtubule minus end near the centrosome. Intriguingly, these satellites contain many proteins that normally localize to the centrosome. Of importance, microtubule structures, albeit not being anchored properly, are still required for the emergence of abnormal satellites, as complete microtubule depolymerization results in the disappearance of these aggregates from the vicinity of the centrosome. We highlighted, using superresolution and electron microscopy, that under these conditions, centriole structures are faulty. Remarkably, these cells are insensitive to Plk4 overproduction–induced ectopic centriole formation, yet they accelerate centrosome reduplication upon hydroxyurea arrest. Finally, the appearance of satellite aggregates is cancer cell specific. Together our findings provide novel insights into the mechanism of centriole assembly and microtubule anchoring. PMID:25833712

  4. Robust, directed assembly of fluorescent nanodiamonds.

    PubMed

    Kianinia, Mehran; Shimoni, Olga; Bendavid, Avi; Schell, Andreas W; Randolph, Steven J; Toth, Milos; Aharonovich, Igor; Lobo, Charlene J

    2016-10-27

    Arrays of fluorescent nanoparticles are highly sought after for applications in sensing, nanophotonics and quantum communications. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. The assembly process is based on covalent bonding of carboxyl to amine functional carbon seeds and is applicable to any material, and to non-planar surfaces. Our results pave the way to directed assembly of sensors and nanophotonics devices.

  5. Experimental Criticality Benchmarks for SNAP 10A/2 Reactor Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krass, A.W.

    2005-12-19

    This report describes computational benchmark models for nuclear criticality derived from descriptions of the Systems for Nuclear Auxiliary Power (SNAP) Critical Assembly (SCA)-4B experimental criticality program conducted by Atomics International during the early 1960's. The selected experimental configurations consist of fueled SNAP 10A/2-type reactor cores subject to varied conditions of water immersion and reflection under experimental control to measure neutron multiplication. SNAP 10A/2-type reactor cores are compact volumes fueled and moderated with the hydride of highly enriched uranium-zirconium alloy. Specifications for the materials and geometry needed to describe a given experimental configuration for a model using MCNP5 are provided. Themore » material and geometry specifications are adequate to permit user development of input for alternative nuclear safety codes, such as KENO. A total of 73 distinct experimental configurations are described.« less

  6. WHO: World Health Assembly.

    PubMed

    McGregor, A

    1992-05-23

    1200 delegates from 175 member countries attended the 45th World Health Assembly in Geneva. Everyone at the Assembly ratified measures to prevent and control AIDS. 12 countries intended to do long term planning for community based care for AIDS patients. Further the Assembly denounced instances where countries and individuals denied the gravity of the AIDS pandemic. In fact, it expressed the importance for urgent and intensive action against HIV/AIDS. The assembly backed proposals to prevent and control sexually transmitted diseases that affect AIDS patients, especially hepatitis B. For example, in countries with hepatitis B prevalence 8% (many countries in Sub-Sahara Africa, Asia, the Pacific region, and South America), health officials should introduce hepatitis B vaccine into their existing immunization programs by 1995. By 1997, this vaccine should be part of all immunization programs. The Assembly was aware of the obstacles of establishing reliable cold chains for nationwide distribution, however. Delegates in Committee A objected to the fact that 50% of the populations of developing countries continued to have limited access to essential drugs. They also expressed disapproval in implementation of WHO's 1988 ethical criteria for promotion of drugs which WHO entrusted to the Council for International Organisations of Medical Sciences (CIOMS). CIOMS lacked WHO's status and thus could not effectively monitor drug advertising. In fact, the pharmaceutical industry as well as WHO provided the funds for a meeting of 25 experts to discuss principles included in the ethical criteria. At least 4 countries insisted that WHO have the ultimate authority in monitoring drug advertising. Delegates did adopt a compromise resolution on this topic which required that industry promotion methods be reported to the 1994 Assembly via the Executive Board. The Assembly requested WHO to establish an international advisory committee on nursing and midwifery and to improve the network of

  7. Computational and theoretical modeling of pH and flow effects on the early-stage non-equilibrium self-assembly of optoelectronic peptides

    NASA Astrophysics Data System (ADS)

    Mansbach, Rachael; Ferguson, Andrew

    Self-assembling π-conjugated peptides are attractive candidates for the fabrication of bioelectronic materials possessing optoelectronic properties due to electron delocalization over the conjugated peptide groups. We present a computational and theoretical study of an experimentally-realized optoelectronic peptide that displays triggerable assembly in low pH to resolve the microscopic effects of flow and pH on the non-equilibrium morphology and kinetics of assembly. Using a combination of molecular dynamics simulations and hydrodynamic modeling, we quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to influence assembly. We also show that there is a critical pH below which aggregation proceeds irreversibly, and quantify the relationship between pH, charge density, and aggregate size. Our work provides new fundamental understanding of pH and flow of non-equilibrium π-conjugated peptide assembly, and lays the groundwork for the rational manipulation of environmental conditions and peptide chemistry to control assembly and the attendant emergent optoelectronic properties. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0011847, and by the Computational Science and Engineering Fellowship from the University of Illinois at Urbana-Champaign.

  8. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  9. Steam separator latch assembly

    DOEpatents

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  10. Steam separator latch assembly

    DOEpatents

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  11. Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging

    PubMed Central

    Füzik, Tibor; Píchalová, Růžena; Schur, Florian K. M.; Strohalmová, Karolína; Křížová, Ivana; Hadravová, Romana; Rumlová, Michaela; Briggs, John A. G.

    2016-01-01

    interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV. PMID:26912613

  12. Nanotransforming Assemblies

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2005-03-01

    Degradable polymeric materials with hydrolysable backbones have attracted much attention because they break down to non-toxic metabolites. They are the key solutions to many environmental problems, and are particularly useful for various biomedical applications. Much work has been focused on degradable polymers and their co-polymers as bulk, or films and monolayers.^2 Only limited work has explored the degradable amphiphilic copolymer self-assemblies (spherical micelles, worm micelles and vesicles) in solutions, which are quite important for soft-material engineering. Mostly spherical micelles, and in rare cases, vesicles, have been reported made from copolymers with degradable polyester, typically polylactide or polycaprolactone, as the hydrophobic block, connected to biocompatible, stealthy poly (ethylene oxide) as hydrophilic block. Morphological change of such spherical micelles induced by degradation is subtle, and the degradation kinetics and mechanism in assemblies, which can be quite different from that in bulk or film, are not well understood. Here we will describe the phase transformations of worm micelles and vesicles as they degrade and also highlight how these polymeric self-assemblies interact with lipid membranes.

  13. Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface.

    PubMed

    Niu, Tianchao; Wu, Jinge; Ling, Faling; Jin, Shuo; Lu, Guanghong; Zhou, Miao

    2018-01-09

    Construction of tunable and robust two-dimensional (2D) molecular arrays with desirable lattices and functionalities over a macroscopic scale relies on spontaneous and reversible noncovalent interactions between suitable molecules as building blocks. Halogen bonding, with active tunability of direction, strength, and length, is ideal for tailoring supramolecular structures. Herein, by combining low-temperature scanning tunneling microscopy and systematic first-principles calculations, we demonstrate novel halogen bonding involving single halogen atoms and phase engineering in 2D molecular self-assembly. On the Au(111) surface, we observed catalyzed dehalogenation of hexabromobenzene (HBB) molecules, during which negatively charged bromine adatoms (Br δ- ) were generated and participated in assembly via unique C-Br δ+ ···Br δ- interaction, drastically different from HBB assembly on a chemically inert graphene substrate. We successfully mapped out different phases of the assembled superstructure, including densely packed hexagonal, tetragonal, dimer chain, and expanded hexagonal lattices at room temperature, 60 °C, 90 °C, and 110 °C, respectively, and the critical role of Br δ- in regulating lattice characteristics was highlighted. Our results show promise for manipulating the interplay between noncovalent interactions and catalytic reactions for future development of molecular nanoelectronics and 2D crystal engineering.

