Winding through the WNT pathway during cellular development and demise.
Li, F; Chong, Z Z; Maiese, K
2006-01-01
In slightly over a period of twenty years, our comprehension of the cellular and molecular mechanisms that govern the Wnt signaling pathway continue to unfold. The Wnt proteins were initially implicated in viral carcinogenesis experiments associated with mammary tumors, but since this period investigations focusing on the Wnt pathways and their transmembrane receptors termed Frizzled have been advanced to demonstrate the critical nature of Wnt for the development of a variety of cell populations as well as the potential of the Wnt pathway to avert apoptotic injury. In particular, Wnt signaling plays a significant role in both the cardiovascular and nervous systems during embryonic cell patterning, proliferation, differentiation, and orientation. Furthermore, modulation of Wnt signaling under specific cellular influences can either promote or prevent the early and late stages of apoptotic cellular injury in neurons, endothelial cells, vascular smooth muscle cells, and cardiomyocytes. A number of downstream signal transduction pathways can mediate the biological response of the Wnt proteins that include Dishevelled, beta-catenin, intracellular calcium, protein kinase C, Akt, and glycogen synthase kinase-3beta. Interestingly, these cellular cascades of the Wnt-Frizzled pathways can participate in several neurodegenerative, vascular, and cardiac disorders and may be closely integrated with the function of trophic factors. Identification of the critical elements that modulate the Wnt-Frizzled signaling pathway should continue to unlock the potential of Wnt pathway for the development of new therapeutic options against neurodegenerative and vascular diseases.
Planar cell polarity pathway in vertebrate epidermal development, homeostasis and repair
Dworkin, Sebastian; Jane, Stephen M
2011-01-01
The planar cell polarity (PCP) pathway plays a critical role in diverse developmental processes that require coordinated cellular movement, including neural tube closure and renal tubulogenesis. Recent studies have demonstrated that this pathway also has emerging relevance to the epidermis, as PCP signaling underpins many aspects of skin biology and pathology, including epidermal development, hair orientation, stem cell division and cancer. Coordinated cellular movement required for epidermal repair in mammals is also regulated by PCP signaling, and in this context, a new PCP gene encoding the developmental transcription factor Grainyhead-like 3 (Grhl3) is critical. This review focuses on the role that PCP signaling plays in the skin across a variety of epidermal functions and highlights perturbations that induce epidermal pathologies. PMID:22041517
Genetics Home Reference: hereditary paraganglioma-pheochromocytoma
... two important cellular pathways called the citric acid cycle (or Krebs cycle) and oxidative phosphorylation. These pathways are critical in ... can use. As part of the citric acid cycle, the SDH enzyme converts a compound called succinate ...
Overview of an internationally-harmonized program for adverse outcome pathway development
Adverse outcome pathways (AOPs) are critical frameworks for organizing knowledge concerning the scientifically-credible predictive linkages between toxicological observations made at molecular and cellular levels (e.g., via molecular screening assays, biomarker responses, or chem...
VISIBIOweb: visualization and layout services for BioPAX pathway models
Dilek, Alptug; Belviranli, Mehmet E.; Dogrusoz, Ugur
2010-01-01
With recent advancements in techniques for cellular data acquisition, information on cellular processes has been increasing at a dramatic rate. Visualization is critical to analyzing and interpreting complex information; representing cellular processes or pathways is no exception. VISIBIOweb is a free, open-source, web-based pathway visualization and layout service for pathway models in BioPAX format. With VISIBIOweb, one can obtain well-laid-out views of pathway models using the standard notation of the Systems Biology Graphical Notation (SBGN), and can embed such views within one's web pages as desired. Pathway views may be navigated using zoom and scroll tools; pathway object properties, including any external database references available in the data, may be inspected interactively. The automatic layout component of VISIBIOweb may also be accessed programmatically from other tools using Hypertext Transfer Protocol (HTTP). The web site is free and open to all users and there is no login requirement. It is available at: http://visibioweb.patika.org. PMID:20460470
Cellular Homeostasis and Aging.
Hartl, F Ulrich
2016-06-02
Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans.
Cardama, G A; Alonso, D F; Gonzalez, N; Maggio, J; Gomez, D E; Rolfo, C; Menna, P L
2018-04-01
Rac1 GTPase signaling pathway has a critical role in the regulation of a plethora of cellular functions governing cancer cell behavior. Recently, it has been shown a critical role of Rac1 in the emergence of resistance mechanisms to cancer therapy. This review describes the current knowledge regarding Rac1 pathway deregulation and its association with chemoresistance, radioresistance, resistance to targeted therapies and immune evasion. This supports the idea that interfering Rac1 signaling pathway could be an interesting approach to tackle cancer resistance. Copyright © 2018 Elsevier B.V. All rights reserved.
Soeiro-de-Souza, M. G.; Dias, V. V.; Figueira, M. L.; Forlenza, O. V.; Gattaz, W. F.; Zarate, C. A.; Machado-Vieira, R.
2014-01-01
Objective Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. Methods We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were ‘brain-derived neurotrophic factor,’ ‘Bcl-2,’ ‘mitogen-activated protein kinases,’ ‘neuroprotection,’ ‘calcium,’ ‘bipolar disorder,’ ‘mania,’ and ‘depression.’ Results The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Conclusion Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder. PMID:22676371
Soeiro-de-Souza, M G; Dias, V V; Figueira, M L; Forlenza, O V; Gattaz, W F; Zarate, C A; Machado-Vieira, R
2012-11-01
Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were 'brain-derived neurotrophic factor,''Bcl-2,''mitogen-activated protein kinases,''neuroprotection,''calcium,''bipolar disorder,''mania,' and 'depression.' The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder. © 2012 John Wiley & Sons A/S.
Characteristics of the ToxCast In Vitro Datasets from Biochemical and Cellular Assays
Measurement of perturbation of critical signaling pathways and cellular processes using in vitro assays provides a means to predict the potential for chemicals to cause injury in the intact animal. To explore the utility of such an approach, a diverse collection of 467 assays acr...
Learning cellular sorting pathways using protein interactions and sequence motifs.
Lin, Tien-Ho; Bar-Joseph, Ziv; Murphy, Robert F
2011-11-01
Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.
Steelman, Linda S.; Chappell, William H.; Abrams, Stephen L.; Kempf, C. Ruth; Long, Jacquelyn; Laidler, Piotr; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Stivala, Franca; Mazzarino, Maria C.; Donia, Marco; Fagone, Paolo; Malaponte, Graziella; Nicoletti, Ferdinando; Libra, Massimo; Milella, Michele; Tafuri, Agostino; Bonati, Antonio; Bäsecke, Jörg; Cocco, Lucio; Evangelisti, Camilla; Martelli, Alberto M.; Montalto, Giuseppe; Cervello, Melchiorre; McCubrey, James A.
2011-01-01
Dysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli. Crosstalk and commonly identified mutations that occur within these pathways that contribute to abnormal activation and cancer growth will also be addressed. Finally the recently described roles of these pathways in cancer stem cells, cellular senescence and aging will be evaluated. Controlling the expression of these pathways could ameliorate human health. PMID:21422497
Evaluation of the ToxCast Suite of Cellular and Molecular Assays for Prediction of In Vivo Toxicity
Measurement of perturbation of critical signaling pathways and cellular processes using in vitro assays provides a means to predict the potential for chemicals to cause injury in the intact animal. To explore the utility of such an approach, a diverse collection of human in vitro...
Liu, Bing; Gao, Yankun; Ruan, Hai-Bin; Chen, Yue
2016-01-01
Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells. PMID:27764789
Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs
Lin, Tien-Ho; Bar-Joseph, Ziv
2011-01-01
Abstract Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/. PMID:21999284
Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway
Watt, Kevin I.; Harvey, Kieran F.; Gregorevic, Paul
2017-01-01
The integrative control of diverse biological processes such as proliferation, differentiation, apoptosis and metabolism is essential to maintain cellular and tissue homeostasis. Disruption of these underlie the development of many disease states including cancer and diabetes, as well as many of the complications that arise as a consequence of aging. These biological outputs are governed by many cellular signaling networks that function independently, and in concert, to convert changes in hormonal, mechanical and metabolic stimuli into alterations in gene expression. First identified in Drosophila melanogaster as a powerful mediator of cell division and apoptosis, the Hippo signaling pathway is a highly conserved regulator of mammalian organ size and functional capacity in both healthy and diseased tissues. Recent studies have implicated the pathway as an effector of diverse physiological cues demonstrating an essential role for the Hippo pathway as an integrative component of cellular homeostasis. In this review, we will: (a) outline the critical signaling elements that constitute the mammalian Hippo pathway, and how they function to regulate Hippo pathway-dependent gene expression and tissue growth, (b) discuss evidence that shows this pathway functions as an effector of diverse physiological stimuli and (c) highlight key questions in this developing field. PMID:29225579
Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.
Ohbayashi, Iwai; Sugiyama, Munetaka
2017-01-01
The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.
Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...
Metabolic Management during Critical Illness: Glycemic Control in the ICU.
Honiden, Shyoko; Inzucchi, Silvio E
2015-12-01
Hyperglycemia is a commonly encountered metabolic derangement in the ICU. Important cellular pathways, such as those related to oxidant stress, immunity, and cellular homeostasis, can become deranged with prolonged and uncontrolled hyperglycemia. There is additionally a complex interplay between nutritional status, ambient glucose concentrations, and protein catabolism. While the nuances of glucose management in the ICU have been debated, results from landmark studies support the notion that for most critically ill patients moderate glycemic control is appropriate, as reflected by recent guidelines. Beyond the target population and optimal glucose range, additional factors such as hypoglycemia and glucose variability are important metrics to follow. In this regard, new technologies such as continuous glucose sensors may help alleviate the risks associated with such glucose fluctuations in the ICU. In this review, we will explore the impact of hyperglycemia upon critical cellular pathways and how nutrition provided in the ICU affects blood glucose. Additionally, important clinical trials to date will be summarized. A practical and comprehensive approach to glucose management in the ICU will be outlined, touching upon important issues such as glucose variability, target population, and hypoglycemia. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Melo, Justine A.; Ruvkun, Gary
2012-01-01
Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807
OXIDATIVE STRESS: BIOMARKERS AND NOVEL THERAPEUTIC PATHWAYS
Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen
2010-01-01
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation. PMID:20064603
Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells.
Lay, Sui; Sanislav, Oana; Annesley, Sarah J; Fisher, Paul R
2016-01-01
Mitochondria not only play a critical and central role in providing metabolic energy to the cell but are also integral to the other cellular processes such as modulation of various signaling pathways. These pathways affect many aspects of cell physiology, including cell movement, growth, division, differentiation, and death. Mitochondrial dysfunction which affects mitochondrial bioenergetics and causes oxidative phosphorylation defects can thus lead to altered cellular physiology and manifest in disease. The assessment of the mitochondrial bioenergetics can thus provide valuable insights into the physiological state, and the alterations to the state of the cells. Here, we describe a method to successfully use the Seahorse XF(e)24 Extracellular Flux Analyzer to assess the mitochondrial respirometry of the cellular slime mold Dictyostelium discoideum.
Class I ADP-Ribosylation Factors Are Involved in Enterovirus 71 Replication
Wang, Jianmin; Du, Jiang; Jin, Qi
2014-01-01
Enterovirus 71 is one of the major causative agents of hand, foot, and mouth disease in infants and children. Replication of enterovirus 71 depends on host cellular factors. The viral replication complex is formed in novel, cytoplasmic, vesicular compartments. It has not been elucidated which cellular pathways are hijacked by the virus to create these vesicles. Here, we investigated whether proteins associated with the cellular secretory pathway were involved in enterovirus 71 replication. We used a loss-of-function assay, based on small interfering RNA. We showed that enterovirus 71 RNA replication was dependent on the activity of Class I ADP-ribosylation factors. Simultaneous depletion of ADP-ribosylation factors 1 and 3, but not three others, inhibited viral replication in cells. We also demonstrated with various techniques that the brefeldin-A-sensitive guanidine nucleotide exchange factor, GBF1, was critically important for enterovirus 71 replication. Our results suggested that enterovirus 71 replication depended on GBF1-mediated activation of Class I ADP-ribosylation factors. These results revealed a connection between enterovirus 71 replication and the cellular secretory pathway; this pathway may represent a novel target for antiviral therapies. PMID:24911624
Cellular Metabolic and Autophagic Pathways: Traffic Control by Redox Signaling
Dodson, Matthew; Darley-Usmar, Victor; Zhang, Jianhua
2013-01-01
It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality, and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function. PMID:23702245
Ji, Xuan-Ru; Cheng, Kuan-Chung; Chen, Yu-Ru; Lin, Tzu-Yu; Cheung, Chun Hei Antonio; Wu, Chia-Lin; Chiang, Hsueh-Cheng
2018-03-01
The endosomal-lysosomal system (ELS), autophagy, and ubiquitin-proteasome system (UPS) are cellular degradation pathways that each play a critical role in the removal of misfolded proteins and the prevention of the accumulation of abnormal proteins. Recent studies on Alzheimer's disease (AD) pathogenesis have suggested that accumulation of aggregated β-amyloid (Aβ) peptides in the AD brain results from a dysfunction in these cellular clearance systems. However, the specific roles of these pathways in the removal of Aβ peptides and the pathogenesis underlying AD are unclear. Our in vitro and in vivo genetic approaches revealed that ELS mainly removed monomeric β-amyloid42 (Aβ42), while autophagy and UPS clear oligomeric Aβ42. Although overproduction of phosphatidylinositol 4-phosphate-5 increased Aβ42 clearance, it reduced the life span of Aβ42 transgenic flies. Our behavioral studies further demonstrated impaired autophagy and UPS-enhanced Aβ42-induced learning and memory deficits, but there was no effect on Aβ42-induced reduction in life span. Results from genetic fluorescence imaging showed that these pathways were damaged in the following order: UPS, autophagy, and finally ELS. The results of our study demonstrate that different degradation pathways play distinct roles in the removal of Aβ42 aggregates and in disease progression. These findings also suggest that pharmacologic treatments that are designed to stimulate cellular degradation pathways in patients with AD should be used with caution.-Ji, X.-R., Cheng, K.-C., Chen, Y.-R., Lin, T.-Y., Cheung, C. H. A., Wu, C.-L., Chiang, H.-C. Dysfunction of different cellular degradation pathways contributes to specific β-amyloid42-induced pathologies.
Cellular death, reactive oxygen species (ROS) and diabetic complications.
Volpe, Caroline Maria Oliveira; Villar-Delfino, Pedro Henrique; Dos Anjos, Paula Martins Ferreira; Nogueira-Machado, José Augusto
2018-01-25
Chronic or intermittent hyperglycemia is associated with the development of diabetic complications. Several signaling pathways can be altered by having hyperglycemia in different tissues, producing oxidative stress, the formation of advanced glycation end products (AGEs), as well as the secretion of the pro-inflammatory cytokines and cellular death (pathological autophagy and/or apoptosis). However, the signaling pathways that are directly triggered by hyperglycemia appear to have a pivotal role in diabetic complications due to the production of reactive oxygen species (ROS), oxidative stress, and cellular death. The present review will discuss the role of cellular death in diabetic complications, and it will suggest the cause and the consequences between the hyperglycemia-induced signaling pathways and cell death. The signaling pathways discussed in this review are to be described step-by-step, together with their respective inhibitors. They involve diacylglycerol, the activation of protein kinase C (PKC) and NADPH-oxidase system, and the consequent production of ROS. This was initially entitled the "dangerous metabolic route in diabetes". The historical usages and the recent advancement of new drugs in controlling possible therapeutical targets have been highlighted, in order to evaluate the evolution of knowledge in this sensitive area. It has recently been shown that the metabolic responses to stimuli (i.e., hyperglycemia) involve an integrated network of signaling pathways, in order to define the exact responses. Certain new drugs have been experimentally tested-or suggested and proposed-for their ability to modulate the possible biochemical therapeutical targets for the downregulation of retinopathy, nephropathy, neuropathy, heart disease, angiogenesis, oxidative stress, and cellular death. The aim of this study was to critically and didactically evaluate the exact steps of these signaling pathways and hence mark the indicated sites for the actions of such drugs and their possible consequences. This review will emphasize, besides others, the therapeutical targets for controlling the signaling pathways, when aimed at the downregulation of ROS generation, oxidative stress, and, consequently, cellular death-with all of these conditions being a problem in diabetes.
Redox regulation in cancer stem cells
USDA-ARS?s Scientific Manuscript database
Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...
Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying
2016-04-15
Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.
Jiang, Yanxialei; Lee, Jeeyoung; Lee, Jung Hoon; Lee, Joon Won; Kim, Ji Hyeon; Choi, Won Hoon; Yoo, Young Dong; Cha-Molstad, Hyunjoo; Kim, Bo Yeon; Kwon, Yong Tae; Noh, Sue Ah; Kim, Kwang Pyo; Lee, Min Jae
2016-01-01
ABSTRACT The N-terminal amino acid of a protein is an essential determinant of ubiquitination and subsequent proteasomal degradation in the N-end rule pathway. Using para-chloroamphetamine (PCA), a specific inhibitor of the arginylation branch of the pathway (Arg/N-end rule pathway), we identified that blocking the Arg/N-end rule pathway significantly impaired the fusion of autophagosomes with lysosomes. Under ER stress, ATE1-encoded Arg-tRNA-protein transferases carry out the N-terminal arginylation of the ER heat shock protein HSPA5 that initially targets cargo proteins, along with SQSTM1, to the autophagosome. At the late stage of autophagy, however, proteasomal degradation of arginylated HSPA5 might function as a critical checkpoint for the proper progression of autophagic flux in the cells. Consistently, the inhibition of the Arg/N-end rule pathway with PCA significantly elevated levels of MAPT and huntingtin aggregates, accompanied by increased numbers of LC3 and SQSTM1 puncta. Cells treated with the Arg/N-end rule inhibitor became more sensitized to proteotoxic stress-induced cytotoxicity. SILAC-based quantitative proteomics also revealed that PCA significantly alters various biological pathways, including cellular responses to stress, nutrient, and DNA damage, which are also closely involved in modulation of autophagic responses. Thus, our results indicate that the Arg/N-end rule pathway may function to actively protect cells from detrimental effects of cellular stresses, including proteotoxic protein accumulation, by positively regulating autophagic flux. PMID:27560450
Lighting up the brain's reward circuitry.
Lobo, Mary Kay
2012-07-01
The brain's reward circuit is critical for mediating natural reward behaviors including food, sex, and social interaction. Drugs of abuse take over this circuit and produce persistent molecular and cellular alterations in the brain regions and their neural circuitry that make up the reward pathway. Recent use of optogenetic technologies has provided novel insights into the functional and molecular role of the circuitry and cell subtypes within these circuits that constitute this pathway. This perspective will address the current and future use of light-activated proteins, including those involved in modulating neuronal activity, cellular signaling, and molecular properties in the neural circuitry mediating rewarding stimuli and maladaptive responses to drugs of abuse. © 2012 New York Academy of Sciences.
Lipton, Jonathan O; Sahin, Mustafa
2014-10-22
The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.
The Transcription Factor EB Links Cellular Stress to the Immune Response
Nabar, Neel R.; Kehrl, John H.
2017-01-01
The transcription factor EB (TFEB) is the master transcriptional regulator of autophagy and lysosome biogenesis. Recent advances have led to a paradigm shift in our understanding of lysosomes from a housekeeping cellular waste bin to a dynamically regulated pathway that is efficiently turned up or down based on cellular needs. TFEB coordinates the cellular response to nutrient deprivation and other forms of cell stress through the lysosome system, and regulates a myriad of cellular processes associated with this system including endocytosis, phagocytosis, autophagy, and lysosomal exocytosis. Autophagy and the endolysosomal system are critical to both the innate and adaptive arms of the immune system, with functions in effector cell priming and direct pathogen clearance. Recent studies have linked TFEB to the regulation of the immune response through the endolysosmal pathway and by direct transcriptional activation of immune related genes. In this review, we discuss the current understanding of TFEB’s function and the molecular mechanisms behind TFEB activation. Finally, we discuss recent advances linking TFEB to the immune response that positions lysosomal signaling as a potential target for immune modulation. PMID:28656016
The Transcription Factor EB Links Cellular Stress to the Immune Response .
Nabar, Neel R; Kehrl, John H
2017-06-01
The transcription factor EB (TFEB) is the master transcriptional regulator of autophagy and lysosome biogenesis. Recent advances have led to a paradigm shift in our understanding of lysosomes from a housekeeping cellular waste bin to a dynamically regulated pathway that is efficiently turned up or down based on cellular needs. TFEB coordinates the cellular response to nutrient deprivation and other forms of cell stress through the lysosome system, and regulates a myriad of cellular processes associated with this system including endocytosis, phagocytosis, autophagy, and lysosomal exocytosis. Autophagy and the endolysosomal system are critical to both the innate and adaptive arms of the immune system, with functions in effector cell priming and direct pathogen clearance. Recent studies have linked TFEB to the regulation of the immune response through the endolysosmal pathway and by direct transcriptional activation of immune related genes. In this review, we discuss the current understanding of TFEB's function and the molecular mechanisms behind TFEB activation. Finally, we discuss recent advances linking TFEB to the immune response that positions lysosomal signaling as a potential target for immune modulation.
Harnessing the Power of Metabolism for Seizure Prevention: Focus on Dietary Treatments
Hartman, Adam L.; Stafstrom, Carl E.
2012-01-01
The continued occurrence of refractory seizures in at least one-third of children and adults with epilepsy, despite the availability of almost 15 conventional and novel anticonvulsant drugs, speaks to a dire need to develop novel therapeutic approaches. Cellular metabolism, the critical pathways by which cells access and utilize energy, is critical for normal neuronal function. Furthermore, mounting evidence suggests direct links between energy metabolism and cellular excitability. The high-fat, low-carbohydrate ketogenic diet has been used as a treatment for drug-refractory epilepsy for almost a century. Yet, the multitude of alternative therapies to target aspects of cellular metabolism and hyperexcitability is almost untapped. Approaches discussed in this review offer a wide diversity of therapeutic targets that might be exploited by investigators in the search for safer and more effective epilepsy treatments. PMID:23110824
Primary Cilia and Dendritic Spines: Different but Similar Signaling Compartments
Nechipurenko, Inna V.; Doroquez, David B.; Sengupta, Piali
2013-01-01
Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures. PMID:24048681
Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus.
Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W
2012-01-01
The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these proteins collectively participate in interconnected networks converging to adapt the nucleolus dynamic activities, which favor host biosynthetic activities and may contribute to create a cellular environment supporting robust HIV-1 production.
Nucleolar Protein Trafficking in Response to HIV-1 Tat: Rewiring the Nucleolus
Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W.; Gautier, Virginie W.
2012-01-01
The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these proteins collectively participate in interconnected networks converging to adapt the nucleolus dynamic activities, which favor host biosynthetic activities and may contribute to create a cellular environment supporting robust HIV-1 production. PMID:23166591
Targeting Protein Quality Control Mechanisms by Natural Products to Promote Healthy Ageing.
Wedel, Sophia; Manola, Maria; Cavinato, Maria; Trougakos, Ioannis P; Jansen-Dürr, Pidder
2018-05-19
Organismal ageing is associated with increased chance of morbidity or mortality and it is driven by diverse molecular pathways that are affected by both environmental and genetic factors. The progression of ageing correlates with the gradual accumulation of stressors and damaged biomolecules due to the time-dependent decline of stress resistance and functional capacity, which eventually compromise cellular homeodynamics. As protein machines carry out the majority of cellular functions, proteome quality control is critical for cellular functionality and is carried out through the curating activity of the proteostasis network (PN). Key components of the PN are the two main degradation machineries, namely the ubiquitin-proteasome and autophagy-lysosome pathways along with several stress-responsive pathways, such as that of nuclear factor erythroid 2-related factor 2 (Nrf2), which mobilises cytoprotective genomic responses against oxidative and/or xenobiotic damage. Reportedly, genetic or dietary interventions that activate components of the PN delay ageing in evolutionarily diverse organisms. Natural products (extracts or pure compounds) represent an extraordinary inventory of highly diverse structural scaffolds that offer promising activities towards meeting the challenge of increasing healthspan and/or delaying ageing (e.g., spermidine, quercetin or sulforaphane). Herein, we review those natural compounds that have been found to activate proteostatic and/or anti-stress cellular responses and hence have the potential to delay cellular senescence and/or in vivo ageing.
Oleuropein and Cancer Chemoprevention: The Link is Hot.
Ahmad Farooqi, Ammad; Fayyaz, Sundas; Silva, Ana Sanches; Sureda, Antoni; Nabavi, Seyed Fazel; Mocan, Andrei; Nabavi, Seyed Mohammad; Bishayee, Anupam
2017-04-29
Cancer comprises a collection of related diseases characterized by the existence of altered cellular pathways resulting in an abnormal tendency for uncontrolled growth. A broad spectrum, coordinated, and personalized approach focused on targeting diverse oncogenic pathways with low toxicity and economic natural compounds can provide a real benefit as a chemopreventive and/or treatment of this complex disease. Oleuropein, a bioactive phenolic compound mainly present in olive oil and other natural sources, has been reported to modulate several oncogenic signalling pathways. This review presents and critically discusses the available literature about the anticancer and onco-suppressive activity of oleuropein and the underlying molecular mechanisms implicated in the anticarcinogenic and therapeutic effects. The existence of limitations and the promising perspectives of research on this phenolic compound are also critically analyzed and discussed.
Use of High-Throughput Testing and Approaches for Evaluating Chemical Risk-Relevance to Humans
ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput screening (HTS) and computational models that integrate knowledge of biological systems and in vivo toxicities. Many of these assays probe signaling pathways and cellular processes critical to...
Emerging Common Molecular Pathways for Primary Dystonia
LeDoux, Mark S; Dauer, William T; Warner, Thomas T
2013-01-01
Background The dystonias are a group of hyperkinetic movement disorders whose principal cause is neuron dysfunction at one or more interconnected nodes of the motor system. The study of genes and proteins which cause familial dystonia provides critical information about the cellular pathways involved in this dysfunction which disrupts the motor pathways at systems level. In recent years study of the increasing number of DYT genes has implicated a number of cell functions which appear to be involved in the pathogenesis of dystonia. Methods Review of literature published in English language publications available on Pubmed relating to the genetics and cellular pathology of dystonia Results and Conclusions Numerous potential pathogenetic mechanisms have been identified. We describe those which fall into three emerging thematic groups: cell cycle and transcriptional regulation in the nucleus, endoplasmic reticulum and nuclear envelope function, and control of synaptic function. PMID:23893453
Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection.
Gan, Jin; Qiao, Niu; Strahan, Roxanne; Zhu, Caixia; Liu, Lei; Verma, Subhash C; Wei, Fang; Cai, Qiliang
2016-11-01
Post-translational modification of proteins with ubiquitin/small ubiquitin-like modifier (SUMO) molecules triggers multiple signaling pathways that are critical for many aspects of cellular physiology. Given that viruses hijack the biosynthetic and degradative systems of their host, it is not surprising that viruses encode proteins to manipulate the host's cellular machinery for ubiquitin/SUMO modification at multiple levels. Infection with a herpesvirus, among the most ubiquitous human DNA viruses, has been linked to many human diseases, including cancers. The interplay between human herpesviruses and the ubiquitylation/SUMOylation modification system has been extensively investigated in the past decade. In this review, we present an overview of recent advances to address how the ubiquitin/SUMO-modified system alters the latency and lytic replication of herpesvirus and how herpesviruses usurp the ubiquitin/SUMO pathways against the host's intrinsic and innate immune response to favor their pathogenesis. Copyright © 2016 John Wiley & Sons, Ltd.
Cancer Systems Biology Consortium | Informatics Technology for Cancer Research (ITCR)
Cancer is a complex disease system involving multiple molecular, genetic, and cellular events. From its early initiation through progression and metastasis, cancer can adapt and evolve as a result of both internal and external signals. These properties make cancer difficult to predict, prevent, and treat. There has been significant progress in characterizing the genetics of cancer, as well as the downstream effects on the molecular and cellular pathways that are critical for the initiation and progression of cancer.
Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level
Esteban-Fernández de Ávila, B.; Yáñez-Sedeño, P.
2017-01-01
A perspective review of recent strategies involving the use of nano/microvehicles to address the key challenges associated with delivery and (bio)sensing at the cellular level is presented. The main types and characteristics of the different nano/microvehicles used for these cellular applications are discussed, including fabrication pathways, propulsion (catalytic, magnetic, acoustic or biological) and navigation strategies, and relevant parameters affecting their propulsion performance and sensing and delivery capabilities. Thereafter, selected applications are critically discussed. An emphasis is made on enhancing the extra- and intra-cellular biosensing capabilities, fast cell internalization, rapid inter- or intra-cellular movement, efficient payload delivery and targeted on-demand controlled release in order to greatly improve the monitoring and modulation of cellular processes. A critical discussion of selected breakthrough applications illustrates how these smart multifunctional nano/microdevices operate as nano/microcarriers and sensors at the intra- and extra-cellular levels. These advances allow both the real-time biosensing of relevant targets and processes even at a single cell level, and the delivery of different cargoes (drugs, functional proteins, oligonucleotides and cells) for therapeutics, gene silencing/transfection and assisted fertilization, while overcoming challenges faced by current affinity biosensors and delivery vehicles. Key challenges for the future and the envisioned opportunities and future perspectives of this remarkably exciting field are discussed. PMID:29147499
Current knowledge on psoriasis and autoimmune diseases
Ayala-Fontánez, Nilmarie; Soler, David C; McCormick, Thomas S
2016-01-01
Psoriasis is a prevalent, chronic inflammatory disease of the skin, mediated by crosstalk between epidermal keratinocytes, dermal vascular cells, and immunocytes such as antigen presenting cells (APCs) and T cells. Exclusive cellular “responsibility” for the induction and maintenance of psoriatic plaques has not been clearly defined. Increased proliferation of keratinocytes and endothelial cells in conjunction with APC/T cell/monocyte/macrophage inflammation leads to the distinct epidermal and vascular hyperplasia that is characteristic of lesional psoriatic skin. Despite the identification of numerous susceptibility loci, no single genetic determinant has been identified as responsible for the induction of psoriasis. Thus, numerous other triggers of disease, such as environmental, microbial and complex cellular interactions must also be considered as participants in the development of this multifactorial disease. Recent advances in therapeutics, especially systemic so-called “biologics” have provided new hope for identifying the critical cellular targets that drive psoriasis pathogenesis. Recent recognition of the numerous co-morbidities and other autoimmune disorders associated with psoriasis, including inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus suggest common signaling elements and cellular mediators may direct disease pathogenesis. In this review, we discuss common cellular pathways and participants that mediate psoriasis and other autoimmune disorders that share these cellular signaling pathways. PMID:29387591
A Symphony of Regulations Centered on p63 to Control Development of Ectoderm-Derived Structures
Guerrini, Luisa; Costanzo, Antonio; Merlo, Giorgio R.
2011-01-01
The p53-related transcription factor p63 is critically important for basic cellular functions during development of the ectoderm and derived structure and tissues, including skin, limb, palate, and hair. On the one side, p63 is required to sustain the proliferation of keratinocyte progenitors, while on the other side it is required for cell stratification, commitment to differentiate, cell adhesion, and epithelial-mesenchymal signaling. Molecules that are components or regulators of the p63 pathway(s) are rapidly being identified, and it comes with no surprise that alterations in the p63 pathway lead to congenital conditions in which the skin and other ectoderm-derived structures are affected. In this paper, we summarize the current knowledge of the molecular and cellular regulations centered on p63, derived from the comprehension of p63-linked human diseases and the corresponding animal models, as well as from cellular models and high-throughput molecular approaches. We point out common themes and features, that allow to speculate on the possible role of p63 downstream events and their potential exploitation in future attempts to correct the congenital defect in preclinical studies. PMID:21716671
Mir, Albely Afifa; Choi, Jaeyoung; Choi, Jaehyuk; Lee, Yong-Hwan
2014-01-01
Considering implication of diacylglycerol in both metabolism and signaling pathways, maintaining proper levels of diacylglycerol (DAG) is critical to cellular homeostasis and development. Except the PIP2-PLC mediated pathway, metabolic pathways leading to generation of DAG converge on dephosphorylation of phosphatidic acid catalyzed by lipid phosphate phosphatases. Here we report the role of such enzymes in a model plant pathogenic fungus, Magnaporthe oryzae. We identified five genes encoding putative lipid phosphate phosphatases (MoLPP1 to MoLPP5). Targeted disruption of four genes (except MoLPP4) showed that MoLPP3 and MoLPP5 are required for normal progression of infection-specific development and proliferation within host plants, whereas MoLPP1 and MoLPP2 are indispensable for fungal pathogenicity. Reintroduction of MoLPP3 and MoLPP5 into individual deletion mutants restored all the defects. Furthermore, exogenous addition of saturated DAG not only restored defect in appressorium formation but also complemented reduced virulence in both mutants. Taken together, our data indicate differential roles of lipid phosphate phosphatase genes and requirement of proper regulation of cellular DAGs for fungal development and pathogenesis. PMID:24959955
Chung, Byung Min; Tom, Eric; Zutshi, Neha; Bielecki, Timothy Alan; Band, Vimla; Band, Hamid
2014-01-01
Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy. PMID:25493220
Karttunen, Heidi; Savas, Jeffrey N.; McKinney, Caleb; Chen, Yu-Hung; Yates, John R.; Hukkanen, Veijo; Huang, Tony T.; Mohr, Ian
2015-01-01
SUMMARY DNA damage associated with viral DNA synthesis can result in double strand breaks that threaten genome integrity and must be repaired. Here, we establish that the cellular Fanconi Anemia (FA) genomic stability pathway is exploited by HSV1 to promote viral DNA synthesis and enable its productive growth. Potent FA pathway activation in HSV1-infected cells resulted in monoubiquitination of FA effector proteins, FANCI and FANCD2 (FANCI-D2) and required the viral DNA polymerase. FANCD2 relocalized to viral replication compartments and FANCI-D2 interacted with a multi-subunit complex containing the virus-encoded single-stranded DNA-binding protein ICP8. Significantly, while HSV1 productive growth was impaired in monoubiquitination-defective FA patient cells, this restriction was partially surmounted by antagonizing the DNA-dependent protein kinase (DNA-PK), a critical enzyme required for non-homologous end-joining (NHEJ). This identifies the FA-pathway as a new cellular factor required for herpesvirus productive growth and suggests that FA-mediated suppression of NHEJ is a fundamental step in the viral lifecycle. PMID:24954902
Lancaster, Graeme I; Febbraio, Mark A
2005-01-01
The heat shock proteins are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from stressful conditions. While the critical intracellular roles of heat shock proteins are undisputed, evidence suggests that the cell possess the necessary machinery to actively secrete specific heat shock proteins in response to cellular stress. In this review, we firstly discuss the evidence that physical exercise induces the release of heat shock protein 72 from specific tissues in humans. Importantly, it appears as though this release is the result of an active secretory process, as opposed to non-specific processes such as cell lysis. Next we discuss recent in vitro evidence that has identified a mechanistic basis for the observation that cellular stress induces the release of a specific subset of heat shock proteins. Importantly, while the classical protein secretory pathway does not seem to be involved in the stress-induced release of HSP72, we discuss the evidence that lipid-rafts and exosomes are important mediators of the stress-induced release of HSP72.
Aspesi, Anna; Pavesi, Elisa; Robotti, Elisa; Crescitelli, Rossella; Boria, Ilenia; Avondo, Federica; Moniz, Hélène; Da Costa, Lydie; Mohandas, Narla; Roncaglia, Paola; Ramenghi, Ugo; Ronchi, Antonella; Gustincich, Stefano; Merlin, Simone; Marengo, Emilio; Ellis, Steven R.; Follenzi, Antonia; Santoro, Claudio; Dianzani, Irma
2014-01-01
Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined. Several lines of evidence suggest that defects in ribosome synthesis lead to “ribosomal stress” with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis. We took an unbiased approach to identify p53-independent pathways activated by defects in ribosome synthesis by analyzing global gene expression in various cellular models of DBA. Ranking-Principal Component Analysis (Ranking-PCA) was applied to the identified datasets to determine whether there are common sets of genes whose expression is altered in these different cellular models. We observed consistent changes in the expression of genes involved in cellular amino acid metabolic process, negative regulation of cell proliferation and cell redox homeostasis. These data indicate that cells respond to defects in ribosome synthesis by changing the level of expression of a limited subset of genes involved in critical cellular processes. Moreover, our data support a role for p53-independent pathways in the pathophysiology of DBA. PMID:24835311
Li, Qunfang; Tang, Lin; Roberts, Paul Christopher; Kraniak, Janice M.; Fridman, Aviva Levine; Kulaeva, Olga I.; Tehrani, Omid S.; Tainsky, Michael A.
2013-01-01
Cellular immortalization is one of the prerequisite steps in carcinogenesis. By gene expression profiling, we have found that genes in the interferon (IFN) pathway were dysregulated during the spontaneous cellular immortalization of fibroblasts from Li-Fraumeni syndrome (LFS) patients with germ-line mutations in p53. IFN signaling pathway genes were down-regulated by epigenetic silencing during immortalization, and some of these same IFN-regulated genes were activated during replicative senescence. Bisulfite sequencing of the promoter regions of two IFN regulatory transcription factors (IRF5 and IRF7) revealed that IRF7, but not IRF5, was epigenetically silenced by methylation of CpG islands in immortal LFS cells. The induction of IRF7 gene by IFNα in immortal LFS cells was potentiated by pretreatment with the demethylation agent 5-aza-2′-deoxycytidine. Overexpression of IRF5 and IRF7 revealed that they can act either alone or in tandem to activate other IFN-regulated genes. In addition, they serve to inhibit the proliferation rate and induce a senescence-related phenotype in immortal LFS cells. Furthermore, polyinosinic:polycytidylic acid treatment of the IRF-overexpressing cells showed a more rapid induction of several IFN-regulated genes. We conclude that the epigenetic inactivation of the IFN pathway plays a critical role in cellular immortalization, and the reactivation of IFN-regulated genes by transcription factors IRF5 and/or IRF7 is sufficient to induce cellular senescence. The IFN pathway may provide valuable molecular targets for therapeutic interventions at early stages of cancer development. PMID:18505922
Li, Qunfang; Tang, Lin; Roberts, Paul Christopher; Kraniak, Janice M; Fridman, Aviva Levine; Kulaeva, Olga I; Tehrani, Omid S; Tainsky, Michael A
2008-05-01
Cellular immortalization is one of the prerequisite steps in carcinogenesis. By gene expression profiling, we have found that genes in the interferon (IFN) pathway were dysregulated during the spontaneous cellular immortalization of fibroblasts from Li-Fraumeni syndrome (LFS) patients with germ-line mutations in p53. IFN signaling pathway genes were down-regulated by epigenetic silencing during immortalization, and some of these same IFN-regulated genes were activated during replicative senescence. Bisulfite sequencing of the promoter regions of two IFN regulatory transcription factors (IRF5 and IRF7) revealed that IRF7, but not IRF5, was epigenetically silenced by methylation of CpG islands in immortal LFS cells. The induction of IRF7 gene by IFNalpha in immortal LFS cells was potentiated by pretreatment with the demethylation agent 5-aza-2'-deoxycytidine. Overexpression of IRF5 and IRF7 revealed that they can act either alone or in tandem to activate other IFN-regulated genes. In addition, they serve to inhibit the proliferation rate and induce a senescence-related phenotype in immortal LFS cells. Furthermore, polyinosinic:polycytidylic acid treatment of the IRF-overexpressing cells showed a more rapid induction of several IFN-regulated genes. We conclude that the epigenetic inactivation of the IFN pathway plays a critical role in cellular immortalization, and the reactivation of IFN-regulated genes by transcription factors IRF5 and/or IRF7 is sufficient to induce cellular senescence. The IFN pathway may provide valuable molecular targets for therapeutic interventions at early stages of cancer development.
Spencer, Netanya Y; Engelhardt, John F
2014-03-18
Redox reactions have been established as major biological players in many cellular signaling pathways. Here we review mechanisms of redox signaling with an emphasis on redox-active signaling endosomes. Signals are transduced by relatively few reactive oxygen species (ROS), through very specific redox modifications of numerous proteins and enzymes. Although ROS signals are typically associated with cellular injury, these signaling pathways are also critical for maintaining cellular health at homeostasis. An important component of ROS signaling pertains to localization and tightly regulated signal transduction events within discrete microenvironments of the cell. One major aspect of this specificity is ROS compartmentalization within membrane-enclosed organelles such as redoxosomes (redox-active endosomes) and the nuclear envelope. Among the cellular proteins that produce superoxide are the NADPH oxidases (NOXes), transmembrane proteins that are implicated in many types of redox signaling. NOXes produce superoxide on only one side of a lipid bilayer; as such, their orientation dictates the compartmentalization of ROS and the local control of signaling events limited by ROS diffusion and/or movement through channels associated with the signaling membrane. NOX-dependent ROS signaling pathways can also be self-regulating, with molecular redox sensors that limit the local production of ROS required for effective signaling. ROS regulation of the Rac-GTPase, a required co-activator of many NOXes, is an example of this type of sensor. A deeper understanding of redox signaling pathways and the mechanisms that control their specificity will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion injury, and neurodegenerative diseases.
2015-01-01
Redox reactions have been established as major biological players in many cellular signaling pathways. Here we review mechanisms of redox signaling with an emphasis on redox-active signaling endosomes. Signals are transduced by relatively few reactive oxygen species (ROS), through very specific redox modifications of numerous proteins and enzymes. Although ROS signals are typically associated with cellular injury, these signaling pathways are also critical for maintaining cellular health at homeostasis. An important component of ROS signaling pertains to localization and tightly regulated signal transduction events within discrete microenvironments of the cell. One major aspect of this specificity is ROS compartmentalization within membrane-enclosed organelles such as redoxosomes (redox-active endosomes) and the nuclear envelope. Among the cellular proteins that produce superoxide are the NADPH oxidases (NOXes), transmembrane proteins that are implicated in many types of redox signaling. NOXes produce superoxide on only one side of a lipid bilayer; as such, their orientation dictates the compartmentalization of ROS and the local control of signaling events limited by ROS diffusion and/or movement through channels associated with the signaling membrane. NOX-dependent ROS signaling pathways can also be self-regulating, with molecular redox sensors that limit the local production of ROS required for effective signaling. ROS regulation of the Rac-GTPase, a required co-activator of many NOXes, is an example of this type of sensor. A deeper understanding of redox signaling pathways and the mechanisms that control their specificity will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion injury, and neurodegenerative diseases. PMID:24555469
Illuminating Cell Signaling: Using "Vibrio harveyi" in an Introductory Biology Laboratory
ERIC Educational Resources Information Center
Hrizo, Stacy L.; Kaufmann, Nancy
2009-01-01
Cell signaling is an essential cellular process that is performed by all living organisms. Bacteria communicate with each other using a chemical language in a signaling pathway that allows bacteria to evaluate the size of their population, determine when they have reached a critical mass (quorum sensing), and then change their behavior in unison…
NOX4 regulates autophagy during energy deprivation.
