Science.gov

Sample records for critical assembly kuca

  1. Analysis of the KUCA MEU experiments using the ANL code system

    SciTech Connect

    Shiroya, S.; Hayashi, M.; Kanda, K.; Shibata, T.; Woodruff, W.L.; Matos, J.E.

    1982-01-01

    This paper provides some preliminary results on the analysis of the KUCA critical experiments using the ANL code system. Since this system was employed in the earlier neutronics calculations for the KUHFR, it is important to assess its capabilities for the KUHFR. The KUHFR has a unique core configuration which is difficult to model precisely with current diffusion theory codes. This paper also provides some results from a finite-element diffusion code (2D-FEM-KUR), which was developed in a cooperative research program between KURRI and JAERI. This code provides the capability for mockup of a complex core configuration as the KUHFR. Using the same group constants generated by the EPRI-CELL code, the results of the 2D-FEM-KUR code are compared with the finite difference diffusion code (DIF3D(2D) which is mainly employed in this analysis.

  2. Experimental study on the thorium-loaded accelerator-driven system at the Kyoto Univ. critical assembly

    SciTech Connect

    Pyeon, C. H.; Yagi, T.; Lim, J. Y.; Misawa, T.

    2012-07-01

    The experimental study on the thorium-loaded accelerator-driven system (ADS) is conducted in the Kyoto Univ. Critical Assembly (KUCA). The experiments are carried out in both the critical and subcritical states for attaining the reaction rates of the thorium capture and fission reactions. In the critical system, the thorium plate irradiation experiment is carried out for the thorium capture and fission reactions. From the results of the measurements, the thorium fission reactions are obtained apparently in the critical system, and the C/E values of reaction rates show the accuracy of relative difference of about 30%. In the ADS experiments with 14 MeV neutrons and 100 MeV protons, the subcritical experiments are carried out in the thorium-loaded cores to obtain the capture reaction rates through the measurements of {sup 115}In(n, {gamma}){sup 116m}In reactions. The results of the experiments reveal the difference between the reaction rate distributions for the change in not only the neutron spectrum but also the external neutron source. The comparison between the measured and calculated reaction rate distributions demonstrates a discrepancy of the accuracy of reaction rate analyses of thorium capture reactions through the thorium-loaded ADS experiments with 14 MeV neutrons. Hereafter, kinetic experiments are planned to be carried out to deduce the delayed neutron decay constants and subcriticality using the pulsed neutron method. (authors)

  3. Derivation of criticality safety benchmarks from ZPR fast critical assemblies

    SciTech Connect

    Schaefer, R.W.; McKnight, R.D.

    1997-12-01

    Scores of critical assemblies were constructed, over a period of about three decades, at the Argonne National Laboratory ZPR-3, ZPR-6, ZPR-9, and zero power plutonium reactor (ZPPR) fast critical assembly facilities. Most of the assemblies were mock-ups of various liquid-metal fast breeder reactor designs. These tended to be complex, containing, for example, mock-ups of control rods and control rod positions. Some assemblies, however, were {open_quotes}physics benchmarks.{close_quotes} These relatively {open_quotes}clean{close_quotes} assemblies had uniform compositions and simple geometry and were designed to test fast reactor physics data and methods. Assemblies in this last category are well suited to form the basis for new criticality safety benchmarks. The purpose of this paper is to present an overview of some of these benchmark candidates and to describe the strategy being used to create the benchmarks.

  4. Derivation of criticality safety benchmarks from ZPR fast critical assemblies

    SciTech Connect

    Schaefer, R.W.; McKnight, R.D.

    1997-09-01

    Scores of critical assemblies were constructed, over a period of about three decades, at the Argonne National Laboratory ZPR-3, ZPR-6, ZPR-9, and ZPPR fast critical assembly facilities. Most of the assemblies were mockups of various liquid-metal fast breeder reactor designs. These tended to be complex, containing, for example, mockups of control rods and control rod positions. Some assemblies, however, were `physics benchmarks`. These relatively `clean` assemblies had uniform compositions and simple geometry and were designed to test fast reactor physics data and methods. Assemblies in this last category are well suited to form the basis for new criticality safety benchmarks. The purpose of this paper is to present an overview of some of these benchmark candidates and to describe the strategy being used to create the benchmarks.

  5. Critical Casimir forces for colloidal assembly.

    PubMed

    Nguyen, V D; Dang, M T; Nguyen, T A; Schall, P

    2016-02-03

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium.

  6. Criticality safety benchmark experiments derived from ANL ZPR assemblies.

    SciTech Connect

    Schaefer, R. W.; Lell, R. M.; McKnight, R. D.

    2003-09-01

    Numerous criticality safety benchmarks have been, and continue to be, developed from experiments performed on Argonne National Laboratory's plate-type fast critical assemblies. The nature and scope of assemblies suitable for deriving these benchmarks are discussed. The benchmark derivation process, including full treatment of all significant uncertainties, is explained. Calculational results are presented that support the small uncertainty assigned to the key derivation step in which complex geometric detail is removed.

  7. ANL Critical Assembly Covariance Matrix Generation - Addendum

    SciTech Connect

    McKnight, Richard D.; Grimm, Karl N.

    2014-01-13

    In March 2012, a report was issued on covariance matrices for Argonne National Laboratory (ANL) critical experiments. That report detailed the theory behind the calculation of covariance matrices and the methodology used to determine the matrices for a set of 33 ANL experimental set-ups. Since that time, three new experiments have been evaluated and approved. This report essentially updates the previous report by adding in these new experiments to the preceding covariance matrix structure.

  8. Reactor Dynamics Experiments with a Sub-Critical Assembly

    SciTech Connect

    Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.

    2004-10-06

    A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory.

  9. Criticality safety evaluation report for FFTF 42% fuel assemblies

    SciTech Connect

    Richard, R.F.

    1997-10-28

    An FFTF tritium/isotope production mission will require a new fuel supply. The reference design core will use a mixed oxide fuel nominally enriched to 40 wt% Pu. This enrichment is significantly higher than that of the standard Driver Fuel Assemblies used in past operations. Consequently, criticality safety for handling and storage of this fuel must be addressed. The purpose of this document is to begin the process by determining the minimum critical number for these new fuel assemblies in water, sodium and air. This analysis is preliminary and further work can be done to refine the results reported here. Analysis was initially done using 45 wt 5 PuO. Additionally, a preliminary assessment is done concerning storage of these fuel assemblies in Interim Decay Storage (IDS), Fuel Storage Facility (FSF), and Core Component Containers/Interim Storage Casks (CCC/ISC).

  10. Consistent Pl Analysis of Aqueous Uranium-235 Critical Assemblies

    NASA Technical Reports Server (NTRS)

    Fieno, Daniel

    1961-01-01

    The lethargy-dependent equations of the consistent Pl approximation to the Boltzmann transport equation for slowing down neutrons have been used as the basis of an IBM 704 computer program. Some of the effects included are (1) linearly anisotropic center of mass elastic scattering, (2) heavy element inelastic scattering based on the evaporation model of the nucleus, and (3) optional variation of the buckling with lethargy. The microscopic cross-section data developed for this program covered 473 lethargy points from lethargy u = 0 (10 Mev) to u = 19.8 (0.025 ev). The value of the fission neutron age in water calculated here is 26.5 square centimeters; this value is to be compared with the recent experimental value given as 27.86 square centimeters. The Fourier transform of the slowing-down kernel for water to indium resonance energy calculated here compared well with the Fourier transform of the kernel for water as measured by Hill, Roberts, and Fitch. This method of calculation has been applied to uranyl fluoride - water solution critical assemblies. Theoretical results established for both unreflected and fully reflected critical assemblies have been compared with available experimental data. The theoretical buckling curve derived as a function of the hydrogen to uranium-235 atom concentration for an energy-independent extrapolation distance was successful in predicting the critical heights of various unreflected cylindrical assemblies. The critical dimensions of fully water-reflected cylindrical assemblies were reasonably well predicted using the theoretical buckling curve and reflector savings for equivalent spherical assemblies.

  11. Criticality Safety Evaluation of a LLNL Training Assembly for Criticality Safety (TACS)

    SciTech Connect

    Heinrichs, D P

    2006-06-26

    Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, ''Guidance for Nuclear Criticality Safety Engineer Training and Qualification''. This document is a criticality safety evaluation of the training activities (or operations) associated with HS-3200, ''Laboratory Class for Criticality Safety''. These activities utilize the Training Assembly for Criticality Safety (TACS). The original intent of HS-3200 was to provide LLNL fissile material handlers with a practical hands-on experience as a supplement to the academic training they receive biennially in HS-3100, ''Fundamentals of Criticality Safety'', as required by ANSI/ANS-8.20-1991, ''Nuclear Criticality Safety Training''. HS-3200 is to be enhanced to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program.

  12. Critical Casimir interactions and colloidal self-assembly in near-critical solvents.

    PubMed

    Tasios, Nikos; Edison, John R; van Roij, René; Evans, Robert; Dijkstra, Marjolein

    2016-08-28

    A binary solvent mixture close to critical demixing experiences fluctuations whose correlation length, ξ, diverges as the critical point is approached. The solvent-mediated (SM) interaction that arises between a pair of colloids immersed in such a near-critical solvent can be long-ranged and this so-called critical Casimir interaction is well-studied. How a (dense) suspension of colloids will self-assemble under these conditions is poorly understood. Using a two-dimensional lattice model for the solvent and hard disks to represent the colloids, we perform extensive Monte Carlo simulations to investigate the phase behaviour of this model colloidal suspension as a function of colloid size and wettability under conditions where the solvent reservoir is supercritical. Unlike most other approaches, where the solvent is modelled as an implicit background, our model employs an explicit solvent and treats the suspension as a ternary mixture. This enables us to capture important features, including the pronounced fractionation of the solvent in the coexisting colloidal phases, of this complex system. We also present results for the partial structure factors; these shed light on the critical behaviour in the ternary mixture. The degree to which an effective two-body pair potential description can describe the phase behaviour and structure of the colloidal suspension is discussed briefly.

  13. Critical Casimir interactions and colloidal self-assembly in near-critical solvents

    NASA Astrophysics Data System (ADS)

    Tasios, Nikos; Edison, John R.; van Roij, René; Evans, Robert; Dijkstra, Marjolein

    2016-08-01

    A binary solvent mixture close to critical demixing experiences fluctuations whose correlation length, ξ, diverges as the critical point is approached. The solvent-mediated (SM) interaction that arises between a pair of colloids immersed in such a near-critical solvent can be long-ranged and this so-called critical Casimir interaction is well-studied. How a (dense) suspension of colloids will self-assemble under these conditions is poorly understood. Using a two-dimensional lattice model for the solvent and hard disks to represent the colloids, we perform extensive Monte Carlo simulations to investigate the phase behaviour of this model colloidal suspension as a function of colloid size and wettability under conditions where the solvent reservoir is supercritical. Unlike most other approaches, where the solvent is modelled as an implicit background, our model employs an explicit solvent and treats the suspension as a ternary mixture. This enables us to capture important features, including the pronounced fractionation of the solvent in the coexisting colloidal phases, of this complex system. We also present results for the partial structure factors; these shed light on the critical behaviour in the ternary mixture. The degree to which an effective two-body pair potential description can describe the phase behaviour and structure of the colloidal suspension is discussed briefly.

  14. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    SciTech Connect

    Percher, Catherine

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  15. Evaluated benchmark experiments at critical assemblies simulating features of an HTHR at the ASTRA facility

    SciTech Connect

    Garin, V. P.; Glushkov, A. E.; Glushkov, E. S.; Gomin, E. A.; Gurevich, M. I.; Zimin, A. A.; Kompaniets, G. V.; Kukharkin, N. E.; Lobyntsev, V. A.; Nosov, V. I.; Polyakov, D. N.; Ponomarev-Stepnoi, N. N.; Smirnov, O. N.; Tel'kovskaya, O. V.; Chunyaev, E. I.

    2010-12-15

    The design of the ASTRA facility and critical assemblies that simulate physics features of modular high-temperature reactors (HTHR-Ms) with a graphite moderator and reflectors loaded with fuel particles having multilayer ceramic coatings is described in detail. Geometrical dimensions of the main elements and regions of the critical assemblies, composition of the materials used, and experimental results for various configurations of the critical assemblies are presented. A detailed computational benchmark model allowing for the structural and compositional features of the critical assembly configurations in question is developed on the basis of all the above data. The results are to be used for verification of the neutronics codes used for calculations of high-temperature helium-cooled reactors.

  16. Spectroscopic critical dimension technology (SCD) for directed self assembly

    NASA Astrophysics Data System (ADS)

    Nishibe, Senichi; Dziura, Thaddeus; Nagaswami, Venkat; Gronheid, Roel

    2014-04-01

    Directed self-assembly (DSA) is being actively investigated as a potential patterning solution for future generation devices. While SEM based CD measurement is currently used in research and development, scatterometry-based techniques like spectroscopic CD (SCD) are preferred for high volume manufacturing. SCD can offer information about sub-surface features that are not available from CD-SEM measurement. Besides, SCD is a non-destructive, high throughput technique already adopted in HVM in several advanced nodes. The directed self assembly CD measurement can be challenging because of small dimensions and extremely thin layers in the DSA stack. In this study, the SCD technology was investigated for a 14 nm resolution PS-b-PMMA chemical epitaxy UW process optimized by imec. The DSA stack involves new materials such as cross-linkable polysterene (XPS) of thickness approximately 5 nm, ArF immersion resist (subsequently removed), -OH terminated neutral brush layer, and BCP material (Polystyrene-blockmethyl methacrylate of thickness roughly 20 to 30 nm). The mask contains a large CD and pitch matrix, for studying the quality of self-assembly as a function of the guide pattern dimensions. We report on the ability of SCD to characterize the dimensional variation in these targets and hence provide a viable process control solution.

  17. Reactor physics studies in the GCFR Phase III critical assembly

    SciTech Connect

    Morman, J A

    1980-03-01

    The third phase of the gas cooled fast reactor (GCFR) program, ZPR-9 Assembly 30, is based on a multi-zoned core of PuO/sub 2/-UO/sub 2/ with radial and axial blankets of UO/sub 2/. Studies performed in this assembly will be compared to the previous phases of the GCFR program and will help to define parameters in this power-flattened demonstration plant-type core. Measurements in the Phase III program included small sample reactivity worths of various materials, central reaction rates and reaction rate distributions, absorption-to-fission ratios and the central point conversion ratio and the worth of steam entry into a small central zone. The reactivity change associated with the construction of a central pin zone in the core and axial blanket was measured. Reaction rate and steam entry measurements were repeated in the pin environment. Standard analysis methods using ENDF/B-IV data are described and the results are compared to measurements performed during the program.

  18. Critical dynamics of randomly assembled and diluted threshold networks

    NASA Astrophysics Data System (ADS)

    Kürten, Karl E.; Clark, John W.

    2008-04-01

    The dynamical behavior of a class of randomly assembled networks of binary threshold units subject to random deletion of connections is studied based on the annealed approximation suitable in the thermodynamic limit. The dynamical phase diagram is constructed for several forms of the probability density distribution of nonvanishing connection strengths. The family of power-law distribution functions ρ0(x)=(1-α)/(2|x|α) is found to play a special role in expanding the domain of stable, ordered dynamics at the expense of the disordered, “chaotic” phase. Relationships with other recent studies of the dynamics of complex networks allowing for variable in-degree of the units are explored. The relevance of the pruning of network connections to neural modeling and developmental neurobiology is discussed.

  19. Safety analysis report for the Hanford Critical Mass Laboratory: Supplement No. 2. Experiments with heterogeneous assemblies

    SciTech Connect

    Gore, B.F.; Davenport, L.C.

    1981-04-01

    Factors affecting the safety of criticality experiments using heterogeneous assemblies are described and assessed. It is concluded that there is no substantial change in safety from experiments already being routinely performed at the Critical Mass Laboratory (CML), and that laboratory and personnel safety are adequately provided by the combination of engineered and administrative safety limits enforced at the CML. This conclusion is based on the analysis of operational controls, potential hazards, and the consequences of accidents. Contingencies considered that could affect nuclear criticality include manual changes in fuel loadings, water flooding, fire, explosion, loss of services, earthquake, windstorm, and flood. Other potential hazards considered include radiation exposure to personnel, and potential releases within the Assembly Room and outside to the environment. It is concluded that the Maximum Credible Nuclear Burst of 3 x 10/sup 18/ fissions (which served as the design basis for the CML) is valid for heterogeneous assemblies as well as homogeneous assemblies. This is based upon examination of the results of reactor destructive tests and the results of the SL-1 reactor destructive accident. The production of blast effects which might jeopardize the CML critical assembly room (of thick reinforced concrete) is not considered credible due to the extreme circumstances required to produce blast effects in reactor destructive tests. Consequently, it is concluded that, for experiments with heterogeneous assemblies, the consequences of the Maximum Credible Burst are unchanged from those previously estimated for experiments with homogeneous systems.

  20. Physics analyses of an accelerator-driven sub-critical assembly

    NASA Astrophysics Data System (ADS)

    Naberezhnev, Dmitry G.; Gohar, Yousry; Bailey, James; Belch, Henry

    2006-06-01

    Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven sub-critical assembly targeted towards the medical isotope production and the support of the Ukraine nuclear industry. The external neutron source is produced either through photonuclear reactions in tungsten or uranium targets, or deuteron reactions in a beryllium target. KIPT intends using the high-enriched uranium (HEU) for the fuel of the sub-critical assembly. The main objective of this paper is to study the possibility of utilizing low-enriched uranium (LEU) fuel instead of HEU fuel without penalizing the sub-critical assembly performance, in particular the neutron flux level. In the course of this activity, several studies have been carried out to investigate the main choices for the system's parameters. The external neutron source has been characterized and a pre-conceptual target design has been developed. Several sub-critical configurations with different fuel enrichments and densities have been considered. Based on our analysis, it was shown that the performance of the LEU fuel is comparable with that of the HEU fuel. The LEU fuel sub-critical assembly with 200-MeV electron energy and 100-kW electron beam power has an average total flux of ˜2.50×10 13 n/s cm 2 in the irradiation channels. The corresponding total facility power is ˜204 kW divided into 91 and 113 kW deposited in the target and sub-critical assemblies, respectively.

  1. Benchmarking of Graphite Reflected Critical Assemblies of UO2

    SciTech Connect

    Margaret A. Marshall; John D. Bess

    2011-11-01

    A series of experiments were carried out in 1963 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for use in space reactor research programs. A core containing 93.2% enriched UO2 fuel rods was used in these experiments. The first part of the experimental series consisted of 253 tightly-packed fuel rods (1.27 cm triangular pitch) with graphite reflectors [1], the second part used 253 graphite-reflected fuel rods organized in a 1.506 cm triangular pitch [2], and the final part of the experimental series consisted of 253 beryllium-reflected fuel rods with a 1.506 cm triangular pitch. [3] Fission rate distribution and cadmium ratio measurements were taken for all three parts of the experimental series. Reactivity coefficient measurements were taken for various materials placed in the beryllium reflected core. The first part of this experimental series has been evaluated for inclusion in the International Reactor Physics Experiment Evaluation Project (IRPhEP) [4] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbooks, [5] and is discussed below. These experiments are of interest as benchmarks because they support the validation of compact reactor designs with similar characteristics to the design parameters for a space nuclear fission surface power systems. [6

  2. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies

    NASA Astrophysics Data System (ADS)

    Xia, Wenjie; Ruiz, Luis; Pugno, Nicola M.; Keten, Sinan

    2016-03-01

    Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale Lsc governs the strength of the assembly as predicted by the shear-lag model. The intermediate critical length Lpc is associated with a dynamic frictional process that governs the strain localization propensity of the assembly, and hence the failure strain. The largest critical length scale LTc corresponds to the overlap length necessary to achieve 90% of the maximum theoretical toughness of the material. Our analyses provide the general guidelines for tuning the constitutive properties and toughness of multilayer 2D nanomaterials using elasticity, interlayer adhesion energy and geometry as molecular design parameters.Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale

  3. Measurements of control rod efficiency in RBMK critical assembly upon dropping of the rods

    NASA Astrophysics Data System (ADS)

    Zhitarev, V. E.; Kachanov, V. M.; Sergevnin, A. Yu.; Lebedev, G. V.

    2014-12-01

    The efficiency of control rods in the RBMK critical assembly was measured in the case where one manual-control rod (MCR) is dropped from a steady critical state, and several other MCRs were additionally dropped after 44 s. The measured number of neutrons in the assembly during and after dropping of the rods was used to calculate the efficiency values of the rods by solution of the system of point kinetics equations. A series of methods of the initial data treatment for determination of the desired values of reactivity without the calculated corrections were used.

  4. Measurements of control rod efficiency in RBMK critical assembly upon dropping of the rods

    SciTech Connect

    Zhitarev, V. E. Kachanov, V. M.; Sergevnin, A. Yu.; Lebedev, G. V.

    2014-12-15

    The efficiency of control rods in the RBMK critical assembly was measured in the case where one manual-control rod (MCR) is dropped from a steady critical state, and several other MCRs were additionally dropped after 44 s. The measured number of neutrons in the assembly during and after dropping of the rods was used to calculate the efficiency values of the rods by solution of the system of point kinetics equations. A series of methods of the initial data treatment for determination of the desired values of reactivity without the calculated corrections were used.

  5. Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask

    SciTech Connect

    Wagner, J. C.

    2008-01-31

    The Interim Staff Guidance on bumup credit (ISG-8) for spent fuel in storage and transportation casks, issued by the Nuclear Regulatory Commission's Spent Fuel Project Office, recommends a bumup measurement for each assembly to confirm the reactor record and compliance with the assembly bumup value used for loading acceptance. This recommendation is intended to prevent unauthorized loading (misloading) of assemblies due to inaccuracies in reactor burnup records and/or improper assembly identification, thereby ensuring that the appropriate subcritical margin is maintained. This report presents a computational criticality safety analysis of the consequences of misloading fuel assemblies in a highcapacity cask that relies on burnup credit for criticality safety. The purpose of this report is to provide a quantitative understanding of the effects of fuel misloading events on safety margins. A wide variety of fuel-misloading configurations are investigated and results are provided for informational purposes. This report does not address the likelihood of occurrence for any of the misload configurations considered. For representative, qualified bumup-enrichment combinations, with and without fission products included, misloading two assemblies that are underburned by 75% results in an increase in keff of 0.025-0.045, while misloading four assemblies that are underburned by 50% also results in an increase in keff of 0.025-0.045. For the cask and conditions considered, a reduction in bumup of 20% in all assemblies results in an increase in kff of less than 0.035. Misloading a single fresh assembly with 3, 4, or 5 wt% 235U enrichment results in an increase in keffof--0.02, 0.04, or 0.06, respectively. The report concludes with a summary of these and other important findings, as well as a discussion of relevant issues that should be considered when assessing the appropriate role of burnup measurements.

  6. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    SciTech Connect

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.; Bounds, J.A.; Kimpland, R.H.; Damjanovich, R.P.; Jaegers, P.J.

    1997-08-01

    Experiments were performed to measure a variety of parameters for SHEBA: behavior of the facility during transient and steady-state operation; characteristics of the SHEBA fuel; delayed-critical solution height vs solution temperature; initial reactor period and reactivity vs solution height; calibration of power level vs reactor power instrumentation readings; flux profile in SHEBA; radiation levels and neutron spectra outside the assembly for code verification and criticality alarm and dosimetry purposes; and effect on reactivity of voids in the fuel.

  7. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies.

    PubMed

    Xia, Wenjie; Ruiz, Luis; Pugno, Nicola M; Keten, Sinan

    2016-03-28

    Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale L(C)(S) governs the strength of the assembly as predicted by the shear-lag model. The intermediate critical length L(C)(P) is associated with a dynamic frictional process that governs the strain localization propensity of the assembly, and hence the failure strain. The largest critical length scale L(C)(T) corresponds to the overlap length necessary to achieve 90% of the maximum theoretical toughness of the material. Our analyses provide the general guidelines for tuning the constitutive properties and toughness of multilayer 2D nanomaterials using elasticity, interlayer adhesion energy and geometry as molecular design parameters.

  8. Kinetic stability analysis of protein assembly on the center manifold around the critical point.

    PubMed

    Tsuruyama, Tatsuaki

    2017-02-02

    Non-linear kinetic analysis is a useful method for illustration of the dynamic behavior of cellular biological systems. To date, center manifold theory (CMT) has not been sufficiently applied for stability analysis of biological systems. The aim of this study is to demonstrate the application of CMT to kinetic analysis of protein assembly and disassembly, and to propose a novel framework for nonlinear multi-parametric analysis. We propose a protein assembly model with nonlinear kinetics provided by the fluctuation in monomer concentrations during their diffusion. When the diffusion process of a monomer is self-limited to give kinetics non-linearity, numerical simulations suggest the probability that the assembly and disassembly oscillate near the critical point. We applied CMT to kinetic analysis of the center manifold around the critical point in detail, and successfully demonstrated bifurcation around the critical point, which explained the observed oscillation. The stability kinetics of the present model based on CMT illustrates a unique feature of protein assembly, namely non-linear behavior. Our findings are expected to provide methodology for analysis of biological systems.

  9. Test Suite for Nuclear Data I: Deterministic Calculations for Critical Assemblies and Replacement Coefficients

    SciTech Connect

    Pruet, J; Brown, D A; Descalle, M

    2006-05-22

    The authors describe tools developed by the Computational Nuclear Physics group for testing the quality of internally developed nuclear data and the fidelity of translations from ENDF formatted data to ENDL formatted data used by Livermore. These tests include S{sub n} calculations for the effective k value characterizing critical assemblies and for replacement coefficients of different materials embedded in the Godiva and Jezebel critical assemblies. For those assemblies and replacement materials for which reliable experimental information is available, these calculations provide an integral check on the quality of data. Because members of the ENDF and reactor communities use calculations for these same assemblies in their validation process, a comparison between their results with ENDF formatted data and their results with data translated into the ENDL format provides a strong check on the accuracy of translations. As a first application of the test suite they present a study comparing ENDL 99 and ENDF/B-V. They also consider the quality of the ENDF/B-V translation previously done by the Computational Nuclear Physics group. No significant errors are found.

  10. Benchmarking of HEU mental annuli critical assemblies with internally reflected graphite cylinder

    NASA Astrophysics Data System (ADS)

    Xiaobo, Liu; Bess, John D.; Marshall, Margaret A.

    2017-09-01

    Three experimental configurations of critical assemblies, performed in 1963 at the Oak Ridge Critical Experiment Facility, which are assembled using three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches) metal annuli with internally reflected graphite cylinder are evaluated and benchmarked. The experimental uncertainties which are 0.00057, 0.00058 and 0.00057 respectively, and biases to the benchmark models which are - 0.00286, - 0.00242 and - 0.00168 respectively, were determined, and the experimental benchmark keff results were obtained for both detailed and simplified models. The calculation results for both detailed and simplified models using MCNP6-1.0 and ENDF/B-VII.1 agree well to the benchmark experimental results within difference less than 0.2%. The benchmarking results were accepted for the inclusion of ICSBEP Handbook.

  11. Benchmarking of HEU Mental Annuli Critical Assemblies with Internally Reflected Graphite Cylinder

    SciTech Connect

    Xiaobo, Liu; Bess, John D.; Marshall, Margaret A.

    2016-09-01

    Three experimental configurations of critical assemblies, performed in 1963 at the Oak Ridge Critical Experiment Facility, which are assembled using three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches) metal annuli with internally reflected graphite cylinder are evaluated and benchmarked. The experimental uncertainties which are 0.00055, 0.00055 and 0.00055 respectively, and biases to the detailed benchmark models which are -0.00179, -0.00189 and -0.00114 respectively, were determined, and the experimental benchmark keff results were obtained for both detailed and simplified model. The calculation results for both detailed and simplified models using MCNP6-1.0 and ENDF VII.1 agree well to the benchmark experimental results with a difference of less than 0.2%. These are acceptable benchmark experiments for inclusion in the ICSBEP Handbook.

  12. Self-assembly in chains, rings, and branches: a single component system with two critical points.

    PubMed

    Rovigatti, Lorenzo; Tavares, José Maria; Sciortino, Francesco

    2013-10-18

    We study the interplay between phase separation and self-assembly in chains, rings, and branched structures in a model of particles with dissimilar patches. We extend Wertheim's first order perturbation theory to include the effects of ring formation and to theoretically investigate the thermodynamics of the model. We find a peculiar shape for the vapor-liquid coexistence, featuring reentrant behavior in both phases and two critical points, despite the single-component nature of the system. The emergence of the lower critical point is caused by the self-assembly of rings taking place in the vapor, generating a phase with lower energy and lower entropy than the liquid. Monte Carlo simulations of the same model fully support these unconventional theoretical predictions.

  13. Analysis of pulsed neutron measurements on the fuel pebble assembly during the approach to critical mass

    SciTech Connect

    Brodkin, E.; Lebedev, G.

    1995-12-31

    The two-dimensional cylindrical model of HTR-ASTRA fuel pebble bed assembly was used in the transport calculations of k{sub eff} and corresponding Rossi-{alpha} for interpretation of pulsed neutron measurements which have been carrying out during approach to critical mass. This analysis demonstrates possibility to evaluate k{sub eff} above 0.9 using {alpha}-prompt decay constant measured during core loading by fuel balls and to extrapolate these data for determination of critical mass similar to inverse counting technique.

  14. Criticality calculations of the Very High Temperature reactor Critical Assembly benchmark with Serpent and SCALE/KENO-VI

    SciTech Connect

    Bostelmann, Friederike; Hammer, Hans R.; Ortensi, Javier; Strydom, Gerhard; Velkov, Kiril; Zwermann, Winfried

    2015-12-30

    Within the framework of the IAEA Coordinated Research Project on HTGR Uncertainty Analysis in Modeling, criticality calculations of the Very High Temperature Critical Assembly experiment were performed as the validation reference to the prismatic MHTGR-350 lattice calculations. Criticality measurements performed at several temperature points at this Japanese graphite-moderated facility were recently included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, and represent one of the few data sets available for the validation of HTGR lattice physics. Here, this work compares VHTRC criticality simulations utilizing the Monte Carlo codes Serpent and SCALE/KENO-VI. Reasonable agreement was found between Serpent and KENO-VI, but only the use of the latest ENDF cross section library release, namely the ENDF/B-VII.1 library, led to an improved match with the measured data. Furthermore, the fourth beta release of SCALE 6.2/KENO-VI showed significant improvements from the current SCALE 6.1.2 version, compared to the experimental values and Serpent.

  15. Criticality calculations of the Very High Temperature reactor Critical Assembly benchmark with Serpent and SCALE/KENO-VI

    DOE PAGES

    Bostelmann, Friederike; Hammer, Hans R.; Ortensi, Javier; ...

    2015-12-30

    Within the framework of the IAEA Coordinated Research Project on HTGR Uncertainty Analysis in Modeling, criticality calculations of the Very High Temperature Critical Assembly experiment were performed as the validation reference to the prismatic MHTGR-350 lattice calculations. Criticality measurements performed at several temperature points at this Japanese graphite-moderated facility were recently included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, and represent one of the few data sets available for the validation of HTGR lattice physics. Here, this work compares VHTRC criticality simulations utilizing the Monte Carlo codes Serpent and SCALE/KENO-VI. Reasonable agreement was found between Serpent andmore » KENO-VI, but only the use of the latest ENDF cross section library release, namely the ENDF/B-VII.1 library, led to an improved match with the measured data. Furthermore, the fourth beta release of SCALE 6.2/KENO-VI showed significant improvements from the current SCALE 6.1.2 version, compared to the experimental values and Serpent.« less

  16. A Re-Analysis of Historical Los Alamos Critical Assembly Reaction Rate Measurements

    NASA Astrophysics Data System (ADS)

    Kahler, A. C.; MacInnes, M.; Chadwick, M. B.

    2016-02-01

    Starting in the 1950s and continuing into the early 1970s, a number of foil irradiations and fission chamber measurements were made in a variety of Fast critical assemblies at Los Alamos National Laboratory. These include (i) Godiva, a bare HEU spherical assembly; (ii) Flattop-25, a spherical assembly consisting of an HEU core and a natural uranium reflector; (iii) Jezebel, a bare 239Pu assembly; and (iv) Flattop-Pu, a spherical assembly consisting of a 239Pu core and a natural uranium reflector. In most instances the irradiations occur at or near the center of the assembly, but in selected instances data were obtained for a radial traverse extending into the Flattop reflector region. Measurements were made for a number of threshold reactions, including 45Sc(n,2n)44mSc, 51V(n,α)48Sc, 75As(n,2n)74As, 89Y(n,2n)88Y, 90Zr(n,2n)89Zr, 103Rh(n,2n)102gRh, 107Ag(n,2n)106mAg, 169Tm(n,2n)168Tm, 175Lu(n,2n)174Lu, 191Ir(n,2n)190Ir, 197Au(n,2n)196Au, 203Tl(n,2n)202Tl, 204Pb(n,2n)203Pb and 238U(n,2n)237U. Fission ratio data for 238U(n,f)/235U(n,f) and 239Pu(n,f)/235U(n,f) were also obtained. We report C/E values from MCNP6 calculations using ENDF/B-VII.1 and IRDFF-v1.03 cross section data.

  17. Critical assembly: A technical history of Los Alamos during the Oppenheimer years, 1943--1945

    SciTech Connect

    Hoddeson, L.; Henriksen, P.W.; Meade, R.A.; Westfall, C.

    1993-11-01

    This volume treats the technical research that led to the first atomic bombs. The authors explore how the ``critical assembly`` of scientists, engineers, and military Personnel at Los Alamos collaborated during World War II, blending their traditions to create a new approach to large-scale research. The research was characterized by strong mission orientation, multidisciplinary teamwork, expansion of the scientists` traditional methodology with engineering techniques, and a trail-and-error methodology responding to wartime deadlines. The book opens with an introduction laying out major themes. After a synopsis of the prehistory of the bomb project, from the discovery of nuclear fission to the start of the Manhattan Engineer District, and an overview of the early materials program, the book examines the establishment of the Los Alamos Laboratory, the implosion and gun assembly programs, nuclear physics research, chemistry and metallurgy, explosives, uranium and plutonium development, confirmation of spontaneous fission in pile-produced plutonium, the thermonuclear bomb, critical assemblies, the Trinity test, and delivery of the combat weapons.

  18. Analysis of experiments in the Phase III GCFR benchmark critical assembly

    SciTech Connect

    Hess, A.L.; Baylor, K.J.

    1980-04-01

    Experiments carried out in the third gas-cooled fast breeder reactor (GCFR) benchmark critical assembly on the Zero Power Reactor-9 at Argonne National Laboratory were analyzed using methods and computer codes employed routinely for design and performance evaluations on power-plant GCFR cores. The program for the Phase III GCFR assembly, with a 1900-liter, three-enrichment zone core, included measurements of reaction-rate profiles in a typical power-flattened design, studies of material reactivity coefficients, reaction ratio and breeding parameter determinations, and comparison of pin with plate fuel loadings. Calculated parameters to compare with all of the measured results were obtained using 10-group cross sections based on ENDF/B-4 and two-dimensional diffusion theory, with adjustments for fuel-cell heterogeneity and void-lattice streaming effects.

  19. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    SciTech Connect

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  20. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    NASA Astrophysics Data System (ADS)

    Morris, C. L.; Bacon, Jeffery; Ban, Yuichiro; Borozdin, Konstantin; Fabritius, J. M.; Izumi, Mikio; Miyadera, Haruo; Mizokami, Shinya; Otsuka, Yasuyuki; Perry, John; Ramsey, John; Sano, Yuji; Sugita, Tsukasa; Yamada, Daichi; Yoshida, Noriyuki; Yoshioka, Kenichi

    2014-01-01

    A 1.2 × 1.2 m2 muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ˜4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  1. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly

    PubMed Central

    2016-01-01

    Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted. PMID:27019522

  2. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    SciTech Connect

    Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John; Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki; Miyadera, Haruo; Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi; Sugita, Tsukasa; Yoshioka, Kenichi

    2014-01-13

    A 1.2 × 1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ∼4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  3. Critical role of wettability in assembly of zirconia nanoparticles on a self-assembled monolayer-patterned substrate

    NASA Astrophysics Data System (ADS)

    Yang, Mi-Sun; Lee, Seung-Hoon; Moon, Byung Kee; Yoo, Seung Ryul; Hwang, Seongpil; Jang, Jae-Won

    2016-08-01

    This study investigated which factors decisively influence colloidal nanoparticle (NP) assembly on a self-assembled monolayer (SAM)-patterned substrate. Zirconia (ZrO2) NP assembly on a poly(dimethylsiloxane) (PDMS)-stamped SAM-patterned Au substrate was carried out while the size and surface charge state of the NPs and the substrate wettability were altered. ZrO2 particles with diameters of 350 nm, 560 nm, and 1100 nm were employed to examine the effect of NP size on the assembly. Bare ZrO2 NPs with a negatively charged surface and ZrO2 NPs with a positively charged surface through 3-aminopropyltriethoxysilane encapsulation were prepared for the NP assembly. Moreover, the substrate wettability effect on the NP assembly was evaluated by comparing the assembly on substrates with the PDMS-patterned SAMs of thiols with polar and non-polar functional groups. From the characterization of the number of NPs in a pattern and the effective area of assembled NPs (Aeff), positively charged ZrO2 NP assembly on negatively charged patterns showed the highest number density of particles in a pattern compared with the other combinations in both 350-nm and 560-nm ZrO2 NPs. This observation can be attributed to negatively charged 16-mercaptohexadecanoic acid SAMs having greater polarity (more polar groups) than positively charged 11-amino-1-undecanethiol SAMs within the condition of the colloidal ZrO2 NP assembly.

  4. Estimation of Critical Flow Velocity for Collapse of Gas Test Loop Booster Fuel Assembly

    SciTech Connect

    Guillen; Mark J. Russell

    2006-07-01

    This paper presents calculations performed to determine the critical flow velocity for plate collapse due to static instability for the Gas Test Loop booster fuel assembly. Long, slender plates arranged in a parallel configuration can experience static divergence and collapse at sufficiently high coolant flow rates. Such collapse was exhibited by the Oak Ridge High Flux Reactor in the 1940s and the Engineering Test Reactor at the Idaho National Laboratory in the 1950s. Theoretical formulas outlined by Miller, based upon wide-beam theory and Bernoulli’s equation, were used for the analysis. Calculations based upon Miller’s theory show that the actual coolant flow velocity is only 6% of the predicted critical flow velocity. Since there is a considerable margin between the theoretically predicted plate collapse velocity and the design velocity, the phenomena of plate collapse due to static instability is unlikely.

  5. Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly

    NASA Technical Reports Server (NTRS)

    Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.

    1971-01-01

    A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7 cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The experimental program consisted basically of measuring the differential neutron spectra and the changes in critical mass that accompanied the stepwise addition of (Li-7)3N, Hf, Ta, and W to a basic core fueled with U metal in a pin-type Ta honeycomb structure. In addition, experimental results were obtained on power distributions, control characteristics, neutron lifetime, and reactivity worths of numerous absorber, structural, and scattering materials.

  6. Improvements to the Pool Critical Assembly Pressure Vessel Benchmark with 3-D Parallel SN PENTRAN

    NASA Astrophysics Data System (ADS)

    Edgar, Christopher A.; Sjoden, Glenn E.; Yi, Ce

    2014-06-01

    The internationally circulated Pool Critical Assembly (PCA) Pressure Vessel Benchmark was analyzed using the PENTRAN Parallel SN code system for the geometry, material, and source specifications as described in the PCA Benchmark documentation. Improvements to the benchmark are proposed here through the application of more representative flux and volume weighted homogenized cross sections for the PCA reactor core, which were obtained from a rigorous heterogeneous modeling of all fuel assembly types in the core. A new source term definition is also proposed based on calculated relative power in each core fuel assembly with a spectrum based on the Uranium-235 fission spectra. This research focused on utilizing the BUGLE-96 cross section library and accompanying reaction rates, while also examining PENTRAN's adaptive differencing implemented on a coarse mesh basis, as well as fixed use of Directional Theta-Weighted (DTW) SN differencing scheme in order to compare the calculated PENTRAN results to measured data. The results show good comparison with the measured benchmark data, which suggests PENTRAN is a viable, reliable code system for calculation of light water reactor neutron shielding and pressure vessel dosimetry calculations. Furthermore, the improvements to the benchmark methodology resulting from this work provide a 6 percent increase in accuracy of the calculation (based on the average of all calculation points), when compared with experimentally measured results at the same spatial locations in the PCA pressure vessel simulator.

  7. Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods

    SciTech Connect

    Margaret A. Marshall

    2012-09-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.”(Reference 1) The experiment studied in this evaluation was the first of the series and had the fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, , and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configurations are described in Sections 1.3, 1.4 and 1.7, respectively. Information for this

  8. Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods

    SciTech Connect

    Margaret A. Marshall

    2013-03-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.”(Reference 1) The experiment studied in this evaluation was the first of the series and had the fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, , and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configurations are described in Sections 1.3, 1.4 and 1.7, respectively. Information for this

  9. Monte Carlo testing of unresolved resonance treatment for fast and intermediate critical assemblies

    SciTech Connect

    Weinman, J.P.

    1998-10-01

    The purpose of this study is to investigate the eigenvalue sensitivity to changes in unresolved resonance treatment by comparing RACER Monte Carlo calculations for several fast and intermediate spectrum critical experiments. Calculations performed using smooth, dilute-average, tabulated cross sections were compared with calculations using the probability table method to produce stochastically generated resonance cross sections in the unresolved resonance region. The use of the probability table method is superior to the dilute-average cross section method for representing the unresolved resonance region because the table method properly accounts for resonance self shielding; thereby, reducing the effectiveness of the cross sections in the region. The unresolved resonance region is typically found in the intermediate and fast energy range. Eleven benchmark critical assemblies that span a range of {sup 235}U enrichments (93.8 to 10.2%) and four highly enriched {sup 239}Pu and {sup 233}U assemblies were analyzed. These benchmarks were chosen to accentuate the reactivity importance of the unresolved resonance range.

  10. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    SciTech Connect

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.

    1997-10-01

    The Solution High-Energy Burst Assembly (SHEBA) was originally constructed during 1980 and was designed to be a clean free-field geometry, right-circular, cylindrically symmetric critical assembly employing U(5%)O{sub 2}F{sub 2} solution as fuel. A second version of SHEBA, employing the same fuel but equipped with a fuel pump and shielding pit, was commissioned in 1993. This report includes data and operating experience for the 1993 SHEBA only. Solution-fueled benchmark work focused on the development of experimental measurements of the characterization of SHEBA; a summary of the results are given. A description of the system and the experimental results are given in some detail in the report. Experiments were designed to: (1) study the behavior of nuclear excursions in a low-enrichment solution, (2) evaluate accidental criticality alarm detectors for fuel-processing facilities, (3) provide radiation spectra and dose measurements to benchmark radiation transport calculations on a low-enrichment solution system similar to centrifuge enrichment plants, and (4) provide radiation fields to calibrate personnel dosimetry. 15 refs., 37 figs., 10 tabs.

  11. Validation of FSP Reactor Design with Sensitivity Studies of Beryllium-Reflected Critical Assemblies

    SciTech Connect

    John D. Bess; Margaret A. Marshall

    2013-02-01

    The baseline design for space nuclear power is a fission surface power (FSP) system: sodium-potassium (NaK) cooled, fast spectrum reactor with highly-enriched-uranium (HEU)-O2 fuel, stainless steel (SS) cladding, and beryllium reflectors with B4C control drums. Previous studies were performed to evaluate modeling capabilities and quantify uncertainties and biases associated with analysis methods and nuclear data. Comparison of Zero Power Plutonium Reactor (ZPPR)-20 benchmark experiments with the FSP design indicated that further reduction of the total design model uncertainty requires the reduction in uncertainties pertaining to beryllium and uranium cross-section data. Further comparison with three beryllium-reflected HEU-metal benchmark experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) concluded the requirement that experimental validation data have similar cross section sensitivities to those found in the FSP design. A series of critical experiments was performed at ORCEF in the 1960s to support the Medium Power Reactor Experiment (MPRE) space reactor design. The small, compact critical assembly (SCCA) experiments were graphite- or beryllium-reflected assemblies of SS-clad, HEU-O2 fuel on a vertical lift machine. All five configurations were evaluated as benchmarks. Two of the five configurations were beryllium reflected, and further evaluated using the sensitivity and uncertainty analysis capabilities of SCALE 6.1. Validation of the example FSP design model was successful in reducing the primary uncertainty constituent, the Be(n,n) reaction, from 0.28 %dk/k to 0.0004 %dk/k. Further assessment of additional reactor physics measurements performed on the SCCA experiments may serve to further validate FSP design and operation.