  14. Multi-Spoked Wheel Assembly

    NASA Technical Reports Server (NTRS)

    Greer, Lawrence (Inventor); Krasowski, Michael (Inventor)

    2017-01-01

    A robust ground traction (drive) assembly for remotely controlled vehicles, which not only operates smoothly on surfaces that are flat, but also upon surfaces that include rugged terrain, snow, mud, and sand, is provided. The assembly includes a sun gear and a braking gear. The sun gear is configured to cause rotational force to be applied to second planetary gears through a coupling of first planetary gears. The braking gear is configured to cause the assembly (or the second planetary gears) to rotate around the braking gear when an obstacle or braking force is applied.

  15. Space Station Freedom - Approaching the critical design phase

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard H.; Huckins, Earle, III

    1992-01-01

    The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.

  16. A pipeline for the de novo assembly of the Themira biloba (Sepsidae: Diptera) transcriptome using a multiple k-mer length approach.

    PubMed

    Melicher, Dacotah; Torson, Alex S; Dworkin, Ian; Bowsher, Julia H

    2014-03-12

    The Sepsidae family of flies is a model for investigating how sexual selection shapes courtship and sexual dimorphism in a comparative framework. However, like many non-model systems, there are few molecular resources available. Large-scale sequencing and assembly have not been performed in any sepsid, and the lack of a closely related genome makes investigation of gene expression challenging. Our goal was to develop an automated pipeline for de novo transcriptome assembly, and to use that pipeline to assemble and analyze the transcriptome of the sepsid Themira biloba. Our bioinformatics pipeline uses cloud computing services to assemble and analyze the transcriptome with off-site data management, processing, and backup. It uses a multiple k-mer length approach combined with a second meta-assembly to extend transcripts and recover more bases of transcript sequences than standard single k-mer assembly. We used 454 sequencing to generate 1.48 million reads from cDNA generated from embryo, larva, and pupae of T. biloba and assembled a transcriptome consisting of 24,495 contigs. Annotation identified 16,705 transcripts, including those involved in embryogenesis and limb patterning. We assembled transcriptomes from an additional three non-model organisms to demonstrate that our pipeline assembled a higher-quality transcriptome than single k-mer approaches across multiple species. The pipeline we have developed for assembly and analysis increases contig length, recovers unique transcripts, and assembles more base pairs than other methods through the use of a meta-assembly. The T. biloba transcriptome is a critical resource for performing large-scale RNA-Seq investigations of gene expression patterns, and is the first transcriptome sequenced in this Dipteran family.

  17. Hydrogen Bonding Stabilized Self-Assembly of Inorganic Nanoparticles: Mechanism and Collective Properties.

    PubMed

    Yue, Mingli; Li, Yanchun; Hou, Ying; Cao, Wenxin; Zhu, Jiaqi; Han, Jiecai; Lu, Zhongyuan; Yang, Ming

    2015-06-23

    Developing a simple and efficient method to organize nanoscale building blocks into ordered superstructures, understanding the mechanism for self-assembly and revealing the essential collective properties are crucial steps toward the practical use of nanostructures in nanotechnology-based applications. In this study, we showed that the high-yield formation of ZnO nanoparticle chains with micrometer length can be readily achieved by the variation of solvents from methanol to water. Spectroscopic studies confirmed the solvent effect on the surface properties of ZnO nanoparticles, which were found to be critical for the formation of anisotropic assemblies. Quantum mechanical calculations and all atom molecular dynamic simulations indicated the contribution of hydrogen bonding for stabilizing the structure in water. Dissipative particle dynamics further revealed the importance of solvent-nanoparticle interactions for promoting one-dimensional self-assembly. The branching of chains was found upon aging, resulting in the size increase of the ensembles and network formation. Steady-state and time-resolved luminescent spectroscopes, which probed the variation of defect-related emission, revealed stronger Forster resonance energy transfer (FRET) between nanoparticles when the chain networks were formed. The high efficiency of FRET quenching can be ascribed to the presence of multiple energy transfer channels, as well as the short internanoparticle distances and the dipole alignment.

  18. Automatic assembly of micro-optical components

    NASA Astrophysics Data System (ADS)

    Gengenbach, Ulrich K.

    1996-12-01

    Automatic assembly becomes an important issue as hybrid micro systems enter industrial fabrication. Moving from a laboratory scale production with manual assembly and bonding processes to automatic assembly requires a thorough re- evaluation of the design, the characteristics of the individual components and of the processes involved. Parts supply for automatic operation, sensitive and intelligent grippers adapted to size, surface and material properties of the microcomponents gain importance when the superior sensory and handling skills of a human are to be replaced by a machine. This holds in particular for the automatic assembly of micro-optical components. The paper outlines these issues exemplified at the automatic assembly of a micro-optical duplexer consisting of a micro-optical bench fabricated by the LIGA technique, two spherical lenses, a wavelength filter and an optical fiber. Spherical lenses, wavelength filter and optical fiber are supplied by third party vendors, which raises the question of parts supply for automatic assembly. The bonding processes for these components include press fit and adhesive bonding. The prototype assembly system with all relevant components e.g. handling system, parts supply, grippers and control is described. Results of first automatic assembly tests are presented.

  19. Nanoparticles in Polymers: Assembly, Rheology and Properties

    NASA Astrophysics Data System (ADS)

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  20. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  1. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  2. Fuel cell sub-assembly

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  3. Innovation in Layer-by-Layer Assembly.

    PubMed

    Richardson, Joseph J; Cui, Jiwei; Björnmalm, Mattias; Braunger, Julia A; Ejima, Hirotaka; Caruso, Frank

    2016-12-14

    Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.

  4. Role of small subunit in mediating assembly of red-type form I Rubisco.

    PubMed

    Joshi, Jidnyasa; Mueller-Cajar, Oliver; Tsai, Yi-Chin C; Hartl, F Ulrich; Hayer-Hartl, Manajit

    2015-01-09

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Self-Assembly at the Colloidal Scale

    NASA Astrophysics Data System (ADS)

    Zhong, Xiao

    The existence of self-assembly, the phenomenon of spontaneous structural formation from building blocks, transcends many orders of magnitude, ranging from molecular to cosmic. It is arguably the most common, important, and complex question in science. This thesis aims for understanding a spectrum of self-assembly-self assembly at the colloidal scale. Of the whole spectrum of self-assembly, the colloidal scale is of particular interest and importance to researchers, for not only comprehensive tools for colloidal scale studies have been well established, but also the various promising applications colloidal self-assembly can facilitate. In this thesis, a high throughput technique-Polymer Pen Lithography (PPL) is modified and its potential for creating corrals for colloidal assembly is evaluated. Then two different approaches of assembling colloids are explored in depth. One of them is by using a phenomenon called dielectrophoresis (DEP) as driving force to manipulate colloidal nucleation and crystal growth. And the other takes advantage of the Pt-catalyzed H2O 2 redox reaction to drive micrometer-scaled, rod-shaped colloids to swim and assemble. Lastly, an optical method called Holographic Video Microscopy (HVM) is used to monitor and characterize "bad" self-assembly of proteins, that is their aggregations. The four studies discussed in this thesis represent advancements in the colloidal scale from different aspects. The PPL technique enriched the toolbox for colloidal self-assembly. The DEP driven colloidal nucleation and crystal growth shed light on deeper understanding the mechanism of crystallization. And the swimming and assembly of micro-scale rods leads to kinetics reminiscent of bacterial run-and-tumble motion. Finally, the HVM technique for monitoring and understanding protein aggregation could potentially lead to better quality assurance for therapeutic proteins and could be a powerful tool for assessing their shelf lives.