Sciarretta, Sebastiano; Volpe, Massimo; Sadoshima, Junichi
2014-04-01
NADPH oxidase is a cellular enzyme devoted to the production of reactive oxygen species (ROS). NOX4 and NOX2 are the main isoforms of NADPH oxidase in the cardiovascular system. In our recent study, we demonstrated that NOX4, but not NOX2, is a critical mediator of the cardiomyocyte adaptive response to energy stress. NOX4 activity and protein levels are increased in the endoplasmic reticulum (ER) but not in mitochondria of cardiomyocytes during the early phase of energy deprivation. NOX4-derived production of ROS in the ER is a critical event that activates autophagy through stimulation of the EIF2AK3/PERK-EIF2S1/eIF-2α-ATF4 pathway. NOX4-dependent autophagy is an important mechanism to preserve cellular energy and limit cell death in energy-deprived cardiomyocytes. Aside from elucidating a crucial physiological function of NOX4 during cellular energy stress, our study dissects a novel signaling mechanism that regulates autophagy under this condition.
NOX4 regulates autophagy during energy deprivation
Sciarretta, Sebastiano; Volpe, Massimo; Sadoshima, Junichi
2014-01-01
NADPH oxidase is a cellular enzyme devoted to the production of reactive oxygen species (ROS). NOX4 and NOX2 are the main isoforms of NADPH oxidase in the cardiovascular system. In our recent study, we demonstrated that NOX4, but not NOX2, is a critical mediator of the cardiomyocyte adaptive response to energy stress. NOX4 activity and protein levels are increased in the endoplasmic reticulum (ER) but not in mitochondria of cardiomyocytes during the early phase of energy deprivation. NOX4-derived production of ROS in the ER is a critical event that activates autophagy through stimulation of the EIF2AK3/PERK-EIF2S1/eIF-2α-ATF4 pathway. NOX4-dependent autophagy is an important mechanism to preserve cellular energy and limit cell death in energy-deprived cardiomyocytes. Aside from elucidating a crucial physiological function of NOX4 during cellular energy stress, our study dissects a novel signaling mechanism that regulates autophagy under this condition. PMID:24492492
Organizing Principles of Mammalian Nonsense-Mediated mRNA Decay
Popp, Maximilian Wei-Lin; Maquat, Lynne E.
2014-01-01
Cells use messenger RNAs (mRNAs) to ensure the accurate dissemination of genetic information encoded by DNA. Given that mRNAs largely direct the synthesis of a critical effector of cellular phenotype, i.e., proteins, tight regulation of both the quality and quantity of mRNA is a prerequisite for effective cellular homeostasis. Here, we review nonsense-mediated mRNA decay (NMD), which is the best-characterized posttranscriptional quality control mechanism that cells have evolved in their cytoplasm to ensure transcriptome fidelity. We use protein quality control as a conceptual framework to organize what is known about NMD, highlighting overarching similarities between these two polymer quality control pathways, where the protein quality control and NMD pathways intersect, and how protein quality control can suggest new avenues for research into mRNA quality control. PMID:24274751
Shc and the mechanotransduction of cellular anchorage and metastasis.
Terada, Lance S
2017-02-17
Tissue cells continually monitor anchorage conditions by gauging the physical properties of their underlying matrix and surrounding environment. The Rho and Ras GTPases are essential components of these mechanosensory pathways. These molecular switches control both cytoskeletal as well as cell fate responses to anchorage conditions and are thus critical to our understanding of how cells respond to their physical environment and, by extension, how malignant cells gainsay these regulatory pathways. Recent studies indicate that 2 proteins produced by the SHC1 gene, thought for the most part to functionally oppose each other, collaborate in their ability to respond to mechanical force by initiating respective Rho and Ras signals. In this review, we focus on the coupling of Shc and GTPases in the cellular response to mechanical anchorage signals, with emphasis on its relevance for cancer.
Li, Qunfang; Tainsky, Michael A
2011-01-01
The IFN pathway is abrogated in fibroblasts from Li-Fraumeni syndrome (LFS) patients during spontaneous cellular immortalization, a necessary step in carcinogenesis. Microarray profiling of differentially expressed microRNAs (miRNA) revealed that most miRNAs were upregulated in IFN pathway-defective MDAH087-10 fibroblasts compared with MDAH087-N cells with relatively normal IFN signaling. Overexpression of Dicer, a critical enzyme in miRNA biogenesis, promoted cell growth and colony formation in MDAH087-10 cells. However, double-stranded miRNA produced by Dicer enhanced the expression of IFN-stimulated genes in MDAH087-N cells resulting in significant cell death and reduced cell growth. Furthermore, manipulation of the IFN pathway in immortal LFS fibroblasts through transcription factor IRF7 reversed their response to Dicer overexpression due to changed IFN pathway activity. Dicer overexpressing MDAH087-N cells contained lower levels of miRNA than vector control, and conversely much higher miRNA expression was detected in Dicer-transfected MDAH087-10 cells. Therefore, cells with a defective IFN pathway have a higher miRNA tolerance than cells with normal IFN pathway. This work indicates for the first time that the IFN pathway as mediated through the transcription factor IRF7 must be disrupted to permit miRNA upregulation to occur in early carcinogenesis. The IFN pathway appears to provide a checkpoint for miRNA level tolerance and its abrogation leads to cellular immortalization. © 2011 AACR.
IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori
2012-08-24
Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the presentmore » study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.« less
Van de Walle, Gerlinde R; Peters, Sarah T; VanderVen, Brian C; O'Callaghan, Dennis J; Osterrieder, Nikolaus
2008-12-01
Equine herpesvirus 1 (EHV-1) is a member of the Alphaherpesvirinae, and its broad tissue tropism suggests that EHV-1 may use multiple receptors to initiate virus entry. EHV-1 entry was thought to occur exclusively through fusion at the plasma membrane, but recently entry via the endocytic/phagocytic pathway was reported for Chinese hamster ovary cells (CHO-K1 cells). Here we show that cellular integrins, and more specifically those recognizing RGD motifs such as alphaVbeta5, are important during the early steps of EHV-1 entry via endocytosis in CHO-K1 cells. Moreover, mutational analysis revealed that an RSD motif in the EHV-1 envelope glycoprotein D (gD) is critical for entry via endocytosis. In addition, we show that EHV-1 enters peripheral blood mononuclear cells predominantly via the endocytic pathway, whereas in equine endothelial cells entry occurs mainly via fusion at the plasma membrane. Taken together, the data in this study provide evidence that EHV-1 entry via endocytosis is triggered by the interaction between cellular integrins and the RSD motif present in gD and, moreover, that EHV-1 uses different cellular entry pathways to infect important target cell populations of its natural host.
Aquatide Activation of SIRT1 Reduces Cellular Senescence through a SIRT1-FOXO1-Autophagy Axis.
Lim, Chae Jin; Lee, Yong-Moon; Kang, Seung Goo; Lim, Hyung W; Shin, Kyong-Oh; Jeong, Se Kyoo; Huh, Yang Hoon; Choi, Suin; Kor, Myungho; Seo, Ho Seong; Park, Byeong Deog; Park, Keedon; Ahn, Jeong Keun; Uchida, Yoshikazu; Park, Kyungho
2017-09-01
Ultraviolet (UV) irradiation is a relevant environment factor to induce cellular senescence and photoaging. Both autophagy- and silent information regulator T1 (SIRT1)-dependent pathways are critical cellular processes of not only maintaining normal cellular functions, but also protecting cellular senescence in skin exposed to UV irradiation. In the present studies, we investigated whether modulation of autophagy induction using a novel synthetic SIRT1 activator, heptasodium hexacarboxymethyl dipeptide-12 (named as Aquatide), suppresses the UVB irradiation-induced skin aging. Treatment with Aquatide directly activates SIRT1 and stimulates autophagy induction in cultured human dermal fibroblasts. Next, we found that Aquatide-mediated activation of SIRT1 increases autophagy induction via deacetylation of forkhead box class O (FOXO) 1. Finally, UVB irradiation-induced cellular senescence measured by SA-β-gal staining was significantly decreased in cells treated with Aquatide in parallel to occurring SIRT1 activation-dependent autophagy. Together, Aquatide modulates autophagy through SIRT1 activation, contributing to suppression of skin aging caused by UV irradiation.
Calabrese, Vittorio; Cornelius, Carolin; Stella, Anna Maria Giuffrida; Calabrese, Edward J
2010-12-01
The widely accepted oxidative stress theory of aging postulates that aging results from accumulation of oxidative damage. A prediction of this theory is that, among species, differential rates of aging may be apparent on the basis of intrinsic differences in oxidative damage accrual. Although widely accepted, there is a growing number of exceptions to this theory, most contingently related to genetic model organism investigations. Proteins are one of the prime targets for oxidative damage and cysteine residues are particularly sensitive to reversible and irreversible oxidation. The adaptation and survival of cells and organisms requires the ability to sense proteotoxic insults and to coordinate protective cellular stress response pathways and chaperone networks related to protein quality control and stability. The toxic effects that stem from the misassembly or aggregation of proteins or peptides, in any cell type, are collectively termed proteotoxicity. Despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress which increases in cancer, metabolic and neurodegenerative diseases. Pharmacological modulation of cellular stress response pathways has emerging implications for the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. A critical key to successful medical intervention is getting the dose right. Achieving this goal can be extremely challenging due to human inter-individual variation as affected by age, gender, diet, exercise, genetic factors and health status. The nature of the dose response in and adjacent to the therapeutic zones, over the past decade has received considerable advances. The hormetic dose-response, challenging long-standing beliefs about the nature of the dose-response in a lowdose zone, has the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses, including carnitines. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including the possible signaling mechanisms by which the carnitine system, by interplaying metabolism, mitochondrial energetics and activation of critical vitagenes, modulates signal transduction cascades that confer cytoprotection against chronic degenerative damage associated to aging and neurodegenerative disorders.
Mechanisms of Cancer Cell Dormancy--Another Hallmark of Cancer?
Yeh, Albert C; Ramaswamy, Sridhar
2015-12-01
Disease relapse in cancer patients many years after clinical remission, often referred to as cancer dormancy, is well documented but remains an incompletely understood phenomenon on the biologic level. Recent reviews have summarized potential models that can explain this phenomenon, including angiogenic, immunologic, and cellular dormancy. We focus on mechanisms of cellular dormancy as newer biologic insights have enabled better understanding of this process. We provide a historical context, synthesize current advances in the field, and propose a mechanistic framework that treats cancer cell dormancy as a dynamic cell state conferring a fitness advantage to an evolving malignancy under stress. Cellular dormancy appears to be an active process that can be toggled through a variety of signaling mechanisms that ultimately downregulate the RAS/MAPK and PI(3)K/AKT pathways, an ability that is preserved even in cancers that constitutively depend on these pathways for their growth and survival. Just as unbridled proliferation is a key hallmark of cancer, the ability of cancer cells to become quiescent may be critical to evolving malignancies, with implications for understanding cancer initiation, progression, and treatment resistance. ©2015 American Association for Cancer Research.
Mechanisms of Cancer Cell Dormancy – Another Hallmark of Cancer?
Yeh, Albert C.; Ramaswamy, Sridhar
2015-01-01
Disease relapse in cancer patients many years after clinical remission, often referred to as cancer dormancy, is well documented but remains an incompletely understood phenomenon on the biological level. Recent reviews have summarized potential models that can explain this phenomenon, including angiogenic, immunologic, and cellular dormancy. We focus on mechanisms of cellular dormancy as newer biological insights have enabled better understanding of this process. We provide a historical context, synthesize current advances in the field, and propose a mechanistic framework that treats cancer cell dormancy as a dynamic cell state conferring a fitness advantage to an evolving malignancy under stress. Cellular dormancy appears to be an active process that can be toggled through a variety of signaling mechanisms that ultimately down-regulate the Ras/MAPK and PI(3)K/AKT pathways, an ability that is preserved even in cancers that constitutively depend on these pathways for their growth and survival. Just as unbridled proliferation is a key hallmark of cancer, the ability of cancer cells to become quiescent may be critical to evolving malignancies, with implications for understanding cancer initiation, progression, and treatment resistance. PMID:26354021
Drug Targets from Genetics: Alpha-Synuclein
Danzer, Karin M.; McLean, Pamela J.
2012-01-01
One of the critical issues in Parkinson disease (PD) research is the identity of the specific toxic, pathogenic moiety. In PD, mutations in alpha-synuclein (αsyn) or multiplication of the SNCA gene encoding αsyn, result in a phenotype of cellular inclusions, cell death, and brain dysfunction. While the historical point of view has been that the macroscopic aggregates containing αsyn are the toxic species, in the last several years evidence has emerged that suggests instead that smaller soluble species - likely oligomers containing misfolded αsyn - are actually the toxic moiety and that the fibrillar inclusions may even be a cellular detoxification pathway and less harmful. If soluble misfolded species of αsyn are the toxic moieties, then cellular mechanisms that degrade misfolded αsyn would be neuroprotective and a rational target for drug development. In this review we will discuss the fundamental mechanisms underlying αsyn toxicity including oligomer formation, oxidative stress, and degradation pathways and consider rational therapeutic strategies that may have the potential to prevent or halt αsyn induced pathogenesis in PD. PMID:21838671
2017-09-01
AWARD NUMBER: W81XWH-15-1-0419 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal...inappropriate cell growth, fluid secretion, and dysregulation of cellular energy metabolism. The enzyme AMPK regulates a number of cellular pathways, including
Li, Qunfang; Tainsky, Michael A.
2013-01-01
The IFN pathway is abrogated in fibroblasts from Li-Fraumeni syndrome (LFS) patients during spontaneous cellular immortalization, a necessary step in carcinogenesis. Microarray profiling of differentially expressed microRNAs (miRNA) revealed that most miRNAs were upregulated in IFN pathway–defective MDAH087-10 fibroblasts compared with MDAH087-N cells with relatively normal IFN signaling. Overexpression of Dicer, a critical enzyme in miRNA biogenesis, promoted cell growth and colony formation in MDAH087-10 cells. However, double-stranded miRNA produced by Dicer enhanced the expression of IFN-stimulated genes in MDAH087-N cells resulting in significant cell death and reduced cell growth. Furthermore, manipulation of the IFN pathway in immortal LFS fibroblasts through transcription factor IRF7 reversed their response to Dicer overexpression due to changed IFN pathway activity. Dicer overexpressing MDAH087-N cells contained lower levels of miRNA than vector control, and conversely much higher miRNA expression was detected in Dicertransfected MDAH087-10 cells. Therefore, cells with a defective IFN pathway have a higher miRNA tolerance than cells with normal IFN pathway. This work indicates for the first time that the IFN pathway as mediated through the transcription factor IRF7 must be disrupted to permit miRNA upregulation to occur in early carcinogenesis. The IFN pathway appears to provide a checkpoint for miRNA level tolerance and its abrogation leads to cellular immortalization. PMID:21199806
Aval, Sedigheh Fekri; Lotfi, Hajie; Sheervalilou, Roghayeh; Zarghami, Nosratollah
2017-07-01
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets. Copyright © 2017. Published by Elsevier Masson SAS.
Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets
Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent
2014-01-01
By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711
Signal transduction networks in rheumatoid arthritis
Hammaker, D; Sweeney, S; Firestein, G
2003-01-01
Signal transduction pathways regulate cellular responses to stress and play a critical role in inflammation. The complexity and specificity of signalling mechanisms represent major hurdles for developing effective, safe therapeutic interventions that target specific molecules. One approach is to dissect the pathways methodically to determine their hierarchy in various cell types and diseases. This approach contributed to the identification and prioritisation of specific kinases that regulate NF-κB and the mitogen activated protein (MAP) kinase cascade as especially attractive targets. Although significant issues remain with regard to the discovery of truly selective kinase inhibitors, the risks that accompany inhibition of fundamental signal transduction mechanisms can potentially be decreased by careful dissection of the pathways and rational target selection. PMID:14532158
Expanding the metabolic engineering toolbox with directed evolution.
Abatemarco, Joseph; Hill, Andrew; Alper, Hal S
2013-12-01
Cellular systems can be engineered into factories that produce high-value chemicals from renewable feedstock. Such an approach requires an expanded toolbox for metabolic engineering. Recently, protein engineering and directed evolution strategies have started to play a growing and critical role within metabolic engineering. This review focuses on the various ways in which directed evolution can be applied in conjunction with metabolic engineering to improve product yields. Specifically, we discuss the application of directed evolution on both catalytic and non-catalytic traits of enzymes, on regulatory elements, and on whole genomes in a metabolic engineering context. We demonstrate how the goals of metabolic pathway engineering can be achieved in part through evolving cellular parts as opposed to traditional approaches that rely on gene overexpression and deletion. Finally, we discuss the current limitations in screening technology that hinder the full implementation of a metabolic pathway-directed evolution approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
What’s the Damage? The Impact of Pathogens on Pathways that Maintain Host Genome Integrity
Weitzman, Matthew D.; Weitzman, Jonathan B.
2014-01-01
Maintaining genome integrity and transmission of intact genomes is critical for cellular, organismal, and species survival. Cells can detect damaged DNA, activate checkpoints, and either enable DNA repair or trigger apoptosis to eliminate the damaged cell. Aberrations in these mechanisms lead to somatic mutations and genetic instability, which are hallmarks of cancer. Considering the long history of host-microbe coevolution, an impact of microbial infection on host genome integrity is not unexpected, and emerging links between microbial infections and oncogenesis further reinforce this idea. In this review, we compare strategies employed by viruses, bacteria, and parasites to alter, subvert, or otherwise manipulate host DNA damage and repair pathways. We highlight how microbes contribute to tumorigenesis by directly inducing DNA damage, inactivating checkpoint controls, or manipulating repair processes. We also discuss indirect effects resulting from inflammatory responses, changes in cellular metabolism, nuclear architecture, and epigenome integrity, and the associated evolutionary tradeoffs. PMID:24629335
Baslam, Marouane; Oikawa, Kazusato; Kitajima-Koga, Aya; Kaneko, Kentaro; Mitsui, Toshiaki
2016-09-01
The diversity of protein targeting pathways to plastids and their regulation in response to developmental and metabolic status is a key issue in the regulation of cellular function in plants. The general import pathways that target proteins into and across the plastid envelope with changes in gene expression are critical for plant development by regulating the response to physiological and metabolic changes within the cell. Glycoprotein targeting to complex plastids involves routing through the secretory pathway, among others. However, the mechanisms of trafficking via this system remain poorly understood. The present article discusses our results in site-specific N-glycosylation of nucleotide pyrophosphatase/phosphodiesterases (NPPs) glycoproteins and highlights protein delivery in Golgi/plastid pathway via the secretory pathway. Furthermore, we outline the hypotheses that explain the mechanism for importing vesicles trafficking with nucleus-encoded proteins into plastids.
Ties that bind: the integration of plastid signalling pathways in plant cell metabolism.
Brunkard, Jacob O; Burch-Smith, Tessa M
2018-04-13
Plastids are critical organelles in plant cells that perform diverse functions and are central to many metabolic pathways. Beyond their major roles in primary metabolism, of which their role in photosynthesis is perhaps best known, plastids contribute to the biosynthesis of phytohormones and other secondary metabolites, store critical biomolecules, and sense a range of environmental stresses. Accordingly, plastid-derived signals coordinate a host of physiological and developmental processes, often by emitting signalling molecules that regulate the expression of nuclear genes. Several excellent recent reviews have provided broad perspectives on plastid signalling pathways. In this review, we will highlight recent advances in our understanding of chloroplast signalling pathways. Our discussion focuses on new discoveries illuminating how chloroplasts determine life and death decisions in cells and on studies elucidating tetrapyrrole biosynthesis signal transduction networks. We will also examine the role of a plastid RNA helicase, ISE2, in chloroplast signalling, and scrutinize intriguing results investigating the potential role of stromules in conducting signals from the chloroplast to other cellular locations. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Smith, Jessica L.; Jeng, Sophia; McWeeney, Shannon K.
2017-01-01
ABSTRACT The impact of mosquito-borne flavivirus infections worldwide is significant, and many critical aspects of these viruses' biology, including virus-host interactions, host cell requirements for replication, and how virus-host interactions impact pathology, remain to be fully understood. The recent reemergence and spread of flaviviruses, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV), highlight the importance of performing basic research on this important group of pathogens. MicroRNAs (miRNAs) are small, noncoding RNAs that modulate gene expression posttranscriptionally and have been demonstrated to regulate a broad range of cellular processes. Our research is focused on identifying pro- and antiflaviviral miRNAs as a means of characterizing cellular pathways that support or limit viral replication. We have screened a library of known human miRNA mimics for their effect on the replication of three flaviviruses, DENV, WNV, and Japanese encephalitis virus (JEV), using a high-content immunofluorescence screen. Several families of miRNAs were identified as inhibiting multiple flaviviruses, including the miRNA miR-34, miR-15, and miR-517 families. Members of the miR-34 family, which have been extensively characterized for their ability to repress Wnt/β-catenin signaling, demonstrated strong antiflaviviral effects, and this inhibitory activity extended to other viruses, including ZIKV, alphaviruses, and herpesviruses. Previous research suggested a possible link between the Wnt and type I interferon (IFN) signaling pathways. Therefore, we investigated the role of type I IFN induction in the antiviral effects of the miR-34 family and confirmed that these miRNAs potentiate interferon regulatory factor 3 (IRF3) phosphorylation and translocation to the nucleus, the induction of IFN-responsive genes, and the release of type I IFN from transfected cells. We further demonstrate that the intersection between the Wnt and IFN signaling pathways occurs at the point of glycogen synthase kinase 3β (GSK3β)–TANK-binding kinase 1 (TBK1) binding, inducing TBK1 to phosphorylate IRF3 and initiate downstream IFN signaling. In this way, we have identified a novel cellular signaling network with a critical role in regulating the replication of multiple virus families. These findings highlight the opportunities for using miRNAs as tools to discover and characterize unique cellular factors involved in supporting or limiting virus replication, opening up new avenues for antiviral research. IMPORTANCE MicroRNAs are a class of small regulatory RNAs that modulate cellular processes through the posttranscriptional repression of multiple transcripts. We hypothesized that individual miRNAs may be capable of inhibiting viral replication through their effects on host proteins or pathways. To test this, we performed a high-content screen for miRNAs that inhibit the replication of three medically relevant members of the flavivirus family: West Nile virus, Japanese encephalitis virus, and dengue virus 2. The results of this screen identify multiple miRNAs that inhibit one or more of these viruses. Extensive follow-up on members of the miR-34 family of miRNAs, which are active against all three viruses as well as the closely related Zika virus, demonstrated that miR-34 functions through increasing the infected cell's ability to respond to infection through the interferon-based innate immune pathway. Our results not only add to the knowledge of how viruses interact with cellular pathways but also provide a basis for more extensive data mining by providing a comprehensive list of miRNAs capable of inhibiting flavivirus replication. Finally, the miRNAs themselves or cellular pathways identified as modulating virus infection may prove to be novel candidates for the development of therapeutic interventions. PMID:28148804
Smith, Jessica L; Jeng, Sophia; McWeeney, Shannon K; Hirsch, Alec J
2017-04-15
The impact of mosquito-borne flavivirus infections worldwide is significant, and many critical aspects of these viruses' biology, including virus-host interactions, host cell requirements for replication, and how virus-host interactions impact pathology, remain to be fully understood. The recent reemergence and spread of flaviviruses, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV), highlight the importance of performing basic research on this important group of pathogens. MicroRNAs (miRNAs) are small, noncoding RNAs that modulate gene expression posttranscriptionally and have been demonstrated to regulate a broad range of cellular processes. Our research is focused on identifying pro- and antiflaviviral miRNAs as a means of characterizing cellular pathways that support or limit viral replication. We have screened a library of known human miRNA mimics for their effect on the replication of three flaviviruses, DENV, WNV, and Japanese encephalitis virus (JEV), using a high-content immunofluorescence screen. Several families of miRNAs were identified as inhibiting multiple flaviviruses, including the miRNA miR-34, miR-15, and miR-517 families. Members of the miR-34 family, which have been extensively characterized for their ability to repress Wnt/β-catenin signaling, demonstrated strong antiflaviviral effects, and this inhibitory activity extended to other viruses, including ZIKV, alphaviruses, and herpesviruses. Previous research suggested a possible link between the Wnt and type I interferon (IFN) signaling pathways. Therefore, we investigated the role of type I IFN induction in the antiviral effects of the miR-34 family and confirmed that these miRNAs potentiate interferon regulatory factor 3 (IRF3) phosphorylation and translocation to the nucleus, the induction of IFN-responsive genes, and the release of type I IFN from transfected cells. We further demonstrate that the intersection between the Wnt and IFN signaling pathways occurs at the point of glycogen synthase kinase 3β (GSK3β)-TANK-binding kinase 1 (TBK1) binding, inducing TBK1 to phosphorylate IRF3 and initiate downstream IFN signaling. In this way, we have identified a novel cellular signaling network with a critical role in regulating the replication of multiple virus families. These findings highlight the opportunities for using miRNAs as tools to discover and characterize unique cellular factors involved in supporting or limiting virus replication, opening up new avenues for antiviral research. IMPORTANCE MicroRNAs are a class of small regulatory RNAs that modulate cellular processes through the posttranscriptional repression of multiple transcripts. We hypothesized that individual miRNAs may be capable of inhibiting viral replication through their effects on host proteins or pathways. To test this, we performed a high-content screen for miRNAs that inhibit the replication of three medically relevant members of the flavivirus family: West Nile virus, Japanese encephalitis virus, and dengue virus 2. The results of this screen identify multiple miRNAs that inhibit one or more of these viruses. Extensive follow-up on members of the miR-34 family of miRNAs, which are active against all three viruses as well as the closely related Zika virus, demonstrated that miR-34 functions through increasing the infected cell's ability to respond to infection through the interferon-based innate immune pathway. Our results not only add to the knowledge of how viruses interact with cellular pathways but also provide a basis for more extensive data mining by providing a comprehensive list of miRNAs capable of inhibiting flavivirus replication. Finally, the miRNAs themselves or cellular pathways identified as modulating virus infection may prove to be novel candidates for the development of therapeutic interventions. Copyright © 2017 American Society for Microbiology.
Brooks, Antone L.; Hoel, David G.; Preston, R. Julian
2016-01-01
Abstract Purpose: This review evaluates the role of dose rate on cell and molecular responses. It focuses on the influence of dose rate on key events in critical pathways in the development of cancer. This approach is similar to that used by the U.S. EPA and others to evaluate risk from chemicals. It provides a mechanistic method to account for the influence of the dose rate from low-LET radiation, especially in the low-dose region on cancer risk assessment. Molecular, cellular, and tissues changes are observed in many key events and change as a function of dose rate. The magnitude and direction of change can be used to help establish an appropriate dose rate effectiveness factor (DREF). Conclusions: Extensive data on key events suggest that exposure to low dose-rates are less effective in producing changes than high dose rates. Most of these data at the molecular and cellular level support a large (2–30) DREF. In addition, some evidence suggests that doses delivered at a low dose rate decrease damage to levels below that observed in the controls. However, there are some data human and mechanistic data that support a dose-rate effectiveness factor of 1. In summary, a review of the available molecular, cellular and tissue data indicates that not only is dose rate an important variable in understanding radiation risk but it also supports the selection of a DREF greater than one as currently recommended by ICRP (2007) and BEIR VII (NRC/NAS 2006). PMID:27266588
Role of MAPK/MNK1 signaling in virus replication.
Kumar, Ram; Khandelwal, Nitin; Thachamvally, Riyesh; Tripathi, Bhupendra Nath; Barua, Sanjay; Kashyap, Sudhir Kumar; Maherchandani, Sunil; Kumar, Naveen
2018-06-01
Viruses are obligate intracellular parasites; they heavily depend on the host cell machinery to effectively replicate and produce new progeny virus particles. Following viral infection, diverse cell signaling pathways are initiated by the cells, with the major goal of establishing an antiviral state. However, viruses have been shown to exploit cellular signaling pathways for their own effective replication. Genome-wide siRNA screens have also identified numerous host factors that either support (proviral) or inhibit (antiviral) virus replication. Some of the host factors might be dispensable for the host but may be critical for virus replication; therefore such cellular factors may serve as targets for development of antiviral therapeutics. Mitogen activated protein kinase (MAPK) is a major cell signaling pathway that is known to be activated by diverse group of viruses. MAPK interacting kinase 1 (MNK1) has been shown to regulate both cap-dependent and internal ribosomal entry sites (IRES)-mediated mRNA translation. In this review we have discuss the role of MAPK in virus replication, particularly the role of MNK1 in replication and translation of viral genome. Copyright © 2018 Elsevier B.V. All rights reserved.
Tyrosine kinases in inflammatory dermatologic disease
Paniagua, Ricardo T.; Fiorentino, David; Chung, Lorinda; Robinson, William H.
2010-01-01
Tyrosine kinases are enzymes that catalyze the phosphorylation of tyrosine residues on protein substrates. They are key components of signaling pathways that drive an array of cellular responses including proliferation, differentiation, migration, and survival. Specific tyrosine kinases have recently been identified as critical to the pathogenesis of several autoimmune and inflammatory diseases. Small-molecule inhibitors of tyrosine kinases are emerging as a novel class of therapy that may provide benefit in certain patient subsets. In this review, we highlight tyrosine kinase signaling implicated in inflammatory dermatologic diseases, evaluate strategies aimed at inhibiting these aberrant signaling pathways, and discuss prospects for future drug development. PMID:20584561
The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease.
Pelava, Andria; Schneider, Claudia; Watkins, Nicholas J
2016-08-15
Ribosomes are abundant, large RNA-protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease. © 2016 The Author(s).
Cellular commitment in the developing cerebellum
Marzban, Hassan; Del Bigio, Marc R.; Alizadeh, Javad; Ghavami, Saeid; Zachariah, Robby M.; Rastegar, Mojgan
2014-01-01
The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum. PMID:25628535
Neutrophil dysregulation during sepsis: an overview and update.
Shen, Xiao-Fei; Cao, Ke; Jiang, Jin-Peng; Guan, Wen-Xian; Du, Jun-Feng
2017-09-01
Sepsis remains a leading cause of death worldwide, despite advances in critical care, and understanding of the pathophysiology and treatment strategies. No specific therapy or drugs are available for sepsis. Neutrophils play a critical role in controlling infection under normal conditions, and it is suggested that their migration and antimicrobial activity are impaired during sepsis which contribute to the dysregulation of immune responses. Recent studies further demonstrated that interruption or reversal of the impaired migration and antimicrobial function of neutrophils improves the outcome of sepsis in animal models. In this review, we provide an overview of the associated mediators and signal pathways involved which govern the survival, migration and antimicrobial function of neutrophils in sepsis, and discuss the potential of neutrophils as a target to specifically diagnose and/or predict the outcome of sepsis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Riding the Waves: How Our Cells Send Signals | Center for Cancer Research
The ability of cells to perceive and respond to their environment is critical in order to maintain basic cellular functions such as development, tissue repair, and response to stress. This process happens through a complex system of communication, called cell signaling, which governs basic cellular activities and coordinates cell actions. Errors in cell signaling have been linked to numerous diseases, including cancer. NF-κB is a protein complex that plays a critical role in many cell signaling pathways by controlling gene activation. It is widely used by cells to regulate cell growth and survival and helps to protect the cell from conditions that would otherwise cause it to die. Many tumor cells have mutations in genes that cause NF-κB to become overactive. Blocking NF-κB could cause tumor cells to stop growing, die, or become more sensitive to therapeutics.
Targeting the eIF4F translation initiation complex: a critical nexus for cancer development.
Pelletier, Jerry; Graff, Jeremy; Ruggero, Davide; Sonenberg, Nahum
2015-01-15
Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents. ©2014 American Association for Cancer Research.
Zeng, Huawei; Wu, Min; Botnen, James H
2009-09-01
Methylselenol has been hypothesized to be a critical selenium (Se) metabolite for anticancer activity in vivo, and our previous study demonstrated that submicromolar methylselenol generated by incubating methionase with seleno-l-methionine inhibits the migration and invasive potential of HT1080 tumor cells. However, little is known about the association between cancer signal pathways and methylselenol's inhibition of tumor cell invasion. In this study, we demonstrated that methylselenol exposure inhibited cell growth and we used a cancer signal pathway-specific array containing 15 different signal transduction pathways involved in oncogenesis to study the effect of methylselenol on cellular signaling. Using real-time RT-PCR, we confirmed that cellular mRNA levels of cyclin-dependent kinase inhibitor 1C (CDKN1C), heme oxygenase 1, platelet/endothelial cell adhesion molecule, and PPARgamma genes were upregulated to 2.8- to 5.7-fold of the control. BCL2-related protein A1, hedgehog interacting protein, and p53 target zinc finger protein genes were downregulated to 26-52% of the control, because of methylselenol exposure. These genes are directly related to the regulation of cell cycle and apoptosis. Methylselenol increased apoptotic cells up to 3.4-fold of the control and inhibited the extracellular-regulated kinase 1/2 (ERK1/2) signaling and cellular myelocytomatosis oncogene (c-Myc) expression. Taken together, our studies identify 7 novel methylselenol responsive genes and demonstrate that methylselenol inhibits ERK1/2 pathway activation and c-Myc expression. The regulation of these genes is likely to play a key role in G1 cell cycle arrest and apoptosis, which may contribute to the inhibition of tumor cell invasion.
Trinh, Cong T.; Wlaschin, Aaron; Srienc, Friedrich
2010-01-01
Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering. PMID:19015845
Ou, Horng D.; May, Andrew P.
2010-01-01
One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures. PMID:21061422
Sever, Richard; Brugge, Joan S.
2015-01-01
SUMMARY Cancer is driven by genetic and epigenetic alterations that allow cells to overproliferate and escape mechanisms that normally control their survival and migration. Many of these alterations map to signaling pathways that control cell growth and division, cell death, cell fate, and cell motility, and can be placed in the context of distortions of wider signaling networks that fuel cancer progression, such as changes in the tumor microenvironment, angiogenesis, and inflammation. Mutations that convert cellular proto-oncogenes to oncogenes can cause hyperactivation of these signaling pathways, whereas inactivation of tumor suppressors eliminates critical negative regulators of signaling. An examination of the PI3K-Akt and Ras-ERK pathways illustrates how such alterations dysregulate signaling in cancer and produce many of the characteristic features of tumor cells. PMID:25833940
VEGF-independent angiogenic pathways induced by PDGF-C
Kumar, Anil; Zhang, Fan; Lee, Chunsik; Li, Yang; Tang, Zhongshu; Arjunan, Pachiappan
2010-01-01
VEGF is believed to be a master regulator in both developmental and pathological angiogenesis. The role of PDGF-C in angiogenesis, however, is only at the beginning of being revealed. We and others have shown that PDGF-C is a critical player in pathological angiogenesis because of its pleiotropic effects on multiple cellular targets. The angiogenic pathways induced by PDGF-C are, to a large extent, VEGF-independent. These pathways may include, but not limited to, the direct effect of PDGF-C on vascular cells, the effect of PDGF-C on tissue stroma fibroblasts, and its effect on macrophages. Taken together, the pleiotropic, versatile and VEGF-independent angiogenic nature of PDGF-C has placed it among the most important target genes for antiangiogenic therapy. PMID:20871734
Mankouri, Jamel; Walter, Cheryl; Stewart, Hazel; Bentham, Matthew; Park, Wei Sun; Heo, Won Do; Fukuda, Mitsunori
2016-01-01
ABSTRACT The release of infectious hepatitis C virus (HCV) particles from infected cells remains poorly characterized. We previously demonstrated that virus release is dependent on the endosomal sorting complex required for transport (ESCRT). Here, we show a critical role of trans-Golgi network (TGN)-endosome trafficking during the assembly, but principally the secretion, of infectious virus. This was demonstrated by both small interfering RNA (siRNA)-mediated silencing of TGN-associated adaptor proteins and a panel of dominant negative (DN) Rab GTPases involved in TGN-endosome trafficking steps. Importantly, interfering with factors critical for HCV release did not have a concomitant effect on secretion of triglycerides, ApoB, or ApoE, indicating that particles are likely released from Huh7 cells via pathways distinct from that of very-low-density lipoprotein (VLDL). Finally, we show that HCV NS2 perturbs TGN architecture, redistributing TGN membranes to closely associate with HCV core protein residing on lipid droplets. These findings support the notion that HCV hijacks TGN-endosome trafficking to facilitate particle assembly and release. Moreover, although essential for assembly and infectivity, the trafficking of mature virions is seemingly independent of host lipoproteins. IMPORTANCE The mechanisms by which infectious hepatitis C virus particles are assembled and released from the cell are poorly understood. We show that the virus subverts host cell trafficking pathways to effect the release of virus particles and disrupts the structure of the Golgi apparatus, a key cellular organelle involved in secretion. In addition, we demonstrate that the mechanisms used by the virus to exit the cell are distinct from those used by the cell to release lipoproteins, suggesting that the virus effects a unique modification to cellular trafficking pathways. PMID:27226379
New insights into the pathways initiating and driving pancreatitis
Gukovskaya, Anna S.; Pandol, Stephen J.; Gukovsky, Ilya
2016-01-01
Purpose of review In this article, we discuss recent studies that advance our understanding of molecular and cellular factors initiating and driving pancreatitis, with the emphasis on the role of acinar cell organelle disorders. Recent findings The central physiologic function of the pancreatic acinar cell – to synthesize, store, and secrete digestive enzymes – critically relies on coordinated actions of the endoplasmic reticulum (ER), the endolysosomal system, mitochondria, and autophagy. Recent studies begin to unravel the roles of these organelles’ disordering in the mechanism of pancreatitis. Mice deficient in key autophagy mediators Atg5 or Atg7, or lysosome-associated membrane protein-2, exhibit dysregulation of multiple signaling and metabolic pathways in pancreatic acinar cells and develop spontaneous pancreatitis. Mitochondrial dysfunction caused by sustained opening of the permeability transition pore is shown to mediate pancreatitis in several clinically relevant experimental models, and its inhibition by pharmacologic or genetic means greatly reduces local and systemic pathologic responses. Experimental pancreatitis is also alleviated with inhibitors of ORAI1, a key component of the plasma membrane channel mediating pathologic rise in acinar cell cytosolic Ca2+. Pancreatitis-promoting mutations are increasingly associated with the ER stress. These findings suggest novel pathways and drug targets for pancreatitis treatment. In addition, the recent studies identify new mediators (e.g., neutrophil extracellular traps) of the inflammatory and other responses of pancreatitis. Summary The recent findings illuminate a critical role of organelles regulating the autophagic, endolysosomal, mitochondrial, and ER pathways in maintaining pancreatic acinar cell homeostasis and secretory function; provide compelling evidence that organelle disordering is a key pathogenic mechanism initiating and driving pancreatitis; and identify molecular and cellular factors that could be targeted to restore organellar functions and thus alleviate or treat pancreatitis. PMID:27428704
NF-κB Signaling Pathway and its Potential as a Target for Therapy in Lymphoid Neoplasms
Yu, Li; Li, Ling; Medeiros, L. Jeffrey; Young, Ken H.
2016-01-01
The NF-κB pathway, a critical regulator of apoptosis, plays a key role in many normal cellular functions. Genetic alterations and other mechanisms leading to constitutive activation of the NF-κB pathway contribute to cancer development, progression and therapy resistance by activation of downstream anti-apoptotic pathways, unfavorable microenvironment interactions, and gene dysregulation. Not surprisingly, given its importance to normal and cancer cell function, the NF-κB pathway has emerged as a target for therapy. In the review, we present the physiologic role of the NF-κB pathway and recent advances in better understanding of the pathologic roles of the NF-κB pathway in major types of lymphoid neoplasms. We also provide an update of clinical trials that use NF-κB pathway inhibitors. These trials are exploring the clinical efficiency of combining NF-κB pathway inhibitors with various agents that target diverse mechanisms of action with the goal being to optimize novel therapeutic opportunities for targeting oncogenic pathways to eradicate cancer cells. PMID:27773462
Signal Transduction in the Chronic Leukemias: Implications for Targeted Therapies
Ahmed, Wesam; Van Etten, Richard A.
2013-01-01
The chronic leukemias, including chronic myeloid leukemia (CML), the Philadelphia-negative myeloproliferative neoplasms (MPNs), and chronic lymphocytic leukemia (CLL), have been characterized extensively for abnormalities of cellular signaling pathways. This effort has led to the elucidation of the central role of dysregulated tyrosine kinase signaling in the chronic myeloid neoplasms and of constitutive B-cell receptor signaling in CLL. This, in turn, has stimulated the development of small molecule inhibitors of these signaling pathways for therapy of chronic leukemia. Although the field is still in its infancy, the clinical results with these agents have ranged from encouraging (CLL) to spectacular (CML). In this review, we summarize recent studies that have helped to define the signaling pathways critical to the pathogenesis of the chronic leukemias. We also discuss correlative studies emerging from clinical trials of drugs targeting these pathways. PMID:23307472
Radke, Jay R; Siddiqui, Zeba K; Figueroa, Iris; Cook, James L
Expression of the adenoviral protein, E1A, sensitizes mammalian cells to a wide variety of apoptosis-inducing agents through multiple cellular pathways. For example, E1A sensitizes cells to apoptosis induced by TNF-superfamily members by inhibiting NF-kappa B (NF- κ B)-dependent gene expression. In contrast, E1A sensitization to nitric oxide, an inducer of the intrinsic apoptotic pathway, is not dependent upon repression of NF- κ B-dependent transcription but rather is dependent upon caspase-2 activation. The latter observation suggested that E1A-induced enhancement of caspase-2 activation might be a critical factor in cellular sensitization to other intrinsic apoptosis pathway-inducing agents. Etoposide and gemcitabine are two DNA damaging agents that induce intrinsic apoptosis. Here we report that E1A-induced sensitization to both of these agents, like NO, is independent of NF- κ B activation but dependent on caspase-2 activation. The results show that caspase-2 is a key mitochondrial-injuring caspase during etoposide and gemcitabine-induced apoptosis of E1A-positive cells, and that caspase-2 is required for induction of caspase-3 activity by both chemotherapeutic agents. Expression of PIDD was required for caspase-2 activation, mitochondrial injury and enhanced apoptotic cell death. Furthermore, E1A-enhanced sensitivity to injury-induced apoptosis required PIDD cleavage to PIDD-CC. These results define the PIDD/caspase-2 pathway as a key apical, mitochondrial-injuring mechanism in E1A-induced sensitivity of mammalian cells to chemotherapeutic agents.