  12. Formation of clusters composed of C60 molecules via self-assembly in critical fluids

    NASA Astrophysics Data System (ADS)

    Fukuda, Takahiro; Ishii, Koji; Kurosu, Shunji; Whitby, Raymond; Maekawa, Toru

    2007-04-01

    Fullerenes are promising candidates for intelligent, functional nanomaterials because of their unique mechanical, electronic and chemical properties. However, it is necessary to invent some efficient but relatively simple methods of producing structures composed of fullerenes for the development of nanomechatronic, nanoelectronic and biochemical devices and sensors. In this paper, we show that various structures such as straight fibres, networks formed by fibres, wide sheets and helical structures, which are composed of C60 molecules, are created by placing C60-crystals in critical ethane, carbon dioxide and xenon even though C60 molecules do not dissolve or disperse in the above fluids. It is supposed, judging by the intermolecular potentials between C60 and C60, between C60 and ethane, and between ethane and ethane, that C60-clusters grow with the assistance of solvent molecules, which are trapped between C60 molecules under critical conditions. This room-temperature self-assembly cluster growth process in critical fluids may open up a new methodology of forming structures built up with fullerenes without the need for any ultra-fine processing technologies.

  13. Critical Influence of Cosolutes and Surfaces on the Assembly of Serpin-Derived Amyloid Fibrils.

    PubMed

    Risør, Michael W; Juhl, Dennis W; Bjerring, Morten; Mathiesen, Joachim; Enghild, Jan J; Nielsen, Niels C; Otzen, Daniel E

    2017-08-08

    Many proteins and peptides self-associate into highly ordered and structurally similar amyloid cross-β aggregates. This fibrillation is critically dependent on properties of the protein and the surrounding environment that alter kinetic and thermodynamic equilibria. Here, we report on dominating surface and solution effects on the fibrillogenic behavior and amyloid assembly of the C-36 peptide, a circulating bioactive peptide from the α1-antitrypsin serine protease inhibitor. C-36 converts from an unstructured peptide to mature amyloid twisted-ribbon fibrils over a few hours when incubated on polystyrene plates under physiological conditions through a pathway dominated by surface-enhanced nucleation. In contrast, in plates with nonbinding surfaces, slow bulk nucleation takes precedence over surface catalysis and leads to fibrillar polymorphism. Fibrillation is strongly ion-sensitive, underlining the interplay between hydrophilic and hydrophobic forces in molecular self-assembly. The addition of exogenous surfaces in the form of silica glass beads and polyanionic heparin molecules potently seeds the amyloid conversion process. In particular, heparin acts as an interacting template that rapidly forces β-sheet aggregation of C-36 to distinct amyloid species within minutes and leads to a more homogeneous fibril population according to solid-state NMR analysis. Heparin's template effect highlights its role in amyloid seeding and homogeneous self-assembly, which applies both in vitro and in vivo, where glycosaminoglycans are strongly associated with amyloid deposits. Our study illustrates the versatile thermodynamic landscape of amyloid formation and highlights how different experimental conditions direct C-36 into distinct macromolecular structures. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. ENDF/B-VII.0 Data Testing for Three Fast Critical Assemblies

    SciTech Connect

    Cullen, D E; Blomquist, R N; Brown, P N; Dean, C J; Dunn, M E; Lee, Y; Lent, E; MacFarlane, R; McKinley, S; Plechaty, E F; Sublet, J C

    2007-07-27

    In this report we consider three fast critical assemblies, each assembly is dominated by a different nuclear fuel: Godiva (U235), Jezebel (Pu239) and Jezebel23 (U233) [1]. We first show the improvement in results when using the new ENDF/B-VII.0 data [2], rather than the older, now frozen, ENDF/B-VI.8 data [3]. We do this using what we call a one code/ multiple library approach, where results from one code (MCNP) are compared using two different data libraries (ENDF/B-VII.0 and VI.8). Next we show that MCNP results are not specific to this one code by using what we call a one data library/multiple code approach; for this purpose we invited many codes to submit results using the ENDF/B-VII.0 data; the most detailed results presented in this report compare MCNP and TART. The bottom line is that we have shown that using the new ENDF/B-VII.0 data library with a variety of transport codes, for the first time we are able to reproduce the expected K-eff values for all three assemblies to within the quoted accuracy of the models, namely 1.0 +/- 0.001. This is a BIG improvement compared to the results obtained using the older ENDF/B-VI.8 data library. Another important result of this study is that we have demonstrated that currently there are many computer codes that can accurately use the new ENDF/B-VII.0 data.

  15. Study of neutron noise from reflected, metal assemblies with criticality safety applications in mind

    SciTech Connect

    Barnett, C.S.

    1985-08-20

    The author studied the statistics of detected neutrons that leaked from four subcritical reflected, enriched-uranium assemblies, to explore the feasibility of developing a criticality warning system based on neutron noise analysis. The calculated multiplication factors of the assemblies are 0.59, 0.74, 0.82, and 0.92. The author studied three possible discriminators, i.e., three signatures that might be used to discriminate among assemblies of various multiplications. They are: (1) variance-to-mean ratio of the counts in a time bin (V/M); (2) covariance-to-mean ratio of the counts in a common time bin from two different detectors (C/M); and (3) covariance-to-mean ratio of the counts from a single detector in two adjacent time bins of equal length, which the author calls the serial-covariance-to-mean ratio (SC/M). The performances of the three discriminators were not greatly different, but a hierarchy did emerge: SC/M greater than or equal to V/M greater than or equal to C/M. An example of some results: in the neighborhood of k = 0.6 the ..delta..k required for satisfactory discrimination varies from about 3% to 7% as detector solid angle varies from 19% to 5%. In the neighborhood of k = 0.8 the corresponding ..delta..ks are 1% and 2%. The noise analysis techniques studied performed well enough in deeply subcritical situations to deserve testing in an applications environment. They have a good chance of detecting changes in reactivity that are potentially dangerous. One can expect sharpest results when doing comparisons, i.e., when comparing two records, one taken in the past under circumstances known to be normal and one taken now to search for change.

  16. Critical seeding density improves the properties and translatability of self-assembling anatomically shaped knee menisci.

    PubMed

    Hadidi, Pasha; Yeh, Timothy C; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-01-01

    A recent development in the field of tissue engineering is the rise of all-biologic, scaffold-free engineered tissues. Since these biomaterials rely primarily upon cells, investigation of initial seeding densities constitutes a particularly relevant aim for tissue engineers. In this study, a scaffold-free method was used to create fibrocartilage in the shape of the rabbit knee meniscus. The objectives of this study were to: (i) determine the minimum seeding density, normalized by an area of 44 mm(2), necessary for the self-assembling process of fibrocartilage to occur; (ii) examine relevant biomechanical properties of engineered fibrocartilage, such as tensile and compressive stiffness and strength, and their relationship to seeding density; and (iii) identify a reduced, or optimal, number of cells needed to produce this biomaterial. It was found that a decreased initial seeding density, normalized by the area of the construct, produced superior mechanical and biochemical properties. Collagen per wet weight, glycosaminoglycans per wet weight, tensile properties and compressive properties were all significantly greater in the 5 million cells per construct group as compared to the historical 20 million cells per construct group. Scanning electron microscopy demonstrated that a lower seeding density results in a denser tissue. Additionally, the translational potential of the self-assembling process for tissue engineering was improved though this investigation, as fewer cells may be used in the future. The results of this study underscore the potential for critical seeding densities to be investigated when researching scaffold-free engineered tissues.

  17. Sulfur activation at the Little Boy-Comet Critical Assembly: a replica of the Hiroshima bomb

    SciTech Connect

    Kerr, G.D.; Emery, J.F.; Pace, J.V. III

    1985-04-01

    Studies have been completed on the activation of sulfur by fast neutrons from the Little Boy-Comet Critical Assembly which replicates the general features of the Hiroshima bomb. The complex effects of the bomb's design and construction on leakage of sulfur-activation neutrons were investigated both experimentally and theoretically. Our sulfur activation studies were performed as part of a larger program to provide benchmark data for testing of methods used in recent source-term calculations for the Hiroshima bomb. Source neutrons capable of activating sulfur play an important role in determining neutron doses in Hiroshima at a kilometer or more from the point of explosion. 37 refs., 5 figs., 6 tabs.

  18. Functional Assembly of Accessory Optic System Circuitry Critical for Compensatory Eye Movements

    PubMed Central

    Sun, Lu O.; Brady, Colleen M.; Cahill, Hugh; Al-Khindi, Timour; Sakuta, Hiraki; Dhande, Onkar S.; Noda, Masaharu; Huberman, Andrew D.; Nathans, Jeremy; Kolodkin, Alex L.

    2015-01-01

    SUMMARY Accurate motion detection requires neural circuitry that compensates for global visual field motion. Select subtypes of retinal ganglion cells perceive image motion and connect to the accessory optic system (AOS) in the brain, which generates compensatory eye movements that stabilize images during slow visual field motion. Here, we show that the murine transmembrane semaphorin 6A (Sema6A) is expressed in a subset of On direction-selective ganglion cells (On DSGCs) and is required for retinorecipient axonal targeting to the medial terminal nucleus (MTN) of the AOS. Plexin A2 and A4, two Sema6A binding partners, are expressed in MTN cells, attract Sema6A+ On DSGC axons, and mediate MTN targeting of Sema6A+ RGC projections. Furthermore, Sema6A/Plexin-A2/A4 signaling is required for the functional output of the AOS. These data reveal molecular mechanisms underlying the assembly of AOS circuits critical for moving image perception. PMID:25959730

  19. In-cell reaction rate distributions and cell-average reaction rates in fast critical assemblies

    SciTech Connect

    Brumbach, S.B.; Gasidlo, J.M.

    1985-08-01

    Measurements are described for determining average values of fission rates in /sup 235/U, /sup 238/U and /sup 239/Pu and capture rates in /sup 238/U for heterogeneous cells used to construct fast critical assemblies. The measurements are based on irradiations of foils of /sup 238/U, /sup 235/U and /sup 239/Pu with counting of fission and capture products using gamma-ray spectroscopy. Both plate and pin cells are considered. Procedures are described for inferring cell-average reaction rate values from a single foil location based on a cell using a quantity called a cell factor. Cell factors are determined from special measurements in which several foils are irradiated within a cell. Comparisons are presented between cell factors determined by measurements and by Monte Carlo calculations which lend credibility to the measurement procedures.

  20. Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly

    NASA Technical Reports Server (NTRS)

    Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.

    1972-01-01

    A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The range of the previous experimental investigations has been expanded to include the reactivity effects of:(1) surrounding the reactor with 15.24 cm (6 in.) of polyethylene, (2) reducing the heights of a portion of the upper and lower axial reflectors by factors of 2 and 4, (3) adding 45 kg of W to the core uniformly in two steps, (4) adding 9.54 kg of Ta to the core uniformly, and (5) inserting 2.3 kg of polyethylene into the core proper and determining the effect of a Ta addition on the polyethylene worth.

  1. Evaluation of the Pool Critical Assembly Benchmark with Explicitly-Modeled Geometry using MCNP6

    DOE PAGES

    Kulesza, Joel A.; Martz, Roger Lee

    2017-03-01

    Despite being one of the most widely used benchmarks for qualifying light water reactor (LWR) radiation transport methods and data, no benchmark calculation of the Oak Ridge National Laboratory (ORNL) Pool Critical Assembly (PCA) pressure vessel wall benchmark facility (PVWBF) using MCNP6 with explicitly modeled core geometry exists. As such, this paper provides results for such an analysis. First, a criticality calculation is used to construct the fixed source term. Next, ADVANTG-generated variance reduction parameters are used within the final MCNP6 fixed source calculations. These calculations provide unadjusted dosimetry results using three sets of dosimetry reaction cross sections of varyingmore » ages (those packaged with MCNP6, from the IRDF-2002 multi-group library, and from the ACE-formatted IRDFF v1.05 library). These results are then compared to two different sets of measured reaction rates. The comparison agrees in an overall sense within 2% and on a specific reaction- and dosimetry location-basis within 5%. Except for the neptunium dosimetry, the individual foil raw calculation-to-experiment comparisons usually agree within 10% but is typically greater than unity. Finally, in the course of developing these calculations, geometry that has previously not been completely specified is provided herein for the convenience of future analysts.« less

  2. Investigation of radiation fields outside the Sub-critical Assembly in Dubna.

    PubMed

    Seltbor, P; Lopatkin, A; Gudowski, W; Shvetsov, V; Polanski, A

    2005-01-01

    The radiation fields outside the planned experimental Sub-critical Assembly in Dubna (SAD) have been studied in order to provide a basis for the design of the concrete shielding that cover the reactor core. The effective doses around the reactor, induced by leakage of neutrons and photons through the shielding, have been determined for a shielding thickness varying from 100 to 200 cm. It was shown that the neutron flux and the effective dose is higher above the shielding than at the side of it, owing to the higher fraction of high-energy spallation neutrons emitted in the direction of the incident beam protons. At the top, the effective dose was found to be -150 microSv s(-1) for a concrete thickness of 100 cm, while -2.5 microSv s(-1) for a concrete thickness of 200 cm. It was also shown that the high-energy neutrons (> 10 MeV), which are created in the proton-induced spallation interactions in the target, contribute for the major part of the effective doses outside the reactor.

  3. Proper ciliary assembly is critical for restricting Hedgehog signaling during early eye development in mice.

    PubMed

    Burnett, Jacob B; Lupu, Floria I; Eggenschwiler, Jonathan T

    2017-10-01

    Patterning of the vertebrate eye into optic stalk, retinal pigment epithelium (RPE) and neural retina (NR) territories relies on a number of signaling pathways, but how these signals are interpreted by optic progenitors is not well understood. The primary cilium is a microtubule-based organelle that is essential for Hedgehog (Hh) signaling, but it has also been implicated in the regulation of other signaling pathways. Here, we show that the optic primordium is ciliated during early eye development and that ciliogenesis is essential for proper patterning and morphogenesis of the mouse eye. Ift172 mutants fail to generate primary cilia and exhibit patterning defects that resemble those of Gli3 mutants, suggesting that cilia are required to restrict Hh activity during eye formation. Ift122 mutants, which produce cilia with abnormal morphology, generate optic vesicles that fail to invaginate to produce the optic cup. These mutants also lack formation of the lens, RPE and NR. Such phenotypic features are accompanied by strong, ectopic Hh pathway activity, evidenced by altered gene expression patterns. Removal of GLI2 from Ift122 mutants rescued several aspects of optic cup and lens morphogenesis as well as RPE and NR specification. Collectively, our data suggest that proper assembly of primary cilia is critical for restricting the Hedgehog pathway during eye formation in the mouse. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Fast critical assembly safeguards: NDA methods for highly enriched uranium. Summary report, October 1978-September 1979

    SciTech Connect

    Bellinger, F.O.; Winslow, G.H.

    1980-12-01

    Nondestructive assay (NDA) methods, principally passive gamma measurements and active neutron interrogation, have been studied for their safeguards effectiveness and programmatic impact as tools for making inventories of highly enriched uranium fast critical assembly fuel plates. It was concluded that no NDA method is the sole answer to the safeguards problem, that each of those emphasized here has its place in an integrated safeguards system, and that each has minimum facility impact. It was found that the 185-keV area, as determined with a NaI detector, was independent of highly-enriched uranium (HEU) plate irradiation history, though the random neutron driver methods used here did not permit accurate assay of irradiated plates. Containment procedures most effective for accurate assaying were considered, and a particular geometry is recommended for active interrogation by a random driver. A model, pertinent to that geometry, which relates the effects of multiplication and self-absorption, is described. Probabilities of failing to detect that plates are missing are examined.

  5. Inorganic molecular-scale MoSI nanowire-gold nanoparticle networks exhibit self-organized critical self-assembly.

    PubMed

    Strle, Jure; Vengust, Damjan; Mihailovic, Dragan

    2009-03-01

    We investigate for the first time the topological characteristics of large molecular-scale inorganic networks self-assembled in solution using the unique sulfur-bonding chemistry of conducting MoSI molecular wires and gold nanoparticles (GNPs). The network self-assembly is shown to display power-law distribution of graph edges, indicating an intrinsic tendency to self-organize into scale-invariant critical state, without any external control parameter. We discuss the electronic transport properties of such networks particularly with regard to the possibility of data processing.

  6. Extrapolated experimental critical parameters of unreflected and steel-reflected massive enriched uranium metal spherical and hemispherical assemblies

    SciTech Connect

    Rothe, R.E.

    1997-12-01

    Sixty-nine critical configurations of up to 186 kg of uranium are reported from very early experiments (1960s) performed at the Rocky Flats Critical Mass Laboratory near Denver, Colorado. Enriched (93%) uranium metal spherical and hemispherical configurations were studied. All were thick-walled shells except for two solid hemispheres. Experiments were essentially unreflected; or they included central and/or external regions of mild steel. No liquids were involved. Critical parameters are derived from extrapolations beyond subcritical data. Extrapolations, rather than more precise interpolations between slightly supercritical and slightly subcritical configurations, were necessary because experiments involved manually assembled configurations. Many extrapolations were quite long; but the general lack of curvature in the subcritical region lends credibility to their validity. In addition to delayed critical parameters, a procedure is offered which might permit the determination of prompt critical parameters as well for the same cases. This conjectured procedure is not based on any strong physical arguments.

  7. Monte Carlo Modeling of Fast Sub-critical Assembly with MOX Fuel for Research of Accelerator-Driven Systems

    NASA Astrophysics Data System (ADS)

    Polanski, A.; Barashenkov, V.; Puzynin, I.; Rakhno, I.; Sissakian, A.

    It is considered a sub-critical assembly driven with existing 660 MeV JINR proton accelerator. The assembly consists of a central cylindrical lead target surrounded with a mixed-oxide (MOX) fuel (PuO2 + UO2) and with reflector made of beryllium. Dependence of the energetic gain on the proton energy, the neutron multiplication coefficient, and the neutron energetic spectra have been calculated. It is shown that for subcritical assembly with a mixed-oxide (MOX) BN-600 fuel (28%PuO 2 + 72%UO2) with effective density of fuel material equal to 9 g/cm 3 , the multiplication coefficient keff is equal to 0.945, the energetic gain is equal to 27, and the neutron flux density is 1012 cm˜2 s˜x for the protons with energy of 660 MeV and accelerator beam current of 1 uA.

  8. Critical role of conserved hydrophobic residues within the major homology region in mature retroviral capsid assembly.

    PubMed

    Purdy, John G; Flanagan, John M; Ropson, Ira J; Rennoll-Bankert, Kristen E; Craven, Rebecca C

    2008-06-01

    During retroviral maturation, the CA protein undergoes dramatic structural changes and establishes unique intermolecular interfaces in the mature capsid shell that are different from those that existed in the immature precursor. The most conserved region of CA, the major homology region (MHR), has been implicated in both immature and mature assembly, although the precise contribution of the MHR residues to each event has been largely undefined. To test the roles of specific MHR residues in mature capsid assembly, an in vitro system was developed that allowed for the first-time formation of Rous sarcoma virus CA into structures resembling authentic capsids. The ability of CA to assemble organized structures was destroyed by substitutions of two conserved hydrophobic MHR residues and restored by second-site suppressors, demonstrating that these MHR residues are required for the proper assembly of mature capsids in addition to any role that these amino acids may play in immature particle assembly. The defect caused by the MHR mutations was identified as an early step in the capsid assembly process. The results provide strong evidence for a model in which the hydrophobic residues of the MHR control a conformational reorganization of CA that is needed to initiate capsid assembly and suggest that the formation of an interdomain interaction occurs early during maturation.

  9. The SD1 Subdomain of Venezuelan Equine Encephalitis Virus Capsid Protein Plays a Critical Role in Nucleocapsid and Particle Assembly

    PubMed Central

    Reynaud, Josephine M.; Lulla, Valeria; Kim, Dal Young; Frolova, Elena I.

    2015-01-01

    ABSTRACT Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, for which no safe and efficient vaccines or therapeutic means have been developed. Viral particle assembly and budding processes represent potential targets for therapeutic intervention. However, our understanding of the mechanistic process of VEEV assembly, RNA encapsidation, and the roles of different capsid-specific domains in these events remain to be described. The results of this new study demonstrate that the very amino-terminal VEEV capsid-specific subdomain SD1 is a critical player in the particle assembly process. It functions in a virus-specific mode, and its deletion, mutation, or replacement by the same subdomain derived from other alphaviruses has strong negative effects on infectious virus release. VEEV variants with mutated SD1 accumulate adaptive mutations in both SD1 and SD2, which result in a more efficiently replicating phenotype. Moreover, efficient nucleocapsid and particle assembly proceeds only when the two subdomains, SD1 and SD2, are derived from the same alphavirus. These two subdomains together appear to form the central core of VEEV nucleocapsids, and their interaction is one of the driving forces of virion assembly and budding. The similar domain structures of alphavirus capsid proteins suggest that this new knowledge can be applied to other alphaviruses. IMPORTANCE Alphaviruses are a group of human and animal pathogens which cause periodic outbreaks of highly debilitating diseases. Despite significant progress made in understanding the overall structure of alphavirus and VEEV virions, and glycoprotein spikes in particular, the mechanistic process of nucleocapsid assembly, RNA encapsidation, and the roles of different capsid-specific domains in these processes remain to be described. Our new data demonstrate that the very amino-terminal subdomain of Venezuelan equine encephalitis virus capsid protein, SD1, plays a critical role in the

  10. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    SciTech Connect

    Kahler, A.C.; Herman, M.; Kahler,A.C.; MacFarlane,R.E.; Mosteller,R.D.; Kiedrowski,B.C.; Frankle,S.C.; Chadwick,M.B.; McKnight,R.D.; Lell,R.M.; Palmiotti,G.; Hiruta,H.; Herman,M.; Arcilla,R.; Mughabghab,S.F.; Sublet,J.C.; Trkov,A.; Trumbull,T.H.; Dunn,M.

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., 'ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,' Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected {sup 235}U and {sup 239}Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for

  11. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    SciTech Connect

    Kahler, A.; Macfarlane, R E; Mosteller, R D; Kiedrowski, B C; Frankle, S C; Chadwick, M. B.; Mcknight, R D; Lell, R M; Palmiotti, G; Hiruta, h; Herman, Micheal W; Arcilla, r; Mughabghab, S F; Sublet, J C; Trkov, A.; Trumbull, T H; Dunn, Michael E

    2011-01-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unrnoderated and uranium reflected (235)U and (239)Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as (236)U; (238,242)Pu and (241,243)Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical eigenvalues

  12. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    NASA Astrophysics Data System (ADS)

    Kahler, A. C.; MacFarlane, R. E.; Mosteller, R. D.; Kiedrowski, B. C.; Frankle, S. C.; Chadwick, M. B.; McKnight, R. D.; Lell, R. M.; Palmiotti, G.; Hiruta, H.; Herman, M.; Arcilla, R.; Mughabghab, S. F.; Sublet, J. C.; Trkov, A.; Trumbull, T. H.; Dunn, M.

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., "ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data," Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected 235U and 239Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected

  13. Hepatitis C Virus p7 is Critical for Capsid Assembly and Envelopment

    PubMed Central

    Gentzsch, Juliane; Brohm, Christiane; Steinmann, Eike; Friesland, Martina; Menzel, Nicolas; Vieyres, Gabrielle; Perin, Paula Monteiro; Frentzen, Anne; Kaderali, Lars; Pietschmann, Thomas

    2013-01-01

    Hepatitis C virus (HCV) p7 is a membrane-associated ion channel protein crucial for virus production. To analyze how p7 contributes to this process, we dissected HCV morphogenesis into sub-steps including recruitment of HCV core to lipid droplets (LD), virus capsid assembly, unloading of core protein from LDs and subsequent membrane envelopment of capsids. Interestingly, we observed accumulation of slowly sedimenting capsid-like structures lacking the viral envelope in cells transfected with HCV p7 mutant genomes which possess a defect in virion production. Concomitantly, core protein was enriched at the surface of LDs. This indicates a defect in core/capsid unloading from LDs and subsequent membrane envelopment rather than defective trafficking of core to this cellular organelle. Protease and ribonuclease digestion protection assays, rate zonal centrifugation and native, two dimensional gel electrophoresis revealed increased amounts of high-order, non-enveloped core protein complexes unable to protect viral RNA in cells transfected with p7 mutant genomes. These results suggest accumulation of capsid assembly intermediates that had not yet completely incorporated viral RNA in the absence of functional p7. Thus, functional p7 is necessary for the final steps of capsid assembly as well as for capsid envelopment. These results support a model where capsid assembly is linked with membrane envelopment of nascent RNA-containing core protein multimers, a process coordinated by p7. In summary, we provide novel insights into the sequence of HCV assembly events and essential functions of p7. PMID:23658526

  14. Self-organized criticality in cortical assemblies occurs in concurrent scale-free and small-world networks

    PubMed Central

    Massobrio, Paolo; Pasquale, Valentina; Martinoia, Sergio

    2015-01-01

    The spontaneous activity of cortical networks is characterized by the emergence of different dynamic states. Although several attempts were accomplished to understand the origin of these dynamics, the underlying factors continue to be elusive. In this work, we specifically investigated the interplay between network topology and spontaneous dynamics within the framework of self-organized criticality (SOC). The obtained results support the hypothesis that the emergence of critical states occurs in specific complex network topologies. By combining multi-electrode recordings of spontaneous activity of in vitro cortical assemblies with theoretical models, we demonstrate that different ‘connectivity rules’ drive the network towards different dynamic states. In particular, scale-free architectures with different degree of small-worldness account better for the variability observed in experimental data, giving rise to different dynamic states. Moreover, in relationship with the balance between excitation and inhibition and percentage of inhibitory hubs, the simulated cortical networks fall in a critical regime. PMID:26030608

  15. Self-organized criticality in cortical assemblies occurs in concurrent scale-free and small-world networks.

    PubMed

    Massobrio, Paolo; Pasquale, Valentina; Martinoia, Sergio

    2015-06-01

    The spontaneous activity of cortical networks is characterized by the emergence of different dynamic states. Although several attempts were accomplished to understand the origin of these dynamics, the underlying factors continue to be elusive. In this work, we specifically investigated the interplay between network topology and spontaneous dynamics within the framework of self-organized criticality (SOC). The obtained results support the hypothesis that the emergence of critical states occurs in specific complex network topologies. By combining multi-electrode recordings of spontaneous activity of in vitro cortical assemblies with theoretical models, we demonstrate that different 'connectivity rules' drive the network towards different dynamic states. In particular, scale-free architectures with different degree of small-worldness account better for the variability observed in experimental data, giving rise to different dynamic states. Moreover, in relationship with the balance between excitation and inhibition and percentage of inhibitory hubs, the simulated cortical networks fall in a critical regime.

  16. Critical roles of CTP synthase N-terminal in cytoophidium assembly.

    PubMed

    Huang, Yong; Wang, Jin-Jun; Ghosh, Sanjay; Liu, Ji-Long

    2017-03-22

    Several metabolic enzymes assemble into distinct intracellular structures in prokaryotes and eukaryotes suggesting an important functional role in cell physiology. The CTP-generating enzyme CTP synthase forms long filamentous structures termed cytoophidia in bacteria, yeast, fruit flies and human cells independent of its catalytic activity. However, the amino acid determinants for protein-protein interaction necessary for polymerisation remained unknown. In this study, we systematically analysed the role of the conserved N-terminal of Drosophila CTP synthase in cytoophidium assembly. Our mutational analyses identified three key amino acid residues within this region that play an instructive role in organisation of CTP synthase into a filamentous structure. Co-transfection assays demonstrated formation of heteromeric CTP synthase filaments which is disrupted by protein carrying a mutated N-terminal alanine residue thus revealing a dominant-negative activity. Interestingly, the dominant-negative activity is supressed by the CTP synthase inhibitor DON. Furthermore, we found that the amino acids at the corresponding position in the human protein exhibit similar properties suggesting conservation of their function through evolution. Our data suggest that cytoophidium assembly is a multi-step process involving N-terminal-dependent sequential interactions between correctly folded structural units and provide insights into the assembly of these enigmatic structures.

  17. The Prompt Fission Neutron Spectrum: From Experiment to the Evaluated Data and its Impact on Critical Assemblies

    SciTech Connect

    Rising, Michael Evan

    2015-06-10

    After a brief introduction concerning nuclear data, prompt fission neutron spectrum (PFNS) evaluations and the limited PFNS covariance data in the ENDF/B-VII library, and the important fact that cross section uncertainties ~ PFNS uncertainties, the author presents background information on the PFNS (experimental data, theoretical models, data evaluation, uncertainty quantification) and discusses the impact on certain well-known critical assemblies with regard to integral quantities, sensitivity analysis, and uncertainty propagation. He sketches recent and ongoing research and concludes with some final thoughts.

  18. Critical salt bridges guide capsid assembly, stability, and maturation behavior in bacteriophage HK97.

    PubMed

    Gertsman, Ilya; Fu, Chi-Yu; Huang, Rick; Komives, Elizabeth A; Johnson, John E

    2010-08-01

    HK97 is a double-stranded DNA bacteriophage that undergoes dramatic conformational changes during viral capsid maturation and for which x-ray structures, at near atomic resolution, of multiple intermediate and mature capsid states are available. Both amide H/(2)H exchange and crystallographic comparisons between the pre-expanded Prohead II particles and the expanded Head II of bacteriophage HK97 revealed quaternary interactions that remain fixed throughout maturation and appear to maintain intercapsomer integrity at all quasi- and icosahedral 3-fold axes. These 3-fold staples are formed from Arg and Glu residues and a metal binding site. Mutations of either Arg-347 or Arg-194 or a double mutation of E344Q and E363A resulted in purification of the phage in capsomer form (hexamers and pentamers). Mutants that did assemble had both decreased thermal stability and decreased in vitro expansion rates. Amide H/(2)H exchange mass spectrometry showed that in the wild type capsid some subunits had a bent "spine" helix (highly exchanging), whereas others were straight (less exchanging). Similar analysis of the never assembled mutant capsomers showed uniform amide exchange in all of these that was higher than that of the straight spine helices (characterized in more mature intermediates), suggesting that the spine helix is somewhat bent prior to capsid assembly. The result further supports a previously proposed mechanism for capsid expansion in which the delta domains of each subunit induce a high energy intermediate conformation, which now appears to include a bent helix during capsomer assembly.

  19. Thoughts on Sensitivity Analysis and Uncertainty Propagation Methods with Respect to the Prompt Fission Neutron Spectrum Impact on Critical Assemblies

    SciTech Connect

    Rising, M.E.

    2015-01-15

    The prompt fission neutron spectrum (PFNS) uncertainties in the n+{sup 239}Pu fission reaction are used to study the impact on several fast critical assemblies modeled in the MCNP6.1 code. The newly developed sensitivity capability in MCNP6.1 is used to compute the k{sub eff} sensitivity coefficients with respect to the PFNS. In comparison, the covariance matrix given in the ENDF/B-VII.1 library is decomposed and randomly sampled realizations of the PFNS are propagated through the criticality calculation, preserving the PFNS covariance matrix. The information gathered from both approaches, including the overall k{sub eff} uncertainty, is statistically analyzed. Overall, the forward and backward approaches agree as expected. The results from a new method appear to be limited by the process used to evaluate the PFNS and is not necessarily a flaw of the method itself. Final thoughts and directions for future work are suggested.

  20. WESTINGHOUSE 17X17 MOX PWR ASSEMBLY - WASTE PACKAGE CRITICALITY ANALYSIS (SCPB: N/A)

    SciTech Connect

    J.W. Davis

    1996-07-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to compare the criticality potential of Westinghouse 17 x 17 mixed oxide (MOX) PWR fuel with the Design Basis spent nuclear fuel (SNF) analyzed previously (Ref. 5.1, 5.2). The basis of comparison will be the conceptual design Multi-Purpose Canister (MPC) PWR waste package concepts. The objectives of this evaluation are to show that the criticality potential of the MOX fuel is equal to or lower than the DBF or, if necessary, indicate what additional measures are required to make it so.

  1. Critical Issues Facing America's Community Colleges: A Summary of the Community Colleges Futures Assembly 2006

    ERIC Educational Resources Information Center

    Campbell, Dale F.; Basham, Matthew J.

    2007-01-01

    Three focus groups consisting of 42 board of trustee members, community college presidents, senior administrators, and faculty members developed critical issues facing community colleges with respect to instructional planning and services; planning, governance, finance; and workforce development. Thereafter, the delegation of more than 200 voted…

  2. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation.

    PubMed

    Rogala, Kacper B; Dynes, Nicola J; Hatzopoulos, Georgios N; Yan, Jun; Pong, Sheng Kai; Robinson, Carol V; Deane, Charlotte M; Gönczy, Pierre; Vakonakis, Ioannis

    2015-05-29

    Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In Caenorhabditis elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional equivalents across eukaryotic evolution. Whereas the molecular architecture of SAS-6 and its role in initiating centriole formation are well understood, the mechanisms by which SAS-5 and its relatives function is unclear. Here, we combine biophysical and structural analysis to uncover the architecture of SAS-5 and examine its functional implications in vivo. Our work reveals that two distinct self-associating domains are necessary to form higher-order oligomers of SAS-5: a trimeric coiled coil and a novel globular dimeric Implico domain. Disruption of either domain leads to centriole duplication failure in worm embryos, indicating that large SAS-5 assemblies are necessary for function in vivo.

  3. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation

    PubMed Central

    Rogala, Kacper B; Dynes, Nicola J; Hatzopoulos, Georgios N; Yan, Jun; Pong, Sheng Kai; Robinson, Carol V; Deane, Charlotte M; Gönczy, Pierre; Vakonakis, Ioannis

    2015-01-01

    Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In Caenorhabditis elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional equivalents across eukaryotic evolution. Whereas the molecular architecture of SAS-6 and its role in initiating centriole formation are well understood, the mechanisms by which SAS-5 and its relatives function is unclear. Here, we combine biophysical and structural analysis to uncover the architecture of SAS-5 and examine its functional implications in vivo. Our work reveals that two distinct self-associating domains are necessary to form higher-order oligomers of SAS-5: a trimeric coiled coil and a novel globular dimeric Implico domain. Disruption of either domain leads to centriole duplication failure in worm embryos, indicating that large SAS-5 assemblies are necessary for function in vivo. DOI: http://dx.doi.org/10.7554/eLife.07410.001 PMID:26023830

  4. Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly.

    PubMed

    Giesa, Tristan; Perry, Carole C; Buehler, Markus J

    2016-02-08

    Spiders spin their silk from an aqueous solution to a solid fiber in ambient conditions. However, to date, the assembly mechanism in the spider silk gland has not been satisfactorily explained. In this paper, we use molecular dynamics simulations to model Nephila clavipes MaSp1 dragline silk formation under shear flow and determine the secondary structure transitions leading to the experimentally observed fiber structures. While no experiments are performed on the silk fiber itself, insights from this polypeptide model can be transferred to the fiber scale. The novelty of this study lies in the calculation of the shear stress (300-700 MPa) required for fiber formation and identification of the amino acid residues involved in the transition. This is the first time that the shear stress has been quantified in connection with a secondary structure transition. By study of molecules containing varying numbers of contiguous MaSp1 repeats, we determine that the smallest molecule size giving rise to a "silk-like" structure contains six polyalanine repeats. Through a probability analysis of the secondary structure, we identify specific amino acids that transition from α-helix to β-sheet. In addition to portions of the polyalanine section, these amino acids include glycine, leucine, and glutamine. The stability of β-sheet structures appears to arise from a close proximity in space of helices in the initial spidroin state. Our results are in agreement with the forces exerted by spiders in the silking process and the experimentally determined global secondary structure of spidroin and pulled MaSp1 silk. Our study emphasizes the role of shear in the assembly process of silk and can guide the design of microfluidic devices that attempt to mimic the natural spinning process and predict molecular requirements for the next generation of silk-based functional materials.

  5. Missing mediated interruptions in manual assembly: Critical aspects of breakpoint selection.

    PubMed

    Kolbeinsson, Ari; Lindblom, Jessica; Thorvald, Peter

    2017-05-01

    The factory of the future aims to make manufacturing more effective and easily customisable, using advanced sensors and communications to support information management. In this paper, we examine how breakpoint selection during interruption management can fail, even when using recommendations for interruption management from existing research. We present an experiment based on prior work where mediated interruptions (i.e. smart interruptions that should interrupt at opportune moments) were missed by participants when sent at one of two pre-defined breakpoints. These breakpoints were selected based on existing research to minimise the cost of interruption, which can involve longer times to complete tasks as well as making errors on tasks. Missing mediated interruptions in this way was unexpected, and the prior study was not configured to measure this effect, which has led to the experiment detailed here. We strive to explore whether there is a risk of missing notifications when mediated interruptions are used, and how this is affected by breakpoint selection. This was investigated through an experiment that uses tasks and environments that simulate a manufacturing assembly facility. The results indicate that the effect exists, i.e. that participants miss significantly more notifications when interrupted at fine breakpoints than when interrupted at coarse breakpoints. An embodied cognition perspective was used for analysis of the tasks to understand the cause of the effect. This analysis shows that an overlap between "action" and "anticipation of action" can account for why participants miss notifications at fine breakpoints. Based on these findings, recommendations were developed for designing interruption systems that minimise the costs (errors and time) imposed by interruptions during assembly tasks in manufacturing.

  6. Criticality safety considerations in the geologic disposal of spent nuclear fuel assemblies

    NASA Astrophysics Data System (ADS)

    Gore, B. F.; McNair, G. W.; Heaberlin, S. W.

    1980-05-01

    Features of geologic disposal which hamper the demonstration that criticality cannot occur therein include possible changes of shape and form, intrusion of water as a neutron moderator, and selective leaching of spent fuel constituents. If the criticality safety of spent fuels disposal depends on burnup, independent measurements verifying the burnup should be performed prior to disposal. The status of nondestructive analysis method which might provide such verification is discussed. Calculations were performed to assess the potential for increasing the allowed size of a spent fuel disposal canister if potential water intrusion were limited by close packing the enclosed rods. Several factors were identified which severely limited the potential of this application. The theoretical limit of hexagonal close packing cannot be achieved due to fuel rod bowing. It is concluded the disposal canisters should be sized on the basis of assumed optimum moderation.

  7. Modelling critical Casimir force induced self-assembly experiments on patchy colloidal dumbbells.

    PubMed

    Newton, Arthur C; Nguyen, T Anh; Veen, Sandra J; Kraft, Daniela J; Schall, Peter; Bolhuis, Peter G

    2017-07-19

    Colloidal particles suspended in a binary liquid mixture can interact via solvent mediated interactions, known as critical Casimir forces. For anisotropic colloids this interaction becomes directional, which leads to rich phase behavior. While experimental imaging and particle tracking techniques allow determination of isotropic effective potentials via Boltzmann inversion, the modeling of effective interaction in anisotropic systems is non-trivial precisely because of this directionality. Here we extract effective interaction potentials for non-spherical dumbbell particles from observed radial and angular distributions, by employing reference interaction site model (RISM) theory and direct Monte Carlo simulations. For colloidal dumbbell particles dispersed in a binary liquid mixture and interacting via induced critical Casimir forces, we determine the effective site-site potentials for a range of experimental temperatures. Using these potentials to simulate the system for strong Casimir forces, we reproduce the experimentally observed collapse, and provide a qualitative explanation for this behavior.

  8. Neutron Activation and Thermoluminescent Detector Responses to a Bare Pulse of the CEA Valduc SILENE Critical Assembly

    SciTech Connect

    Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas; Piot, Jerome; Jacquet, Xavier; Rousseau, Guillaume; Reynolds, Kevin H.

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 11, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  9. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Lead Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    SciTech Connect

    Miller, Thomas Martin; Celik, Cihangir; Isbell, Kimberly McMahan; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas; Piot, Jerome; Jacquet, Xavier; Rousseau, Guillaume; Reynolds, Kevin H.

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 13, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube, and the Rocky Flats detects neutrons via charged particles produced in a thin 6LiF disc, depositing energy in a Si solid-state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  10. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Polyethylene Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    SciTech Connect

    Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas; Piot, Jerome; Jacquet, Xavier; Rousseau, Guillaume; Reynolds, Kevin H.

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 19, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube and the Rocky Flats detects neutrons via charged particles produced in a thin 6LiF disc depositing energy in a Si solid state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  11. Critical field of two-dimensional superconducting Sn1-x/Six bimetallic composite cluster assembled films with energetic cluster impact deposition

    NASA Astrophysics Data System (ADS)

    Kurokawa, Yuichiro; Hihara, Takehiko; Ichinose, Ikuo

    2013-05-01

    Sn1-x/Six cluster assembled films have been prepared by an energetic cluster impact deposition using a plasma-gas-condensation cluster beam deposition apparatus. Transmission electron microscope images indicated that individual clusters have composite morphologies, where Sn and Si were separated from each other. The superconducting critical magnetic fields, Hc, of Sn1-x/Six cluster assembled films were measured and found to be much higher than the critical magnetic field of the bulk Sn. We estimated the Hc values by using a theory of the superconducting thin film. The estimated values are in good agreement with the experiments, indicating that the Sn1-x/Six cluster assembled films can be regarded as a two-dimensional system although thickness, t, of Sn1-x/Six cluster assembled films (t ≈ 1000 nm) is thicker than conventional superconducting thin film (t < 100 nm).

  12. Estimation of critical flow velocity for collapse of booster fuel assembly

    SciTech Connect

    Donna Guillen; Mark J. Russell

    2005-09-01

    A Gas Test Loop (GTL) system is currently being designed to provide a high intensity fast-flux irradiation environment for testing fuels and materials for advanced concept nuclear reactors. To assess the performance of candidate reactor fuels, these fuels must be irradiated under actual fast reactor flux conditions and operating environments, preferably in an existing irradiation facility. The GTL system is being designed for operation in the northwest test lobe of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The Technical and Functional Requirements (T&FRs) for the GTL stipulate a minimum neutron flux intensity (10{sup 15} n/cm{sup 2} {center_dot} s) and fast to thermal neutron ratio (>15) for the test environment. The incorporation of booster fuel within the test lobe is necessary to achieve these neutron flux requirements. The current design of the booster fuel assembly for the GTL calls for 3 concentric rings of 4 ft long uranium silicide fuel plates clad with 6061 aluminum.

  13. Nondissociative chemisorption of methanethiol on Ag(110): a critical result for self-assembled monolayers.

    PubMed

    Lee, Jae-Gook; Lee, Junseok; Yates, John T

    2004-01-21

    Three definitive experiments have been performed to investigate the possibility of dissociative adsorption of methanethiol (CH3SH) on clean Ag(110). On the clean Ag(110) surface, the adsorption in the first layer occurs to 0.5 ML, producing a (2 x 1) low-energy electron diffraction (LEED) structure. The undissociated molecule desorbs starting at approximately 140 K, and only tiny quantities of other gaseous products are desorbed, and only tiny quantities of S-containing species remain. Using a 50:50% mixture of CH3SD and CD3SH, we find no evidence of S-H or S-D bond scission between these molecules upon desorption. And finally, when the CH3SH molecule is incident on the clean Ag(110) surface in the temperature range of 230-400 K, less than 1% of the incident molecules dissociate to produce adsorbed sulfur-containing species. The results influence our thinking about the surface bonding of alkanethiol-based self-assembled monolayers (SAMs) on noble metals.

  14. Assembly of the type II secretion system: identification of ExeA residues critical for peptidoglycan binding and secretin multimerization.