  6. De novo assembly of highly polymorphic metagenomic data using in situ generated reference sequences and a novel BLAST-based assembly pipeline.

    PubMed

    Lin, You-Yu; Hsieh, Chia-Hung; Chen, Jiun-Hong; Lu, Xuemei; Kao, Jia-Horng; Chen, Pei-Jer; Chen, Ding-Shinn; Wang, Hurng-Yi

    2017-04-26

    The accuracy of metagenomic assembly is usually compromised by high levels of polymorphism due to divergent reads from the same genomic region recognized as different loci when sequenced and assembled together. A viral quasispecies is a group of abundant and diversified genetically related viruses found in a single carrier. Current mainstream assembly methods, such as Velvet and SOAPdenovo, were not originally intended for the assembly of such metagenomics data, and therefore demands for new methods to provide accurate and informative assembly results for metagenomic data. In this study, we present a hybrid method for assembling highly polymorphic data combining the partial de novo-reference assembly (PDR) strategy and the BLAST-based assembly pipeline (BBAP). The PDR strategy generates in situ reference sequences through de novo assembly of a randomly extracted partial data set which is subsequently used for the reference assembly for the full data set. BBAP employs a greedy algorithm to assemble polymorphic reads. We used 12 hepatitis B virus quasispecies NGS data sets from a previous study to assess and compare the performance of both PDR and BBAP. Analyses suggest the high polymorphism of a full metagenomic data set leads to fragmentized de novo assembly results, whereas the biased or limited representation of external reference sequences included fewer reads into the assembly with lower assembly accuracy and variation sensitivity. In comparison, the PDR generated in situ reference sequence incorporated more reads into the final PDR assembly of the full metagenomics data set along with greater accuracy and higher variation sensitivity. BBAP assembly results also suggest higher assembly efficiency and accuracy compared to other assembly methods. Additionally, BBAP assembly recovered HBV structural variants that were not observed amongst assembly results of other methods. Together, PDR/BBAP assembly results were significantly better than other compared methods

  7. Improved assemblies using a source-agnostic pipeline for MetaGenomic Assembly by Merging (MeGAMerge) of contigs

    DOE PAGES

    Scholz, Matthew; Lo, Chien -Chi; Chain, Patrick S. G.

    2014-10-01

    Assembly of metagenomic samples is a very complex process, with algorithms designed to address sequencing platform-specific issues, (read length, data volume, and/or community complexity), while also faced with genomes that differ greatly in nucleotide compositional biases and in abundance. To address these issues, we have developed a post-assembly process: MetaGenomic Assembly by Merging (MeGAMerge). We compare this process to the performance of several assemblers, using both real, and in-silico generated samples of different community composition and complexity. MeGAMerge consistently outperforms individual assembly methods, producing larger contigs with an increased number of predicted genes, without replication of data. MeGAMerge contigs aremore » supported by read mapping and contig alignment data, when using synthetically-derived and real metagenomic data, as well as by gene prediction analyses and similarity searches. Ultimately, MeGAMerge is a flexible method that generates improved metagenome assemblies, with the ability to accommodate upcoming sequencing platforms, as well as present and future assembly algorithms.« less

  8. Laser-directed 3D assembly of carbon nanotubes using two-photon polymerization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xiong, Wei; Jiang, Li Jia; Zhou, Yunshen; Li, Dawei; Jiang, Lan; Silvain, Jean-Francois; Lu, Yongfeng

    2017-02-01

    Precise assembly of carbon nanotubes (CNTs) in arbitrary 3D space with proper alignment is critically important and desirable for CNT applications but still remains as a long-standing challenge. Using the two-photon polymerization (TPP) technique, it is possible to fabricate 3D micro/nanoscale CNT/polymer architectures with proper CNT alignments in desired directions, which is expected to enable a broad range of applications of CNTs in functional devices. To unleash the full potential of CNTs, it is strategically important to develop TPP-compatible resins with high CNT concentrations for precise assembly of CNTs into 3D micro/nanostructures for functional device applications. We investigated a thiol grafting method in functionalizing multiwalled carbon nanotubes (MWNTs) to develop TPP-compatible MWNT-thiol-acrylate (MTA) composite resins. The composite resins developed had high MWNT concentrations up to 0.2 wt%, over one order of magnitude higher than previously published work. Significantly enhanced electrical and mechanical properties of the 3D micro/nanostructures were achieved. Precisely controlled MWNT assembly and strong anisotropic effects were confirmed. Microelectronic devices made of the MTA composite polymer were demonstrated. The nanofabrication method can achieve controlled assembly of MWNTs in 3D micro/nanostructures, enabling a broad range of CNT applications, including 3D electronics, integrated photonics, and micro/nanoelectromechanical systems (MEMS/NEMS).

  9. Tyrosine Templating in the Self-Assembly and Crystallization of Silk Fibroin.

    PubMed

    Partlow, Benjamin P; Bagheri, Mehran; Harden, James L; Kaplan, David L

    2016-11-14

    Native silk fibers exhibit strength and toughness that rival those of the best synthetic fibers. Despite significant research, further insight is still needed to understand the mechanisms by which silkworms are capable of spinning such tough fibers. Here we propose that π-π and π-OH group interactions of tyrosine side chains provide templating effects, such that the crystal-forming domains are in registration, thereby fostering the self-assembly of the spinning dope. Intrinsic fluorescence measurements, in conjunction with circular dichroism, showed that during self-assembly of regenerated silk solutions, the tyrosine residues were localized in a more hydrophobic local environment, suggesting preferential assembly. In situ Fourier transform infrared spectroscopy indicated that cross-linking of the tyrosine residues resulted in the development of extended β-sheet structure. Additionally, control of cross-link density directly influenced the degree of crystallinity upon drying. Molecular dynamics simulations were performed on silk mimetic peptides in order to more thoroughly understand the role of tyrosines. The results indicated that tyrosine residues tended to transiently colocate in solution due to π-π interactions and hydrogen bonds with adjacent residues and with the peptide backbone. These more stable tyrosine interactions resulted in reduced lateral chain fluctuations and increased incidence of coordinated intrachain association, while introduction of a dityrosine bond directly promoted the formation of β-sheet structures. In total, the experimental and modeling data support a critical role for tyrosine-tyrosine interactions as a key early feature in the self-assembly of regenerated silk protein chains and therefore are important in the robust and unusual mechanical properties ultimately achieved in the process.

  10. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.

    PubMed

    Uba, Franklin I; Hu, Bo; Weerakoon-Ratnayake, Kumuditha; Oliver-Calixte, Nyote; Soper, Steven A

    2015-02-21

    Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) and with a short total assembly time (16 min). The approach involves thermally sealing a high T(g) (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower T(g). Nanofluidic devices with critical feature sizes ranging between 25-250 nm were fabricated in a thermoplastic substrate (T(g) = 104 °C) and sealed with a cover plate (T(g) = 75 °C) at a temperature significantly below the T(g) of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels.

  11. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    PubMed

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  12. Identification of the NC1 domain of {alpha}3 chain as critical for {alpha}3{alpha}4{alpha}5 type IV collagen network assembly.