Inhibition of Mycobacterial Infection by the Tumor Suppressor PTEN*
Huang, Guochang; Redelman-Sidi, Gil; Rosen, Neal; Glickman, Michael S.; Jiang, Xuejun
2012-01-01
The tumor suppressor PTEN is a lipid phosphatase that is frequently mutated in various human cancers. PTEN suppresses tumor cell proliferation, survival, and growth mainly by inhibiting the PI3K-Akt signaling pathway through dephosphorylation of phosphatidylinositol 3,4,5-triphosphate. In addition to it role in tumor suppression, the PTEN-PI3K pathway controls many cellular functions, some of which may be important for cellular resistance to infection. Currently, the intersection between tumorigenic signaling pathways and cellular susceptibility to infection is not well defined. In this study we report that PTEN signaling regulates infection of both noncancerous and cancerous cells by multiple intracellular mycobacterial pathogens and that pharmacological modulation of PTEN signaling can affect mycobacterial infection. We found that PTEN deficiency renders multiple types of cells hyper-susceptible to infection by Mycoplasma and Mycobacterium bovis Bacillus Calmette-Guérin (BCG). The lipid phosphatase activity of PTEN is required for attenuating infection. Furthermore, we found mycobacterial infection activates host cell Akt phosphorylation, and pharmacological inhibition of Akt or PI3K activity reduced levels of intracellular infection. Intriguingly, inhibition of mTOR, one of the downstream components of the Akt signaling and a promising cancer therapeutic target, also lowered intracellular Bacillus Calmette-Guérin levels in mammary epithelial cancer MCF-7 cells. These findings demonstrate a critical role of PTEN-regulated pathways in pathogen infection. The relationship of PTEN-PI3K-Akt mTOR status and susceptibility to mycobacterial infection suggests that the interaction of mycobacterial pathogens with cancer cells may be influenced by genetic alterations in the tumor cells. PMID:22613768
Stress Inducibility of SIRT1 and Its Role in Cytoprotection and Cancer
Raynes, Rachel; Brunquell, Jessica
2013-01-01
Cells must continuously respond to stressful insults via the upregulation of cytoprotective pathways. The longevity factor and deacetylase SIRT1 plays a critical role in coordinating this cellular response to stress. SIRT1 activity and levels are regulated by cellular stressors, including metabolic, genotoxic, oxidative, and proteotoxic stress. As a stress sensor, SIRT1 impacts cell survival by deacetylating substrate proteins to drive the cell towards a cytoprotective pathway. Extreme stress conditions, however, can cause SIRT1 to lead cells down an apoptotic pathway instead. SIRT1 is frequently dysregulated in cancer cells and has been characterized to have a dual role as both an oncogene and a tumor suppressor, likely due to its pivotal function in regulating cytoprotection. Recently, the ability of SIRT1 to regulate HSF1-dependent induction of the heat shock response has highlighted another pathway through which SIRT1 can modulate cytoprotection. Activation of HSF1 results in the production of cytoprotective chaperones that can facilitate the transformed phenotype of cancer cells. In this review, we discuss the stress-dependent regulation of SIRT1. We highlight the role of SIRT1 in stress management and cytoprotection and emphasize SIRT1-dependent activation of HSF1 as a potential mechanism for cancer promotion. PMID:24020008
NASA Astrophysics Data System (ADS)
Frank, T. D.
2013-08-01
We derive a nonlinear limit cycle model for oscillatory mood variations as observed in patients with cycling bipolar disorder. To this end, we consider two signaling pathways leading to the activation of two enzymes that play a key role for cellular and neural processes. We model pathway cross-talk in terms of an inhibitory impact of the first pathway on the second and an excitatory impact of the second on the first. The model also involves a negative feedback loop (inhibitory self-regulation) for the first pathway and a positive feedback loop (excitatory self-regulation) for the second pathway. We demonstrate that due to the cross-talk the biochemical dynamics is described by an oscillator equation. Under disease-free conditions the oscillatory system exhibits a stable fixed point. The breakdown of the self-inhibition of the first pathway at higher concentration levels is studied by means of a scalar control parameter ξ, where ξ equal to zero refers to intact self-inhibition at all concentration levels. Under certain conditions, stable limit cycle solutions emerge at critical parameter values of ξ larger than zero. These oscillations mimic pathological cycling mood variations that emerge due to a disease-induced bifurcation. Consequently, our modeling analysis supports the notion of bipolar disorder as a dynamical disease. In addition, our study establishes a connection between mechanistic biochemical modeling of bipolar disorder and phenomenological nonlinear oscillator approaches to bipolar disorder suggested in the literature.
Advances in Lipidomics for Cancer Biomarkers Discovery
Perrotti, Francesca; Rosa, Consuelo; Cicalini, Ilaria; Sacchetta, Paolo; Del Boccio, Piero; Genovesi, Domenico; Pieragostino, Damiana
2016-01-01
Lipids play critical functions in cellular survival, proliferation, interaction and death, since they are involved in chemical-energy storage, cellular signaling, cell membranes, and cell–cell interactions. These cellular processes are strongly related to carcinogenesis pathways, particularly to transformation, progression, and metastasis, suggesting the bioactive lipids are mediators of a number of oncogenic processes. The current review gives a synopsis of a lipidomic approach in tumor characterization; we provide an overview on potential lipid biomarkers in the oncology field and on the principal lipidomic methodologies applied. The novel lipidomic biomarkers are reviewed in an effort to underline their role in diagnosis, in prognostic characterization and in prediction of therapeutic outcomes. A lipidomic investigation through mass spectrometry highlights new insights on molecular mechanisms underlying cancer disease. This new understanding will promote clinical applications in drug discovery and personalized therapy. PMID:27916803
Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine
2016-11-09
Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.
Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine
2016-01-01
Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment. PMID:27827420
LKB1 and lung cancer: more than the usual suspects.
Shah, Usman; Sharpless, Norman E; Hayes, D Neil
2008-05-15
Often, the problem in cancer research is figuring out how a gene or pathway works in regulating cellular transformation. The question of what RAS activates or PTEN inhibits have been classic dilemmas of modern cancer biology. In these cases, biochemical and genetic studies have provided us with a fairly clear picture of the cancer relevant functions of these genes. For LKB1, a more recently identified human tumor suppressor gene, however, the problem is different. This serine-threonine kinase that is conserved from yeast to mammals seems to play a role in many diverse cellular pathways. Therefore, although elegant functional and genetic approaches have established critical roles for LKB1 in the regulation of metabolism, motility, polarity, and the cell cycle, the role(s) responsible for its true tumor suppressor function(s) is unknown. One is reminded of an Agatha Christie murder mystery where nearly every character in the book has reason to be suspected of committing the crime-there are too many suspects for how LKB1 might repress lung cancer.
Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures
Shin, Ok Sarah; Kumar, Mukesh; Yanagihara, Richard; Song, Jin-Won
2014-01-01
The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process. PMID:24074584
Naringenin is a novel inhibitor of Dictyostelium cell proliferation and cell migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russ, Misty; Martinez, Raquel; Ali, Hind
2006-06-23
Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC{sub 5} {approx} 20 {mu}M). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositolmore » 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells.« less
Vashisht, Ayushi; Trebak, Mohamed; Motiani, Rajender K
2015-10-01
Calcium (Ca(2+)) regulates a plethora of cellular functions including hallmarks of cancer development such as cell cycle progression and cellular migration. Receptor-regulated calcium rise in nonexcitable cells occurs through store-dependent as well as store-independent Ca(2+) entry pathways. Stromal interaction molecules (STIM) and Orai proteins have been identified as critical constituents of both these Ca(2+) influx pathways. STIMs and Orais have emerged as targets for cancer therapeutics as their altered expression and function have been shown to contribute to tumorigenesis. Recent data demonstrate that they play a vital role in development and metastasis of a variety of tumor types including breast, prostate, cervical, colorectal, brain, and skin tumors. In this review, we will retrospect the data supporting a key role for STIM1, STIM2, Orai1, and Orai3 proteins in tumorigenesis and discuss the potential of targeting these proteins for cancer therapy. Copyright © 2015 the American Physiological Society.
Cheng, Xiaju; Tian, Xin; Wu, Anqing; Li, Jianxiang; Tian, Jian; Chong, Yu; Chai, Zhifang; Zhao, Yuliang; Chen, Chunying; Ge, Cuicui
2015-09-23
The interaction at nanobio is a critical issue in designing safe nanomaterials for biomedical applications. Recent studies have reported that it is nanoparticle-protein corona rather than bare nanoparticle that determines the nanoparticle-cell interactions, including endocytic pathway and biological responses. Here, we demonstrate the effects of protein corona on cellular uptake of different sized gold nanoparticles in different cell lines. The experimental results show that protein corona significantly decreases the internalization of Au NPs in a particle size- and cell type-dependent manner. Protein corona exhibits much more significant inhibition on the uptake of large-sized Au NPs by phagocytic cell than that of small-sized Au NPs by nonphagocytic cell. The endocytosis experiment indicates that different endocytic pathways might be responsible for the differential roles of protein corona in the interaction of different sized Au NPs with different cell lines. Our findings can provide useful information for rational design of nanomaterials in biomedical application.
A multifaceted role for MOF histone modifying factor in genome maintenance
Mujoo, Kalpana; Hunt, Clayton R.; Horikoshi, Nobuo; Pandita, Tej K.
2016-01-01
MOF (males absent on the first) was initially identified as a dosage compensation factor in Drosophila that acetylates lysine 16 of histone H4 (H4K16ac) and increased gene transcription from the single copy male X-chromosome. In humans, however, the ortholog of Drosophila MOF has been shown to interact with a range of proteins that extend its potential significance well beyond transcription. For example, recent results indicate MOF is an upstream regulator of the ATM (ataxia-telangiectasia mutated) protein, the loss of which is responsible for ataxia telangiectasia (AT). ATM is a key regulatory kinase that interacts with and phosphorylates multiple substrates that influence critical, cell-cycle control and DNA damage repair pathways in addition to other pathways. Thus, directly or indirectly, MOF may be involved in a wide range of cellular functions. This review will focus on the contribution of MOF to cellular DNA repair and new results that are beginning to examine the in vivo physiological role of MOF. PMID:27038808
Adult Stem Cells and Diseases of Aging
Boyette, Lisa B.; Tuan, Rocky S.
2014-01-01
Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526
Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry
2014-06-07
Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.
Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae.
Arlia-Ciommo, Anthony; Leonov, Anna; Piano, Amanda; Svistkova, Veronika; Titorenko, Vladimir I
2014-05-27
A body of evidence supports the view that the signaling pathways governing cellular aging - as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae . Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific "master regulator" proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest), the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.
The emerging role of nuclear viral DNA sensors.
Diner, Benjamin A; Lum, Krystal K; Cristea, Ileana M
2015-10-30
Detecting pathogenic DNA by intracellular receptors termed "sensors" is critical toward galvanizing host immune responses and eliminating microbial infections. Emerging evidence has challenged the dogma that sensing of viral DNA occurs exclusively in sub-cellular compartments normally devoid of cellular DNA. The interferon-inducible protein IFI16 was shown to bind nuclear viral DNA and initiate immune signaling, culminating in antiviral cytokine secretion. Here, we review the newly characterized nucleus-originating immune signaling pathways, their links to other crucial host defenses, and unique mechanisms by which viruses suppress their functions. We frame these findings in the context of human pathologies associated with nuclear replicating DNA viruses. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Targeting ubiquitination for cancer therapies.
Morrow, John Kenneth; Lin, Hui-Kuan; Sun, Shao-Cong; Zhang, Shuxing
2015-01-01
Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin-proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family.
Peterson, Emily A; Boezio, Alessandro A; Andrews, Paul S; Boezio, Christiane M; Bush, Tammy L; Cheng, Alan C; Choquette, Deborah; Coats, James R; Colletti, Adria E; Copeland, Katrina W; DuPont, Michelle; Graceffa, Russell; Grubinska, Barbara; Kim, Joseph L; Lewis, Richard T; Liu, Jingzhou; Mullady, Erin L; Potashman, Michele H; Romero, Karina; Shaffer, Paul L; Stanton, Mary K; Stellwagen, John C; Teffera, Yohannes; Yi, Shuyan; Cai, Ti; La, Daniel S
2012-08-01
mTOR is a critical regulator of cellular signaling downstream of multiple growth factors. The mTOR/PI3K/AKT pathway is frequently mutated in human cancers and is thus an important oncology target. Herein we report the evolution of our program to discover ATP-competitive mTOR inhibitors that demonstrate improved pharmacokinetic properties and selectivity compared to our previous leads. Through targeted SAR and structure-guided design, new imidazopyridine and imidazopyridazine scaffolds were identified that demonstrated superior inhibition of mTOR in cellular assays, selectivity over the closely related PIKK family and improved in vivo clearance over our previously reported benzimidazole series. Copyright © 2012. Published by Elsevier Ltd.
Mitochondrial DNA: impacting central and peripheral nervous systems
Carelli, Valerio
2014-01-01
Because of their high-energy metabolism, neurons are highly dependent on mitochondria, which generate cellular ATP through oxidative phosphorylation. The mitochondrial genome encodes for critical components of the oxidative phosphorylation pathway machinery, and therefore mutations in mitochondrial DNA (mtDNA) cause energy production defects that frequently have severe neurological manifestations. Here, we review the principles of mitochondrial genetics and focus on prototypical mitochondrial diseases to illustrate how primary defects in mtDNA or secondary defects in mtDNA due to nuclear genome mutations can cause prominent neurological and multisystem features. In addition, we discuss the pathophysiological mechanisms underlying mitochondrial diseases, the cellular mechanisms that protect mitochondrial integrity, and the prospects for therapy. PMID:25521375
In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line.
Wang, Jigang; Zhang, Jianbin; Zhang, Chong-Jing; Wong, Yin Kwan; Lim, Teck Kwang; Hua, Zi-Chun; Liu, Bin; Tannenbaum, Steven R; Shen, Han-Ming; Lin, Qingsong
2016-02-26
To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQ(TM) quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway Analysis(TM) (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death.
In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line
Wang, Jigang; Zhang, Jianbin; Zhang, Chong-Jing; Wong, Yin Kwan; Lim, Teck Kwang; Hua, Zi-Chun; Liu, Bin; Tannenbaum, Steven R.; Shen, Han-Ming; Lin, Qingsong
2016-01-01
To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQTM quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway AnalysisTM (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death. PMID:26915414
Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J
2016-04-14
Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress.
Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J
2016-01-01
Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress. PMID:27077813
Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinson's Disease.
Rivero-Ríos, Pilar; Madero-Pérez, Jesús; Fernández, Belén; Hilfiker, Sabine
2016-01-01
Autophagy is a cellular quality control mechanism crucial for neuronal homeostasis. Defects in autophagy are critically associated with mechanisms underlying Parkinson's disease (PD), a common and debilitating neurodegenerative disorder. Autophagic dysfunction in PD can occur at several stages of the autophagy/lysosomal degradative machinery, contributing to the formation of intracellular protein aggregates and eventual neuronal cell death. Therefore, autophagy inducers may comprise a promising new therapeutic approach to combat neurodegeneration in PD. Several currently available FDA-approved drugs have been shown to enhance autophagy, which may allow for their repurposing for use in novel clinical conditions including PD. This review summarizes our current knowledge of deficits in the autophagy/lysosomal degradation pathways associated with PD, and highlight current approaches which target this pathway as possible means towards novel therapeutic strategies.
The Alphavirus Exit Pathway: What We Know and What We Wish We Knew
2018-01-01
Alphaviruses are enveloped positive sense RNA viruses and include serious human pathogens, such as the encephalitic alphaviruses and Chikungunya virus. Alphaviruses are transmitted to humans primarily by mosquito vectors and include species that are classified as emerging pathogens. Alphaviruses assemble highly organized, spherical particles that bud from the plasma membrane. In this review, we discuss what is known about the alphavirus exit pathway during a cellular infection. We describe the viral protein interactions that are critical for virus assembly/budding and the host factors that are involved, and we highlight the recent discovery of cell-to-cell transmission of alphavirus particles via intercellular extensions. Lastly, we discuss outstanding questions in the alphavirus exit pathway that may provide important avenues for future research. PMID:29470397
Rothman, Brian S; Dexter, Franklin; Epstein, Richard H
2013-08-01
Tablet computers and smart phones have gained popularity in anesthesia departments for educational and patient care purposes. VigiVU(™) is an iOS application developed at Vanderbilt University for remote viewing of perioperative information, including text message notifications delivered via the Apple Push Notification (APN) service. In this study, we assessed the reliability of the APN service. Custom software was written to send a message every minute to iOS devices (iPad(®), iPod Touch(®), and iPhone(®)) via wireless local area network (WLAN) and cellular pathways 24 hours a day over a 4-month period. Transmission and receipt times were recorded and batched by days, with latencies calculated as their differences. The mean, SEM, and the exact 95% upper confidence limits for the percent of days with ≥1 prolonged (>100 seconds) latency were calculated. Acceptable performance was defined as mean latency <30 seconds and ≤0.5% of latencies >100 seconds. Testing conditions included fixed locations of devices in high signal strength locations. Mean latencies were <1 second for iPad and iPod devices (WLAN), and <4 seconds for iPhone (cellular). Among >173,000 iPad and iPod latencies, none were >100 seconds. For iPhone latencies, 0.03% ± 0.01% were >100 seconds. The 95% upper confidence limits of days with ≥1 prolonged latency were 42% (iPhone) and 5% to 8% (iPad, iPod). The APN service was reliable for all studied devices over WLAN and cellular pathways, and performance was better than third party paging systems using Internet connections previously investigated using the same criteria. However, since our study was a best-case assessment, testing is required at individual sites considering use of this technology for critical messaging. Furthermore, since the APN service may fail due to Internet or service provider disruptions, a backup paging system is recommended if the APN service were to be used for critical messaging.
2016-06-01
telomeres and characterized by a classical clinical triad of leukoplakia, skin dyspigmentation and nail dystrophy with concomitant marrow failure...DC symptomology, to a degree, corresponds to critically shortened telomeres that limits cellular replicative potential and thus prematurely exhausts...stem cell pools. Our previous findings support a hypothesis whereby shortened telomeres increase DNA damage responses within the cell leading to
O'Clock, George D
2016-08-01
Cellular engineering involves modification and control of cell properties, and requires an understanding of fundamentals and mechanisms of action for cellular derived product development. One of the keys to success in cellular engineering involves the quality and validity of results obtained from cell chemical signaling pathway assays. The accuracy of the assay data cannot be verified or assured if the effect of positive feedback, nonlinearities, and interrelationships between cell chemical signaling pathway elements are not understood, modeled, and simulated. Nonlinearities and positive feedback in the cell chemical signaling pathway can produce significant aberrations in assay data collection. Simulating the pathway can reveal potential instability problems that will affect assay results. A simulation, using an electrical analog for the coupled differential equations representing each segment of the pathway, provides an excellent tool for assay validation purposes. With this approach, voltages represent pathway enzyme concentrations and operational amplifier feedback resistance and input resistance values determine pathway gain and rate constants. The understanding provided by pathway modeling and simulation is strategically important in order to establish experimental controls for assay protocol structure, time frames specified between assays, and assay concentration variation limits; to ensure accuracy and reproducibility of results.
Methods to Measure Lipophagy in Yeast.
Cristobal-Sarramian, A; Radulovic, M; Kohlwein, S D
2017-01-01
Maintenance of cellular and organismal lipid homeostasis is critical for life, and any deviation from a balanced equilibrium between fat uptake and degradation may have deleterious consequences, resulting in severe lipid-associated disorders. Excess fat is typically stored in cytoplasmic organelles termed "lipid droplets" (LDs); to adjust for a constantly fluctuating supply of and demand for cellular fat, these organelles are metabolically highly dynamic and subject to multiple levels of regulation. In addition to a well-described cytosolic lipid degradation pathway, recent evidence underscores the importance of "lipophagy" in cellular lipid homeostasis, i.e., the degradation of LD by autophagy in the lysosome/vacuole. Pioneering work in yeast mutant models has unveiled the requirement of key components of the autophagy machinery, providing evidence for a highly conserved process of lipophagy from yeast to man. However, further work is required to unveil the intricate metabolic interaction between LD metabolism and autophagy to sustain membrane homeostasis and cellular survival. © 2017 Elsevier Inc. All rights reserved.
Autophagy is the predominant process induced by arsenite in human lymphoblastoid cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolt, Alicia M.; Byrd, Randi M.; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.ed
2010-05-01
Arsenic is a widespread environmental toxicant with a diverse array of molecular targets and associated diseases, making the identification of the critical mechanisms and pathways of arsenic-induced cytotoxicity a challenge. In a variety of experimental models, over a range of arsenic exposure levels, apoptosis is a commonly identified arsenic-induced cytotoxic pathway. Human lymphoblastoid cell lines (LCL) have been used as a model system in arsenic toxicology for many years, but the exact mechanism of arsenic-induced cytotoxicity in LCL is still unknown. We investigated the cytotoxicity of sodium arsenite in LCL 18564 using a set of complementary markers for cell deathmore » pathways. Markers indicative of apoptosis (phosphatidylserine externalization, PARP cleavage, and sensitivity to caspase inhibition) were uniformly negative in arsenite exposed cells. Interestingly, electron microscopy, acidic vesicle fluorescence, and expression of LC3 in LCL 18564 identified autophagy as an arsenite-induced process that was associated with cytotoxicity. Autophagy, a cellular programmed response that is associated with both cellular stress adaptation as well as cell death appears to be the predominant process in LCL cytotoxicity induced by arsenite. It is unclear, however, whether LCL autophagy is an effector mechanism of arsenite cytotoxicity or alternatively a cellular compensatory mechanism. The ability of arsenite to induce autophagy in lymphoblastoid cell lines introduces a potentially novel mechanistic explanation of the well-characterized in vitro and in vivo toxicity of arsenic to lymphoid cells.« less
Modos, Dezso; Brooks, Johanne; Fazekas, David; Ari, Eszter; Vellai, Tibor; Csermely, Peter; Korcsmaros, Tamas; Lenti, Katalin
2016-01-01
Extensive cross-talk between signaling pathways is required to integrate the myriad of extracellular signal combinations at the cellular level. Gene duplication events may lead to the emergence of novel functions, leaving groups of similar genes - termed paralogs - in the genome. To distinguish critical paralog groups (CPGs) from other paralogs in human signaling networks, we developed a signaling network-based method using cross-talk annotation and tissue-specific signaling flow analysis. 75 CPGs were found with higher degree, betweenness centrality, closeness, and ‘bowtieness’ when compared to other paralogs or other proteins in the signaling network. CPGs had higher diversity in all these measures, with more varied biological functions and more specific post-transcriptional regulation than non-critical paralog groups (non-CPG). Using TGF-beta, Notch and MAPK pathways as examples, SMAD2/3, NOTCH1/2/3 and MEK3/6-p38 CPGs were found to regulate the signaling flow of their respective pathways. Additionally, CPGs showed a higher mutation rate in both inherited diseases and cancer, and were enriched in drug targets. In conclusion, the results revealed two distinct types of paralog groups in the signaling network: CPGs and non-CPGs. Thus highlighting the importance of CPGs as compared to non-CPGs in drug discovery and disease pathogenesis. PMID:27922122
Sweasy, Joann B.
2012-01-01
Maintenance of genomic stability is essential for cellular survival. The base excision repair (BER) pathway is critical for resolution of abasic sites and damaged bases, estimated to occur 20,000 times in cells daily. DNA polymerase β (Pol β) participates in BER by filling DNA gaps that result from excision of damaged bases. Approximately 30% of human tumours express Pol β variants, many of which have altered fidelity and activity in vitro and when expressed, induce cellular transformation. The prostate tumour variant Ile260Met transforms cells and is a sequence-context-dependent mutator. To test the hypothesis that mutations induced in vivo by Ile260Met lead to cellular transformation, we characterized the genome-wide expression profile of a clone expressing Ile260Met as compared with its non-induced counterpart. Using a 1.5-fold minimum cut-off with a false discovery rate (FDR) of <0.05, 912 genes exhibit altered expression. Microarray results were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and revealed unique expression profiles in other clones. Gene Ontology (GO) clusters were analyzed using Ingenuity Pathways Analysis to identify altered gene networks and associated nodes. We determined three nodes of interest that exhibited dysfunctional regulation of downstream gene products without themselves having altered expression. One node, peroxisome proliferator-activated protein γ (PPARG), was sequenced and found to contain a coding region mutation in PPARG2 only in transformed cells. Further analysis suggests that this mutation leads to dominant negative activity of PPARG2. PPARG is a transcription factor implicated to have tumour suppressor function. This suggests that the PPARG2 mutant may have played a role in driving cellular transformation. We conclude that PPARG induces cellular transformation by a mutational mechanism. PMID:22914675
Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo
2015-01-01
Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Zinc Signal in Brain Diseases.
Portbury, Stuart D; Adlard, Paul A
2017-11-23
The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.
Oxidative Stress, Bone Marrow Failure, and Genome Instability in Hematopoietic Stem Cells
Richardson, Christine; Yan, Shan; Vestal, C. Greer
2015-01-01
Reactive oxygen species (ROS) can be generated by defective endogenous reduction of oxygen by cellular enzymes or in the mitochondrial respiratory pathway, as well as by exogenous exposure to UV or environmental damaging agents. Regulation of intracellular ROS levels is critical since increases above normal concentrations lead to oxidative stress and DNA damage. A growing body of evidence indicates that the inability to regulate high levels of ROS leading to alteration of cellular homeostasis or defective repair of ROS-induced damage lies at the root of diseases characterized by both neurodegeneration and bone marrow failure as well as cancer. That these diseases may be reflective of the dynamic ability of cells to respond to ROS through developmental stages and aging lies in the similarities between phenotypes at the cellular level. This review summarizes work linking the ability to regulate intracellular ROS to the hematopoietic stem cell phenotype, aging, and disease. PMID:25622253
Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.
Hess, Christoph; Kemper, Claudia
2016-08-16
Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. Copyright © 2016 Elsevier Inc. All rights reserved.
In search of cellular control: signal transduction in context
NASA Technical Reports Server (NTRS)
Ingber, D.
1998-01-01
The field of molecular cell biology has experienced enormous advances over the last century by reducing the complexity of living cells into simpler molecular components and binding interactions that are amenable to rigorous biochemical analysis. However, as our tools become more powerful, there is a tendency to define mechanisms by what we can measure. The field is currently dominated by efforts to identify the key molecules and sequences that mediate the function of critical receptors, signal transducers, and molecular switches. Unfortunately, these conventional experimental approaches ignore the importance of supramolecular control mechanisms that play a critical role in cellular regulation. Thus, the significance of individual molecular constituents cannot be fully understood when studied in isolation because their function may vary depending on their context within the structural complexity of the living cell. These higher-order regulatory mechanisms are based on the cell's use of a form of solid-state biochemistry in which molecular components that mediate biochemical processing and signal transduction are immobilized on insoluble cytoskeletal scaffolds in the cytoplasm and nucleus. Key to the understanding of this form of cellular regulation is the realization that chemistry is structure and hence, recognition of the the importance of architecture and mechanics for signal integration and biochemical control. Recent work that has unified chemical and mechanical signaling pathways provides a glimpse of how this form of higher-order cellular control may function and where paths may lie in the future.
Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K.
Yueh, Alexander E; Payne, Susan N; Leystra, Alyssa A; Van De Hey, Dana R; Foley, Tyler M; Pasch, Cheri A; Clipson, Linda; Matkowskyj, Kristina A; Deming, Dustin A
2016-01-01
The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling.
Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K
Yueh, Alexander E.; Payne, Susan N.; Leystra, Alyssa A.; Van De Hey, Dana R.; Foley, Tyler M.; Pasch, Cheri A.; Clipson, Linda; Matkowskyj, Kristina A.; Deming, Dustin A.
2016-01-01
The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299
IKK connects autophagy to major stress pathways.
Criollo, Alfredo; Senovilla, Laura; Authier, Hélène; Maiuri, Maria Chiara; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Tasdemir, Ezgi; Galluzzi, Lorenzo; Shen, Shensi; Tailler, Maximilien; Delahaye, Nicolas; Tesniere, Antoine; De Stefano, Daniela; Younes, Aména Ben; Harper, Francis; Pierron, Gérard; Lavandero, Sergio; Zitvogel, Laurence; Israel, Alain; Baud, Véronique; Kroemer, Guido
2010-01-01
Cells respond to stress by activating cytoplasmic mechanisms as well as transcriptional programs that can lead to adaptation or death. Autophagy represents an important cytoprotective response that is regulated by both transcriptional and transcription-independent pathways. NFkappaB is perhaps the transcription factor most frequently activated by stress and has been ascribed with either pro- or anti-autophagic functions, depending on the cellular context. Our results demonstrate that activation of the IKK (IkappaB kinase) complex, which is critical for the stress-elicited activation of NFkappaB, is sufficient to promote autophagy independent of NFkappaB, and that IKK is required for the optimal induction of autophagy by both physiological and pharmacological autophagic triggers.
1988-02-01
quantitatively miror pathway. Only two of the enzymes which process 8-endorphin have been firmly identified, peptide acetyltransferase and... quantitatively minor. This implied that perhaps peptide acetyltransferase is not a critical determinant of the bioactivity of B-endorphin in brain. If so...provided us with a more difinitive understanding of the role of processing enzyme regulation in the overall biochemical and cellular response of the
Kaether, Christoph; Lammich, Sven; Edbauer, Dieter; Ertl, Michaela; Rietdorf, Jens; Capell, Anja; Steiner, Harald; Haass, Christian
2002-01-01
Amyloid β-peptide (Aβ) is generated by the consecutive cleavages of β- and γ-secretase. The intramembraneous γ-secretase cleavage critically depends on the activity of presenilins (PS1 and PS2). Although there is evidence that PSs are aspartyl proteases with γ-secretase activity, it remains controversial whether their subcellular localization overlaps with the cellular sites of Aβ production. We now demonstrate that biologically active GFP-tagged PS1 as well as endogenous PS1 are targeted to the plasma membrane (PM) of living cells. On the way to the PM, PS1 binds to nicastrin (Nct), an essential component of the γ-secretase complex. This complex is targeted through the secretory pathway where PS1-bound Nct becomes endoglycosidase H resistant. Moreover, surface-biotinylated Nct can be coimmunoprecipitated with PS1 antibodies, demonstrating that this complex is located to cellular sites with γ-secretase activity. Inactivating PS1 or PS2 function by mutagenesis of one of the critical aspartate residues or by γ-secretase inhibitors results in delayed reinternalization of the β-amyloid precursor protein and its accumulation at the cell surface. Our data suggest that PS is targeted as a biologically active complex with Nct through the secretory pathway to the cell surface and suggest a dual function of PS in γ-secretase processing and in trafficking. PMID:12147673
Pezzini, Francesco; Bettinetti, Laura; Di Leva, Francesca; Bianchi, Marzia; Zoratti, Elisa; Carrozzo, Rosalba; Santorelli, Filippo M; Delledonne, Massimo; Lalowski, Maciej; Simonati, Alessandro
2017-05-01
Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.
Cellular and Animal Studies: Insights into Pathophysiology and Therapy of PCOS.
Indran, Inthrani Raja; Lee, Bao Hui; Yong, Eu-Leong
2016-11-01
Basic science studies have advanced our understanding of the role of key enzymes in the steroidogenesis pathway and those that affect the pathophysiology of PCOS. Studies with ovarian theca cells taken from women with PCOS have demonstrated increased androgen production due to increased CYP17A1 and HSD3B2 enzyme activities. Furthermore, overexpression of DENND1A variant 2 in normal theca cells resulted in a PCOS phenotype with increased androgen production. Notably, cellular steroidogenesis models have facilitated the understanding of the mechanistic effects of pharmacotherapies, including insulin sensitizers (e.g., pioglitazone and metformin) used for the treatment of insulin resistance in PCOS, on androgen production. In addition, animal models of PCOS have provided a critical platform to study the effects of therapeutic agents in a manner closer to the physiological state. Indeed, recent breakthroughs have demonstrated that natural derivatives such as the dietary medium-chain fatty acid decanoic acid (DA) can restore estrous cyclicity and lower androgen levels in an animal model of PCOS, thus laying the platform for novel therapeutic developments in PCOS. This chapter reviews the current understanding on the pathways modulating androgen biosynthesis, and the cellular and animal models that form the basis for preclinical research in PCOS, and sets the stage for clinical research. Copyright © 2016. Published by Elsevier Ltd.
Ivashkiv, Lionel B; Hu, Xiaoyu
2004-01-01
A variety of cytokines and growth factors use the Janus kinase (Jak)-STAT signaling pathway to transmit extracellular signals to the nucleus. STATs (signal transducers and activators of transcription) are latent cytoplasmic transcription factors. There are seven mammalian STATs and they have critical, nonredundant roles in mediating cellular transcriptional responses to cytokines. The physiological roles of STATs have been elucidated by analysis of mice rendered deficient in STAT genes. STAT activation is regulated and can be modulated in a positive or negative fashion; it can be reprogrammed to drive different cellular responses. Several auto-regulatory and signaling crosstalk mechanisms for regulating Jak-STAT signaling have been described. Understanding and manipulation of the function of STATs will help in the development of therapeutic strategies for diseases that are regulated by cytokines.
Teo, Z; Sng, M K; Chan, J S K; Lim, M M K; Li, Y; Li, L; Phua, T; Lee, J Y H; Tan, Z W; Zhu, P; Tan, N S
2017-11-16
Metastatic cancer cells acquire energy-intensive processes including increased invasiveness and chemoresistance. However, how the energy demand is met and the molecular drivers that coordinate an increase in cellular metabolic activity to drive epithelial-mesenchymal transition (EMT), the first step of metastasis, remain unclear. Using different in vitro and in vivo EMT models with clinical patient's samples, we showed that EMT is an energy-demanding process fueled by glucose metabolism-derived adenosine triphosphate (ATP). We identified angiopoietin-like 4 (ANGPTL4) as a key player that coordinates an increase in cellular energy flux crucial for EMT via an ANGPTL4/14-3-3γ signaling axis. This augmented cellular metabolic activity enhanced metastasis. ANGPTL4 knockdown suppresses an adenylate energy charge elevation, delaying EMT. Using an in vivo dual-inducible EMT model, we found that ANGPTL4 deficiency reduces cancer metastasis to the lung and liver. Unbiased kinase inhibitor screens and Ingenuity Pathway Analysis revealed that ANGPTL4 regulates the expression of 14-3-3γ adaptor protein via the phosphatidylinositol-3-kinase/AKT and mitogen-activated protein kinase signaling pathways that culminate to activation of transcription factors, CREB, cFOS and STAT3. Using a different mode of action, as compared with protein kinases, the ANGPTL4/14-3-3γ signaling axis consolidated cellular bioenergetics and stabilized critical EMT proteins to coordinate energy demand and enhanced EMT competency and metastasis, through interaction with specific phosphorylation signals on target proteins.
Shuaib, Aban; Hartwell, Adam; Kiss-Toth, Endre; Holcombe, Mike
2016-01-01
Signal transduction through the Mitogen Activated Protein Kinase (MAPK) pathways is evolutionarily highly conserved. Many cells use these pathways to interpret changes to their environment and respond accordingly. The pathways are central to triggering diverse cellular responses such as survival, apoptosis, differentiation and proliferation. Though the interactions between the different MAPK pathways are complex, nevertheless, they maintain a high level of fidelity and specificity to the original signal. There are numerous theories explaining how fidelity and specificity arise within this complex context; spatio-temporal regulation of the pathways and feedback loops are thought to be very important. This paper presents an agent based computational model addressing multi-compartmentalisation and how this influences the dynamics of MAPK cascade activation. The model suggests that multi-compartmentalisation coupled with periodic MAPK kinase (MAPKK) activation may be critical factors for the emergence of oscillation and ultrasensitivity in the system. Finally, the model also establishes a link between the spatial arrangements of the cascade components and temporal activation mechanisms, and how both contribute to fidelity and specificity of MAPK mediated signalling. PMID:27243235
Regulation of the Wnt/β-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins
Muñoz Bello, Jesus Omar; Olmedo Nieva, Leslie; Contreras Paredes, Adriana; Fuentes Gonzalez, Alma Mariana; Rocha Zavaleta, Leticia; Lizano, Marcela
2015-01-01
Cell signaling pathways are the mechanisms by which cells transduce external stimuli, which control the transcription of genes, to regulate diverse biological effects. In cancer, distinct signaling pathways, such as the Wnt/β-catenin pathway, have been implicated in the deregulation of critical molecular processes that affect cell proliferation and differentiation. For example, changes in β-catenin localization have been identified in Human Papillomavirus (HPV)-related cancers as the lesion progresses. Specifically, β-catenin relocates from the membrane/cytoplasm to the nucleus, suggesting that this transcription regulator participates in cervical carcinogenesis. The E6 and E7 oncoproteins are responsible for the transforming activity of HPV, and some studies have implicated these viral oncoproteins in the regulation of the Wnt/β-catenin pathway. Nevertheless, new interactions of HPV oncoproteins with cellular proteins are emerging, and the study of the biological effects of such interactions will help to understand HPV-related carcinogenesis. This review addresses the accumulated evidence of the involvement of the HPV E6 and E7 oncoproteins in the activation of the Wnt/β-catenin pathway. PMID:26295406
Ferecatu, Ioana; Gonçalves, Sergio; Golinelli-Cohen, Marie-Pierre; Clémancey, Martin; Martelli, Alain; Riquier, Sylvie; Guittet, Eric; Latour, Jean-Marc; Puccio, Hélène; Drapier, Jean-Claude; Lescop, Ewen; Bouton, Cécile
2014-01-01
In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis. PMID:25012650
The noncoding human genome and the future of personalised medicine.
Cowie, Philip; Hay, Elizabeth A; MacKenzie, Alasdair
2015-01-30
Non-coding cis-regulatory sequences act as the 'eyes' of the genome and their role is to perceive, organise and relay cellular communication information to RNA polymerase II at gene promoters. The evolution of these sequences, that include enhancers, silencers, insulators and promoters, has progressed in multicellular organisms to the extent that cis-regulatory sequences make up as much as 10% of the human genome. Parallel evidence suggests that 75% of polymorphisms associated with heritable disease occur within predicted cis-regulatory sequences that effectively alter the 'perception' of cis-regulatory sequences or render them blind to cell communication cues. Cis-regulatory sequences also act as major functional targets of epigenetic modification thus representing an important conduit through which changes in DNA-methylation affects disease susceptibility. The objectives of the current review are (1) to describe what has been learned about identifying and characterising cis-regulatory sequences since the sequencing of the human genome; (2) to discuss their role in interpreting cell signalling pathways pathways; and (3) outline how this role may be altered by polymorphisms and epigenetic changes. We argue that the importance of the cis-regulatory genome for the interpretation of cellular communication pathways cannot be overstated and understanding its role in health and disease will be critical for the future development of personalised medicine.
Developing and applying the adverse outcome pathway ...
To support a paradigm shift in regulatory toxicology testing and risk assessment, the Adverse Outcome Pathway (AOP) concept has recently been proposed. This concept is similar to that for Mode of Action (MOA), describing a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis to predict effects for structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed.A variety of cellular and molecular processes are known to be critical to normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of principles of the description and assessment of MOA and AOPs, examples of adverse out
The Roles of NDR Protein Kinases in Hippo Signalling.
Hergovich, Alexander
2016-05-18
The Hippo tumour suppressor pathway has emerged as a critical regulator of tissue growth through controlling cellular processes such as cell proliferation, death, differentiation and stemness. Traditionally, the core cassette of the Hippo pathway includes the MST1/2 protein kinases, the LATS1/2 protein kinases, and the MOB1 scaffold signal transducer, which together regulate the transcriptional co-activator functions of the proto-oncoproteins YAP and TAZ through LATS1/2-mediated phosphorylation of YAP/TAZ. Recent research has identified additional kinases, such as NDR1/2 (also known as STK38/STK38L) and MAP4Ks, which should be considered as novel members of the Hippo core cassette. While these efforts helped to expand our understanding of Hippo core signalling, they also began to provide insights into the complexity and redundancy of the Hippo signalling network. Here, we focus on summarising our current knowledge of the regulation and functions of mammalian NDR kinases, discussing parallels between the NDR pathways in Drosophila and mammals. Initially, we provide a general overview of the cellular functions of NDR kinases in cell cycle progression, centrosome biology, apoptosis, autophagy, DNA damage signalling, immunology and neurobiology. Finally, we put particular emphasis on discussing NDR1/2 as YAP kinases downstream of MST1/2 and MOB1 signalling in Hippo signalling.
Ferecatu, Ioana; Gonçalves, Sergio; Golinelli-Cohen, Marie-Pierre; Clémancey, Martin; Martelli, Alain; Riquier, Sylvie; Guittet, Eric; Latour, Jean-Marc; Puccio, Hélène; Drapier, Jean-Claude; Lescop, Ewen; Bouton, Cécile
2014-10-10
In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
2017-10-01
of the project as stated in the approved SOW. If the application listed milestones/target dates for important activities or phases of the project...These fluorescent AND, 5α-dione and DIOL derivatives retained the needed level of biological activity in biological assays (vida infra). In...stably expressed AR fused with green fluorescent protein (GFP) was used to determine cellular uptake of fluorescent- androgens, AR activation and
MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria.
Aaltonen, Mari J; Friedman, Jonathan R; Osman, Christof; Salin, Bénédicte; di Rago, Jean-Paul; Nunnari, Jodi; Langer, Thomas; Tatsuta, Takashi
2016-06-06
Mitochondria exert critical functions in cellular lipid metabolism and promote the synthesis of major constituents of cellular membranes, such as phosphatidylethanolamine (PE) and phosphatidylcholine. Here, we demonstrate that the phosphatidylserine decarboxylase Psd1, located in the inner mitochondrial membrane, promotes mitochondrial PE synthesis via two pathways. First, Ups2-Mdm35 complexes (SLMO2-TRIAP1 in humans) serve as phosphatidylserine (PS)-specific lipid transfer proteins in the mitochondrial intermembrane space, allowing formation of PE by Psd1 in the inner membrane. Second, Psd1 decarboxylates PS in the outer membrane in trans, independently of PS transfer by Ups2-Mdm35. This latter pathway requires close apposition between both mitochondrial membranes and the mitochondrial contact site and cristae organizing system (MICOS). In MICOS-deficient cells, limiting PS transfer by Ups2-Mdm35 and reducing mitochondrial PE accumulation preserves mitochondrial respiration and cristae formation. These results link mitochondrial PE metabolism to MICOS, combining functions in protein and lipid homeostasis to preserve mitochondrial structure and function. © 2016 Aaltonen et al.
Madsen, Daniel H.; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E.; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S.; Brenner, David A.; Burgdorf, Sven; Engelholm, Lars H.; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto
2013-01-01
Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537
Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells.
Morgado-Palacin, Lucia; Llanos, Susana; Serrano, Manuel
2012-02-01
Ribosome biogenesis is the most demanding energetic process in proliferating cells and it is emerging as a critical sensor of cellular homeostasis. Upon disturbance of ribosome biogenesis, specific free ribosomal proteins, most notably L11, bind and inhibit Mdm2, resulting in activation of the tumor suppressor p53. This pathway has been characterized in somatic and cancer cells, but its function in embryonic pluripotent cells has remained unexplored. Here, we show that treatment with low doses of Actinomycin D or depletion of ribosomal protein L37, two well-established inducers of ribosomal stress, activate p53 in an L11-dependent manner in mouse embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). Activation of p53 results in transcriptional induction of p53 targets, including p21, Mdm2, Pidd, Puma, Noxa and Bax. Finally, ribosomal stress elicits L11- and p53-dependent apoptosis in ESCs/iPSCs. These results extend to pluripotent cells the functionality of the ribosomal stress pathway and we speculate that this could be a relevant cellular checkpoint during early embryogenesis.