    PubMed

    Li, Gang; Miller, Alicia; Bull, Harold; Howard, S Peter

    2011-01-01

    Aeromonas hydrophila secretes a number of protein toxins across the outer membrane via the type II secretion system (T2SS). Assembly of the secretion channel ExeD secretin into the outer membrane is dependent on the peptidoglycan binding domain of ExeA. In this study, the peptidoglycan binding domain PF01471 family members were divided into a prokaryotic group and a eukaryotic group. By comparison of their sequence conservation profiles and their representative crystal structures, we found the prokaryotic members to have a highly conserved pocket(s) that is not present in the eukaryotic members. Substitution mutations of nine amino acids of the pocket were constructed in ExeA. Five of the substitution derivatives showed greatly decreased lipase secretion, accompanied by defects in secretin assembly. In addition, using in vivo cross-linking and in vitro cosedimentation assays, we showed that these mutations decreased ExeA-peptidoglycan interactions. These results suggest that the highly conserved pocket in ExeA is the binding site for its peptidoglycan ligand and identify residues critical for this binding.

  15. Measuring the efficiency of control rods in the RBMK critical assembly using a model of RKI-1 reactimeter

    NASA Astrophysics Data System (ADS)

    Zhitarev, V. E.; Lebedev, G. V.; Sergevnin, A. Yu.

    2016-12-01

    The efficiency of control rods of the RBMK critical assembly is measured in a series of experiments. The aim of measurements is to determine the characteristics of the model of an RKI-1 reactimeter. The RKI-1 reactimeter is intended for measuring the efficiency of control rods when, according to conditions of operation, the metrological certification of results of an experiment is required. Complications with the metrological certification of reactimeters arise owing to the fact that usually calculated corrections to the results of measurements are required. When the RKI-1 reactimeter is used, there is no need to introduce calculated corrections; the result of measurements is given with the indication of substantiated errors. In connection with this, the metrological certification of the results of measurements using the RKI-1 reactimeter is simplified.

  16. Measuring the efficiency of control rods in the RBMK critical assembly using a model of RKI-1 reactimeter

    SciTech Connect

    Zhitarev, V. E. Lebedev, G. V.; Sergevnin, A. Yu.

    2016-12-15

    The efficiency of control rods of the RBMK critical assembly is measured in a series of experiments. The aim of measurements is to determine the characteristics of the model of an RKI-1 reactimeter. The RKI-1 reactimeter is intended for measuring the efficiency of control rods when, according to conditions of operation, the metrological certification of results of an experiment is required. Complications with the metrological certification of reactimeters arise owing to the fact that usually calculated corrections to the results of measurements are required. When the RKI-1 reactimeter is used, there is no need to introduce calculated corrections; the result of measurements is given with the indication of substantiated errors. In connection with this, the metrological certification of the results of measurements using the RKI-1 reactimeter is simplified.

  17. Theoretical estimation of the critical packing parameter of amphiphilic self-assembled aggregates

    NASA Astrophysics Data System (ADS)

    Khalil, Rabah A.; Zarari, Al-hakam A.

    2014-11-01

    The estimating of critical packing parameter (p) of amphiphilic compounds is considered as a hypothetical rather than an empirical. Consequently, an attempt has been made for determining such a dimensionless parameter for homologous series of sodium p-n-alkyl benzoates (n = 0-8) hydrotropes using quantum mechanical calculations that depend on density functional theory (DFT). The calculations were based on the following well-defined model, p = v/a0lc, where v is the volume of the hydrotrope tail, a0 is the effective head group area and lc is the length of the extended hydrotrope tail. It was found that the magnitude of both v and lc parameters can be estimated directly from quantum mechanical calculations. While the investigations found that the a0 parameter is parallel to the Connolly solvent accessible surface area (Csa) which could also be determined through theoretical computations. The obtained results were in good agreement with published data using small angle neutron scattering (SANS) technique. Hence, the theoretical model for predicting p of amphiphilic at critical micelle- or aggregation-concentration (cmc or cac) is p = v/Csalc. An apparent success was observed through applying this simple model to some randomly selected surfactants. It has been concluded that the theoretical calculations that based on quantum mechanical (DFT) method can be considered as a powerful tool for estimating the critical packing parameter of amphiphilic molecules. Finally, the results strongly suggest the employment of the presented model for estimating p of amphiphilic molecules at cmc or cac by computational chemistry software.

  18. Graphite and Beryllium Reflector Critical Assemblies of UO2 (Benchmark Experiments 2 and 3)

    SciTech Connect

    Margaret A. Marshall; John D. Bess

    2012-11-01

    INTRODUCTION A series of experiments was carried out in 1962-65 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for use in space reactor research programs. A core containing 93.2 wt% enriched UO2 fuel rods was used in these experiments. The first part of the experimental series consisted of 252 tightly-packed fuel rods (1.27-cm triangular pitch) with graphite reflectors [1], the second part used 252 graphite-reflected fuel rods organized in a 1.506-cm triangular-pitch array [2], and the final part of the experimental series consisted of 253 beryllium-reflected fuel rods in a 1.506-cm-triangular-pitch configuration and in a 7-tube-cluster configuration [3]. Fission rate distribution and cadmium ratio measurements were taken for all three parts of the experimental series. Reactivity coefficient measurements were taken for various materials placed in the beryllium reflected core. All three experiments in the series have been evaluated for inclusion in the International Reactor Physics Experiment Evaluation Project (IRPhEP) [4] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbooks, [5]. The evaluation of the first experiment in the series was discussed at the 2011 ANS Winter meeting [6]. The evaluations of the second and third experiments are discussed below. These experiments are of interest as benchmarks because they support the validation of compact reactor designs with similar characteristics to the design parameters for a space nuclear fission surface power systems [7].

  19. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.

    PubMed

    Hiraga, F

    2015-12-01

    The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed.

  20. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains.

    PubMed

    Pescador, David S; Sierra-Almeida, Ángela; Torres, Pablo J; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  1. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains

    PubMed Central

    Pescador, David S.; Sierra-Almeida, Ángela; Torres, Pablo J.; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  2. Evaluated Iridium, Yttrium, and Thulium Cross Sections and Integral Validation Against Critical Assembly and Bethe Sphere Measurements

    SciTech Connect

    Chadwick, M.B. Frankle, S.; Trellue, H.; Talou, P.; Kawano, T.; Young, P.G.; MacFarlane, R.E.; Wilkerson, C.W.

    2007-12-15

    We describe new dosimetry (radiochemical) ENDF evaluations for yttrium, iridium, and thulium. These LANL2006 evaluations were based upon measured data and on nuclear model cross section calculations. In the case of iridium and yttrium, new measurements using the GEANIE gamma-ray detector at LANSCE were used to infer (n,xn) cross sections, the measurements being augmented by nuclear model calculations using the GNASH code. The thulium isotope evaluations were based on GNASH calculations and older measurements. The evaluated cross section data are tested through comparisons of simulations with measurements of reaction rates in critical assemblies and in Bethe sphere (sometimes called Wyman sphere) integral experiments. Two types of Bethe sphere experiments were studied - a LiD experiment that had a significant component of 14 MeV neutrons, and a LiD-U experiment that additionally had varying amounts of fission neutrons depending upon the location. These simulations were performed with the MCNP code using continuous energy Monte Carlo, and because the neutron fluences can be modeled fairly accurately by MCNP at different locations in these assemblies, the comparisons provide a valuable validation test of the accuracy of the evaluated cross sections and their energy dependencies. The MCNP integral reaction rate validation testing for the three detectors yttrium, iridium, and thulium, in the LANL2006 database is summarized as follows: (1) (n,2n)near 14 MeV: In 14 MeV-dominated locations (the LiD Bethe spheres and the outer regions of the LiD-U Bethe spheres), the (n,2n) products are modeled very well for all three detectors, suggesting that the evaluated {sup 89}Y(n,2n), {sup 191}Ir(n,2n), and {sup 169}Tm(n,2n) cross sections are accurate to better than about 5% near 14 MeV; (2) (n,2n)near threshold: In locations that have a significant number of fission spectrum neutrons or downscattered neutrons from 14 MeV inelastic scattering (the central regions of the Li

  3. Determination of nonligand amino acids critical to [4Fe-4S]2+/+ assembly in ferredoxin maquettes.

    PubMed

    Mulholland, S E; Gibney, B R; Rabanal, F; Dutton, P L

    1999-08-10

    The prototype ferredoxin maquette, FdM, is a 16-amino acid peptide which efficiently incorporates a single [4Fe-4S]2+/+ cluster with spectroscopic and electrochemical properties that are typical of natural bacterial ferredoxins. Using this synthetic protein scaffold, we have investigated the role of the nonliganding amino acids in the assembly of the iron-sulfur cluster. In a stepwise fashion, we truncated FdM to a seven-amino acid peptide, FdM-7, which incorporates a cluster spectroscopically identical to FdM but in lower yield, 29% relative to FdM. FdM-7 consists solely of the. CIACGAC. consensus ferredoxin core motif observed in natural protein sequences. Initially, all of the nonliganding amino acids were substituted for either glycine, FdM-7-PolyGly (.CGGCGGC.), or alanine, FdM-7-PolyAla (.CAACAAC.), on the basis of analysis of natural ferredoxin sequences. Both FdM-7-PolyGly and FdM-7-PolyAla incorporated little [4Fe-4S]2+/+ cluster, 6 and 7%, respectively. A systematic study of the incorporation of a single isoleucine into each of the four nonliganding positions indicated that placement either in the second or in the sixth core motif positions,.CIGCGGC. or.CGGCGIC., restored the iron-sulfur cluster binding capacity of the peptides to the level of FdM-7. Incorporation of an isoleucine into the fifth position,.CGGCIGC., which in natural ferredoxins is predominantly occupied by a glycine, resulted in a loss of [4Fe-4S] affinity. The substitution of leucine, tryptophan, and arginine into the second core motif position illustrated the stabilization of the [4Fe-4S] cluster by bulky hydrophobic amino acids. Furthermore, the incorporation of a single isoleucine into the second core motif position in a 16-amino acid ferredoxin maquette resulted in a 5-fold increase in the level of [4Fe-4S] cluster binding relative to that of the glycine variant. The protein design rules derived from this study are fully consistent with those derived from natural ferredoxin sequence

  4. Characterization of the CALIBAN Critical Assembly Neutron Spectra using Several Adjustment Methods Based on Activation Foils Measurement

    NASA Astrophysics Data System (ADS)

    Casoli, Pierre; Grégoire, Gilles; Rousseau, Guillaume; Jacquet, Xavier; Authier, Nicolas

    2016-02-01

    CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to strengthen our knowledge of this spectrum, several adjustment methods based on activation foils measurements are being studied for a few years in the laboratory. Firstly two codes included in the UMG package have been tested and compared: MAXED and GRAVEL. More recently, the CALIBAN cavity spectrum has been studied using CALMAR, a new adjustment tool currently under development at the CEA Center of Cadarache. The article will discuss and compare the results and the quality of spectrum rebuilding obtained with the UMG codes and with the CALMAR software, from a set of activation measurements carried out in the CALIBAN irradiation cavity.

  5. A temporospatial map that defines specific steps at which critical surfaces in the Gag MA and CA domains act during immature HIV-1 capsid assembly in cells.

    PubMed

    Robinson, Bridget A; Reed, Jonathan C; Geary, Clair D; Swain, J Victor; Lingappa, Jaisri R

    2014-05-01

    During HIV-1 assembly, Gag polypeptides target to the plasma membrane, where they multimerize to form immature capsids that undergo budding and maturation. Previous mutational analyses identified residues within the Gag matrix (MA) and capsid (CA) domains that are required for immature capsid assembly, and structural studies showed that these residues are clustered on four exposed surfaces in Gag. Exactly when and where the three critical surfaces in CA function during assembly are not known. Here, we analyzed how mutations in these four critical surfaces affect the formation and stability of assembly intermediates in cells expressing the HIV-1 provirus. The resulting temporospatial map reveals that critical MA residues act during membrane targeting, residues in the C-terminal CA subdomain (CA-CTD) dimer interface are needed for the stability of the first membrane-bound assembly intermediate, CA-CTD base residues are necessary for progression past the first membrane-bound intermediate, and residues in the N-terminal CA subdomain (CA-NTD) stabilize the last membrane-bound intermediate. Importantly, we found that all four critical surfaces act while Gag is associated with the cellular facilitators of assembly ABCE1 and DDX6. When correlated with existing structural data, our findings suggest the following model: Gag dimerizes via the CA-CTD dimer interface just before or during membrane targeting, individual CA-CTD hexamers form soon after membrane targeting, and the CA-NTD hexameric lattice forms just prior to capsid release. This model adds an important new dimension to current structural models by proposing the potential order in which key contacts within the immature capsid lattice are made during assembly in cells. While much is known about the structure of the completed HIV-1 immature capsid and domains of its component Gag proteins, less is known about the sequence of events leading to formation of the HIV-1 immature capsid. Here we used biochemical and

  6. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly

    PubMed Central

    Aceti, Massimiliano; Creson, Thomas K.; Vaissiere, Thomas; Rojas, Camilo; Huang, Wen-Chin; Wang, Ya-Xian; Petralia, Ronald S.; Page, Damon T.; Miller, Courtney A.; Rumbaugh, Gavin

    2014-01-01

    Background Genetic haploinsufficiency of Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability (ID), epilepsy, schizophrenia (SCZ), and autism spectrum (ASD) disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathological developmental processes common among distinct brain disorders. Methods A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine damage, cortical circuit assembly and the window for genetic rescue in order to understand how damaging mutations disrupt key substrates of mouse brain development. Results Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis, and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults. Conclusions Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathological process in developmental brain disorders. PMID:25444158

  7. Osteogenesis of peripheral blood mesenchymal stem cells in self assembling peptide nanofiber for healing critical size calvarial bony defect

    PubMed Central

    Wu, Guofeng; Pan, Mengjie; Wang, Xianghai; Wen, Jinkun; Cao, Shangtao; Li, Zhenlin; Li, Yuanyuan; Qian, Changhui; Liu, Zhongying; Wu, Wutian; Zhu, Lixin; Guo, Jiasong

    2015-01-01

    Peripheral blood mesenchymal stem cells (PBMSCs) may be easily harvested from patients, permitting autologous grafts for bone tissue engineering in the future. However, the PBMSC’s capabilities of survival, osteogenesis and production of new bone matrix in the defect area are still unclear. Herein, PBMSCs were seeded into a nanofiber scaffold of self-assembling peptide (SAP) and cultured in osteogenic medium. The results indicated SAP can serve as a promising scaffold for PBMSCs survival and osteogenic differentiation in 3D conditions. Furthermore, the SAP seeded with the induced PBMSCs was splinted by two membranes of poly(lactic)-glycolic acid (PLGA) to fabricate a composited scaffold which was then used to repair a critical-size calvarial bone defect model in rat. Twelve weeks later the defect healing and mineralization were assessed by H&E staining and microcomputerized tomography (micro-CT). The osteogenesis and new bone formation of grafted cells in the scaffold were evaluated by immunohistochemistry. To our knowledge this is the first report with solid evidence demonstrating PBMSCs can survive in the bone defect area and directly contribute to new bone formation. Moreover, the present data also indicated the tissue engineering with PBMSCs/SAP/PLGA scaffold can serve as a novel prospective strategy for healing large size cranial defects. PMID:26568114

  8. Criticality Calculations of Fresh LEU and MOX Assemblies for Transport and Storage at the Balakovo Nuclear Power Plant

    SciTech Connect

    Goluoglu, S.

    2001-01-11

    Transportation of low-enriched uranium (LEU) and mixed-oxide (MOX) assemblies to and within the VVER-1000-type Balakovo Nuclear Power Plant is investigated. Effective multiplication factors for fresh fuel assemblies on the railroad platform, fresh fuel assemblies in the fuel transportation vehicle, and fresh fuel assemblies in the spent fuel storage pool are calculated. If there is no absorber between the units, the configurations with all MOX assemblies result in higher effective multiplication factors than the configurations with all LEU assemblies when the system is dry. When the system is flooded, the configurations with all LEU assemblies result in higher effective multiplication factors. For normal operating conditions, effective multiplication factors for all configurations are below the presumed upper subcritical limit of 0.95. For an accident condition of a fully loaded fuel transportation vehicle that is flooded with low-density water (possibly from a fire suppression system), the presumed upper subcritical limit is exceeded by configurations containing LEU assemblies.

  9. Clathrin self-assembly is regulated by three light-chain residues controlling the formation of critical salt bridges.

    PubMed

    Ybe, J A; Greene, B; Liu, S H; Pley, U; Parham, P; Brodsky, F M

    1998-08-10

    Clathrin self-assembly into a polyhedral lattice mediates membrane protein sorting during endocytosis and organelle biogenesis. Lattice formation occurs spontaneously in vitro at low pH and, intracellularly, is triggered by adaptors at physiological pH. To begin to understand the cellular regulation of clathrin polymerization, we analyzed molecular interactions during the spontaneous assembly of recombinant hub fragments of the clathrin heavy chain, which bind clathrin light-chain subunits and mimic the self-assembly of intact clathrin. Reconstitution of hubs using deletion and substitution mutants of the light-chain subunits revealed that the pH dependence of clathrin self-assembly is controlled by only three acidic residues in the clathrin light-chain subunits. Salt inhibition of hub assembly identified two classes of salt bridges which are involved and deletion analysis mapped the clathrin heavy-chain regions participating in their formation. These combined observations indicated that the negatively charged regulatory residues, identified in the light-chain subunits, inhibit the formation of high-affinity salt bridges which would otherwise induce clathrin heavy chains to assemble at physiological pH. In the presence of light chains, clathrin self-assembly depends on salt bridges that form only at low pH, but is exquisitely sensitive to regulation. We propose that cellular clathrin assembly is controlled via the simple biochemical mechanism of reversing the inhibitory effect of the light-chain regulatory sequence, thereby promoting high-affinity salt bridge formation.

  10. DOE Lab-to-Lab MPC&A workshop for cooperative tasks with Russian institutes: Focus on critical assemblies and item facilities

    SciTech Connect

    Bieber, A.M. Jr.; Fishbone, L.G.; Kato, W.Y.; Lazareth, O.W.; Suda, S.C.; Garcia, D.; Haga, R.

    1995-12-01

    Seventeen Russian scientists and engineers representing five different institutes participated in a Workshop on material control and accounting as part of the US-Russian Lab-to-Lab Cooperative Program in Nuclear Materials Protection, Control, and Accounting (MPC&A). In addition to presentations and discussions, the Workshop included an exercise at Brookhaven National Laboratory (BNL) and demonstrations at the Zero Power Physics Reactor (critical-assembly facility) of Argonne National Laboratory-West (ANL-W). The Workshop particularly emphasized procedures for physical inventory-taking at critical assemblies and item facilities, with associated supporting techniques and methods. By learning these topics and applying the methods and experience at their own institutes, the Russian scientists and engineers will be able to determine and verify nuclear material inventories based on sound procedures, including measurements. This will constitute a significant enhancement to MPC&A at the Russian institutes.

  11. Critical Role of Conserved Hydrophobic Residues within the Major Homology Region in Mature Retroviral Capsid Assembly

    PubMed Central

    Purdy, John G.; Flanagan, John M.; Ropson, Ira J.; Rennoll-Bankert, Kristen E.; Craven, Rebecca C.

    2008-01-01

    During retroviral maturation, the CA protein undergoes dramatic structural changes and establishes unique intermolecular interfaces in the mature capsid shell that are different from those that existed in the immature precursor. The most conserved region of CA, the major homology region (MHR), has been implicated in both immature and mature assembly, although the precise contribution of the MHR residues to each event has been largely undefined. To test the roles of specific MHR residues in mature capsid assembly, an in vitro system was developed that allowed for the first-time formation of Rous sarcoma virus CA into structures resembling authentic capsids. The ability of CA to assemble organized structures was destroyed by substitutions of two conserved hydrophobic MHR residues and restored by second-site suppressors, demonstrating that these MHR residues are required for the proper assembly of mature capsids in addition to any role that these amino acids may play in immature particle assembly. The defect caused by the MHR mutations was identified as an early step in the capsid assembly process. The results provide strong evidence for a model in which the hydrophobic residues of the MHR control a conformational reorganization of CA that is needed to initiate capsid assembly and suggest that the formation of an interdomain interaction occurs early during maturation. PMID:18400856

  12. Effect of a dual-purpose cask payload increment of spent fuel assemblies from VVER 1000 Bushehr Nuclear Power Plant on basket criticality.

    PubMed

    Rezaeian, M; Kamali, J

    2017-01-01

    Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B4C) were investigated, and the minimum required receptacle pitch of the basket was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Random pseuoduridylation in vivo reveals critical region of Escherichia coli 23S rRNA for ribosome assembly

    PubMed Central

    Leppik, Margus; Liiv, Aivar

    2017-01-01

    Abstract Pseudouridine is the most common modified nucleoside in RNA, which is found in stable RNA species and in eukaryotic mRNAs. Functional analysis of pseudouridine is complicated by marginal effect of its absence. We demonstrate that excessive pseudouridines in rRNA inhibit ribosome assembly. Ten-fold increase of pseudouridines in the 16S and 23S rRNA made by a chimeric pseudouridine synthase leads to accumulation of the incompletely assembled large ribosome subunits. Hyper modified 23S rRNA is found in the r-protein assembly defective particles and are selected against in the 70S and polysome fractions showing modification interference. Eighteen positions of 23S rRNA were identified where isomerization of uridines interferes with ribosome assembly. Most of the interference sites are located in the conserved core of the large subunit, in the domain 0 of 23S rRNA, around the peptide exit tunnel. A plausible reason for pseudouridine-dependent inhibition of ribosome assembly is stabilization of rRNA structure, which leads to the folding traps of rRNA and to the retardation of the ribosome assembly. PMID:28334881

  14. Random pseuoduridylation in vivo reveals critical region of Escherichia coli 23S rRNA for ribosome assembly.

    PubMed

    Leppik, Margus; Liiv, Aivar; Remme, Jaanus

    2017-06-02

    Pseudouridine is the most common modified nucleoside in RNA, which is found in stable RNA species and in eukaryotic mRNAs. Functional analysis of pseudouridine is complicated by marginal effect of its absence. We demonstrate that excessive pseudouridines in rRNA inhibit ribosome assembly. Ten-fold increase of pseudouridines in the 16S and 23S rRNA made by a chimeric pseudouridine synthase leads to accumulation of the incompletely assembled large ribosome subunits. Hyper modified 23S rRNA is found in the r-protein assembly defective particles and are selected against in the 70S and polysome fractions showing modification interference. Eighteen positions of 23S rRNA were identified where isomerization of uridines interferes with ribosome assembly. Most of the interference sites are located in the conserved core of the large subunit, in the domain 0 of 23S rRNA, around the peptide exit tunnel. A plausible reason for pseudouridine-dependent inhibition of ribosome assembly is stabilization of rRNA structure, which leads to the folding traps of rRNA and to the retardation of the ribosome assembly. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods (1.506-cm Pitch)

    SciTech Connect

    Margaret A. Marshall

    2013-03-01

    A series of critical experiments were completed from 1962–1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967.a The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were performed to determine critical reflector arrangements, relative fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector” (see Reference 1). The experiment studied in this evaluation was the second of the series and had the fuel rods in a 1.506-cm-triangular pitch. One critical configuration was found (see Reference 3). Once the critical configuration had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U,bc and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configuration are described in Sections 1.3, 1.4, and 1.7, respectively.

  16. Critical Contribution of Tyr15 in the HIV-1 Integrase (IN) in Facilitating IN Assembly and Nonenzymatic Function through the IN Precursor Form with Reverse Transcriptase.

    PubMed

    Takahata, Tatsuro; Takeda, Eri; Tobiume, Minoru; Tokunaga, Kenzo; Yokoyama, Masaru; Huang, Yu-Lun; Hasegawa, Atsuhiko; Shioda, Tatsuo; Sato, Hironori; Kannagi, Mari; Masuda, Takao

    2017-01-01

    sites targeted by INSTI, have been discovered. Importantly, ALLINIs affect the nonenzymatic role(s) of HIV-1 IN, providing a rationale for the development of next-generation IN inhibitors with a mechanism that is distinct from that of INSTI. Here, we demonstrate that Tyr15 in the HIV-1 IN NTD plays a critical role during IN assembly by facilitating the hydrophobic interaction of the NTD with the other domains of IN. Importantly, we found that the functional assembly of IN through its fusion form with RT is critical for IN to exert its nonenzymatic function. Our results provide a novel mechanistic insight into the nonenzymatic function of HIV-1 IN and its prevention. Copyright © 2016 American Society for Microbiology.

  17. The Assembly of EDC4 and Dcp1a into Processing Bodies Is Critical for the Translational Regulation of IL-6.

    PubMed

    Seto, Eri; Yoshida-Sugitani, Reiko; Kobayashi, Toshihiko; Toyama-Sorimachi, Noriko

    2015-01-01

    Macrophages play critical roles in the onset of various diseases and in maintaining homeostasis. There are several functional subsets, of which M1 and M2 macrophages are of particular interest because they are differentially involved in inflammation and its resolution. Here, we investigated the differences in regulatory mechanisms between M1- and M2-polarized macrophages by examining mRNA metabolic machineries such as stress granules (SGs) and processing bodies (P-bodies). Human monocytic leukemia THP-1 cells cultured under M1-polarizing conditions (M1-THPs) had less ability to assemble oxidative-stress-induced SGs than those cultured under M2-polarizing conditions (M2-THPs). In contrast, P-body assembly in response to oxidative stress or TLR4 stimulation was increased in M1-THPs as compared to M2-THPs. These results suggest that mRNA metabolism is controlled differently in M1-THPs and M2-THPs. Interestingly, knocking down EDC4 or Dcp1a, which are components of P-bodies, severely reduced the production of IL-6, but not TNF-α in M1-THPs without decreasing the amount of IL-6 mRNA. This is the first report to demonstrate that the assembly of EDC4 and Dcp1a into P-bodies is critical in the posttranscriptional regulation of IL-6. Thus, improving our understanding of the mechanisms governing mRNA metabolism by examining macrophage subtypes may lead to new therapeutic targets.

  18. The Assembly of EDC4 and Dcp1a into Processing Bodies Is Critical for the Translational Regulation of IL-6

    PubMed Central

    Kobayashi, Toshihiko; Toyama-Sorimachi, Noriko

    2015-01-01

    Macrophages play critical roles in the onset of various diseases and in maintaining homeostasis. There are several functional subsets, of which M1 and M2 macrophages are of particular interest because they are differentially involved in inflammation and its resolution. Here, we investigated the differences in regulatory mechanisms between M1- and M2-polarized macrophages by examining mRNA metabolic machineries such as stress granules (SGs) and processing bodies (P-bodies). Human monocytic leukemia THP-1 cells cultured under M1-polarizing conditions (M1-THPs) had less ability to assemble oxidative-stress-induced SGs than those cultured under M2-polarizing conditions (M2-THPs). In contrast, P-body assembly in response to oxidative stress or TLR4 stimulation was increased in M1-THPs as compared to M2-THPs. These results suggest that mRNA metabolism is controlled differently in M1-THPs and M2-THPs. Interestingly, knocking down EDC4 or Dcp1a, which are components of P-bodies, severely reduced the production of IL-6, but not TNF-α in M1-THPs without decreasing the amount of IL-6 mRNA. This is the first report to demonstrate that the assembly of EDC4 and Dcp1a into P-bodies is critical in the posttranscriptional regulation of IL-6. Thus, improving our understanding of the mechanisms governing mRNA metabolism by examining macrophage subtypes may lead to new therapeutic targets. PMID:25970328

  19. Critical Configuration and Physics Mesaurements for Graphite Reflected Assemblies of U(93.15)O2 Fuel Rods (1.27-CM Pitch)

    SciTech Connect

    Margaret A. Marshall

    2011-09-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory's Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950's efforts were made to study 'power plants for the production of electrical power in space vehicles'. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in FY 1964, 1965, and 1966. A summary of the program's effort was compiled in 1967. The delayed critical experiments served as a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated 253 stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. 'The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.' The experiment studied within this evaluation was the first of the series and had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Information for this evaluation was compiled from Reference 1 and 2, reports on subsequent experiments in the series, and the experimental logbook as well as from communication with the experimenter, John T. Mihalczo.

  20. Archaeal surface appendages: their function and the critical role of N-linked glycosylation in their assembly

    NASA Astrophysics Data System (ADS)

    Jarrell, Ken F.; Nair, Divya B.; Jones, Gareth M.; Aizawa, S.-I.; Chong, James J. P.; Stark, Meg; Logan, Susan M.; Vinogradov, Evgeny; Kelly, John F.

    2011-10-01

    Many cultivated archaea are extremophiles and, as such, various archaea inhabit some of the most inhospitable niches on the planet in terms of temperature, pH, salinity and anaerobiosis. Different archaeal species have been shown to produce a number of unusual and sometimes unique surface structures. The best studied of these are flagella which are fundamentally different from bacterial flagella and instead bear numerous similarities to bacterial type IV pili in their structure and likely assembly. The major structural proteins, flagellins, are made as preproteins with type IV pilin-like signal peptides processed by a specific signal peptidase. In addition, the flagellins are glycoproteins with attached N-linked glycans. Both of these posttranslational modifications have been studied in the anaerobic archaeon, Methanococcus maripaludis, an organism which also possesses other surface appendages, an unusual version of type IV pili, whose major constituents are also glycoproteins. Analysis of mutants unable to make either or both of flagella and pili demonstrated that both are essential for attachment to surfaces. A number of mutants defective in the assembly and biosynthesis of the tetrasaccharide N-linked to the flagellins have been isolated. Investigations of these mutants by electron microscopy, mass spectrometry and motility assays have demonstrated that flagellins possessing no attached glycan or a glycan truncated to a single sugar cannot assemble flagella on their surface. Mutants which can attach a glycan of 2 or 3 sugars to flagellins assemble flagella but they are impaired in their swimming compared with wildtype cells which attach the tetrasaccharide to their flagellins.

  1. A conserved region in the prM protein is a critical determinant in the assembly of flavivirus particles.

    PubMed

    Yoshii, Kentaro; Igarashi, Manabu; Ichii, Osamu; Yokozawa, Kana; Ito, Kimihito; Kariwa, Hiroaki; Takashima, Ikuo

    2012-01-01

    Flaviviruses are assembled to bud into the lumen of the endoplasmic reticulum (ER) and are secreted through the vesicle transport pathway, but the details of the molecular mechanism of virion assembly remain largely unknown. In this study, a highly conserved region in the prM protein was identified among flaviviruses. In the subviral particle (SP) system of tick-borne encephalitis virus (TBEV) and Japanese encephalitis virus, secretion of SPs was impaired by a mutation in the conserved region in the prM protein. Viral proteins were sparse in the Golgi complex and accumulated in the ER. Ultrastructural analysis revealed that long filamentous structures, rather than spherical SPs, were observed in the lumen of the ER as a result of the mutation. The production of infectious virions derived from infectious cDNA of TBEV was also reduced by mutations in the conserved region. Molecular modelling analysis suggested that the conserved region is important for the association of prM-envelope protein heterodimers in the formation of a spike of immature virion. These results are the first demonstration that the conserved region in the prM protein is a molecular determinant for the flavivirus assembly process.

  2. The Interdomain Linker Region of HIV-1 Capsid Protein is a Critical Determinant of Proper Core Assembly and Stability

    PubMed Central

    Jiang, Jiyang; Ablan, Sherimay; Derebail, Suchitra; Hercík, Kamil; Soheilian, Ferri; Thomas, James A.; Tang, Shixing; Hewlett, Indira; Nagashima, Kunio; Gorelick, Robert J.; Freed, Eric O.; Levin, Judith G.

    2011-01-01

    The HIV-1 capsid protein consists of two independently folded domains connected by a flexible peptide linker (residues 146–150), the function of which remains to be defined. To investigate the role of this region in virus replication, we made alanine or leucine substitutions in each linker residue and two flanking residues. Three classes of mutants were identified: (i) S146A and T148A behave like wild type (WT); (ii) Y145A, I150A, and L151A are noninfectious, assemble unstable cores with aberrant morphology, and synthesize almost no viral DNA; and (iii) P147L and S149A display a poorly infectious, attenuated phenotype. Infectivity of P147L and S149A is rescued specifically by pseudotyping with vesicular stomatitis virus envelope glycoprotein. Moreover, despite having unstable cores, these mutants assemble WT-like structures and synthesize viral DNA, although less efficiently than WT. Collectively, these findings demonstrate that the linker region is essential for proper assembly and stability of cores and efficient replication. PMID:22036671

  3. Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component

    PubMed Central

    Cai, Fei; Dou, Zhicheng; Bernstein, Susan L.; Leverenz, Ryan; Williams, Eric B.; Heinhorst, Sabine; Shively, Jessup; Cannon, Gordon C.; Kerfeld, Cheryl A.

    2015-01-01

    The marine Synechococcus and Prochlorococcus are the numerically dominant cyanobacteria in the ocean and important in global carbon fixation. They have evolved a CO2-concentrating-mechanism, of which the central component is the carboxysome, a self-assembling proteinaceous organelle. Two types of carboxysome, α and β, encapsulating form IA and form IB d-ribulose-1,5-bisphosphate carboxylase/oxygenase, respectively, differ in gene organization and associated proteins. In contrast to the β-carboxysome, the assembly process of the α-carboxysome is enigmatic. Moreover, an absolutely conserved α-carboxysome protein, CsoS2, is of unknown function and has proven recalcitrant to crystallization. Here, we present studies on the CsoS2 protein in three model organisms and show that CsoS2 is vital for α-carboxysome biogenesis. The primary structure of CsoS2 appears tripartite, composed of an N-terminal, middle (M)-, and C-terminal region. Repetitive motifs can be identified in the N- and M-regions. Multiple lines of evidence suggest CsoS2 is highly flexible, possibly an intrinsically disordered protein. Based on our results from bioinformatic, biophysical, genetic and biochemical approaches, including peptide array scanning for protein-protein interactions, we propose a model for CsoS2 function and its spatial location in the α-carboxysome. Analogies between the pathway for β-carboxysome biogenesis and our model for α-carboxysome assembly are discussed. PMID:25826651

  4. Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component.

    PubMed

    Cai, Fei; Dou, Zhicheng; Bernstein, Susan L; Leverenz, Ryan; Williams, Eric B; Heinhorst, Sabine; Shively, Jessup; Cannon, Gordon C; Kerfeld, Cheryl A

    2015-03-27

    The marine Synechococcus and Prochlorococcus are the numerically dominant cyanobacteria in the ocean and important in global carbon fixation. They have evolved a CO2-concentrating-mechanism, of which the central component is the carboxysome, a self-assembling proteinaceous organelle. Two types of carboxysome, α and β, encapsulating form IA and form IB d-ribulose-1,5-bisphosphate carboxylase/oxygenase, respectively, differ in gene organization and associated proteins. In contrast to the β-carboxysome, the assembly process of the α-carboxysome is enigmatic. Moreover, an absolutely conserved α-carboxysome protein, CsoS2, is of unknown function and has proven recalcitrant to crystallization. Here, we present studies on the CsoS2 protein in three model organisms and show that CsoS2 is vital for α-carboxysome biogenesis. The primary structure of CsoS2 appears tripartite, composed of an N-terminal, middle (M)-, and C-terminal region. Repetitive motifs can be identified in the N- and M-regions. Multiple lines of evidence suggest CsoS2 is highly flexible, possibly an intrinsically disordered protein. Based on our results from bioinformatic, biophysical, genetic and biochemical approaches, including peptide array scanning for protein-protein interactions, we propose a model for CsoS2 function and its spatial location in the α-carboxysome. Analogies between the pathway for β-carboxysome biogenesis and our model for α-carboxysome assembly are discussed.

  5. Zeus: Fast-spectrum critical assemblies with an iron-HEU core surrounded by a copper reflector

    SciTech Connect

    Hayes, D. K.; Sanchez, R. G.; Kahler, A. C.

    2006-07-01

    Experiments to investigate critical systems of iron moderated highly enriched uranium in the intermediate-energy range were attempted. However, due to size limitations, the systems fell into the fast-energy range. Two critical configurations were established with a uranium mass of {approx} 198 kg and a Fe/{sup 235}U Ratio of {approx}15. Experimental uncertainties were systematically evaluated to estimate their effect on multiplication. The combined uncertainty for these experiments is estimated to be {+-}0.0024 {Delta}{sub eff}. Consequently, both Zeus iron configurations are judged to be acceptable for use as criticality-safety benchmark experiments. (authors)

  6. Toughness governs the rupture of the interfacial H-bond assemblies at a critical length scale in hybrid materials.

    PubMed

    Sakhavand, Navid; Muthuramalingam, Prakash; Shahsavari, Rouzbeh

    2013-06-25

    The geometry and material property mismatch across the interface of hybrid materials with dissimilar building blocks make it extremely difficult to fully understand the lateral chemical bonding processes and design nanocomposites with optimal performance. Here, we report a combined first-principles study, molecular dynamics modeling, and theoretical derivations to unravel the detailed mechanisms of H-bonding, deformation, load transfer, and failure at the interface of polyvinyl alcohol (PVA) and silicates, as an example of hybrid materials with geometry and property mismatch across the interface. We identify contributing H-bonds that are key to adhesion and demonstrate a specific periodic pattern of interfacial H-bond network dictated by the interface mismatch and intramolecular H-bonding. We find that the maximum toughness, incorporating both intra- and interlayer strain energy contributions, govern the existence of optimum overlap length and thus the rupture of interfacial (interlayer) H-bond assemblies in natural and synthetic hybrid materials. This universally valid result is in contrast to the previous reports that correlate shear strength with rupture of H-bonds assemblies at a finite overlap length. Overall, this work establishes a unified understanding to explain the interplay between geometric constraints, interfacial H-bonding, materials characteristics, and optimal mechanical properties in hybrid organic-inorganic materials.

  7. Centriolar satellite– and hMsd1/SSX2IP-dependent microtubule anchoring is critical for centriole assembly

    PubMed Central

    Hori, Akiko; Peddie, Christopher J.; Collinson, Lucy M.; Toda, Takashi

    2015-01-01

    Centriolar satellites are numerous electron-dense granules dispersed around the centrosome. Mutations in their components are linked to various human diseases, but their molecular roles remain elusive. In particular, the significance of spatial communication between centriolar satellites and the centrosome is unknown. hMsd1/SSX2IP localizes to both the centrosome and centriolar satellites and is required for tethering microtubules to the centrosome. Here we show that hMsd1/SSX2IP-mediated microtubule anchoring is essential for proper centriole assembly and duplication. On hMsd1/SSX2IP knockdown, the centriolar satellites become stuck at the microtubule minus end near the centrosome. Intriguingly, these satellites contain many proteins that normally localize to the centrosome. Of importance, microtubule structures, albeit not being anchored properly, are still required for the emergence of abnormal satellites, as complete microtubule depolymerization results in the disappearance of these aggregates from the vicinity of the centrosome. We highlighted, using superresolution and electron microscopy, that under these conditions, centriole structures are faulty. Remarkably, these cells are insensitive to Plk4 overproduction–induced ectopic centriole formation, yet they accelerate centrosome reduplication upon hydroxyurea arrest. Finally, the appearance of satellite aggregates is cancer cell specific. Together our findings provide novel insights into the mechanism of centriole assembly and microtubule anchoring. PMID:25833712

  8. Kinetic partitioning during de novo septin filament assembly creates a critical G1 "window of opportunity" for mutant septin function.

    PubMed

    Schaefer, Rachel M; Heasley, Lydia R; Odde, David J; McMurray, Michael A

    2016-09-16

    Septin proteins form highly conserved cytoskeletal filaments composed of hetero-oligomers with strict subunit stoichiometry. Mutations within one hetero-oligomerization interface (the "G" interface) bias the mutant septin toward conformations that are incompatible with filament assembly, causing disease in humans and, in budding yeast cells, temperature-sensitive defects in cytokinesis. We previously found that, when the amount of other hetero-oligomerization partners is limiting, wild-type and G interface-mutant alleles of a given yeast septin "compete" along parallel but distinct folding pathways for occupancy of a limited number of positions within septin hetero-octamers. Here, we synthesize a mathematical model that outlines the requirements for this phenomenon: if a wild-type septin traverses a folding pathway that includes a single rate-limiting folding step, the acquisition by a mutant septin of additional slow folding steps creates an initially large disparity between wild-type and mutant in the cellular concentrations of oligomerization-competent monomers. When the 2 alleles are co-expressed, this kinetic disparity results in mutant exclusion from hetero-oligomers, even when the folded mutant monomer is oligomerization-competent. To test this model experimentally, we first visualize the kinetic delay in mutant oligomerization in living cells, and then narrow or widen the "window of opportunity" for mutant septin oligomerization by altering the length of the G1 phase of the yeast cell cycle, and observe the predicted exacerbation or suppression, respectively, of mutant cellular phenotypes. These findings reveal a fundamental kinetic principle governing in vivo assembly of multiprotein complexes, independent of the ability of the subunits to associate with each other.

  9. Centriolar satellite- and hMsd1/SSX2IP-dependent microtubule anchoring is critical for centriole assembly.

    PubMed

    Hori, Akiko; Peddie, Christopher J; Collinson, Lucy M; Toda, Takashi

    2015-06-01

    Centriolar satellites are numerous electron-dense granules dispersed around the centrosome. Mutations in their components are linked to various human diseases, but their molecular roles remain elusive. In particular, the significance of spatial communication between centriolar satellites and the centrosome is unknown. hMsd1/SSX2IP localizes to both the centrosome and centriolar satellites and is required for tethering microtubules to the centrosome. Here we show that hMsd1/SSX2IP-mediated microtubule anchoring is essential for proper centriole assembly and duplication. On hMsd1/SSX2IP knockdown, the centriolar satellites become stuck at the microtubule minus end near the centrosome. Intriguingly, these satellites contain many proteins that normally localize to the centrosome. Of importance, microtubule structures, albeit not being anchored properly, are still required for the emergence of abnormal satellites, as complete microtubule depolymerization results in the disappearance of these aggregates from the vicinity of the centrosome. We highlighted, using superresolution and electron microscopy, that under these conditions, centriole structures are faulty. Remarkably, these cells are insensitive to Plk4 overproduction-induced ectopic centriole formation, yet they accelerate centrosome reduplication upon hydroxyurea arrest. Finally, the appearance of satellite aggregates is cancer cell specific. Together our findings provide novel insights into the mechanism of centriole assembly and microtubule anchoring. © 2015 Hori et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. AREVA NP next generation fresh UO{sub 2} fuel assembly shipping cask: SCALE - CRISTAL comparisons lead to safety criticality confidence

    SciTech Connect

    Doucet, M.; Landrieu, M.; Montgomery, R.; O' Donnell, B.

    2007-07-01

    AREVA NP as a worldwide PWR fuel provider has to have a fleet of fresh UO{sub 2} shipping casks being agreed within a lot of countries including USA, France, Germany, Belgium, Sweden, China, and South Africa - and to accommodate foreseen EPR Nuclear Power Plants fuel buildings. To reach this target the AREVA NP Fuel Sector decided to develop an up-to-date shipping cask (so called MAP project) gathering experience feedback of the today fleet and an improved safety allowing the design to comply with international regulations (NRC and IAEA) and local Safety Authorities. Based on pre design features a safety case was set up to highlight safety margins. Criticality hypothetical accidental assumptions were defined: - Preferential flooding; - Fuel rod lattice pitch expansion for full length of fuel assemblies; - Neutron absorber penalty; -... Well known computer codes, American SCALE package and French CRISTAL package, were used to check configurations reactivity and to ensure that both codes lead to coherent results. Basic spectral calculations are based on similar algorithms with specific microscopic cross sections ENDF/BV for SCALE and JEF2.2 for CRISTAL. The main differences between the two packages is on one hand SCALE's three dimensional fuel assembly geometry is described by a pin by pin model while an homogenized fuel assembly description is used by CRISTAL and on the other hand SCALE is working with either 44 or 238 neutron energy groups while CRISTAL is with a 172 neutron energy groups. Those two computer packages rely on a wide validation process helping defining uncertainties as required by regulations in force. The shipping cask with two fuel assemblies is designed to maximize fuel isolation inside a cask and with neighboring ones even for large array configuration cases. Proven industrial products are used: - Boral{sup TM} as neutron absorber; - High density polyethylene (HDPE) or Nylon as neutron moderator; - Foam as thermal and mechanical protection. The

  11. A critical assembly designed to measure neutronic benchmarks in support of the space nuclear thermal propulsion program

    NASA Astrophysics Data System (ADS)

    Parma, Edward J.; Ball, Russell M.; Hoovler, Gary S.; Selcow, Elizabeth C.; Cerbone, Ralph J.