    PubMed

    LeBleu, Valerie; Sund, Malin; Sugimoto, Hikaru; Birrane, Gabriel; Kanasaki, Keizo; Finan, Elizabeth; Miller, Caroline A; Gattone, Vincent H; McLaughlin, Heather; Shield, Charles F; Kalluri, Raghu

    2010-12-31

    The network organization of type IV collagen consisting of α3, α4, and α5 chains in the glomerular basement membrane (GBM) is speculated to involve interactions of the triple helical and NC1 domain of individual α-chains, but in vivo evidence is lacking. To specifically address the contribution of the NC1 domain in the GBM collagen network organization, we generated a mouse with specific loss of α3NC1 domain while keeping the triple helical α3 chain intact by connecting it to the human α5NC1 domain. The absence of α3NC1 domain leads to the complete loss of the α4 chain. The α3 collagenous domain is incapable of incorporating the α5 chain, resulting in the impaired organization of the α3α4α5 chain-containing network. Although the α5 chain can assemble with the α1, α2, and α6 chains, such assembly is incapable of functionally replacing the α3α4α5 protomer. This novel approach to explore the assembly type IV collagen in vivo offers novel insights in the specific role of the NC1 domain in the assembly and function of GBM during health and disease.

  13. Liquid-liquid interfacial nanoparticle assemblies

    DOEpatents

    Emrick, Todd S [South Deerfield, MA; Russell, Thomas P [Amherst, MA; Dinsmore, Anthony [Amherst, MA; Skaff, Habib [Amherst, MA; Lin, Yao [Amherst, MA

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  14. Molecular Engineering of Self-assembled Nanoreactors

    DTIC Science & Technology

    2014-08-15

    substrate diffusion. We demonstrated spatial control of the GOx/HRP cascade organized by DNA origami structures. As shown in Figure 13, the...quantify the level of protein assembly on the DNA origami tiles - assembled enzymes exhibited higher surface landscapes than the underlying origami ... origami tiles with assembled Gox/HRP pairs with inter-enzyme distances ranging from 10 nm to 65 nm. GOx/HRP co-assembly yields were determined from AFM

  15. Constructing a molecular theory of self-assembly: Interplay of ideas from surfactants and block copolymers.

    PubMed

    Nagarajan, Ramanathan

    2017-06-01

    Low molecular weight surfactants and high molecular weight block copolymers display analogous self-assembly behavior in solutions and at interfaces, generating nanoscale structures of different shapes. Understanding the link between the molecular structure of these amphiphiles and their self-assembly behavior has been the goal of theoretical studies. Despite the analogies between surfactants and block copolymers, models predicting their self-assembly behavior have evolved independent of one another, each overlooking the molecular feature considered critical to the other. In this review, we focus on the interplay of ideas pertaining to surfactants and block copolymers in three areas of self-assembly. First, we show how improved free energy models have evolved by applying ideas from surfactants to block copolymers and vice versa, giving rise to a unitary theoretical framework and better predictive capabilities for both classes of amphiphiles. Second we show that even though molecular packing arguments are often used to explain aggregate shape transitions resulting from self-assembly, the molecular packing considerations are more relevant in the case of surfactants whereas free energy criteria are relevant for block copolymers. Third, we show that even though the surfactant and block copolymer aggregates are small nanostructures, the size differences between them is significant enough to make the interfacial effects control the solubilization of molecules in surfactant micelles while the bulk interactions control the solubilization in block copolymer micelles. Finally, we conclude by identifying recent theoretical progress in adapting the micelle model to a wide variety of self-assembly phenomena and the challenges to modeling posed by emerging novel classes of amphiphiles with complex biological, inorganic or nanoparticle moieties. Published by Elsevier B.V.

  16. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1997-01-01

    An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

  17. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  18. Molecular simulations of self-assembly processes in metal-organic frameworks: Model dependence

    NASA Astrophysics Data System (ADS)

    Biswal, Debasmita; Kusalik, Peter G.

    2017-07-01

    Molecular simulation is a powerful tool for investigating microscopic behavior in various chemical systems, where the use of suitable models is critical to successfully reproduce the structural and dynamic properties of the real systems of interest. In this context, molecular dynamics simulation studies of self-assembly processes in metal-organic frameworks (MOFs), a well-known class of porous materials with interesting chemical and physical properties, are relatively challenging, where a reasonably accurate representation of metal-ligand interactions is anticipated to play an important role. In the current study, we both investigate the performance of some existing models and introduce and test new models to help explore the self-assembly in an archetypal Zn-carboxylate MOF system. To this end, the behavior of six different Zn-ion models, three solvent models, and two ligand models was examined and validated against key experimental structural parameters. To explore longer time scale ordering events during MOF self-assembly via explicit solvent simulations, it is necessary to identify a suitable combination of simplified model components representing metal ions, organic ligands, and solvent molecules. It was observed that an extended cationic dummy atom (ECDA) Zn-ion model combined with an all-atom carboxylate ligand model and a simple dipolar solvent model can reproduce characteristic experimental structures for the archetypal MOF system. The successful use of these models in extensive sets of molecular simulations, which provide key insights into the self-assembly mechanism of this archetypal MOF system occurring during the early stages of this process, has been very recently reported.

  19. Gas separation membrane module assembly

    DOEpatents

    Wynn, Nicholas P [Palo Alto, CA; Fulton, Donald A [Fairfield, CA

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  20. Glucose starvation increases V-ATPase assembly and activity in mammalian cells through AMP kinase and phosphatidylinositide 3-kinase/Akt signaling.

    PubMed

    McGuire, Christina M; Forgac, Michael

    2018-06-08

    The vacuolar H + -ATPase (V-ATPase) is an ATP-driven proton pump involved in many cellular processes. An important mechanism by which V-ATPase activity is controlled is the reversible assembly of its two domains, namely the peripheral V 1 domain and the integral V 0 domain. Although reversible assembly is conserved across all eukaryotic organisms, the signaling pathways controlling it have not been fully characterized. Here, we identify glucose starvation as a novel regulator of V-ATPase assembly in mammalian cells. During acute glucose starvation, the V-ATPase undergoes a rapid and reversible increase in assembly and activity as measured by lysosomal acidification. Because the V-ATPase has recently been implicated in the activation of AMP kinase (AMPK), a critical cellular energy sensor that is also activated upon glucose starvation, we compared the time course of AMPK activation and V-ATPase assembly upon glucose starvation. We observe that AMPK activation precedes increased V-ATPase activity. Moreover, the starvation-induced increase in V-ATPase activity and assembly are prevented by the AMPK inhibitor dorsomorphin. These results suggest that increased assembly and activity of the V-ATPase upon glucose starvation are dependent upon AMPK. We also find that the PI3K/Akt pathway, which has previously been implicated in controlling V-ATPase assembly in mammalian cells, also plays a role in the starvation-induced increase in V-ATPase assembly and activity. These studies thus identify a novel stimulus of V-ATPase assembly and a novel signaling pathway involved in regulating this process. The possible function of starvation-induced increase in lysosomal V-ATPase activity is discussed. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Finishing bacterial genome assemblies with Mix.

    PubMed

    Soueidan, Hayssam; Maurier, Florence; Groppi, Alexis; Sirand-Pugnet, Pascal; Tardy, Florence; Citti, Christine; Dupuy, Virginie; Nikolski, Macha

    2013-01-01

    Among challenges that hamper reaping the benefits of genome assembly are both unfinished assemblies and the ensuing experimental costs. First, numerous software solutions for genome de novo assembly are available, each having its advantages and drawbacks, without clear guidelines as to how to choose among them. Second, these solutions produce draft assemblies that often require a resource intensive finishing phase. In this paper we address these two aspects by developing Mix , a tool that mixes two or more draft assemblies, without relying on a reference genome and having the goal to reduce contig fragmentation and thus speed-up genome finishing. The proposed algorithm builds an extension graph where vertices represent extremities of contigs and edges represent existing alignments between these extremities. These alignment edges are used for contig extension. The resulting output assembly corresponds to a set of paths in the extension graph that maximizes the cumulative contig length. We evaluate the performance of Mix on bacterial NGS data from the GAGE-B study and apply it to newly sequenced Mycoplasma genomes. Resulting final assemblies demonstrate a significant improvement in the overall assembly quality. In particular, Mix is consistent by providing better overall quality results even when the choice is guided solely by standard assembly statistics, as is the case for de novo projects. Mix is implemented in Python and is available at https://github.com/cbib/MIX, novel data for our Mycoplasma study is available at http://services.cbib.u-bordeaux2.fr/mix/.