A multifaceted role for MOF histone modifying factor in genome maintenance.
Mujoo, Kalpana; Hunt, Clayton R; Horikoshi, Nobuo; Pandita, Tej K
2017-01-01
MOF (males absent on the first) was initially identified as a dosage compensation factor in Drosophila that acetylates lysine 16 of histone H4 (H4K16ac) and increased gene transcription from the single copy male X-chromosome. In humans, however, the ortholog of Drosophila MOF has been shown to interact with a range of proteins that extend its potential significance well beyond transcription. For example, recent results indicate MOF is an upstream regulator of the ATM (ataxia-telangiectasia mutated) protein, the loss of which is responsible for ataxia telangiectasia (AT). ATM is a key regulatory kinase that interacts with and phosphorylates multiple substrates that influence critical, cell-cycle control and DNA damage repair pathways in addition to other pathways. Thus, directly or indirectly, MOF may be involved in a wide range of cellular functions. This review will focus on the contribution of MOF to cellular DNA repair and new results that are beginning to examine the in vivo physiological role of MOF. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Principles in redox signaling: from chemistry to functional significance.
Bindoli, Alberto; Rigobello, Maria Pia
2013-05-01
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Anomaly Detection in Host Signaling Pathways for the Early Prognosis of Acute Infection.
Wang, Kun; Langevin, Stanley; O'Hern, Corey S; Shattuck, Mark D; Ogle, Serenity; Forero, Adriana; Morrison, Juliet; Slayden, Richard; Katze, Michael G; Kirby, Michael
2016-01-01
Clinical diagnosis of acute infectious diseases during the early stages of infection is critical to administering the appropriate treatment to improve the disease outcome. We present a data driven analysis of the human cellular response to respiratory viruses including influenza, respiratory syncytia virus, and human rhinovirus, and compared this with the response to the bacterial endotoxin, Lipopolysaccharides (LPS). Using an anomaly detection framework we identified pathways that clearly distinguish between asymptomatic and symptomatic patients infected with the four different respiratory viruses and that accurately diagnosed patients exposed to a bacterial infection. Connectivity pathway analysis comparing the viral and bacterial diagnostic signatures identified host cellular pathways that were unique to patients exposed to LPS endotoxin indicating this type of analysis could be used to identify host biomarkers that can differentiate clinical etiologies of acute infection. We applied the Multivariate State Estimation Technique (MSET) on two human influenza (H1N1 and H3N2) gene expression data sets to define host networks perturbed in the asymptomatic phase of infection. Our analysis identified pathways in the respiratory virus diagnostic signature as prognostic biomarkers that triggered prior to clinical presentation of acute symptoms. These early warning pathways correctly predicted that almost half of the subjects would become symptomatic in less than forty hours post-infection and that three of the 18 subjects would become symptomatic after only 8 hours. These results provide a proof-of-concept for utility of anomaly detection algorithms to classify host pathway signatures that can identify presymptomatic signatures of acute diseases and differentiate between etiologies of infection. On a global scale, acute respiratory infections cause a significant proportion of human co-morbidities and account for 4.25 million deaths annually. The development of clinical diagnostic tools to distinguish between acute viral and bacterial respiratory infections is critical to improve patient care and limit the overuse of antibiotics in the medical community. The identification of prognostic respiratory virus biomarkers provides an early warning system that is capable of predicting which subjects will become symptomatic to expand our medical diagnostic capabilities and treatment options for acute infectious diseases. The host response to acute infection may be viewed as a deterministic signaling network responsible for maintaining the health of the host organism. We identify pathway signatures that reflect the very earliest perturbations in the host response to acute infection. These pathways provide a monitor the health state of the host using anomaly detection to quantify and predict health outcomes to pathogens.
Anomaly Detection in Host Signaling Pathways for the Early Prognosis of Acute Infection
O’Hern, Corey S.; Shattuck, Mark D.; Ogle, Serenity; Forero, Adriana; Morrison, Juliet; Slayden, Richard; Katze, Michael G.
2016-01-01
Clinical diagnosis of acute infectious diseases during the early stages of infection is critical to administering the appropriate treatment to improve the disease outcome. We present a data driven analysis of the human cellular response to respiratory viruses including influenza, respiratory syncytia virus, and human rhinovirus, and compared this with the response to the bacterial endotoxin, Lipopolysaccharides (LPS). Using an anomaly detection framework we identified pathways that clearly distinguish between asymptomatic and symptomatic patients infected with the four different respiratory viruses and that accurately diagnosed patients exposed to a bacterial infection. Connectivity pathway analysis comparing the viral and bacterial diagnostic signatures identified host cellular pathways that were unique to patients exposed to LPS endotoxin indicating this type of analysis could be used to identify host biomarkers that can differentiate clinical etiologies of acute infection. We applied the Multivariate State Estimation Technique (MSET) on two human influenza (H1N1 and H3N2) gene expression data sets to define host networks perturbed in the asymptomatic phase of infection. Our analysis identified pathways in the respiratory virus diagnostic signature as prognostic biomarkers that triggered prior to clinical presentation of acute symptoms. These early warning pathways correctly predicted that almost half of the subjects would become symptomatic in less than forty hours post-infection and that three of the 18 subjects would become symptomatic after only 8 hours. These results provide a proof-of-concept for utility of anomaly detection algorithms to classify host pathway signatures that can identify presymptomatic signatures of acute diseases and differentiate between etiologies of infection. On a global scale, acute respiratory infections cause a significant proportion of human co-morbidities and account for 4.25 million deaths annually. The development of clinical diagnostic tools to distinguish between acute viral and bacterial respiratory infections is critical to improve patient care and limit the overuse of antibiotics in the medical community. The identification of prognostic respiratory virus biomarkers provides an early warning system that is capable of predicting which subjects will become symptomatic to expand our medical diagnostic capabilities and treatment options for acute infectious diseases. The host response to acute infection may be viewed as a deterministic signaling network responsible for maintaining the health of the host organism. We identify pathway signatures that reflect the very earliest perturbations in the host response to acute infection. These pathways provide a monitor the health state of the host using anomaly detection to quantify and predict health outcomes to pathogens. PMID:27532264
Metabolic Reprogramming in Glioma
Strickland, Marie; Stoll, Elizabeth A.
2017-01-01
Many cancers have long been thought to primarily metabolize glucose for energy production—a phenomenon known as the Warburg Effect, after the classic studies of Otto Warburg in the early twentieth century. Yet cancer cells also utilize other substrates, such as amino acids and fatty acids, to produce raw materials for cellular maintenance and energetic currency to accomplish cellular tasks. The contribution of these substrates is increasingly appreciated in the context of glioma, the most common form of malignant brain tumor. Multiple catabolic pathways are used for energy production within glioma cells, and are linked in many ways to anabolic pathways supporting cellular function. For example: glycolysis both supports energy production and provides carbon skeletons for the synthesis of nucleic acids; meanwhile fatty acids are used both as energetic substrates and as raw materials for lipid membranes. Furthermore, bio-energetic pathways are connected to pro-oncogenic signaling within glioma cells. For example: AMPK signaling links catabolism with cell cycle progression; mTOR signaling contributes to metabolic flexibility and cancer cell survival; the electron transport chain produces ATP and reactive oxygen species (ROS) which act as signaling molecules; Hypoxia Inducible Factors (HIFs) mediate interactions with cells and vasculature within the tumor environment. Mutations in the tumor suppressor p53, and the tricarboxylic acid cycle enzymes Isocitrate Dehydrogenase 1 and 2 have been implicated in oncogenic signaling as well as establishing metabolic phenotypes in genetically-defined subsets of malignant glioma. These pathways critically contribute to tumor biology. The aim of this review is two-fold. Firstly, we present the current state of knowledge regarding the metabolic strategies employed by malignant glioma cells, including aerobic glycolysis; the pentose phosphate pathway; one-carbon metabolism; the tricarboxylic acid cycle, which is central to amino acid metabolism; oxidative phosphorylation; and fatty acid metabolism, which significantly contributes to energy production in glioma cells. Secondly, we highlight processes (including the Randle Effect, AMPK signaling, mTOR activation, etc.) which are understood to link bio-energetic pathways with oncogenic signals, thereby allowing the glioma cell to achieve a pro-malignant state. PMID:28491867
Axl as a mediator of cellular growth and survival.
Axelrod, Haley; Pienta, Kenneth J
2014-10-15
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
Viruses Associated with Human Cancer
McLaughlin-Drubin, Margaret E.; Munger, Karl
2008-01-01
It is estimated that viral infections contribute to 15–20% of all human cancers. As obligatory intracellular parasites, viruses encode proteins that reprogram host cellular signaling pathways that control proliferation, differentiation, cell death, genomic integrity, and recognition by the immune system. These cellular processes are governed by complex and redundant regulatory networks and are surveyed by sentinel mechanisms that ensure that aberrant cells are removed from the proliferative pool. Given that the genome size of a virus is highly restricted to ensure packaging within an infectious structure, viruses must target cellular regulatory nodes with limited redundancy and need to inactivate surveillance mechanisms that would normally recognize and extinguish such abnormal cells. In many cases, key proteins in these same regulatory networks are subject to mutation in non-virally associated diseases and cancers. Oncogenic viruses have thus served as important experimental models to identify and molecularly investigate such cellular networks. These include the discovery of oncogenes and tumor suppressors, identification of regulatory networks that are critical for maintenance of genomic integrity, and processes that govern immune surveillance. PMID:18201576
Understanding D-Ribose and Mitochondrial Function.
Mahoney, Diane E; Hiebert, John B; Thimmesch, Amanda; Pierce, John T; Vacek, James L; Clancy, Richard L; Sauer, Andrew J; Pierce, Janet D
2018-01-01
Mitochondria are important organelles referred to as cellular powerhouses for their unique properties of cellular energy production. With many pathologic conditions and aging, mitochondrial function declines, and there is a reduction in the production of adenosine triphosphate. The energy carrying molecule generated by cellular respiration and by pentose phosphate pathway, an alternative pathway of glucose metabolism. D-ribose is a naturally occurring monosaccharide found in the cells and particularly in the mitochondria is essential in energy production. Without sufficient energy, cells cannot maintain integrity and function. Supplemental D-ribose has been shown to improve cellular processes when there is mitochondrial dysfunction. When individuals take supplemental D-ribose, it can bypass part of the pentose pathway to produce D-ribose-5-phosphate for the production of energy. In this article, we review how energy is produced by cellular respiration, the pentose pathway, and the use of supplemental D-ribose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys
Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. Themore » grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than either compound alone. • Lower concentrations of Nar and Tam are required when used in combination. • Nar localizes ERα to a perinuclear region of the cell. • Nar reduces protein levels of ERK1/2 and AKT.« less
Broix, Loïc; Jagline, Hélène; Ivanova, Ekaterina; Schmucker, Stéphane; Drouot, Nathalie; Clayton-Smith, Jill; Pagnamenta, Alistair T; Metcalfe, Kay A; Isidor, Bertrand; Louvier, Ulrike Walther; Poduri, Annapurna; Taylor, Jenny C; Tilly, Peggy; Poirier, Karine; Saillour, Yoann; Lebrun, Nicolas; Stemmelen, Tristan; Rudolf, Gabrielle; Muraca, Giuseppe; Saintpierre, Benjamin; Elmorjani, Adrienne; Moïse, Martin; Weirauch, Nathalie Bednarek; Guerrini, Renzo; Boland, Anne; Olaso, Robert; Masson, Cecile; Tripathy, Ratna; Keays, David; Beldjord, Cherif; Nguyen, Laurent; Godin, Juliette; Kini, Usha; Nischké, Patrick; Deleuze, Jean-François; Bahi-Buisson, Nadia; Sumara, Izabela; Hinckelmann, Maria-Victoria; Chelly, Jamel
2016-11-01
Neurodevelopmental disorders with periventricular nodular heterotopia (PNH) are etiologically heterogeneous, and their genetic causes remain in many cases unknown. Here we show that missense mutations in NEDD4L mapping to the HECT domain of the encoded E3 ubiquitin ligase lead to PNH associated with toe syndactyly, cleft palate and neurodevelopmental delay. Cellular and expression data showed sensitivity of PNH-associated mutants to proteasome degradation. Moreover, an in utero electroporation approach showed that PNH-related mutants and excess wild-type NEDD4L affect neurogenesis, neuronal positioning and terminal translocation. Further investigations, including rapamycin-based experiments, found differential deregulation of pathways involved. Excess wild-type NEDD4L leads to disruption of Dab1 and mTORC1 pathways, while PNH-related mutations are associated with deregulation of mTORC1 and AKT activities. Altogether, these data provide insights into the critical role of NEDD4L in the regulation of mTOR pathways and their contributions in cortical development.
De Franceschi, Lucia; Biondani, Andrea; Carta, Franco; Turrini, Franco; Laudanna, Carlo; Deana, Renzo; Brunati, Anna Maria; Turretta, Loris; Iolascon, Achille; Perrotta, Silverio; Elson, Ari; Bulato, Cristina; Brugnara, Carlo
2010-01-01
Protein tyrosine phosphatases (PTPs) are crucial components of cellular signal transduction pathways. We report here that red blood cells (RBCs) from mice lacking PTPε (Ptpre−/−) exhibit abnormal morphology and increased Ca2+-activated-K+ channel activity, which was partially blocked by the Src-Family-Kinases (SFKs) inhibitor PP1. In Ptpre−/− mouse RBCs, the activity of Fyn and Yes, two SFKs, were increased, suggesting a functional relationship between SFKs, PTPε and Ca2+-activated-K+-channel. The absence of PTPε markedly affected the RBC membrane tyrosine (Tyr-) phosphoproteome, indicating a perturbation of RBCs signal transduction pathways. Using signaling network computational analysis of the Tyr-phosphoproteomic data, we identified 7 topological clusters. We studied cluster 1, containing Syk-Tyr-kinase: Syk-kinase activity was higher in wild-type than in Ptpre−/− RBCs, validating the network computational analysis and indicating a novel signaling pathway, which involves Fyn and Syk in regulation of red cell morphology. PMID:18924107
Cardiac system bioenergetics: metabolic basis of the Frank-Starling law
Saks, Valdur; Dzeja, Petras; Schlattner, Uwe; Vendelin, Marko; Terzic, Andre; Wallimann, Theo
2006-01-01
The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation–contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for ‘metabolic pacing’, synchronizing the cellular electrical and mechanical activities with energy supply processes. PMID:16410283
The Fanconi Anemia Pathway in Replication Stress and DNA Crosslink Repair
Jones, Mathew JK.; Huang, Tony T.
2013-01-01
Interstand crosslinks (ICLs) are DNA lesions where the bases of opposing DNA strands are covalently linked, inhibiting critical cellular processes such as transcription and replication. Chemical agents that generate ICLs cause chromosomal abnormalities including breaks, deletions and rearrangements, making them highly genotoxic compounds. This toxicity has proven useful for chemotherapeutic treatment against a wide variety of cancer types. The majority of our understanding of ICL repair in humans has been uncovered thorough analysis of the rare genetic disorder Fanconi anemia, in which patients are extremely sensitive to crosslinking agents. Here, we discuss recent insights into ICL repair gained through new ICL repair assays and highlight the role of the Fanconi Anemia repair pathway during replication stress. PMID:22744751
Tewari, Devesh; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Sureda, Antoni; Farooqi, Ammad Ahmad; Atanasov, Atanas G; Vacca, Rosa Anna; Sethi, Gautam; Bishayee, Anupam
2018-02-01
Activator protein 1 (AP-1) is a key transcription factor in the control of several cellular processes responsible for cell survival proliferation and differentiation. Dysfunctional AP-1 expression and activity are involved in several severe diseases, especially inflammatory disorders and cancer. Therefore, targeting AP-1 has recently emerged as an attractive therapeutic strategy for cancer prevention and therapy. This review summarizes our current understanding of AP-1 biology and function as well as explores and discusses several natural bioactive compounds modulating AP-1-associated signaling pathways for cancer prevention and intervention. Current limitations, challenges, and future directions of research are also critically discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mass Spectrometry: A Technique of Many Faces
Olshina, Maya A.; Sharon, Michal
2016-01-01
Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different mass spectrometry workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems. PMID:28100928
Carter, Edward P; Fearon, Abbie E; Grose, Richard P
2015-04-01
Since its discovery 40 years ago, fibroblast growth factor (FGF) receptor (FGFR) signalling has been found to regulate fundamental cellular behaviours in a wide range of cell types. FGFRs regulate development, homeostasis, and repair and are implicated in many disorders and diseases; and indeed, there is extensive potential for severe consequences, be they developmental, homeostatic, or oncogenic, should FGF-FGFR signalling go awry, so careful control of the pathway is critically important. In this review, we discuss the recent developments in the FGF field, highlighting how FGFR signalling works in normal cells, how it can go wrong, how frequently it is compromised, and how it is being targeted therapeutically. Copyright © 2014 Elsevier Ltd. All rights reserved.
Franco, Heather L; Yao, Humphrey H-C
2012-01-01
The chromosome status of the mammalian embryo initiates a multistage process of sexual development in which the bipotential reproductive system establishes itself as either male or female. These events are governed by intricate cell-cell and interorgan communication that is regulated by multiple signaling pathways. The hedgehog signaling pathway was originally identified for its key role in the development of Drosophila, but is now recognized as a critical developmental regulator in many species, including humans. In addition to its developmental roles, the hedgehog signaling pathway also modulates adult organ function, and misregulation of this pathway often leads to diseases, such as cancer. The hedgehog signaling pathway acts through its morphogenetic ligands that signal from ligand-producing cells to target cells over a specified distance. The target cells then respond in a graded manner based on the concentration of the ligands that they are exposed to. Through this unique mechanism of action, the hedgehog signaling pathway elicits cell fate determination, epithelial-mesenchymal interactions, and cellular homeostasis. Here, we review current findings on the roles of hedgehog signaling in the sexually dimorphic development of the reproductive organs with an emphasis on mammals and comparative evidence in other species.
Functional annotation of regulatory pathways.
Pandey, Jayesh; Koyutürk, Mehmet; Kim, Yohan; Szpankowski, Wojciech; Subramaniam, Shankar; Grama, Ananth
2007-07-01
Standardized annotations of biomolecules in interaction networks (e.g. Gene Ontology) provide comprehensive understanding of the function of individual molecules. Extending such annotations to pathways is a critical component of functional characterization of cellular signaling at the systems level. We propose a framework for projecting gene regulatory networks onto the space of functional attributes using multigraph models, with the objective of deriving statistically significant pathway annotations. We first demonstrate that annotations of pairwise interactions do not generalize to indirect relationships between processes. Motivated by this result, we formalize the problem of identifying statistically overrepresented pathways of functional attributes. We establish the hardness of this problem by demonstrating the non-monotonicity of common statistical significance measures. We propose a statistical model that emphasizes the modularity of a pathway, evaluating its significance based on the coupling of its building blocks. We complement the statistical model by an efficient algorithm and software, Narada, for computing significant pathways in large regulatory networks. Comprehensive results from our methods applied to the Escherichia coli transcription network demonstrate that our approach is effective in identifying known, as well as novel biological pathway annotations. Narada is implemented in Java and is available at http://www.cs.purdue.edu/homes/jpandey/narada/.
Cellular stress created by intermediary metabolite imbalances.
Lee, Sang Jun; Trostel, Andrei; Le, Phuoc; Harinarayanan, Rajendran; Fitzgerald, Peter C; Adhya, Sankar
2009-11-17
Small molecules generally activate or inhibit gene transcription as externally added substrates or as internally accumulated end-products, respectively. Rarely has a connection been made that links an intracellular intermediary metabolite as a signal of gene expression. We report that a perturbation in the critical step of a metabolic pathway--the D-galactose amphibolic pathway--changes the dynamics of the pathways leading to accumulation of the intermediary metabolite UDP-galactose. This accumulation causes cell stress and transduces signals that alter gene expression so as to cope with the stress by restoring balance in the metabolite pool. This underscores the importance of studying the global effects of alterations in the level of intermediary metabolites in causing stress and coping with it by transducing signals to genes to reach a stable state of equilibrium (homeostasis). Such studies are an essential component in the integration of metabolomics, proteomics, and transcriptomics.
Apoptosis by dietary agents for prevention and treatment of prostate cancer
Khan, Naghma; Adhami, Vaqar Mustafa; Mukhtar, Hasan
2010-01-01
Accumulating data clearly indicate that induction of apoptosis is an important event for chemoprevention of cancer by naturally occurring dietary agents. In mammalian cells, apoptosis has been divided into two major pathways: the extrinsic pathway, activated by pro-apoptotic receptor signals at the cellular surface; and the intrinsic pathway, which involves the disruption of mitochondrial membrane integrity. This process is strictly controlled in response to integrity of pro-death signaling and plays critical roles in development, maintenance of homeostasis, and host defense in multicellular organisms. For chemoprevention studies, prostate cancer (PCa) represents an ideal disease due to its long latency, its high incidence, tumor marker availability, and identifiable preneoplastic lesions and risk groups. In this article, we highlight the studies of various apoptosis-inducing dietary compounds for prevention of PCa in vitro in cell culture, in preclinical studies in animals, and in human clinical trials. PMID:19926708
Wise retained in the endoplasmic reticulum inhibits Wnt signaling by reducing cell surface LRP6.
Guidato, Sonia; Itasaki, Nobue
2007-10-15
The Wnt signaling pathway is tightly regulated by extracellular and intracellular modulators. Wise was isolated as a secreted protein capable of interacting with the Wnt co-receptor LRP6. Studies in Xenopus embryos revealed that Wise either enhances or inhibits the Wnt pathway depending on the cellular context. Here we show that the cellular localization of Wise has distinct effects on the Wnt pathway readout. While secreted Wise either synergizes or inhibits the Wnt signals depending on the partner ligand, ER-retained Wise consistently blocks the Wnt pathway. ER-retained Wise reduces LRP6 on the cell surface, making cells less susceptible to the Wnt signal. This study provides a cellular mechanism for the action of Wise and introduces the modulation of cellular susceptibility to Wnt signals as a novel mechanism of the regulation of the Wnt pathway.
Shimizu, Satoya; Tsukada, Jun; Sugimoto, Takashi; Kikkawa, Naoko; Sasaki, Keita; Chazono, Hideaki; Hanazawa, Toyoyuki; Okamoto, Yoshitaka; Seki, Naohiko
2008-10-15
Distant metastasis is a major factor associated with poor prognosis in head and neck squamous cell carcinomas (HNSCC), but little is known of its molecular mechanisms. New markers that predict clinical outcome, in particular the ability of primary tumors to develop metastatic tumors, are urgently needed. Based on a genome-wide gene expression analysis using clinical specimens of HNSCC, we narrowed our focus to the analysis of the neurotensin (NTS) and neurotensin receptor 1 (NTSR1) oncogenic signal pathways. Kaplan-Meier curves and log rank tests revealed that high mRNA expression levels of NTS and NTSR1 had a significant adverse effect on metastasis-free survival rate, suggesting a contribution of this pathway in HNSCC cancer progression. In HNSCC cells, which expressed NTSR1, a NTS agonist promoted cellular invasion, migration and induction of several mRNAs, such as interleukin 8 and matrix metalloproteinase 1 transcripts. In addition, knock down of NTSR1 expression with small interfering RNAs resulted in reduction of cellular invasion and migration in HNSCC cell lines. Our findings suggest a critical role for the NTS and NTSR1 oncogenic pathways in invasion and migration of HNSCC cells during the metastatic process. Our study raises the possibility that NTS and NTSR1 could be a useful predictive marker of poor prognosis in patients with HNSCC and a molecular therapeutic target in antimetastatic strategies for HNSCCs.
Ivashkiv, Lionel B; Hu, Xiaoyu
2004-01-01
A variety of cytokines and growth factors use the Janus kinase (Jak)–STAT signaling pathway to transmit extracellular signals to the nucleus. STATs (signal transducers and activators of transcription) are latent cytoplasmic transcription factors. There are seven mammalian STATs and they have critical, nonredundant roles in mediating cellular transcriptional responses to cytokines. The physiological roles of STATs have been elucidated by analysis of mice rendered deficient in STAT genes. STAT activation is regulated and can be modulated in a positive or negative fashion; it can be reprogrammed to drive different cellular responses. Several auto-regulatory and signaling crosstalk mechanisms for regulating Jak–STAT signaling have been described. Understanding and manipulation of the function of STATs will help in the development of therapeutic strategies for diseases that are regulated by cytokines. PMID:15225360
The Role of Mitophagy in Innate Immunity
Gkikas, Ilias; Palikaras, Konstantinos; Tavernarakis, Nektarios
2018-01-01
Mitochondria are cellular organelles essential for multiple biological processes, including energy production, metabolites biosynthesis, cell death, and immunological responses among others. Recent advances in the field of immunology research reveal the pivotal role of energy metabolism in innate immune cells fate and function. Therefore, the maintenance of mitochondrial network integrity and activity is a prerequisite for immune system homeostasis. Mitochondrial selective autophagy, known as mitophagy, surveils mitochondrial population eliminating superfluous and/or impaired organelles and mediating cellular survival and viability in response to injury/trauma and infection. Defective removal of damaged mitochondria leads to hyperactivation of inflammatory signaling pathways and subsequently to chronic systemic inflammation and development of inflammatory diseases. Here, we review the molecular mechanisms of mitophagy and highlight its critical role in the innate immune system homeostasis.
Tu, Chun; Ortega-Cava, Cesar F; Winograd, Paul; Stanton, Marissa Jo; Reddi, Alagarsamy Lakku; Dodge, Ingrid; Arya, Ranjana; Dimri, Manjari; Clubb, Robert J; Naramura, Mayumi; Wagner, Kay-Uwe; Band, Vimla; Band, Hamid
2010-09-14
Active Src localization at focal adhesions (FAs) is essential for cell migration. How this pool is linked mechanistically to the large pool of Src at late endosomes (LEs)/lysosomes (LY) is not well understood. Here, we used inducible Tsg101 gene deletion, TSG101 knockdown, and dominant-negative VPS4 expression to demonstrate that the localization of activated cellular Src and viral Src at FAs requires the endosomal-sorting complexes required for transport (ESCRT) pathway. Tsg101 deletion also led to impaired Src-dependent activation of STAT3 and focal adhesion kinase and reduced cell migration. Impairment of the ESCRT pathway or Rab7 function led to the accumulation of active Src at aberrant LE/LY compartments followed by its loss. Analyses using fluorescence recovery after photo-bleaching show that dynamic mobility of Src in endosomes is ESCRT pathway-dependent. These results reveal a critical role for an ESCRT pathway-dependent LE/LY trafficking step in Src function by promoting localization of active Src to FAs.
Matrix Rigidity Regulates Cancer Cell Growth by Modulating Cellular Metabolism and Protein Synthesis
Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo R.; Jeffery, Erin D.; Fox, Jay W.; Blackman, Brett R.; Tschumperlin, Daniel J.; Papin, Jason A.; Parsons, J. Thomas
2012-01-01
Background Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150–300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites. PMID:22623999
Karayazi Atici, Ödül; Urbanska, Anna; Gopinathan, Sesha Gopal; Boutillon, Florence; Goffin, Vincent; Shemanko, Carrie S
2018-02-01
Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents. Copyright © 2018 Endocrine Society.
NAD and the aging process: Role in life, death and everything in between.
Chini, Claudia C S; Tarragó, Mariana G; Chini, Eduardo N
2017-11-05
Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been described to be a cofactor in electron transfer during oxidation-reduction reactions. In addition to participating in these reactions, NAD has also been shown to play a key role in cell signaling, regulating several pathways from intracellular calcium transients to the epigenetic status of chromatin. Thus, NAD is a molecule that provides an important link between signaling and metabolism, and serves as a key molecule in cellular metabolic sensoring pathways. Importantly, it has now been clearly demonstrated that cellular NAD levels decline during chronological aging. This decline appears to play a crucial role in the development of metabolic dysfunction and age-related diseases. In this review we will discuss the molecular mechanisms responsible for the decrease in NAD levels during aging. Since other reviews on this subject have been recently published, we will concentrate on presenting a critical appraisal of the current status of the literature and will highlight some controversial topics in the field. In particular, we will discuss the potential role of the NADase CD38 as a driver of age-related NAD decline. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The Salt Overly Sensitive (SOS) pathway: established and emerging roles.
Ji, Hongtao; Pardo, José M; Batelli, Giorgia; Van Oosten, Michael J; Bressan, Ray A; Li, Xia
2013-03-01
Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterogenous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.
Mechanisms of DNA Damage Response to Targeted Irradiation in Organotypic 3D Skin Cultures
Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M.; Schettino, Giuseppe
2014-01-01
DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255
Length of intact plasma membrane determines the diffusion properties of cellular water.
Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi
2016-01-11
Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = -0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death.
Length of intact plasma membrane determines the diffusion properties of cellular water
Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi
2016-01-01
Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = −0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death. PMID:26750342
Pelletier, Simon J.
2015-01-01
Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system. PMID:25522391
Antioxidant responses and cellular adjustments to oxidative stress.
Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago
2015-12-01
Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Yang; Ramanathan, Arvind; Glover, Karen
BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 angstrom sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron electron resonance electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1 domains.more » Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Lastly, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Yang; Ramanathan, Arvind; Glover, Karen
BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here in this study, we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 Å sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron–electron resonance–electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1more » domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Finally, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder-to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.« less
Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells.
Ah-Koon, Laurent; Lesage, Denis; Lemadre, Elodie; Souissi, Inès; Fagard, Remi; Varin-Blank, Nadine; Fabre, Emmanuelle E; Schischmanoff, Olivier
2016-10-01
The SN 1 alkylating agents activate the mismatch repair system leading to delayed G2 /M cell cycle arrest and DNA repair with subsequent survival or cell death. STAT1, an anti-proliferative and pro-apoptotic transcription factor is known to potentiate p53 and to affect DNA-damage cellular response. We studied whether STAT1 may modulate cell fate following activation of the mismatch repair system upon exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Using STAT1-proficient or -deficient cell lines, we found that STAT1 is required for: (i) reduction in the extent of DNA lesions, (ii) rapid phosphorylation of T68-CHK2 and of S15-p53, (iii) progression through the G2 /M checkpoint and (iv) long-term survival following treatment with MNNG. Presence of STAT1 is critical for the formation of a p53-DNA complex comprising: STAT1, c-Abl and MLH1 following exposure to MNNG. Importantly, presence of STAT1 allows recruitment of c-Abl to p53-DNA complex and links c-Abl tyrosine kinase activity to MNNG-toxicity. Thus, our data highlight the important modulatory role of STAT1 in the signalling pathway activated by the mismatch repair system. This ability of STAT1 to favour resistance to MNNG indicates the targeting of STAT1 pathway as a therapeutic option for enhancing the efficacy of SN1 alkylating agent-based chemotherapy. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting.
Ciuffreda, Ludovica; Falcone, Italia; Incani, Ursula Cesta; Del Curatolo, Anais; Conciatori, Fabiana; Matteoni, Silvia; Vari, Sabrina; Vaccaro, Vanja; Cognetti, Francesco; Milella, Michele
2014-09-01
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a non-redundant lipid phosphatase that restrains and fine tunes the phosphatidylinositol-3-kinase (PI3K) signaling pathway. PTEN is involved in inherited syndromes, which predispose to different types of cancers and is among the most frequently inactivated tumor suppressor genes in sporadic cancers. Indeed, loss of PTEN function occurs in a wide spectrum of human cancers through a variety of mechanisms, including mutations, deletions, transcriptional silencing, or protein instability. PTEN prevents tumorigenesis through multiple mechanisms and regulates a plethora of cellular processes, including survival, proliferation, energy metabolism and cellular architecture. Moreover, recent studies have demonstrated that PTEN is able to exit, exist, and function outside the cell, allowing for inhibition of the PI3K pathway in neighboring cells in a paracrine fashion. Most recently, studies have shown that PTEN is also critical for stem cell maintenance and that PTEN loss can lead to the emergence and proliferation of cancer stem cell (CSC) clones. Depending on the cellular and tissue context of origin, PTEN deletion may result in increased self-renewal capacity or normal stem cell exhaustion and PTEN-defìcient stem and progenitor cells have been reported in prostate, lung, intestinal, and pancreatic tissues before tumor formation; moreover, reversible or irreversible PTEN loss is frequently observed in CSC from a variety of solid and hematologic malignancies, where it may contribute to the functional phenotype of CSC. In this review, we will focus on the role of PTEN expression and function and downstream pathway activation in cancer stem cell biology and regulation of the tumorigenic potential; the emerging role of PTEN in mediating the crosstalk between the PI3K and MAPK pathways will also be discussed, together with prospects for the therapeutic targeting of tumors lacking PTEN expression. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chudasama, Vaishali L.; Ovacik, Meric A.; Abernethy, Darrell R.
2015-01-01
Systems models of biological networks show promise for informing drug target selection/qualification, identifying lead compounds and factors regulating disease progression, rationalizing combinatorial regimens, and explaining sources of intersubject variability and adverse drug reactions. However, most models of biological systems are qualitative and are not easily coupled with dynamical models of drug exposure-response relationships. In this proof-of-concept study, logic-based modeling of signal transduction pathways in U266 multiple myeloma (MM) cells is used to guide the development of a simple dynamical model linking bortezomib exposure to cellular outcomes. Bortezomib is a commonly used first-line agent in MM treatment; however, knowledge of the signal transduction pathways regulating bortezomib-mediated cell cytotoxicity is incomplete. A Boolean network model of 66 nodes was constructed that includes major survival and apoptotic pathways and was updated using responses to several chemical probes. Simulated responses to bortezomib were in good agreement with experimental data, and a reduction algorithm was used to identify key signaling proteins. Bortezomib-mediated apoptosis was not associated with suppression of nuclear factor κB (NFκB) protein inhibition in this cell line, which contradicts a major hypothesis of bortezomib pharmacodynamics. A pharmacodynamic model was developed that included three critical proteins (phospho-NFκB, BclxL, and cleaved poly (ADP ribose) polymerase). Model-fitted protein dynamics and cell proliferation profiles agreed with experimental data, and the model-predicted IC50 (3.5 nM) is comparable to the experimental value (1.5 nM). The cell-based pharmacodynamic model successfully links bortezomib exposure to MM cellular proliferation via protein dynamics, and this model may show utility in exploring bortezomib-based combination regimens. PMID:26163548
A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic γ-Irradiation
Sasatani, Megumi; Iizuka, Daisuke; Masuda, Yuji; Inaba, Toshiya; Suzuki, Keiji; Ootsuyama, Akira; Umata, Toshiyuki; Kamiya, Kenji; Suzuki, Fumio
2014-01-01
Different levels or types of DNA damage activate distinct signaling pathways that elicit various cellular responses, including cell-cycle arrest, DNA repair, senescence, and apoptosis. Whereas a range of DNA-damage responses have been characterized, mechanisms underlying subsequent cell-fate decision remain elusive. Here we exposed cultured cells and mice to different doses and dose rates of γ-irradiation, which revealed cell-type-specific sensitivities to chronic, but not acute, γ-irradiation. Among tested cell types, human fibroblasts were associated with the highest levels of growth inhibition in response to chronic γ-irradiation. In this context, fibroblasts exhibited a reversible G1 cell-cycle arrest or an irreversible senescence-like growth arrest, depending on the irradiation dose rate or the rate of DNA damage. Remarkably, when the same dose of γ-irradiation was delivered chronically or acutely, chronic delivery induced considerably more cellular senescence. A similar effect was observed with primary cells isolated from irradiated mice. We demonstrate a critical role for the ataxia telangiectasia mutated (ATM)/tumor protein p53 (TP53)/p21 pathway in regulating DNA-damage-associated cell fate. Indeed, blocking the ATM/TP53/p21 pathway deregulated DNA damage responses, leading to micronucleus formation in chronically irradiated cells. Together these results provide insights into the mechanisms governing cell-fate determination in response to different rates of DNA damage. PMID:25093836
Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang
2016-01-01
Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence.
Zhang, Ping-Xia; Murray, Thomas S.; Villella, Valeria Rachela; Ferrari, Eleonora; Esposito, Speranza; D'Souza, Anthony; Raia, Valeria; Maiuri, Luigi; Krause, Diane S.; Egan, Marie E.; Bruscia, Emanuela M.
2013-01-01
We have previously reported that TLR4 signaling is increased in lipopolysaccharide (LPS) -stimulated Cystic Fibrosis (CF) macrophages (MΦs), contributing to the robust production of pro-inflammatory cytokines. The heme oxygenase (HO-1)/carbon monoxide (CO) pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. Here, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules (CORM2)enhancesCAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations reestablished HO-1 and CAV-1 cell surface localization in CF MΦ's. Consistent with restoration of HO-1/CAV-1 negative regulation of TLR4 signaling, genetic or pharmacological (CORM2)-induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counter-regulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1-dependent mechanism, exacerbating the CF MΦ's response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease. PMID:23606537
Emerging role of Hippo signalling pathway in bladder cancer.
Xia, Jianling; Zeng, Ming; Zhu, Hua; Chen, Xiangjian; Weng, Zhiliang; Li, Shi
2018-01-01
Bladder cancer (BC) is one of the most common cancers worldwide with a high progression rate and poor prognosis. The Hippo signalling pathway is a conserved pathway that plays a crucial role in cellular proliferation, differentiation and apoptosis. Furthermore, dysregulation and/or malfunction of the Hippo pathway is common in various human tumours, including BC. In this review, an overview of the Hippo pathway in BC and other cancers is presented. We focus on recent data regarding the Hippo pathway, its network and the regulation of the downstream co-effectors YAP1/TAZ. The core components of the Hippo pathway, which induce BC stemness acquisition, metastasis and chemoresistance, will be emphasized. Additional research on the Hippo pathway will advance our understanding of the mechanism of BC as well as the development and progression of other cancers and may be exploited therapeutically. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Yeger-Lotem, Esti; Riva, Laura; Su, Linhui Julie; Gitler, Aaron D.; Cashikar, Anil; King, Oliver D.; Auluck, Pavan K.; Geddie, Melissa L.; Valastyan, Julie S.; Karger, David R.; Lindquist, Susan; Fraenkel, Ernest
2009-01-01
Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens, yet the functional roles of the genes identified by these assays often remain enigmatic. By comparing the results of these two assays across various cellular responses, we found that they are consistently distinct. Moreover, genetic screens tend to identify response regulators, while mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We harnessed this approach to reveal cellular pathways related to alpha-synuclein, a small lipid-binding protein implicated in several neurodegenerative disorders including Parkinson disease. For this we screened an established yeast model for alpha-synuclein toxicity to identify genes that when overexpressed alter cellular survival. Application of our algorithm to these data and data from mRNA profiling provided functional explanations for many of these genes and revealed novel relations between alpha-synuclein toxicity and basic cellular pathways. PMID:19234470
Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hag Dong; Jang, Chang-Young; Choe, Jeong Min
2012-06-01
Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that canmore » reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.« less
Chemical modulation of glycerolipid signaling and metabolic pathways
Scott, Sarah A.; Mathews, Thomas P.; Ivanova, Pavlina T.; Lindsley, Craig W.; Brown, H. Alex
2014-01-01
Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields—ranging from neuroscience and cancer to diabetes and obesity—have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. PMID:24440821
The landscape of viral proteomics and its potential to impact human health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxford, Kristie L.; Wendler, Jason P.; McDermott, Jason E.
2016-05-06
Translating the intimate discourse between viruses and their host cells during infection is a challenging but critical task for development of antiviral interventions and diagnostics. Viruses commandeer cellular processes at every step of their life cycle, altering expression of genes and proteins. Advances in mass spectrometry-based proteomic technologies are enhancing studies of viral pathogenesis by identifying virus-induced changes in the protein repertoire of infected cells or extracellular fluids. Interpretation of proteomics results using knowledge of cellular pathways and networks leads to identification of proteins that influence a range of infection processes, thereby focusing efforts for clinical diagnoses and therapeutics development.more » Herein we discuss applications of global proteomic studies of viral infections with the goal of providing a basis for improved studies that will benefit community-wide data integration and interpretation.« less
Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species
Harrison, David G.
2014-01-01
Abstract Significance: Mitochondrial and cellular reactive oxygen species (ROS) play important roles in both physiological and pathological processes. Different ROS, such as superoxide (O2•−), hydrogen peroxide, and peroxynitrite (ONOO•−), stimulate distinct cell-signaling pathways and lead to diverse outcomes depending on their amount and subcellular localization. A variety of methods have been developed for ROS detection; however, many of these methods are not specific, do not allow subcellular localization, and can produce artifacts. In this review, we will critically analyze ROS detection and present advantages and the shortcomings of several available methods. Recent Advances: In the past decade, a number of new fluorescent probes, electron-spin resonance approaches, and immunoassays have been developed. These new state-of-the-art methods provide improved selectivity and subcellular resolution for ROS detection. Critical Issues: Although new methods for HPLC superoxide detection, application of fluorescent boronate-containing probes, use of cell-targeted hydroxylamine spin probes, and immunospin trapping have been available for several years, there has been lack of translation of these into biomedical research, limiting their widespread use. Future Directions: Additional studies to translate these new technologies from the test tube to physiological applications are needed and could lead to a wider application of these approaches to study mitochondrial and cellular ROS. Antioxid. Redox Signal. 20, 372–382. PMID:22978713
Insights into the Sigma-1 receptor chaperone’s cellular functions: a microarray report
Tsai, Shang-Yi; Rothman, Richard Kyle; Su, Tsung-Ping
2013-01-01
We previously demonstrated that Sig-1Rs are critical regulators in neuronal morphogenesis and development via the regulation of oxidative stress and mitochondrial functions. In the present study, we sought to identify pathways and genes that are affected by Sig-1R. Gene expression profiles were examined in rat hippocampal neurons that had been cultured for18 days in vitro (DIV). The cells were transduced with AAV siRNA targeting Sig-1R on DIV 10 for 7 days, followed by gene expression analysis using a rat genome cDNA array. The gene array results indicated that Sig-1R knockdown hampered cellular functions including steroid biogenesis, protein ubiquitination, actin cytoskeleton network, and Nrf-2 mediated oxidative stress. Many of the cellular components important for actin polymerization and synapse plasticity, including F-actin capping protein and neurofilaments, were significantly changed in AAV-siSig-1R neurons. Further, cytochrome c was reduced in AAV-Sig-1R neurons whereas free-radical generating enzymes including cytochrome p450 and cytochrome b-245 were increased. The microarray results also suggest that Sig-1Rs may regulate genes that are involved in the pathogenesis of many CNS diseases including Alzheimer’s disease and Parkinson’s disease. These data further confirmed that Sig-1Rs play critical roles in the CNS and thus these findings may aid in future development of therapeutic treatments targeting neurodegenerative disorders. PMID:21905129
Denosumab for bone diseases: translating bone biology into targeted therapy.
Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C
2011-12-01
Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.
Carabetta, Valerie J.; Greco, Todd M.; Tanner, Andrew W.