    1993-01-01

    A reactor designed to perform criticality experiments in support of the Space Nuclear Thermal Propulsion program is currently in operation at the Sandia National Laboratories' reactor facility. The reactor is a small, water-moderated system that uses highly enriched uranium particle fuel in a 19-element configuration. Its purpose is to obtain neutronic measurements under a variety of experimental conditions that are subsequently used to benchmark rector-design computer codes. Brookhaven National Laboratory, Babcock & Wilcox, and Sandia National Laboratories participated in determining the reactor's performance requirements, design, follow-on experimentation, and in obtaining the licensing approvals. Brookhaven National Laboratory is primarily responsible for the analytical support, Babcock & Wilcox the hardware design, and Sandia National Laboratories the operational safety. All of the team members participate in determining the experimentation requirements, performance, and data reduction. Initial criticality was achieved in October 1989. An overall description of the reactor is presented along with key design features and safety-related aspects.

  12. A critical assembly designed to measure neutronic benchmarks in support of the Space Nuclear Thermal Propulsion program

    NASA Astrophysics Data System (ADS)

    Parma, E. J.; Ball, R. M.; Hoovler, G. S.; Selcow, E. C.; Cerbone, R. J.

    1992-10-01

    A reactor designed to perform criticality experiments in support of the Space Nuclear Thermal Propulsion program is currently in operation at the Sandia National Laboratories' reactor facility. The reactor is a small, water-moderated system that uses highly enriched uranium particle fuel in a 19-element configuration. Its purpose is to obtain neutronic measurements under a variety of experimental conditions that are subsequently used to benchmark reactor-design computer codes. Brookhaven National Laboratory, Babcock & Wilcox, and Sandia National Laboratories participated in determining the reactor's performance requirements, design, follow on experimentation, and in obtaining the licensing approvals. Brookhaven National Laboratory is primarily responsible for the analytical support, Babcock & Wilcox the hardware design, and Sandia National Laboratories the operational safety. All of the team members participate in determining the experimentation requirements, performance, and data reduction. Initial criticality was achieved in October 1989. An over-all description of the reactor is presented along with key design features and safety-related aspects.

  13. Impact of uncertainties in the uranium 235 cross section resonance structure on characteristics measured in the BFS-79 critical assemblies

    NASA Astrophysics Data System (ADS)

    Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady

    2017-09-01

    The report presents the results of an analysis of benchmark experiments form the international ICSBEP Handbook (HEU-MET-INTER-005) carried out at the the SSC RF - IPPE in cooperation with the Idaho National Laboratory (INL, USA) applicable to the verification of calculations of a wide range of tasks related to safe storage of vitrified radioactive waste. Experiments on the BFS assemblies make it possible to perform a large series of studies needed for neutron data refinement, including measurements of reactivity effects which allow testing the neutron cross section resonance structure. This series of studies is considered as a sample joint analysis framework for differential and integral experiments required to correct nuclea data files of the ROSFOND evaluated neutron data library. Thus, it is shown that despite the wide range of available experimental data, in so far as it relates to the resonance region refinement, the experiments on reactivity measurement make it possible to more subtly reflect the resonance structure peculiarities in addition to the time-of-flight measurement method.

  14. CRITICAL CONFIGURATION FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)

    SciTech Connect

    Margaret A. Marshall

    2012-05-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950’s efforts were made to study “power plants for the production of electrical power in space vehicles”. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of 253 unmoderated stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.” The first two experiments in the series were evaluated in HEU-COMP-FAST-001 (SCCA-FUND-EXP-001) and HEU-COMP-FAST-002 (SCCA-FUND-EXP-002). The first experiment had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank (References 1 and 2). The second experiment in the series, performed in early 1963, had the 253 fuel tubes at a 1.506-cm triangular lattice in a 25.96 cm OD core tank and graphite reflectors on all sides. The third set of experiments in the series, performed in mid-1963, which is studied in this evaluation, used beryllium reflectors. The beryllium reflected system was the preferred reactor configuration for this application because of the small thickness of the reflector. The two core configurations had the 253 fuel tubes

  15. CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR GRAPHITE REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH)

    SciTech Connect

    Margaret A. Marshall

    2012-03-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950’s efforts were made to study “power plants for the production of electrical power in space vehicles”. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of 253 unmoderated stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.” The first experiment in the series was evaluated in HEU-COMP-FAST-001. It had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank (References 1 and 2). The second experiment in the series, performed in early 1963, which is studied in this evaluation, had the 253 fuel tubes at a 1.506-cm triangular lattice in a 25.96 cm OD core tank and graphite reflectors on all sides. The experiment has been determined to represent an acceptable benchmark experiment. Information for this evaluation was compiled from published reports on all three parts of the experimental series (Reference 1-5) and the experimental logbook as

  16. Core Binding Factor Beta Plays a Critical Role by Facilitating the Assembly of the Vif-Cullin 5 E3 Ubiquitin Ligase

    PubMed Central

    Fribourgh, Jennifer L.; Nguyen, Henry C.; Wolfe, Leslie S.; DeWitt, David C.; Zhang, Wenyan; Yu, Xiao-Fang; Rhoades, Elizabeth

    2014-01-01

    ABSTRACT The HIV-1 virion infectivity factor (Vif) targets the cellular cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) for degradation via the host ubiquitin-proteasome pathway. Vif recruits a cellular E3 ubiquitin ligase to polyubiquitinate A3G/F. The activity of Vif critically depends on the cellular core binding factor beta (CBFβ). In this study, we investigated the Vif-CBFβ interaction and the role of CBFβ in the E3 ligase assembly. Vif-CBFβ interaction requires an extensive region of Vif spanning most of its amino terminus and zinc finger region, and cullin 5 (Cul5) binding enhances the stability of the Vif-CBFβ interaction. Our results further demonstrate that CBFβ plays a critical role in facilitating Cul5 binding to the Vif/elongin B/elongin C complex. Vif, with or without bound substrate, is unable to bind Cul5 in the absence of CBFβ. These studies support the notion that CBFβ serves as a molecular chaperone to facilitate Vif-E3 ligase assembly. IMPORTANCE The host antiviral restriction factors A3G/F inhibit viral replication. The HIV-1 protein Vif targets A3G/F for degradation. This immune evasion activity of Vif is dependent on the cellular factor CBFβ. Multiple regions of Vif are known to be important for Vif function, but the mechanisms are unclear. The studies described here provide important information about the Vif-CBFβ interaction interface and the function of CBFβ in E3 ligase assembly. In particular, our comprehensive Vif-CBFβ interface mapping results help to delineate the role of various Vif regions, determining if they are important for binding CBFβ or A3G/F. Furthermore, our studies reveal an important potential mechanism of CBFβ that has not been shown before. Our results suggest that CBFβ may serve as a molecular chaperone to enable Vif to adopt an appropriate conformation for interaction with the Cul5-based E3 ligase. This study advances our understanding of how CBFβ facilitates the Vif-mediated degradation of

  17. Aurora-A is a critical regulator of microtubule assembly and nuclear activity in mouse oocytes, fertilized eggs, and early embryos.

    PubMed

    Yao, Li-Juan; Zhong, Zhi-Sheng; Zhang, Li-Sheng; Chen, Da-Yuan; Schatten, Heide; Sun, Qing-Yuan

    2004-05-01

    Aurora-A is a serine/threonine protein kinase that plays a role in cell-cycle regulation. The activity of this kinase has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this study, the changes in aurora-;A expression were revealed in mouse oocytes using Western blotting. The subcellular localization of aurora-A during oocyte meiotic maturation, fertilization, and early cleavages as well as after antibody microinjection or microtubule assembly perturbance was studied with confocal microscopy. The quantity of aurora-A protein was high in the germinal vesicle (GV) and metaphase II (MII) oocytes and remained stable during other meiotic maturation stages. Aurora-A concentrated in the GV before meiosis resumption, in the pronuclei of fertilized eggs, and in the nuclei of early embryo blastomeres. Aurora-A was localized to the spindle poles of the meiotic spindle from the metaphase I (MI) stage to metaphase II stage. During early embryo development, aurora-A was found in association with the mitotic spindle poles. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. Aurora-A antibody microinjection decreased the rate of germinal vesicle breakdown (GVBD) and distorted MI spindle organization. Our results indicate that aurora-A is a critical regulator of cell-cycle progression and microtubule organization during mouse oocyte meiotic maturation, fertilization, and early embryo cleavage.

  18. Critical Configuration and Physics Measurements for Beryllium Reflected Assemblies of U(93.15)O₂ Fuel Rods (1.506-cm Pitch and 7-Tube Clusters)

    SciTech Connect

    Marshall, Margaret A.; Bess, John D.; Briggs, J. Blair; Murphy, Michael F.; Mihalczo, John T.

    2015-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one Na

  19. CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)

    SciTech Connect

    Margaret A. Marshall

    2014-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one Na

  20. CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH)

    SciTech Connect

    Margaret A. Marshall

    2013-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one Na

  1. The mitochondrial disease associated protein Ndufaf2 is dispensable for Complex-1 assembly but critical for the regulation of oxidative stress

    PubMed Central

    Schlehe, Julia S.; Journel, Marion S.M.; Taylor, Kelsey P.; Amodeo, Katherine D.

    2013-01-01

    Deficiency in human mitochondrial Complex-1 has been linked to a wide variety of neurological disorders. Homozygous deletion of the Complex-1 associated protein, Ndufaf2, leads to a severe juvenile onset encephalopathy involving degeneration of the substantia nigra and other sub-cortical regions resulting in adolescent lethality. To understand the precise role of Ndufaf2 in Complex-1 function and its links to neurologic disease, we studied the effects on Complex-1 assembly and function, as well as pathological consequences at the cellular level, in multiple in vitro models of Ndufaf2 deficiency. Using both Ndufaf2-deficient human neuroblastoma cells and primary fibroblasts cultured from Ndufaf2 knock-out mice we found that Ndufaf2-deficiency selectively reduces Complex-1 activity. While Ndufaf2 is traditionally referred to as an assembly factor of Complex-1, surprisingly, however, Ndufaf2-deficient cells were able to assemble a fully mature Complex-1 enzyme, albeit with reduced kinetics. Importantly, no evidence of intermediate or incomplete assembly was observed. Ndufaf2 deficiency resulted in significant increases in oxidative stress and mitochondrial DNA deletion, consistent with contemporary hypotheses regarding the pathophysiology of inherited mutations in Complex-1 disorders. These data suggest that Ndufaf2, unlike other Complex-1 assembly factors, may be more accurately described as a chaperone involved in proper folding during Complex-1 assembly, since it is dispensable for Complex-1 maturation but not its proper function. PMID:23702311

  2. N-terminal basic amino acid residues of Beet black scorch virus capsid protein play a critical role in virion assembly and systemic movement.

    PubMed

    Zhang, Xiaofeng; Zhao, Xiaofei; Zhang, Yanjing; Niu, Shaofang; Qu, Feng; Zhang, Yongliang; Han, Chenggui; Yu, Jialin; Li, Dawei

    2013-06-20

    Beet black scorch virus (BBSV) is a small single-stranded, positive-sense RNA plant virus belonging to the genus Necrovirus, family Tombusviridae. Its capsid protein (CP) contains a 13 amino acid long basic region at the N-terminus, rich in arginine and lysine residues, which is thought to interact with viral RNA to initiate virion assembly. In the current study, a series of BBSV mutants containing amino acid substitutions as well as deletions within the N-terminal region were generated and examined for their effects on viral RNA replication, virion assembly, and long distance spread in protoplasts and whole host plants of BBSV. The RNA-binding activities of the mutated CPs were also evaluated in vitro. These experiments allowed us to identify two key basic amino acid residues in this region that are responsible for initiating virus assembly through RNA-binding. Proper assembly of BBSV particles is in turn needed for efficient viral systemic movement. We have identified two basic amino acid residues near the N-terminus of the BBSV CP that bind viral RNA with high affinity to initiate virion assembly. We further provide evidence showing that systemic spread of BBSV in infected plants requires intact virions. This study represents the first in-depth investigation of the role of basic amino acid residues within the N-terminus of a necroviral CP.

  3. TOM9.2 Is a Calmodulin-Binding Protein Critical for TOM Complex Assembly but Not for Mitochondrial Protein Import in Arabidopsis thaliana.

    PubMed

    Parvin, Nargis; Carrie, Chris; Pabst, Isabelle; Läßer, Antonia; Laha, Debabrata; Paul, Melanie V; Geigenberger, Peter; Heermann, Ralf; Jung, Kirsten; Vothknecht, Ute C; Chigri, Fatima

    2017-04-03

    The translocon on the outer membrane of mitochondria (TOM) facilitates the import of nuclear-encoded proteins. The principal machinery of mitochondrial protein transport seems conserved in eukaryotes; however, divergence in the composition and structure of TOM components has been observed between mammals, yeast, and plants. TOM9, the plant homolog of yeast Tom22, is significantly smaller due to a truncation in the cytosolic receptor domain, and its precise function is not understood. Here we provide evidence showing that TOM9.2 from Arabidopsis thaliana is involved in the formation of mature TOM complex, most likely by influencing the assembly of the pore-forming subunit TOM40. Dexamethasone-induced RNAi gene silencing of TOM9.2 results in a severe reduction in the mature TOM complex, and the assembly of newly imported TOM40 into the complex is impaired. Nevertheless, mutant plants are fully viable and no obvious downstream effects of the loss of TOM complex, i.e., on mitochondrial import capacity, were observed. Furthermore, we found that TOM9.2 can bind calmodulin (CaM) in vitro and that CaM impairs the assembly of TOM complex in the isolated wild-type mitochondria, suggesting a regulatory role of TOM9.2 and a possible integration of TOM assembly into the cellular calcium signaling network. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  4. Critical Issues Facing America's Community Colleges: A Summary of the Community College Futures Assembly 2011 Mixed Methods/Appreciative Inquiry Research Project

    ERIC Educational Resources Information Center

    Basham, Matthew J.; Campbell, Dale F.; Mahmood, Hajara; Martin, Kenyatta

    2012-01-01

    For almost 20 years the Community College Futures Assembly (CCFA) has met annually in Orlando, Florida to serve as a showcase of best practices in community college administration and to serve as a think-tank for research and policy. Through the years the research methodology has evolved. The 2011 CCFA used a mixed-methods approach: qualitative…

  5. Identification of the NC1 domain of {alpha}3 chain as critical for {alpha}3{alpha}4{alpha}5 type IV collagen network assembly.

    PubMed

    LeBleu, Valerie; Sund, Malin; Sugimoto, Hikaru; Birrane, Gabriel; Kanasaki, Keizo; Finan, Elizabeth; Miller, Caroline A; Gattone, Vincent H; McLaughlin, Heather; Shield, Charles F; Kalluri, Raghu

    2010-12-31

    The network organization of type IV collagen consisting of α3, α4, and α5 chains in the glomerular basement membrane (GBM) is speculated to involve interactions of the triple helical and NC1 domain of individual α-chains, but in vivo evidence is lacking. To specifically address the contribution of the NC1 domain in the GBM collagen network organization, we generated a mouse with specific loss of α3NC1 domain while keeping the triple helical α3 chain intact by connecting it to the human α5NC1 domain. The absence of α3NC1 domain leads to the complete loss of the α4 chain. The α3 collagenous domain is incapable of incorporating the α5 chain, resulting in the impaired organization of the α3α4α5 chain-containing network. Although the α5 chain can assemble with the α1, α2, and α6 chains, such assembly is incapable of functionally replacing the α3α4α5 protomer. This novel approach to explore the assembly type IV collagen in vivo offers novel insights in the specific role of the NC1 domain in the assembly and function of GBM during health and disease.

  6. Identification of the NC1 Domain of α3 Chain as Critical for α3α4α5 Type IV Collagen Network Assembly

    PubMed Central

    LeBleu, Valerie; Sund, Malin; Sugimoto, Hikaru; Birrane, Gabriel; Kanasaki, Keizo; Finan, Elizabeth; Miller, Caroline A.; Gattone, Vincent H.; McLaughlin, Heather; Shield, Charles F.; Kalluri, Raghu

    2010-01-01

    The network organization of type IV collagen consisting of α3, α4, and α5 chains in the glomerular basement membrane (GBM) is speculated to involve interactions of the triple helical and NC1 domain of individual α-chains, but in vivo evidence is lacking. To specifically address the contribution of the NC1 domain in the GBM collagen network organization, we generated a mouse with specific loss of α3NC1 domain while keeping the triple helical α3 chain intact by connecting it to the human α5NC1 domain. The absence of α3NC1 domain leads to the complete loss of the α4 chain. The α3 collagenous domain is incapable of incorporating the α5 chain, resulting in the impaired organization of the α3α4α5 chain-containing network. Although the α5 chain can assemble with the α1, α2, and α6 chains, such assembly is incapable of functionally replacing the α3α4α5 protomer. This novel approach to explore the assembly type IV collagen in vivo offers novel insights in the specific role of the NC1 domain in the assembly and function of GBM during health and disease. PMID:20847057

  7. 30 CFR 7.45 - Critical characteristics

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.45 Critical characteristics The following critical characteristics shall be inspected or tested on each battery assembly...

  8. 30 CFR 7.305 - Critical characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.305 Critical characteristics. The following critical characteristics shall be inspected on each motor assembly to which an...

  9. 30 CFR 7.305 - Critical characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.305 Critical characteristics. The following critical characteristics shall be inspected on each motor assembly to which an...

  10. 30 CFR 7.305 - Critical characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.305 Critical characteristics. The following critical characteristics shall be inspected on each motor assembly to which...

  11. 30 CFR 7.305 - Critical characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.305 Critical characteristics. The following critical characteristics shall be inspected on each motor assembly to which...

  12. 30 CFR 7.305 - Critical characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.305 Critical characteristics. The following critical characteristics shall be inspected on each motor assembly to which...

  13. Applicability of ZPR critical experiment data to criticality safety

    SciTech Connect

    Schaefer, R.W.; Aumeier, S.E.; McFarlane, H.F.

    1995-12-31

    More than a hundred zero power reactor (ZPR) critical assemblies were constructed, over a period of about three decades, at the Argonne National Laboratory ZPR-3, ZPR-6, ZPR-9 and ZPPR fast critical assembly facilities. To be sure, the original reason for performing these critical experiments was to support fast reactor development. Nevertheless, data from some of the assemblies are well suited to form the basis for valuable, new criticality safety benchmarks. The purpose of this paper is to describe the ZPR data that would be of benefit to the criticality safety community and to explain how these data could be developed into practical criticality safety benchmarks.

  14. Initiation of V(D)J recombination by Dbeta-associated recombination signal sequences: a critical control point in TCRbeta gene assembly.

    PubMed

    Franchini, Don-Marc; Benoukraf, Touati; Jaeger, Sébastien; Ferrier, Pierre; Payet-Bornet, Dominique

    2009-01-01

    T cell receptor (TCR) beta gene assembly by V(D)J recombination proceeds via successive Dbeta-to-Jbeta and Vbeta-to-DJbeta rearrangements. This two-step process is enforced by a constraint, termed beyond (B)12/23, which prohibits direct Vbeta-to-Jbeta rearrangements. However the B12/23 restriction does not explain the order of TCRbeta assembly for which the regulation remains an unresolved issue. The initiation of V(D)J recombination consists of the introduction of single-strand DNA nicks at recombination signal sequences (RSSs) containing a 12 base-pairs spacer. An RSS containing a 23 base-pairs spacer is then captured to form a 12/23 RSSs synapse leading to coupled DNA cleavage. Herein, we probed RSS nicks at the TCRbeta locus and found that nicks were only detectable at Dbeta-associated RSSs. This pattern implies that Dbeta 12RSS and, unexpectedly, Dbeta 23RSS initiate V(D)J recombination and capture their respective Vbeta or Jbeta RSS partner. Using both in vitro and in vivo assays, we further demonstrate that the Dbeta1 23RSS impedes cleavage at the adjacent Dbeta1 12RSS and consequently Vbeta-to-Dbeta1 rearrangement first requires the Dbeta1 23RSS excision. Altogether, our results provide the molecular explanation to the B12/23 constraint and also uncover a 'Dbeta1 23RSS-mediated' restriction operating beyond chromatin accessibility, which directs Dbeta1 ordered rearrangements.

  15. Bacteriophage assembly.

    PubMed

    Aksyuk, Anastasia A; Rossmann, Michael G

    2011-03-01

    Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.

  16. Initiation of V(D)J Recombination by Dβ-Associated Recombination Signal Sequences: A Critical Control Point in TCRβ Gene Assembly

    PubMed Central

    Franchini, Don-Marc; Benoukraf, Touati; Jaeger, Sébastien; Ferrier, Pierre; Payet-Bornet, Dominique

    2009-01-01

    T cell receptor (TCR) β gene assembly by V(D)J recombination proceeds via successive Dβ-to-Jβ and Vβ-to-DJβ rearrangements. This two-step process is enforced by a constraint, termed beyond (B)12/23, which prohibits direct Vβ-to-Jβ rearrangements. However the B12/23 restriction does not explain the order of TCRβ assembly for which the regulation remains an unresolved issue. The initiation of V(D)J recombination consists of the introduction of single-strand DNA nicks at recombination signal sequences (RSSs) containing a 12 base-pairs spacer. An RSS containing a 23 base-pairs spacer is then captured to form a 12/23 RSSs synapse leading to coupled DNA cleavage. Herein, we probed RSS nicks at the TCRβ locus and found that nicks were only detectable at Dβ-associated RSSs. This pattern implies that Dβ 12RSS and, unexpectedly, Dβ 23RSS initiate V(D)J recombination and capture their respective Vβ or Jβ RSS partner. Using both in vitro and in vivo assays, we further demonstrate that the Dβ1 23RSS impedes cleavage at the adjacent Dβ1 12RSS and consequently Vβ-to-Dβ1 rearrangement first requires the Dβ1 23RSS excision. Altogether, our results provide the molecular explanation to the B12/23 constraint and also uncover a ‘Dβ1 23RSS-mediated’ restriction operating beyond chromatin accessibility, which directs Dβ1 ordered rearrangements. PMID:19238214

  17. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  18. Pod Assembly.

    DTIC Science & Technology

    An improved pod assembly for positively securing the equipment contained therein to the wingtip of an aircraft and having a readily removable...podshell for in situ service and repair. The pod assembly includes a strongback assembly of an acurate saddle and support beam secured to the outboard ends...of the aircraft wing beams, to which a satellite communications antenna array is mounted. A fiberglass reinforced laminated thin wall plastic pod

  19. Monte Carlo and deterministic simulations of activation ratio experiments for 238U(n,f), 238U(n,g) and 238U(n,2n) in the Big Ten benchmark critical assembly

    SciTech Connect

    Descalle, M; Clouse, C; Pruet, J

    2009-07-28

    The authors have compared calculations of critical assembly activation ratios using 3 different Monte Carlo codes and one deterministic code. There is excellent agreement. Discrepancies between the different Monte Carlo codes are the 1-2% level. Notably, the deterministic calculations with 87 groups are also in good agreement with the continuous energy Monte Carlo results. The three codes underestimate the {sup 238}U(n,f) reaction, suggesting that there is room for improvement in the evaluation, or in the evaluations of other reactions influencing the spectrum in BigTen. Until statistical uncertainties are implemented in Mercury, they strongly advise long runs to guarantee sufficient convergence of the flux at high energies, and they strongly encourage comparing Mercury results to a well-developed and documented code such as MCNP5 and/or COG. It may be that ENDL2008 will be available for use in COG within a year. Finally, it may be worthwhile to add a 'standard' reaction rate tally similar to those implemented in COG and MCNP5, if the goal is to expand the central fission and activation ratios simulations to include isotopes that are not part of the specifications for the assembly material composition.

  20. Wellhead assembly

    SciTech Connect

    Smith, J. D.; Szymczak, E. J.

    1985-05-07

    A wellhead assembly with an increased through bore for passing slightly oversized drill bits therethrough with a substantially reduced landing shoulder, and an improved landing assembly which transfers a portion of the stresses through the energizing ring and support ring into the wellhead body along the straight bore above said landing shoulder.

  1. Template-directed self-assembly by way of molecular recognition at the micellar-solvent interface: modulation of the critical micelle concentration.

    PubMed

    Olson, Mark A; Thompson, Jonathan R; Dawson, Trenton J; Hernandez, Christopher M; Messina, Marco S; O'Neal, Travis

    2013-10-14

    By incorporating the concepts of structural preorganisation and complementarity in concert with non-covalent donor-acceptor [ππ] and hydrophobic interactions, a duo of π-electron deficient bipyridinium-based linear and gemini amphiphiles capable of responding to molecular templation have been designed and synthesised. When combined with π-electron rich di(ethylene glycol)-disubstituted 1,5-dihydroxynaphthalene, a dramatic decrease in the critical aggregation concentration by ≈66% was observed with concomitant increases in the hydrodynamic diameter, ζ-potential, and Langmuir surface pressures of the micellar solutions-thus enhancing the detergents' efficiency and effectiveness at lowering the surface tension of water. By employing a phase separation model that takes into account the degree of counterion binding to the micellar aggregate superstructure, the effects of donor-acceptor templation on the Gibb's free energy of micellisation (ΔG) for the amphiphiles was quantified. It was found that donor-acceptor templation was capable of lowering ΔG by up to 1.75 kcal mol(-1) at which point it was observed, while under the influence of molecular templation, that linear single hydrophobic tailed detergent molecules exhibit properties characteristic of double-tailed phospholipid-like gemini surfactants.

  2. The self-assemble of natural cyclodextrins in aqueous solutions: Application of miniature permeation studies for critical aggregation concentration (cac) determinations.

    PubMed

    Saokham, Phennapha; Sá Couto, André; Ryzhakov, Alexey; Loftsson, Thorsteinn

    2016-05-30

    Permeation techniques can be applied to determine the critical aggregation concentration (cac) of natural cyclodextrins (CDs) in aqueous solutions although the method is both laborious and time consuming. In the present study, the permeation technique was modified and the influence of osmotic pressure, sampling time, CD concentration and molecular weight-cut off (MWCO) of the membrane were investigated in two different permeation units, that is Franz diffusion cells and Slide-A-Lyzer™ MINI Dialysis. While both the osmotic pressure and CD concentration affect the steady state flux in both permeation units, effects of sampling time and the MWCO of the mounted membrane were only observed in the Franz diffusion cells. The osmotic effect was negligible in the Slide-A-Lyzer™ MINI Dialysis units. The modified permeation technique using Slide-A-Lyzer™ MINI Dialysis units was then used to determine the cac of natural CDs in water. The cac of αCD, βCD and γCD was 1.19±0.17, 0.69±0.05 and 0.93±0.04% (w/v), respectively. The results indicated that the cac values depended on their intrinsic solubility. Moreover, the cac value of γCD in aqueous hydrocortisone/γCD inclusion complex solution was identical to the γCD cac value determined in pure water. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sequencing and de novo assembly of visceral mass transcriptome of the critically endangered land snail Satsuma myomphala: Annotation and SSR discovery.

    PubMed

    Kang, Se Won; Patnaik, Bharat Bhusan; Hwang, Hee-Ju; Park, So Young; Chung, Jong Min; Song, Dae Kwon; Patnaik, Hongray Howrelia; Lee, Jae Bong; Kim, Changmu; Kim, Soonok; Park, Hong Seog; Park, Seung-Hwan; Park, Young-Su; Han, Yeon Soo; Lee, Jun Sang; Lee, Yong Seok

    2017-03-01

    Satsuma myomphala is critically endangered through loss of natural habitats, predation by natural enemies, and indiscriminate collection. It is a protected species in Korea but lacks genomic resources for an understanding of varied functional processes attributable to evolutionary success under natural habitats. For assessing the genetic information of S. myomphala, we performed for the first time, de novo transcriptome sequencing and functional annotation of expressed sequences using Illumina Next-Generation Sequencing (NGS) platform and bioinformatics analysis. We identified 103,774 unigenes of which 37,959, 12,890, and 17,699 were annotated in the PANM (Protostome DB), Unigene, and COG (Clusters of Orthologous Groups) databases, respectively. In addition, 14,451 unigenes were predicted under Gene Ontology functional categories, with 4581 assigned to a single category. Furthermore, 3369 sequences with 646 having Enzyme Commission (EC) numbers were mapped to 122 pathways in the Kyoto Encyclopedia of Genes and Genomes Pathway database. The prominent protein domains included the Zinc finger (C2H2-like), Reverse Transcriptase, Thioredoxin-like fold, and RNA recognition motif domain. Many unigenes with homology to immunity, defense, and reproduction-related genes were screened in the transcriptome. We also detected 3120 putative simple sequence repeats (SSRs) encompassing dinucleotide to hexanucleotide repeat motifs from >1kb unigene sequences. A list of PCR primers of SSR loci have been identified to study the genetic polymorphisms. The transcriptome data represents a valuable resource for further investigations on the species genome structure and biology. The unigenes information and microsatellites would provide an indispensable tool for conservation of the species in natural and adaptive environments. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Crew Assembly

    NASA Image and Video Library

    Train to improve your dexterity and hand-eye coordination by assembling a puzzle.The Train Like an Astronaut project uses the excitement of exploration to challenge students to set goals, practice ...

  5. Whiteness and Critical Pedagogy

    ERIC Educational Resources Information Center

    Allen, Ricky Lee

    2004-01-01

    The purpose of this article is to rethink critical pedagogy by imagining it from a race-radical perspective that owes its lineage to scholars like W. E. B. Du Bois. The author assembles a critical pedagogy that hopes to contribute to both the transformation of white identity and the abolition of white supremacy. He draws from the roots of critical…

  6. Self-Assembly and Critical Aggregation Concentration Measurements of ABA Triblock Copolymers with Varying B Block Types: Model Development, Prediction, and Validation.

    PubMed

    Aydin, Fikret; Chu, Xiaolei; Uppaladadium, Geetartha; Devore, David; Goyal, Ritu; Murthy, N Sanjeeva; Zhang, Zheng; Kohn, Joachim; Dutt, Meenakshi

    2016-04-21

    The dissipative particle dynamics (DPD) simulation technique is a coarse-grained (CG) molecular dynamics-based approach that can effectively capture the hydrodynamics of complex systems while retaining essential information about the structural properties of the molecular species. An advantageous feature of DPD is that it utilizes soft repulsive interactions between the beads, which are CG representation of groups of atoms or molecules. In this study, we used the DPD simulation technique to study the aggregation characteristics of ABA triblock copolymers in aqueous medium. Pluronic polymers (PEG-PPO-PEG) were modeled as two segments of hydrophilic beads and one segment of hydrophobic beads. Tyrosine-derived PEG5K-b-oligo(desaminotyrosyl tyrosine octyl ester-suberate)-b-PEG5K (PEG5K-oligo(DTO-SA)-PEG5K) block copolymers possess alternate rigid and flexible components along the hydrophobic oligo(DTO-SA) chain, and were modeled as two segments of hydrophilic beads and one segment of hydrophobic, alternate soft and hard beads. The formation, structure, and morphology of the initial aggregation of the polymer molecules in aqueous medium were investigated by following the aggregation dynamics. The dimensions of the aggregates predicted by the computational approach were in good agreement with corresponding results from experiments, for the Pluronic and PEG5K-oligo(DTO-SA)-PEG5K block copolymers. In addition, DPD simulations were utilized to determine the critical aggregation concentration (CAC), which was compared with corresponding results from an experimental approach. For Pluronic polymers F68, F88, F108, and F127, the computational results agreed well with experimental measurements of the CAC measurements. For PEG5K-b-oligo(DTO-SA)-b-PEG5K block polymers, the complexity in polymer structure made it difficult to directly determine their CAC values via the CG scheme. Therefore, we determined CAC values of a series of triblock copolymers with 3-8 DTO-SA units using DPD

  7. Identification of a Specific Assembly of the G Protein Golf as a Critical and Regulated Module of Dopamine and Adenosine-Activated cAMP Pathways in the Striatum

    PubMed Central

    Hervé, Denis

    2011-01-01

    In the principal neurons of striatum (medium spiny neurons, MSNs), cAMP pathway is primarily activated through the stimulation of dopamine D1 and adenosine A2A receptors, these receptors being mainly expressed in striatonigral and striatopallidal MSNs, respectively. Since cAMP signaling pathway could be altered in various physiological and pathological circumstances, including drug addiction and Parkinson’s disease, it is of crucial importance to identify the molecular components involved in the activation of this pathway. In MSNs, cAMP pathway activation is not dependent on the classical Gs GTP-binding protein but requires a specific G protein subunit heterotrimer containing Gαolf/β2/γ7 in particular association with adenylyl cyclase type 5. This assembly forms an authentic functional signaling unit since loss of one of its members leads to defects of cAMP pathway activation in response to D1 or A2A receptor stimulation, inducing dramatic impairments of behavioral responses dependent on these receptors. Interestingly, D1 receptor (D1R)-dependent cAMP signaling is modulated by the neuronal levels of Gαolf, indicating that Gαolf represents the rate-limiting step in this signaling cascade and could constitute a critical element for regulation of D1R responses. In both Parkinsonian patients and several animal models of Parkinson’s disease, the lesion of dopamine neurons produces a prolonged elevation of Gαolf levels. This observation gives an explanation for the cAMP pathway hypersensitivity to D1R stimulation, occurring despite an unaltered D1R density. In conclusion, alterations in the highly specialized assembly of Gαolf/β2/γ7 subunits can happen in pathological conditions, such as Parkinson’s disease, and it could have important functional consequences in relation to changes in D1R signaling in the striatum. PMID:21886607

  8. Seal assembly

    SciTech Connect

    Johnson, Roger Neal; Longfritz, William David

    2001-01-01

    A seal assembly that seals a gap formed by a groove comprises a seal body, a biasing element, and a connection that connects the seal body to the biasing element to form the seal assembly. The seal assembly further comprises a concave-shaped center section and convex-shaped contact portions at each end of the seal body. The biasing element is formed from an elastic material and comprises a convex-shaped center section and concave-shaped biasing zones that are opposed to the convex-shaped contact portions. The biasing element is adapted to be compressed to change a width of the seal assembly from a first width to a second width that is smaller than the first width. In the compressed state, the seal assembly can be disposed in the groove. After release of the compressing force, the seal assembly expands. The contact portions will move toward a surface of the groove and the biasing zones will move into contact with another surface of the groove. The biasing zones will bias the contact portions of the seal body against the surface of the groove.

  9. Charged Amino Acid Residues 997–1000 of Human Apolipoprotein B100 Are Critical for the Initiation of Lipoprotein Assembly and the Formation of a Stable Lipidated Primordial Particle in McA-RH7777 Cells*

    PubMed Central

    Manchekar, Medha; Richardson, Paul E.; Sun, Zhihuan; Liu, Yanwen; Segrest, Jere P.; Dashti, Nassrin

    2008-01-01

    We previously demonstrated that a portion, or perhaps all, of the residues between 931 and 1000 of apolipoprotein (apo) B100 are required for the initiation of apoB-containing particle assembly. Based on our structural model of the first 1000 residues of apoB (designated as apoB:1000), we hypothesized that this domain folds into a three-sided lipovitellin-like “lipid pocket” via a hairpin-bridge mechanism. We proposed that salt bridges are formed between four tandem charged residues 717–720 in the turn of the hairpin bridge and four tandem complementary residues 997–1000 located at the C-terminal end of the model. To identify the specific motif within residues 931 and 1000 that is critical for apoB particle assembly, apoB:956 and apoB:986 were produced. To test the hairpin-bridge hypothesis, the following mutations were made: 1) residues 997–1000 deletion (apoB:996), 2) residues 717–720 deletion (apoB:1000Δ717–720), and 3) substitution of charged residues 997–1000 with alanines (apoB:996 + 4Ala). Characterization of particles secreted by stable transformants of McA-RH7777 cells demonstrated the following. 1) ApoB:956 did not form stable particles and was secreted as large lipid-rich aggregates. 2) ApoB:986 formed both a lipidated particle that was denser than HDL3 and large lipid-rich aggregates. 3) Compared with wild-type apoB:1000, apoB:1000Δ717–720 displayed the following: (i) significantly diminished capacity to form intact lipidated particles and (ii) increased propensity to form large lipid-rich aggregates. 4) In striking contrast to wild-type apoB:1000, (i) apoB:996 and apoB:996 + 4Ala were highly susceptible to intracellular degradation, (ii) only a small proportion of the secreted proteins formed stable HDL3-like lipoproteins, and (iii) a majority of the secreted proteins formed large lipid-rich aggregates. We conclude that the first 1000 amino acid residues of human apoB100 are required for the initiation of nascent apo

  10. Assemblies of Conformal Tanks

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2009-01-01

    Assemblies of tanks having shapes that conform to each other and/or conform to other proximate objects have been investigated for use in storing fuels and oxidizers in small available spaces in upper stages of spacecraft. Such assemblies might also prove useful in aircraft, automobiles, boats, and other terrestrial vehicles in which space available for tanks is limited. The basic concept of using conformal tanks to maximize the utilization of limited space is not new in itself: for example, conformal tanks are used in some automobiles to store windshield -washer liquid and coolant that overflows from radiators. The novelty of the present development lies in the concept of an assembly of smaller conformal tanks, as distinguished from a single larger conformal tank. In an assembly of smaller tanks, it would be possible to store different liquids in different tanks. Even if the same liquid were stored in all the tanks, the assembly would offer an advantage by reducing the mechanical disturbance caused by sloshing of fuel in a single larger tank: indeed, the requirement to reduce sloshing is critical in some applications. The figure shows a prototype assembly of conformal tanks. Each tank was fabricated by (1) copper plating a wax tank mandrel to form a liner and (2) wrapping and curing layers of graphite/epoxy composite to form a shell supporting the liner. In this case, the conformal tank surfaces are flat ones where they come in contact with the adjacent tanks. A band of fibers around the outside binds the tanks together tightly in the assembly, which has a quasi-toroidal shape. For proper functioning, it would be necessary to maintain equal pressure in all the tanks.

  11. Hinge assembly

    DOEpatents

    Vandergriff, D.H.

    1999-08-31

    A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.

  12. Hinge assembly

    DOEpatents

    Vandergriff, David Houston

    1999-01-01

    A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.

  13. Latch assembly

    DOEpatents

    Frederickson, J.R.; Harper, W.H.; Perez, R.

    1984-08-17

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing. 2 figs.

  14. Latch assembly

    DOEpatents

    Frederickson, James R.; Harper, William H.; Perez, Raymond

    1986-01-01

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing.

  15. Sabot assembly

    DOEpatents

    Bzorgi, Fariborz

    2016-11-08

    A sabot assembly includes a projectile and a housing dimensioned and configured for receiving the projectile. An air pressure cavity having a cavity diameter is disposed between a front end and a rear end of the housing. Air intake nozzles are in fluid communication with the air pressure cavity and each has a nozzle diameter less than the cavity diameter. In operation, air flows through the plurality of air intake nozzles and into the air pressure cavity upon firing of the projectile from a gun barrel to pressurize the air pressure cavity for assisting in separation of the housing from the projectile upon the sabot assembly exiting the gun barrel.

  16. Nitrogenase assembly

    PubMed Central

    Hu, Yilin; Ribbe, Markus W.

    2013-01-01

    Nitrogenase contains two unique metalloclusters: the P-cluster and the M-cluster. The assembly processes of P- and M-clusters are arguably the most complicated processes in bioinorganic chemistry. There is considerable interest in decoding the biosynthetic mechanisms of the P- and M-clusters, because these clusters are not only biologically important, but also chemically unprecedented. Understanding the assembly mechanisms of these unique metalloclusters is crucial for understanding the structure-function relationship of nitrogenase. Here, we review the recent advances in this research area, with an emphasis on our work that provide important insights into the biosynthetic pathways of these high-nuclearity metal centers. PMID:23232096

  17. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  18. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  19. Sensor assembly

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  20. Dump assembly

    DOEpatents

    Goldmann, Louis H.

    1986-01-01

    A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.

  1. Mars aerobrake assembly simulation

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Lee, Gordon K. F.; Garvey, John

    1992-01-01

    On-orbit assembly operation simulations in neutral buoyancy conditions are presently undertaken by a partial/full-scale Mars mission aerobrake mockup, whose design, conducted in the framework of an engineering senior students' design project, involved several levels of constraints for critical physical and operational features. Allowances had to be made for the auxiliary constraints introduced by underwater testing, as well as the subsegmenting required for overland shipment to the neutral-buoyancy testing facility. This mockup aerobrake's fidelity is determined by the numerous, competing design objectives.

  2. Synapse Assembly and Neurodevelopmental Disorders

    PubMed Central

    Washbourne, Philip

    2015-01-01

    In this review we examine the current understanding of how genetic deficits associated with neurodevelopmental disorders may impact synapse assembly. We then go on to discuss how the critical periods for these genetic deficits will shape the nature of future clinical interventions. PMID:24990427

  3. Dump assembly

    DOEpatents

    Goldmann, L.H.

    1984-12-06

    This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.

  4. Pushrod assembly

    DOEpatents

    Potter, J.D.

    1984-03-30

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved is described. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing magnet away from the carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  5. Shingle assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2007-02-20

    A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. The first edge of one base may be interengageable with the second edge of an adjacent base to be capable of resisting first and second disengaging forces oriented perpendicular to the edges and along planes oriented parallel to and perpendicular to the base. A deflector may be used to help reduce wind uplift forces.

  6. Pushrod assembly

    DOEpatents

    Potter, Jerry D.

    1987-01-01

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing said magnet away from said carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  7. Ameliorated de novo transcriptome assembly using Illumina paired end sequence data with Trinity Assembler

    PubMed Central

    Bankar, Kiran Gopinath; Todur, Vivek Nagaraj; Shukla, Rohit Nandan; Vasudevan, Madavan

    2015-01-01

    Advent of Next Generation Sequencing has led to possibilities of de novo transcriptome assembly of organisms without availability of complete genome sequence. Among various sequencing platforms available, Illumina is the most widely used platform based on data quality, quantity and cost. Various de novo transcriptome assemblers are also available today for construction of de novo transcriptome. In this study, we aimed at obtaining an ameliorated de novo transcriptome assembly with sequence reads obtained from Illumina platform and assembled using Trinity Assembler. We found that, primary transcriptome assembly obtained as a result of Trinity can be ameliorated on the basis of transcript length, coverage, and depth and protein homology. Our approach to ameliorate is reproducible and could enhance the sensitivity and specificity of the assembled transcriptome which could be critical for validation of the assembled transcripts and for planning various downstream biological assays. PMID:26484285

  8. Criticality Model Report

    SciTech Connect

    J.M. Scaglione

    2003-03-12

    The purpose of the ''Criticality Model Report'' is to validate the MCNP (CRWMS M&O 1998h) code's ability to accurately predict the effective neutron multiplication factor (k{sub eff}) for a range of conditions spanned by various critical configurations representative of the potential configurations commercial reactor assemblies stored in a waste package may take. Results of this work are an indication of the accuracy of MCNP for calculating eigenvalues, which will be used as input for criticality analyses for spent nuclear fuel (SNF) storage at the proposed Monitored Geologic Repository. The scope of this report is to document the development and validation of the criticality model. The scope of the criticality model is only applicable to commercial pressurized water reactor fuel. Valid ranges are established as part of the validation of the criticality model. This model activity follows the description in BSC (2002a).