  2. A comparative evaluation of genome assembly reconciliation tools.

    PubMed

    Alhakami, Hind; Mirebrahim, Hamid; Lonardi, Stefano

    2017-05-18

    The majority of eukaryotic genomes are unfinished due to the algorithmic challenges of assembling them. A variety of assembly and scaffolding tools are available, but it is not always obvious which tool or parameters to use for a specific genome size and complexity. It is, therefore, common practice to produce multiple assemblies using different assemblers and parameters, then select the best one for public release. A more compelling approach would allow one to merge multiple assemblies with the intent of producing a higher quality consensus assembly, which is the objective of assembly reconciliation. Several assembly reconciliation tools have been proposed in the literature, but their strengths and weaknesses have never been compared on a common dataset. We fill this need with this work, in which we report on an extensive comparative evaluation of several tools. Specifically, we evaluate contiguity, correctness, coverage, and the duplication ratio of the merged assembly compared to the individual assemblies provided as input. None of the tools we tested consistently improved the quality of the input GAGE and synthetic assemblies. Our experiments show an increase in contiguity in the consensus assembly when the original assemblies already have high quality. In terms of correctness, the quality of the results depends on the specific tool, as well as on the quality and the ranking of the input assemblies. In general, the number of misassemblies ranges from being comparable to the best of the input assembly to being comparable to the worst of the input assembly.

  3. QUAST: quality assessment tool for genome assemblies.

    PubMed

    Gurevich, Alexey; Saveliev, Vladislav; Vyahhi, Nikolay; Tesler, Glenn

    2013-04-15

    Limitations of genome sequencing techniques have led to dozens of assembly algorithms, none of which is perfect. A number of methods for comparing assemblers have been developed, but none is yet a recognized benchmark. Further, most existing methods for comparing assemblies are only applicable to new assemblies of finished genomes; the problem of evaluating assemblies of previously unsequenced species has not been adequately considered. Here, we present QUAST-a quality assessment tool for evaluating and comparing genome assemblies. This tool improves on leading assembly comparison software with new ideas and quality metrics. QUAST can evaluate assemblies both with a reference genome, as well as without a reference. QUAST produces many reports, summary tables and plots to help scientists in their research and in their publications. In this study, we used QUAST to compare several genome assemblers on three datasets. QUAST tables and plots for all of them are available in the Supplementary Material, and interactive versions of these reports are on the QUAST website. http://bioinf.spbau.ru/quast . Supplementary data are available at Bioinformatics online.

  4. Power module assembly

    DOEpatents

    Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  5. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  6. Core assembly storage structure

    DOEpatents

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  7. Automated ensemble assembly and validation of microbial genomes.

    PubMed

    Koren, Sergey; Treangen, Todd J; Hill, Christopher M; Pop, Mihai; Phillippy, Adam M

    2014-05-03

    The continued democratization of DNA sequencing has sparked a new wave of development of genome assembly and assembly validation methods. As individual research labs, rather than centralized centers, begin to sequence the majority of new genomes, it is important to establish best practices for genome assembly. However, recent evaluations such as GAGE and the Assemblathon have concluded that there is no single best approach to genome assembly. Instead, it is preferable to generate multiple assemblies and validate them to determine which is most useful for the desired analysis; this is a labor-intensive process that is often impossible or unfeasible. To encourage best practices supported by the community, we present iMetAMOS, an automated ensemble assembly pipeline; iMetAMOS encapsulates the process of running, validating, and selecting a single assembly from multiple assemblies. iMetAMOS packages several leading open-source tools into a single binary that automates parameter selection and execution of multiple assemblers, scores the resulting assemblies based on multiple validation metrics, and annotates the assemblies for genes and contaminants. We demonstrate the utility of the ensemble process on 225 previously unassembled Mycobacterium tuberculosis genomes as well as a Rhodobacter sphaeroides benchmark dataset. On these real data, iMetAMOS reliably produces validated assemblies and identifies potential contamination without user intervention. In addition, intelligent parameter selection produces assemblies of R. sphaeroides comparable to or exceeding the quality of those from the GAGE-B evaluation, affecting the relative ranking of some assemblers. Ensemble assembly with iMetAMOS provides users with multiple, validated assemblies for each genome. Although computationally limited to small or mid-sized genomes, this approach is the most effective and reproducible means for generating high-quality assemblies and enables users to select an assembly best tailored to

  8. Capacitor assembly and related method of forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lili; Tan, Daniel Qi; Sullivan, Jeffrey S.

    A capacitor assembly is disclosed. The capacitor assembly includes a housing. The capacitor assembly further includes a plurality of capacitors disposed within the housing. Furthermore, the capacitor assembly includes a thermally conductive article disposed about at least a portion of a capacitor body of the capacitors, and in thermal contact with the capacitor body. Moreover, the capacitor assembly also includes a heat sink disposed within the housing and in thermal contact with at least a portion of the housing and the thermally conductive article such that the heat sink is configured to remove heat from the capacitor in a radialmore » direction of the capacitor assembly. Further, a method of forming the capacitor assembly is also presented.« less

  9. A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, M.; Schwartz, Russell

    2010-12-01

    Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.

  10. A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly.

    PubMed

    Kumar, M Senthil; Schwartz, Russell

    2010-12-09

    Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.

  11. Entropy driven key-lock assembly

    NASA Astrophysics Data System (ADS)

    Odriozola, G.; Jiménez-Ángeles, F.; Lozada-Cassou, M.

    2008-09-01

    The effective interaction between a sphere with an open cavity (lock) and a spherical macroparticle (key), both immersed in a hard sphere fluid, is studied by means of Monte Carlo simulations. As a result, a two-dimensional map of the key-lock effective interaction potential is constructed, which leads to the proposal of a self-assembling mechanism: There exists trajectories through which the key-lock pair could assemble avoiding trespassing potential barriers. Hence, solely the entropic contribution can induce their self-assembling even in the absence of attractive forces. This study points out the solvent contribution within the underlying mechanisms of substrate-protein assembly/disassembly processes, which are important steps of the enzyme catalysis and protein mediated transport.

  12. PAVE: program for assembling and viewing ESTs.

    PubMed

    Soderlund, Carol; Johnson, Eric; Bomhoff, Matthew; Descour, Anne

    2009-08-26

    New sequencing technologies are rapidly emerging. Many laboratories are simultaneously working with the traditional Sanger ESTs and experimenting with ESTs generated by the 454 Life Science sequencers. Though Sanger ESTs have been used to generate contigs for many years, no program takes full advantage of the 5' and 3' mate-pair information, hence, many tentative transcripts are assembled into two separate contigs. The new 454 technology has the benefit of high-throughput expression profiling, but introduces time and space problems for assembling large contigs. The PAVE (Program for Assembling and Viewing ESTs) assembler takes advantage of the 5' and 3' mate-pair information by requiring that the mate-pairs be assembled into the same contig and joined by n's if the two sub-contigs do not overlap. It handles the depth of 454 data sets by "burying" similar ESTs during assembly, which retains the expression level information while circumventing time and space problems. PAVE uses MegaBLAST for the clustering step and CAP3 for assembly, however it assembles incrementally to enforce the mate-pair constraint, bury ESTs, and reduce incorrect joins and splits. The PAVE data management system uses a MySQL database to store multiple libraries of ESTs along with their metadata; the management system allows multiple assemblies with variations on libraries and parameters. Analysis routines provide standard annotation for the contigs including a measure of differentially expressed genes across the libraries. A Java viewer program is provided for display and analysis of the results. Our results clearly show the benefit of using the PAVE assembler to explicitly use mate-pair information and bury ESTs for large contigs. The PAVE assembler provides a software package for assembling Sanger and/or 454 ESTs. The assembly software, data management software, Java viewer and user's guide are freely available.