2016-01-01
ABSTRACT Nε-Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. IMPORTANCE The past decade highlighted Nε-lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis. To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell shape-determining protein. Our findings led us to propose a role for MreB acetylation in controlling cell width by restricting cell wall growth. PMID:27376153
Carabetta, Valerie J; Greco, Todd M; Tanner, Andrew W; Cristea, Ileana M; Dubnau, David
2016-05-01
N ε -Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. The past decade highlighted N ε -lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis . To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell shape-determining protein. Our findings led us to propose a role for MreB acetylation in controlling cell width by restricting cell wall growth.
Greenwald, Jess D; Shafritz, Keith M
2018-01-01
Chronic pain can result from many pain syndromes including complex regional pain syndrome (CRPS), phantom limb pain and chronic low back pain, among others. On a molecular level, chronic pain syndromes arise from hypersensitization within the dorsal horn of the spinal cord, a process known as central sensitization. Central sensitization involves an upregulation of ionotropic and metabotropic glutamate receptors (mGluRs) similar to that of long-term potentiation (LTP). Regions of the brain in which LTP occurs, such as the amygdala and hippocampus, are implicated in fear- and memory-related brain circuity. Chronic pain dramatically influences patient quality of life. Individuals with chronic pain may develop pain-related anxiety and pain-related fear. The syndrome also alters functional connectivity in the default-mode network (DMN) and salience network. On a cellular/molecular level, central sensitization may be reversed through degradative glutamate receptor pathways. This, however, rarely happens. Instead, cortical brain regions may serve in a top-down regulatory capacity for the maintenance or alleviation of pain. Specifically, the medial prefrontal cortex (mPFC), which plays a critical role in fear-related brain circuits, the DMN, and salience network may be the driving forces in this process. On a cellular level, the mPFC may form new neural circuits through LTP that may cause extinction of pre-existing pain pathways found within fear-related brain circuits, the DMN, and salience network. In order to promote new LTP connections between the mPFC and other key brain structures, such as the amygdala and insula, we propose a holistic rehabilitation program including cognitive behavioral therapy (CBT) and revolving around: (1) cognitive reappraisals; (2) mindfulness meditation; and (3) functional rehabilitation. Unlike current medical interventions focusing upon pain-relieving medications, we do not believe that chronic pain treatment should focus on reversing the effects of central sensitization. Instead, we propose here that it is critical to focus on non-invasive efforts to promote new neural circuits originating from the mPFC.
Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer
Bruntz, Ronald C.; Lindsley, Craig W.
2014-01-01
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein–coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. PMID:25244928
Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.
Bruntz, Ronald C; Lindsley, Craig W; Brown, H Alex
2014-10-01
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Wang, Wei; Wu, Jiandong; Zhang, Xiaoshuang; Hao, Cui; Zhao, Xiaoliang; Jiao, Guangling; Shan, Xindi; Tai, Wenjing; Yu, Guangli
2017-01-17
Development of novel anti-influenza A virus (IAV) drugs with high efficiency and low toxicity is critical for preparedness against influenza outbreaks. Herein, we investigated the anti-IAV activities and mechanisms of fucoidan in vitro and in vivo. The results showed that a fucoidan KW derived from brown algae Kjellmaniella crassifolia effectively blocked IAV infection in vitro with low toxicity. KW possessed broad anti-IAV spectrum and low tendency of induction of viral resistance, superior to the anti-IAV drug amantadine. KW was capable of inactivating virus particles before infection and blocked some stages after adsorption. KW could bind to viral neuraminidase (NA) and inhibit the activity of NA to block the release of IAV. KW also interfered with the activation of EGFR, PKCα, NF-κB, and Akt, and inhibited both IAV endocytosis and EGFR internalization in IAV-infected cells, suggesting that KW may also inhibit cellular EGFR pathway. Moreover, intranasal administration of KW markedly improved survival and decreased viral titers in IAV-infected mice. Therefore, fucoidan KW has the potential to be developed into a novel nasal drop or spray for prevention and treatment of influenza in the future.
Wang, Wei; Wu, Jiandong; Zhang, Xiaoshuang; Hao, Cui; Zhao, Xiaoliang; Jiao, Guangling; Shan, Xindi; Tai, Wenjing; Yu, Guangli
2017-01-01
Development of novel anti-influenza A virus (IAV) drugs with high efficiency and low toxicity is critical for preparedness against influenza outbreaks. Herein, we investigated the anti-IAV activities and mechanisms of fucoidan in vitro and in vivo. The results showed that a fucoidan KW derived from brown algae Kjellmaniella crassifolia effectively blocked IAV infection in vitro with low toxicity. KW possessed broad anti-IAV spectrum and low tendency of induction of viral resistance, superior to the anti-IAV drug amantadine. KW was capable of inactivating virus particles before infection and blocked some stages after adsorption. KW could bind to viral neuraminidase (NA) and inhibit the activity of NA to block the release of IAV. KW also interfered with the activation of EGFR, PKCα, NF-κB, and Akt, and inhibited both IAV endocytosis and EGFR internalization in IAV-infected cells, suggesting that KW may also inhibit cellular EGFR pathway. Moreover, intranasal administration of KW markedly improved survival and decreased viral titers in IAV-infected mice. Therefore, fucoidan KW has the potential to be developed into a novel nasal drop or spray for prevention and treatment of influenza in the future. PMID:28094330
Sleep- and circadian rhythm-associated pathways as therapeutic targets in bipolar disorder.
Bellivier, Frank; Geoffroy, Pierre-Alexis; Etain, Bruno; Scott, Jan
2015-06-01
Disruptions in sleep and circadian rhythms are observed in individuals with bipolar disorders (BD), both during acute mood episodes and remission. Such abnormalities may relate to dysfunction of the molecular circadian clock and could offer a target for new drugs. This review focuses on clinical, actigraphic, biochemical and genetic biomarkers of BDs, as well as animal and cellular models, and highlights that sleep and circadian rhythm disturbances are closely linked to the susceptibility to BDs and vulnerability to mood relapses. As lithium is likely to act as a synchronizer and stabilizer of circadian rhythms, we will review pharmacogenetic studies testing circadian gene polymorphisms and prophylactic response to lithium. Interventions such as sleep deprivation, light therapy and psychological therapies may also target sleep and circadian disruptions in BDs efficiently for treatment and prevention of bipolar depression. We suggest that future research should clarify the associations between sleep and circadian rhythm disturbances and alterations of the molecular clock in order to identify critical targets within the circadian pathway. The investigation of such targets using human cellular models or animal models combined with 'omics' approaches are crucial steps for new drug development.
Pathways to Aging: The Mitochondrion at the Intersection of Biological and Psychosocial Sciences
Picard, Martin
2011-01-01
Compelling evidence suggests that both biological and psychosocial factors impact the process of aging. However, our understanding of the dynamic interplay among biological and psychosocial factors across the life course is still fragmentary. For example, it needs to be established how the interaction of individual factors (e.g., genetic and epigenetic endowment and personality), behavioral factors (e.g., physical activity, diet, and stress management), and psychosocial experiences (e.g., social support, well-being, socioeconomic status, and marriage) in perinatal, childhood, and adulthood influence health across the aging continuum. This paper aims to outline potential intersection points serving as an interface between biological and psychosocial factors, with an emphasis on the mitochondrion. Mitochondria are cellular organelles which play a critical role in cellular senescence. Both chronic exposure to psychosocial stress and genetic-based mitochondrial dysfunction have strikingly similar biological consequences; both predispose individuals to adverse age-related health disorders and early mortality. Exploring the interactive nature of the factors resulting in pathways to normal healthy aging, as well as those leading to morbidity and early mortality, will continue to enhance our ability to translate research into effective practices that can be implemented throughout the life course to optimise the aging process. PMID:21961065
Pathways to aging: the mitochondrion at the intersection of biological and psychosocial sciences.
Picard, Martin
2011-01-01
Compelling evidence suggests that both biological and psychosocial factors impact the process of aging. However, our understanding of the dynamic interplay among biological and psychosocial factors across the life course is still fragmentary. For example, it needs to be established how the interaction of individual factors (e.g., genetic and epigenetic endowment and personality), behavioral factors (e.g., physical activity, diet, and stress management), and psychosocial experiences (e.g., social support, well-being, socioeconomic status, and marriage) in perinatal, childhood, and adulthood influence health across the aging continuum. This paper aims to outline potential intersection points serving as an interface between biological and psychosocial factors, with an emphasis on the mitochondrion. Mitochondria are cellular organelles which play a critical role in cellular senescence. Both chronic exposure to psychosocial stress and genetic-based mitochondrial dysfunction have strikingly similar biological consequences; both predispose individuals to adverse age-related health disorders and early mortality. Exploring the interactive nature of the factors resulting in pathways to normal healthy aging, as well as those leading to morbidity and early mortality, will continue to enhance our ability to translate research into effective practices that can be implemented throughout the life course to optimise the aging process.
MOF maintains transcriptional programs regulating cellular stress response
Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A
2016-01-01
MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537
Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.
2016-01-01
In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737
MOF maintains transcriptional programs regulating cellular stress response.
Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A
2016-05-01
MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.
Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism.
Rahman, Shafiqur; Engleman, Eric A; Bell, Richard L
2016-01-01
Alcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions. Copyright © 2016. Published by Elsevier Inc.
Kupzig, Sabine; Walker, Simon A; Cullen, Peter J
2005-05-24
Ras proteins are binary switches that, by cycling through inactive GDP- and active GTP-bound conformations, regulate multiple cellular signaling pathways, including those that control growth and differentiation. For some time, it has been known that receptor-mediated increases in the concentration of intracellular free calcium ([Ca(2+)](i)) can modulate Ras activation. Increases in [Ca(2+)](i) often occur as repetitive Ca(2+) spikes or oscillations. Induced by electrical or receptor stimuli, these repetitive Ca(2+) oscillations increase in frequency with the amplitude of receptor stimuli, a phenomenon critical for the induction of selective cellular functions. Here, we show that Ca(2+) oscillations are optimized for Ca(2+)-mediated activation of Ras and signaling through the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cascade. We present additional evidence that Ca(2+) oscillations reduce the effective Ca(2+) threshold for the activation of Ras and that the oscillatory frequency is optimized for activation of Ras and the ERK/MAPK pathway. Our results describe a hitherto unrecognized link between complex Ca(2+) signals and the modulation of the Ras/ERK/MAPK signaling cascade.
Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism.
Ardestani, Amin; Lupse, Blaz; Maedler, Kathrin
2018-05-05
The evolutionarily conserved Hippo pathway is a key regulator of organ size and tissue homeostasis. Its dysregulation is linked to multiple pathological disorders. In addition to regulating development and growth, recent studies show that Hippo pathway components such as MST1/2 and LATS1/2 kinases, as well as YAP/TAZ transcriptional coactivators, are regulated by metabolic pathways and that the Hippo pathway controls metabolic processes at the cellular and organismal levels in physiological and metabolic disease states such as obesity, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), cardiovascular disorders, and cancer. In this review we summarize the connection between key Hippo components and metabolism, and how this interplay regulates cellular metabolism and metabolic pathways. The emerging function of Hippo in the regulation of metabolic homeostasis under physiological and pathological conditions is highlighted. Copyright © 2018 Elsevier Ltd. All rights reserved.
Oncogenic Viruses and Tumor Glucose Metabolism: Like Kids in a Candy Store
Noch, Evan; Khalili, Kamel
2011-01-01
Oncogenic viruses represent a significant public health burden in light of the multitude of malignancies resulting from chronic or spontaneous viral infection and transformation. Though many of the molecular signaling pathways underlying virus-mediated cellular transformation are known, the impact of these viruses on metabolic signaling and phenotype within proliferating tumor cells is less well understood. Whether the interaction of oncogenic viruses with metabolic signaling pathways involves enhanced glucose uptake and glycolysis, both hallmark features of transformed cells, or dysregulation of molecular pathways regulating oxidative stress, viruses are adept at facilitating tumor expansion. Through their effects on cell proliferation pathways, such as the PI3K and MAPK pathways, the cell cycle regulatory proteins, p53 and ATM, and the cell stress response proteins, HIF-1α and AMPK, viruses exert control over critical metabolic signaling cascades. Additionally, oncogenic viruses modulate the tumor metabolomic profile through direct and indirect interaction with glucose transporters, such as GLUT1, and specific glycolytic enzymes, including pyruvate kinase, glucose 6-phosphate dehydrogenase, and hexokinase. Through these pathways, oncogenic viruses alter the phenotypic characteristics of transformed cells and their methods of energy utilization, and it may be possible to develop novel anti-glycolytic therapies to target these dysregulated pathways in virus-derived malignancies. PMID:22234809
Wang, Feifei; Chen, Xiaoqing; Zhang, Xiaoqing; Ma, Lan
2008-08-01
Agonist-induced phosphorylation, internalization, and intracellular trafficking of G protein-coupled receptors are critical in regulating both cellular responsiveness and signal transduction. The current study investigated the role of receptor phosphorylation state in regulation of agonist-induced internalization and intracellular trafficking of mu-opioid receptor (MOR). Our results showed that after agonist stimulation, the recycle of a mutant MOR that lacks the C-terminal residues after Asn(362) (MOR362T) was greatly decreased, whereas a C-terminal phosphorylation sites-mutated MOR (MOR3A), which is deficient in agonist-induced phosphorylation recycled back to the membrane at a level comparable to that of the wild-type receptor, however, interestingly at a slower rate. Inhibition of functions of either Rab4 or Rab11 by dominant-negative mutants and small interfering RNA both significantly impaired the recycling of the wild-type MOR, whereas the recycling of the phosphorylation-deficient mutant was only inhibited by the dominant-negative mutant and small interfering RNA of Rab11, suggesting that the recycling of nonphosphorylated MOR is exclusively via Rab11-mediated pathway. Furthermore, phosphorylated MOR was observed accumulated in Rab5- and Rab4-, but not Rab11-positive vesicles. Our data indicate that both phosphorylated and nonphosphorylated MOR internalize via Rab5-dependent pathway after agonist stimulation, and the phosphorylated and nonphosphorylated MORs recycle through distinct vesicular trafficking pathways mediated by Rab4 and Rab11, respectively, which may ultimately lead to differential cellular responsiveness or downstream signaling.
Bal-Price, Anna; Lein, Pamela J.; Keil, Kimberly P.; Sethi, Sunjay; Shafer, Timothy; Barenys, Marta; Fritsche, Ellen; Sachana, Magdalini; Meek, M.E. (Bette)
2016-01-01
The Adverse Outcome Pathway (AOP) concept has recently been proposed to support a paradigm shift in regulatory toxicology testing and risk assessment. This concept is similar to the Mode of Action (MOA), in that it describes a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis for predicting effects of structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed. A variety of cellular and molecular processes are known to be critical for normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of the principles of MOA and AOPs, examples of potential or putative adverse outcome pathways specific for developmental or adult neurotoxicity are summarized and aspects of their assessment considered. Their possible application in developing mechanistically informed Integrated Approaches to Testing and Assessment (IATA) is also discussed. PMID:27212452
Axl as a mediator of cellular growth and survival
Axelrod, Haley; Pienta, Kenneth J.
2014-01-01
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context. PMID:25344858
In search of mitochondrial mechanisms: interfield excursions between cell biology and biochemistry.
Bechtel, William; Abrahamsen, Adele
2007-01-01
Developing models of biological mechanisms, such as those involved in respiration in cells, often requires collaborative effort drawing upon techniques developed and information generated in different disciplines. Biochemists in the early decades of the 20th century uncovered all but the most elusive chemical operations involved in cellular respiration, but were unable to align the reaction pathways with particular structures in the cell. During the period 1940-1965 cell biology was emerging as a new discipline and made distinctive contributions to understanding the role of the mitochondrion and its component parts in cellular respiration. In particular, by developing techniques for localizing enzymes or enzyme systems in specific cellular components, cell biologists provided crucial information about the organized structures in which the biochemical reactions occurred. Although the idea that biochemical operations are intimately related to and depend on cell structures was at odds with the then-dominant emphasis on systems of soluble enzymes in biochemistry, a reconceptualization of energetic processes in the 1960s and 1970s made it clear why cell structure was critical to the biochemical account. This paper examines how numerous excursions between biochemistry and cell biology contributed a new understanding of the mechanism of cellular respiration.
Nutrient sensing modulates malaria parasite virulence.
Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T; Grosso, Ana Rita; Modrzynska, Katarzyna K; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M
2017-07-13
The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence.
The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis.
Tsujita, Maristela; Batista, Wagner L; Ogata, Fernando T; Stern, Arnold; Monteiro, Hugo P; Arai, Roberto J
2008-05-16
p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.
The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujita, Maristela; Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, SP; Batista, Wagner L.
2008-05-16
p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras{sup C118S}) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinasesmore » by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.« less
Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle
Dupont, Joëlle; Scaramuzzi, Rex J.
2016-01-01
Data derived principally from peripheral tissues (fat, muscle and liver) show that insulin signals via diverse interconnecting intracellular pathways and that some of the major intersecting points (known as critical nodes) are the IRSs (insulin receptor substrates), PI3K (phosphoinositide kinase)/Akt and MAPK (mitogen-activated protein kinase). Most of these insulin pathways are probably also active in the ovary and their ability to interact with each other and also with follicle-stimulating hormone (FSH) and luteinizing hormone (LH) signalling pathways enables insulin to exert direct modulating influences on ovarian function. The present paper reviews the intracellular actions of insulin and the uptake of glucose by ovarian tissues (granulosa, theca and oocyte) during the oestrous/menstrual cycle of some rodent, primate and ruminant species. Insulin signals through diverse pathways and these are discussed with specific reference to follicular cell types (granulosa, theca and oocyte). The signalling pathways for FSH in granulosa cells and LH in granulosa and theca cells are summarized. The roles of glucose and of insulin-mediated uptake of glucose in folliculogenesis are discussed. It is suggested that glucose in addition to its well-established role of providing energy for cellular function may also have insulin-mediated signalling functions in ovarian cells, involving AMPK (AMP-dependent protein kinase) and/or hexosamine. Potential interactions of insulin signalling with FSH or LH signalling at critical nodes are identified and the available evidence for such interactions in ovarian cells is discussed. Finally the action of the insulin-sensitizing drugs metformin and the thiazolidinedione rosiglitazone on follicular cells is reviewed. PMID:27234585
Liu, Ailing; Wu, Jinxiang; Li, Aijun; Bi, Wenxiang; Liu, Tian; Cao, Liuzhao; Liu, Yahui; Dong, Liang
2016-01-01
Objectives Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence. Methods Human bronchial epithelial cells (16HBE cells) cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS), PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway. Results Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence. Conclusion CSE can induce cellular senescence in human bronchial epithelial cells, and ROS/PI3K/AKT/mTOR signaling pathway may play an important role in this process. C. sinensis can inhibit the CSE-induced senescence. PMID:27555762
The Vitamin Nicotinamide: Translating Nutrition into Clinical Care
Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen
2009-01-01
Nicotinamide, the amide form of vitamin B3 (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyl-transferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs. PMID:19783937
Casás-Selves, Matias; Zhang, Andrew X; Dowling, James E; Hallén, Stefan; Kawatkar, Aarti; Pace, Nicholas J; Denz, Christopher R; Pontz, Timothy; Garahdaghi, Farzin; Cao, Qing; Sabirsh, Alan; Thakur, Kumar; O'Connell, Nichole; Hu, Jun; Cornella-Taracido, Iván; Weerapana, Eranthie; Zinda, Michael; Goodnow, Robert A; Castaldi, M Paola
2017-06-21
Wnt signaling is critical for development, cell proliferation and differentiation, and mutations in this pathway resulting in constitutive signaling have been implicated in various cancers. A pathway screen using a Wnt-dependent reporter identified a chemical series based on a 1,2,3-thiadiazole-5-carboxamide (TDZ) core with sub-micromolar potency. Herein we report a comprehensive mechanism-of-action deconvolution study toward identifying the efficacy target(s) and biological implication of this chemical series involving bottom-up quantitative chemoproteomics, cell biology, and biochemical methods. Through observing the effects of our probes on metabolism and performing confirmatory cellular and biochemical assays, we found that this chemical series inhibits ATP synthesis by uncoupling the mitochondrial potential. Affinity chemoproteomics experiments identified sarco(endo)plasmic reticulum Ca 2+ -dependent ATPase (SERCA2) as a binding partner of the TDZ series, and subsequent validation studies suggest that the TDZ series can act as ionophores through SERCA2 toward Wnt pathway inhibition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Delgado, M E; Dyck, L; Laussmann, M A; Rehm, M
2014-01-01
Autophagic and proteasomal degradation constitute the major cellular proteolysis pathways. Their physiological and pathophysiological adaptation and perturbation modulates the relative abundance of apoptosis-transducing proteins and thereby can positively or negatively adjust cell death susceptibility. In addition to balancing protein expression amounts, components of the autophagic and proteasomal degradation machineries directly interact with and co-regulate apoptosis signal transduction. The influence of autophagic and proteasomal activity on apoptosis susceptibility is now rapidly gaining more attention as a significant modulator of cell death signalling in the context of human health and disease. Here we present a concise and critical overview of the latest knowledge on the molecular interplay between apoptosis signalling, autophagy and proteasomal protein degradation. We highlight that these three pathways constitute an intricate signalling triangle that can govern and modulate cell fate decisions between death and survival. Owing to rapid research progress in recent years, it is now possible to provide detailed insight into the mechanisms of pathway crosstalk, common signalling nodes and the role of multi-functional proteins in co-regulating both protein degradation and cell death. PMID:24457955
New Insights for Oxidative Stress and Diabetes Mellitus
2015-01-01
The release of reactive oxygen species (ROS) and the generation of oxidative stress are considered critical factors for the pathogenesis of diabetes mellitus (DM), a disorder that is growing in prevalence and results in significant economic loss. New therapeutic directions that address the detrimental effects of oxidative stress may be especially warranted to develop effective care for the millions of individuals that currently suffer from DM. The mechanistic target of rapamycin (mTOR), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), and Wnt1 inducible signaling pathway protein 1 (WISP1) are especially justified to be considered treatment targets for DM since these pathways can address the complex relationship between stem cells, trophic factors, impaired glucose tolerance, programmed cell death pathways of apoptosis and autophagy, tissue remodeling, cellular energy homeostasis, and vascular biology that greatly impact the biology and disease progression of DM. The translation and development of these pathways into viable therapies will require detailed understanding of their proliferative nature to maximize clinical efficacy and limit adverse effects that have the potential to lead to unintended consequences. PMID:26064426
Genetic dissection of early endosomal recycling highlights a TORC1-independent role for Rag GTPases
2017-01-01
Endocytosed cell surface membrane proteins rely on recycling pathways for their return to the plasma membrane. Although endosome-to-plasma membrane recycling is critical for many cellular processes, much of the required machinery is unknown. We discovered that yeast has a recycling route from endosomes to the cell surface that functions efficiently after inactivation of the sec7-1 allele of Sec7, which controls transit through the Golgi. A genetic screen based on an engineered synthetic reporter that exclusively follows this pathway revealed that recycling was subject to metabolic control through the Rag GTPases Gtr1 and Gtr2, which work downstream of the exchange factor Vam6. Gtr1 and Gtr2 control the recycling pathway independently of TORC1 regulation through the Gtr1 interactor Ltv1. We further show that the early-endosome recycling route and its control though the Vam6>Gtr1/Gtr2>Ltv1 pathway plays a physiological role in regulating the abundance of amino acid transporters at the cell surface. PMID:28768685
Burkhard, Silja Barbara
2018-01-01
Development of specialized cells and structures in the heart is regulated by spatially -restricted molecular pathways. Disruptions in these pathways can cause severe congenital cardiac malformations or functional defects. To better understand these pathways and how they regulate cardiac development we used tomo-seq, combining high-throughput RNA-sequencing with tissue-sectioning, to establish a genome-wide expression dataset with high spatial resolution for the developing zebrafish heart. Analysis of the dataset revealed over 1100 genes differentially expressed in sub-compartments. Pacemaker cells in the sinoatrial region induce heart contractions, but little is known about the mechanisms underlying their development. Using our transcriptome map, we identified spatially restricted Wnt/β-catenin signaling activity in pacemaker cells, which was controlled by Islet-1 activity. Moreover, Wnt/β-catenin signaling controls heart rate by regulating pacemaker cellular response to parasympathetic stimuli. Thus, this high-resolution transcriptome map incorporating all cell types in the embryonic heart can expose spatially restricted molecular pathways critical for specific cardiac functions. PMID:29400650
Bowman, Shaun M; Piwowar, Amy; Al Dabbous, Mash'el; Vierula, John; Free, Stephen J
2006-03-01
Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal "cell-within-a-cell" phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa.
Endocytosis of glycosylphosphatidylinositol-anchored proteins
2009-01-01
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies. PMID:19832981
Intersection of autophagy with pathways of antigen presentation.
Patterson, Natalie L; Mintern, Justine D
2012-12-01
Traditionally, macroautophagy (autophagy) is viewed as a pathway of cell survival. Autophagy ensures the elimination of damaged or unwanted cytosolic components and provides a source of cellular nutrients during periods of stress. Interestingly, autophagy can also directly intersect with, and impact, other major pathways of cellular function. Here, we will review the contribution of autophagy to pathways of antigen presentation. The autophagy machinery acts to modulate both MHCI and MHCII antigen presentation. As such autophagy is an important participant in pathways that elicit host cell immunity and the elimination of infectious pathogens.
E3 ubiquitin ligase Mule targets β-catenin under conditions of hyperactive Wnt signaling
Dominguez-Brauer, Carmen; Khatun, Rahima; Elia, Andrew J.; Thu, Kelsie L.; Ramachandran, Parameswaran; Baniasadi, Shakiba P.; Hao, Zhenyue; Jones, Lisa D.; Haight, Jillian; Sheng, Yi; Mak, Tak W.
2017-01-01
Wnt signaling, named after the secreted proteins that bind to cell surface receptors to activate the pathway, plays critical roles both in embryonic development and the maintenance of homeostasis in many adult tissues. Two particularly important cellular programs orchestrated by Wnt signaling are proliferation and stem cell self-renewal. Constitutive activation of the Wnt pathway resulting from mutation or improper modulation of pathway components contributes to cancer development in various tissues. Colon cancers frequently bear inactivating mutations of the adenomatous polyposis coli (APC) gene, whose product is an important component of the destruction complex that regulates β-catenin levels. Stabilization and nuclear localization of β-catenin result in the expression of a panel of Wnt target genes. We previously showed that Mule/Huwe1/Arf-BP1 (Mule) controls murine intestinal stem and progenitor cell proliferation by modulating the Wnt pathway via c-Myc. Here we extend our investigation of Mule’s influence on oncogenesis by showing that Mule interacts directly with β-catenin and targets it for degradation under conditions of hyperactive Wnt signaling. Our findings suggest that Mule uses various mechanisms to fine-tune the Wnt pathway and provides multiple safeguards against tumorigenesis. PMID:28137882
E3 ubiquitin ligase Mule targets β-catenin under conditions of hyperactive Wnt signaling.
Dominguez-Brauer, Carmen; Khatun, Rahima; Elia, Andrew J; Thu, Kelsie L; Ramachandran, Parameswaran; Baniasadi, Shakiba P; Hao, Zhenyue; Jones, Lisa D; Haight, Jillian; Sheng, Yi; Mak, Tak W
2017-02-14
Wnt signaling, named after the secreted proteins that bind to cell surface receptors to activate the pathway, plays critical roles both in embryonic development and the maintenance of homeostasis in many adult tissues. Two particularly important cellular programs orchestrated by Wnt signaling are proliferation and stem cell self-renewal. Constitutive activation of the Wnt pathway resulting from mutation or improper modulation of pathway components contributes to cancer development in various tissues. Colon cancers frequently bear inactivating mutations of the adenomatous polyposis coli ( APC ) gene, whose product is an important component of the destruction complex that regulates β-catenin levels. Stabilization and nuclear localization of β-catenin result in the expression of a panel of Wnt target genes. We previously showed that Mule/Huwe1/Arf-BP1 (Mule) controls murine intestinal stem and progenitor cell proliferation by modulating the Wnt pathway via c-Myc. Here we extend our investigation of Mule's influence on oncogenesis by showing that Mule interacts directly with β-catenin and targets it for degradation under conditions of hyperactive Wnt signaling. Our findings suggest that Mule uses various mechanisms to fine-tune the Wnt pathway and provides multiple safeguards against tumorigenesis.
Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L. Felipe
2016-01-01
In the last few years, several reports have proposed that Wnt signaling is a general metabolic regulator, suggesting a role for this pathway in the control of metabolic flux. Wnt signaling is critical for several neuronal functions, but little is known about the correlation between this pathway and energy metabolism. The brain has a high demand for glucose, which is mainly used for energy production. Neurons use energy for highly specific processes that require a high energy level, such as maintaining the electrical potential and synthesizing neurotransmitters. Moreover, an important metabolic impairment has been described in all neurodegenerative disorders. Despite the key role of glucose metabolism in the brain, little is known about the cellular pathways involved in regulating this process. We report here that Wnt5a induces an increase in glucose uptake and glycolytic rate and an increase in the activity of the pentose phosphate pathway; the effects of Wnt5a require the intracellular generation of nitric oxide. Our data suggest that Wnt signaling stimulates neuronal glucose metabolism, an effect that could be important for the reported neuroprotective role of Wnt signaling in neurodegenerative disorders. PMID:27688915
Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L Felipe; Inestrosa, Nibaldo C
In the last few years, several reports have proposed that Wnt signaling is a general metabolic regulator, suggesting a role for this pathway in the control of metabolic flux. Wnt signaling is critical for several neuronal functions, but little is known about the correlation between this pathway and energy metabolism. The brain has a high demand for glucose, which is mainly used for energy production. Neurons use energy for highly specific processes that require a high energy level, such as maintaining the electrical potential and synthesizing neurotransmitters. Moreover, an important metabolic impairment has been described in all neurodegenerative disorders. Despite the key role of glucose metabolism in the brain, little is known about the cellular pathways involved in regulating this process. We report here that Wnt5a induces an increase in glucose uptake and glycolytic rate and an increase in the activity of the pentose phosphate pathway; the effects of Wnt5a require the intracellular generation of nitric oxide. Our data suggest that Wnt signaling stimulates neuronal glucose metabolism, an effect that could be important for the reported neuroprotective role of Wnt signaling in neurodegenerative disorders.
Liu, Song; Lu, Bingwei
2010-12-09
Mutations in PINK1 and Parkin cause familial, early onset Parkinson's disease. In Drosophila melanogaster, PINK1 and Parkin mutants show similar phenotypes, such as swollen and dysfunctional mitochondria, muscle degeneration, energy depletion, and dopaminergic (DA) neuron loss. We previously showed that PINK1 and Parkin genetically interact with the mitochondrial fusion/fission pathway, and PINK1 and Parkin were recently proposed to form a mitochondrial quality control system that involves mitophagy. However, the in vivo relationships among PINK1/Parkin function, mitochondrial fission/fusion, and autophagy remain unclear; and other cellular events critical for PINK1 pathogenesis remain to be identified. Here we show that PINK1 genetically interacted with the protein translation pathway. Enhanced translation through S6K activation significantly exacerbated PINK1 mutant phenotypes, whereas reduction of translation showed suppression. Induction of autophagy by Atg1 overexpression also rescued PINK1 mutant phenotypes, even in the presence of activated S6K. Downregulation of translation and activation of autophagy were already manifested in PINK1 mutant, suggesting that they represent compensatory cellular responses to mitochondrial dysfunction caused by PINK1 inactivation, presumably serving to conserve energy. Interestingly, the enhanced PINK1 mutant phenotype in the presence of activated S6K could be fully rescued by Parkin, apparently in an autophagy-independent manner. Our results reveal complex cellular responses to PINK1 inactivation and suggest novel therapeutic strategies through manipulation of the compensatory responses.
Liu, Song; Lu, Bingwei
2010-01-01
Mutations in PINK1 and Parkin cause familial, early onset Parkinson's disease. In Drosophila melanogaster, PINK1 and Parkin mutants show similar phenotypes, such as swollen and dysfunctional mitochondria, muscle degeneration, energy depletion, and dopaminergic (DA) neuron loss. We previously showed that PINK1 and Parkin genetically interact with the mitochondrial fusion/fission pathway, and PINK1 and Parkin were recently proposed to form a mitochondrial quality control system that involves mitophagy. However, the in vivo relationships among PINK1/Parkin function, mitochondrial fission/fusion, and autophagy remain unclear; and other cellular events critical for PINK1 pathogenesis remain to be identified. Here we show that PINK1 genetically interacted with the protein translation pathway. Enhanced translation through S6K activation significantly exacerbated PINK1 mutant phenotypes, whereas reduction of translation showed suppression. Induction of autophagy by Atg1 overexpression also rescued PINK1 mutant phenotypes, even in the presence of activated S6K. Downregulation of translation and activation of autophagy were already manifested in PINK1 mutant, suggesting that they represent compensatory cellular responses to mitochondrial dysfunction caused by PINK1 inactivation, presumably serving to conserve energy. Interestingly, the enhanced PINK1 mutant phenotype in the presence of activated S6K could be fully rescued by Parkin, apparently in an autophagy-independent manner. Our results reveal complex cellular responses to PINK1 inactivation and suggest novel therapeutic strategies through manipulation of the compensatory responses. PMID:21151574
Inhibition of the Nedd8 system sensitizes cells to DNA Inter-strand crosslinking agents
Kee, Younghoon; Huang, Min; Chang, Sophia; Moreau, Lisa A.; Park, Eunmi; Smith, Peter G.; D’Andrea, Alan D.
2012-01-01
The Fanconi Anemia (FA) pathway is required for repair of DNA interstrand crosslinks (ICLs). FA pathway-deficient cells are hypersensitive to DNA ICL-inducing drugs such as Cisplatin. Conversely, hyperactivation of the FA pathway is a mechanism that may underlie cellular resistance to DNA ICL agents. Modulating FANCD2 monoubiquitination, a key step in the FA pathway, may be an effective therapeutic approach to conferring cellular sensitivity to ICL agents. Here, we show that inhibition of the Nedd8 conjugation system increases cellular sensitivity to DNA ICL-inducing agents. Mechanistically, the Nedd8 inhibition, either by siRNA-mediated knockdown of Nedd8 conjugating enzymes or treatment with a Nedd8 activating enzyme inhibitor MLN4924, suppressed DNA damage-induced FANCD2 monoubiquitination and CHK1 phosphorylation. Our data indicate that inhibition of the FA pathway is largely responsible for the heightened cellular sensitivity to DNA ICLs upon Nedd8 inhibition. These results suggest that a combination of Nedd8 inhibition with ICL-inducing agents may be an effective strategy for sensitizing a subset of drug-resistant cancer cells. PMID:22219386
Cytogenomics of hexavalent chromium (Cr6+) exposed cells: A comprehensive review
Nigam, Akanksha; Priya, Shivam; Bajpai, Preeti; Kumar, Sushil
2014-01-01
The altered cellular gene expression profile is being hypothesized as the possible molecular basis navigating the onset or progress of various morbidities. This hypothesis has been evaluated here in respect of Cr6+ induced toxicity. Several studies using gene microarray show selective and strategic dysregulations of cellular genes and pathways induced by Cr6+. Relevant literature has been reviewed to unravel these changes in different test systems after exposure to Cr6+ and also to elucidate association if any, of the altered cytogenomics with Cr6+ induced toxicity or carcinogenicity. The aim was to verify the hypothesis for critical role of altered cytogenomics in onset of Cr6+ induced biological / clinical effects by identifying genes modulated commonly by the toxicant irrespective of test system or test concentrations / doses, and by scrutinizing their importance in regulation of the flow of mechanistically linked events crucial for resultant morbidities. Their probability as biomarkers to monitor the toxicant induced biological changes is speculative. The modulated genes have been found to cluster under the pathways that manage onset of oxidative stress, DNA damage, apoptosis, cell-cycle regulation, cytoskeleton, morphological changes, energy metabolism, biosynthesis, oncogenes, bioenergetics, and immune system critical for toxicity. In these studies, the identity of genes has been found to differ remarkably; albeit the trend of pathways’ dysregulation has been found to remain similar. We conclude that the intensity of dysregulation of genes or pathways involved in mechanistic events forms a sub-threshold or threshold level depending upon the dose and type (including speciation) of the toxicant, duration of exposure, type of target cells, and niche microenvironment of cells, and the intensity of sub-threshold or threshold level of the altered cytogenomics paves way in toxicant exposed cells eventually either to opt for reversal to differentiation and growth, or to result in toxicity like dedifferentiation and apoptosis, respectively. PMID:24820829
Aiding and Abetting Cancer: mRNA export and the nuclear pore
Culjkovic-Kraljacic, Biljana; Borden, Katherine L.B
2013-01-01
mRNA export is a critical step in gene expression. Export of transcripts can be modulated in response to cellular signaling or stress. Consistently, mRNA export is dysregulated in primary human specimens derived from many different forms of cancer. Aberrant expression of export factors can alter export of specific transcripts encoding proteins involved in proliferation, survival and oncogenesis. These specific factors, which are not used for bulk mRNA export, are obvious therapeutic targets. Indeed, given the emerging role of mRNA export in cancer, it is not surprising that efforts to target different aspects of this pathway have reached the clinical trial stage. Thus, like transcription and translation, mRNA export may also play a critical role in cancer genesis and maintenance. PMID:23582887
A critical role for PDGFRα signaling in medial nasal process development.
He, Fenglei; Soriano, Philippe
2013-01-01
The primitive face is composed of neural crest cell (NCC) derived prominences. The medial nasal processes (MNP) give rise to the upper lip and vomeronasal organ, and are essential for normal craniofacial development, but the mechanism of MNP development remains largely unknown. PDGFRα signaling is known to be critical for NCC development and craniofacial morphogenesis. In this study, we show that PDGFRα is required for MNP development by maintaining the migration of progenitor neural crest cells (NCCs) and the proliferation of MNP cells. Further investigations reveal that PI3K/Akt and Rac1 signaling mediate PDGFRα function during MNP development. We thus establish PDGFRα as a novel regulator of MNP development and elucidate the roles of its downstream signaling pathways at cellular and molecular levels.
Bruscoli, Stefano; Velardi, Enrico; Di Sante, Moises; Bereshchenko, Oxana; Venanzi, Alessandra; Coppo, Maddalena; Berno, Valeria; Mameli, Maria Grazia; Colella, Renato; Cavaliere, Antonio; Riccardi, Carlo
2012-01-01
Correct function of spermatogonia is critical for the maintenance of spermatogenesis throughout life, but the cellular pathways regulating undifferentiated spermatogonia proliferation, differentiation, and survival are only partially known. We show here that long glucocorticoid-induced leucine zipper (L-GILZ) is highly expressed in spermatogonia and primary spermatocytes and controls spermatogenesis. Gilz deficiency in knock-out (gilz KO) mice leads to a complete loss of germ cell lineage within first cycles of spermatogenesis, resulting in male sterility. Spermatogenesis failure is intrinsic to germ cells and is associated with increased proliferation and aberrant differentiation of undifferentiated spermatogonia and with hyperactivity of Ras signaling pathway as indicated by an increase of ERK and Akt phosphorylation. Spermatogonia differentiation does not proceed beyond the prophase of the first meiotic division due to massive apoptosis associated with accumulation of unrepaired chromosomal damage. These results identify L-GILZ as a novel important factor for undifferentiated spermatogonia function and spermatogenesis. PMID:22110132
Zhu, Hongying; Wang, Ning; Yao, Lei; Chen, Qi; Zhang, Ran; Qian, Junchao; Hou, Yiwen; Guo, Weiwei; Fan, Sijia; Liu, Siling; Zhao, Qiaoyun; Du, Feng; Zuo, Xin; Guo, Yujun; Xu, Yan; Li, Jiali; Xue, Tian; Zhong, Kai; Song, Xiaoyuan; Huang, Guangming; Xiong, Wei
2018-06-14
Sunlight exposure is known to affect mood, learning, and cognition. However, the molecular and cellular mechanisms remain elusive. Here, we show that moderate UV exposure elevated blood urocanic acid (UCA), which then crossed the blood-brain barrier. Single-cell mass spectrometry and isotopic labeling revealed a novel intra-neuronal metabolic pathway converting UCA to glutamate (GLU) after UV exposure. This UV-triggered GLU synthesis promoted its packaging into synaptic vesicles and its release at glutamatergic terminals in the motor cortex and hippocampus. Related behaviors, like rotarod learning and object recognition memory, were enhanced after UV exposure. All UV-induced metabolic, electrophysiological, and behavioral effects could be reproduced by the intravenous injection of UCA and diminished by the application of inhibitor or short hairpin RNA (shRNA) against urocanase, an enzyme critical for the conversion of UCA to GLU. These findings reveal a new GLU biosynthetic pathway, which could contribute to some of the sunlight-induced neurobehavioral changes. Copyright © 2018 Elsevier Inc. All rights reserved.
Insect-specific flavivirus infection is restricted by innate immunity in the vertebrate host.
Tree, Maya O; McKellar, Dexter R; Kieft, Kristopher J; Watson, Alan M; Ryman, Kate D; Conway, Michael J
2016-10-01
Arboviruses are a large group of viruses that are transmitted by arthropods including ticks and mosquitoes. The global diversity of arboviruses is unknown; however, theoretical studies have estimated that over 2,000 mosquito-borne flaviviruses may exist. An increasing number of flaviviruses can only infect insect cells. We hypothesize that insect-specific flaviviruses (ISFVs) represent model genetic precursors to pathogenic flaviviruses, although the genetic mechanisms required for adaptation to vertebrate hosts are unclear. In this study, we determined that Kamiti River virus (KRV) infection was inhibited by innate immunity pathways in vertebrate cells. KRV infection of IRF3,5,7(-/-) mouse embryonic fibroblasts led to low levels of viral protein production and shedding of infectious progeny. These data suggest that ISFVs cannot evade vertebrate innate immune pathways. Identifying cellular pathways and genetic changes that are required for adaptation of arthropod-specific arboviruses to vertebrate hosts is critical to understanding emerging infectious disease. Copyright © 2016 Elsevier Inc. All rights reserved.
The immune signaling pathways of Manduca sexta
Cao, Xiaolong; He, Yan; Hu, Yingxia; Wang, Yang; Chen, Yun-Ru; Bryant, Bart; Clem, Rollie J.; Schwartz, Lawrence M.; Blissard, Gary; Jiang, Haobo
2015-01-01
Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect. PMID:25858029
Identification of a novel TIF-IA-NF-κB nucleolar stress response pathway.
Chen, Jingyu; Lobb, Ian T; Morin, Pierre; Novo, Sonia M; Simpson, James; Kennerknecht, Kathrin; von Kriegsheim, Alex; Batchelor, Emily E; Oakley, Fiona; Stark, Lesley A
2018-06-05
p53 as an effector of nucleolar stress is well defined, but p53 independent mechanisms are largely unknown. Like p53, the NF-κB transcription factor plays a critical role in maintaining cellular homeostasis under stress. Many stresses that stimulate NF-κB also disrupt nucleoli. However, the link between nucleolar function and activation of the NF-κB pathway is as yet unknown. Here we demonstrate that artificial disruption of the PolI complex stimulates NF-κB signalling. Unlike p53 nucleolar stress response, this effect does not appear to be linked to inhibition of rDNA transcription. We show that specific stress stimuli of NF-κB induce degradation of a critical component of the PolI complex, TIF-IA. This degradation precedes activation of NF-κB and is associated with increased nucleolar size. It is mimicked by CDK4 inhibition and is dependent upon a novel pathway involving UBF/p14ARF and S44 of the protein. We show that blocking TIF-IA degradation blocks stress effects on nucleolar size and NF-κB signalling. Finally, using ex vivo culture, we show a strong correlation between degradation of TIF-IA and activation of NF-κB in freshly resected, human colorectal tumours exposed to the chemopreventative agent, aspirin. Together, our study provides compelling evidence for a new, TIF-IA-NF-κB nucleolar stress response pathway that has in vivo relevance and therapeutic implications.