  9. Swivel assembly

    DOEpatents

    Hall, David R.; Pixton, David S.; Briscoe, Michael; Bradford, Kline; Rawle, Michael; Bartholomew, David B.; McPherson, James

    2007-03-20

    A swivel assembly for a downhole tool string comprises a first and second coaxial housing cooperatively arranged. The first housing comprises a first transmission element in communication with surface equipment. The second housing comprises a second transmission element in communication with the first transmission element. The second housing further comprises a third transmission element adapted for communication with a network integrated into the downhole tool string. The second housing may be rotational and adapted to transmit a signal between the downhole network and the first housing. Electronic circuitry is in communication with at least one of the transmission elements. The electronic circuitry may be externally mounted to the first or second housing. Further, the electronic circuitry may be internally mounted in the second housing. The electronic circuitry may be disposed in a recess in either first or second housing of the swivel.

  10. Thermocouple assembly

    DOEpatents

    Thermos, Anthony Constantine; Rahal, Fadi Elias

    2002-01-01

    A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.

  11. RETORT ASSEMBLY

    DOEpatents

    Loomis, C.C.; Ash, W.J.

    1957-11-26

    An improved retort assembly useful in the thermal reduction of volatilizable metals such as magnesium and calcium is described. In this process a high vacuum is maintained in the retort, however the retort must be heated to very high temperatures while at the same time the unloading end must bo cooled to condense the metal vapors, therefore the retention of the vacuum is frequently difficult due to the thermal stresses involved. This apparatus provides an extended condenser sleeve enclosed by the retort cover which forms the vacuum seal. Therefore, the seal is cooled by the fluid in the condenser sleeve and the extreme thermal stresses found in previous designs together with the deterioration of the sealing gasket caused by the high temperatures are avoided.

  12. 30 CFR 7.45 - Critical characteristics

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.45 Critical characteristics The following critical characteristics shall be inspected or tested on each battery assembly to... of insulating material. (c) Size and location of ventilation openings. (d) Method of...

  13. Metagenomic Assembly: Overview, Challenges and Applications

    PubMed Central

    Ghurye, Jay S.; Cepeda-Espinoza, Victoria; Pop, Mihai

    2016-01-01

    Advances in sequencing technologies have led to the increased use of high throughput sequencing in characterizing the microbial communities associated with our bodies and our environment. Critical to the analysis of the resulting data are sequence assembly algorithms able to reconstruct genes and organisms from complex mixtures. Metagenomic assembly involves new computational challenges due to the specific characteristics of the metagenomic data. In this survey, we focus on major algorithmic approaches for genome and metagenome assembly, and discuss the new challenges and opportunities afforded by this new field. We also review several applications of metagenome assembly in addressing interesting biological problems. PMID:27698619

  14. Haemodynamics Regulate Fibronectin Assembly via PECAM

    PubMed Central

    Chen, Zhongming; Givens, Chris; Reader, John S.; Tzima, Ellie

    2017-01-01

    Fibronectin (FN) assembly and fibrillogenesis are critically important in both development and the adult organism, but their importance in vascular functions is not fully understood. Here we identify a novel pathway by which haemodynamic forces regulate FN assembly and fibrillogenesis during vascular remodelling. Induction of disturbed shear stress in vivo and in vitro resulted in complex FN fibril assembly that was dependent on the mechanosensor PECAM. Loss of PECAM also inhibited the cell-intrinsic ability to remodel FN. Gain- and loss-of-function experiments revealed that PECAM-dependent RhoA activation is required for FN assembly. Furthermore, PECAM−/− mice exhibited reduced levels of active β1 integrin that were responsible for reduced RhoA activation and downstream FN assembly. These data identify a new pathway by which endothelial mechanotransduction regulates FN assembly and flow-mediated vascular remodelling. PMID:28120882

  15. Drilling head assembly

    SciTech Connect

    De Wayne Wagoner, E.; Owen, E.D.

    1984-01-03

    An improved rotary drilling head assembly comprising a main housing having an axial bore therethrough; a stripper assembly disposed within the housing axial bore; and a stripper support assembly rotatingly supporting the stripper assembly. The stripper support assembly is removably attachable to the main housing and comprises an inner skirt member which is configured to extend about and to be supported on an exterior support surface of the main housing; an outer bearing housing configured to extend about and to be bearingly interconnected to the inner skirt member; a stripper clamp assembly clamping the stripper assembly to the outer bearing housing; and a clamping assembly removably attaching the inner skirt member to the exterior support surface such that the entire stripper support assembly of the drilling head assembly is removable from the housing as a unitary assembly by disengaging the clamping assembly.

  16. Electrical Connector Assembly

    DTIC Science & Technology

    2001-05-01

    hereinafter 5 appear, a feature of the invention is the provision of an 6 electrical connector assembly including a female connector 7 assembly comprising...urging of the male connector assembly 3 into the female connector assembly, a leading edge of ehe 4 retention ring engages the claw fingers forcing...assembly barrel portion to pass through the female connector 3 assembly annular wall central opening, and permitting entry of 9 the pin into the sleeve

  17. Nitrogenase Assembly: Strategies and Procedures.

    PubMed

    Sickerman, Nathaniel S; Hu, Yilin; Ribbe, Markus W

    2017-01-01

    Nitrogenase is a metalloenzyme system that plays a critical role in biological nitrogen fixation, and the study of how its metallocenters are assembled into functional entities to facilitate the catalytic reduction of dinitrogen to ammonia is an active area of interest. The diazotroph Azotobacter vinelandii is especially amenable to culturing and genetic manipulation, and this organism has provided the basis for many insights into the assembly of nitrogenase proteins and their respective metallocofactors. This chapter will cover the basic procedures necessary for growing A. vinelandii cultures and subsequent recombinant transformation and protein expression techniques. Furthermore, protocols for nitrogenase protein purification and substrate reduction activity assays are described. These methods provide a solid framework for the assessment of nitrogenase assembly and catalysis. © 2017 Elsevier Inc. All rights reserved.

  18. Latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  19. Probe tip heating assembly

    SciTech Connect

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  20. Inlet nozzle assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  1. Inlet nozzle assembly

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  2. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  3. Specific genomic cues regulate Cajal body assembly.

    PubMed

    Sawyer, Iain A; Hager, Gordon L; Dundr, Miroslav

    2016-10-07

    The assembly of specialized sub-nuclear microenvironments known as nuclear bodies (NBs) is important for promoting efficient nuclear function. In particular, the Cajal body (CB), a prominent NB that facilitates spliceosomal snRNP biogenesis, assembles in response to genomic cues. Here, we detail the factors that regulate CB assembly and structural maintenance. These include the importance of transcription at nucleating gene loci, the grouping of these genes on human chromosomes 1, 6 and 17, as well as cell cycle and biochemical regulation of CB protein function. We also speculate on the correlation between CB formation and RNA splicing levels in neurons and cancer. The timing and location of these specific molecular events is critical to CB assembly and its contribution to genome function. However, further work is required to explore the emerging biophysical characteristics of CB assembly and the impact upon subsequent genome reorganization.

  4. National Criticality Experiments Research Center: Capability and Status

    SciTech Connect

    Hayes, David K.; Myers, William L.

    2012-07-12

    After seven years, the former Los Alamos Critical Experiments Facility (LACEF), or Pajarito Site, has reopened for business as the National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS). Four critical assembly machines (Comet, Planet, Flat-Top, and Godiva-IV) made the journey from Los Alamos to the NNSS. All four machines received safety system upgrades along with new digital control systems. Between these machines, systems ranging from the thermal through the intermediate to the fast spectrum may be assembled. Steady-State, transient, and super-prompt critical conditions may be explored. NCERC is the sole remaining facility in the United States capable of conducting general-purpose nuclear materials handling including the construction and operation of high-multiplication assemblies, delayed critical assemblies, and prompt critical assemblies. Reconstitution of the unique capabilities at NCERC ensures the viability of (1) The Nuclear Renaissance, (2) Stockpile Stewardship, and (3) and the next generation of criticality experimentalists.

  5. History of critical experiments at Pajarito Site

    SciTech Connect

    Paxton, H.C.

    1983-03-01

    This account describes critical and subcritical assemblies operated remotely at the Pajarito Canyon Site at the Los Alamos National Laboratory. Earliest assemblies, directed exclusively toward the nuclear weapons program, were for safety tests. Other weapon-related assemblies provided neutronic information to check detailed weapon calculations. Topsy, the first of these critical assemblies, was followed by Lady Godiva, Jezebel, Flattop, and ultimately Big Ten. As reactor programs came to Los Alamos, design studies and mockups were tested at Pajarito Site. For example, nearly all 16 Rover reactors intended for Nevada tests were preceded by zero-power mockups and proof tests at Pajarito Site. Expanded interest and capability led to fast-pulse assemblies, culminating in Godiva IV and Skua, and to the Kinglet and Sheba solution assemblies.

  6. Firearm trigger assembly

    SciTech Connect

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  7. Autonomous electrochromic assembly

    SciTech Connect

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  8. Air2p is critical for the assembly and RNA-binding of the TRAMP complex and the KOW domain of Mtr4p is crucial for exosome activation

    PubMed Central

    Holub, Peter; Lalakova, Jana; Cerna, Hana; Pasulka, Josef; Sarazova, Marie; Hrazdilova, Kristyna; Arce, Maria Sanudo; Hobor, Fruzsina; Stefl, Richard; Vanacova, Stepanka

    2012-01-01

    Trf4/5p-Air1/2p-Mtr4p polyadenylation complex (TRAMP) is an essential component of nuclear RNA surveillance in yeast. It recognizes a variety of nuclear transcripts produced by all three RNA polymerases, adds short poly(A) tails to aberrant or unstable RNAs and activates the exosome for their degradation. Despite the advances in understanding the structural features of the isolated complex subunits or their fragments, the details of complex assembly, RNA recognition and exosome activation remain poorly understood. Here we provide the first understanding of the RNA binding mode of the complex. We show that Air2p is an RNA-binding subunit of TRAMP. We identify the zinc knuckles (ZnK) 2, 3 and 4 as the RNA-binding domains, and reveal the essentiality of ZnK4 for TRAMP4 polyadenylation activity. Furthermore, we identify Air2p as the key component of TRAMP4 assembly providing bridging between Mtr4p and Trf4p. The former is bound via the N-terminus of Air2p, while the latter is bound via ZnK5, the linker between ZnK4 and 5 and the C-terminus of the protein. Finally, we uncover the RNA binding part of the Mtr4p arch, the KOW domain, as the essential component for TRAMP-mediated exosome activation. PMID:22402490

  9. Thinking Critically about Critical Thinking

    ERIC Educational Resources Information Center

    Mulnix, Jennifer Wilson

    2012-01-01

    As a philosophy professor, one of my central goals is to teach students to think critically. However, one difficulty with determining whether critical thinking can be taught, or even measured, is that there is widespread disagreement over what critical thinking actually is. Here, I reflect on several conceptions of critical thinking, subjecting…

  10. Thinking Critically about Critical Thinking

    ERIC Educational Resources Information Center

    Mulnix, Jennifer Wilson

    2012-01-01

    As a philosophy professor, one of my central goals is to teach students to think critically. However, one difficulty with determining whether critical thinking can be taught, or even measured, is that there is widespread disagreement over what critical thinking actually is. Here, I reflect on several conceptions of critical thinking, subjecting…

  11. Membrane module assembly

    DOEpatents

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  12. Membrane module assembly

    DOEpatents

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  13. Sensor mount assemblies and sensor assemblies

    SciTech Connect

    Miller, David H

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  14. Critical Care

    MedlinePlus

    Critical care helps people with life-threatening injuries and illnesses. It might treat problems such as complications from surgery, ... attention by a team of specially-trained health care providers. Critical care usually takes place in an ...

  15. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  16. Archetypal Criticism.

    ERIC Educational Resources Information Center

    Chesebro, James W.; And Others

    1990-01-01

    Argues that archetypal criticism is a useful way of examining universal, historical, and cross-cultural symbols in classrooms. Identifies essential features of an archetype; outlines operational and critical procedures; illustrates archetypal criticism as applied to the cross as a symbol; and provides a synoptic placement for archetypal criticism…

  17. Telerobotic truss assembly

    NASA Technical Reports Server (NTRS)

    Sheridan, Philip L.

    1987-01-01

    The ACCESS truss was telerobotically assembled in order to gain experience with robotic assembly of hardware designed for astronaut extravehicular (EVA) assembly. Tight alignment constraints of the ACCESS hardware made telerobotic assembly difficult. A wider alignment envelope and a compliant end effector would have reduced the problem. The manipulator had no linear motion capability, but many of the assembly operations required straight line motion. The manipulator was attached to a motion table in order to provide the X, Y, and Z translations needed. A programmable robot with linear translation capability would have eliminated the need for the motion table and streamlined the assembly. Poor depth perception was a major problem. Shaded paint schemes and alignment lines were helpful in reducing this problem. The four cameras used worked well for only some operations. It was not possible to identify camera locations that worked well for all assembly steps. More cameras or movable cameras would have simplified some operations. The audio feedback system was useful.

  18. The thermodynamics of virus capsid assembly.

    PubMed

    Katen, Sarah; Zlotnick, Adam

    2009-01-01

    Virus capsid assembly is a critical step in the viral life cycle. The underlying basis of capsid stability is key to understanding this process. Capsid subunits interact with weak individual contact energies to form a globally stable icosahedral lattice; this structure is ideal for encapsidating the viral genome and host partners and protecting its contents upon secretion, yet the unique properties of its assembly and inter-subunit contacts allow the capsid to dissociate upon entering a new host cell. The stability of the capsid can be analyzed by treating capsid assembly as an equilibrium polymerization reaction, modified from the traditional polymer model to account for the fact that a separate nucleus is formed for each individual capsid. From the concentrations of reactants and products in an equilibrated assembly reaction, it is possible to extract the thermodynamic parameters of assembly for a wide array of icosahedral viruses using well-characterized biochemical and biophysical methods. In this chapter we describe this basic analysis and provide examples of thermodynamic assembly data for several different icosahedral viruses. These data provide new insights into the assembly mechanisms of spherical virus capsids, as well as into the biology of the viral life cycle.

  19. Critical experiments with mixed oxide fuel

    SciTech Connect

    Harris, D.R.

    1997-06-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er{sub 2}O{sub 3} at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs.

  20. Mapping of the Saccharomyces cerevisiae Oxa1-mitochondrial ribosome interface and identification of MrpL40, a ribosomal protein in close proximity to Oxa1 and critical for oxidative phosphorylation complex assembly.

    PubMed

    Jia, Lixia; Kaur, Jasvinder; Stuart, Rosemary A

    2009-11-01

    The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40's ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes.

  1. Ultrasonic inspection of MC2893 strength member assembly weld

    SciTech Connect

    Dudley, W.A.

    1984-02-17

    An ultrasonic technique developed at Mound to nondestructively inspect an assembly weld critical to the fabrication and production of MC2893 heat sources is described. Prior to transferring the assembly technology to Los Alamos National Laboratory (LANL), the ultrasonic technique was used at Mound as a 100% in-line inspection tool.

  2. Long-read sequence assembly of the gorilla genome

    PubMed Central

    Gordon, David; Huddleston, John; Chaisson, Mark J. P.; Hill, Christopher M.; Kronenberg, Zev N.; Munson, Katherine M.; Malig, Maika; Raja, Archana; Fiddes, Ian; Hillier, LaDeana W.; Dunn, Christopher; Baker, Carl; Armstrong, Joel; Diekhans, Mark; Paten, Benedict; Shendure, Jay; Wilson, Richard K.; Haussler, David; Chin, Chen-Shan; Eichler, Evan E.

    2016-01-01

    Accurate sequence and assembly of genomes is a critical first step for studies of genetic variation. We generated a high-quality assembly of the gorilla genome using single-molecule, real-time sequence technology and a string graph de novo assembly algorithm. The new assembly improves contiguity by two to three orders of magnitude with respect to previously released assemblies, recovering 87% of missing reference exons and incomplete gene models. Although regions of large, high-identity segmental duplications remain largely unresolved, this comprehensive assembly provides new biological insight into genetic diversity, structural variation, gene loss, and representation of repeat structures within the gorilla genome. The approach provides a path forward for the routine assembly of mammalian genomes at a level approaching that of the current quality of the human genome. PMID:27034376

  3. Long-read sequence assembly of the gorilla genome.

    PubMed

    Gordon, David; Huddleston, John; Chaisson, Mark J P; Hill, Christopher M; Kronenberg, Zev N; Munson, Katherine M; Malig, Maika; Raja, Archana; Fiddes, Ian; Hillier, LaDeana W; Dunn, Christopher; Baker, Carl; Armstrong, Joel; Diekhans, Mark; Paten, Benedict; Shendure, Jay; Wilson, Richard K; Haussler, David; Chin, Chen-Shan; Eichler, Evan E

    2016-04-01

    Accurate sequence and assembly of genomes is a critical first step for studies of genetic variation. We generated a high-quality assembly of the gorilla genome using single-molecule, real-time sequence technology and a string graph de novo assembly algorithm. The new assembly improves contiguity by two to three orders of magnitude with respect to previously released assemblies, recovering 87% of missing reference exons and incomplete gene models. Although regions of large, high-identity segmental duplications remain largely unresolved, this comprehensive assembly provides new biological insight into genetic diversity, structural variation, gene loss, and representation of repeat structures within the gorilla genome. The approach provides a path forward for the routine assembly of mammalian genomes at a level approaching that of the current quality of the human genome.

  4. How Critical Is Critical Thinking?

    ERIC Educational Resources Information Center

    Shaw, Ryan D.

    2014-01-01

    Recent educational discourse is full of references to the value of critical thinking as a 21st-century skill. In music education, critical thinking has been discussed in relation to problem solving and music listening, and some researchers suggest that training in critical thinking can improve students' responses to music. But what exactly is…

  5. Critical Thinking vs. Critical Consciousness

    ERIC Educational Resources Information Center

    Doughty, Howard A.

    2006-01-01

    This article explores four kinds of critical thinking. The first is found in Socratic dialogues, which employ critical thinking mainly to reveal logical fallacies in common opinions, thus cleansing superior minds of error and leaving philosophers free to contemplate universal verities. The second is critical interpretation (hermeneutics) which…

  6. Critically Thinking about Critical Thinking

    ERIC Educational Resources Information Center

    Weissberg, Robert

    2013-01-01

    In this article, the author states that "critical thinking" has mesmerized academics across the political spectrum and that even high school students are now being called upon to "think critically." He furthers adds that it is no exaggeration to say that "critical thinking" has quickly evolved into a scholarly…

  7. How Critical Is Critical Thinking?

    ERIC Educational Resources Information Center

    Shaw, Ryan D.

    2014-01-01

    Recent educational discourse is full of references to the value of critical thinking as a 21st-century skill. In music education, critical thinking has been discussed in relation to problem solving and music listening, and some researchers suggest that training in critical thinking can improve students' responses to music. But what exactly is…

  8. Structural performance of light-frame roof assemblies. I, Truss assemblies designed for high variability and wood failure

    Treesearch

    R.W. Wolfe; Monica McCarthy

    1989-01-01

    The first report of a three-part series that covers results of a full-scale roof assemblies research program. The focus of this report is the structural performance of truss assemblies comprising trusses with abnormally high stiffness variability and critical joint strength. Results discussed include properties of truss members and connections. individual truss...

  9. Consideration of criticality in a nuclear waste repository

    SciTech Connect

    Rechard, R.P.; Sanchez, L.C.; Stockman, C.T.; Ramsey, J.L. Jr.; Martell, M.

    1995-07-01

    The preliminary criticality analysis that was done suggests that the possibility of achieving critical conditions cannot be easily ruled out without looking at the geochemical process of assembly or the dynamics of the operation of a critical assembly. The evaluation of a critical assembly requires an integrated, consistent approach that includes evaluating the following: (1) the alteration rates of the layers of the container and spent fuel, (2) the transport of fissile material or neutron absorbers, and (3) the assembly mechanisms that can achieve critical conditions. The above is a non-trivial analysis and preliminary work suggests that with the loading assumed, enough fissile mass will leach from the HEU multi-purpose canisters to support a criticality. In addition, the consequences of an unpressurized Oklo type criticality would be insignificant to the performance of an unsaturated, tuff repository.

  10. Assembly and annotation of a non-model gastropod (Nerita melanotragus) transcriptome: a comparison of de novo assemblers.

    PubMed

    Amin, Shorash; Prentis, Peter J; Gilding, Edward K; Pavasovic, Ana

    2014-08-01

    The sequencing, de novo assembly and annotation of transcriptome datasets generated with next generation sequencing (NGS) has enabled biologists to answer genomic questions in non-model species with unprecedented ease. Reliable and accurate de novo assembly and annotation of transcriptomes, however, is a critically important step for transcriptome assemblies generated from short read sequences. Typical benchmarks for assembly and annotation reliability have been performed with model species. To address the reliability and accuracy of de novo transcriptome assembly in non-model species, we generated an RNAseq dataset for an intertidal gastropod mollusc species, Nerita melanotragus, and compared the assembly produced by four different de novo transcriptome assemblers; Velvet, Oases, Geneious and Trinity, for a number of quality metrics and redundancy. Transcriptome sequencing on the Ion Torrent PGM™ produced 1,883,624 raw reads with a mean length of 133 base pairs (bp). Both the Trinity and Oases de novo assemblers produced the best assemblies based on all quality metrics including fewer contigs, increased N50 and average contig length and contigs of greater length. Overall the BLAST and annotation success of our assemblies was not high with only 15-19% of contigs assigned a putative function. We believe that any improvement in annotation success of gastropod species will require more gastropod genome sequences, but in particular an increase in mollusc protein sequences in public databases. Overall, this paper demonstrates that reliable and accurate de novo transcriptome assemblies can be generated from short read sequencers with the right assembly algorithms.

  11. Multifunctional self-assembled monolayers

    SciTech Connect

    Zawodzinski, T.; Bar, G.; Rubin, S.; Uribe, F.; Ferrais, J.

    1996-06-01

    This is the final report of at three year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The specific goals of this research project were threefold: to develop multifunctional self-assembled monolayers, to understand the role of monolayer structure on the functioning of such systems, and to apply this knowledge to the development of electrochemical enzyme sensors. An array of molecules that can be used to attach electrochemically active biomolecules to gold surfaces has been synthesized. Several members of a class of electroactive compounds have been characterized and the factors controlling surface modification are beginning to be characterized. Enzymes have been attached to self-assembled molecules arranged on the gold surface, a critical step toward the ultimate goal of this project. Several alternative enzyme attachment strategies to achieve robust enzyme- modified surfaces have been explored. Several means of juxtaposing enzymes and mediators, electroactive compounds through which the enzyme can exchange electrons with the electrode surface, have also been investigated. Finally, the development of sensitive biosensors based on films loaded with nanoscale-supported gold particles that have surface modified with the self-assembled enzyme and mediator have been explored.

  12. Self-assembled plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Mühlig, Stefan; Cunningham, Alastair; Dintinger, José; Scharf, Toralf; Bürgi, Thomas; Lederer, Falk; Rockstuhl, Carsten

    2013-07-01

    Nowadays for the sake of convenience most plasmonic nanostructures are fabricated by top-down nanofabrication technologies. This offers great degrees of freedom to tailor the geometry with unprecedented precision. However, it often causes disadvantages as well. The structures available are usually planar and periodically arranged. Therefore, bulk plasmonic structures are difficult to fabricate and the periodic arrangement causes undesired effects, e.g., strong spatial dispersion is observed in metamaterials. These limitations can be mitigated by relying on bottom-up nanofabrication technologies. There, self-assembly methods and techniques from the field of colloidal nanochemistry are used to build complex functional unit cells in solution from an ensemble of simple building blocks, i.e., in most cases plasmonic nanoparticles. Achievable structures are characterized by a high degree of nominal order only on a short-range scale. The precise spatial arrangement across larger dimensions is not possible in most cases; leading essentially to amorphous structures. Such self-assembled nanostructures require novel analytical means to describe their properties, innovative designs of functional elements that possess a desired near- and far-field response, and entail genuine nanofabrication and characterization techniques. Eventually, novel applications have to be perceived that are adapted to the specifics of the self-assembled nanostructures. This review shall document recent progress in this field of research. Emphasis is put on bottom-up amorphous metamaterials. We document the state-of-the-art but also critically assess the problems that have to be overcome.

  13. Criticality Model

    SciTech Connect

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality

  14. Directed Self-Assembly of Nanodispersions

    SciTech Connect

    Furst, Eric M

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  15. Composite turbine bucket assembly

    DOEpatents

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  16. Spliceosome assembly and composition.

    PubMed

    Matlin, Arianne J; Moore, Melissa J

    2007-01-01

    Cells control alternative splicing by modulating assembly of the pre-mRNA splicing machinery at competing splice sites. Therefore, a working knowledge of spliceosome assembly is essential for understanding how alternative splice site choices are achieved. In this chapter, we review spliceosome assembly with particular emphasis on the known steps and factors subject to regulation during alternative splice site selection in mammalian cells. We also review recent advances regarding similarities and differences between the in vivo and in vitro assembly pathways, as well as proofreading mechanisms contributing to the fidelity of splice site selection.

  17. Critical thinking.

    PubMed

    Price, A; Price, B

    1996-05-01

    Critical thinking is a process applied to midwifery theory, research and experience. It is a positive activity, responsive to context, drawing on negative and positive triggers and emotions to suggest ways of acting in future. Practice-based and reflective midwifery assignments should reflect the midwifery goals of critical thinking. This may require adjustments in assessment criteria and a questioning of standard academic conventions.

  18. Critical Muralism

    ERIC Educational Resources Information Center

    Rosette, Arturo

    2009-01-01

    This study focuses on the development and practices of Critical Muralists--community-educator-artist-leader-activists--and situates these specifically in relation to the Mexican mural tradition of los Tres Grandes and in relation to the history of public art more generally. The study examines how Critical Muralists address artistic and…

  19. Surface Directed Assembly of Viral Monolayers

    NASA Astrophysics Data System (ADS)

    Wargacki, S.; Naik, R.; Phillips, D.; Francis, M.; Ward, V.; Thomas, E.; Vaia, R. A.

    2006-03-01

    The facile two-dimensional fabrication of micron-scale patterns of ordered-nanoscale structures on flexible substrates has numerous broad implications, including sacrificial templates for further assembly, deposition or material removal. Previous examinations of block-copolymer assembly on micron-scale patterns with topological and/or chemical relief have demonstrated the ability to not only dictate the larger superstructure of the surface but also to impact the local nano-scale self-assembly and defect stability via confinement. These processes are examined with respect to the surface directed assembly of colloidal particles, specifically rod-like Tobacco Mosaic Virus (TMV) and iscohoderhal viruses Wiseana Iridovirus (WIV) and MS2. The unique surface chemistry and shapes provide a complement to traditional colloidal building-blocks. Initially, high throughput processing by convective self assembly (CSA) with orthogonal temperature gradients is combined with chemical modification of Silicon surfaces via soft-lithography to determine the key processing parameters for monolayer assembly. The impact of the viral shape (rod v. iscohodra) as well as the critical range of enthalpic interactions between the virus and substrate that control in-plane order and pattern formation will be discussed.

  20. Cascade biocatalysis by multienzyme-nanoparticle assemblies.

    PubMed

    Kang, Wei; Liu, Jiahui; Wang, Jianpeng; Nie, Yunyu; Guo, Zhihong; Xia, Jiang

    2014-08-20

    Multienzyme complexes are of paramount importance in biosynthesis in cells. Yet, how sequential enzymes of cascade catalytic reactions synergize their activities through spatial organization remains elusive. Recent development of site-specific protein-nanoparticle conjugation techniques enables us to construct multienzyme assemblies using nanoparticles as the template. Sequential enzymes in menaquinone biosynthetic pathway were conjugated to CdSe-ZnS quantum dots (QDs, a nanosized particulate material) through metal-affinity driven self-assembly. The assemblies were characterized by electrophoretic methods, the catalytic activities were monitored by reverse-phase chromatography, and the composition of the multienzyme-QD assemblies was optimized through a progressive approach to achieve highly efficient catalytic conversion. Shorter enzyme-enzyme distance was discovered to facilitate intermediate transfer, and a fine control on the stoichiometric ratio of the assembly was found to be critical for the maximal synergy between the enzymes. Multienzyme-QD assemblies thereby provide an effective model to scrutinize the synergy of cascade enzymes in multienzyme complexes.

  1. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  2. Toward high throughput optical metamaterial assemblies.

    PubMed

    Fontana, Jake; Ratna, Banahalli R

    2015-11-01

    Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.

  3. Powering through ribosome assembly

    PubMed Central

    Strunk, Bethany S.; Karbstein, Katrin

    2009-01-01

    Ribosome assembly is required for cell growth in all organisms. Classic in vitro work in bacteria has led to a detailed understanding of the biophysical, thermodynamic, and structural basis for the ordered and correct assembly of ribosomal proteins on ribosomal RNA. Furthermore, it has enabled reconstitution of active subunits from ribosomal RNA and proteins in vitro. Nevertheless, recent work has shown that eukaryotic ribosome assembly requires a large macromolecular machinery in vivo. Many of these assembly factors such as ATPases, GTPases, and kinases hydrolyze nucleotide triphosphates. Because these enzymes are likely regulatory proteins, much work to date has focused on understanding their role in the assembly process. Here, we review these factors, as well as other sources of energy, and their roles in the ribosome assembly process. In addition, we propose roles of energy-releasing enzymes in the assembly process, to explain why energy is used for a process that occurs largely spontaneously in bacteria. Finally, we use literature data to suggest testable models for how these enzymes could be used as targets for regulation of ribosome assembly. PMID:19850913

  4. Permanent magnet assembly

    DOEpatents

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  5. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  6. Pultrusion Die Assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L. (Inventor); Johnson, Gary S. (Inventor); Frye, Mark W. (Inventor); Stanfield, Clarence E. (Inventor)

    1988-01-01

    This invention relates generally to pultrusion die assemblies, and more particularly, to a pultrusion die assembly which incorporates a plurality of functions in order to produce a continuous, thin composite fiber reinforced thermoplastic material. The invention is useful for making high performance thermoplastic composite materials in sheets which can be coiled on a spool and stored for further processing.

  7. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  8. Turbine disc sealing assembly

    DOEpatents

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  9. Assembling Transgender Moments

    ERIC Educational Resources Information Center

    Greteman, Adam J.

    2017-01-01

    In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…

  10. Perspective: Geometrically frustrated assemblies

    NASA Astrophysics Data System (ADS)

    Grason, Gregory M.

    2016-09-01

    This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.

  11. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  12. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  13. Assembly: a resource for assembled genomes at NCBI

    PubMed Central

    Kitts, Paul A.; Church, Deanna M.; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G.; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D.; Pruitt, Kim D.; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  14. Assembly: a resource for assembled genomes at NCBI.

    PubMed

    Kitts, Paul A; Church, Deanna M; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D; Pruitt, Kim D; Kimchi, Avi

    2016-01-04

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  16. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  17. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  18. Assembly of bacterial ribosomes.

    PubMed

    Shajani, Zahra; Sykes, Michael T; Williamson, James R

    2011-01-01

    The assembly of ribosomes from a discrete set of components is a key aspect of the highly coordinated process of ribosome biogenesis. In this review, we present a brief history of the early work on ribosome assembly in Escherichia coli, including a description of in vivo and in vitro intermediates. The assembly process is believed to progress through an alternating series of RNA conformational changes and protein-binding events; we explore the effects of ribosomal proteins in driving these events. Ribosome assembly in vivo proceeds much faster than in vitro, and we outline the contributions of several of the assembly cofactors involved, including Era, RbfA, RimJ, RimM, RimP, and RsgA, which associate with the 30S subunit, and CsdA, DbpA, Der, and SrmB, which associate with the 50S subunit.

  19. Mechanisms of Virus Assembly

    PubMed Central

    Perlmutter, Jason D.; Hagan, Michael F.

    2015-01-01

    Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid, and in some cases surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assembles within their host cells and in vitro. We describe the thermodynamics and kinetics for assembly of protein subunits into icosahedral capsid shells, and how these are modified in cases where the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques that have been used to characterize capsid assembly, and we highlight aspects of virus assembly which are likely to receive significant attention in the near future. PMID:25532951

  20. Mechanisms of Virus Assembly

    NASA Astrophysics Data System (ADS)

    Perlmutter, Jason D.; Hagan, Michael F.

    2015-04-01

    Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid and in some cases are surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assemble within their host cells and in vitro. We describe the thermodynamics and kinetics for the assembly of protein subunits into icosahedral capsid shells and how these are modified in cases in which the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques used to characterize capsid assembly, and we highlight aspects of virus assembly that are likely to receive significant attention in the near future.

  1. Automated assembly in space

    NASA Technical Reports Server (NTRS)

    Srivastava, Sandanand; Dwivedi, Suren N.; Soon, Toh Teck; Bandi, Reddy; Banerjee, Soumen; Hughes, Cecilia

    1989-01-01

    The installation of robots and their use of assembly in space will create an exciting and promising future for the U.S. Space Program. The concept of assembly in space is very complicated and error prone and it is not possible unless the various parts and modules are suitably designed for automation. Certain guidelines are developed for part designing and for an easy precision assembly. Major design problems associated with automated assembly are considered and solutions to resolve these problems are evaluated in the guidelines format. Methods for gripping and methods for part feeding are developed with regard to the absence of gravity in space. The guidelines for part orientation, adjustments, compliances and various assembly construction are discussed. Design modifications of various fasteners and fastening methods are also investigated.

  2. Constrained space camera assembly

    DOEpatents

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  3. Critics and Criticism of Education

    ERIC Educational Resources Information Center

    Ornstein, Allan C.

    1977-01-01

    Radical educational critics, such as Edgar Friedenberg, Paul Goodman, A. S. Neill, John Holt, Jonathan Kozol, Herbert Kohl, James Herndon, and Ivan Illich, have few constructive goals, no strategy for broad change, and a disdain for modernization and compromise. Additionally, these critics, says the author, fail to consider social factors related…

  4. Taking criticism.

    PubMed

    Dowd, Steven B; Davidhizar, Ruth

    2006-01-01

    The manner in which criticism is dealt with is one of the important behaviors to master in a healthcare work environment: 1.) respond calmly, 2) use a problem solving approach, 3) avoid blaming others, 4) increase the complainers feelings of power, 4) increase feelings of power, 5) communicate respect, 6) do not respond to criticism with an e-mail, 7) forgive the complainer and not hold a grudge; and 8) let the buck stop as soon as possible, and 9) take criticism seriously. Dealing with criticism will never be easy. It just isn't! But using a reasoned approach will help, and get us back to why we entered healthcare - to take care of patients.

  5. Critical Careers.

    ERIC Educational Resources Information Center

    Bowles, Roger A.

    2001-01-01

    Reports the critical shortage of qualified equipment technicians, especially in biomedical equipment. Cites the importance of encouraging careers in this field and describes a source of occupational information. (SK)

  6. Transportin Regulates Major Mitotic Assembly Events: From Spindle to Nuclear Pore Assembly

    PubMed Central

    Lau, Corine K.; Delmar, Valerie A.; Chan, Rene C.; Phung, Quang; Bernis, Cyril; Fichtman, Boris; Rasala, Beth A.

    2009-01-01

    Mitosis in higher eukaryotes is marked by the sequential assembly of two massive structures: the mitotic spindle and the nucleus. Nuclear assembly itself requires the precise formation of both nuclear membranes and nuclear pore complexes. Previously, importin alpha/beta and RanGTP were shown to act as dueling regulators to ensure that these assembly processes occur only in the vicinity of the mitotic chromosomes. We now find that the distantly related karyopherin, transportin, negatively regulates nuclear envelope fusion and nuclear pore assembly in Xenopus egg extracts. We show that transportin—and importin beta—initiate their regulation as early as the first known step of nuclear pore assembly: recruitment of the critical pore-targeting nucleoporin ELYS/MEL-28 to chromatin. Indeed, each karyopherin can interact directly with ELYS. We further define the nucleoporin subunit targets for transportin and importin beta and find them to be largely the same: ELYS, the Nup107/160 complex, Nup53, and the FG nucleoporins. Equally importantly, we find that transportin negatively regulates mitotic spindle assembly. These negative regulatory events are counteracted by RanGTP. We conclude that the interplay of the two negative regulators, transportin and importin beta, along with the positive regulator RanGTP, allows precise choreography of multiple cell cycle assembly events. PMID:19641022

  7. Transportin regulates major mitotic assembly events: from spindle to nuclear pore assembly.

    PubMed

    Lau, Corine K; Delmar, Valerie A; Chan, Rene C; Phung, Quang; Bernis, Cyril; Fichtman, Boris; Rasala, Beth A; Forbes, Douglass J

    2009-09-01

    Mitosis in higher eukaryotes is marked by the sequential assembly of two massive structures: the mitotic spindle and the nucleus. Nuclear assembly itself requires the precise formation of both nuclear membranes and nuclear pore complexes. Previously, importin alpha/beta and RanGTP were shown to act as dueling regulators to ensure that these assembly processes occur only in the vicinity of the mitotic chromosomes. We now find that the distantly related karyopherin, transportin, negatively regulates nuclear envelope fusion and nuclear pore assembly in Xenopus egg extracts. We show that transportin-and importin beta-initiate their regulation as early as the first known step of nuclear pore assembly: recruitment of the critical pore-targeting nucleoporin ELYS/MEL-28 to chromatin. Indeed, each karyopherin can interact directly with ELYS. We further define the nucleoporin subunit targets for transportin and importin beta and find them to be largely the same: ELYS, the Nup107/160 complex, Nup53, and the FG nucleoporins. Equally importantly, we find that transportin negatively regulates mitotic spindle assembly. These negative regulatory events are counteracted by RanGTP. We conclude that the interplay of the two negative regulators, transportin and importin beta, along with the positive regulator RanGTP, allows precise choreography of multiple cell cycle assembly events.

  8. Dynamic Nanoparticles Assemblies

    PubMed Central

    WANG, LIBING; XU, LIGUANG; KUANG, HUA; XU, CHUANLAI; KOTOV, NICHOLAS A.

    2012-01-01

    CONSPECTUS Importance Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Classification Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions

  9. Theoretical Aspect of Assembly

    NASA Astrophysics Data System (ADS)

    Václav, Štefan; Jurko, Jozef; Božek, Pavol; Lecký, Šimon

    2016-09-01

    Assembly plays a decisive role in global production in terms of its share in the total costs of the products assembled and in terms of the number of people working in the field. The author of (1) indicates that the percentage of the workers in assembly out of the total number of the workers in manufacturing in the U.S.A. ranged from 26.3% (bicycles) to 45.6% (automobiles), while the cost of the product assembly represented typically more than 50% of the total costs. Despite the above-mentioned importance of assembly in the industry, the discontinuous production processes have not been paid adequate attention until recently. It was sufficient to manufacture parts and then an operative reasonably and inexpensively assembled each product manually. The authors of this paper would like to emphasise "the method of a systemic approach" which focuses upon identifying the key activities to meet the objective. Harmonious interrelations of the activities are often a source of greater profit than in a system where some activities are of the top level while the others are neglected (2). The aim of this paper is to describe theoretical aspects of all the typical activities of the assembly system.

  10. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  11. Protective helmet assembly

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S. (Inventor); Weiss, Fred R. (Inventor); Eck, John D. (Inventor)

    1992-01-01

    The invention is a protective helmet assembly with improved safety and impact resistance, high resistance to ignition and combustion, and reduced offgassing. The assembly comprises a hard rigid ballistic outer shell with one or more impact absorbing pads fitted to the interior surface. The pads are made of open cell flexible polyimide foam material, each of which is attached to the inner surface of the ballistic outer shell by cooperative VELCRO fastener strips of hook-and-loop material affixed respectively to the rigid outer shell and the impact absorbing pads. The helmet assembly with shell and pads is sized to fit relatively close over a wearer's head.

  12. TPX assembly plan

    SciTech Connect

    Knutson, D.

    1993-11-01

    The TPX machine will be assembled in the TFTR Test Cell at the Plasma Physics Laboratory, utilizing the existing TFTR machine foundation. Preparation of the area for assembly will begin after completion of the decontamination and decommissioning phase on TFTR and certification that the radiation levels remaining, if any, are consistent with the types of operations planned. Assembly operations begin with the arrival of the first components, and conclude, approximately 24 months later, with the successful completion of the integrated systems tests and the achievement of a first plasma.

  13. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  14. How Critical Is Critical Infrastructure?

    DTIC Science & Technology

    2015-09-01

    be misdirected even though it is the cornerstone mission of the department to prevent terrorism and enhance security. It is likely that the...facilities DHS works to protect from terrorism are not the most likely targets for attacks. The manner in which facilities are designated as critical...security, critical infrastructure, world trade center, military theory, terrorism 15. NUMBER OF PAGES 155 16. PRICE CODE 17. SECURITY CLASSIFICATION

  15. Solvation Effects in Self-Assembled Systems

    SciTech Connect

    Frink, L.J.D.

    1998-11-10

    Many types of self-assembly can be found in nature. They include crystallization, the formation of micelles, and the folding of proteins. Recently there has been much interest in pursuing nano-to-microscopically engineered materials by way of self-assembly on imprinted or templated surfaces. In all of these diverse cases, wetting plays a critical role in the assembly process. Wetting involves the interactions of the substrate or amphiphilic molecule or macromolecule with a solvent. In many self-assembled systems we find that the critical feature of the system is a substrate! or macromolecule with a both hydrophilic and hydrophobic nature. In this paper we discuss the wetting properties of a striped surface where the stripes represent alternating chemical characteristics. We show how the chemical heterogeneity affects the wetting properties of the surface (e.g. the static contact angle), and discuss the length limitations on the soft lithography approach. In this paper, the wetting of a chemically heterogeneous surface is studied using a nonlocal Density Functional Theory (DFT). The results for the heterogeneous surface model we discuss have immediate implications for soft-lithography by self-assembly. It also lends fundamental insight into the mechanisms controlling self-assembly of macromolecules. We present the results of nonlocal 2D DFT calculations on the wetting properties of chemically heterogeneous surfaces. These calculations showed complex density distributions and phase behavior as a result of the heterogeneity. The location of the wetting transition are found to be strongly dependent on the extent and strength of the heterogeneity, and complete wetting was suppressed altogether if the hydrophobic parts of the surface were large enough. In these cases, the condensed nanophase may crystallize if the hydrophilic surface-fluid interactions are strong enough. By exploring the phase space including strength of hydrophilic interactions and extent of chemical

  16. Swipe transfer assembly

    DOEpatents

    Christiansen, Robert M.; Mills, William C.

    1992-01-01

    The swipe transfer assembly is a mechanical assembly which is used in conjunction with glove boxes and other sealed containments. It is used to pass small samples into or out of glove boxes without an open breach of the containment, and includes a rotational cylinder inside a fixed cylinder, the inside cylinder being rotatable through an arc of approximately 240.degree. relative to the outer cylinder. An offset of 120.degree. from end to end allows only one port to be opened at a time. The assembly is made of stainless steel or aluminum and clear acrylic plastic to enable visual observation. The assembly allows transfer of swipes and smears from radiological and other specially controlled environments.

  17. Magnetostrictive valve assembly

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2008-01-01

    A magnetostrictive valve assembly includes a housing that defines a passage with a seat being formed therein. A magnetically-biased and axially-compressed magnetostrictive assembly slidingly fitted in the passage is configured as a hollow and open-ended conduit adapted to support a flow of a fluid therethrough. Current-carrying coil(s) disposed about the passage in the region of the magnetostrictive assembly generate a magnetic field in the passage when current flows through the coil(s). A hollow valve body with side ports is coupled on one end thereof to an axial end of the magnetostrictive assembly. The other end of the valve body is designed to seal with the seat formed in the housing's passage when brought into contact therewith.

  18. Station Assembly Animation

    NASA Image and Video Library

    This animation depicts the assembly of the International Space Station since Nov. 20, 1998, with the delivery of the Zarya module, through May 16, 2011, with the delivery of the EXPRESS Logistics C...