  13. A Motor Drive Electronics Assembly for Mars Curiosity Rover: An Example of Assembly Qualification for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Kolawa, Elizabeth; Chen, Yuan; Mojarradi, Mohammad M.; Weber, Carissa Tudryn; Hunter, Don J.

    2013-01-01

    This paper describes the technology development and infusion of a motor drive electronics assembly for Mars Curiosity Rover under space extreme environments. The technology evaluation and qualification as well as space qualification of the assembly are detailed and summarized. Because of the uncertainty of the technologies operating under the extreme space environments and that a high level reliability was required for this assembly application, both component and assembly board level qualifications were performed.

  14. Meta assembler enhancements and generalized linkage editor

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A meta Assembler for NASA was developed. The initial development of the Meta Assembler for the SUMC was performed. The capabilities included assembly for both main and micro level programs. A period of checkout and utilization to verify the performance of the Meta Assembler was undertaken. Additional enhancements were made to the Meta Assembler which expanded the target computer family to include architectures represented by the PDP-11, MODCOMP 2, and Raytheon 706 computers.

  15. 32 CFR 644.460 - Supplemental agreement assembly.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Supplemental agreement assembly. 644.460 Section... Supplemental agreement assembly. (a) Composition. Supplemental agreement assembly, covering agreement for... Government. (b) Distribution. An executed copy of the assembly will be retained by the DE. An executed copy...

  16. 36 CFR 1002.51 - Public assemblies, meetings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Public assemblies, meetings... USE AND RECREATION § 1002.51 Public assemblies, meetings. (a) Public assemblies, meetings, gatherings... the Presidio Trust, the locations available for public assemblies. Locations may be designated as not...

  17. 32 CFR 644.460 - Supplemental agreement assembly.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Supplemental agreement assembly. 644.460 Section... Supplemental agreement assembly. (a) Composition. Supplemental agreement assembly, covering agreement for... Government. (b) Distribution. An executed copy of the assembly will be retained by the DE. An executed copy...

  18. 36 CFR 1002.51 - Public assemblies, meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Public assemblies, meetings... USE AND RECREATION § 1002.51 Public assemblies, meetings. (a) Public assemblies, meetings, gatherings... the Presidio Trust, the locations available for public assemblies. Locations may be designated as not...

  19. 32 CFR 644.460 - Supplemental agreement assembly.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Supplemental agreement assembly. 644.460 Section... Supplemental agreement assembly. (a) Composition. Supplemental agreement assembly, covering agreement for... Government. (b) Distribution. An executed copy of the assembly will be retained by the DE. An executed copy...

  20. 36 CFR 1002.51 - Public assemblies, meetings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Public assemblies, meetings... USE AND RECREATION § 1002.51 Public assemblies, meetings. (a) Public assemblies, meetings, gatherings... the Presidio Trust, the locations available for public assemblies. Locations may be designated as not...

  1. 36 CFR 1002.51 - Public assemblies, meetings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Public assemblies, meetings... USE AND RECREATION § 1002.51 Public assemblies, meetings. (a) Public assemblies, meetings, gatherings... the Presidio Trust, the locations available for public assemblies. Locations may be designated as not...

  2. 32 CFR 644.460 - Supplemental agreement assembly.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Supplemental agreement assembly. 644.460 Section... Supplemental agreement assembly. (a) Composition. Supplemental agreement assembly, covering agreement for... Government. (b) Distribution. An executed copy of the assembly will be retained by the DE. An executed copy...

  3. 32 CFR 644.460 - Supplemental agreement assembly.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Supplemental agreement assembly. 644.460 Section... Supplemental agreement assembly. (a) Composition. Supplemental agreement assembly, covering agreement for... Government. (b) Distribution. An executed copy of the assembly will be retained by the DE. An executed copy...

  4. Nitrogenase assembly

    PubMed Central

    Hu, Yilin; Ribbe, Markus W.

    2013-01-01

    Nitrogenase contains two unique metalloclusters: the P-cluster and the M-cluster. The assembly processes of P- and M-clusters are arguably the most complicated processes in bioinorganic chemistry. There is considerable interest in decoding the biosynthetic mechanisms of the P- and M-clusters, because these clusters are not only biologically important, but also chemically unprecedented. Understanding the assembly mechanisms of these unique metalloclusters is crucial for understanding the structure-function relationship of nitrogenase. Here, we review the recent advances in this research area, with an emphasis on our work that provide important insights into the biosynthetic pathways of these high-nuclearity metal centers. PMID:23232096

  5. Comparing de novo assemblers for 454 transcriptome data

    PubMed Central

    2010-01-01

    Background Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base) reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC) to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode Litomosoides sigmodontis. Results Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects), which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs. Conclusions Transcriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies from different programs

  6. Locking support for nuclear fuel assemblies

    DOEpatents

    Ledin, Eric

    1980-01-01

    A locking device for supporting and locking a nuclear fuel assembly within a cylindrical bore formed by a support plate, the locking device including a support and locking sleeve having upwardly extending fingers forming wedge shaped contact portions arranged for interaction between an annular tapered surface on the fuel assembly and the support plate bore as well as downwardly extending fingers having wedge shaped contact portions arranged for interaction between an annularly tapered surface on the support plate bore and the fuel assembly whereby the sleeve tends to support and lock the fuel assembly in place within the bore by its own weight while facilitating removal and/or replacement of the fuel assembly.

  7. Photocontrolled reversible self-assembly of dodecamer nitrilase.

    PubMed

    Yu, Qiao; Wang, Yong; Zhao, Shengyun; Ren, Yuhong

    2017-01-01

    Naturally photoswitchable proteins act as a powerful tool for the spatial and temporal control of biological processes by inducing the formation of a photodimerizer. In this study, a method for the precise and reversible inducible self-assembly of dodecamer nitrilase in vivo (in Escherichia coli ) and in vitro (in a cell-free solution) was developed by means of the photoswitch-improved light-inducible dimer (iLID) system which could induce protein-protein dimerization. Nitrilase was fused with the photoswitch protein AsLOV2-SsrA to achieve the photocontrolled self-assembly of dodecamer nitrilase. The fusion protein self-assembled into a supramolecular assembly when illuminated at 470 nm. Scanning electron microscopy showed that the assembly formed a circular sheet structure. Self-assembly was also induced by light in E. coli . Dynamic light scattering and turbidity assay experiments showed that the assemblies formed within a few seconds under 470-nm light and completely disassembled within 5 min in the dark. Assembly and disassembly could be maintained for at least five cycles. Both in vitro and in vivo, the assemblies retained 90% of the initial activity of nitrilase and could be reused at least four times in vitro with 90% activity. An efficient method was developed for the photocontrolled assembly and disassembly of dodecamer nitrilase and for scaffold-free reversible self-assembly of multiple oligomeric enzymes in vivo and in vitro, providing new ideas and methods for immobilization of enzyme without carrier.

  8. Physical principles for DNA tile self-assembly.

    PubMed

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  9. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  10. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  11. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  12. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  13. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  14. Fuel rod assembly to manifold attachment

    DOEpatents

    Donck, Harry A.; Veca, Anthony R.; Snyder, Jr., Harold J.