Fanconi Anemia Proteins, DNA Interstrand Crosslink Repair Pathways, and Cancer Therapy
Andreassen, Paul R.; Ren, Keqin
2016-01-01
DNA interstrand crosslinkers, a chemically diverse group of compounds which also induce alkylation of bases and DNA intrastrand crosslinks, are extensively utilized for cancer therapy. Understanding the cellular response to DNA damage induced by these agents is critical for more effective utilization of these compounds and for the identification of novel therapeutic targets. Importantly, the repair of DNA interstrand crosslinks (ICLs) involves many distinct DNA repair pathways, including nucleotide excision repair, translesion synthesis (TLS), and homologous recombination (HR). Additionally, proteins implicated in the pathophysiology of the multigenic disease Fanconi anemia (FA) have a role in the repair of ICLs that is not well understood. Cells from FA patients are hypersensitive to agents that induce ICLs, therefore FA proteins are potentially novel therapeutic targets. Here we will review current research directed at identifying FA genes and understanding the function of FA proteins in DNA damage responses. We will also examine interactions of FA proteins with other repair proteins and pathways, including signaling networks, which are potentially involved in ICL repair. Potential approaches to the modulation of FA protein function to enhance therapeutic outcome will be discussed. Also, mutation of many genes that encode proteins involved in ICL repair, including FA genes, increases susceptibility to cancer. A better understanding of these pathways is therefore critical for the design of individualized therapies tailored to the genetic profile of a particular malignancy. For this purpose, we will also review evidence for the association of mutation of FA genes with cancer in non-FA patients. PMID:19200054
NASA Astrophysics Data System (ADS)
Huang, Tao; Browning, Lauren M.; Xu, Xiao-Hong Nancy
2012-04-01
Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions.Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11739h
Nitric oxide inhibits exocytosis of cytolytic granules from lymphokine-activated killer cells
Ferlito, Marcella; Irani, Kaikobad; Faraday, Nauder; Lowenstein, Charles J.
2006-01-01
NO inhibits cytotoxic T lymphocyte killing of target cells, although the precise mechanism is unknown. We hypothesized that NO decreases exocytosis of cytotoxic granules from activated lymphocytes. We now show that NO inhibits lymphokine-activated killer cell killing of K562 target cells. Exogenous and endogenous NO decreases the release of granzyme B, granzyme A, and perforin: all contents of cytotoxic granules. NO inhibits the signal transduction cascade initiated by cross-linking of the T cell receptor that leads to granule exocytosis. In particular, we found that NO decreases the expression of Ras, a critical signaling component within the exocytic pathway. Ectopic expression of Ras prevents NO inhibition of exocytosis. Our data suggest that Ras mediates NO inhibition of lymphocyte cytotoxicity and emphasize that alterations in the cellular redox state may regulate the exocytic signaling pathway. PMID:16857739
R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6
Binnerts, Minke E.; Kim, Kyung-Ah; Bright, Jessica M.; Patel, Sejal M.; Tran, Karolyn; Zhou, Mei; Leung, John M.; Liu, Yi; Lomas, Woodrow E.; Dixon, Melissa; Hazell, Sophie A.; Wagle, Marie; Nie, Wen-Sheng; Tomasevic, Nenad; Williams, Jason; Zhan, Xiaoming; Levy, Michael D.; Funk, Walter D.; Abo, Arie
2007-01-01
The R-Spondin (RSpo) family of secreted proteins act as potent activators of the Wnt/β-catenin signaling pathway. We have previously shown that RSpo proteins can induce proliferative effects on the gastrointestinal epithelium in mice. Here we provide a mechanism whereby RSpo1 regulates cellular responsiveness to Wnt ligands by modulating the cell-surface levels of the coreceptor LRP6. We show that RSpo1 activity critically depends on the presence of canonical Wnt ligands and LRP6. Although RSpo1 does not directly activate LRP6, it interferes with DKK1/Kremen-mediated internalization of LRP6 through an interaction with Kremen, resulting in increased LRP6 levels on the cell surface. Our results support a model in which RSpo1 relieves the inhibition DKK1 imposes on the Wnt pathway. PMID:17804805
Fu, Wei; Tang, Hao; Chen, Xiao; Zhao, Yao; Zheng, Lili; Pan, Sijian; Wang, Weiqing; Bian, Liuguan; Sun, Qingfang
2016-01-01
Cushing's disease is caused by pituitary corticotroph adenoma, and the pathogenesis of it has remained obscure. Here, we showed that cold inducible RNA binding protein (CIRP) was markedly elevated in corticotroph tumors. Forced overexpression of CIRP in murine AtT20 pituitary corticotroph cell line increased corticotroph precursor hormone proopiomelanocortin (POMC) transcription, ACTH secretion and cellular proliferation. In vivo, CIRP overexpression promotes murine corticotroph tumor growth and enhances ACTH production. Mechanistically, we show that CIRP could promote AtT20 cells proliferation by inducing cyclinD1 and decreasing p27 expression via Erk1/2 signaling pathway. Clinically, CIRP overexpression is significantly correlated with Cushing's disease recurrence. CIRP appears to play a critical tumorigenesis function in Cushing's disease and its expression might be a useful biomarker for tumor recurrence. PMID:26824322
A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons.
Emlen, Douglas J; Warren, Ian A; Johns, Annika; Dworkin, Ian; Lavine, Laura Corley
2012-08-17
Many male animals wield ornaments or weapons of exaggerated proportions. We propose that increased cellular sensitivity to signaling through the insulin/insulin-like growth factor (IGF) pathway may be responsible for the extreme growth of these structures. We document how rhinoceros beetle horns, a sexually selected weapon, are more sensitive to nutrition and more responsive to perturbation of the insulin/IGF pathway than other body structures. We then illustrate how enhanced sensitivity to insulin/IGF signaling in a growing ornament or weapon would cause heightened condition sensitivity and increased variability in expression among individuals--critical properties of reliable signals of male quality. The possibility that reliable signaling arises as a by-product of the growth mechanism may explain why trait exaggeration has evolved so many different times in the context of sexual selection.
Galipeau, Jacques; Nooka, Ajay K.
2013-01-01
The regenerative abilities and the immunosuppressive properties of mesenchymal stromal cells (MSCs) make them potentially the ideal cellular product of choice for treatment of autoimmune and other immune mediated disorders. Although the usefulness of MSCs for therapeutic applications is in early phases, their potential clinical use remains of great interest. Current clinical evidence of use of MSCs from both autologous and allogeneic sources to treat autoimmune disorders confers conflicting clinical benefit outcomes. These varied results may possibly be due to MSC use across wide range of autoimmune disorders with clinical heterogeneity or due to variability of the cellular product. In the light of recent genome wide association studies (GWAS), linking predisposition of autoimmune diseases to single nucleotide polymorphisms (SNPs) in the susceptible genetic loci, the clinical relevance of MSCs possessing SNPs in the critical effector molecules of immunosuppression is largely undiscussed. It is of further interest in the allogeneic setting, where SNPs in the target pathway of MSC's intervention may also modulate clinical outcome. In the present review, we have discussed the known critical SNPs predisposing to disease susceptibility in various autoimmune diseases and their significance in the immunomodulatory properties of MSCs. PMID:24350294
A high throughput mutagenic analysis of yeast sumo structure and function
Newman, Heather A.; Lu, Jian; Carson, Caryn; Boeke, Jef D.
2017-01-01
Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein. By screening this library using plate-based assays, we have generated a comprehensive structure-function based map of Smt3, revealing essential amino acid residues and residues critical for function under a variety of genotoxic and proteotoxic stress conditions. Functionally important residues mapped to surfaces affecting Smt3 precursor processing and deconjugation from protein substrates, covalent conjugation to protein substrates, and non-covalent interactions with E3 ligases and downstream effector proteins containing SUMO-interacting motifs. Lysine residues potentially involved in formation of polymeric chains were also investigated, revealing critical roles for polymeric chains, but redundancy in specific chain linkages. Collectively, our findings provide important insights into the molecular basis of signaling through sumoylation. Moreover, the library of Smt3 mutants represents a valuable resource for further exploring the functions of sumoylation in cellular stress response and other SUMO-dependent pathways. PMID:28166236
Mei, Yang; Ramanathan, Arvind; Glover, Karen; ...
2016-03-03
BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here in this study, we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 Å sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron–electron resonance–electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1more » domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Finally, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder-to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.« less
Cheng, M L; Ho, H Y; Liang, C M; Chou, Y H; Stern, A; Lu, F J; Chiu, D T
2000-06-23
Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in cellular redox homeostasis, which is crucial for cell survival. In the present study, we found that G6PD status determines the response of cells exposed to nitric oxide (NO) donor. Treatment with NO donor, sodium nitroprusside (SNP), caused apoptosis in G6PD-deficient human foreskin fibroblasts (HFF1), whereas it was growth stimulatory in the normal counterpart (HFF3). Such effects were abolished by NO scavengers like hemoglobin. Ectopic expression of G6PD in HFF1 cells switched the cellular response to NO from apoptosis to growth stimulation. Experiments with 1H-¿1,2,4ŏxadiazolo¿4, 3-aquinoxalin-1-one and 8-bromo-cGMP showed that the effects of NO on HFF1 and HFF3 cells were independent of cGMP signalling pathway. Intriguingly, trolox prevented the SNP-induced apoptosis in HFF1 cells. These data demonstrate that G6PD plays a critical role in regulation of cell growth and survival.
Biomimetic approaches to modulate cellular adhesion in biomaterials: A review.
Rahmany, Maria B; Van Dyke, Mark
2013-03-01
Natural extracellular matrix (ECM) proteins possess critical biological characteristics that provide a platform for cellular adhesion and activation of highly regulated signaling pathways. However, ECM-based biomaterials can have several limitations, including poor mechanical properties and risk of immunogenicity. Synthetic biomaterials alleviate the risks associated with natural biomaterials but often lack the robust biological activity necessary to direct cell function beyond initial adhesion. A thorough understanding of receptor-mediated cellular adhesion to the ECM and subsequent signaling activation has facilitated development of techniques that functionalize inert biomaterials to provide a biologically active surface. Here we review a range of approaches used to modify biomaterial surfaces for optimal receptor-mediated cell interactions, as well as provide insights into specific mechanisms of downstream signaling activation. In addition to a brief overview of integrin receptor-mediated cell function, so-called "biomimetic" techniques reviewed here include (i) surface modification of biomaterials with bioadhesive ECM macromolecules or specific binding motifs, (ii) nanoscale patterning of the materials and (iii) the use of "natural-like" biomaterials. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Chen, Jihong; Halappanavar, Sabina; Th' ng, John P H; Li, Qiao
2007-01-01
The protein level of transcriptional coactivator p300, an essential nuclear protein, is critical to a broad array of cellular activities including embryonic development, cell differentiation and proliferation. We have previously established that histone deacetylase inhibitor such as valproic acid induces p300 degradation through the 26S proteasome pathway. Here, we report the roles of cellular trafficking and spatial redistribution in valproic acid-induced p300 turnover. Our study demonstrates that p300 is redistributed to the cytoplasm prior to valproic acid-induced turnover. Inhibition of proteasome-dependent protein degradation, does not prevent nucleo-cytoplasmic shuttling of p300, rather sequesters the cytoplasmic p300 to a distinct perinuclear region. In addition, the formation of p300 aggregates in the perinuclear region depends on functional microtubule networks and correlates with p300 ubiquitination. Our work establishes, for the first time, that p300 is also a substrate of the cytoplasmic ubiquitin-proteasome system and provides insight on how cellular trafficking and spatial redistribution regulate the availability and activity of transcriptional coactivator p300.
Detection of Protein SUMOylation In Situ by Proximity Ligation Assays.
Sahin, Umut; Jollivet, Florence; Berthier, Caroline; de Thé, Hugues; Lallemand-Breitenbach, Valérie
2016-01-01
Sumoylation is a posttranslational process essential for life and concerns a growing number of crucial proteins. Understanding the influence of this phenomenon on individual proteins or on cellular pathways in which they function has become an intense area of research. A critical step in studying protein sumoylation is to detect sumoylated forms of a particular protein. This has proven to be a challenging task for a number of reasons, especially in the case of endogenous proteins and in vivo studies or when studying rare cells such as stem cells. Proximity ligation assays that allow detection of closely interacting protein partners can be adapted for initial detection of endogenous sumoylation or ubiquitination in a rapid, ultrasensitive, and cheap manner. In addition, modified forms of a given protein can be detected in situ in various cellular compartments. Finally, the flexibility of this technique may allow rapid screening of drugs and stress signals that may modulate protein sumoylation.
AP-1 subunits: quarrel and harmony among siblings.
Hess, Jochen; Angel, Peter; Schorpp-Kistner, Marina
2004-12-01
The AP-1 transcription factor is mainly composed of Jun, Fos and ATF protein dimers. It mediates gene regulation in response to a plethora of physiological and pathological stimuli, including cytokines, growth factors, stress signals, bacterial and viral infections, as well as oncogenic stimuli. Studies in genetically modified mice and cells have highlighted a crucial role for AP-1 in a variety of cellular events involved in normal development or neoplastic transformation causing cancer. However, emerging evidence indicates that the contribution of AP-1 to determination of cell fates critically depends on the relative abundance of AP-1 subunits, the composition of AP-1 dimers, the quality of stimulus, the cell type and the cellular environment. Therefore, AP-1-mediated regulation of processes such as proliferation, differentiation, apoptosis and transformation should be considered within the context of a complex dynamic network of signalling pathways and other nuclear factors that respond simultaneously.
Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1.
Ruthenborg, Robin J; Ban, Jae-Jun; Wazir, Anum; Takeda, Norihiko; Kim, Jung-Whan
2014-09-01
Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.
NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph
2018-01-20
The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.
Polito, David; Cukras, Scott; Wang, Xiaozhe; Spence, Paige; Moreau, Lisa; D'Andrea, Alan D; Kee, Younghoon
2014-03-07
Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair.
Polito, David; Cukras, Scott; Wang, Xiaozhe; Spence, Paige; Moreau, Lisa; D'Andrea, Alan D.; Kee, Younghoon
2014-01-01
Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair. PMID:24451376
Updike, Dustin L.; Strome, Susan
2009-01-01
P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their “germ granule” counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells. PMID:19805813
Snm1B/Apollo functions in the Fanconi anemia pathway in response to DNA interstrand crosslinks.
Mason, Jennifer M; Sekiguchi, JoAnn M
2011-07-01
Fanconi anemia (FA) is an inherited chromosomal instability disorder characterized by childhood aplastic anemia, developmental abnormalities and cancer predisposition. One of the hallmark phenotypes of FA is cellular hypersensitivity to agents that induce DNA interstrand crosslinks (ICLs), such as mitomycin C (MMC). FA is caused by mutation in at least 14 genes which function in the resolution of ICLs during replication. The FA proteins act within the context of a protein network in coordination with multiple repair factors that function in distinct pathways. SNM1B/Apollo is a member of metallo-β-lactamase/βCASP family of nucleases and has been demonstrated to function in ICL repair. However, the relationship between SNM1B and the FA protein network is not known. In the current study, we establish that SNM1B functions epistatically to the central FA factor, FANCD2, in cellular survival after ICL damage and homology-directed repair of DNA double-strand breaks. We also demonstrate that MMC-induced chromosomal anomalies are increased in SNM1B-depleted cells, and this phenotype is not further exacerbated upon depletion of either FANCD2 or another key FA protein, FANCI. Furthermore, we find that SNM1B is required for proper localization of critical repair factors, including FANCD2, BRCA1 and RAD51, to MMC-induced subnuclear foci. Our findings demonstrate that SNM1B functions within the FA pathway during the repair of ICL damage.
Abiotic stress signaling and responses in plants
Zhu, Jian-Kang
2016-01-01
Summary As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population. PMID:27716505
Redox Signaling and Persistent Pulmonary Hypertension of the Newborn.
Sharma, Megha; Afolayan, Adeleye J
2017-01-01
Reactive oxygen species (ROS) are redox-signaling molecules that are critically involved in regulating endothelial cell functions, host defense, aging, and cellular adaptation. Mitochondria are the major sources of ROS and important sources of redox signaling in pulmonary circulation. It is becoming increasingly evident that increased mitochondrial oxidative stress and aberrant signaling through redox-sensitive pathways play a direct causative role in the pathogenesis of many cardiopulmonary disorders including persistent pulmonary hypertension of the newborn (PPHN). This chapter highlights redox signaling in endothelial cells, antioxidant defense mechanism, cell responses to oxidative stress, and their contributions to disease pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu
2013-01-15
Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidativemore » stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The olfactory antioxidant response is blocked by Nrf2 knockdown. ► Disruption of olfactory neurobehaviors is associated with Nrf2 knockdown. ► Nrf2 morphants show increased cell death and olfactory sensory neuron loss.« less
Functional Mitochondria in Health and Disease.
Herst, Patries M; Rowe, Matthew R; Carson, Georgia M; Berridge, Michael V
2017-01-01
The ability to rapidly adapt cellular bioenergetic capabilities to meet rapidly changing environmental conditions is mandatory for normal cellular function and for cancer progression. Any loss of this adaptive response has the potential to compromise cellular function and render the cell more susceptible to external stressors such as oxidative stress, radiation, chemotherapeutic drugs, and hypoxia. Mitochondria play a vital role in bioenergetic and biosynthetic pathways and can rapidly adjust to meet the metabolic needs of the cell. Increased demand is met by mitochondrial biogenesis and fusion of individual mitochondria into dynamic networks, whereas a decrease in demand results in the removal of superfluous mitochondria through fission and mitophagy. Effective communication between nucleus and mitochondria (mito-nuclear cross talk), involving the generation of different mitochondrial stress signals as well as the nuclear stress response pathways to deal with these stressors, maintains bioenergetic homeostasis under most conditions. However, when mitochondrial DNA (mtDNA) mutations accumulate and mito-nuclear cross talk falters, mitochondria fail to deliver critical functional outputs. Mutations in mtDNA have been implicated in neuromuscular and neurodegenerative mitochondriopathies and complex diseases such as diabetes, cardiovascular diseases, gastrointestinal disorders, skin disorders, aging, and cancer. In some cases, drastic measures such as acquisition of new mitochondria from donor cells occurs to ensure cell survival. This review starts with a brief discussion of the evolutionary origin of mitochondria and summarizes how mutations in mtDNA lead to mitochondriopathies and other degenerative diseases. Mito-nuclear cross talk, including various stress signals generated by mitochondria and corresponding stress response pathways activated by the nucleus are summarized. We also introduce and discuss a small family of recently discovered hormone-like mitopeptides that modulate body metabolism. Under conditions of severe mitochondrial stress, mitochondria have been shown to traffic between cells, replacing mitochondria in cells with damaged and malfunctional mtDNA. Understanding the processes involved in cellular bioenergetics and metabolic adaptation has the potential to generate new knowledge that will lead to improved treatment of many of the metabolic, degenerative, and age-related inflammatory diseases that characterize modern societies.
Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death.
Truong-Tran, A Q; Ho, L H; Chai, F; Zalewski, P D
2000-05-01
The maintenance of discrete subcellular pools of zinc (Zn) is critical for the functional and structural integrity of cells. Among the important biological processes influenced by Zn is apoptosis, a process that is important in cellular homeostasis (an important cellular homeostatic process). It has also been identified as a major mechanism contributing to cell death in response to toxins and in disease, offering hope that novel therapies that target apoptotic pathways may be developed. Because Zn levels in the body can be increased in a relatively nontoxic manner, it may be possible to prevent or ameliorate degenerative disorders that are associated with high rates of apoptotic cell death. This review begins with brief introductions that address, first, the cellular biology of Zn, especially the critical labile Zn pools, and, second, the phenomenon of apoptosis. We then review the evidence relating Zn to apoptosis and address three major hypotheses: (1) that a specific pool or pools of intracellular labile Zn regulates apoptosis; (2) that systemic changes in Zn levels in the body, due to dietary factors, altered physiological states or disease, can influence cell susceptibility to apoptosis, and (3) that this altered susceptibility to apoptosis contributes to pathophysiological changes in the body. Other key issues are the identity of the molecular targets of Zn in the apoptotic cascade, the types of cells and tissues most susceptible to Zn-regulated apoptosis, the role of Zn as a coordinate regulator of mitosis and apoptosis and the apparent release of tightly bound intracellular pools of Zn during the later stages of apoptosis. This review concludes with a section highlighting areas of priority for future studies.
An Expanding Range of Functions for the Copper Chaperone/Antioxidant Protein Atox1
Hatori, Yuta
2013-01-01
Abstract Significance: Antioxidant protein 1 (Atox1 in human cells) is a copper chaperone for the copper export pathway with an essential role in cellular copper distribution. In vitro, Atox1 binds and transfers copper to the copper-transporting ATPases, stimulating their catalytic activity. Inactivation of Atox1 in cells inhibits maturation of secreted cuproenzymes as well as copper export from cells. Recent Advances: Accumulating data suggest that cellular functions of Atox1 are not limited to its copper-trafficking role and may include storage of labile copper, modulation of transcription, and antioxidant defense. The conserved metal binding site of Atox1, CxGC, differs from the metal-binding sites of copper-transporting ATPases and has a physiologically relevant redox potential that equilibrates with the GSH:GSSG pair. Critical Issues: Tight relationship appears to exist between intracellular copper levels and glutathione (GSH) homeostasis. The biochemical properties of Atox1 place it at the intersection of cellular networks that regulate copper distribution and cellular redox balance. Mechanisms through which Atox1 facilitates copper export and contributes to oxidative defense are not fully understood. Future Directions: The current picture of cellular redox homeostasis and copper physiology will be enhanced by further mechanistic studies of functional interactions between the GSH:GSSG pair and copper-trafficking machinery. Antioxid. Redox Signal. 19, 945–957. PMID:23249252
NASA Astrophysics Data System (ADS)
Steelman, Zachary A.; Tolstykh, Gleb P.; Estlack, Larry E.; Roth, Caleb C.; Ibey, Bennett L.
2015-03-01
Phosphatidylinositol4,5-biphosphate (PIP2) is a membrane phospholipid of particular importance in cell-signaling pathways. Hydrolysis of PIP2 releases inositol-1,4,5-triphosphate (IP3) from the membrane, activating IP3 receptors on the smooth endoplasmic reticulum (ER) and facilitating a release of intracellular calcium stores and activation of protein kinase C (PKC). Recent studies suggest that nanosecond pulsed electric fields (nsPEF) cause depletion of PIP2 in the cellular membrane, activating the IP3 signaling pathway. However, the exact mechanism(s) causing this observed depletion of PIP2 are unknown. Complicating the matter, nsPEF create nanopores in the plasma membrane, allowing calcium to enter the cell and thus causing an increase in intracellular calcium. While elevated intracellular calcium can cause activation of phospholipase C (PLC) (a known catalyst of PIP2 hydrolysis), PIP2 depletion has been shown to occur in the absence of both extracellular and intracellular calcium. These observations have led to the hypothesis that the high electric field itself may be playing a direct role in the hydrolysis of PIP2 from the plasma membrane. To support this hypothesis, we used edelfosine to block PLC and prevent activation of the IP3/DAG pathway in Chinese Hamster Ovarian (CHO) cells prior to applying nsPEF. Fluorescence microscopy was used to monitor intracellular calcium bursts during nsPEF, while MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) survivability assays were utilized to determine whether edelfosine improved cell survival during nsPEF exposure. This work is critical to refine the role of PIP2 in the cellular response to nsPEF, and also to determine the fundamental biological effects of high electric field exposures.
Hinder, Lucy M; Park, Meeyoung; Rumora, Amy E; Hur, Junguk; Eichinger, Felix; Pennathur, Subramaniam; Kretzler, Matthias; Brosius, Frank C; Feldman, Eva L
2017-09-01
Treating insulin resistance with pioglitazone normalizes renal function and improves small nerve fibre function and architecture; however, it does not affect large myelinated nerve fibre function in mouse models of type 2 diabetes (T2DM), indicating that pioglitazone affects the body in a tissue-specific manner. To identify distinct molecular pathways regulating diabetic peripheral neuropathy (DPN) and nephropathy (DN), as well those affected by pioglitazone, we assessed DPN and DN gene transcript expression in control and diabetic mice with or without pioglitazone treatment. Differential expression analysis and self-organizing maps were then used in parallel to analyse transcriptome data. Differential expression analysis showed that gene expression promoting cell death and the inflammatory response was reversed in the kidney glomeruli but unchanged or exacerbated in sciatic nerve by pioglitazone. Self-organizing map analysis revealed that mitochondrial dysfunction was normalized in kidney and nerve by treatment; however, conserved pathways were opposite in their directionality of regulation. Collectively, our data suggest inflammation may drive large fibre dysfunction, while mitochondrial dysfunction may drive small fibre dysfunction in T2DM. Moreover, targeting both of these pathways is likely to improve DN. This study supports growing evidence that systemic metabolic changes in T2DM are associated with distinct tissue-specific metabolic reprogramming in kidney and nerve and that these changes play a critical role in DN and small fibre DPN pathogenesis. These data also highlight the potential dangers of a 'one size fits all' approach to T2DM therapeutics, as the same drug may simultaneously alleviate one complication while exacerbating another. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Dengue virus induces and requires glycolysis for optimal replication.
Fontaine, Krystal A; Sanchez, Erica L; Camarda, Roman; Lagunoff, Michael
2015-02-01
Viruses rely on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. Dengue virus (DENV), a member of the Flaviviridae family, is one of the most important arthropod-borne human pathogens worldwide. We analyzed global intracellular metabolic changes associated with DENV infection of primary human cells. Our metabolic profiling data suggested that central carbon metabolism, particularly glycolysis, is strikingly altered during a time course of DENV infection. Glucose consumption is increased during DENV infection and depriving DENV-infected cells of exogenous glucose had a pronounced impact on viral replication. Furthermore, the expression of both glucose transporter 1 and hexokinase 2, the first enzyme of glycolysis, is upregulated in DENV-infected cells. Pharmacologically inhibiting the glycolytic pathway dramatically reduced DENV RNA synthesis and infectious virion production, revealing a requirement for glycolysis during DENV infection. Thus, these experiments suggest that DENV induces the glycolytic pathway to support efficient viral replication. This study raises the possibility that metabolic inhibitors, such as those that target glycolysis, could be used to treat DENV infection in the future. Approximately 400 million people are infected with dengue virus (DENV) annually, and more than one-third of the global population is at risk of infection. As there are currently no effective vaccines or specific antiviral therapies for DENV, we investigated the impact DENV has on the host cellular metabolome to identify metabolic pathways that are critical for the virus life cycle. We report an essential role for glycolysis during DENV infection. DENV activates the glycolytic pathway, and inhibition of glycolysis significantly blocks infectious DENV production. This study provides further evidence that viral metabolomic analyses can lead to the discovery of novel therapeutic targets to block the replication of medically important human pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling
Lee, Sung Ryul; Noh, Su Jin; Pronto, Julius Ryan; Jeong, Yu Jeong; Kim, Hyoung Kyu; Song, In Sung; Xu, Zhelong; Kwon, Hyog Young; Kang, Se Chan; Sohn, Eun-Hwa; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari
2015-01-01
Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc (Zn2+) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of Zn2+ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular Zn2+ levels are largely regulated by metallothioneins (MTs), Zn2+ importers (ZIPs), and Zn2+ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of Zn2+. However, these regulatory actions of Zn2+ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular Zn2+ levels, Zn2+-mediated signal transduction, impacts of Zn2+ on ion channels and mitochondrial metabolism, and finally, the implications of Zn2+ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of Zn2+. PMID:26330751
NASA Astrophysics Data System (ADS)
Shah, Dhiral Ashwin
Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that functional proteins can be delivered intracellularly in vitro using nanoparticles and used to target key signaling proteins and regulate cell signaling pathways. The same concept of naturally occurring protein-protein interactions can also be implemented to selectively bring intracellular protein targets in close proximity to proteasomal degradation machinery in cells and effect their depletion from the cellular compartments. This approach will be able to not only target entire pool of proteins to ubiquitination-mediated degradation, but also to specific sub-pools of posttranslationally modified proteins in the cell, provided peptides having distinct binding affinities are identified for posttranslational modifications. This system can then be tested for intracellular protein delivery using nanoparticle carriers to identify roles of different posttranslational modifications on the protein's activity. In future work, we propose to develop a cellular detection system, based on GFP complementation, which can be used to evaluate the efficiency of different protein delivery carriers to internalize proteins into the cell cytosol. We envision the application of nanoscale materials as intracellular protein delivery vehicles to target diverse cell signaling pathways at the posttranslational level, and subsequent metabolic manipulation, which may have interesting therapeutic properties and can potentially target stem cell fate.
Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao
2015-04-01
Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Udono, Miyako; Fujii, Kaoru; Harada, Gakuro; Tsuzuki, Yumi; Kadooka, Keishi; Zhang, Pingbo; Fujii, Hiroshi; Amano, Maho; Nishimura, Shin-Ichiro; Tashiro, Kosuke; Kuhara, Satoru; Katakura, Yoshinori
2015-11-27
Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program.
Udono, Miyako; Fujii, Kaoru; Harada, Gakuro; Tsuzuki, Yumi; Kadooka, Keishi; Zhang, Pingbo; Fujii, Hiroshi; Amano, Maho; Nishimura, Shin-Ichiro; Tashiro, Kosuke; Kuhara, Satoru; Katakura, Yoshinori
2015-01-01
Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program. PMID:26611489
Zhao, Min; Li, Zhe; Qu, Hong
2015-01-01
Metastasis suppressor genes (MS genes) are genes that play important roles in inhibiting the process of cancer metastasis without preventing growth of the primary tumor. Identification of these genes and understanding their functions are critical for investigation of cancer metastasis. Recent studies on cancer metastasis have identified many new susceptibility MS genes. However, the comprehensive illustration of diverse cellular processes regulated by metastasis suppressors during the metastasis cascade is lacking. Thus, the relationship between MS genes and cancer risk is still unclear. To unveil the cellular complexity of MS genes, we have constructed MSGene (http://MSGene.bioinfo-minzhao.org/), the first literature-based gene resource for exploring human MS genes. In total, we manually curated 194 experimentally verified MS genes and mapped to 1448 homologous genes from 17 model species. Follow-up functional analyses associated 194 human MS genes with epithelium/tissue morphogenesis and epithelia cell proliferation. In addition, pathway analysis highlights the prominent role of MS genes in activation of platelets and coagulation system in tumor metastatic cascade. Moreover, global mutation pattern of MS genes across multiple cancers may reveal common cancer metastasis mechanisms. All these results illustrate the importance of MSGene to our understanding on cell development and cancer metastasis. PMID:26486520
Riesco, Adrián; Santos-Buitrago, Beatriz; De Las Rivas, Javier; Knapp, Merrill; Talcott, Carolyn
2017-01-01
In biological systems, pathways define complex interaction networks where multiple molecular elements are involved in a series of controlled reactions producing responses to specific biomolecular signals. These biosystems are dynamic and there is a need for mathematical and computational methods able to analyze the symbolic elements and the interactions between them and produce adequate readouts of such systems. In this work, we use rewriting logic to analyze the cellular signaling of epidermal growth factor (EGF) and its cell surface receptor (EGFR) in order to induce cellular proliferation. Signaling is initiated by binding the ligand protein EGF to the membrane-bound receptor EGFR so as to trigger a reactions path which have several linked elements through the cell from the membrane till the nucleus. We present two different types of search for analyzing the EGF/proliferation system with the help of Pathway Logic tool, which provides a knowledge-based development environment to carry out the modeling of the signaling. The first one is a standard (forward) search. The second one is a novel approach based on narrowing, which allows us to trace backwards the causes of a given final state. The analysis allows the identification of critical elements that have to be activated to provoke proliferation. PMID:28191459
Barth, Kenneth; Genco, Caroline Attardo
2016-01-01
The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses. PMID:27698456
Contribution of MAML1 in esophageal squamous cell carcinoma tumorigenesis.
Hashemi Bidokhti, Mahnaz; Abbaszadegan, Mohammad Reza; Sharifi, Noorieh; Abbasi Sani, Soodabeh; Forghanifard, Mohammad Mahdi
2017-04-01
Notch signaling pathway is involved in different cellular and developmental processes including cell proliferation, differentiation and apoptosis. Mastermind like1 (MAML1) is a critical key transcription coactivator of this pathway. In this study, we aimed to examine MAML1 protein expression in esophageal squamous cell carcinoma (ESCC) and reveal its association with clinicopathological variables of the patients. Tumoral and their margin normal tissues from 56 ESCC patients were recruited for protein expression analysis using immunohistochemistry (IHC). Furthermore, MAML1 expression was analyzed in ESCC cell line KYSE-30 using immunocytochemistry. Overexpression of MAML1 was detected in 59% of tumor samples. It was significantly associated with different indices of poor prognosis including depth of tumor invasion (P=0.026), grade of tumor differentiation (P=0.002), stage of tumor progression (P=0.004) and sex (P=0.027). Beside the appearing evidences explaining MAML1 role in different cellular processes and its deviations in different malignancies and also based on its correlation with different clinicopathological variables of ESCC, MAML1 can be proposed as potentially novel molecular marker for ESCC progression and tumorigenesis as well as therapeutic target to inhibit and reverse progression and development of the disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Bartocci, Cristina; Denchi, Eros Lazzerini
2013-01-01
RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligases comprise a large family of enzymes that in combination with an E2 ubiquitin-conjugating enzyme, modify target proteins by attaching ubiquitin moieties. A number of RING E3s play an essential role in the cellular response to DNA damage highlighting a crucial contribution for ubiquitin-mediated signaling to the genome surveillance pathway. Among the RING E3s, RNF8 and RNF168 play a critical role in the response to double stranded breaks, one of the most deleterious types of DNA damage. These proteins act as positive regulators of the signaling cascade that initiates at DNA lesions. Inactivation of these enzymes is sufficient to severely impair the ability of cells to respond to DNA damage. Given their central role in the pathway, several layers of regulation act at this nodal signaling point. Here we will summarize current knowledge on the roles of RNF8 and RNF168 in maintaining genome integrity with particular emphasis on recent insights into the multiple layers of regulation that act on these enzymes to fine-tune the cellular response to DNA lesions. PMID:23847653
Luteijn, Rutger David; Drexler, Ingo; Smith, Geoffrey L; Lebbink, Robert Jan; Wiertz, Emmanuel J H J
2018-06-01
Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.
Disorders of erythrocyte hydration.
Gallagher, Patrick G
2017-12-21
The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity. Recent studies have revealed that these disorders are also marked by genetic heterogeneity. They have implicated roles for several proteins, PIEZO1, a mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; KCNN4, the Gardos channel; and ABCB6, an adenosine triphosphate-binding cassette family member, in the maintenance of erythrocyte volume homeostasis. Secondary disorders of erythrocyte hydration include sickle cell disease, thalassemia, hemoglobin CC, and hereditary spherocytosis, where cellular dehydration may be a significant contributor to disease pathology and clinical complications. Understanding the pathways regulating erythrocyte water and solute content may reveal innovative strategies to maintain normal volume in disorders associated with primary or secondary cellular dehydration. These mechanisms will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment beyond the erythrocyte. © 2017 by The American Society of Hematology.
Riesco, Adrián; Santos-Buitrago, Beatriz; De Las Rivas, Javier; Knapp, Merrill; Santos-García, Gustavo; Talcott, Carolyn
2017-01-01
In biological systems, pathways define complex interaction networks where multiple molecular elements are involved in a series of controlled reactions producing responses to specific biomolecular signals. These biosystems are dynamic and there is a need for mathematical and computational methods able to analyze the symbolic elements and the interactions between them and produce adequate readouts of such systems. In this work, we use rewriting logic to analyze the cellular signaling of epidermal growth factor (EGF) and its cell surface receptor (EGFR) in order to induce cellular proliferation. Signaling is initiated by binding the ligand protein EGF to the membrane-bound receptor EGFR so as to trigger a reactions path which have several linked elements through the cell from the membrane till the nucleus. We present two different types of search for analyzing the EGF/proliferation system with the help of Pathway Logic tool, which provides a knowledge-based development environment to carry out the modeling of the signaling. The first one is a standard (forward) search. The second one is a novel approach based on narrowing , which allows us to trace backwards the causes of a given final state. The analysis allows the identification of critical elements that have to be activated to provoke proliferation.
Erythropoietin and diabetes mellitus
Maiese, Kenneth
2015-01-01
Erythropoietin (EPO) is a 30.4 kDa growth factor and cytokine that governs cell proliferation, immune modulation, metabolic homeostasis, vascular function, and cytoprotection. EPO is under investigation for the treatment of variety of diseases, but appears especially suited for the treatment of disorders of metabolism that include diabetes mellitus (DM). DM and the complications of this disease impact a significant portion of the global population leading to disability and death with currently limited therapeutic options. In addition to its utility for the treatment of anemia, EPO can improve cardiac function, reduce fatigue, and improve cognition in patients with DM as well as regulate cellular energy metabolism, obesity, tissue repair and regeneration, apoptosis, and autophagy in experimental models of DM. Yet, EPO can have adverse effects that involve the vasculature system and unchecked cellular proliferation. Critical to the cytoprotective capacity and the potential for a positive clinical outcome with EPO are the control of signal transduction pathways that include protein kinase B, the mechanistic target of rapamycin, Wnt signaling, mammalian forkhead transcription factors of the O class, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), and AMP activated protein kinase. Therapeutic strategies that can specifically target and control EPO and its signaling pathways hold great promise for the development of new and effective clinical treatments for DM and the complications of this disorder. PMID:26516410
Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals.
Qin, Si; Hou, De-Xing
2016-08-01
Keap1/Nrf2 system plays a critical role on cellular protection by regulating many antioxidant and detoxification enzyme genes through the antioxidant response element (ARE). Thus, it must work constantly to prevent the accumulation of reactive oxygen species (ROS) because excess ROS are associated with many diseases such as cancer, cardiovascular complications, inflammation, and neurodegeneration. Dietary phytochemicals widely distributing in fruits and vegetables have been considered to possess cancer chemopreventive potential through the induction of Keap1/Nrf2 system-mediated antioxidant and detoxification enzymes in a variety of manners. The data are extensive and are not well classified on the molecular mechanisms. In this review, we first briefly introduce the current knowledge on Keap1/Nrf2 system regulation including Keap1-dependent and Keap1-independent cascades, and epigenetic pathway. Then, we summarize the molecular targets of Keap1/Nrf2 system by dietary phytochemicals, and finally review the crosstalk between Keap1/Nrf2 system and other cellular signaling pathways to regulate diverse chronic diseases by dietary phytochemicals. These comprehensive data will help us to understand the potential effects of dietary phytochemicals on the prevention of chronic diseases and maintenance of human health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selective disruption of the AKAP signaling complexes.
Kennedy, Eileen J; Scott, John D
2015-01-01
Synthesis of the second messenger cAMP activates a variety of signaling pathways critical for all facets of intracellular regulation. Protein kinase A (PKA) is the major cAMP-responsive effector. Where and when this enzyme is activated has profound implications on the cellular role of PKA. A-Kinase Anchoring Proteins (AKAPs) play a critical role in this process by orchestrating spatial and temporal aspects of PKA action. A popular means of evaluating the impact of these anchored signaling events is to biochemically interfere with the PKA-AKAP interface. Hence, peptide disruptors of PKA anchoring are valuable tools in the investigation of local PKA action. This article outlines the development of PKA isoform-selective disruptor peptides, documents the optimization of cell-soluble peptide derivatives, and introduces alternative cell-based approaches that interrogate other aspects of the PKA-AKAP interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen
2006-01-13
Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, andmore » the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.« less
Minimal metabolic pathway structure is consistent with associated biomolecular interactions
Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard O
2014-01-01
Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated. PMID:24987116
Odeh, Ahmad M; Craik, James D; Ezzeddine, Rima; Tovmasyan, Artak; Batinic-Haberle, Ines; Benov, Ludmil T
2014-01-01
Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistollato, Francesca; Louisse, Jochem; Scelfo, Bibiana
2014-10-15
According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro.more » Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2{sup +} neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Ekhtear; Ota, Akinobu, E-mail: aota@aichi-med-u.ac.jp; Karnan, Sivasundaram
Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, anmore » anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.« less
Nutrient sensing modulates malaria parasite virulence
Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T.; Grosso, Ana Rita; Modrzynska, Katarzyna K.; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M.
2017-01-01
The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host(s), primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signaling networks that confer to cells the ability to sense and adapt to varying environmental conditions1,2. Canonical nutrient-sensing pathways are presumably absent in the causing agent of malaria Plasmodium3–5, thus raising the question of whether these parasites possess the capacity to sense and cope with host nutrient fluctuations. Here, we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through a rearrangement of their transcriptome accompanied by a significant adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology to SNF1/AMPKα and yeast complementation studies suggest functional conservation of an ancient cellular energy sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical to modulate parasite replication and virulence. PMID:28678779
Systems Biology for Organotypic Cell Cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grego, Sonia; Dougherty, Edward R.; Alexander, Francis J.
Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomicmore » data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.« less
Workshop Report: Systems Biology for Organotypic Cell Cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grego, Sonia; Dougherty, Edward R.; Alexander, Francis Joseph
Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomicmore » data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data.« less
Insight into the tumor suppressor function of CBP through the viral oncoprotein tax.
Van Orden, K; Nyborg, J K
2000-01-01
CREB binding protein (CBP) is a cellular coactivator protein that regulates essentially all known pathways of gene expression. The transcriptional coactivator properties of CBP are utilized by at least 25 different transcription factors representing nearly all known classes of DNA binding proteins. Once bound to their target genes, these transcription factors are believed to tether CBP to the promoter, leading to activated transcription. CBP functions to stimulate transcription through direct recruitment of the general transcription machinery as well as acetylation of both histone and transcription factor substrates. Recent observations indicate that a critical dosage of CBP is required for normal development and tumor suppression, and that perturbations in CBP concentrations may disrupt cellular homeostasis. Furthermore, there is accumulating evidence that CBP deregulation plays a direct role in hematopoietic malignancies. However, the molecular events linking CBP deregulation and malignant transformation are unclear. Further insight into the function of CBP, and its role as a tumor suppressor, can be gained through recent studies of the human T-cell leukemia virus, type I (HTLV-I) Tax oncoprotein. Tax is known to utilize CBP to stimulate transcription from the viral promoter. However, recent data suggest that as a consequence of the Tax-CBP interaction, many cellular transcription factor pathways may be deregulated. Tax disruption of CBP function may play a key role in transformation of the HTLV-I-infected cell. Thus, Tax derailment of CBP may lend important information about the tumor suppressor properties of CBP and serve as a model for the role of CBP in hematopoietic malignancies.