  19. Supramolecular DNA assembly.

    PubMed

    McLaughlin, Christopher K; Hamblin, Graham D; Sleiman, Hanadi F

    2011-12-01

    The powerful self-assembly features of DNA make it a unique template to finely organize and control matter on the nanometre scale. While DNA alone offers a high degree of fidelity in its self-assembly, a new area of research termed 'supramolecular DNA assembly' has recently emerged. This field combines DNA building blocks with synthetic organic, inorganic and polymeric structures. It thus brings together the toolbox of supramolecular chemistry with the predictable and programmable nature of DNA. The result of this molecular partnership is a variety of hybrid architectures, that expand DNA assembly beyond the boundaries of Watson-Crick base pairing into new structural and functional properties. In this tutorial review we outline this emerging field of study, and describe recent research aiming to synergistically combine the properties inherent to DNA with those of a number of supramolecular scaffolds. This ultimately creates structures with numerous potential applications in materials science, catalysis and medicine.

  20. Assembly Line of Stars

    NASA Image and Video Library

    2010-05-06

    This image from NASA Herschel, in the constellation of Vulpecula, shows an entire assembly line of newborn stars. The diffuse glow reveals the widespread cold reservoir of raw material that our Milky Way galaxy has in stock for building stars.

  1. Steam separator latch assembly

    DOEpatents

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  2. Steam separator latch assembly

    DOEpatents

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  3. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  4. Core assembly storage structure

    DOEpatents

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  5. Flexseal Insulator Test Assembly

    NASA Technical Reports Server (NTRS)

    Buchanan, Eric

    1995-01-01

    Small-scale version of solid-fuel rocket motor flexseal nozzle bearing assembly instrumented and tested in compression-testing fixture simulating conditions during rocket motor operation described in report.

  6. Integrated thruster assembly program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program is reported which has provided technology for a long life, high performing, integrated ACPS thruster assembly suitable for use in 100 typical flights of a space shuttle vehicle over a ten year period. The four integrated thruster assemblies (ITA) fabricated consisted of: propellant injector; a capacitive discharge, air gap torch type igniter assembly; fast response igniter and main propellant valves; and a combined regen-dump film cooled chamber. These flightweight 6672 N (1500 lb) thruster assemblies employed GH2/GO2 as propellants at a chamber pressure of 207 N/sq cm (300 psia). Test data were obtained on thrusted performance, thermal and hydraulic characteristics, dynamic response in pulsing, and cycle life. One thruster was fired in excess of 42,000 times.

  7. Rnnotator Assembly Pipeline

    SciTech Connect

    Martin, Jeff

    2010-06-03

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  8. Automated Assembly Center (AAC)

    NASA Technical Reports Server (NTRS)

    Stauffer, Robert J.

    1993-01-01

    The objectives of this project are as follows: to integrate advanced assembly and assembly support technology under a comprehensive architecture; to implement automated assembly technologies in the production of high-visibility DOD weapon systems; and to document the improved cost, quality, and lead time. This will enhance the production of DOD weapon systems by utilizing the latest commercially available technologies combined into a flexible system that will be able to readily incorporate new technologies as they emerge. Automated assembly encompasses the following areas: product data, process planning, information management policies and framework, three schema architecture, open systems communications, intelligent robots, flexible multi-ability end effectors, knowledge-based/expert systems, intelligent workstations, intelligent sensor systems, and PDES/PDDI data standards.

  9. Designing Assemblies Of Plates

    NASA Technical Reports Server (NTRS)

    Williams, F. W.; Kennedy, D.; Butler, R.; Aston, G.; Anderson, M. S.

    1992-01-01

    VICONOPT calculates vibrations and instabilities of assemblies of prismatic plates. Designed for efficient, accurate analysis of buckling and vibration, and for optimum design of panels of composite materials. Written in FORTRAN 77.

  10. Understanding ribosome assembly: the structure of in vivo assembled immature 30S subunits revealed by cryo-electron microscopy.

    PubMed

    Jomaa, Ahmad; Stewart, Geordie; Martín-Benito, Jaime; Zielke, Ryszard; Campbell, Tracey L; Maddock, Janine R; Brown, Eric D; Ortega, Joaquin

    2011-04-01

    Four decades after early in vitro assembly studies demonstrated that ribosome assembly is a controlled process, our understanding of ribosome assembly is still incomplete. Just as structure determination has been so important to understanding ribosome function, so too will it be critical to sorting out the assembly process. Here, we used a viable deletion in the yjeQ gene, a recognized ribosome assembly factor, to isolate and structurally characterize immature 30S subunits assembled in vivo. These small ribosome subunits contained unprocessed 17S rRNA and lacked some late ribosomal proteins. Cryo-electron microscopy reconstructions revealed that the presence of precursor sequences in the rRNA induces a severe distortion in the 3' minor domain of the subunit involved in the decoding of mRNA and interaction with the large ribosome subunit. These findings suggest that rRNA processing events induce key local conformational changes directing the structure toward the mature assembly. We concluded that rRNA processing, folding, and the entry of tertiary r-proteins are interdependent events in the late stages of 30S subunit assembly. In addition, we demonstrate how studies of emerging assembly factors in ribosome biogenesis can help to elucidate the path of subunit assembly in vivo.

  11. Nuclear criticality safety: 300 Area

    SciTech Connect

    Not Available

    1991-07-31

    This Standard applies to the receipt, processing, storage, and shipment of fissionable material in the 300 Area and in any other facility under the control of the Reactor Materials Project Management Team (PMT). The objective is to establish practices and process conditions for the storage and handling of fissionable material that prevent the accidental assembly of a critical mass and that comply with DOE Orders as well as accepted industry practice.

  12. Nuclear criticality safety: 300 Area

    SciTech Connect

    Not Available

    1991-07-31

    This Standard applies to the receipt, processing, storage, and shipment of fissionable material in the 300 Area and in any other facility under the control of the Reactor Materials Project Management Team (PMT). The objective is to establish practices and process conditions for the storage and handling of fissionable material that prevent the accidental assembly of a critical mass and that comply with DOE Orders as well as accepted industry practice.

  13. Criticality measurements for SNM accountability

    SciTech Connect

    Bohman, J.; Martin, E.R.; Butterfield, K.; Paternoster, R.

    1998-03-01

    Based on extensive operating experience with the Godiva IV fast metal burst assembly at Los Alamos National Laboratory, the authors were able to create data plots for reactivity worths of standard configurations at various temperatures and room return locations. These plots show that the material uncertainties in criticality measurements are within {+-} 20 grams out of the 65.4 kilogram HEU Godiva core. This is superior to active neutron well coincidence counter (AWCC) measurements. The criticality measurements have the additional advantage of not requiring disassembly of the reactor. No disassembly means the measurement takes less time--it can be done during each operation--and there is less dose to measurement personnel.

  14. VIRUS instrument collimator assembly

    NASA Astrophysics Data System (ADS)

    Marshall, Jennifer L.; DePoy, Darren L.; Prochaska, Travis; Allen, Richard D.; Williams, Patrick; Rheault, Jean-Philippe; Li, Ting; Nagasawa, Daniel Q.; Akers, Christopher; Baker, David; Boster, Emily; Campbell, Caitlin; Cook, Erika; Elder, Alison; Gary, Alex; Glover, Joseph; James, Michael; Martin, Emily; Meador, Will; Mondrik, Nicholas; Rodriguez-Patino, Marisela; Villanueva, Steven; Hill, Gary J.; Tuttle, Sarah; Vattiat, Brian; Lee, Hanshin; Chonis, Taylor S.; Dalton, Gavin B.; Tacon, Mike

    2014-07-01

    The Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument is a baseline array 150 identical fiber fed optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The collimator subassemblies of the instrument have been assembled in a production line and are now complete. Here we review the design choices and assembly practices used to produce a suite of identical low-cost spectrographs in a timely fashion using primarily unskilled labor.

  15. Recuperator assembly and procedures

    DOEpatents

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2008-08-26

    A construction of recuperator core segments is provided which insures proper assembly of the components of the recuperator core segment, and of a plurality of recuperator core segments. Each recuperator core segment must be constructed so as to prevent nesting of fin folds of the adjacent heat exchanger foils of the recuperator core segment. A plurality of recuperator core segments must be assembled together so as to prevent nesting of adjacent fin folds of adjacent recuperator core segments.

  16. Vehicle Assembly Building (VAB)

    NASA Image and Video Library

    2017-09-27

    NASA's Vehicle Assembly Building at Kennedy Space Center in Florida was used to assemble and house American-crewed launch vehicles from 1968 to 2011. AT 3,684,883 cubic meters, it is one of the largest buildings in the world by volume. Inside the facility, High Bay 3 is being upgraded and modified to support processing of the agency's Space Launch System rocket and Orion spacecraft.

  17. Nanoscale Assemblies of Small Molecules Control the Fate of Cells.

    PubMed

    Shi, Junfeng; Xu, Bing

    2015-10-01

    illustrating these experimental strategies for controlling the formation of nanoscale assemblies of small molecules and for identifying their corresponding protein targets, we aim to highlight that, though not being defined at the genetic level, nanoscale assemblies of small molecules are able to perform many critical biological functions. We envision that nanoscale assemblies of small molecules are a new frontier at the intersection of nanoscience and cell biology and biomedicine. In addition, we discuss the challenges and perspectives of relevant potential biomedical applications of nanoscale assemblies of small molecules.

  18. Plasma Pyrolysis Assembly Regeneration Evaluation

    NASA Technical Reports Server (NTRS)

    Medlen, Amber; Abney, Morgan B.; Miller, Lee A.

    2011-01-01

    In April 2010 the Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS). This technology requires hydrogen to recover oxygen from carbon dioxide. This results in the production of water and methane. Water is electrolyzed to provide oxygen to the crew. Methane is vented to space resulting in a loss of valuable hydrogen and unreduced carbon dioxide. This is not critical for ISS because of the water resupply from Earth. However, in order to have enough oxygen for long-term missions, it will be necessary to recover the hydrogen to maximize oxygen recovery. Thus, the Plasma Pyrolysis Assembly (PPA) was designed to recover hydrogen from methane. During operation, the PPA produces small amounts of carbon that can ultimately reduce performance by forming on the walls and windows of the reactor chamber. The carbon must be removed, although mechanical methods are highly inefficient, thus chemical methods are of greater interest. The purpose of this effort was to determine the feasibility of chemically removing the carbon from the walls and windows of a PPA reactor using a pure carbon dioxide stream.

  19. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    PubMed

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio (α:β), with high probability, using Θ(α + β) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling. This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235-253, 2009

  20. Meniscus height controlled convective self-assembly

    NASA Astrophysics Data System (ADS)

    Choudhary, Satyan; Crosby, Alfred

    Convective self-assembly techniques based on the 'coffee-ring effect' allow for the fabrication of materials with structural hierarchy and multi-functionality across a wide range of length scales. The coffee-ring effect describes deposition of non-volatiles at the edge of droplet due to capillary flow and pattern formations due to pinning and de-pinning of meniscus with the solvent evaporation. We demonstrate a novel convective self-assembly method which uses a piezo-actuated bending motion for driving the de-pinning step. In this method, a dilute solution of nanoparticles or polymers is trapped by capillary forces between a blade and substrate. As the blade oscillates with a fixed frequency and amplitude and the substrate translates at a fixed velocity, the height of the capillary meniscus oscillates. The meniscus height controls the contact angle of three phase contact line and at a critical angle de-pinning occurs. The combination of convective flux and continuously changing contact angle drives the assembly of the solute and subsequent de-pinning step, providing a direct means for producing linear assemblies. We demonstrate a new method for convective self-assembly at an accelerated rate when compared to other techniques, with control over deposit dimensions. Army Research Office (W911NF-14-1-0185).

  1. Assembly, stability and dynamics of virus capsids.

    PubMed

    Mateu, Mauricio G

    2013-03-01

    Most viruses use a hollow protein shell, the capsid, to enclose the viral genome. Virus capsids are large, symmetric oligomers made of many copies of one or a few types of protein subunits. Self-assembly of a viral capsid is a complex oligomerization process that proceeds along a pathway regulated by ordered interactions between the participating protein subunits, and that involves a series of (usually transient) assembly intermediates. Assembly of many virus capsids requires the assistance of scaffolding proteins or the viral nucleic acid, which interact with the capsid subunits to promote and direct the process. Once assembled, many capsids undergo a maturation reaction that involves covalent modification and/or conformational rearrangements, which may increase the stability of the particle. The final, mature capsid is a relatively robust protein complex able to protect the viral genome from physicochemical aggressions; however, it is also a metastable, dynamic structure poised to undergo controlled conformational transitions required to perform biologically critical functions during virus entry into cells, intracellular trafficking, and viral genome uncoating. This article provides an updated general overview on structural, biophysical and biochemical aspects of the assembly, stability and dynamics of virus capsids. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The Zeus Copper/Uranium Critical Experiment at NCERC

    SciTech Connect

    Sanchez, Rene G.; Hayes, David K.; Bounds, John Alan; Jackman, Kevin R.; Goda, Joetta M.

    2012-06-15

    A critical experiment was performed to provide nuclear data in a non-thermal neutron spectrum and to reestablish experimental capability relevant to Stockpile Stewardship and Technical Nuclear Forensic programs. Irradiation foils were placed at specific locations in the Zeus all oralloy critical experiment to obtain fission ratios. These ratios were compared with others from other critical assemblies to assess the degree of softness in the neutron spectrum. This critical experiment was performed at the National Criticality Experiments Research Center (NCERC) in Nevada.

  3. Staying Critical

    ERIC Educational Resources Information Center

    Carr, Wilfred; Kemmis, Stephen

    2005-01-01

    In this article, the two authors of "Becoming Critical: education, knowledge and action research" look back at the book's history since its publication 20 years ago. We describe how the book was originally written, and the diverse responses and reactions that it has produced. We identify some of the book's inadequacies and limitations,…

  4. Human Assisted Assembly Processes

    SciTech Connect

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  5. Assembly Test Article (ATA)

    NASA Technical Reports Server (NTRS)

    Ricks, Glen A.

    1988-01-01

    The assembly test article (ATA) consisted of two live loaded redesigned solid rocket motor (RSRM) segments which were assembled and disassembled to simulate the actual flight segment stacking process. The test assembly joint was flight RSRM design, which included the J-joint insulation design and metal capture feature. The ATA test was performed mid-November through 24 December 1987, at Kennedy Space Center (KSC), Florida. The purpose of the test was: certification that vertical RSRM segment mating and separation could be accomplished without any damage; verification and modification of the procedures in the segment stacking/destacking documents; and certification of various GSE to be used for flight assembly and inspection. The RSRM vertical segment assembly/disassembly is possible without any damage to the insulation, metal parts, or seals. The insulation J-joint contact area was very close to the predicted values. Numerous deviations and changes to the planning documents were made to ensure the flight segments are effectively and correctly stacked. Various GSE were also certified for use on flight segments, and are discussed in detail.

  6. Photovoltaic self-assembly.

    SciTech Connect

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  7. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  8. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  9. Constrained space camera assembly

    DOEpatents

    Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.

    1999-05-11

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.

  10. RNA folding and ribosome assembly.

    PubMed

    Woodson, Sarah A

    2008-12-01

    Ribosome synthesis is a tightly regulated process that is crucial for cell survival. Chemical footprinting, mass spectrometry, and cryo-electron microscopy are revealing how these complex cellular machines are assembled. Rapid folding of the rRNA provides a platform for protein-induced assembly of the bacterial 30S ribosome. Multiple assembly pathways increase the flexibility of the assembly process, while accessory factors and modification enzymes chaperone the late stages of assembly and control the quality of the mature subunits.

  11. Critical Information at Critical Moments

    ERIC Educational Resources Information Center

    Fierman, Ben; Thrower, Raymond H., Jr.

    2011-01-01

    On a daily basis, administrators are reminded of the potential, perhaps the likelihood, of violence or natural crises on their campuses. Comprehensive studies have been conducted and point to recommendations and best practices for planning, preparing, responding to, and recovering from critical incidents. The International Association of Campus…

  12. Fast critical assembly safeguards. Summary report, October 1978-September 1979

    SciTech Connect

    Winslow, G.H.; Bellinger, F.O.; Scharping, R.A.; Rusch, G.K.; Groh, E.F.

    1980-09-01

    The effectiveness of a neutron well correlation counter (NWCC) and a random driver (RD) for plutonium-containing item assay and loss detection has been studied. The items were 4 in. x 2 in. x 1/4 in. stainless steel-clad metal plates and 6 in. x 3/8 in. stainless steel-clad oxide rods, each in two types of containment. It was found that absorption by dummies increases one's chance of detecting substitution over the chance of detecting simple removal. In all the loss-detection tests, however, there was only one failure to detect a loss. The NWCC did not separate out (..cap alpha..,n) neutrons well enough that one could use a calibration made with plates to assay for rods. The RD was found to have minimal usefulness for the assay of irradiated plates.

  13. Electromagnetic Near Field Measurements of Two Critical Assemblies

    SciTech Connect

    Goettee, Jeffrey David

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  14. IVA: accurate de novo assembly of RNA virus genomes.

    PubMed

    Hunt, Martin; Gall, Astrid; Ong, Swee Hoe; Brener, Jacqui; Ferns, Bridget; Goulder, Philip; Nastouli, Eleni; Keane, Jacqueline A; Kellam, Paul; Otto, Thomas D

    2015-07-15

    An accurate genome assembly from short read sequencing data is critical for downstream analysis, for example allowing investigation of variants within a sequenced population. However, assembling sequencing data from virus samples, especially RNA viruses, into a genome sequence is challenging due to the combination of viral population diversity and extremely uneven read depth caused by amplification bias in the inevitable reverse transcription and polymerase chain reaction amplification process of current methods. We developed a new de novo assembler called IVA (Iterative Virus Assembler) designed specifically for read pairs sequenced at highly variable depth from RNA virus samples. We tested IVA on datasets from 140 sequenced samples from human immunodeficiency virus-1 or influenza-virus-infected people and demonstrated that IVA outperforms all other virus de novo assemblers. The software runs under Linux, has the GPLv3 licence and is freely available from http://sanger-pathogens.github.io/iva © The Author 2015. Published by Oxford University Press.

  15. Power module assembly

    DOEpatents

    Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  16. Optical interconnect assembly

    DOEpatents

    Laughlin, Daric; Abel, Philip

    2015-06-09

    An optical assembly includes a substrate with a first row of apertures and a second row of apertures. A first optical die includes a first plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each transducer element is aligned with an aperture of the first row of optical apertures. A second optical die includes a second plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each of the second plurality of optical transducer elements is aligned with an aperture of the second row of optical apertures. A connector configured to mate with the optical assembly supports a plurality of optical fibers. A terminal end of each optical fiber protrudes from the connector and extends into one of the apertures when the connector is coupled with the optical assembly.

  17. Supported PV module assembly

    DOEpatents

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  18. Driving ribosome assembly.

    PubMed

    Kressler, Dieter; Hurt, Ed; Bassler, Jochen

    2010-06-01

    Ribosome biogenesis is a fundamental process that provides cells with the molecular factories for cellular protein production. Accordingly, its misregulation lies at the heart of several hereditary diseases (e.g., Diamond-Blackfan anemia). The process of ribosome assembly comprises the processing and folding of the pre-rRNA and its concomitant assembly with the ribosomal proteins. Eukaryotic ribosome biogenesis relies on a large number (>200) of non-ribosomal factors, which confer directionality and accuracy to this process. Many of these non-ribosomal factors fall into different families of energy-consuming enzymes, notably including ATP-dependent RNA helicases, AAA-ATPases, GTPases, and kinases. Ribosome biogenesis is highly conserved within eukaryotic organisms; however, due to the combination of powerful genetic and biochemical methods, it is best studied in the yeast Saccharomyces cerevisiae. This review summarizes our current knowledge on eukaryotic ribosome assembly, with particular focus on the molecular role of the involved energy-consuming enzymes.

  19. Liaison based assembly design

    SciTech Connect

    Ames, A.; Kholwadwala, D.; Wilson, R.H.

    1996-12-01

    Liaison Based Assembly Design extends the current information infrastructure to support design in terms of kinematic relationships between parts, or liaisons. These liaisons capture information regarding contact, degrees-of-freedom constraints and containment relationships between parts in an assembly. The project involved defining a useful collection of liaison representations, investigating their properties, and providing for maximum use of the data in downstream applications. We tested our ideas by implementing a prototype system involving extensions to Pro/Engineer and the Archimedes assembly planner. With an expanded product model, the design system is more able to capture design intent. When a product update is attempted, increased knowledge availability improves our ability to understand the effect of design changes. Manufacturing and analysis disciplines benefit from having liaison information available, so less time is wasted arguing over incomplete design specifications and our enterprise can be more completely integrated.

  20. Blade attachment assembly

    SciTech Connect

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  1. Prefrontal neuronal assemblies temporally control fear behaviour.

    PubMed

    Dejean, Cyril; Courtin, Julien; Karalis, Nikolaos; Chaudun, Fabrice; Wurtz, Hélène; Bienvenu, Thomas C M; Herry, Cyril

    2016-07-21

    Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses.

  2. Transfer of fuel assemblies

    SciTech Connect

    Vuckovich, M.; Burkett, J. P.; Sallustio, J.

    1984-12-11

    Fuel assemblies of a nuclear reactor are transferred during fueling or refueling or the like by a crane. The work-engaging fixture of the crane picks up an assembly, removes it from this slot, transfers it to the deposit site and deposits it in its slot at the deposit site. The control for the crane includes a strain gauge connected to the crane line which raises and lowers the load. The strain gauge senses the load on the crane. The signal from the strain gauge is compared with setpoints; a high-level setpoint, a low-level setpoint and a slack-line setpoint. If the strain gauge signal exceeds the high-level setpoint, the line drive is disabled. This event may occur during raising of a fuel assembly which encounters resistance. The high-level setpoint may be overridden under proper precautions. The line drive is also disabled if the strain gauge signal is less than the low-level setpoint. This event occurs when a fuel assembly being deposited contacts the bottom of its slot or an obstruction in, or at the entry to the slot. To preclude lateral movement and possible damage to a fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge exceets the lov-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than the slack-line set-point. This occurs when the lines has been set in slack-line setting. When the line is tensioned after slack-li ne setting, the traverse drive remains enabled only if the line has been disconnected from the fuel assembly.

  3. Phylogenetic Comparative Assembly

    NASA Astrophysics Data System (ADS)

    Husemann, Peter; Stoye, Jens

    Recent high throughput sequencing technologies are capable of generating a huge amount of data for bacterial genome sequencing projects. Although current sequence assemblers successfully merge the overlapping reads, often several contigs remain which cannot be assembled any further. It is still costly and time consuming to close all the gaps in order to acquire the whole genomic sequence. Here we propose an algorithm that takes several related genomes and their phylogenetic relationships into account to create a contig adjacency graph. From this a layout graph can be computed which indicates putative adjacencies of the contigs in order to aid biologists in finishing the complete genomic sequence.

  4. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  5. Assembling an aesthetic.

    PubMed

    Candela, Emily

    2012-12-01

    Recent research informing and related to the study of three-dimensional scientific models is assembled here in a way that explores an aesthetic, specifically, of touch. I concentrate on the materiality of models, drawing on insights from the history and philosophy of science, design and metaphysics. This article chronicles the ways in which touch, or material interactions, operate in the world of 3D models, and its role in what models mean and do. I end with a call for greater attention to scientific process, described as assembly of and within science, which is revealed by this focus on touch. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Low inductance connector assembly

    SciTech Connect

    Holbrook, Meghan Ann; Carlson, Douglas S

    2013-07-09

    A busbar connector assembly for coupling first and second terminals on a two-terminal device to first and second contacts on a power module is provided. The first terminal resides proximate the first contact and the second terminal resides proximate the second contact. The assembly comprises a first bridge having a first end configured to be electrically coupled to the first terminal, and a second end configured to be electrically coupled to the second contact, and a second bridge substantially overlapping the first bridge and having a first end electrically coupled to the first contact, and a second end electrically coupled to the second terminal.

  7. Lightweight reflector assembly

    NASA Technical Reports Server (NTRS)

    Argoud, M. J.; Jolley, J.; Walker, W. L. (Inventor)

    1977-01-01

    An inexpensive, lightweight reflective assembly member having good optical quality and particularly adaptable to accommodating temperature variations without providing destructive thermal stresses and reflective slope errors is described. The reflective assembly consists of a thin sheet of glass with appropriate reflective coating and a cellular glass block substrate bonded together. The method of fabrication includes abrading the cellular substrate with an abrasive master die to form an appropriate concave surface. An adhesive is applied to the abraded surface and a lamina reflective surface is placed under a uniform pressure to conform the reflective surface onto the desired abraded surface of the substrate.

  8. Flow Cage Assemblies

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor)

    2017-01-01

    Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.

  9. Locking differential gear assembly

    SciTech Connect

    Hagiwara, M.; Teraoka, M.

    1989-02-21

    A locking differential gear assembly is described comprising; clutch means for restricting the differential action of the assembly; movable means movable in a linear direction to actuate the clutch means; rotatable pressing means for moving the movable means in the linear direction drive means for rotating the pressing means; and converting means for converting the rotation of the pressing means into linear movement, the converting means including an element fixed in relation to the pressing means, with interengaged threaded portions on the pressing means and the element.

  10. Hand Controller Assembly

    NASA Technical Reports Server (NTRS)

    Bandera, Pablo (Inventor); Buchele, Paul (Inventor)

    2015-01-01

    A user input device for a vehicular electrical system is provided. The user input device includes a handle sized and shaped to be gripped by a human hand and a gimbal assembly within the handle. The gimbal assembly includes a first gimbal component, a second gimbal component coupled to the first gimbal component such that the second gimbal component is rotatable relative to the first gimbal component about a first axis, and a third gimbal component coupled to the second gimbal component such that the third gimbal component is rotatable relative to the second gimbal component about a second axis.

  11. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    PubMed

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  12. Hierarchical assemblies of Si3N4 nanostructures

    NASA Astrophysics Data System (ADS)

    Yao, Xiaohong; Huo, Huidan

    2014-08-01

    In the present work, for the first time, we report the growth of hierarchical assemblies of Si3N4 nanostructures via catalyst-assisted pyrolysis of a polymeric precursor on the Si substrates. The synthesized products were characterized by using field emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. It is found that the size of the catalytic droplet plays a critical role on the formation of hierarchical assemblies of Si3N4 nanostructures rather than common single nanowire. A mechanism based on the Vapor-Liquid-Solid (VLS) process was proposed for the assembly of hierarchical Si3N4 nanostructures.

  13. Fire resistant PV shingle assembly

    DOEpatents

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  14. Critical eigenvalue in LMFBRs: a physics assessment

    SciTech Connect

    McKnight, R.D.; Collins, P.J.; Olsen, D.N.

    1984-01-01

    This paper summarizes recent work to put the analysis of past critical eigenvalue measurements from the US critical experiments program on a consistent basis. The integral data base includes 53 configurations built in 11 ZPPR assemblies which simulate mixed oxide LMFBRs. Both conventional and heterogeneous designs representing 350, 700, and 900 MWe sizes and with and without simulated control rods and/or control rod positions have been studied. The review of the integral data base includes quantitative assessment of experimental uncertainties in the measured excess reactivity. Analyses have been done with design level and higher-order methods using ENDF/B-IV data. Comparisons of these analyses with the experiments are used to generate recommended bias factors for criticality predictions. Recommended methods for analysis of LMFBR fast critical assemblies and LMFBR design calculations are presented. Unresolved issues and areas which require additional experimental or analytical study are identified.

  15. Development of an Advanced Recycle Filter Tank Assembly for the ISS Urine Processor Assembly

    NASA Technical Reports Server (NTRS)

    Link, Dwight E., Jr.; Carter, Donald Layne; Higbie, Scott

    2010-01-01

    Recovering water from urine is a process that is critical to supporting larger crews for extended missions aboard the International Space Station. Urine is collected, preserved, and stored for processing into water and a concentrated brine solution that is highly toxic and must be contained to avoid exposure to the crew. The brine solution is collected in an accumulator tank, called a Recycle Filter Tank Assembly (RFTA) that must be replaced monthly and disposed in order to continue urine processing operations. In order to reduce resupply requirements, a new accumulator tank is being developed that can be emptied on orbit into existing ISS waste tanks. The new tank, called the Advanced Recycle Filter Tank Assembly (ARFTA) is a metal bellows tank that is designed to collect concentrated brine solution and empty by applying pressure to the bellows. This paper discusses the requirements and design of the ARFTA as well as integration into the urine processor assembly.

  16. Fibrillin Assembly Requires Fibronectin

    PubMed Central

    Sabatier, Laetitia; Chen, Daliang; Fagotto-Kaufmann, Christine; Hubmacher, Dirk; McKee, Marc D.; Annis, Douglas S.; Mosher, Deane F.

    2009-01-01

    Fibrillins constitute the major backbone of multifunctional microfibrils in elastic and nonelastic extracellular matrices. Proper assembly mechanisms are central to the formation and function of these microfibrils, and their properties are often compromised in pathological circumstances such as in Marfan syndrome and in other fibrillinopathies. Here, we have used human dermal fibroblasts to analyze the assembly of fibrillin-1 in dependence of other matrix-forming proteins. siRNA knockdown experiments demonstrated that the assembly of fibrillin-1 is strictly dependent on the presence of extracellular fibronectin fibrils. Immunolabeling performed at the light and electron microscopic level showed colocalization of fibrillin-1 with fibronectin fibrils at the early stages of the assembly process. Protein-binding assays demonstrated interactions of fibronectin with a C-terminal region of fibrillin-1, -2, and -3 and with an N-terminal region of fibrillin-1. The C-terminal half of fibrillin-2 and -3 had propensities to multimerize, as has been previously shown for fibrillin-1. The C-terminal of all three fibrillins interacted strongly with fibronectin as multimers, but not as monomers. Mapping studies revealed that the major binding interaction between fibrillins and fibronectin involves the collagen/gelatin-binding region between domains FNI6 and FNI9. PMID:19037100

  17. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  18. Turbomachine blade assembly

    DOEpatents

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  19. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  20. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L; Schroeder, John E; Kalsi, Manmohan S; Alvarez, Patricio D

    2013-08-13

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  1. Corium protection assembly

    DOEpatents

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A corium protection assembly includes a perforated base grid disposed below a pressure vessel containing a nuclear reactor core and spaced vertically above a containment vessel floor to define a sump therebetween. A plurality of layers of protective blocks are disposed on the grid for protecting the containment vessel floor from the corium.

  2. NEUTRONIC REACTOR BURIAL ASSEMBLY

    DOEpatents

    Treshow, M.

    1961-05-01

    A burial assembly is shown whereby an entire reactor core may be encased with lead shielding, withdrawn from the reactor site and buried. This is made possible by a five-piece interlocking arrangement that may be easily put together by remote control with no aligning of bolt holes or other such close adjustments being necessary.

  3. Dump valve assembly

    DOEpatents

    Owen, T.J.

    1984-01-01

    A dump valve assembly comprising a body having a bore defined by a tapered wall and a truncated spherical valve member adapted to seat along a spherical surface portion thereof against said tapered wall. Means are provided for pivoting said valve member between a closed position engagable with said tapered wall and an open position disengaged therefrom.

  4. Beyond the Assembly Line.

    ERIC Educational Resources Information Center

    Weitz, Rebecca; Guild, Todd

    1985-01-01

    Describes how Hughes Aircraft trainers followed four steps in meeting the challenges of a flexible manufacturing environment: needs assessment, design strategy, pilot evaluation, and follow-through. Within this environment, 50 self-paced training products were developed for one of the company's wire and back plane harness assembly departments. (CT)

  5. Beyond the Assembly Line.

    ERIC Educational Resources Information Center

    Weitz, Rebecca; Guild, Todd

    1985-01-01

    Describes how Hughes Aircraft trainers followed four steps in meeting the challenges of a flexible manufacturing environment: needs assessment, design strategy, pilot evaluation, and follow-through. Within this environment, 50 self-paced training products were developed for one of the company's wire and back plane harness assembly departments. (CT)

  6. Admission mixing duct assembly

    NASA Technical Reports Server (NTRS)

    Orlando, Robert J. (Inventor); Dunbar, Lawrence W. (Inventor)

    1995-01-01

    A variable cycle jet engine is provided with a mixing duct assembly which mixes core engine exhaust gas with bypass air when the engine is operating in a turbofan mode and which blocks flow from the core engine and isolates the core engine from the bypass flow when the engine is operating as a ramjet.

  7. Secondary air filter assembly

    SciTech Connect

    Ortonville, A.J.

    1991-02-26

    This patent describes a filter cartridge assembly used for filtering air of a crankcase ventilating system of an internal combustion engine. It comprises: first (108) and second (110) air permeable filter platforms; vertical support columns; leg members; and a filter retainer.

  8. Segmented stator assembly

    DOEpatents

    Lokhandwalla, Murtuza; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Shah, Manoj Ramprasad; Quirion, Owen Scott

    2013-04-02

    An electric machine and stator assembly are provided that include a continuous stator portion having stator teeth, and a tooth tip portion including tooth tips corresponding to the stator teeth of the continuous stator portion, respectively. The tooth tip portion is mounted onto the continuous stator portion.

  9. Walking boot assembly

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.; Chambers, A. B.; Stjohn, R. H. (Inventor)

    1977-01-01

    A walking boot assembly particularly suited for use with a positively pressurized spacesuit is presented. A bootie adapted to be secured to the foot of a wearer, an hermetically sealed boot for receiving the bootie having a walking sole, an inner sole, and an upper portion adapted to be attached to an ankle joint of a spacesuit, are also described.

  10. Metaphase Spindle Assembly

    PubMed Central

    Kapoor, Tarun M.

    2017-01-01

    A microtubule-based bipolar spindle is required for error-free chromosome segregation during cell division. In this review I discuss the molecular mechanisms required for the assembly of this dynamic micrometer-scale structure in animal cells. PMID:28165376

  11. Electronics Assembly Work Sample.

    ERIC Educational Resources Information Center

    Shawsheen Valley Regional Vocational-Technical High School, Billerica, MA.

    This manual contains a work sample intended to assess a handicapped student's interest in and potential to enter a training program in electronics assembly or in a similar program. Section 1 describes the assessment, correlates the work performed and worker traits required for completing the work sample, and lists related occupations and DOT…

  12. Lageos assembly operation plan

    NASA Technical Reports Server (NTRS)

    Brueger, J.

    1975-01-01

    Guidelines and constraints procedures for LAGEOS assembly, operation, and design performance are given. Special attention was given to thermal, optical, and dynamic analysis and testing. The operation procedures illustrate the interrelation and sequence of tasks in a flow diagram. The diagram also includes quality assurance functions for verification of operation tasks.

  13. Reaction Rate Measurements at the National Criticality Experiments Research Center

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Bounds, J. A.; Brooks, G. H., Jr.; Favorite, J. A.; Goda, J. M.; Hayes, D. K.; Jackman, K. R.; Little, R. C.; Macinnes, M. R.; Myers, W. L.; Oldham, W. J.; Rundberg, R. S.; Sanchez, R. G.; Schake, A. R.; White, M. C.; Wilkerson, C. W., Jr.

    2014-09-01

    With the resumption of regular operations of the Los Alamos Critical Assemblies at the National Criticality Experiments Research Center (NCERC), located at the Nevada National Security Site, we have embarked upon a series of campaigns to restore the capability to perform integral reaction rate and fission product yield measurements using historical radiochemical methods. This talk will present an overview of the current and future experimental plans, including results from our experimental campaigns on the Comet/Zeus and Flattop assemblies.

  14. Tectonic assembly of Gondwana

    NASA Astrophysics Data System (ADS)

    Rogers, John J. W.; Unrug, Raphael; Sultan, Mohamed

    1995-01-01

    The Paleozoic assembly of Pangea, with Gondwana as its southern half, completed the last full cycle of growth and dispersal of supercontinents during earth history. This assembly apparently resulted from reorganization of a preceding supercontinent (Rodinia) that existed at ˜1000 Ma. In addition to Laurentia and fragments that formed nuclei for Europe and Asia, the rifting of Rodinia produced: (1) East Gondwana, consisting largely of Western Australia, India, East Antarctica, and possibly part of southern Africa; and (2) various smaller fragments that converged to form West Gondwana, consisting of most of Africa and South America. East Gondwana appears to have been a stable block at a time no younger than ˜1000 Ma and possibly older. West Gondwana accreted largely in the latest Proterozoic and early Paleozoic by closure of the Pharusian Ocean in the north, the Adamaster Ocean in the south, and the ANEKT/Mozambique Ocean between West and East Gondwana. The assembly process was diachronous along numerous mobile belts, accompanied by syn- and post-collisional shearing and magmatism, and led to development of successor basins and rifts. Uncertainties in the timing and mechanism of assembly of Gondwana greatly limit our understanding of the supercontinent cycle. Thus, we propose investigations of Gondwana to determine more precisely the nature and age of apparent cratonic blocks, the locations and ages of orogenic belts, the configuration of former ocean basins, the significance of transcontinental shears, the extent of reactivation of older terranes, and the relationship of Gondwana to North America. Detailed knowledge of the assembly of Gondwana should also provide information on its relationship to other major processes such as mantle evolution and atmospheric, oceanic, and biologic changes.

  15. Peptide self-assembly: thermodynamics and kinetics.

    PubMed

    Wang, Juan; Liu, Kai; Xing, Ruirui; Yan, Xuehai

    2016-10-21

    Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.

  16. Triggered self-assembly of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-03-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  17. Triggered self-assembly of magnetic nanoparticles.

    PubMed

    Ye, L; Pearson, T; Cordeau, Y; Mefford, O T; Crawford, T M

    2016-03-15

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufacturing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  18. Triggered self-assembly of magnetic nanoparticles

    PubMed Central

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-01-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles. PMID:26975332

  19. Microtubule assembly in cytoplasmic extracts of Xenopus oocytes and eggs

    PubMed Central

    1987-01-01

    We have investigated the differences in microtubule assembly in cytoplasm from Xenopus oocytes and eggs in vitro. Extracts of activated eggs could be prepared that assembled extensive microtubule networks in vitro using Tetrahymena axonemes or mammalian centrosomes as nucleation centers. Assembly occurred predominantly from the plus-end of the microtubule with a rate constant of 2 microns.min-1.microM-1 (57 s- 1.microM-1). At the in vivo tubulin concentration, this corresponds to the extraordinarily high rate of 40-50 microns.min-1. Microtubule disassembly rates in these extracts were -4.5 microns.min-1 (128 s-1) at the plus-end and -6.9 microns.min-1 (196 s-1) at the minus-end. The critical concentration for plus-end microtubule assembly was 0.4 microM. These extracts also promoted the plus-end assembly of microtubules from bovine brain tubulin, suggesting the presence of an assembly promoting factor in the egg. In contrast to activated eggs, assembly was never observed in extracts prepared from oocytes, even at tubulin concentrations as high as 20 microM. Addition of oocyte extract to egg extracts or to purified brain tubulin inhibited microtubule assembly. These results suggest that there is a plus-end-specific inhibitor of microtubule assembly in the oocyte and a plus-end-specific promoter of assembly in the eggs. These factors may serve to regulate microtubule assembly during early development in Xenopus. PMID:3680377

  20. Criticality accident alarm system

    SciTech Connect

    Malenfant, R.E.

    1991-01-01

    The American National Standard ANSI/ANS-8.3-1986, Criticality Accident Alarm System provides guidance for the establishment and maintenance of an alarm system to initiate personnel evacuation in the event of inadvertent criticality. In addition to identifying the physical features of the components of the system, the characteristics of accidents of concern are carefully delineated. Unfortunately, this ANSI Standard has led to considerable confusion in interpretation, and there is evidence that the minimum accident of concern'' may not be appropriate. Furthermore, although intended as a guide, the provisions of the standard are being rigorously applied, sometimes with interpretations that are not consistent. Although the standard is clear in the use of absorbed dose in free air of 20 rad, at least one installation has interpreted the requirement to apply to dose in soft tissue. The standard is also clear in specifying the response to both neutrons and gamma rays. An assembly of uranyl fluoride enriched to 5% {sup 235}U was operated to simulate a potential accident. The dose, delivered in a free run excursion 2 m from the surface of the vessel, was greater than 500 rad, without ever exceeding a rate of 20 rad/min, which is the set point for activating an alarm that meets the standard. The presence of an alarm system would not have prevented any of the five major accidents in chemical operations nor is it absolutely certain that the alarms were solely responsible for reducing personnel exposures following the accident. Nevertheless, criticality alarm systems are now the subject of great effort and expense. 13 refs.

  1. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    SciTech Connect

    Orndoff, J.D.; Paxton, H.C.; Wimett, T.F.

    1980-12-01

    Detailed consideration of the Skua burst assembly is provided, thereby supplementing the facility Safety Analysis Report covering the operation of other critical assemblies at the Los Alamos Scientific Laboratory. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public.

  2. Space assembly fixtures and aids

    NASA Technical Reports Server (NTRS)

    Bloom, K. A.; Lillenas, A. N.

    1980-01-01

    Concepts and requirements for assembly fixtures and aids necessary for the assembly and maintenance of spare platforms were studied. Emphasis was placed on erectable and deployable type structures with the shuttle orbiter as the assembly base. Both single and multiple orbiter flight cases for the platform assembly were considered. Applicable space platform assembly studies were reviewed to provide a data base for establishing the assembly fixture and aids design requirements, assembly constraints, and the development of representative design concepts. Conclusions indicated that fixture requirements will vary with platform size. Larger platforms will require translation relative to the orbiter RMS working volume. The installation of platform payloads and subsystems (e.g., utility distribution) must also be considered in the specification of assembly fixtures and aids.

  3. Mechanical Analysis of the Fuel Assembly Box of a HPLWR Fuel Assembly

    SciTech Connect

    Himmel, Steffen; Starflinger, Joerg; Schulenberg, Thomas; Hofmeister, Jan

    2006-07-01

    The aim of the work presented in this paper is to demonstrate that the assembly box of the fuel assembly for a HPLWR proposed by Hofmeister et al. will remain mechanically within the design limits. The commercial finite element code ANSYS has been used to investigate the deformation behaviour caused by thermal convective and pressure boundary conditions provided by the results from Waata et al. for the fuel assembly. The results of these ANSYS analyses show a bending of the assembly box caused by the applied temperature and pressure distribution which, however, is still within the geometrical allowances. The maximum bending of the 4.35 m long assembly box appears close to the mid section, i.e. at 2.45 m axial height, and amounts to about 2 mm, only. The maximum indentation is mainly caused by the pressure difference across the box wall and occurs near the top of the assembly. The indentation at this point can be evaluated to be around 0.2 mm. Both bending and indentation will influence the coolant mass flux and the moderator distribution, and thus needs to be considered for predictions of the power profile and of the coolant heat-up. They are not considered to be critical as long as these deformations are small compared with the nominal gap width of 1 mm between box wall and claddings and 10 mm between adjacent assembly boxes. A second analysis has been performed to study the effect on non-symmetric coolant temperature profiles. A coolant temperature increase by 30 deg. C on one side of the box increased the thermal bending to 4 mm, indicating the sensitivity of this design with respect to temperature non-uniformities. (authors)

  4. Functional assembly of a randomly cleaved protein.

    PubMed Central

    Shiba, K; Schimmel, P

    1992-01-01

    The sequence of a 939-amino acid polypeptide that is a member of the aminoacyl-tRNA synthetase class of enzymes has been aligned with sequences of 15 related proteins. This alignment guided the design of 18 fragment pairs that were tested for internal sequence complementarity by reconstitution of enzyme activity. Reconstitution was achieved with fragments that divide the protein at both nonconserved and conserved sequences, including locations proximal to or within elements believed to form critical elements of secondary structure. Structure assembly is sufficiently flexible to accommodate fusion of short segments of unrelated sequences at fragment junctions. Complementary chain packing interactions and chain flexibility appear to be widely distributed throughout the sequence and are sufficient to reconstruct large three-dimensional structures from an array of disconnected pieces. The results may have implications for the evolution and assembly of large proteins. Images PMID:1542687

  5. Apoptosome structure, assembly and procaspase activation

    PubMed Central

    Yuan, Shujun; Akey, Christopher W.