    1980-01-01

    A fuel element is formed with a plurality of fuel rod assemblies detachably connected to an overhead support with each of the fuel rod assemblies having a gas tight seal with the support to allow internal fission gaseous products to flow without leakage from the fuel rod assemblies into a vent manifold passageway system on the support. The upper ends of the fuel rod assemblies are located at vertically extending openings in the support and upper threaded members are threaded to the fuel rod assemblies to connect the latter to the support. The preferred threaded members are cap nuts having a dome wall encircling an upper threaded end on the fuel rod assembly and having an upper sealing surface for sealing contact with the support. Another and lower seal is achieved by abutting a sealing surface on each fuel rod assembly with the support. A deformable portion on the cap nut locks the latter against inadvertent turning off the fuel rod assembly. Orienting means on the fuel rod and support primarily locates the fuel rods azimuthally for reception of a deforming tool for the cap nut. A cross port in the fuel rod end plug discharges into a sealed annulus within the support, which serves as a circumferential chamber, connecting the manifold gas passageways in the support.

  15. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes.

    PubMed

    Olson, Nathan D; Treangen, Todd J; Hill, Christopher M; Cepeda-Espinoza, Victoria; Ghurye, Jay; Koren, Sergey; Pop, Mihai

    2017-08-07

    Metagenomic samples are snapshots of complex ecosystems at work. They comprise hundreds of known and unknown species, contain multiple strain variants and vary greatly within and across environments. Many microbes found in microbial communities are not easily grown in culture making their DNA sequence our only clue into their evolutionary history and biological function. Metagenomic assembly is a computational process aimed at reconstructing genes and genomes from metagenomic mixtures. Current methods have made significant strides in reconstructing DNA segments comprising operons, tandem gene arrays and syntenic blocks. Shorter, higher-throughput sequencing technologies have become the de facto standard in the field. Sequencers are now able to generate billions of short reads in only a few days. Multiple metagenomic assembly strategies, pipelines and assemblers have appeared in recent years. Owing to the inherent complexity of metagenome assembly, regardless of the assembly algorithm and sequencing method, metagenome assemblies contain errors. Recent developments in assembly validation tools have played a pivotal role in improving metagenomics assemblers. Here, we survey recent progress in the field of metagenomic assembly, provide an overview of key approaches for genomic and metagenomic assembly validation and demonstrate the insights that can be derived from assemblies through the use of assembly validation strategies. We also discuss the potential for impact of long-read technologies in metagenomics. We conclude with a discussion of future challenges and opportunities in the field of metagenomic assembly and validation. © The Author 2017. Published by Oxford University Press.

  16. MetaGenomic Assembly by Merging (MeGAMerge)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholz Chien-Chi Lo, Matthew B.

    2015-08-03

    "MetaGenomic Assembly by Merging" (MeGAMerge)Is a novel method of merging of multiple genomic assembly or long read data sources for assembly by use of internal trimming/filtering of data, followed by use of two 3rd party tools to merge data by overlap based assembly.

  17. Boiling Visualization and Critical Heat Flux Phenomena In Narrow Rectangular Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. J. Kim; Y. H. Kim; S. J. Kim

    2004-12-01

    An experimental study was performed to investifate the pool boling critical hear flux (CHF) on one-dimensional inclined rectangular channels with narrow gaps by changing the orientation of a copper test heater assembly. In a pool of saturated water at atmospheric pressure, the test parameters include the gap sizes of 1,2,5, and 10 mm, andthe surface orientation angles from the downward facing position (180 degrees) to the vertical position (90 degress) respectively.

  18. Fluidic self-actuating control assembly

    DOEpatents

    Grantz, Alan L.

    1979-01-01

    A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.

  19. QUAST: quality assessment tool for genome assemblies

    PubMed Central

    Gurevich, Alexey; Saveliev, Vladislav; Vyahhi, Nikolay; Tesler, Glenn

    2013-01-01

    Summary: Limitations of genome sequencing techniques have led to dozens of assembly algorithms, none of which is perfect. A number of methods for comparing assemblers have been developed, but none is yet a recognized benchmark. Further, most existing methods for comparing assemblies are only applicable to new assemblies of finished genomes; the problem of evaluating assemblies of previously unsequenced species has not been adequately considered. Here, we present QUAST—a quality assessment tool for evaluating and comparing genome assemblies. This tool improves on leading assembly comparison software with new ideas and quality metrics. QUAST can evaluate assemblies both with a reference genome, as well as without a reference. QUAST produces many reports, summary tables and plots to help scientists in their research and in their publications. In this study, we used QUAST to compare several genome assemblers on three datasets. QUAST tables and plots for all of them are available in the Supplementary Material, and interactive versions of these reports are on the QUAST website. Availability: http://bioinf.spbau.ru/quast Contact: gurevich@bioinf.spbau.ru Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23422339

  20. Systems engineering studies of on-orbit assembly operation

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1991-01-01

    While the practice of construction has a long history, the underlying theory of construction is relatively young. Very little has been documented as to techniques of logistic support, construction planning, construction scheduling, construction testing, and inspection. The lack of 'systems approaches' to construction processes is certainly one of the most serious roadblocks to the construction of space structures. System engineering research efforts at CSC are aimed at developing concepts and tools which contribute to a systems theory of space construction. The research is also aimed at providing means for trade-offs of design parameters for other research areas in CSC. Systems engineering activity at CSC has divided space construction into the areas of orbital assembly, lunar base construction, interplanetary transport vehicle construction, and Mars base construction. A brief summary of recent results is given. Several models for 'launch-on-time' were developed. Launch-on-time is a critical concept to the assembly of such Earth-orbiting structures as the Space Station Freedom, and to planetary orbiters such as the Mars transfer vehicle. CSC has developed a launch vehicle selection model which uses linear programming to find optimal combinations of launch vehicles of various sizes (Atlas, Titan, Shuttles, HLLV's) to support SEI missions. Recently, the Center developed a cost trade-off model for studying on orbit assembly logistics. With this model it was determined that the most effective size of the HLLV would be in the range of 120 to 200 metric tons to LEO, which is consistent with the choices of General Stafford's Synthesis Group Report. A second-generation Dynamic Construction Activities Model ('DYCAM') process model has been under development, based on our past results in interruptability and our initial DYCAM model. This second-generation model is built on the paradigm of knowledge-based expert systems. It is aimed at providing answers to two questions: (1

  1. Mini-Brayton heat source assembly development

    NASA Technical Reports Server (NTRS)

    Wein, D.; Zimmerman, W. F.

    1978-01-01

    The work accomplished on the Mini-Brayton Heat Source Assembly program is summarized. Required technologies to design, fabricate and assemble components for a high temperature Heat Source Assembly (HSA) which would generate and transfer the thermal energy for a spaceborne Brayton Isotope Power System (BIPS) were developed.

  2. 24 CFR 3285.601 - Field assembly.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Field assembly. 3285.601 Section... § 3285.601 Field assembly. Home manufacturers must provide specific installation instructions for the proper field assembly of manufacturer-supplied and shipped loose ducts, plumbing, and fuel supply system...

  3. 24 CFR 3285.601 - Field assembly.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Field assembly. 3285.601 Section... § 3285.601 Field assembly. Home manufacturers must provide specific installation instructions for the proper field assembly of manufacturer-supplied and shipped loose ducts, plumbing, and fuel supply system...

  4. 24 CFR 3285.601 - Field assembly.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Field assembly. 3285.601 Section... § 3285.601 Field assembly. Home manufacturers must provide specific installation instructions for the proper field assembly of manufacturer-supplied and shipped loose ducts, plumbing, and fuel supply system...

  5. 24 CFR 3285.601 - Field assembly.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Field assembly. 3285.601 Section... § 3285.601 Field assembly. Home manufacturers must provide specific installation instructions for the proper field assembly of manufacturer-supplied and shipped loose ducts, plumbing, and fuel supply system...