Workshop Report: Systems Biology for Organotypic Cell Cultures
Grego, Sonia; Dougherty, Edward R.; Alexander, Francis Joseph; ...
2016-11-14
Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomicmore » data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data.« less
Systems biology for organotypic cell cultures.
Grego, Sonia; Dougherty, Edward R; Alexander, Francis J; Auerbach, Scott S; Berridge, Brian R; Bittner, Michael L; Casey, Warren; Cooley, Philip C; Dash, Ajit; Ferguson, Stephen S; Fennell, Timothy R; Hawkins, Brian T; Hickey, Anthony J; Kleensang, Andre; Liebman, Michael N J; Martin, Florian; Maull, Elizabeth A; Paragas, Jason; Qiao, Guilin Gary; Ramaiahgari, Sreenivasa; Sumner, Susan J; Yoon, Miyoung
2017-01-01
Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, "organotypic" cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data.
Diabetes and Kidney Disease: Role of Oxidative Stress
Jha, Jay C.; Banal, Claudine; Chow, Bryna S.M.; Cooper, Mark E.
2016-01-01
Abstract Significance: Intrarenal oxidative stress plays a critical role in the initiation and progression of diabetic kidney disease (DKD). Enhanced oxidative stress results from overproduction of reactive oxygen species (ROS) in the context of concomitant, insufficient antioxidant pathways. Renal ROS production in diabetes is predominantly mediated by various NADPH oxidases (NOXs), but a defective antioxidant system as well as mitochondrial dysfunction may also contribute. Recent Advances: Effective agents targeting the source of ROS generation hold the promise to rescue the kidney from oxidative damage and prevent subsequent progression of DKD. Critical Issues and Future Directions: In the present review, we summarize and critically analyze molecular and cellular mechanisms that have been demonstrated to be involved in NOX-induced renal injury in diabetes, with particular focus on the role of increased glomerular injury, the development of albuminuria, and tubulointerstitial fibrosis, as well as mitochondrial dysfunction. Furthermore, novel agents targeting NOX isoforms are discussed. Antioxid. Redox Signal. 25, 657–684. PMID:26906673
Boosting functionality of synthetic DNA circuits with tailored deactivation
Montagne, Kevin; Gines, Guillaume; Fujii, Teruo; Rondelez, Yannick
2016-01-01
Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology. PMID:27845324
Multiple functions of BCL-2 family proteins.
Hardwick, J Marie; Soane, Lucian
2013-02-01
BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.
Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease.
Wang, Liqun; Xia, Jing; Li, Jonathan; Hagemann, Tracy L; Jones, Jeffrey R; Fraenkel, Ernest; Weitz, David A; Zhang, Su-Chun; Messing, Albee; Feany, Mel B
2018-05-15
Glial cells have increasingly been implicated as active participants in the pathogenesis of neurological diseases, but critical pathways and mechanisms controlling glial function and secondary non-cell autonomous neuronal injury remain incompletely defined. Here we use models of Alexander disease, a severe brain disorder caused by gain-of-function mutations in GFAP, to demonstrate that misregulation of GFAP leads to activation of a mechanosensitive signaling cascade characterized by activation of the Hippo pathway and consequent increased expression of A-type lamin. Importantly, we use genetics to verify a functional role for dysregulated mechanotransduction signaling in promoting behavioral abnormalities and non-cell autonomous neurodegeneration. Further, we take cell biological and biophysical approaches to suggest that brain tissue stiffness is increased in Alexander disease. Our findings implicate altered mechanotransduction signaling as a key pathological cascade driving neuronal dysfunction and neurodegeneration in Alexander disease, and possibly also in other brain disorders characterized by gliosis.
Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy
Mfouo-Tynga, Ivan; Abrahamse, Heidi
2015-01-01
The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events. PMID:25955645
Protein components of the microRNA pathway and human diseases
Perron, Marjorie P.; Provost, Patrick
2010-01-01
Summary MicroRNAs (miRNAs) are key regulators of messenger RNA (mRNA) translation known to be involved in a wide variety of cellular processes. In fact, their individual importance is reflected in the diseases that may arise upon the loss, mutation or dysfunction of specific miRNAs. It has been appreciated only recently that diseases may also develop when the protein components of the miRNA machinery itself are affected. The core enzymes of the major protein complexes involved in miRNA biogenesis and function, such as the ribonucleases III (RNases III) Drosha and Dicer as well as Argonaute 2 (Ago2), appear to be essential. However, the accessory proteins of the miRNA pathway, such as the DiGeorge syndrome critical region gene 8 (DGCR8) protein, Exportin-5 (Exp-5), TAR RNA binding protein (TRBP) and Fragile X mental retardation protein (FMRP), are each related, in various ways, to specific genetic diseases. PMID:19301657
Mechanisms of acetylcholine- and bradykinin-induced preconditioning.
Critz, Stuart D; Cohen, Michael V; Downey, James M
2005-01-01
Acetylcholine (ACh) and bradykinin (BK) are potent pharmacological agents which mimic ischemic preconditioning (IPC) enabling hearts to resist infarction during a subsequent period of ischemia. The cardioprotective pathways activated by BK but not ACh may also protect when activated at reperfusion. ACh and BK stimulate Gi/o-linked receptors and ultimately mediate protection by opening mitochondrial ATP-sensitive potassium channels with the generation of reactive oxygen species that act as second messengers to activate protein kinase C (PKC). There appear to be key differences, however, in the pathways prior to potassium channel opening for these two receptors. This review aims to summarize what is currently known about pharmacological preconditioning by ACh and BK with an emphasis on differences that are seen in the signal transduction cascades. Understanding the cellular basis of protection by ACh and BK is a critical step towards developing pharmacological agents that will prevent infarction during ischemia resulting from coronary occlusion or heart attack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endele, Max; Etzrodt, Martin; Schroeder, Timm, E-mail: timm.schroeder@bsse.ethz.ch
Hematopoiesis is the cumulative consequence of finely tuned signaling pathways activated through extrinsic factors, such as local niche signals and systemic hematopoietic cytokines. Whether extrinsic factors actively instruct the lineage choice of hematopoietic stem and progenitor cells or are only selectively allowing survival and proliferation of already intrinsically lineage-committed cells has been debated over decades. Recent results demonstrated that cytokines can instruct lineage choice. However, the precise function of individual cytokine-triggered signaling molecules in inducing cellular events like proliferation, lineage choice, and differentiation remains largely elusive. Signal transduction pathways activated by different cytokine receptors are highly overlapping, but support themore » production of distinct hematopoietic lineages. Cellular context, signaling dynamics, and the crosstalk of different signaling pathways determine the cellular response of a given extrinsic signal. New tools to manipulate and continuously quantify signaling events at the single cell level are therefore required to thoroughly interrogate how dynamic signaling networks yield a specific cellular response. - Highlights: • Recent studies provided definite proof for lineage-instructive action of cytokines. • Signaling pathways involved in hematopoietic lineage instruction remain elusive. • New tools are emerging to quantitatively study dynamic signaling networks over time.« less
Zhuang, Gerald Z.; Keeler, Benjamin; Grant, Jeff; Bianchi, Laura; Fu, Eugene S.; Zhang, Yan Ping; Erasso, Diana M.; Cui, Jian-Guo; Wiltshire, Tim; Li, Qiongzhen; Hao, Shuanglin; Sarantopoulos, Konstantinos D.; Candiotti, Keith; Wishnek, Sarah M.; Smith, Shad B.; Maixner, William; Diatchenko, Luda; Martin, Eden R.; Levitt, Roy C.
2015-01-01
Calcium dysregulation is causally linked with various forms of neuropathology including seizure disorders, multiple sclerosis, Huntington’s disease, Alzheimer’s, spinal cerebellar ataxia (SCA) and chronic pain. Carbonic anhydrase-8 (Car8) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates intracellular calcium release fundamental to critical cellular functions including neuronal excitability, neurite outgrowth, neurotransmitter release, mitochondrial energy production and cell fate. In this report we test the hypothesis that Car8 regulation of ITPR1 and cytoplasmic free calcium release is critical to nociception and pain behaviors. We show Car8 null mutant mice (MT) exhibit mechanical allodynia and thermal hyperalgesia. Dorsal root ganglia (DRG) from MT also demonstrate increased steady-state ITPR1 phosphorylation (pITPR1) and cytoplasmic free calcium release. Overexpression of Car8 wildtype protein in MT nociceptors complements Car8 deficiency, down regulates pITPR1 and abolishes thermal and mechanical hypersensitivity. We also show that Car8 nociceptor overexpression alleviates chronic inflammatory pain. Finally, inflammation results in downregulation of DRG Car8 that is associated with increased pITPR1 expression relative to ITPR1, suggesting a possible mechanism of acute hypersensitivity. Our findings indicate Car8 regulates the ITPR1-cytosolic free calcium pathway that is critical to nociception, inflammatory pain and possibly other neuropathological states. Car8 and ITPR1 represent new therapeutic targets for chronic pain. PMID:25734498
Stalder, Romain; McKercher, Scott R.; Williamson, Robert E.; Roth, Gregory P.; Lipton, Stuart A.
2015-01-01
Activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 and heat-shock protein 90/heat-shock factor-1 signal-transduction pathways plays a central role in combatting cellular oxidative damage and related endoplasmic reticulum stress. Electrophilic compounds have been shown to be activators of these transcription-mediated responses through S-alkylation of specific regulatory proteins. Previously, we reported that a prototype compound (D1, a small molecule representing a proelectrophilic, para-hydroquinone species) exhibited neuroprotective action by activating both of these pathways. We hypothesized that the para-hydroquinone moiety was critical for this activation because it enhanced transcription of these neuroprotective pathways to a greater degree than that of the corresponding ortho-hydroquinone isomer. This notion was based on the differential oxidation potentials of the isomers for the transformation of the hydroquinone to the active, electrophilic quinone species. Here, to further test this hypothesis, we synthesized a pair of para- and ortho-hydroquinone-based proelectrophilic compounds and measured their redox potentials using analytical cyclic voltammetry. The redox potential was then compared with functional biological activity, and the para-hydroquinones demonstrated a superior neuroprotective profile. PMID:26243592
Satoh, Takumi; Stalder, Romain; McKercher, Scott R; Williamson, Robert E; Roth, Gregory P; Lipton, Stuart A
2015-01-01
Activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 and heat-shock protein 90/heat-shock factor-1 signal-transduction pathways plays a central role in combatting cellular oxidative damage and related endoplasmic reticulum stress. Electrophilic compounds have been shown to be activators of these transcription-mediated responses through S-alkylation of specific regulatory proteins. Previously, we reported that a prototype compound (D1, a small molecule representing a proelectrophilic, para-hydroquinone species) exhibited neuroprotective action by activating both of these pathways. We hypothesized that the para-hydroquinone moiety was critical for this activation because it enhanced transcription of these neuroprotective pathways to a greater degree than that of the corresponding ortho-hydroquinone isomer. This notion was based on the differential oxidation potentials of the isomers for the transformation of the hydroquinone to the active, electrophilic quinone species. Here, to further test this hypothesis, we synthesized a pair of para- and ortho-hydroquinone-based proelectrophilic compounds and measured their redox potentials using analytical cyclic voltammetry. The redox potential was then compared with functional biological activity, and the para-hydroquinones demonstrated a superior neuroprotective profile. © The Author(s) 2015.
Bowman, Shaun M.; Piwowar, Amy; Al Dabbous, Mash'el; Vierula, John; Free, Stephen J.
2006-01-01
Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal “cell-within-a-cell” phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa. PMID:16524913
Protein degradation pathways in Parkinson's disease: curse or blessing.
Ebrahimi-Fakhari, Darius; Wahlster, Lara; McLean, Pamela J
2012-08-01
Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease.
Genomic analysis of NF-κB signaling pathway reveals its complexity in Crassostrea gigas.
Yu, Mingjia; Chen, Jianming; Bao, Yongbo; Li, Jun
2018-01-01
NF-κB signaling pathway is an evolutionarily conserved pathway that plays highly important roles in several developmental, cellular and immune response processes. With the recent release of the draft Pacific oyster (Crassostra gigas) genome sequence, we have sought to identify the various components of the NF-κB signaling pathway in these mollusks and investigate their gene structure. We further constructed phylogenetic trees to establish the evolutionary relationship of the oyster proteins with their homologues in vertebrates and invertebrates using BLASTX and neighbor-joining method. We report the presence of two classic NF-κB/Rel homologues in the pacific oyster namely Cgp100 and CgRel, which possess characteristic RHD domain and a consensus nuclear localization signal, similar to mammalian homologues and an additional CgRel-like protein, unique to C. gigas. Further, in addition to two classical IκB homologues, CgIκB1 and CgIκB2, we have identified three atypical IκB family members namely CgIκB3, CgIκB4 and CgBCL3 which lack the IκB degradation motif and consist of only one exon that might have arisen by retrotransposition from CgIκB1. Finally, we report the presence of three IKKs and one NEMO genes in oyster genome, named CgIKK1, CgIKK2, CgIKK3 and CgNEMO, respectively. While CgIKK1 and CgIKK3 domain structure is similar to their mammalian homologues, CgIKK2 was found to lack the HLH and NBD domains. Overall, the high conservation of the NF-κB/Rel, IκB and IKK family components in the pacific oyster and their structural similarity to the vertebrate and invertebrate homologues underline the functional importance of this pathway in regulation of critical cellular processes across species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Global functional analyses of cellular responses to pore-forming toxins.
Kao, Cheng-Yuan; Los, Ferdinand C O; Huffman, Danielle L; Wachi, Shinichiro; Kloft, Nicole; Husmann, Matthias; Karabrahimi, Valbona; Schwartz, Jean-Louis; Bellier, Audrey; Ha, Christine; Sagong, Youn; Fan, Hui; Ghosh, Partho; Hsieh, Mindy; Hsu, Chih-Shen; Chen, Li; Aroian, Raffi V
2011-03-01
Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.
The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer
Li, Yiwei; Wang, Zhiwei; Kong, Dejuan
2010-01-01
Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3′-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies. PMID:20711635
Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking
Fraser, Jane; Cabodevilla, Ainara G.; Simpson, Joanne; Gammoh, Noor
2017-01-01
Vesicular trafficking events play key roles in the compartmentalization and proper sorting of cellular components. These events have crucial roles in sensing external signals, regulating protein activities and stimulating cell growth or death decisions. Although mutations in vesicle trafficking players are not direct drivers of cellular transformation, their activities are important in facilitating oncogenic pathways. One such pathway is the sensing of external stimuli and signalling through receptor tyrosine kinases (RTKs). The regulation of RTK activity by the endocytic pathway has been extensively studied. Compelling recent studies have begun to highlight the association between autophagy and RTK signalling. The influence of this interplay on cellular status and its relevance in disease settings will be discussed here. PMID:29233871
The secret origins and surprising fates of pancreas tumors
Bailey, Jennifer M.; DelGiorno, Kathleen E.; Crawford, Howard C.
2014-01-01
Pancreatic ductal adenocarcinoma (PDA) is especially deadly due to its recalcitrance to current therapies. One of the unique qualities of PDA that may contribute to this resistance is a striking plasticity of differentiation states starting at tumor formation and continuing throughout tumor progression, including metastasis. Here, we explore the earliest steps of tumor formation and neoplastic progression and how this results in a fascinating cellular heterogeneity that is probably critical for tumor survival and progression. We hypothesize that reinforcing differentiation pathways run awry or targeting morphologically and molecularly distinct tumor stem-like cells may hold promise for future treatments of this deadly disease. PMID:24583923
Perinatal Brain Injury: Mechanisms, Prevention, and Outcomes.
Novak, Christopher M; Ozen, Maide; Burd, Irina
2018-06-01
Perinatal brain injury may lead to long-term morbidity and neurodevelopmental impairment. Improvements in perinatal care have resulted in the survival of more infants with perinatal brain injury. The effects of hypoxia-ischemia, inflammation, and infection during critical periods of development can lead to a common pathway of perinatal brain injury marked by neuronal excitotoxicity, cellular apoptosis, and microglial activation. Various interventions can prevent or improve the outcomes of different types of perinatal brain injury. The objective of this article is to review the mechanisms of perinatal brain injury, approaches to prevention, and outcomes among children with perinatal brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.
[Non-animal toxicology in the safety testing of chemicals].
Heinonen, Tuula; Tähti, Hanna
2013-01-01
There is an urgent need to develop predictive test methods better than animal experiments for assessing the safety of chemical substances to man. According to today's vision this is achieved by using human cell based tissue and organ models. In the new testing strategy the toxic effects are assessed by the changes in the critical parameters of the cellular biochemical routes (AOP, adverse toxic outcome pathway-principle) in the target tissues. In vitro-tests are rapid and effective, and with them automation can be applied. The change in the testing paradigm is supported by all stakeholders: scientists, regulators and people concerned on animal welfare.
Mechanistic insights into the role of mTOR signaling in neuronal differentiation.
Bateman, Joseph M
2015-01-01
Temporal control of neuronal differentiation is critical to produce a complete and fully functional nervous system. Loss of the precise temporal control of neuronal cell fate can lead to defects in cognitive development and to disorders such as epilepsy and autism. Mechanistic target of rapamycin (mTOR) is a large serine/threonine kinase that acts as a crucial sensor of cellular homeostasis. mTOR signaling has recently emerged as a key regulator of neurogenesis. However, the mechanism by which mTOR regulates neurogenesis is poorly understood. In constrast to other functions of the pathway, 'neurogenic mTOR pathway factors' have not previously been identified. We have very recently used Drosophila as a model system to identify the gene unkempt as the first component of the mTOR pathway regulating neuronal differentiation. Our study demonstrates that specific adaptor proteins exist that channel mTOR signaling toward the regulation of neuronal cell fate. In this Commentary we discuss the role of mTOR signaling in neurogenesis and the significance of these findings in advancing our understanding of the mechanism by which mTOR signaling controls neuronal differentiation.
Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer.
Namani, Akhileshwar; Li, Yulong; Wang, Xiu Jun; Tang, Xiuwen
2014-09-01
Nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also known as Nfe2l2) plays a critical role in regulating cellular defense against electrophilic and oxidative stress by activating the expression of an array of antioxidant response element-dependent genes. On one hand, NRF2 activators have been used in clinical trials for cancer prevention and the treatment of diseases associated with oxidative stress; on the other hand, constitutive activation of NRF2 in many types of tumors contributes to the survival and growth of cancer cells, as well as resistance to anticancer therapy. In this review, we provide an overview of the NRF2 signaling pathway and discuss its role in carcinogenesis. We also introduce the inhibition of NRF2 by nuclear receptors. Further, we address the biological significance of regulation of the NRF2 signaling pathway by nuclear receptors in health and disease. Finally, we discuss the possible impact of NRF2 inhibition by nuclear receptors on cancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Sun, H; Lesche, R; Li, D M; Liliental, J; Zhang, H; Gao, J; Gavrilova, N; Mueller, B; Liu, X; Wu, H
1999-05-25
To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten-/- ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27(KIP1), a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten-/- cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4, 5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.
Neisch, Amanda L.; Avery, Adam W.; Machame, James B.; Li, Min-gang; Hays, Thomas S.
2017-01-01
Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila. PMID:26794520
A contemporary view of atrioventricular nodal physiology.
Markowitz, Steven M; Lerman, Bruce B
2018-06-16
In delaying transmission of the cardiac impulse from the atria to the ventricles, the atrioventricular (AV) node serves a critical function in augmenting ventricular filling during diastole and limiting the ventricular response during atrial tachyarrhythmias. The complex structure of the nodal region, however, also provides the substrate for reentrant rhythms. Recent discoveries have elucidated the cellular basis and anatomical determinants of slow conduction in the node. Based on analysis of gap junction proteins, distinct structural components of the AV node have been defined, including the compact node, right and left inferior nodal extensions, the lower nodal bundle, and transitional tissue. Emerging evidence supports the role of the inferior nodal extensions in mediating slow pathway conduction. The most common form of reentry involving the node, slow-fast AV nodal reentrant tachycardia (AVNRT), utilizes the inferior nodal extensions for anterograde slow pathway conduction; the structures responsible for retrograde fast pathway activation in the superior septum are less well defined and likely heterogeneous. Atypical forms of AVNRT arise from circuits that activate at least one of the inferior extensions in the retrograde direction.
Ghosh, Arnab
2017-01-01
Abstract Significance: Soluble guanylate cyclase (sGC) is an intracellular enzyme that plays a primary role in sensing nitric oxide (NO) and transducing its multiple signaling effects in mammals. Recent Advances: The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells, including sGC, where it helps to drive heme insertion into the sGC-β1 subunit. This allows sGC-β1 to associate with a partner sGC-α1 subunit and mature into an NO-responsive active form. Critical Issues: In this article, we review evidence to date regarding the mechanisms that modulate sGC activity by a pathway where binding of hsp90 or sGC agonist to heme-free sGC dictates the assembly and fate of an active sGC heterodimer, both by NO and heme-dependent or heme-independent pathways. Future Directions: We discuss some therapeutic implications of the NO-sGC-hsp90 nexus and its potential as a marker of inflammatory disease. Antioxid. Redox Signal. 26, 182–190. PMID:26983679
Dorval, Véronique; Smith, Pascal Y; Delay, Charlotte; Calvo, Ezequiel; Planel, Emmanuel; Zommer, Nadège; Buée, Luc; Hébert, Sébastien S
2012-01-01
The small non-protein-coding microRNAs (miRNAs) have emerged as critical regulators of neuronal differentiation, identity and survival. To date, however, little is known about the genes and molecular networks regulated by neuronal miRNAs in vivo, particularly in the adult mammalian brain. We analyzed whole genome microarrays from mice lacking Dicer, the enzyme responsible for miRNA production, specifically in postnatal forebrain neurons. A total of 755 mRNA transcripts were significantly (P<0.05, FDR<0.25) misregulated in the conditional Dicer knockout mice. Ten genes, including Tnrc6c, Dnmt3a, and Limk1, were validated by real time quantitative RT-PCR. Upregulated transcripts were enriched in nonneuronal genes, which is consistent with previous studies in vitro. Microarray data mining showed that upregulated genes were enriched in biological processes related to gene expression regulation, while downregulated genes were associated with neuronal functions. Molecular pathways associated with neurological disorders, cellular organization and cellular maintenance were altered in the Dicer mutant mice. Numerous miRNA target sites were enriched in the 3'untranslated region (3'UTR) of upregulated genes, the most significant corresponding to the miR-124 seed sequence. Interestingly, our results suggest that, in addition to miR-124, a large fraction of the neuronal miRNome participates, by order of abundance, in coordinated gene expression regulation and neuronal maintenance. Taken together, these results provide new clues into the role of specific miRNA pathways in the regulation of brain identity and maintenance in adult mice.
Lavorgna, Alfonso; Harhaj, Edward William
2014-01-01
Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%–5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis. PMID:25341660
Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome.
Saeedi Borujeni, Mohammad Javad; Esfandiary, Ebrahim; Taheripak, Gholamreza; Codoñer-Franch, Pilar; Alonso-Iglesias, Eulalia; Mirzaei, Hamed
2018-02-01
Diabetes mellitus (DM) is known as one of important common endocrine disorders which could due to deregulation of a variety of cellular and molecular pathways. A large numbers studies indicated that various pathogenesis events including mutation, serin phosphorylation, and increasing/decreasing expression of many genes could contribute to initiation and progression of DM. Insulin resistance is one of important factors which could play critical roles in DM pathogenesis. It has been showed that insulin resistance via targeting a sequence of cellular and molecular pathways (eg, PI3 kinases, PPARγ co-activator-1, microRNAs, serine/threonine kinase Akt, and serin phosphorylation) could induce DM. Among of various factors involved in DM pathogenesis, microRNAs, and exosomes have been emerged as effective factors in initiation and progression of DM. A variety of studies indicated that deregulation of these molecules could change behavior of various types of cells and contribute to progression of DM. Resistin is other main factor which is known as signal molecule involved in insulin resistance. Multiple lines evidence indicated that resistin exerts its effects via affecting on glucose metabolism, inhibition of fatty acid uptake and metabolism with affecting on a variety of targets such as CD36, fatty acid transport protein 1, Acetyl-CoA carboxylase, and AMP-activated protein kinase. Here, we summarized various molecular aspects are associated with DM particularly the molecular pathways involved in insulin resistance and resistin in DM. Moreover, we highlighted exosomes and microRNAs as effective players in initiation and progression of DM. © 2017 Wiley Periodicals, Inc.
Demuth, Ilja; Digweed, Martin; Concannon, Patrick
2004-11-11
DNA interstrand crosslinks (ICLs) are critical lesions for the mammalian cell since they affect both DNA strands and block transcription and replication. The repair of ICLs in the mammalian cell involves components of different repair pathways such as nucleotide-excision repair and the double-strand break/homologous recombination repair pathways. However, the mechanistic details of mammalian ICL repair have not been fully delineated. We describe here the complete coding sequence and the genomic organization of hSNM1B, one of at least three human homologs of the Saccharomyces cerevisiae PSO2 gene. Depletion of hSNM1B by RNA interference rendered cells hypersensitive to ICL-inducing agents. This requirement for hSNM1B in the cellular response to ICL has been hypothesized before but never experimentally verified. In addition, siRNA knockdown of hSNM1B rendered cells sensitive to ionizing radiation, suggesting the possibility of hSNM1B involvement in homologous recombination repair of double-strand breaks arising as intermediates of ICL repair. Monoubiquitination of FANCD2, a key step in the FANC/BRCA pathway, is not affected in hSNM1B-depleted HeLa cells, indicating that hSNM1B is probably not a part of the Fanconi anemia core complex. Nonetheless, similarities in the phenotype of hSNM1B-depleted cells and cultured cells from patients suffering from Fanconi anemia make hSNM1B a candidate for one of the as yet unidentified Fanconi anemia genes not involved in monoubiquitination of FANCD2.
Cork, David M.W.; Darby, Steven; Ryan-Munden, Claudia A.; Nakjang, Sirintra; Mendes Côrtes, Leticia; Treumann, Achim; Gaughan, Luke
2017-01-01
Abstract The androgen receptor (AR) is the main driver of prostate cancer (PC) development and progression, and the primary therapeutic target in PC. To date, two functional ubiquitination sites have been identified on AR, both located in its C-terminal ligand binding domain (LBD). Recent reports highlight the emergence of AR splice variants lacking the LBD that can arise during disease progression and contribute to castrate resistance. Here, we report a novel N-terminal ubiquitination site at lysine 311. Ubiquitination of this site plays a role in AR stability and is critical for its transcriptional activity. Inactivation of this site causes AR to accumulate on chromatin and inactivates its transcriptional function as a consequence of inability to bind to p300. Additionally, mutation at lysine 311 affects cellular transcriptome altering the expression of genes involved in chromatin organization, signaling, adhesion, motility, development and metabolism. Even though this site is present in clinically relevant AR-variants it can only be ubiquitinated in cells when AR retains LBD suggesting a role for AR C-terminus in E2/E3 substrate recognition. We report that as a consequence AR variants lacking the LBD cannot be ubiquitinated in the cellular environment and their protein turnover must be regulated via an alternate pathway. PMID:27903893
Role of autophagy in cancer prevention
Chen, Hsin-Yi; White, Eileen
2011-01-01
Macroautophagy (autophagy hereafter) is a catabolic process by which cells degrade intracellular components in lysosomes. This cellular garbage disposal and intracellular recycling provided by autophagy serves to maintain cellular homeostasis by eliminating superfluous or damaged proteins and organelles, and invading microbes, or to provide substrates for energy generation and biosynthesis in stress. Thus, autophagy promotes the health of cells and animals and is critical for development, differentiation and maintenance of cell function and for the host defense against pathogens. Deregulation of autophagy is linked to susceptibility to various disorders including degenerative diseases, metabolic syndrome, aging, infectious diseases and cancer. Autophagic activity emerges as a critical factor in development and progression of diseases that are associated with increased cancer risk as well as in different stages of cancer. Given that cancer is a complex process and autophagy exerts its effect in multiple ways, role of autophagy in tumorigenesis is context-dependent. As a cytoprotective survival pathway, autophagy prevents chronic tissue damage and cell death that can lead to cancer initiation and progression. As such, stimulation or restoration of autophagy may prevent cancer. By contrast, once cancer occurs, cancer cells may utilize autophagy to enhance fitness to survive with altered metabolism and in the hostile tumor microenvironment. In this setting autophagy inhibition would instead become a strategy for therapy of established cancers. PMID:21733821
Ling, JunJun; Yang, Shengyou; Huang, Yi; Wei, Dongfeng; Cheng, Weidong
2018-06-01
Alzheimer disease (AD) is a progressive neurodegenerative disease, the etiology of which remains largely unknown. Accumulating evidence indicates that elevated manganese (Mn) in brain exerts toxic effects on neurons and contributes to AD development. Thus, we aimed to explore the gene and pathway variations through analysis of high through-put data in this process.To screen the differentially expressed genes (DEGs) that may play critical roles in Mn-induced AD, public microarray data regarding Mn-treated neurocytes versus controls (GSE70845), and AD versus controls (GSE48350), were downloaded and the DEGs were screened out, respectively. The intersection of the DEGs of each datasets was obtained by using Venn analysis. Then, gene ontology (GO) function analysis and KEGG pathway analysis were carried out. For screening hub genes, protein-protein interaction network was constructed. At last, DEGs were analyzed in Connectivity Map (CMAP) for identification of small molecules that overcome Mn-induced neurotoxicity or AD development.The intersection of the DEGs obtained 140 upregulated and 267 downregulated genes. The top 5 items of biological processes of GO analysis were taxis, chemotaxis, cell-cell signaling, regulation of cellular physiological process, and response to wounding. The top 5 items of KEGG pathway analysis were cytokine-cytokine receptor interaction, apoptosis, oxidative phosphorylation, Toll-like receptor signaling pathway, and insulin signaling pathway. Afterwards, several hub genes such as INSR, VEGFA, PRKACB, DLG4, and BCL2 that might play key roles in Mn-induced AD were further screened out. Interestingly, tyrphostin AG-825, an inhibitor of tyrosine phosphorylation, was predicted to be a potential agent for overcoming Mn-induced neurotoxicity or AD development.The present study provided a novel insight into the molecular mechanisms of Mn-induced neurotoxicity or AD development and screened out several small molecular candidates that might be critical for Mn neurotoxicity prevention and Mn-induced AD treatment.
Lincoln, Barron L.; Alabsi, Sahar H.; Frendo, Nicholas; Freund, Robert; Keller, Lani C.
2015-01-01
Neurodegenerative diseases affect millions of people worldwide, and as the global population ages, there is a critical need to improve our understanding of the molecular and cellular mechanisms that drive neurodegeneration. At the molecular level, neurodegeneration involves the activation of complex signaling pathways that drive the active destruction of neurons and their intracellular components. Here, we use an in vivo motor neuron injury assay to acutely induce neurodegeneration in order to follow the temporal order of events that occur following injury in Drosophila melanogaster. We find that sites of injury can be rapidly identified based on structural defects to the neuronal cytoskeleton that result in disrupted axonal transport. Additionally, the neuromuscular junction accumulates ubiquitinated proteins prior to the neurodegenerative events, occurring at 24 hours post injury. Our data provide insights into the early molecular events that occur during axonal and neuromuscular degeneration in a genetically tractable model organism. Importantly, the mechanisms that mediate neurodegeneration in flies are conserved in humans. Thus, these studies have implications for our understanding of the cellular and molecular events that occur in humans and will facilitate the identification of biomedically relevant targets for future treatments. PMID:26512206
Yao, Humphrey Hung-Chang; Capel, Blanche
2014-01-01
Most studies to date indicate that the formation of testis cords is critical for proper Sertoli cell differentiation, inhibition of germ cell meiosis, and regulation of Leydig cell differentiation. However, the connections between these events are poorly understood. The objective of this study was to dissect the molecular and cellular relationships between these events in testis formation. We took advantage of the different effects of two hedgehog signaling inhibitors, cyclopamine and forskolin, on gonad explant cultures. Both hedgehog inhibitors phenocopied the disruptive effect of Dhh−/− on formation of testis cords without influencing Sertoli cell differentiation. However, they exhibited different effects on other cellular events during testis development. Treatment with cyclopamine did not affect inhibition of germ cell meiosis and mesonephric cell migration but caused defects in Leydig cell differentiation. In contrast, forskolin treatment induced germ cell meiosis, inhibited mesonephric cell migration, and had no effect on Leydig cell differentiation. By carefully contrasting the different effects of these two hedgehog inhibitors, we demonstrate that although formation of testis cords and development of other cell types normally take place in a tightly regulated sequence, each of these events can occur independent of the others. PMID:12051821
New Therapeutic Concept of NAD Redox Balance for Cisplatin Nephrotoxicity
Oh, Gi-Su; Kim, Hyung-Jin; Shen, AiHua; Lee, Su-Bin; Yang, Sei-Hoon; Shim, Hyeok; Cho, Eun-Young; Kwon, Kang-Beom; Kwak, Tae Hwan; So, Hong-Seob
2016-01-01
Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors. In addition to its antitumor activity, cisplatin affects normal cells and may induce adverse effects such as ototoxicity, nephrotoxicity, and peripheral neuropathy. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and inflammatory responses are closely associated with cisplatin-induced nephrotoxicity; however, the precise mechanism remains unclear. The cofactor nicotinamide adenine dinucleotide (NAD+) has emerged as a key regulator of cellular energy metabolism and homeostasis. Recent studies have demonstrated associations between disturbance in intracellular NAD+ levels and clinical progression of various diseases through the production of reactive oxygen species and inflammation. Furthermore, we demonstrated that reduction of the intracellular NAD+/NADH ratio is critically involved in cisplatin-induced kidney damage through inflammation and oxidative stress and that increase of the cellular NAD+/NADH ratio suppresses cisplatin-induced kidney damage by modulation of potential damage mediators such as oxidative stress and inflammatory responses. In this review, we describe the role of NAD+ metabolism in cisplatin-induced nephrotoxicity and discuss a potential strategy for the prevention or treatment of cisplatin-induced adverse effects with a particular focus on NAD+-dependent cellular pathways. PMID:26881219
Phosphate toxicity: new insights into an old problem
RAZZAQUE, M. Shawkat
2011-01-01
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23–klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review. PMID:20958267
Phosphate toxicity: new insights into an old problem.
Razzaque, M Shawkat
2011-02-01
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23-klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review.
Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium.
Miyoshi, Hiroyuki; VanDussen, Kelli L; Malvin, Nicole P; Ryu, Stacy H; Wang, Yi; Sonnek, Naomi M; Lai, Chin-Wen; Stappenbeck, Thaddeus S
2017-01-04
Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound-associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE 2 ) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear β-catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE 2 -Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE 2 and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury. © 2016 The Authors.
Circadian redox signaling in plant immunity and abiotic stress.
Spoel, Steven H; van Ooijen, Gerben
2014-06-20
Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.
Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L
2017-08-01
Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology.
Turan, Belma; Tuncay, Erkan
2017-11-12
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn 2+ . Although Zn 2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn 2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn 2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn 2+ -diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn 2+ in parallel to the discovery of subcellular localization of Zn 2+ -transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn 2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca 2+ dynamics. Cellular labile Zn 2+ is tightly regulated against its adverse effects through either Zn 2+ -transporters, Zn 2+ -binding molecules or Zn 2+ -sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn 2+ distribution in cardiomyocytes and how a remodeling of cellular Zn 2+ -homeostasis can be important in proper cell function with Zn 2+ -transporters under hyperglycemia. We also emphasize the recent investigations on Zn 2+ -transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Urbán, Patricia; Bogni, Alessia; Ponti, Jessica; Gioria, Sabrina; Kinsner-Ovaskainen, Agnieszka
2017-06-26
Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called "critical quality attributes", that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs.
Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro
2005-12-15
Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.
Mogensen, Kris M; Lasky-Su, Jessica; Rogers, Angela J; Baron, Rebecca M; Fredenburgh, Laura E; Rawn, James; Robinson, Malcolm K; Massarro, Anthony; Choi, Augustine M K; Christopher, Kenneth B
2017-02-01
We hypothesized that metabolic profiles would differ in critically ill patients with malnutrition relative to those without. We performed a prospective cohort study on 85 adult patients with systemic inflammatory response syndrome or sepsis admitted to a 20-bed medical intensive care unit (ICU) in Boston. We generated metabolomic profiles using gas and liquid chromatography and mass spectroscopy. We followed this by logistic regression and partial least squares discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis and network model construction of chemical-protein target interactions to identify groups of metabolites and pathways that were differentiates in patients with and without malnutrition. Of the cohort, 38% were malnourished at admission to the ICU. Metabolomic profiles differed in critically ill patients with malnutrition relative to those without. Ten metabolites were significantly associated with malnutrition ( P < .05). A parsimonious model of 5 metabolites effectively differentiated patients with malnutrition (AUC = 0.76), including pyroglutamine and hypoxanthine. Using pathway enrichment analysis, we identified a critical role of glutathione and purine metabolism in predicting nutrition. Nutrition status was associated with 28-day mortality, even after adjustment for known phenotypic variables associated with ICU mortality. Importantly, 7 metabolites associated with nutrition status were also associated with 28-day mortality. Malnutrition is associated with differential metabolic profiles early in critical illness. Common to all of our metabolome analyses, glutathione and purine metabolism, which play principal roles in cellular redox regulation and accelerated tissue adenosine triphosphate degradation, respectively, were significantly altered with malnutrition.
Cellular Response to Ionizing Radiation: A MicroRNA Story
Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi
2012-01-01
MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775
Estradiol and cognitive function: Past, present and future
Luine, Victoria N.
2014-01-01
A historical perspective on estradiol’s enhancement of cognitive function is presented, and research, primarily in animals, but also in humans, is reviewed. Data regarding the mechanisms underlying the enhancements are discussed. Newer studies showing rapid effects of estradiol on consolidation of memory through membrane interactions and activation of inter-cellular signaling pathways are reviewed as well as studies focused on traditional genomic mechanisms. Recent demonstrations of intra-neuronal estradiol synthesis and possible actions as a neurosteroid to promote memory are discussed. This information is applied to the critical issue of the current lack of effective hormonal (or other) treatments for cognitive decline associated with menopause and aging. Finally, the critical period hypothesis for estradiol effects is discussed along with novel strategies for hormone/drug development. Overall, the historical record documents that estradiol positively impacts some aspects of cognitive function, but effective therapeutic interventions using this hormone have yet to be realized. PMID:25205317
Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis
Nichols, Daniel Brian; De Martini, William; Cottrell, Jessica
2017-01-01
Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence. PMID:28786952
Dutta, Tumpa; Chai, High Seng; Ward, Lawrence E.; Ghosh, Aditya; Persson, Xuan-Mai T.; Ford, G. Charles; Kudva, Yogish C.; Sun, Zhifu; Asmann, Yan W.; Kocher, Jean-Pierre A.; Nair, K. Sreekumaran
2012-01-01
Insulin regulates many cellular processes, but the full impact of insulin deficiency on cellular functions remains to be defined. Applying a mass spectrometry–based nontargeted metabolomics approach, we report here alterations of 330 plasma metabolites representing 33 metabolic pathways during an 8-h insulin deprivation in type 1 diabetic individuals. These pathways included those known to be affected by insulin such as glucose, amino acid and lipid metabolism, Krebs cycle, and immune responses and those hitherto unknown to be altered including prostaglandin, arachidonic acid, leukotrienes, neurotransmitters, nucleotides, and anti-inflammatory responses. A significant concordance of metabolome and skeletal muscle transcriptome–based pathways supports an assumption that plasma metabolites are chemical fingerprints of cellular events. Although insulin treatment normalized plasma glucose and many other metabolites, there were 71 metabolites and 24 pathways that differed between nondiabetes and insulin-treated type 1 diabetes. Confirmation of many known pathways altered by insulin using a single blood test offers confidence in the current approach. Future research needs to be focused on newly discovered pathways affected by insulin deficiency and systemic insulin treatment to determine whether they contribute to the high morbidity and mortality in T1D despite insulin treatment. PMID:22415876
Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway.
Cox, Nathan J; Unlu, Gokhan; Bisnett, Brittany J; Meister, Thomas R; Condon, Brett M; Luo, Peter M; Smith, Timothy J; Hanna, Michael; Chhetri, Abhishek; Soderblom, Erik J; Audhya, Anjon; Knapik, Ela W; Boyce, Michael
2018-01-09
The COPII coat complex, which mediates secretory cargo trafficking from the endoplasmic reticulum, is a key control point for subcellular protein targeting. Because misdirected proteins cannot function, protein sorting by COPII is critical for establishing and maintaining normal cell and tissue homeostasis. Indeed, mutations in COPII genes cause a range of human pathologies, including cranio-lenticulo-sutural dysplasia (CLSD), which is characterized by collagen trafficking defects, craniofacial abnormalities, and skeletal dysmorphology. Detailed knowledge of the COPII pathway is required to understand its role in normal cell physiology and to devise new treatments for disorders in which it is disrupted. However, little is known about how vertebrates dynamically regulate COPII activity in response to developmental, metabolic, or pathological cues. Several COPII proteins are modified by O-linked β-N-acetylglucosamine (O-GlcNAc), a dynamic form of intracellular protein glycosylation, but the biochemical and functional effects of these modifications remain unclear. Here, we use a combination of chemical, biochemical, cellular, and genetic approaches to demonstrate that site-specific O-GlcNAcylation of COPII proteins mediates their protein-protein interactions and modulates cargo secretion. In particular, we show that individual O-GlcNAcylation sites of SEC23A, an essential COPII component, are required for its function in human cells and vertebrate development, because mutation of these sites impairs SEC23A-dependent in vivo collagen trafficking and skeletogenesis in a zebrafish model of CLSD. Our results indicate that O-GlcNAc is a conserved and critical regulatory modification in the vertebrate COPII-dependent trafficking pathway.
Das, Sudeshna; Chen, Q. Brent; Saucier, Joseph D.; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M.
2014-01-01
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch–Delta signaling pathway essential for specifying the fates of sensory organ precursor cells. This complements an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in diverse neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch–Delta signaling hierarchy and is essential for maintaining cell viability within by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. PMID:23962751
Oxidative Stress, Redox Regulation and Diseases of Cellular Differentiation
Ye, Zhi-Wei; Zhang, Jie; Townsend, Danyelle M.; Tew, Kenneth D.