    2013-01-01

    Apaf-1 like molecules assemble into a ring-like platform known as the apoptosome. This cell death platform then activates procaspases in the intrinsic cell death pathway. In this review, crystal structures of Apaf-1 monomers and CED-4 dimers have been combined with apoptosome structures, to provide insights into the assembly of cell death platforms from humans, nematodes and flies. In humans, caspase recognition domains of procaspase-9 and Apaf-1 interact with each other to form a CARD-CARD disk, which interacts with the platform to create an asymmetric proteolysis machine. The disk tethers multiple pc-9 catalytic domains to the platform to raise their local concentration and this leads to zymogen activation. These advances have now set the stage for further studies of this critical activation process on the apoptosome. PMID:23561633

  6. Ignition system monitoring assembly

    DOEpatents

    Brushwood, John Samuel

    2003-11-04

    An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.

  7. Solution deposition assembly

    SciTech Connect

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  8. Turbine seal assembly

    SciTech Connect

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  9. Hearing Aid Assembly

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N. (Inventor)

    2002-01-01

    Progress in hearing aids has come a long way. Yet despite such progress hearing aids are not the perfect answer to many hearing problems. Some adult ears cannot accommodate tightly fitting hearing aids. Mouth movements such as chewing, talking, and athletic or other active endeavors also lead to loosely fitting ear molds. It is well accepted that loosely fitting hearing aids are the cause of feedback noise. Since feedback noise is the most common complaint of hearing aid wearers it has been the subject of various patents. Herein a hearing aid assembly is provided eliminating feedback noise. The assembly includes the combination of a hearing aid with a headset developed to constrict feedback noise.

  10. Desmosome assembly and dynamics.

    PubMed

    Nekrasova, Oxana; Green, Kathleen J

    2013-11-01

    Desmosomes are intercellular junctions that anchor intermediate filaments (IFs) to the plasma membrane, forming a supracellular scaffold that provides mechanical resilience to tissues. This anchoring function is accomplished by specialized members of the cadherin family and associated cytoskeletal linking proteins, which together form a highly organized membrane core flanked by mirror-image cytoplasmic plaques. Due to the biochemical insolubility of desmosomes, the mechanisms that govern assembly of these components into a functional organelle remained elusive. Recently developed molecular reporters and live cell imaging approaches have provided powerful new tools to monitor this finely tuned process in real time. Here we discuss studies that are beginning to decipher the machinery and regulation governing desmosome assembly and homeostasis in situ and how these mechanisms are affected during disease pathogenesis.

  11. Low inductance busbar assembly

    DOEpatents

    Holbrook, Meghan Ann

    2010-09-21

    A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.

  12. Ingestion resistant seal assembly

    SciTech Connect

    Little, David A

    2011-12-13

    A seal assembly limits gas leakage from a hot gas path to one or more disc cavities in a gas turbine engine. The seal assembly includes a seal apparatus associated with a blade structure including a row of airfoils. The seal apparatus includes an annular inner shroud associated with adjacent stationary components, a wing member, and a first wing flange. The wing member extends axially from the blade structure toward the annular inner shroud. The first wing flange extends radially outwardly from the wing member toward the annular inner shroud. A plurality of regions including one or more recirculation zones are defined between the blade structure and the annular inner shroud that recirculate working gas therein back toward the hot gas path.

  13. FLUORINE CELL ANODE ASSEMBLY

    DOEpatents

    Cable, R.E.; Goode, W.B. Jr.; Henderson, W.K.; Montillon, G.H.

    1962-06-26

    An improved anode assembly is deslgned for use in electrolytlc cells ln the productlon of hydrogen and fluorlne from a moIten electrolyte. The anode assembly comprises a copper post, a copper hanger supported by the post, a plurality of carbon anode members, and bolt means for clamplng half of the anode members to one slde of the hanger and for clamplng the other half of the anode members to the other slde of the hanger. The heads of the clamplng bolts are recessed withln the anode members and carbon plugs are inserted ln the recesses above the bolt heads to protect the boIts agalnst corroslon. A copper washer is provided under the head of each clamplng boIt such that the anode members can be tightly clamped to the hanger with a resultant low anode jolnt resistance. (AEC)

  14. Fuel nozzle assembly

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Lacey, Benjamin Paul; York, William David; Stevenson, Christian Xavier

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  15. Commutating Feed Assembly.

    DTIC Science & Technology

    1979-12-01

    AD-AOBS 567 ITT GILFILLAN VAN NUYS CA F/6 17/9 CONF4UTATING FEED ASSEMBLY. 1W DEC 79 R WOL.FSON F19628-79-C-OOSS UNCLASSIFIED RADC -TR79303 NI. 1i.ll...INTRODUCTION 9 2 COMMUTATING FEED ASSEMBLY REQUIREMENTS 10 . 3 TECHNICAL PROBLEMS 11 1: 3.1 System Design 12 3.1.1 Radius of Circular Array 12 3.1.2 Design...Support Structure 16 3.3 Annular Rotary Coupler 16 3.4 Stripline Feed Network 17 w V.3.4.1 Range of Coupling Values vs. Percent Power into Load 17 3.4.2

  16. Hubble Space Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This photograph shows the Hubble Space Telescope (HST) flight article assembly with multilayer insulation, high gain anterna, and solar arrays in a clean room of the Lockheed Missile and Space Company. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  17. Mechanical seal assembly

    DOEpatents

    Kotlyar, Oleg M.

    2001-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  18. Mechanical seal assembly

    DOEpatents

    Kotlyar, Oleg M.

    2002-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transfering it to the mechanical diode.

  19. Compressor diaphragm assembly

    SciTech Connect

    Scalzo, A.

    1989-12-26

    This patent describes, in a combustion turbine having a casing, one or more slots of a first predetermined cross-section formed circumferentially within the casing at a compressor portion of the turbine, and a compressor diaphragm assembly adapted to be suspended from each of the one or more slots to provide a labyrinth seal with a plurality of compressor discs, a method of forming each compressor diaphragm assembly. It comprises: providing a plurality of vane airfoils each of which have an inner shroud formed integrally with the vane airfoil, and an outer portion attached to the vane airfoil; providing outer ring means for suspending each of the plurality of van airfoils at a stagger angle; suspending the plurality of vane airfoils from the outer ring means, thereby disposing each the vane airfoil and its respective outer portion at the stagger angle; and providing seal carrier means for engagement with each the inner shroud.

  20. Molten core retention assembly

    DOEpatents

    Lampe, Robert F.

    1976-06-22

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical, imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods.

  1. Vacuum breaker valve assembly

    DOEpatents

    Thompson, Jeffrey L.; Upton, Hubert Allen

    1999-04-27

    Breaker valve assemblies for a simplified boiling water nuclear reactor are described. The breaker valve assembly, in one form, includes a valve body and a breaker valve. The valve body includes an interior chamber, and an inlet passage extends from the chamber and through an inlet opening to facilitate transporting particles from outside of the valve body to the interior chamber. The breaker valve is positioned in the chamber and is configured to substantially seal the inlet opening. Particularly, the breaker valve includes a disk which is sized to cover the inlet opening. The disk is movably coupled to the valve body and is configured to move substantially concentrically with respect to the valve opening between a first position, where the disk completely covers the inlet opening, and a second position, where the disk does not completely cover the inlet opening.

  2. Infrared floodlight assembly

    DOEpatents

    Wierzbicki, Julian J.; Chakrabarti, Kirti B.

    1987-09-22

    An infrared floodlight assembly (10) including a cast aluminum outer housing (11) defining a central chamber (15) therein. A floodlight (14), having a tungsten halogen lamp as the light source, is spacedly positioned within a heat conducting member (43) within chamber (15) such that the floodlight is securedly positioned in an aligned manner relative to the assembly's filter (35) and lens (12) components. The invention also includes venting means (51) to allow air passage between the interior of the member (43) and the adjacent chamber (15), as well as engagement means (85) for engaging a rear surface of the floodlight (14) to retain it firmly against an internal flange of the member (43). A reflector (61), capable of being compressed to allow insertion or removal, is located within the heat conducting member's interior between the floodlight (14) and filter (35) to reflect infrared radiation toward the filter (35) and spaced lens (12).

  3. Composite airfoil assembly

    DOEpatents

    Garcia-Crespo, Andres Jose

    2015-03-03

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  4. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  5. REACTOR NOZZLE ASSEMBLY

    DOEpatents

    Capuder, F.C.; Dearwater, J.R.

    1959-02-10

    An improved nozzle assembly useful in a process for the direct reduction of uranium hexafluoride to uranium tetrafluoride by means of dissociated ammonia in a heated reaction vessel is descrlbed. The nozzle design provides for intimate mixing of the two reactants and at the same time furnishes a layer of dissociated ammonia adjacent to the interior wall of the reaction vessel, thus preventing build-up of the reaction product on the vessel wall.

  6. Printed wiring assembly cleanliness

    SciTech Connect

    Stephens, J.M.

    1992-12-01

    This work installed a product cleanliness test capability in a manufacturing environment. A previously purchased testing device was modified extensively and installed in a production department. The device, the testing process, and some soldering and cleaning variables were characterized to establish their relationship to the device output. The characterization provided information which will be required for cleanliness testing to be an adequate process control of printed wiring assembly soldering and cleaning processes.

  7. Uniform Test Assembly

    ERIC Educational Resources Information Center

    Belov, Dmitry I.

    2008-01-01

    In educational practice, a test assembly problem is formulated as a system of inequalities induced by test specifications. Each solution to the system is a test, represented by a 0-1 vector, where each element corresponds to an item included (1) or not included (0) into the test. Therefore, the size of a 0-1 vector equals the number of items "n"…

  8. Pull rod assembly

    DOEpatents

    Cioletti, O.C.

    1988-04-21

    A pull rod assembly comprising a pull rod having three peripheral grooves, a piston device including an adaptor ring and a seal ring, said piston device being mounted on the pull rod by a split ring retainer situated in one groove and extending into an interior groove in the adaptor and a resilient split ring retained in another groove and positioned to engage the piston device and to retain the seal on its adaptor.

  9. Fibronectin Aggregation and Assembly

    PubMed Central

    Ohashi, Tomoo; Erickson, Harold P.

    2011-01-01

    The mechanism of fibronectin (FN) assembly and the self-association sites are still unclear and contradictory, although the N-terminal 70-kDa region (I1–9) is commonly accepted as one of the assembly sites. We previously found that I1–9 binds to superfibronectin, which is an artificial FN aggregate induced by anastellin. In the present study, we found that I1–9 bound to the aggregate formed by anastellin and a small FN fragment, III1–2. An engineered disulfide bond in III2, which stabilizes folding, inhibited aggregation, but a disulfide bond in III1 did not. A gelatin precipitation assay showed that I1–9 did not interact with anastellin, III1, III2, III1–2, or several III1–2 mutants including III1–2KADA. (In contrast to previous studies, we found that the III1–2KADA mutant was identical in conformation to wild-type III1–2.) Because I1–9 only bound to the aggregate and the unfolding of III2 played a role in aggregation, we generated a III2 domain that was destabilized by deletion of the G strand. This mutant bound I1–9 as shown by the gelatin precipitation assay and fluorescence resonance energy transfer analysis, and it inhibited FN matrix assembly when added to cell culture. Next, we introduced disulfide mutations into full-length FN. Three disulfide locks in III2, III3, and III11 were required to dramatically reduce anastellin-induced aggregation. When we tested the disulfide mutants in cell culture, only the disulfide bond in III2 reduced the FN matrix. These results suggest that the unfolding of III2 is one of the key factors for FN aggregation and assembly. PMID:21949131

  10. Magnetic control assembly reports

    NASA Technical Reports Server (NTRS)

    Stickler, A. C.

    1972-01-01

    Results are summarized of the qualification level vibration tests performed on the magnet control assembly (MCA) for Nimbus and ERTS satellites. The MCA electronics and probe units have demonstrated the capability to survive qualification sinusoidal and random vibration levels. The functional testing indicated normal operation of the units after each axis of vibration. Visual inspection indicated no evidence of degradation. Post vibration acceptance testing verified normal operation of the MCA.

  11. Combustor liner support assembly

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A support assembly for a gas turbine engine combustor includes an annular frame having a plurality of circumferentially spaced apart tenons, and an annular combustor liner disposed coaxially with the frame and including a plurality of circumferentially spaced apart tenons circumferentially adjoining respective ones of the frame tenons for radially and tangentially supporting the liner to the frame while allowing unrestrained differential thermal radial movement therebetween.

  12. Automated quantitative image analysis of nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Murthy, Chaitanya R.; Gao, Bo; Tao, Andrea R.; Arya, Gaurav

    2015-05-01

    The ability to characterize higher-order structures formed by nanoparticle (NP) assembly is critical for predicting and engineering the properties of advanced nanocomposite materials. Here we develop a quantitative image analysis software to characterize key structural properties of NP clusters from experimental images of nanocomposites. This analysis can be carried out on images captured at intermittent times during assembly to monitor the time evolution of NP clusters in a highly automated manner. The software outputs averages and distributions in the size, radius of gyration, fractal dimension, backbone length, end-to-end distance, anisotropic ratio, and aspect ratio of NP clusters as a function of time along with bootstrapped error bounds for all calculated properties. The polydispersity in the NP building blocks and biases in the sampling of NP clusters are accounted for through the use of probabilistic weights. This software, named Particle Image Characterization Tool (PICT), has been made publicly available and could be an invaluable resource for researchers studying NP assembly. To demonstrate its practical utility, we used PICT to analyze scanning electron microscopy images taken during the assembly of surface-functionalized metal NPs of differing shapes and sizes within a polymer matrix. PICT is used to characterize and analyze the morphology of NP clusters, providing quantitative information that can be used to elucidate the physical mechanisms governing NP assembly.The ability to characterize higher-order structures formed by nanoparticle (NP) assembly is critical for predicting and engineering the properties of advanced nanocomposite materials. Here we develop a quantitative image analysis software to characterize key structural properties of NP clusters from experimental images of nanocomposites. This analysis can be carried out on images captured at intermittent times during assembly to monitor the time evolution of NP clusters in a highly automated

  13. Retractable Visual Indicator Assembly

    NASA Technical Reports Server (NTRS)

    Hackler, George R. (Inventor); Gamboa, Ronald J. (Inventor); Dominquez, Victor (Inventor)

    1998-01-01

    A retractable indicator assembly may be mounted on a container which transmits air through the container and removes deleterious gases with an activated charcoal medium in the container. The assembly includes: an elongate indicator housing has a chamber therein; a male adaptor with an external threads is used for sealing engagement with the container; a plug located at the upper end of the housing; a housing that includes a transparent wall portion for viewing at least a portion of the chamber; a litmus indicator, moveable by a retractable rod from a retracted position within the container to an extended position within the chamber of the housing; and an outer housing that is secured to the upper end of the rod, and protects the indicator housing while the litmus indicator is in its normally retracted position. The assembly may be manually manipulated between its extended position wherein the litmus indicator may be viewed through the transparent wall of the indicator housing, and a retracted position wherein the outer housing encloses the indicator housing and engages the exterior of the container.

  14. OH Module Assembly Stand

    SciTech Connect

    Bolan, P.J.; /Fermilab

    1990-10-16

    There is an OR module assembly stand in use at IB4. This design has been approved by safety, as presented by Mike Foley, and has been successfully used. Another one is needed at the D-zero assembly building, but some modifications need to be made. This report will show that the new modified design is at least as strong, if not stronger, than the older IB4 design in every aspect. Since the weight distribution of the OR modules on the sling is indeterminate, this report compares three cases of support for the entire assembly: the lowest two beams only, the lowest four beams only, and all six beams. In each of these cases, the new design is stronger than the old design in maximum allowable weight. The ability of the the cradle to support the weight is also shown. For all of the failure conditions except for two, the cradle is stronger than the beams that it supports. In the two excepted situations, the calculated limit of the cradle is less than the beams it supports. This is because no credit is taken for the sling and strongback, which in reality will relieve much of the horizontal load.

  15. IAHS Third Scientific Assembly

    NASA Astrophysics Data System (ADS)

    The International Association of Hydrological Sciences (IAHS) convened its Third Scientific Assembly in Baltimore, Md., May 10-19, 1989. The Assembly was attended by about 450 scientists and engineers. The attendance was highest from the U.S., as could be expected; 37 were from Canada; 22 each, Netherlands and United Kingdom; 14, Italy; 12, China; 10, Federal Republic of Germany; 8 each from France, the Republic of South Africa, and Switzerland; 7, Austria; 6 each, Finland and Japan; others were scattered among the remainder of 48 countries total.one of the cosponsors and also handled business matters for the Assembly. Other cosponsors included the International Association of Meteorology and Atmospheric Physics (IAMAP), United Nations Environmental Program (UNEP), United Nations Educational, Scientific, and Cultural Organization (UNESCO), World Meteorological Organization (WMO), and U.K. Overseas Development Authority (ODA). U.S. federal agencies serving as cosponsors included the Environmental Protection Agency, National Aeronautics and Space Administration, National Science Foundation, National Weather Service, Department of Agriculture, Department of State, and U.S. Geological Survey.

  16. Initial condition of stochastic self-assembly

    NASA Astrophysics Data System (ADS)

    Davis, Jason K.; Sindi, Suzanne S.

    2016-02-01

    The formation of a stable protein aggregate is regarded as the rate limiting step in the establishment of prion diseases. In these systems, once aggregates reach a critical size the growth process accelerates and thus the waiting time until the appearance of the first critically sized aggregate is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation is a central step of many physical, chemical, and biological process. Previous studies have examined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the assumption that at time t =0 the system was in the all-monomer state. However, in order to compare to in vivo biological experiments where protein constituents inherited by a newly born cell likely contain intermediate aggregates, other possibilities must be considered. We consider one such possibility by conditioning the unique ergodic size distribution on subcritical aggregate sizes; this least-informed distribution is then used as an initial condition. We make the claim that this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield significantly different averaged waiting times relative to the all-monomer condition under various models of assembly.

  17. Primary mirror alignment and assembly for a multispectral space telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Chang, Sheng-Hsiung; Chang, Chen-Peng; Lin, Yu-Chuan; Huang, Po-Hsuan; Tsay, Ho-Lin; Chin, Chi-Chieh; Pan, Hsu-Pin; Huang, Ting-Ming

    2013-10-01

    For a currently developing multispectral space Cassegrain telescope, the primary mirror with 450 mm clear aperture is made of Zerodur and lightweighted at a ratio about 50 % to meet both thermal and mass requirement. For this mirror, it is critical to reduce the astigmatism caused from the gravity effect, bonding process and the deformation from the mounting to the main structure of the telescope (main plate). In this article, the primary mirror alignment, MGSE, assembly process and the optical performance test for the primary mirror assembly are presented. The mechanical shim is the interface between the iso-static mount and main plate. It is used to compensate the manufacture errors of components and differences of local co-planarity errors to prevent the stress while iso-static mount (ISM) is screwed to main plate. After primary mirror assembly, an optical performance test method called bench test with novel algorithm is used to analyze the astigmatism caused from the gravity effect and the deformation from the mounting or supporter. In an effort to achieve the requirement for the tolerance in primary mirror assembly, the astigmatism caused from the gravity and deformation by the mounting force could be less than P-V 0.02λ at 633 nm. The consequence of these demonstrations indicates that the designed mechanical ground supported equipment (MGSE) for the alignment and assembly processes meet the critical requirements for primary mirror assembly of the telescope.

  18. Effect of polymerization on hierarchical self-assembly into nanosheets.

    PubMed

    Ikeda, Taichi

    2015-01-20

    The oligomers consisting of phenyl-capped bithiophene and tetra(ethylene glycol)s linked by azide-alkyne Huisgen cycloaddition were synthesized. The relationship between the degree of polymerization and self-assembling ability was investigated in o-dichlorobenzene and dimethyl sulfoxide. From the absorption spectrum, it was confirmed that the critical degree of polymerization (CDP) for thiophene unit aggregation was 4. The morphology of the aggregated product was observed by atomic force microscopy. The oligomers 4mer and 5mer could not self-assemble into well-defined structures due to the weak driving force for the self-assembly. In the cases of 6mer and 7mer, aggregates with nonwell-defined and nanosheet structures coexisted. In the cases of 8mer and 9mer, the nanosheet was the main product. The critical point between 7mer and 8mer could be confirmed by different aggregation behaviors in the cooling process of the solution (nonsigmoidal and sigmoidal). In the cases of 8mer and 9mer, polymer folding prior to intermolecular self-assembly, which was supported by sigmoidal aggregation behavior, leads to the nanosheet formation. On the contrary, shorter oligomers than 8mer experience intermolecular aggregation prior to intramolecular polymer folding, which was supported by the nonsigmoidal aggregation behavior. This is the first report to prove the existence of CDP for folded polymer nanosheet formation which requires hierarchical self-assembly, i.e., polymer folding followed by intermolecular self-assembly.

  19. Vesicular self-assembly of colloidal amphiphiles in microfluidics.

    PubMed

    He, Jie; Wang, Lei; Wei, Zengjiang; Yang, Yunlong; Wang, Chaoyang; Han, Xiaojun; Nie, Zhihong

    2013-10-09

    Hydrodynamic flow in a microfluidic (MF) device offers a high-throughput platform for the continuous and controllable self-assembly of amphiphiles. However, the role of hydrodynamics on the assembly of colloidal amphiphiles (CAMs) is still not well understood. This Article reports a systematic study of the assembly of CAMs, which consist of Au nanoparticles (AuNPs) grafted with amphiphilic block copolymers, into vesicles with a monolayer of CAMs in the membranes using laminar flows in MF flow-focusing devices. Our experimental and simulation studies indicate that the transverse diffusion of solvents and colloids across the boundary of neighboring lamellar flows plays a critical role in the assembly of CAMs into vesicles. The dimension of the vesicles can be controlled in the range of 100-600 nm by tuning the hydrodynamic conditions of the flows. In addition, the diffusion coefficient of CAMs was also critical for their assembly. Under the same flow conditions, larger CAMs generated larger assemblies as a result of the reduced diffusion rate of large amphiphiles. This work could provide fundamental guidance for the preparation of nanoparticle vesicles with applications in bioimaging, drug delivery, and nano- and microreactors.

  20. Diversity in virus assembly: biology makes things complicated

    NASA Astrophysics Data System (ADS)

    Zlotnick, Adam

    2008-03-01

    Icosahedral viruses have an elegance of geometry that implies a general path of assembly. However, structure alone provides insufficient information. Cowpea Chlorotic Mottle Virus (CCMV), an important system for studying virus assembly, consists of 90 coat protein (CP) homodimers condensed around an RNA genome. The crystal structure (Speir et al, 1995) reveals that assembly causes burial of hydrophobic surface and formation of β hexamers, the intertwining of N-termini of the CPs surrounding a quasi-sixfold. This structural view leads to reasonable and erroneous predictions: (i) CCMV capsids are extremely stable, and (ii) β hexamer formation is critical to assembly. Experimentally, we have found that capsids are based on a network of extremely weak (4-5 kT) pairwise interactions and that pentamer formation is the critical step in assembly kinetics. Because of the fragility of CP-Cp interaction, we can redirect assembly to generate and dissociate tubular nanostructures. The dynamic behavior of CCMV reflects the requirements and peculiarities of an evolved biological system; it does not necessarily reflect the behavior predicted from a more static picture of the virus.

  1. Pathfinder aircraft being assembled - wing assembly

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Technicians easily lift a 20-foot-long wing section during assembly of the Pathfinder solar-powered research aircraft at NASA's Dryden Flight Research Center, Edwards, California. A number of upgrades were made to the unique aircraft prior to its successful checkout flight Nov. 19, 1996, among them the installation of stronger ultra-light wing ribs made of composite materials on two of the five wing panels. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  2. Representations of mechanical assembly sequences

    NASA Technical Reports Server (NTRS)

    Homem De Mello, Luiz S.; Sanderson, Arthur C.

    1991-01-01

    Five types of representations for assembly sequences are reviewed: the directed graph of feasible assembly sequences, the AND/OR graph of feasible assembly sequences, the set of establishment conditions, and two types of sets of precedence relationships. (precedence relationships between the establishment of one connection between parts and the establishment of another connection, and precedence relationships between the establishment of one connection and states of the assembly process). The mappings of one representation into the others are established. The correctness and completeness of these representations are established. The results presented are needed in the proof of correctness and completeness of algorithms for the generation of mechanical assembly sequences.

  3. Nuclear core and fuel assemblies

    DOEpatents

    Downs, Robert E.

    1981-01-01

    A fast flux nuclear core of a plurality of rodded, open-lattice assemblies having a rod pattern rotated relative to a rod support structure pattern. Elongated fuel rods are oriented on a triangular array and laterally supported by grid structures positioned along the length of the assembly. Initial inter-assembly contact is through strongbacks at the corners of the support pattern and peripheral fuel rods between adjacent assemblies are nested so as to maintain a triangular pitch across a clearance gap between the other portions of adjacent assemblies. The rod pattern is rotated relative to the strongback support pattern by an angle .alpha. equal to sin .sup.-1 (p/2c), where p is the intra-assembly rod pitch and c is the center-to-center spacing among adjacent assemblies.

  4. Improving ancient DNA genome assembly

    PubMed Central

    Nieselt, Kay

    2017-01-01

    Most reconstruction methods for genomes of ancient origin that are used today require a closely related reference. In order to identify genomic rearrangements or the deletion of whole genes, de novo assembly has to be used. However, because of inherent problems with ancient DNA, its de novo assembly is highly complicated. In order to tackle the diversity in the length of the input reads, we propose a two-layer approach, where multiple assemblies are generated in the first layer, which are then combined in the second layer. We used this two-layer assembly to generate assemblies for two different ancient samples and compared the results to current de novo assembly approaches. We are able to improve the assembly with respect to the length of the contigs and can resolve more repetitive regions. PMID:28392981

  5. Very large assemblies: Optimizing for automatic generation of assembly sequences

    SciTech Connect

    CALTON,TERRI L.

    2000-02-01

    Sandia's Archimedes 3.0{copyright} Automated Assembly Analysis System has been applied successfully to several large industrial and weapon assemblies. These have included Sandia assemblies such as portions of the B61 bomb, and assemblies from external customers such as Cummins Engine Inc., Raytheon (formerly Hughes) Missile Systems and Sikorsky Aircraft. While Archimedes 3.0{copyright} represents the state-of-the-art in automated assembly planning software, applications of the software made prior to the technological advancements presented here showed several limitations of the system, and identified the need for extensive modifications to support practical analysis of assemblies with several hundred to a few thousand parts. It was believed that there was substantial potential for enhancing Archimedes 3.0{copyright} to routinely handle much larger models and/or to handle more modestly sized assemblies more efficiently. Such a mature assembly analysis capability was needed to support routine application to industrial assemblies that overstressed the system, such as full nuclear weapon assemblies or full-scale aerospace or military vehicles.

  6. Equation of State for Phospholipid Self-Assembly.

    PubMed

    Marsh, Derek

    2016-01-05

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle concentration at a single temperature suffices to define an effective heat capacity according to the model. Agreement with the experimental temperature dependence of the critical micelle concentration is then good. The predictive powers should extend also to amphiphile partitioning and the kinetics of lipid-monomer transfer.

  7. Equation of State for Phospholipid Self-Assembly

    PubMed Central

    Marsh, Derek

    2016-01-01

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies of transfer converge at ∼−18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle concentration at a single temperature suffices to define an effective heat capacity according to the model. Agreement with the experimental temperature dependence of the critical micelle concentration is then good. The predictive powers should extend also to amphiphile partitioning and the kinetics of lipid-monomer transfer. PMID:26745421

  8. Direct assembling methodologies for high-throughput bioscreening

    PubMed Central

    Rodríguez-Dévora, Jorge I.; Shi, Zhi-dong; Xu, Tao

    2012-01-01

    Over the last few decades, high-throughput (HT) bioscreening, a technique that allows rapid screening of biochemical compound libraries against biological targets, has been widely used in drug discovery, stem cell research, development of new biomaterials, and genomics research. To achieve these ambitions, scaffold-free (or direct) assembly of biological entities of interest has become critical. Appropriate assembling methodologies are required to build an efficient HT bioscreening platform. The development of contact and non-contact assembling systems as a practical solution has been driven by a variety of essential attributes of the bioscreening system, such as miniaturization, high throughput, and high precision. The present article reviews recent progress on these assembling technologies utilized for the construction of HT bioscreening platforms. PMID:22021162

  9. Ionic liquids as amphiphile self-assembly media.

    PubMed

    Greaves, Tamar L; Drummond, Calum J

    2008-08-01

    In recent years, the number of non-aqueous solvents which mediate hydrocarbon-solvent interactions and promote the self-assembly of amphiphiles has been markedly increased by the reporting of over 30 ionic liquids which possess this previously unusual solvent characteristic. This new situation allows a different exploration of the molecular "solvophobic effect" and tests the current understanding of amphiphile self-assembly. Interestingly, both protic and aprotic ionic liquids support amphiphile self-assembly, indicating that it is not required for the solvents to be able to form a hydrogen bonded network. Here, the use of ionic liquids as amphiphile self-assembly media is reviewed, including micelle and liquid crystalline mesophase formation, their use as a solvent phase in microemulsions and emulsions, and the emerging field of nanostructured inorganic materials synthesis. Surfactants, lipids and block co-polymers are the focus amphiphile classes in this critical review (174 references).

  10. Nanoscale forces and their uses in self-assembly.

    PubMed

    Bishop, Kyle J M; Wilmer, Christopher E; Soh, Siowling; Grzybowski, Bartosz A

    2009-07-01

    The ability to assemble nanoscopic components into larger structures and materials depends crucially on the ability to understand in quantitative detail and subsequently "engineer" the interparticle interactions. This Review provides a critical examination of the various interparticle forces (van der Waals, electrostatic, magnetic, molecular, and entropic) that can be used in nanoscale self-assembly. For each type of interaction, the magnitude and the length scale are discussed, as well as the scaling with particle size and interparticle distance. In all cases, the discussion emphasizes characteristics unique to the nanoscale. These theoretical considerations are accompanied by examples of recent experimental systems, in which specific interaction types were used to drive nanoscopic self-assembly. Overall, this Review aims to provide a comprehensive yet easily accessible resource of nanoscale-specific interparticle forces that can be implemented in models or simulations of self-assembly processes at this scale.

  11. Self-assembled nanolaminate coatings (SV)

    SciTech Connect

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV, UCAV

  12. Quantum assembly semantics: The fallacious lingo of occupation numbers

    NASA Astrophysics Data System (ADS)

    Park, James L.

    1991-01-01

    The usual heuristic description of quantum mechanical assemblies features so-called “occupation numbers” interpreted quite literally. This essay critically compares that point of view with a more rigorous understanding of composite systems based upon a principal lesson of Einstein's paradox and Bell's inequality, viz., that it is fallacious to regard a subsystem as possessing or “occupying” any state whatever.

  13. Templated nanocrystal assembly on biodynamic artificial microtubule asters.

    PubMed

    Spoerke, Erik D; Boal, Andrew K; Bachand, George D; Bunker, Bruce C

    2013-03-26

    Microtubules (MTs) and the MT-associated proteins (MAPs) are critical cooperative agents involved in complex nanoassembly processes in biological systems. These biological materials and processes serve as important inspiration in developing new strategies for the assembly of synthetic nanomaterials in emerging techologies. Here, we explore a dynamic biofabrication process, modeled after the form and function of natural aster-like MT assemblies such as centrosomes. Specifically, we exploit the cooperative assembly of MTs and MAPs to form artificial microtubule asters and demonstrate that (1) these three-dimensional biomimetic microtubule asters can be controllably, reversibly assembled and (2) they serve as unique, dynamic biotemplates for the organization of secondary nanomaterials. We describe the MAP-mediated assembly and growth of functionalized MTs onto synthetic particles, the dynamic character of the assembled asters, and the application of these structures as templates for three-dimensional nanocrystal organization across multiple length scales. This biomediated nanomaterials assembly strategy illuminates a promising new pathway toward next-generation nanocomposite development.

  14. 2009 Community College Futures Assembly Focus: Leading Change--Leading in an Uncertain Environment

    ERIC Educational Resources Information Center

    Campbell, Dale F.; Morris, Phillip A.

    2009-01-01

    The Community College Futures Assembly has served as a national, independent policy thinktank since 1995. Its purpose is to articulate the critical issues facing American community colleges and recognize innovative programs. Convening annually in January in Orlando, Florida, the Assembly offers a learning environment where tough questions are…

  15. Auxiliary air injector assembly

    SciTech Connect

    Sager, R.L.

    1987-04-07

    This patent describes an auxiliary air injector assembly kit for replacement use to connect a secondary air line from an engine air pump to an exhaust pipe in a variety of combustion engine exhaust systems. The exhaust pipe has an auxiliary air receiving hole formed in a wall thereof. The assembly comprises a flexible conduit adapted to be readily cut to length and connected at one end to the secondary air line, a metal tube, means for connecting a first end of the metal tube to the other end of the flexible conduit, and a hollow fitting with an air flow-through passage and having a conical portion adapted to fit in the hole in a leak resistant manner. The fitting has a bearing portion with a convex spherical surface located outside the exhaust pipe when the conical portion is in the hole. A second end of the metal tube has a flange with a concave spherical surface to seat against the convex spherical surface in a leak resistant manner. A clamp means connects the metal tube to the exhaust pipe and applies pressure on the metal tube flange against the bearing portion of the fitting to hold the fitting in the hole. The clamp means includes a saddle having an opening larger than the tube but smaller than the tube flange. The tube extends through the saddle opening. The clamp means also includes a U-bolt assembly for extending around the exhaust pipe and forcing the saddle against the tube flange and toward the exhaust pipe.

  16. Fuel assembly design for APR1400 with low CBC

    NASA Astrophysics Data System (ADS)

    Hah, Chang Joo

    2015-04-01

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gd rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to ΔkTARGET. A set of new designed fuel assembly satisfies an objective function, min [f =∑i (ΔkF A-Δki ) ] , and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to ΔkTARGET as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.

  17. Fuel assembly design for APR1400 with low CBC

    SciTech Connect

    Hah, Chang Joo

    2015-04-29

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gd rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to Δk{sub TARGET}. A set of new designed fuel assembly satisfies an objective function, min [f=∑{sub i}(Δk{sub FA}−Δk{sub i})], and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to Δk{sub TARGET} as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.

  18. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2016-07-12

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  19. Precision Robotic Assembly Machine

    SciTech Connect

    2009-08-14

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  20. Robotic Thumb Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Goza, S. Michael (Inventor)

    2013-01-01

    An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.

  1. Divided electrochemical cell assembly

    SciTech Connect

    King, Ch. J. H.

    1985-02-19

    A divided electrochemical cell assembly comprises stacked bipolar substantially square parallel planar electrodes and membranes. The corners and edges of the electrodes with bordering insulative spacers in juxtaposition with the chamber walls define four electrolyte circulation manifolds. Anolyte and catholyte channeling means permit the separate introduction of anolyte and catholyte into two of the manifolds and the withdrawal of anolyte and catholyte separately from at least two other manifolds. The electrodes and membranes are separated from one another by the insulative spacers which are also channeling means disposed to provide electrolyte channels across the interfaces of adjacent electrodes and membranes.

  2. Seeing Circuits Assemble

    PubMed Central

    Lichtman, Jeff W.; Smith, Stephen J.

    2009-01-01

    Developmental neurobiology has been greatly invigorated by a recent string of breakthroughs in molecular biology and optical physics that permit direct in vivo observation of neural circuit assembly. The imaging done thus far suggests that as brains are built, a significant amount of unbuilding is also occurring. We offer the view that this tumult is the result of the intersecting behaviors of the many single-celled creatures (i.e., neurons, glia, and progenitors) that inhabit brains. New tools will certainly be needed if we wish to monitor the myriad cooperative and competitive interactions at play in the cellular society that builds brains. PMID:18995818

  3. Removable feedwater sparger assembly

    DOEpatents

    Challberg, R.C.

    1994-10-04

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith. 8 figs.

  4. Removable feedwater sparger assembly

    DOEpatents

    Challberg, Roy C.

    1994-01-01

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith.

  5. Spatially confined assembly of nanoparticles.

    PubMed

    Jiang, Lin; Chen, Xiaodong; Lu, Nan; Chi, Lifeng

    2014-10-21

    The ability to assemble NPs into ordered structures that are expected to yield collective physical or chemical properties has afforded new and exciting opportunities in the field of nanotechnology. Among the various configurations of nanoparticle assemblies, two-dimensional (2D) NP patterns and one-dimensional (1D) NP arrays on surfaces are regarded as the ideal assembly configurations for many technological devices, for example, solar cells, magnetic memory, switching devices, and sensing devices, due to their unique transport phenomena and the cooperative properties of NPs in assemblies. To realize the potential applications of NP assemblies, especially in nanodevice-related applications, certain key issues must still be resolved, for example, ordering and alignment, manipulating and positioning in nanodevices, and multicomponent or hierarchical structures of NP assemblies for device integration. Additionally, the assembly of NPs with high precision and high levels of integration and uniformity for devices with scaled-down dimensions has become a key and challenging issue. Two-dimensional NP patterns and 1D NP arrays are obtained using traditional lithography techniques (top-down strategies) or interfacial assembly techniques (bottom-up strategies). However, a formidable challenge that persists is the controllable assembly of NPs in desired locations over large areas with high precision and high levels of integration. The difficulty of this assembly is due to the low efficiency of small features over large areas in lithography techniques or the inevitable structural defects that occur during the assembly process. The combination of self-assembly strategies with existing nanofabrication techniques could potentially provide effective and distinctive solutions for fabricating NPs with precise position control and high resolution. Furthermore, the synergistic combination of spatially mediated interactions between nanoparticles and prestructures on surfaces may play

  6. On Constraints in Assembly Planning

    SciTech Connect

    Calton, T.L.; Jones, R.E.; Wilson, R.H.

    1998-12-17

    Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. Assembly costs and other measures to optimize vary just as widely. To be effective, computer-aided assembly planning systems must allow users to express the plan selection criteria that appIy to their products and production environments. We begin this article by surveying the types of user criteria, both constraints and quality measures, that have been accepted by assembly planning systems to date. The survey is organized along several dimensions, including strategic vs. tactical criteria; manufacturing requirements VS. requirements of the automated planning process itself and the information needed to assess compliance with each criterion. The latter strongly influences the efficiency of planning. We then focus on constraints. We describe a framework to support a wide variety of user constraints for intuitive and efficient assembly planning. Our framework expresses all constraints on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Constraints are implemented as simple procedures that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to a number of complex assemblies, including one with 472 parts.

  7. Critical Pedagogy for Critical Mathematics Education

    ERIC Educational Resources Information Center

    Tutak, Fatma Aslan; Bondy, Elizabeth; Adams, Thomasenia L.

    2011-01-01

    This article provides a brief introduction to critical pedagogy and further discussion on critical mathematics education. Critical mathematics education enables students to read the world with mathematics. Three emerging domains of mathematics education related to critical mathematics education are discussed in this manuscript: ethnomathematics,…

  8. Cooperative Effects of Fibronectin Matrix Assembly and Initial Cell-Substrate Adhesion Strength in Cellular Self-Assembly

    PubMed Central

    Brennan, James R.; Hocking, Denise C.

    2015-01-01

    The cell-dependent polymerization of intercellular fibronectin fibrils can stimulate cells to self-assemble into multicellular structures. The local physical cues that support fibronectin-mediated cellular self-assembly are largely unknown. Here, fibronectin matrix analogs were used as synthetic adhesive substrates to model cell-matrix fibronectin fibrils having different integrin-binding specificity, affinity, and/or density. We utilized this model to quantitatively assess the relationship between adhesive forces derived from cell-substrate interactions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Results indicate that the strength of initial, rather than mature, cell-substrate attachments correlates with the ability of substrates to support fibronectin-mediated cellular self-assembly. The cellular response to soluble fibronectin was bimodal and independent of the integrin-binding specificity of the substrate; increasing soluble fibronectin levels above a critical threshold increased aggregate cohesion on permissive substrates. Once aggregates formed, continuous fibronectin polymerization was necessary to maintain cohesion. During self-assembly, soluble fibronectin decreased cell-substrate adhesion strength and induced aggregate cohesion via a Rho-dependent mechanism, suggesting that the balance of contractile forces derived from fibronectin fibrils within cell-cell versus cell-substrate adhesions controls self-assembly and aggregate cohesion. Thus, initial cell-substrate attachment strength may provide a quantitative basis with which to build predictive models of fibronectin-mediated microtissue fabrication on a variety of substrates. PMID:26712598

  9. Cooperative effects of fibronectin matrix assembly and initial cell-substrate adhesion strength in cellular self-assembly.

    PubMed

    Brennan, James R; Hocking, Denise C

    2016-03-01

    The cell-dependent polymerization of intercellular fibronectin fibrils can stimulate cells to self-assemble into multicellular structures. The local physical cues that support fibronectin-mediated cellular self-assembly are largely unknown. Here, fibronectin matrix analogs were used as synthetic adhesive substrates to model cell-matrix fibronectin fibrils having different integrin-binding specificity, affinity, and/or density. We utilized this model to quantitatively assess the relationship between adhesive forces derived from cell-substrate interactions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Results indicate that the strength of initial, rather than mature, cell-substrate attachments correlates with the ability of substrates to support fibronectin-mediated cellular self-assembly. The cellular response to soluble fibronectin was bimodal and independent of the integrin-binding specificity of the substrate; increasing soluble fibronectin levels above a critical threshold increased aggregate cohesion on permissive substrates. Once aggregates formed, continuous fibronectin polymerization was necessary to maintain cohesion. During self-assembly, soluble fibronectin decreased cell-substrate adhesion strength and induced aggregate cohesion via a Rho-dependent mechanism, suggesting that the balance of contractile forces derived from fibronectin fibrils within cell-cell versus cell-substrate adhesions controls self-assembly and aggregate cohesion. Thus, initial cell-substrate attachment strength may provide a quantitative basis with which to build predictive models of fibronectin-mediated microtissue fabrication on a variety of substrates. Cellular self-assembly is a process by which cells and extracellular matrix (ECM) proteins spontaneously organize into three-dimensional (3D) tissues in the absence of external forces. Cellular self-assembly can be initiated in vitro, and represents a potential tool for tissue engineers to

  10. Dynamics of magnetic nano-particle assembly

    NASA Astrophysics Data System (ADS)

    Kondratyev, V. N.

    2010-11-01

    Ferromagnetically coupled nano-particle assembly is analyzed accounting for inter- and intra- particle electronic structures within the randomly jumping interacting moments model including quantum fluctuations due to the discrete levels and disorder. At the magnetic jump anomalies caused by quantization the magnetic state equation and phase diagram are found to indicate an existence of spinodal regions and critical points. Arrays of magnetized nano-particles with multiple magnetic response anomalies are predicted to display some specific features. In a case of weak coupling such arrays exhibit the well-separated instability regions surrounding the anomaly positions. With increasing coupling we observe further structure modification, plausibly, of bifurcation type. At strong coupling the dynamical instability region become wide while the stable regime arises as a narrow islands at small disorders. It is shown that exploring correlations of magnetic noise amplitudes represents convenient analytical tool for quantitative definition, description and study of supermagnetism, as well as self-organized criticality.

  11. Measuring electrode assembly

    DOEpatents

    Bordenick, John E.

    1989-01-01

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.

  12. Measuring electrode assembly

    DOEpatents

    Bordenick, J.E.

    1988-04-26

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.

  13. Bottom head assembly

    DOEpatents

    Fife, A.B.

    1998-09-01

    A bottom head dome assembly is described which includes, in one embodiment, a bottom head dome and a liner configured to be positioned proximate the bottom head dome. The bottom head dome has a plurality of openings extending there through. The liner also has a plurality of openings extending there through, and each liner opening aligns with a respective bottom head dome opening. A seal is formed, such as by welding, between the liner and the bottom head dome to resist entry of water between the liner and the bottom head dome at the edge of the liner. In the one embodiment, a plurality of stub tubes are secured to the liner. Each stub tube has a bore extending there through, and each stub tube bore is coaxially aligned with a respective liner opening. A seat portion is formed by each liner opening for receiving a portion of the respective stub tube. The assembly also includes a plurality of support shims positioned between the bottom head dome and the liner for supporting the liner. In one embodiment, each support shim includes a support stub having a bore there through, and each support stub bore aligns with a respective bottom head dome opening. 2 figs.