  6. Optimal Assembly of Psychological and Educational Tests.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    1998-01-01

    Reviews optimal test-assembly literature and introduces the contributions to this special issue. Discusses four approaches to computerized test assembly: (1) heuristic-based test assembly; (2) 0-1 linear programming; (3) network-flow programming; and (4) an optimal design approach. Contains a bibliography of 90 sources on test assembly.…

  7. The MARVEL assembly for neutron multiplication.

    PubMed

    Chichester, David L; Kinlaw, Mathew T

    2013-10-01

    A new multiplying test assembly is under development at Idaho National Laboratory to support research, validation, evaluation, and learning. The item is comprised of three stacked, highly-enriched uranium (HEU) cylinders, each 11.4 cm in diameter and having a combined height of up to 11.7 cm. The combined mass of all three cylinders is 20.3 kg of HEU. Calculations for the bare configuration of the assembly indicate a multiplication level of >3.5 (k(eff)=0.72). Reflected configurations of the assembly, using either polyethylene or tungsten, are possible and have the capability of raising the assembly's multiplication level to greater than 10. This paper describes simulations performed to assess the assembly's multiplication level under different conditions and describes the resources available at INL to support the use of these materials. We also describe some preliminary calculations and test activities using the assembly to study neutron multiplication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Housing assembly for electric vehicle transaxle

    DOEpatents

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  9. j5 DNA assembly design automation.

    PubMed

    Hillson, Nathan J

    2014-01-01

    Modern standardized methodologies, described in detail in the previous chapters of this book, have enabled the software-automated design of optimized DNA construction protocols. This chapter describes how to design (combinatorial) scar-less DNA assembly protocols using the web-based software j5. j5 assists biomedical and biotechnological researchers construct DNA by automating the design of optimized protocols for flanking homology sequence as well as type IIS endonuclease-mediated DNA assembly methodologies. Unlike any other software tool available today, j5 designs scar-less combinatorial DNA assembly protocols, performs a cost-benefit analysis to identify which portions of an assembly process would be less expensive to outsource to a DNA synthesis service provider, and designs hierarchical DNA assembly strategies to mitigate anticipated poor assembly junction sequence performance. Software integrated with j5 add significant value to the j5 design process through graphical user-interface enhancement and downstream liquid-handling robotic laboratory automation.

  10. Quantifying quality in DNA self-assembly

    PubMed Central

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  11. Coordinate Transformation Assembly

    NASA Astrophysics Data System (ADS)

    Huang, C.-C.; Barney, J.

    1983-08-01

    The coordinate transformation assembly (CTA) is a non-contact electro-optical device designed to link the angular coordinates between two remote platforms to a high degree of accuracy. Each assembly, which is compact and without moving parts, consists of two units: the transmitter and the receiver. The transmitter consists of one polarizing beamsplitter and two laser diodes with polarized output. The receiver consists of a polarizing beam-splitter, two lenses, a dual-axis photodetector and a regular photodetector. The angular roll is measured about the line-of-sight between two assemblies using a polarizing sensing method. Accuracy is calculated to be better than 0.01 degrees with a signal-to-noise ratio of 35 db. Pitch and yaw are measured relative to the line-of-sight at each assembly by locating a laser spot in the field-of-view of a dual-axis photodetector located in the focal plane of a small lens. The coordinate transformation parameter most difficult to obtain is the roll coordinate because high resolution involves observing a small variation in the difference of two strong signals. Under such an arrangement, any variation in source strength or detector sensitivity will cause an error. In the scheme devised for the CTA, this source of error has been eliminated through a paring and signal processing arrangement wherein the detector sensitivity and the source intensity are made common to the paired measurements and thus eliminated. The ±0.01 degree accuracy of the angular roll as well as the pitch and yaw measurements over ±2 degrees angular range has been demonstrated. An attractive feature of the CTA is that paired assemblies can be deployed to relay coordinates around corners and over extended distances.

  12. mRNA localization: an orchestration of assembly, traffic and synthesis.

    PubMed

    Xing, Lei; Bassell, Gary J

    2013-01-01

    Asymmetrical mRNA localization and subsequent local translation provide efficient mechanisms for protein sorting in polarized cells. Defects in mRNA localization have been linked to developmental abnormalities and neurological diseases. Thus, it is critical to understand the machineries mediating and mechanisms underlying the asymmetrical distribution of mRNA and its regulation. The goal of this review is to summarize recent advances in the understanding of mRNA transport and localization, including the assembly and sorting of transport messenger ribonucleic protein (mRNP) granules, molecular mechanisms of active mRNP transport, cytoskeletal interactions and regulation of these events by extracellular signals. © 2012 John Wiley & Sons A/S.

  13. School Assemblies: The Lost Art.

    ERIC Educational Resources Information Center

    Beach, Daniel R.

    1979-01-01

    Guidelines and suggestions are offered for successful school assemblies. The school assembly should be a positive event; an occasion for developing unity, group loyalty, and desirable audience habits. (Author/MLF)

  14. Experience using individually supplied heater rods in critical power testing of advanced BWR fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majed, M.; Morback, G.; Wiman, P.

    1995-09-01

    The ABB Atom FRIGG loop located in Vasteras Sweden has during the last six years given a large experience of critical power measurements for BWR fuel designs using indirectly heated rods with individual power supply. The loop was built in the sixties and designed for maximum 100 bar pressure. Testing up to the mid eighties was performed with directly heated rods using a 9 MW, 80 kA power supply. Providing test data to develop critical power correlations for BWR fuel assemblies requires testing with many radial power distributions over the full range of hydraulic conditions. Indirectly heated rods give largemore » advantages for the testing procedure, particularly convenient for variation of individual rod power. A test method being used at Stern Laboratories (formerly Westinghouse Canada) since the early sixties, allows one fuel assembly to simulate all required radial power distributions. This technique requires reliable indirectly heated rods with independently controlled power supplies and uses insulated electric fuel rod simulators with built-in instrumentation. The FRIGG loop was adapted to this system in 1987. A 4MW power supply with 10 individual units was then installed, and has since been used for testing 24 and 25 rod bundles simulating one subbundle of SVEA-96/100 type fuel assemblies. The experience with the system is very good, as being presented, and it is selected also for a planned upgrading of the facility to 15 MW.« less

  15. 49 CFR 178.347-3 - Manhole assemblies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Manhole assemblies. 178.347-3 Section 178.347-3... Containers for Motor Vehicle Transportation § 178.347-3 Manhole assemblies. Each manhole assembly must conform to § 178.345-5, except that each manhole assembly must be capable of withstanding internal fluid...

  16. 49 CFR 178.347-3 - Manhole assemblies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Manhole assemblies. 178.347-3 Section 178.347-3... Containers for Motor Vehicle Transportation § 178.347-3 Manhole assemblies. Each manhole assembly must conform to § 178.345-5, except that each manhole assembly must be capable of withstanding internal fluid...

  17. 49 CFR 178.347-3 - Manhole assemblies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Manhole assemblies. 178.347-3 Section 178.347-3... Containers for Motor Vehicle Transportation § 178.347-3 Manhole assemblies. Each manhole assembly must conform to § 178.345-5, except that each manhole assembly must be capable of withstanding internal fluid...

  18. 49 CFR 178.347-3 - Manhole assemblies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Manhole assemblies. 178.347-3 Section 178.347-3... Containers for Motor Vehicle Transportation § 178.347-3 Manhole assemblies. Each manhole assembly must conform to § 178.345-5, except that each manhole assembly must be capable of withstanding internal fluid...

  19. 49 CFR 178.347-3 - Manhole assemblies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Manhole assemblies. 178.347-3 Section 178.347-3... Specifications for Containers for Motor Vehicle Transportation § 178.347-3 Manhole assemblies. Each manhole assembly must conform to § 178.345-5, except that each manhole assembly must be capable of withstanding...

  20. 16 CFR 1509.10 - Assembly instructions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Assembly instructions. 1509.10 Section 1509... REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.10 Assembly instructions. Unassembled non-full-size baby cribs shall be accompanied by detailed instructions that shall: (a) Include an assembly...