  14. Bottom head assembly

    DOEpatents

    Fife, Alex Blair

    1998-01-01

    A bottom head dome assembly which includes, in one embodiment, a bottom head dome and a liner configured to be positioned proximate the bottom head dome is described. The bottom head dome has a plurality of openings extending therethrough. The liner also has a plurality of openings extending therethrough, and each liner opening aligns with a respective bottom head dome opening. A seal is formed, such as by welding, between the liner and the bottom head dome to resist entry of water between the liner and the bottom head dome at the edge of the liner. In the one embodiment, a plurality of stub tubes are secured to the liner. Each stub tube has a bore extending therethrough, and each stub tube bore is coaxially aligned with a respective liner opening. A seat portion is formed by each liner opening for receiving a portion of the respective stub tube. The assembly also includes a plurality of support shims positioned between the bottom head dome and the liner for supporting the liner. In one embodiment, each support shim includes a support stub having a bore therethrough, and each support stub bore aligns with a respective bottom head dome opening.

  15. Microchannel heat sink assembly

    DOEpatents

    Bonde, Wayne L.; Contolini, Robert J.

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  16. Two speed axle assembly

    SciTech Connect

    Heine, C.F.; Krisher, J.A.; Pifer, R.L.

    1988-10-04

    This patent describes a two speed axle assembly comprising an input sun gear, an output sun gear, a plant carrier mounted for rotation about the input and output sun gears, at least one compound planetary gear rotatably mounted on the planet carrier and drivingly connected to the input sun gear and the output sun gear, first clutch means for selectively locking the planet carrier relative to the input sun gear for rotation therewith including means normally loading the first clutch means whereby the planet carrier rotates the input sun gear, second clutch means for alternatively locking the planet carrier against rotation whereby the compound planet gear rotates on the planet carrier in response to rotation of the input sun gear, and inflatable bladder means adapted when selectively inflated to load the second clutch means and simultaneously unload the normally loaded first clutch means whereby the planet carrier is unlocked relative to the input sun gear and locked against rotation, including means selectively supplying hydraulic fluid under pressure to the bladder means, means supplying hydraulic fluid comprising accumulator means, pump means remote from the axle assembly for pressurizing the hydraulic fluid and maintaining a supply of the fluid under at least a minimum pressure in the accumulator means, and valve means for selectively admitting the pressurized fluid from the accumulator means to the bladder means to inflate the bladder means and relieving the pressure to deflate the bladder means.

  17. Microchannel heat sink assembly

    DOEpatents

    Bonde, W.L.; Contolini, R.J.

    1992-03-24

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  18. Solar panel mounting assembly

    SciTech Connect

    Eiden, G.E.

    1990-01-02

    This patent describes a mounting assembly for pivotally connecting a solar panel or collector to a base. The mounting assembly comprising: a frame whereupon the solar panel or collector can be mounted; a first plate connected to the frame, the plate having a pivot hole and a plurality of angle displacement holes each being equidistant from the pivot hole; a second plate connected to the base and situated substantially parallel to the first plate. The second plate having a pivot hole and an angle displacement hole being situated substantially the same distance apart from the second plate pivot hole as the distance between the pivot and displacement holes of the first plate; a pivot shaft received through the plate pivot hole and the second plate pivot hole whereby the frame and first plate can pivot with respect to the second plate and the base; an angle displacement shaft selectively received through the second plate angle displacement hole and any one of the first plate angle displacement holes whereby the frame and first plate can be selectively angularly fixed with respect to the second plate and the base; a U-member having two legs, the second plate being connected to the U-member; and, a selectively rotable shaft.

  19. Self-assembly of polar food lipids.

    PubMed

    Leser, Martin E; Sagalowicz, Laurent; Michel, Martin; Watzke, Heribert J

    2006-11-16

    Polar lipids, such as monoglycerides and phospholipids, are amphiphilic molecules commonly used as processing and stabilization aids in the manufacturing of food products. As all amphiphilic molecules (surfactants, emulsifiers) they show self-assembly phenomena when added into water above a certain concentration (the critical aggregation concentration). The variety of self-assembly structures that can be formed by polar food lipids is as rich as it is for synthetic surfactants: micelles (normal and reverse micelles), microemulsions, and liquid crystalline phases can be formulated using food-grade ingredients. In the present work we will first discuss microemulsion and liquid crystalline phase formation from ingredients commonly used in food industry. In the last section we will focus on three different potential application fields, namely (i) solubilization of poorly water soluble ingredients, (ii) controlled release, and (iii) chemical reactivity. We will show how the interfacial area present in self-assembly structures can be used for (i) the delivery of functional molecules, (ii) controlling the release of functional molecules, and (iii) modulating the chemical reactivity between reactive molecules, such as aromas.

  20. Anisotropic Self-Assembly of Nanoparticle Amphiphiles

    NASA Astrophysics Data System (ADS)

    Kumar, Sanat

    2009-03-01

    It is easy to understand the self-assembly of particles having anisotropic shapes or interactions, such as Co nanoparticles or proteins, into highly extended structures. However, there is no experimentally established strategy for creating anisotropic structures from common spherical nanoparticles. We demonstrate that spherical nanoparticles, uniformly grafted with macromolecules, robustly self-assemble into a range of anisotropic superstructures when they are dispersed in the corresponding homopolymer matrix. This phenomenon is driven by the microphase separation between the inorganic nanoparticles and the (organic) polymeric chains grafted to their surfaces in a fashion similar to block copolymers. This microphase separation driven particle self-assembly provides a unique means of controlling the global nanoparticle dispersion state in polymer nanocomposites. The relationship between the state of particle dispersion and nanocomposite properties can thus be critically examined, and in particular we focus on the mechanical reinforcement afforded when particles are added to polymers. Grafted nanoparticles are thus versatile building blocks for creating tunable and functional particle superstructures with significant practical applications. With Pinar Akcora, Hongjun Liu, Yu Li, Brian Benicewicz, Linda Schadler, Thanos Panagiotopoulos, Jack Douglas, P. Thiyagarajan and Ralph Colby.

  1. Engineered Self-Assembly of Plasmonic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Tao, Andrea

    2013-03-01

    A critical need in nanotechnology is the development of new tools and methods to organize, connect, and integrate solid-state nanocomponents. Self-assembly - where components spontaneously organize themselves - can be carried out on a massively parallel scale to construct large-scale architectures using solid-state nanocrystal building blocks. I will present our recent work on the synthesis and self-assembly of nanocrystals for plasmonics, where light is propagated, manipulated, and confined by solid-state components that are smaller than the wavelength of light itself. We show the organization of polymer-grafted metal nanocrystals into hierarchical nanojunction arrays that possess intense ``hot spots'' due to electromagnetic field localization. We also show that doped semiconductor nanocrystals can serve as a new class of plasmonic building blocks, where shape and carrier density can be actively tuned to engineer plasmon resonances. These examples demonstrate that nanocrystals possess unique electromagnetic properties that rival top-down structures, and the potential of self-assembly for fabricating designer plasmonic materials.

  2. Gas separation membrane module assembly

    DOEpatents

    Wynn, Nicholas P; Fulton, Donald A.

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  3. Improving the ostrich genome assembly using optical mapping data.

    PubMed

    Zhang, Jilin; Li, Cai; Zhou, Qi; Zhang, Guojie

    2015-01-01

    The ostrich (Struthio camelus) is the tallest and heaviest living bird. Ostrich meat is considered a healthy red meat, with an annual worldwide production ranging from 12,000 to 15,000 tons. As part of the avian phylogenomics project, we sequenced the ostrich genome for phylogenetic and comparative genomics analyses. The initial Illumina-based assembly of this genome had a scaffold N50 of 3.59 Mb and a total size of 1.23 Gb. Since longer scaffolds are critical for many genomic analyses, particularly for chromosome-level comparative analysis, we generated optical mapping (OM) data to obtain an improved assembly. The OM technique is a non-PCR-based method to generate genome-wide restriction enzyme maps, which improves the quality of de novo genome assembly. In order to generate OM data, we digested the ostrich genome with KpnI, which yielded 1.99 million DNA molecules (>250 kb) and covered the genome at least 500×. The pattern of molecules was subsequently assembled to align with the Illumina-based assembly to achieve sequence extension. This resulted in an OM assembly with a scaffold N50 of 17.71 Mb, which is 5 times as large as that of the initial assembly. The number of scaffolds covering 90% of the genome was reduced from 414 to 75, which means an average of ~3 super-scaffolds for each chromosome. Upon integrating the OM data with previously published FISH (fluorescence in situ hybridization) markers, we recovered the full PAR (pseudoatosomal region) on the ostrich Z chromosome with 4 super-scaffolds, as well as most of the degenerated regions. The OM data significantly improved the assembled scaffolds of the ostrich genome and facilitated chromosome evolution studies in birds. Similar strategies can be applied to other genome sequencing projects to obtain better assemblies.

  4. Risk management for operations of the LANL Critical Experiments Facility

    SciTech Connect

    Paternoster, R.; Butterfield, K.

    1998-12-31

    The Los Alamos Critical Experiments Facility (LACEF) currently operates two burst reactors (Godiva-IV and Skua), one solution assembly [the Solution High-Energy Burst Assembly (SHEBA)], two fast-spectrum benchmark assemblies (Flattop and Big Ten), and five general-purpose remote assembly machines that may be configured with nuclear materials and assembled by remote control. Special nuclear materials storage vaults support these and other operations at the site. With this diverse set of operations, several approaches are possible in the analysis and management of risk. The most conservative approach would be to write a safety analysis report (SAR) for each assembly and experiment. A more cost-effective approach is to analyze the probability and consequences of several classes of operations representative of operations on each critical assembly machine and envelope the bounding case accidents. Although the neutron physics of these machines varies widely, the operations performed at LACEF fall into four operational modes: steady-state mode, approach-to-critical mode, prompt burst mode, and nuclear material operations, which can include critical assembly fuel loading. The operational sequences of each mode are very nearly identical, whether operated on one assembly machine or another. The use of an envelope approach to accident analysis is facilitated by the use of classes of operations and the use of bounding case consequence analysis. A simple fault tree analysis of operational modes helps resolve which operations are sensitive to human error and which are initiated by hardware of software failures. Where possible, these errors and failures are blocked by TSR LCOs. Future work will determine the probability of accidents with various initiators.

  5. Geometric reasoning about assembly tools

    SciTech Connect

    Wilson, R.H.

    1997-01-01

    Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.

  6. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect

    Arena, Lois; Mantha, Pallavi

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  7. Next-generation transcriptome assembly

    SciTech Connect

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  8. Methanation assembly using multiple reactors

    DOEpatents

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  9. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1997-01-01

    An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

  10. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  11. Multi-position photovoltaic assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2003-03-18

    The invention is directed to a PV assembly, for use on a support surface, comprising a base, a PV module, a multi-position module support assembly, securing the module to the base at shipping and inclined-use angles, a deflector, a multi-position deflector support securing the deflector to the base at deflector shipping and deflector inclined-use angles, the module and deflector having opposed edges defining a gap therebetween. The invention permits transport of the PV assemblies in a relatively compact form, thus lowering shipping costs, while facilitating installation of the PV assemblies with the PV module at the proper inclination.

  12. Assembly of simple icosahedral viruses.

    PubMed

    Almendral, José M

    2013-01-01

    Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by hydrophobic contacts and non-covalent interactions in assembly intermediates, which serve as blocks to build a symmetric capsid. In some cases, non-symmetric interactions among intermediates are involved in assembly, highlighting the remarkable capacity of capsid proteins to fold into demanding conformations compatible with a closed protein shell. In this chapter, the morphogenesis of structurally simple icosahedral viruses, including representative members of the parvoviruses, picornaviruses or polyomaviruses as paradigms, is described in some detail. Icosahedral virus assembly may occur in different subcellular compartments and involve a panoplia of cellular and viral factors, chaperones, and protein modifications that, in general, are still poorly characterized. Mechanisms of viral genome encapsidation may imply direct interactions between the genome and the assembly intermediates, or active packaging into a preformed empty capsid. High stability of intermediates and proteolytic cleavages during viral maturation usually contribute to the overall irreversible character of the assembly process. These and other simple icosahedral viruses were pioneer models to understand basic principles of virus assembly, continue to be leading subjects of morphogenetic analyses, and have inspired ongoing studies on the assembly of larger viruses and cellular and synthetic macromolecular complexes.

  13. Method and apparatus for assembling a permanent magnet pole assembly

    DOEpatents

    Carl, Jr., Ralph James; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Dawson, Richard Nils; Qu, Ronghai; Avanesov, Mikhail Avramovich

    2009-08-11

    A pole assembly for a rotor, the pole assembly includes a permanent magnet pole including at least one permanent magnet block, a plurality of laminations including a pole cap mechanically coupled to the pole, and a plurality of laminations including a base plate mechanically coupled to the pole.

  14. Clean then Assemble Versus Assemble then Clean: Several Comparisons

    NASA Technical Reports Server (NTRS)

    Welker, Roger W.

    2004-01-01

    Cleanliness of manufactured parts and assemblies is a significant issue in many industries including disk drives, semiconductors, aerospace, and medical devices. Clean manufacturing requires cleanroom floor space and cleaning technology that are both expensive to own and expensive to operate. Strategies to reduce these costs are an important consideration. One strategy shown to be effective at reducing costs is to assemble parts into subassemblies and then clean the subassembly, rather than clean the individual parts first and then assemble them. One advantage is that assembly outside of the cleanroom reduces the amount of cleanroom floor space and its associated operating cost premium. A second advantage is that this strategy reduces the number of individual parts that must be cleaned prior to assembly, reducing the number of cleaning baskets, handling and, possibly, reducing the number of cleaners. The assemble then clean strategy also results in a part that is significantly cleaner because contamination generated during the assembly steps are more effectively removed that normally can be achieved by hand wiping after assembly in the cleanroom.

  15. Automated optical assembly

    NASA Astrophysics Data System (ADS)

    Bala, John L.

    1995-08-01

    Automation and polymer science represent fundamental new technologies which can be directed toward realizing the goal of establishing a domestic, world-class, commercial optics business. Use of innovative optical designs using precision polymer optics will enable the US to play a vital role in the next generation of commercial optical products. The increased cost savings inherent in the utilization of optical-grade polymers outweighs almost every advantage of using glass for high volume situations. Optical designers must gain experience with combined refractive/diffractive designs and broaden their knowledge base regarding polymer technology beyond a cursory intellectual exercise. Implementation of a fully automated assembly system, combined with utilization of polymer optics, constitutes the type of integrated manufacturing process which will enable the US to successfully compete with the low-cost labor employed in the Far East, as well as to produce an equivalent product.

  16. Rotatable seal assembly

    DOEpatents

    Logan, Clinton M.; Garibaldi, Jack L.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  17. Assembling a COMPASS

    PubMed Central

    Couture, Jean-Francois; Skiniotis, Georgios

    2013-01-01

    Post-translational modifications of histone proteins lie at the heart of the epigenetic landscape in the cell’s nucleus and the precise regulation of gene expression. A myriad of studies have showed that several histone-modifying enzymes are controlled by modulatory protein partner subunits and other post-transcriptional modifications deposited in the vicinity of the targeted site. All together, these mechanisms create an intricate network of interactions that regulate enzymatic activities and ultimately control the site-specific deposition of covalent modifications. In this Point-of-View, we discuss our evolving understanding on the assembly and architecture of histone H3 Lys-4 (H3K4) methyltransferase COMPASS complexes and the techniques that progressively allowed us to better define the molecular basis of complex formation and function. We further briefly discuss some of the challenges lying ahead and additional approaches required to understand mechanistic details for the function of such complexes. PMID:23470558

  18. Gas gun assembly

    SciTech Connect

    McCoy, J.N.

    1983-10-11

    A gas gun assembly, for measuring depths of reflectors in a well bore, includes a housing having a central chamber and bottom bulkhead through which a first valve bore extends. Coupling structure is provided to connect the housing to the well. A cap closure for the chamber has a second valve bore therethrough of diameter larger than the diameter of the first valve bore and is located in axial alignment with the first valve bore. A valve stem has one end axially movable within the second valve bore while closing the same and the other end movable into and out of the first valve bore. A predetermined pressure condition is established across the bulkhead. The valve stem is then released for rapid equalization of pressure across the bulkhead to produce an acoustic pulse in the well bore.

  19. HDEV Flight Assembly

    NASA Image and Video Library

    2014-05-07

    View of the High Definition Earth Viewing (HDEV) flight assembly installed on the exterior of the Columbus European Laboratory module. Image was released by astronaut on Twitter. The High Definition Earth Viewing (HDEV) experiment places four commercially available HD cameras on the exterior of the space station and uses them to stream live video of Earth for viewing online. The cameras are enclosed in a temperature specific housing and are exposed to the harsh radiation of space. Analysis of the effect of space on the video quality, over the time HDEV is operational, may help engineers decide which cameras are the best types to use on future missions. High school students helped design some of the cameras' components, through the High Schools United with NASA to Create Hardware (HUNCH) program, and student teams operate the experiment.

  20. Flexible cloth seal assembly

    DOEpatents

    Bagepalli, Bharat Sampathkumar; Taura, Joseph Charles; Aksit, Mahmut Faruk; Demiroglu, Mehmet; Predmore, Daniel Ross

    1999-01-01

    A seal assembly having a flexible cloth seal which includes a shim assemblage surrounded by a cloth assemblage. A first tubular end portion, such as a gas turbine combustor, includes a longitudinal axis and has smooth and spaced-apart first and second surface portions defining a notch therebetween which is wider at its top than at its bottom and which extends outward from the axis. The second surface portion is outside curved, and a first edge of the cloth seal is positioned in the bottom of the notch. A second tubular end portion, such as a first stage nozzle, is located near, spaced apart from, and coaxially aligned with, the first tubular end portion. The second tubular end portion has a smooth third surface portion which surrounds at least a portion of the first tubular end portion and which is contacted by the cloth seal.

  1. Solar radiation assembly

    SciTech Connect

    Boozer, S.D.

    1987-04-21

    A Solar transmission system is described comprising at least one radiation permeable assembly. A light aperture is adapted to be mounted in the envelope of a building. The light aperture has at least one layer of first glazing forming part of the building envelope. A generally rectangular frame is supported on the building and around an outer side of the aperture. A layer of second glazing comprises an outer facing of the frame. Ventilation means at the top and bottom of the frame, includes means for enabling air flow through the frame, and includes means for inhibiting rain from entering the frame. Support means connectible between the frame and the building, enable the frame to be moved away from the building, whereby the glazing of the light aperture may be made accessible.

  2. Camshaft assembly and method

    SciTech Connect

    Madaffer, A.J.

    1986-07-01

    A method is described of manufacturing a camshaft assembly for internal combustion engines and the like. The method includes the steps of: providing cam and journal elements, the elements each including an axial opening, securing the elements in predetermined fixed orientation and spacing with the openings aligned on a common axis, inserting a hollow tube into the elements, in close fitting relation with openings, and expanding the hollow tube into mechanical interference engagement with all the element openings to secure the elements permanently onto the tube in the predetermined orientation while forming within the tube a uniform smooth sided interior cross-sectional configuration by forcing through the tube an element sufficiently larger than the tube inner diameter to outwardly deform the tube wall in the required degree.

  3. Turbine vane plate assembly

    DOEpatents

    Schiavo Jr., Anthony L.

    2006-01-10

    A turbine vane assembly includes a turbine vane having first and second shrouds with an elongated airfoil extending between. Each end of the airfoil transitions into a shroud at a respective junction. Each of the shrouds has a plurality of cooling passages, and the airfoil has a plurality of cooling passages extending between the first and second shrouds. A substantially flat inner plate and an outer plate are coupled to each of the first and second shrouds so as to form inner and outer plenums. Each inner plenum is defined between at least the junction and the substantially flat inner plate; each outer plenum is defined between at least the substantially flat inner plate and the outer plate. Each inner plenum is in fluid communication with a respective outer plenum through at least one of the cooling passages in the respective shroud.

  4. Flexible cloth seal assembly

    DOEpatents

    Bagepalli, B.S.; Taura, J.C.; Aksit, M.F.; Demiroglu, M.; Predmore, D.R.

    1999-06-29

    A seal assembly is described having a flexible cloth seal which includes a shim assemblage surrounded by a cloth assemblage. A first tubular end portion, such as a gas turbine combustor, includes a longitudinal axis and has smooth and spaced-apart first and second surface portions defining a notch there between which is wider at its top than at its bottom and which extends outward from the axis. The second surface portion is outside curved, and a first edge of the cloth seal is positioned in the bottom of the notch. A second tubular end portion, such as a first stage nozzle, is located near, spaced apart from, and coaxially aligned with, the first tubular end portion. The second tubular end portion has a smooth third surface portion which surrounds at least a portion of the first tubular end portion and which is contacted by the cloth seal. 7 figs.

  5. Fluid cooled electrical assembly

    DOEpatents

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  6. Crank shaft support assembly

    DOEpatents

    Natkin, Robert J.; Oltmans, Bret; Allison, John E.; Heater, Thomas J.; Hines, Joy Adair; Tappen, Grant K.; Peiskammer, Dietmar

    2007-10-23

    A crank shaft support assembly for increasing stiffness and reducing thermal mismatch distortion in a crank shaft bore of an engine comprising different materials. A cylinder block comprises a first material and at least two crank journal inserts are insert-molded into respective crank journal regions of the cylinder block and comprise a second material having greater stiffness and a lower thermal coefficient of expansion that the first material. At least two bearing caps are bolted to the respective crank journal inserts and define, along with the crank journal inserts, at least two crank shaft support rings defining a crank shaft bore coaxially aligned with a crank shaft axis. The bearing caps comprise a material having higher stiffness and a lower thermal coefficient of expansion than the first material and are supported on the respective crank journal inserts independently of any direct connection to the cylinder block.

  7. Energy storing flywheel assembly

    SciTech Connect

    Vestermark, L. A.

    1985-08-06

    An energy storing flywheel assembly in which first and second reels are operatively connected by a flexible band, with the first and second reels capable of being rotated by first and second electric motors, and the second reel that can rotate either clockwise or counter clockwise through a clutch mechanism driving a flywheel. The flywheel that stores rotational energy is free to rotate independently of the second reel in a clockwise direction except when it is eccelerated to a predetermined maximum rate by the second reel. Acceleration of the flywheel occurs as the first motor drives the first reel at a constant rate to wind the band thereon. After the flywheel has reached the desired maximum rate of rotation the second reel is rotated to rewind the band thereon. Upon the rate of rotation of the flywheel decreasing to a predetermined minimum the above described operation is repeated.

  8. The study on large space structure assembly technology: The study on deployable truss structure, part 1

    NASA Astrophysics Data System (ADS)

    1993-03-01

    An overview of the results of the study on large structure assembly technology is presented. The following aspects of the study are outlined: (1) placement and scope of the study; (2) study on large structure assembly technology, establishment of the dimensional requirements for the deployable structure, and extraction of critical elements in deployable structure system technology; (3) design study on critical elements, including study on the deployable structure systems, design study on one dimensional deployable truss structure and element technologies, and study on deployment simulation software and deployment test equipment; (4) planning of the trial production and test program; and (5) WBS (Work Breakdown Structure) for the deployable assembly structure study.

  9. Automated method for fabrication of parallel multifiber cable assemblies with integral connector components

    NASA Astrophysics Data System (ADS)

    Lee, Nicholas A.; Igl, Scott A.; DeBaun, Barbara A.; Henson, Gordon D.; Smith, Terry L.

    1997-04-01

    The unrelenting demand for ever-higher data transfer rates between computing devices, coupled with the emerging ability to produce robust, monolithic arrays of optical sources and detectors has fueled the development of high-speed parallel optical data links, and created a need for connectorized, parallel, multifiber cable assemblies. An innovative approach to the cable assembly manufacturing process has been developed which incorporates the connector installation process into the cable fabrication process, thus enabling the production of connectorized cable assemblies in a continuous, automated manner. This cable assembly fabrication process, as well as critical details surrounding the process, will be discussed.

  10. Metal Ion-Assembled Micro-Collagen Heterotrimers

    PubMed Central

    LeBruin, Lyndelle Toni; Banerjee, Sunandan; O'Rourke, Bruce Delany; Case, Martin Ashley

    2011-01-01

    Collagen mimetic peptides (CMPs) provide critical insight into the assembly, stability and structure of the triple helical collagen protein. The majority of natural fibrous collagens are aab or abc heterotrimers, yet few examples of heterotrimeric CMPs have been reported. Previously CMP heterotrimers have only been accessible by total syntheses or by introducing complementary interstrand electrostatic or steric interactions. Here we describe an abc CMP heterotrimer in which each contributing CMP consists of only three amino acids: glycine, proline and 4-hydroxyproline. Assembly of the heterotrimeric triple helix is directed by a combination of metal-ion coordination to set the relative register of the CMPs, and minimization of valence frustration to direct heterotrimerization. Assembly of the four-component mixture is facile and extremely rapid, and equilibration to the abc heterotrimer occurs within a few hours at modestly elevated temperatures. The melting temperatures of the metal-assembled collagen trimers are higher by some 30 °C than the apopeptide assemblies. Two iterations of the design are described, and the outcomes suggest possibilities for designing self-assembling abc and abb heterotrimers. PMID:21590759

  11. A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin.

    PubMed

    Völker-Albert, Moritz Carl; Pusch, Miriam Caroline; Fedisch, Andreas; Schilcher, Pierre; Schmidt, Andreas; Imhof, Axel

    2016-03-01

    The structure of chromatin is critical for many aspects of cellular physiology and is considered to be the primary medium to store epigenetic information. It is defined by the histone molecules that constitute the nucleosome, the positioning of the nucleosomes along the DNA and the non-histone proteins that associate with it. These factors help to establish and maintain a largely DNA sequence-independent but surprisingly stable structure. Chromatin is extensively disassembled and reassembled during DNA replication, repair, recombination or transcription in order to allow the necessary factors to gain access to their substrate. Despite such constant interference with chromatin structure, the epigenetic information is generally well maintained. Surprisingly, the mechanisms that coordinate chromatin assembly and ensure proper assembly are not particularly well understood. Here, we use label free quantitative mass spectrometry to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos. The use of a data independent acquisition method for proteome wide quantitation allows a time resolved comparison of in vitro chromatin assembly. A comparison of our in vitro data with proteomic studies of replicative chromatin assembly in vivo reveals an extensive overlap showing that the in vitro system can be used for investigating the kinetics of chromatin assembly in a proteome-wide manner. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin*

    PubMed Central

    Völker-Albert, Moritz Carl; Pusch, Miriam Caroline; Fedisch, Andreas; Schilcher, Pierre; Schmidt, Andreas; Imhof, Axel

    2016-01-01

    The structure of chromatin is critical for many aspects of cellular physiology and is considered to be the primary medium to store epigenetic information. It is defined by the histone molecules that constitute the nucleosome, the positioning of the nucleosomes along the DNA and the non-histone proteins that associate with it. These factors help to establish and maintain a largely DNA sequence-independent but surprisingly stable structure. Chromatin is extensively disassembled and reassembled during DNA replication, repair, recombination or transcription in order to allow the necessary factors to gain access to their substrate. Despite such constant interference with chromatin structure, the epigenetic information is generally well maintained. Surprisingly, the mechanisms that coordinate chromatin assembly and ensure proper assembly are not particularly well understood. Here, we use label free quantitative mass spectrometry to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos. The use of a data independent acquisition method for proteome wide quantitation allows a time resolved comparison of in vitro chromatin assembly. A comparison of our in vitro data with proteomic studies of replicative chromatin assembly in vivo reveals an extensive overlap showing that the in vitro system can be used for investigating the kinetics of chromatin assembly in a proteome-wide manner. PMID:26811354

  13. A network model for plant–pollinator community assembly

    PubMed Central

    Campbell, Colin; Yang, Suann; Albert, Réka; Shea, Katriona

    2011-01-01

    Community assembly models, usually constructed for food webs, are an important component of our understanding of how ecological communities are formed. However, models for mutualistic community assembly are still needed, especially because these communities are experiencing significant anthropogenic disturbances that affect their biodiversity. Here, we present a unique network model that simulates the colonization and extinction process of mutualistic community assembly. We generate regional source pools of species interaction networks on the basis of statistical properties reported in the literature. We develop a dynamic synchronous Boolean framework to simulate, with few free parameters, the dynamics of new mutualistic community formation from the regional source pool. This approach allows us to deterministically map out every possible trajectory of community formation. This level of detail is rarely observed in other analytic approaches and allows for thorough analysis of the dynamical properties of community formation. As for food web assembly, we find that the number of stable communities is quite low, and the composition of the source pool influences the abundance and nature of community outcomes. However, in contrast to food web assembly, stable mutualistic communities form rapidly. Small communities with minor fluctuations in species presence/absence (self-similar limit cycles) are the most common community outcome. The unique application of this Boolean network approach to the study of mutualistic community assembly offers a great opportunity to improve our understanding of these critical communities. PMID:21173234

  14. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  15. Stator and method of assembly

    DOEpatents

    Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Shen, Xiaochun

    2013-06-18

    The present application provides a stator. The stator may include a number of poles and a stator tip and cooling assembly. The stator tip and cooling assembly may include a number of stator tips with a number of cooling tubes adjacent thereto such that the stator tips align with the poles and the cooling tubes cool the poles.

  16. Three dimensional colorimetric assay assemblies

    SciTech Connect

    Charych, D.; Reichart, A.

    2000-06-27

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  17. Three dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichart, Anke

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  18. The Bicycle Assembly Line Game

    ERIC Educational Resources Information Center

    Klotz, Dorothy

    2011-01-01

    "The Bicycle Assembly Line Game" is a team-based, in-class activity that helps students develop a basic understanding of continuously operating processes. Each team of 7-10 students selects one of seven prefigured bicycle assembly lines to operate. The lines are run in real-time, and the team that operates the line that yields the…

  19. The Bicycle Assembly Line Game

    ERIC Educational Resources Information Center

    Klotz, Dorothy

    2011-01-01

    "The Bicycle Assembly Line Game" is a team-based, in-class activity that helps students develop a basic understanding of continuously operating processes. Each team of 7-10 students selects one of seven prefigured bicycle assembly lines to operate. The lines are run in real-time, and the team that operates the line that yields the…

  20. Fuel cell sub-assembly

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  1. Critical Viewing: Stimulant to Critical Thinking.

    ERIC Educational Resources Information Center

    O'Reilly, Kevin; Splaine, John

    This document is intended to improve the critical viewing skills and increase the understanding and appreciation of what is viewed. Included are the chapters: (1) "Critical Thinking: The Parts of an Argument," intended to develop a process to help a person judge arguments in what is read, seen, and heard; (2) "Critical Viewing:…

  2. Initial Validation of Robotic Operations for In-Space Assembly of a Large Solar Electric Propulsion Transport Vehicle

    NASA Technical Reports Server (NTRS)

    Komendera, Erik E.; Dorsey, John T.

    2017-01-01

    Developing a capability for the assembly of large space structures has the potential to increase the capabilities and performance of future space missions and spacecraft while reducing their cost. One such application is a megawatt-class solar electric propulsion (SEP) tug, representing a critical transportation ability for the NASA lunar, Mars, and solar system exploration missions. A series of robotic assembly experiments were recently completed at Langley Research Center (LaRC) that demonstrate most of the assembly steps for the SEP tug concept. The assembly experiments used a core set of robotic capabilities: long-reach manipulation and dexterous manipulation. This paper describes cross-cutting capabilities and technologies for in-space assembly (ISA), applies the ISA approach to a SEP tug, describes the design and development of two assembly demonstration concepts, and summarizes results of two sets of assembly experiments that validate the SEP tug assembly steps.

  3. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2005-01-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  4. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Astrophysics Data System (ADS)

    Alhorn, Dean C.

    2005-02-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  5. Advanced gray rod control assembly

    DOEpatents

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  6. Statistical Mechanics of Ecosystem Assembly

    NASA Astrophysics Data System (ADS)

    Capitán, José A.; Cuesta, José A.; Bascompte, Jordi

    2009-10-01

    We introduce a toy model of ecosystem assembly for which we are able to map out all assembly pathways generated by external invasions. The model allows us to display the whole phase space in the form of an assembly graph whose nodes are communities of species and whose directed links are transitions between them induced by invasions. We characterize the process as a finite Markov chain and prove that it exhibits a unique set of recurrent states (the end state of the process), which is therefore resistant to invasions. This also shows that the end state is independent of the assembly history. The model shares all features with standard assembly models reported in the literature, with the advantage that all observables can be computed in an exact manner.

  7. Critical Casimir interactions between Janus particles.

    PubMed

    Labbé-Laurent, M; Dietrich, S

    2016-08-21

    Recently there has been strong experimental and theoretical interest in studying the self-assembly and the phase behavior of patchy and Janus particles, which form colloidal suspensions. Although in this quest a variety of effective interactions have been proposed and used in order to achieve a directed assembly, the critical Casimir effect stands out as being particularly suitable in this respect because it provides both attractive and repulsive interactions as well as the potential of a sensitive temperature control of their strength. Specifically, we have calculated the critical Casimir force between a single Janus particle and a laterally homogeneous substrate as well as a substrate with a chemical step. We have used the Derjaguin approximation and compared it with results from full mean field theory. A modification of the Derjaguin approximation turns out to be generally reliable. Based on this approach we have derived the effective force and the effective potential between two Janus cylinders as well as between two Janus spheres.

  8. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed

  9. Student research in criticality safety at the University of Arizona

    SciTech Connect

    Hetrick, D.L.

    1997-06-01

    A very brief progress report on four University of Arizona student projects is given. Improvements were made in simulations of power pulses in aqueous solutions, including the TWODANT model. TWODANT calculations were performed to investigate the effect of assembly shape on the expansion coefficient of reactivity for solutions. Preliminary calculations were made of critical heights for the Los Alamos SHEBA assembly. Calculations to support French experiments to measure temperature coefficients of dilute plutonium solutions confirmed feasibility.

  10. Benchmarking criticality safety calculations with subcritical experiments

    SciTech Connect

    Mihalczo, J.T.

    1984-06-01

    Calculation of the neutron multiplication factor at delayed criticality may be necessary for benchmarking calculations but it may not be sufficient. The use of subcritical experiments to benchmark criticality safety calculations could result in substantial savings in fuel material costs for experiments. In some cases subcritical configurations could be used to benchmark calculations where sufficient fuel to achieve delayed criticality is not available. By performing a variety of measurements with subcritical configurations, much detailed information can be obtained which can be compared directly with calculations. This paper discusses several measurements that can be performed with subcritical assemblies and presents examples that include comparisons between calculation and experiment where possible. Where not, examples from critical experiments have been used but the measurement methods could also be used for subcritical experiments.

  11. Combustor dome assembly

    SciTech Connect

    Howell, S.J.; Toborg, S.M.

    1992-06-02

    This patent describes a dome assembly for a gas turbine engine combustor. It comprises: an annular dome having at least one dome eyelet; a mounting ring fixedly joined to the dome and having a radially inner surface defining a central aperture coaxially aligned with the dome eyelet; a baffle having a tubular mounting portion extending upstream through the mounting ring central aperture and fixedly joined to the mounting ring radially inner surface, and a flare portion extending downstream from the mounting ring; and a carburetor including an air swirler having an annular exit cone, the exit cone having a radially outer surface disposed against the baffle mounting portion, and annular radially outwardly extending radial flange, and a radially inwardly facing annular flow surface for channeling air thereover and downstream over the baffle flare portion; the swirler exit cone radial flange being fixedly joined to, and removable from, the mounting ring for providing a fuel/air mixture through the central aperture with a predetermined relationship to the baffle flare portion, the baffle mounting portion extending upstream through the mounting ring central aperture for being accessible from an upstream side of the dome upon removal of the carburetor from the mounting ring.

  12. Subsea wellhead assembly

    SciTech Connect

    Kelly, T. P.

    1984-12-11

    A subsea wellhead assembly for areas subject to iceberg scouring including an upper conductor in a well bore and a lower conductor in the well bore with the upper end of the lower conductor being within the lower end of the upper conductor and connected thereto by a weak connection and the upper end of the lower conductor being below the maximum iceberg scour depth and means for connecting said conductors, said connecting means having sufficient strength to withstand bending loads during drilling and being removable for installation of production equipment. Additionally production equipment in the well bore includes a block valve supported within the second conductor and a production string extending upward from the block valve and having a weak point within the upper end of the second conductor whereby the well control is not lost by deep iceberg scouring since the production control equipment is within the second conductor which is not damaged by the scouring and the production equipment extending thereabove fails without damage to the lower control equipment or loss of the well.

  13. Gear box assembly

    SciTech Connect

    Harrod, L.R.; Siebern, M.R.

    1989-04-25

    This patent describes a gearbox assembly for a vehicle which includes a driven axle shaft extending transversely of the vehicle having wheels secured thereto: a drive gear concentric with the axle shaft nonrotatably connected to the shaft, the drive gear having an integral hub on each of opposite sides thereof, a pinion gear shiftably mounted above the drive gear having one position engaging the drive gear and shiftable laterally to disengage from the drive gear, a shift lever mounted in a position projecting upwardly from the pinion gear actuatable to shift the pinion gear, an electric motor with output shaft mounted with the output shaft paralleling the axle shaft and having a driving gear mounted thereon, a multiple gear gear train mounted so as to establish a driving connection between the driving gear and the pinion gear, and a transmission housing enclosing the driving gar, gear train, pinion gear and drive gear, the housing including sleeve portions rotatably receiving the hubs of the drive gear and thus rotatably mounting the drive gear and the axle shaft connected to the drive gear.

  14. Piston and valve assembly

    SciTech Connect

    Rolder, G. K.

    1985-10-01

    A downhole hydraulically actuated pump assembly of either the free or fixed type lifts formation fluid from the bottom of a borehole to the surface of the ground. The downhole pump has a power piston which actuates a production plunger. A valve means is concentrically arranged within the power piston. A stationary, hollow valve control rod extends through the power piston and through the valve means, with a lower marginal end of the control rod terminating within the production plunger. Power fluid flows through the control rod and to the valve means. As the power piston reciprocates within the engine cylinder, means on the control rod actuates the valve means between two alternant positions so that power fluid is applied to the bottom face of the power piston to thereby cause the power piston to reciprocate upward; and thereafter, the control rod causes the valve means to shift to the other position, whereupon spent power fluid is exhausted from the engine cylinder. The spent power fluid is admixed with production fluid and is conducted to the surface of the ground.

  15. Flexible Foot Test Assembly

    SciTech Connect

    Kurita, C.H.; /Fermilab

    1987-04-27

    A test model of the flexible foot support was constructed early in the design stages to check its reactions to applied loads. The prototype was made of SS 304 and contained four vertical plates as opposed to the fourteen Inconel 718 plates which comprise the actual structure. Due to the fact that the prototype was built before the design of the support was finalized, the plate dimensions are different from those of the actual proposed design (i.e. model plate thickness is approximately one-half that of the actual plates). See DWG. 3740.210-MC-222376 for assembly details of the test model and DWG. 3740.210-MB-222377 for plate dimensions. This stanchion will be required to not only support the load of the inner vessel of the cryostat and its contents, but it must also allow for the movement of the vessel due to thermal contraction. Assuming that each vertical plate acts as a column, then the following formula from the Manual of Steel Construction (American Institute of Steel Construction, Inc., Eigth edition, 1980) can be applied to determine whether or not such columns undergoing simultaneous axial compression and transverse loading are considered safe for the given loading. The first term is representative of the axially compressive stress, and the second term, the bending stress. If the actual compressive stress is greater than 15% of the allowable compressive stress, then there are additional considerations which must be accounted for in the bending stress term.

  16. Dissolver vessel bottom assembly

    DOEpatents

    Kilian, Douglas C.

    1976-01-01

    An improved bottom assembly is provided for a nuclear reactor fuel reprocessing dissolver vessel wherein fuel elements are dissolved as the initial step in recovering fissile material from spent fuel rods. A shock-absorbing crash plate with a convex upper surface is disposed at the bottom of the dissolver vessel so as to provide an annular space between the crash plate and the dissolver vessel wall. A sparging ring is disposed within the annular space to enable a fluid discharged from the sparging ring to agitate the solids which deposit on the bottom of the dissolver vessel and accumulate in the annular space. An inlet tangential to the annular space permits a fluid pumped into the annular space through the inlet to flush these solids from the dissolver vessel through tangential outlets oppositely facing the inlet. The sparging ring is protected against damage from the impact of fuel elements being charged to the dissolver vessel by making the crash plate of such a diameter that the width of the annular space between the crash plate and the vessel wall is less than the diameter of the fuel elements.

  17. Concentric tube support assembly

    DOEpatents

    Rubio, Mark F.; Glessner, John C.

    2012-09-04

    An assembly (45) includes a plurality of separate pie-shaped segments (72) forming a disk (70) around a central region (48) for retaining a plurality of tubes (46) in a concentrically spaced apart configuration. Each segment includes a support member (94) radially extending along an upstream face (96) of the segment and a plurality of annularly curved support arms (98) transversely attached to the support member and radially spaced apart from one another away from the central region for receiving respective upstream end portions of the tubes in arc-shaped spaces (100) between the arms. Each segment also includes a radial passageway (102) formed in the support member for receiving a fluid segment portion (106) and a plurality of annular passageways (104) formed in the support arms for receiving respective arm portions (108) of the fluid segment portion from the radial passageway and for conducting the respective arm portions into corresponding annular spaces (47) formed between the tubes retained by the disk.

  18. Hubble Space Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineers and technicians conduct a fit check of the Hubble Space Telescope (HST) Solar Array flight article in a clean room of the Lockheed Missile and Space Company. The Solar Array is 40- feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, and provides power to the spacecraft. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  19. Passive bypass valve assembly

    SciTech Connect

    Siedlecki, W.F. Jr.

    1992-05-19

    This patent describes a bypass valve assembly for controlling fluid flow in a gas turbine engine. It comprises an annular frame including an outer casing, an inner casing spaced from the outer casing to define a channel for channeling fluid flow and the outer casing including an annular opening therein; a plurality of circumferentially juxtaposed bypass valve doors disposed in the annular opening, each of the valve doors having an inner surface for facing the fluid flowable in the channel, an outer surface, a first end pivotally connected to the frame, and a second end, the doors being positionable in a first position generally parallel to the outer casing, and in a second position inclined relative to the outer casing, the fluid flow flowable against the door inner surface being effective for generating a fluid force on the door; and means for automatically positioning the doors in first and second positions in response to differential pressure across the door, the positioning means providing a torque on the doors for moving the door from the first to the second positions and including torque adjustment means for reducing the torque for at least a portion of travel of the doors from the second to the first positions.

  20. Gearbox assembly for vehicles

    SciTech Connect

    Imaizumi, M.; Masumura, M.; Ishikawa, T.; Hosoya, E.

    1987-01-13

    A gearbox assembly is described for a vehicle for transmitting an output of an engine to driving wheels of the vehicle, comprising: a main gearbox receiving the output and having plural forward gear-shift steps; a shift lever; a sub gearbox coupled to an output of the main gearbox having at least two relatively high and low speed gearshift steps (GH,GL) and a reverse transmission system (GR), the two steps and the reverse transmission system being selectively established through switching operation of the shift lever; wherein the sub gearbox further comprises: a rotary member connected to the shift lever for selecting one of the steps and the reverse transmission system according to its rotation; a stopper mechanism engaging the rotary member for preventing the rotary member from rotating to a position where the reverse transmission system is established; and interlinking means between the stopper mechanism and the main gearbox for releasing the stopper mechanism only when the main gearbox is in neutral or in a low speed gear-shift step; wherein the stopper mechanism comprises: a cam rotatable in response to the gear-shift operation of the main gearbox; a stopper lever one end of which faces the periphery of the cam and the other end facing the rotary member, the stopper lever being pivotally supported at its middle portion; and a spring urging the stopper level to abut against the periphery of the cam.