2015-01-01
Background Within cells, there is a narrow concentration threshold that governs whether reactive oxygen species (ROS) induce toxicity or act as second messengers. Scope of review We discuss current understanding of how ROS arise, facilitate cell signaling, cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur based pathways that provide nucleophilicity to offset these effects. Primary conclusions Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and death events. For example, ROS intersect with GSH based enzyme pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also affecting a number of diverse cell differentiation related human diseases. Recent attempts to manage such pathologies have focused on intervening in some of these pathways, with the consequence that differentiation therapy targeting redox homeostasis has provided a platform for drug discovery and development. General Significance The balance between electrophilic oxidative stress and protective biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways involved provides opportunities to consider interventional strategies. PMID:25445706
NASA Astrophysics Data System (ADS)
Rizvi, Imran; Bulin, Anne-Laure; Anbil, Sriram R.; Briars, Emma A.; Vecchio, Daniela; Celli, Jonathan P.; Broekgaarden, Mans; Hasan, Tayyaba
2017-02-01
Targeting the molecular and cellular cues that influence treatment resistance in tumors is critical to effectively treating unresponsive populations of stubborn disease. The informed design of mechanism-based combinations is emerging as increasingly important to targeting resistance and improving the efficacy of conventional treatments, while minimizing toxicity. Photodynamic therapy (PDT) has been shown to synergize with conventional agents and to overcome the evasion pathways that cause resistance. Increasing evidence shows that PDT-based combinations cooperate mechanistically with, and improve the therapeutic index of, traditional chemotherapies. These and other findings emphasize the importance of including PDT as part of comprehensive treatment plans for cancer, particularly in complex disease sites. Identifying effective combinations requires a multi-faceted approach that includes the development of bioengineered cancer models and corresponding image analysis tools. The molecular and phenotypic basis of verteporfin-mediated PDT-based enhancement of chemotherapeutic efficacy and predictability in complex 3D models for ovarian cancer will be presented.
Cell-penetrating peptides and antimicrobial peptides: how different are they?
Henriques, Sónia Troeira; Melo, Manuel Nuno; Castanho, Miguel A. R. B.
2006-01-01
Some cationic peptides, referred to as CPPs (cell-penetrating peptides), have the ability to translocate across biological membranes in a non-disruptive way and to overcome the impermeable nature of the cell membrane. They have been successfully used for drug delivery into mammalian cells; however, there is no consensus about the mechanism of cellular uptake. Both endocytic and non-endocytic pathways are supported by experimental evidence. The observation that some AMPs (antimicrobial peptides) can enter host cells without damaging their cytoplasmic membrane, as well as kill pathogenic agents, has also attracted attention. The capacity to translocate across the cell membrane has been reported for some of these AMPs. Like CPPs, AMPs are short and cationic sequences with a high affinity for membranes. Similarities between CPPs and AMPs prompted us to question if these two classes of peptides really belong to unrelated families. In this Review, a critical comparison of the mechanisms that underlie cellular uptake is undertaken. A reflection and a new perspective about CPPs and AMPs are presented. PMID:16956326
Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies
Wang, X; Rivière, I
2015-01-01
Adoptive transfer of tumor-infiltrating lymphocytes (TILs) and genetically engineered T lymphocytes expressing chimeric antigen receptors (CARs) or conventional alpha/beta T-cell receptors (TCRs), collectively termed adoptive cell therapy (ACT), is an emerging novel strategy to treat cancer patients. Application of ACT has been constrained by the ability to isolate and expand functional tumor-reactive T cells. The transition of ACT from a promising experimental regimen to an established standard of care treatment relies largely on the establishment of safe, efficient, robust and cost-effective cell manufacturing protocols. The manufacture of cellular products under current good manufacturing practices (cGMPs) has a critical role in the process. Herein, we review current manufacturing methods for the large-scale production of clinical-grade TILs, virus-specific and genetically modified CAR or TCR transduced T cells in the context of phase I/II clinical trials as well as the regulatory pathway to get these complex personalized cellular products to the clinic. PMID:25721207
Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation
Chang, Jaerak; Lee, Seongju; Blackstone, Craig
2014-01-01
Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common autosomal recessive hereditary spastic paraplegia gene products, the SPG15 protein spastizin and the SPG11 protein spatacsin, are pivotal for autophagic lysosome reformation (ALR), a pathway that generates new lysosomes. Lysosomal targeting of spastizin required an intact FYVE domain, which binds phosphatidylinositol 3-phosphate. Loss of spastizin or spatacsin resulted in depletion of free lysosomes, which are competent to fuse with autophagosomes, and an accumulation of autolysosomes, reflecting a failure in ALR. Moreover, spastizin and spatacsin were essential components for the initiation of lysosomal tubulation. Together, these results link dysfunction of the autophagy/lysosomal biogenesis machinery to neurodegeneration. PMID:25365221
Girnita, L; Takahashi, S-I; Crudden, C; Fukushima, T; Worrall, C; Furuta, H; Yoshihara, H; Hakuno, F; Girnita, A
2016-01-01
Cell-surface receptors govern the critical information passage from outside to inside the cell and hence control important cellular decisions such as survival, growth, and differentiation. These receptors, structurally grouped into different families, utilize common intracellular signaling-proteins and pathways, yet promote divergent biological consequences. In rapid processing of extracellular signals to biological outcomes, posttranslational modifications offer a repertoire of protein processing options. Protein ubiquitination was originally identified as a signal for protein degradation through the proteasome system. It is now becoming increasingly recognized that both ubiquitin and ubiquitin-like proteins, all evolved from a common ubiquitin structural superfold, are used extensively by the cell and encompass signal tags for many different cellular fates. In this chapter we examine the current understanding of the ubiquitin regulation surrounding the insulin-like growth factor and insulin signaling systems, major members of the larger family of receptor tyrosine kinases (RTKs) and key regulators of fundamental physiological and pathological states. Copyright © 2016 Elsevier Inc. All rights reserved.
The role of dietary polyphenols in the management of inflammatory bowel disease.
Farzaei, Mohammad H; Rahimi, Roja; Abdollahi, Mohammad
2015-01-01
Inflammatory bowel disease (IBD) is an idiopathic chronic, relapsing inflammation of the bowel which is caused by dysregulation of the mucosal immune system. Polyphenols as the secondary plant metabolites universally present in vegetables and fruits and are the most abundant antioxidants in the human diet. There is evidence demonstrating the beneficial health effects of dietary polyphenols. This review criticizes the potential of commonly used polyphenols including apple polyphenol, bilberry anthocyanin, curcumin, epigallocatechin-3-gallate (EGCG) and green tea polyphenols, naringenin, olive oil polyphenols, pomegranate polyphenols and ellagic acid, quercetin, as well as resveratrol specifically in IBD with an emphasis on cellular mechanisms and pharmaceutical aspects. Scientific research confirmed that dietary polyphenols possess both protective and therapeutic effects in the management of IBD mediated via down-regulation of inflammatory cytokines and enzymes, enhancing antioxidant defense, and suppressing inflammatory pathways and their cellular signaling mechanisms. Further preclinical and clinical studies are needed in order to understand safety, bioavailability and bioefficacy of dietary polyphenols in IBD patients.
New approaches for solving old problems in neuronal protein trafficking.
Bourke, Ashley M; Bowen, Aaron B; Kennedy, Matthew J
2018-04-10
Fundamental cellular properties are determined by the repertoire and abundance of proteins displayed on the cell surface. As such, the trafficking mechanisms for establishing and maintaining the surface proteome must be tightly regulated for cells to respond appropriately to extracellular cues, yet plastic enough to adapt to ever-changing environments. Not only are the identity and abundance of surface proteins critical, but in many cases, their regulated spatial positioning within surface nanodomains can greatly impact their function. In the context of neuronal cell biology, surface levels and positioning of ion channels and neurotransmitter receptors play essential roles in establishing important properties, including cellular excitability and synaptic strength. Here we review our current understanding of the trafficking pathways that control the abundance and localization of proteins important for synaptic function and plasticity, as well as recent technological advances that are allowing the field to investigate protein trafficking with increasing spatiotemporal precision. Copyright © 2018 Elsevier Inc. All rights reserved.
Wheat proteomics: proteome modulation and abiotic stress acclimation
Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed
2014-01-01
Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718
A Role for PML in Innate Immunity
Lunardi, Andrea; Gaboli, Mirella; Giorgio, Marco; Rivi, Roberta; Bygrave, Anne; Antoniou, Michael; Drabek, Dubravka; Dzierzak, Elaine; Fagioli, Marta; Salmena, Leonardo; Botto, Marina; Cordon-Cardo, Carlos; Luzzatto, Lucio; Pelicci, Pier Giuseppe; Grosveld, Frank; Pandolfi, Pier Paolo
2011-01-01
The promyelocytic leukemia gene (PML) of acute promyelocytic leukemia is an established tumor suppressor gene with critical functions in growth suppression, induction of apoptosis, and cellular senescence. Interestingly, although less studied, PML seems to play a key role also in immune response to viral infection. Herein, we report that Pml −/− mice spontaneously develop an atypical invasive and lethal granulomatous lesion known as botryomycosis (BTM). In Pml −/− mice, BTM is the result of impaired function of macrophages, whereby they fail to become activated and are thus unable to clear pathogenic microorganisms. Accordingly, Pml −/− mice are resistant to lipopolysaccharide (LPS)–induced septic shock as a result of an ineffective production of cytokines and chemokines, suggesting a role for PML in the innate immune Toll-like receptor (TLR)/NF-κB prosurvival pathway. These results not only shed light on a new fundamental function of PML in innate immunity, but they also point to a proto-oncogenic role for PML in certain cellular and pathological contexts. PMID:21779477
Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies.
Wang, X; Rivière, I
2015-03-01
Adoptive transfer of tumor-infiltrating lymphocytes (TILs) and genetically engineered T lymphocytes expressing chimeric antigen receptors (CARs) or conventional alpha/beta T-cell receptors (TCRs), collectively termed adoptive cell therapy (ACT), is an emerging novel strategy to treat cancer patients. Application of ACT has been constrained by the ability to isolate and expand functional tumor-reactive T cells. The transition of ACT from a promising experimental regimen to an established standard of care treatment relies largely on the establishment of safe, efficient, robust and cost-effective cell manufacturing protocols. The manufacture of cellular products under current good manufacturing practices (cGMPs) has a critical role in the process. Herein, we review current manufacturing methods for the large-scale production of clinical-grade TILs, virus-specific and genetically modified CAR or TCR transduced T cells in the context of phase I/II clinical trials as well as the regulatory pathway to get these complex personalized cellular products to the clinic.
Neuronal Rap1 Regulates Energy Balance, Glucose Homeostasis, and Leptin Actions.
Kaneko, Kentaro; Xu, Pingwen; Cordonier, Elizabeth L; Chen, Siyu S; Ng, Amy; Xu, Yong; Morozov, Alexei; Fukuda, Makoto
2016-09-13
The CNS contributes to obesity and metabolic disease; however, the underlying neurobiological pathways remain to be fully established. Here, we show that the small GTPase Rap1 is expressed in multiple hypothalamic nuclei that control whole-body metabolism and is activated in high-fat diet (HFD)-induced obesity. Genetic ablation of CNS Rap1 protects mice from dietary obesity, glucose imbalance, and insulin resistance in the periphery and from HFD-induced neuropathological changes in the hypothalamus, including diminished cellular leptin sensitivity and increased endoplasmic reticulum (ER) stress and inflammation. Furthermore, pharmacological inhibition of CNS Rap1 signaling normalizes hypothalamic ER stress and inflammation, improves cellular leptin sensitivity, and reduces body weight in mice with dietary obesity. We also demonstrate that Rap1 mediates leptin resistance via interplay with ER stress. Thus, neuronal Rap1 critically regulates leptin sensitivity and mediates HFD-induced obesity and hypothalamic pathology and may represent a potential therapeutic target for obesity treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila
Yuan, Quan; Song, Yuanquan; Yang, Chung-Hui; Jan, Lily Yeh; Jan, Yuh Nung
2014-01-01
Intraspecific male-male aggression, important for sexual selection, is regulated by environment, experience and internal states through largely undefined molecular and cellular mechanisms. To understand the basic neural pathway underlying the modulation of this innate behavior, we established a behavioral paradigm in Drosophila melanogaster and investigated the relationship between sexual experience and aggression. In the presence of mating partners, adult male flies exhibited elevated levels of aggression, which was largely suppressed by prior exposure to females via a sexually dimorphic neural mechanism. The suppression involved the ability of male flies to detect females by contact chemosensation through the pheromone-sensing ion channel, ppk29, and was mediated by male specific GABAergic neurons acting upon GABA-a receptor RDL in target cells. Silencing or activation of this circuit led to dis-inhibition or elimination of sex-related aggression, respectively. We propose that the GABAergic inhibition represents a critical cellular mechanism that enables prior experience to modulate aggression. PMID:24241395
Update on the Mechanisms of Liver Regeneration.
Preziosi, Morgan E; Monga, Satdarshan P
2017-05-01
Liver possesses many critical functions such as synthesis, detoxification, and metabolism. It continually receives nutrient-rich blood from gut, which incidentally is also toxin-rich. That may be why liver is uniquely bestowed with a capacity to regenerate. A commonly studied procedure to understand the cellular and molecular basis of liver regeneration is that of surgical resection. Removal of two-thirds of the liver in rodents or patients instigates alterations in hepatic homeostasis, which are sensed by the deficient organ to drive the restoration process. Although the exact mechanisms that initiate regeneration are unknown, alterations in hemodynamics and metabolism have been suspected as important effectors. Key signaling pathways are activated that drive cell proliferation in various hepatic cell types through autocrine and paracrine mechanisms. Once the prehepatectomy mass is regained, the process of regeneration is adequately terminated. This review highlights recent discoveries in the cellular and molecular basis of liver regeneration. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation.
Chang, Jaerak; Lee, Seongju; Blackstone, Craig
2014-12-01
Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common autosomal recessive hereditary spastic paraplegia gene products, the SPG15 protein spastizin and the SPG11 protein spatacsin, are pivotal for autophagic lysosome reformation (ALR), a pathway that generates new lysosomes. Lysosomal targeting of spastizin required an intact FYVE domain, which binds phosphatidylinositol 3-phosphate. Loss of spastizin or spatacsin resulted in depletion of free lysosomes, which are competent to fuse with autophagosomes, and an accumulation of autolysosomes, reflecting a failure in ALR. Moreover, spastizin and spatacsin were essential components for the initiation of lysosomal tubulation. Together, these results link dysfunction of the autophagy/lysosomal biogenesis machinery to neurodegeneration.
Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A
2018-02-01
Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.
Tang, Jiang-bo; Goellner, Eva M.; Wang, Xiao-hong; Trivedi, Ram N.; Croix, Claudette M. St; Jelezcova, Elena; Svilar, David; Brown, Ashley R.; Sobol, Robert W.
2009-01-01
Base excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance (Polß deficiency or repair inhibition) enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation of cytotoxic DNA double-strand breaks, we report that DNA damage-induced cytotoxicity due to deficiency in the BER protein Polß triggers cell death dependent on PARP activation yet independent of poly(ADP-ribose) (PAR)-mediated AIF nuclear translocation or PARG, suggesting that cytotoxicity is not from PAR or PAR-catabolite signaling. Cell death is rescued by the NAD+ metabolite NMN and is synergistic with inhibition of NAD+ biosynthesis, demonstrating that DNA damage-induced cytotoxicity mediated via BER inhibition is primarily dependent on cellular metabolite bioavailability. We offer a mechanistic justification for the elevated alkylation-induced cytotoxicity of Polß deficient cells, suggesting a linkage between DNA repair, cell survival and cellular bioenergetics. PMID:20068071
Integration of Proteomic, Transcriptional, and Interactome Data Reveals Hidden Signaling Components
Huang, Shao-shan Carol; Fraenkel, Ernest
2009-01-01
Cellular signaling and regulatory networks underlie fundamental biological processes such as growth, differentiation, and response to the environment. Although there are now various high-throughput methods for studying these processes, knowledge of them remains fragmentary. Typically, the vast majority of hits identified by transcriptional, proteomic, and genetic assays lie outside of the expected pathways. These unexpected components of the cellular response are often the most interesting, because they can provide new insights into biological processes and potentially reveal new therapeutic approaches. However, they are also the most difficult to interpret. We present a technique, based on the Steiner tree problem, that uses previously reported protein-protein and protein-DNA interactions to determine how these hits are organized into functionally coherent pathways, revealing many components of the cellular response that are not readily apparent in the original data. Applied simultaneously to phosphoproteomic and transcriptional data for the yeast pheromone response, it identifies changes in diverse cellular processes that extend far beyond the expected pathways. PMID:19638617
Hanzawa, Taiki; Shibasaki, Kyohei; Numata, Takahiro; Kawamura, Yukio; Gaude, Thierry; Rahman, Abidur
2013-01-01
High-temperature-mediated adaptation in plant architecture is linked to the increased synthesis of the phytohormone auxin, which alters cellular auxin homeostasis. The auxin gradient, modulated by cellular auxin homeostasis, plays an important role in regulating the developmental fate of plant organs. Although the signaling mechanism that integrates auxin and high temperature is relatively well understood, the cellular auxin homeostasis mechanism under high temperature is largely unknown. Using the Arabidopsis thaliana root as a model, we demonstrate that under high temperature, roots counterbalance the elevated level of intracellular auxin by promoting shootward auxin efflux in a PIN-FORMED2 (PIN2)-dependent manner. Further analyses revealed that high temperature selectively promotes the retrieval of PIN2 from late endosomes and sorts them to the plasma membrane through an endosomal trafficking pathway dependent on SORTING NEXIN1. Our results demonstrate that recycling endosomal pathway plays an important role in facilitating plants adaptation to increased temperature. PMID:24003052
Cellular proteostasis: degradation of misfolded proteins by lysosomes
Jackson, Matthew P.
2016-01-01
Proteostasis refers to the regulation of the cellular concentration, folding, interactions and localization of each of the proteins that comprise the proteome. One essential element of proteostasis is the disposal of misfolded proteins by the cellular pathways of protein degradation. Lysosomes are an important site for the degradation of misfolded proteins, which are trafficked to this organelle by the pathways of macroautophagy, chaperone-mediated autophagy and endocytosis. Conversely, amyloid diseases represent a failure in proteostasis, in which proteins misfold, forming amyloid deposits that are not degraded effectively by cells. Amyloid may then exacerbate this failure by disrupting autophagy and lysosomal proteolysis. However, targeting the pathways that regulate autophagy and the biogenesis of lysosomes may present approaches that can rescue cells from the deleterious effects of amyloidogenic proteins. PMID:27744333
The Role of microRNAs in the Pathogenesis of Herpesvirus Infection.
Piedade, Diogo; Azevedo-Pereira, José Miguel
2016-06-02
MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein-Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.
The Role of microRNAs in the Pathogenesis of Herpesvirus Infection
Piedade, Diogo; Azevedo-Pereira, José Miguel
2016-01-01
MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis. PMID:27271654
Cutting the brakes and flooring the gas: how TMEPAI turns TGF-β into a tumor promoter.
Cichon, Magdalena A; Radisky, Derek C
2014-09-01
In normal or nonmalignant cells, TGF-β inhibits cellular proliferation through activation of the SMAD-dependent canonical signaling pathway. Recent findings demonstrate that the protein TMEPAI1 can block the cytostatic effects of the canonical TGF-β signaling pathway, while activating cellular proliferation through the noncanonical, SMAD-independent TGF-β signaling pathway. As TMEPAI1 shows increased expression in the poor prognosis basal and HER2 intrinsic subtypes of breast cancer, these findings point to a new avenue of targeted therapy with considerable therapeutic potential.
A Jagged 1-Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles.
Xia, Mingcan; Harb, Hani; Saffari, Arian; Sioutas, Constantinos; Chatila, Talal A
2018-04-05
Exposure to traffic-related particulate matter promotes asthma and allergic diseases. However, the precise cellular and molecular mechanisms by which particulate matter exposure acts to mediate these effects remain unclear. We sought to elucidate the cellular targets and signaling pathways critical for augmentation of allergic airway inflammation induced by ambient ultrafine particles (UFP). We used in vitro cell-culture assays with lung-derived antigen-presenting cells and allergen-specific T cells and in vivo mouse models of allergic airway inflammation with myeloid lineage-specific gene deletions, cellular reconstitution approaches, and antibody inhibition studies. We identified lung alveolar macrophages (AM) as the key cellular target of UFP in promoting airway inflammation. Aryl hydrocarbon receptor-dependent induction of Jagged 1 (Jag1) expression in AM was necessary and sufficient for augmentation of allergic airway inflammation by UFP. UFP promoted T H 2 and T H 17 cell differentiation of allergen-specific T cells in a Jag1- and Notch 4-dependent manner. Treatment of mice with an anti-Notch 4 antibody abrogated exacerbation of allergic airway inflammation induced by UFP. UFP exacerbate allergic airway inflammation by promoting a Jag1-Notch 4-dependent interaction between AM and allergen-specific T cells, leading to augmented T H cell differentiation. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres
Epel, Elissa; Daubenmier, Jennifer; Moskowitz, Judith T.; Folkman, Susan; Blackburn, Elizabeth
2010-01-01
Understanding the malleable determinants of cellular aging is critical to understanding human longevity. Telomeres may provide a pathway for exploring this question. Telomeres are the protective caps at the ends of chromosomes. The length of telomeres offers insight into mitotic cell and possibly organismal longevity. Telomere length has now been linked to chronic stress exposure and depression. This raises the question of how might cellular aging be modulated by psychological functioning. We consider two psychological processes or states that are in opposition to one another--threat cognition and mindfulness--and their effects on cellular aging. Psychological stress cognitions, particularly appraisals of threat and ruminative thoughts, can lead to prolonged states of reactivity. In contrast, mindfulness meditation techniques appear to shift cognitive appraisals from threat to challenge, decrease ruminative thought, and reduce stress arousal. Mindfulness may also directly increase positive arousal states. We review data linking telomere length to cognitive stress and stress arousal and present new data linking cognitive appraisal to telomere length. Given the pattern of associations revealed so far, we propose that some forms of meditation may have salutary effects on telomere length by reducing cognitive stress and stress arousal and increasing positive states of mind and hormonal factors that may promote telomere maintenance. Aspects of this model are currently being tested in ongoing trials of mindfulness meditation. PMID:19735238
Inhibiting the NF-kappaB pathway to assess its function in the cellular response to space radiation
NASA Astrophysics Data System (ADS)
Koch, Kristina; Baumstark-Khan, Christa; Hellweg, Christine; Testard, Isabelle; Reitz, Guenther
2012-07-01
Radiation is regarded as one of the limiting factors for space missions. Therefore the cellular radiation response needs to be studied in order to estimate risks and to develop appropriate countermeasures. Exposure of human cells to ionizing radiation can provoke cell cycle arrest, leading to cellular senescence or premature differentiation, and different types of cell death. Previous heavy ion experiments have shown that the Nuclear Factor κB (NF-κB) pathway is activated by fluences that can be reached during long-term missions and thereby NF-κB was identified as an important modulating factor in the cellular radiation response. It could improve cellular survival after exposure to high radiation doses and influence the cancer risk of astronauts. The classical and the genotoxic stress induced NF-κB pathway result in nuclear translocation of the p65/p50 dimer. Both pathways might contribute to the cellular radiation response. Chemical inhibitors were tested to suppress the NF-κB pathway in recombinant HEK-pNF-κB-d2EGFP/Neo cells. The efficacy and cytotoxicity of the inhibitors targeting different elements of the NF-κB pathway were analyzed and found mostly inappropriate as inhibitors were partly cytotoxic or unspecific. Alternatively a functional knock-out of RelA (p65) was used to identify the contribution of the NF-κB pathway to different cellular outcomes. Small hairpin RNA constructs (shRNA) were transfected into the HEK-pNF-κB-d2EGFP/Neo cell line. Their functionality was assessed by quantitative Reverse Transcriptase real-time PCR (qRT-PCR) to verify that the RelA mRNA amount was reduced by more than 80% in the knock-down cells The original cell line had been stably transfected with a reporter system to monitor NF-κB activation by measuring destabilized Enhanced Green Fluorescent Protein (d2EGFP)-expression. It was shown that after 18 hours d2EGFP reaches its highest expression level after activation of NF-κB and can be measured by FACS analysis. Results of measuring d2EGFP showed a suppressed level of EGFP(+) cells in the knock-down cell line, indicating a decreased NF-κB level. Growth behavior of the original and the knock-down cell line was investigated, showing that the decreased RelA level leads to an elongated lag phase while the doubling time during the exponential growth phase remained unaltered. Further the colony forming ability of both cell lines was compared. Both cell lines were irradiated with X-Rays. The RelA-knock-down cell line showed an increased radiosensitivity towards X-Rays, proving that NF-κB plays an important role in the survival ability of the cell. The knock-down cell line will now be used to study the involvement of NF-κB pathway in the cellular response to heavy ion exposure and other space relevant radiation qualities.
Papillomavirus E7 Oncoproteins Share Functions with Polyomavirus Small T Antigens
White, Elizabeth A.; Kramer, Rebecca E.; Hwang, Justin H.; Pores Fernando, Arun T.; Naetar, Nana; Hahn, William C.; Roberts, Thomas M.; Schaffhausen, Brian S.; Livingston, David M.
2014-01-01
ABSTRACT Many of the small DNA tumor viruses encode transforming proteins that function by targeting critical cellular pathways involved in cell proliferation and survival. In this study, we have examined whether some of the functions of the polyomavirus small T antigens (ST) are shared by the E6 and E7 oncoproteins of two oncogenic papillomaviruses. Using three different assays, we have found that E7 can provide some simian virus 40 (SV40) or murine polyomavirus (PyV) ST functions. Both human papillomavirus 16 (HPV16) and bovine papillomavirus (BPV1) E7 proteins are capable of partially substituting for SV40 ST in a transformation assay that also includes SV40 large T antigen, the catalytic subunit of cellular telomerase, and oncogenic Ras. Like SV40 ST, HPV16 E7 has the ability to override a quiescence block induced by mitogen deprivation. Like PyV ST, it also has the ability to inhibit myoblast differentiation. At least two of these activities are dependent upon the interaction of HPV16 E7 with retinoblastoma protein family members. For small T antigens, interaction with PP2A is needed for each of these functions. Even though there is no strong evidence that E6 or E7 share the ability of small T to interact with PP2A, E7 provides these functions related to cellular transformation. IMPORTANCE DNA tumor viruses have provided major insights into how cancers develop. Some viruses, like the human papillomaviruses, can cause cancer directly. Both the papillomaviruses and the polyomaviruses have served as tools for understanding pathways that are often perturbed in cancer. Here, we have compared the functions of transforming proteins from several DNA tumor viruses, including two papillomaviruses and two polyomaviruses. We tested the papillomavirus E6 and E7 oncoproteins in three functional assays and found that E7 can provide some or all of the functions of the SV40 small T antigen, another well-characterized oncoprotein, in two of these assays. In a third assay, papillomavirus E7 has the same effect as the murine polyomavirus small T protein. In summary, we report several new functions for the papillomavirus E7 proteins, which will contribute new insights into the roles of viruses in cancer and the cellular pathways they perturb in carcinogenesis. PMID:25540383
Kato, Michiko; Lin, Su-Ju
2014-11-01
Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD(+) homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability. Copyright © 2014 Elsevier B.V. All rights reserved.
Kato, Michiko; Lin, Su-Ju
2014-01-01
Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD+ homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability. PMID:25096760
Günter, Julia; Ruiz-Serrano, Amalia; Pickel, Christina; Wenger, Roland H; Scholz, Carsten C
2017-07-15
The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue functions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIFα subunits leads to the recruitment of an E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIFα subunits, demonstrating the regulation of the HIF pathway by the ubiquitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the best-studied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. Understanding these mechanisms and their relevance for the activity of each other is of major importance for the comprehensive elucidation of the oxygen-dependent regulation of cellular processes. This review describes the current knowledge of the functional bidirectional interplay between the HIF pathway and the ubiquitin system on the protein level. Copyright © 2017 Elsevier Inc. All rights reserved.
Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.
Lager, Susanne; Jansson, Thomas; Powell, Theresa L
2014-10-15
Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus. Copyright © 2014 the American Physiological Society.
Annexins - scaffolds modulating PKC localization and signaling.
Hoque, Monira; Rentero, Carles; Cairns, Rose; Tebar, Francesc; Enrich, Carlos; Grewal, Thomas
2014-06-01
Spatial and temporal organization of signal transduction is critical to link different extracellular stimuli with distinct cellular responses. A classical example of hormones and growth factors creating functional diversity is illustrated by the multiple signaling pathways activated by the protein kinase C (PKC) family of serine/threonine protein kinases. The molecular requirements for diacylglycerol (DAG) and calcium (Ca(2+)) to promote PKC membrane translocation, the hallmark of PKC activation, have been clarified. However, the underlying mechanisms that establish selectivity of individual PKC family members to facilitate differential substrate phosphorylation and varied signal output are still not fully understood. It is now well believed that the coordinated control and functional diversity of PKC signaling involves the formation of PKC isozyme-specific protein complexes in certain subcellular sites. In particular, interaction of PKC isozymes with compartment and signal-organizing scaffolds, including receptors for activated C-kinase (RACKs), A-kinase-anchoring proteins (AKAPs), 14-3-3, heat shock proteins (HSP), and importins target PKC isozymes to specific cellular locations, thereby delivering PKC isozymes into close proximity of their substrates. In addition, several annexins (Anx), including AnxA1, A2, A5 and A6, display specific and distinct abilities to interact and promote membrane targeting of different PKC isozymes. Together with the ability of annexins to create specific membrane microenvironments, this is likely to enable PKCs to phosphorylate certain substrates and regulate their downstream effector pathways in specific cellular sites. This review aims to summarize the capacity of annexins to modulate the localization and activity of PKC family members and participate in the spatiotemporal regulation of PKC signaling in health and disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Jin, Yao; Huang, Zhen-Lin; Li, Li; Yang, Yang; Wang, Chang-Hong; Wang, Zheng-Tao; Ji, Li-Li
2018-06-19
Toosendanin (TSN) is the main active compound in Toosendan Fructus and Meliae Cortex, two commonly used traditional Chinese medicines. TSN has been reported to induce hepatotoxicity, but its mechanism remains unclear. In this study, we demonstrated the critical role of nuclear factor erythroid 2-related factor 2 (Nrf2) in protecting against TSN-induced hepatotoxicity in mice and human normal liver L-02 cells. In mice, administration of TSN (10 mg/kg)-induced acute liver injury evidenced by increased serum alanine/aspartate aminotransferase (ALT/AST) and alkaline phosphatase (ALP) activities, and total bilirubin (TBiL) content as well as the histological changes. Furthermore, TSN markedly increased liver reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreased liver glutathione (GSH) content and Nrf2 expression. In L-02 cells, TSN (2 μM) time-dependently reduced glutamate-cysteine ligase (GCL) activity and cellular expression of the catalytic/modify subunit of GCL (GCLC/GCLM). Moreover, TSN reduced cellular GSH content and the increased ROS formation, and time-dependently decreased Nrf2 expression and increased the expression of the Nrf2 inhibitor protein kelch-like ECH-associated protein-1 (Keap1). Pre-administration of quercetin (40, 80 mg/kg) effectively inhibited TSN-induced liver oxidative injury and reversed the decreased expression of Nrf2 and GCLC/GCLM in vivo and in vitro. In addition, the quercetin-provided protection against TSN-induced hepatotoxicity was diminished in Nrf2 knock-out mice. In conclusion, TSN decreases cellular GSH content by reducing Nrf2-mediated GCLC/GCLM expression via decreasing Nrf2 expression. Quercetin attenuates TSN-induced hepatotoxicity by inducing the Nrf2/GCL/GSH antioxidant signaling pathway. This study implies that inducing Nrf2 activation may be an effective strategy to prevent TSN-induced hepatotoxicity.
Martínez, Constanza; Cornejo, Víctor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Verónica
2013-01-01
The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.
Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis*
Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L. Felipe; Inestrosa, Nibaldo C.
2016-01-01
The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells. PMID:27703002
Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis.
Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L Felipe; Inestrosa, Nibaldo C
2016-12-09
The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju
2016-08-01
Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. © FASEB.
SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome.
Vuong, Bao Q; Arenzana, Teresita L; Showalter, Brian M; Losman, Julie; Chen, X Peter; Mostecki, Justin; Banks, Alexander S; Limnander, Andre; Fernandez, Neil; Rothman, Paul B
2004-10-01
The regulation of cytokine signaling is critical for controlling cellular proliferation and activation during an immune response. SOCS-1 is a potent inhibitor of Jak kinase activity and of signaling initiated by several cytokines. SOCS-1 protein levels are tightly regulated, and recent data suggest that SOCS-1 may regulate the protein levels of some signaling proteins by the ubiquitin proteasome pathway; however, the cellular mechanism by which SOCS-1 directs proteins for degradation is unknown. In this report, SOCS-1 is found to colocalize and biochemically copurify with the microtubule organizing complex (MTOC) and its associated 20S proteasome. The SOCS-1 SH2 domain is required for the localization of SOCS-1 to the MTOC. Overexpression of SOCS-1 targets Jak1 in an SH2-dependent manner to a perinuclear distribution resembling the MTOC-associated 20S proteasome. Analysis of MTOCs fractionated from SOCS-1-deficient cells demonstrates that SOCS-1 may function redundantly to regulate the localization of Jak1 to the MTOC. Nocodazole inhibits the protein turnover of SOCS-1, demonstrating that the minus-end transport of SOCS-1 to the MTOC-associated 20S proteasome is required to regulate SOCS-1 protein levels. These data link SOCS-1 directly with the proteasome pathway and suggest another function for the SH2 domain of SOCS-1 in the regulation of Jak/STAT signaling.
Trousil, Sebastian; Kaliszczak, Maciej; Schug, Zachary; Nguyen, Quang-De; Tomasi, Giampaolo; Favicchio, Rosy; Brickute, Diana; Fortt, Robin; Twyman, Frazer J.; Carroll, Laurence; Kalusa, Andrew; Navaratnam, Naveenan; Adejumo, Thomas; Carling, David; Gottlieb, Eyal; Aboagye, Eric O.
2016-01-01
The glycerophospholipid phosphatidylcholine is the most abundant phospholipid species of eukaryotic membranes and essential for structural integrity and signaling function of cell membranes required for cancer cell growth. Inhibition of choline kinase alpha (CHKA), the first committed step to phosphatidylcholine synthesis, by the selective small-molecule ICL-CCIC-0019, potently suppressed growth of a panel of 60 cancer cell lines with median GI50 of 1.12 μM and inhibited tumor xenograft growth in mice. ICL-CCIC-0019 decreased phosphocholine levels and the fraction of labeled choline in lipids, and induced G1 arrest, endoplasmic reticulum stress and apoptosis. Changes in phosphocholine cellular levels following treatment could be detected non-invasively in tumor xenografts by [18F]-fluoromethyl-[1,2–2H4]-choline positron emission tomography. Herein, we reveal a previously unappreciated effect of choline metabolism on mitochondria function. Comparative metabolomics demonstrated that phosphatidylcholine pathway inhibition leads to a metabolically stressed phenotype analogous to mitochondria toxin treatment but without reactive oxygen species activation. Drug treatment decreased mitochondria function with associated reduction of citrate synthase expression and AMPK activation. Glucose and acetate uptake were increased in an attempt to overcome the metabolic stress. This study indicates that choline pathway pharmacological inhibition critically affects the metabolic function of the cell beyond reduced synthesis of phospholipids. PMID:27206796
Computational Study of the “DFG-Flip” Conformational Transition in c-Abl and c-Src Tyrosine Kinases
2015-01-01
Protein tyrosine kinases are crucial to cellular signaling pathways regulating cell growth, proliferation, metabolism, differentiation, and migration. To maintain normal regulation of cellular signal transductions, the activities of tyrosine kinases are also highly regulated. The conformation of a three-residue motif Asp-Phe-Gly (DFG) near the N-terminus of the long “activation” loop covering the catalytic site is known to have a critical impact on the activity of c-Abl and c-Src tyrosine kinases. A conformational transition of the DFG motif can switch the enzyme from an active (DFG-in) to an inactive (DFG-out) state. In the present study, the string method with swarms-of-trajectories was used to computationally determine the reaction pathway connecting the two end-states, and umbrella sampling calculations were carried out to characterize the thermodynamic factors affecting the conformations of the DFG motif in c-Abl and c-Src kinases. According to the calculated free energy landscapes, the DFG-out conformation is clearly more favorable in the case of c-Abl than that of c-Src. The calculations also show that the protonation state of the aspartate residue in the DFG motif strongly affects the in/out conformational transition in c-Abl, although it has a much smaller impact in the case of c-Src due to local structural differences. PMID:25548962
Eberhard, Ralf; Stergiou, Lilli; Hofmann, E. Randal; Hofmann, Jen; Haenni, Simon; Teo, Youjin; Furger, André; Hengartner, Michael O.
2013-01-01
Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment. PMID:24278030
Molecular medicine: a path towards a personalized medicine.
Miranda, Debora Marques de; Mamede, Marcelo; Souza, Bruno Rezende de; Almeida Barros, Alexandre Guimarães de; Magno, Luiz Alexandre; Alvim-Soares, Antônio; Rosa, Daniela Valadão; Castro, Célio José de; Malloy-Diniz, Leandro; Gomez, Marcus Vinícius; Marco, Luiz Armando De; Correa, Humberto; Romano-Silva, Marco Aurélio
2012-03-01
Psychiatric disorders are among the most common human illnesses; still, the molecular and cellular mechanisms underlying their complex pathophysiology remain to be fully elucidated. Over the past 10 years, our group has been investigating the molecular abnormalities in major signaling pathways involved in psychiatric disorders. Recent evidences obtained by the Instituto Nacional de Ciência e Tecnologia de Medicina Molecular (National Institute of Science and Technology - Molecular Medicine, INCT-MM) and others using behavioral analysis of animal models provided valuable insights into the underlying molecular alterations responsible for many complex neuropsychiatric disorders, suggesting that "defects" in critical intracellular signaling pathways have an important role in regulating neurodevelopment, as well as in pathophysiology and treatment efficacy. Resources from the INCT have allowed us to start doing research in the field of molecular imaging. Molecular imaging is a research discipline that visualizes, characterizes, and quantifies the biologic processes taking place at cellular and molecular levels in humans and other living systems through the results of image within the reality of the physiological environment. In order to recognize targets, molecular imaging applies specific instruments (e.g., PET) that enable visualization and quantification in space and in real-time of signals from molecular imaging agents. The objective of molecular medicine is to individualize treatment and improve patient care. Thus, molecular imaging is an additional tool to achieve our ultimate goal.
Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju
2016-01-01
Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243
A global characterization and identification of multifunctional enzymes.
Cheng, Xian-Ying; Huang, Wei-Juan; Hu, Shi-Chang; Zhang, Hai-Lei; Wang, Hao; Zhang, Jing-Xian; Lin, Hong-Huang; Chen, Yu-Zong; Zou, Quan; Ji, Zhi-Liang
2012-01-01
Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of multi-functional enzymes are critical for communication and cooperation between different functions and pathways within a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species, and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and amino acids. What's more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm.
TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation
Chen, Guiqian; Deng, Chuxia; Li, Yi-Ping
2012-01-01
Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation. PMID:22298955
Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma
Koul, Dimpy; Shen, Ruijun; Kim, Yong-Wan; Kondo, Yasuko; Lu, Yiling; Bankson, Jim; Ronen, Sabrina M.; Kirkpatrick, D. Lynn; Powis, Garth; Yung, W. K. Alfred
2010-01-01
The phosphatidylinositol-3-kinase (PI3K)/Akt oncogenic pathway is critical in glioblastomas. Loss of PTEN, a negative regulator of the PI3K pathway or activated PI3K/Akt pathway that drive increased proliferation, survival, neovascularization, glycolysis, and invasion is found in 70%–80% of malignant gliomas. Thus, PI3K is an attractive therapeutic target for malignant glioma. We report that a new irreversible PI3K inhibitor, PX-866, shows potent inhibitory effects on the PI3K/Akt signaling pathway in glioblastoma. PX-866 did not induce any apoptosis in glioma cells; however, an increase in autophagy was observed. PX-866 inhibited the invasive and angiogenic capabilities of cultured glioblastoma cells. In vivo, PX-866 inhibited subcutaneous tumor growth and increased the median survival time of animals with intracranial tumors. We also assessed the potential of proton magnetic resonance spectroscopy (MRS) as a noninvasive method to monitor response to PX-866. Our findings show that PX-866 treatment causes a drop in the MRS-detectable choline-to-NAA, ratio and identify this partial normalization of the tumor metabolic profile as a biomarker of molecular drug action. Our studies affirm that the PI3K pathway is a highly specific molecular target for therapies for glioblastoma and other cancers with aberrant PI3K/PTEN expression. PMID:20156803
Lee, Jihyun; Yang, Goowon; Kim, Young-Joo; Tran, Quynh Hoa; Choe, Wonchae; Kang, Insug; Kim, Sung Soo; Ha, Joohun
2017-09-23
Persistent oxidative stress is recognized as a major cause of many pathological conditions as well as ageing. However, most clinical trials of dietary antioxidants have failed to produce successful outcomes in treating oxidative stress-induced diseases. Molecular hydrogen (H 2 ) has recently received considerable attention as a therapeutic agent owing to its novel antioxidant properties, a selective scavenger of hydroxyl and peroxynitrite radicals. Beyond this, numerous reports support that H 2 can modulate the activity of various cellular signal pathways. However, its effect on AMP-activated protein kinase (AMPK) signal pathway, a central regulator of energy hemostasis, has remained almost elusive. Here, we report that hydrogen-rich medium activated LKB1-AMPK signal pathway without ATP depletion, which in turn induced FoxO1-dependent transcription of manganese superoxide dismutase and catalase in mouse embryonic fibroblasts. Moreover, hydrogen-rich media effectively reduced the level of reactive oxygen species in cells treated with hydrogen peroxide and protected these cells from apoptosis in an AMPK-dependent manner. These results suggest that the LKB1-AMPK-FoxO1 signaling pathway is a critical mediator of the antioxidant properties of H 2 , further supporting the idea that H 2 acts as a signaling molecule to serve various physiological functions. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk
2014-10-09
To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accuratemore » comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.« less
Pistollato, Francesca; Canovas-Jorda, David; Zagoura, Dimitra; Price, Anna
2017-06-09
Human pluripotent stem cells can differentiate into various cell types that can be applied to human-based in vitro toxicity assays. One major advantage is that the reprogramming of somatic cells to produce human induced pluripotent stem cells (hiPSCs) avoids the ethical and legislative issues related to the use of human embryonic stem cells (hESCs). HiPSCs can be expanded and efficiently differentiated into different types of neuronal and glial cells, serving as test systems for toxicity testing and, in particular, for the assessment of different pathways involved in neurotoxicity. This work describes a protocol for the differentiation of hiPSCs into mixed cultures of neuronal and glial cells. The signaling pathways that are regulated and/or activated by neuronal differentiation are defined. This information is critical to the application of the cell model to the new toxicity testing paradigm, in which chemicals are assessed based on their ability to perturb biological pathways. As a proof of concept, rotenone, an inhibitor of mitochondrial respiratory complex I, was used to assess the activation of the Nrf2 signaling pathway, a key regulator of the antioxidant-response-element-(ARE)-driven cellular defense mechanism against oxidative stress.
The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton
NASA Astrophysics Data System (ADS)
Bidle, Kay D.
2015-01-01
Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.
Raulet, David H; Marcus, Assaf; Coscoy, Laurent
2017-11-01
Natural killer (NK) cells recognize and kill cancer cells and infected cells by engaging cell surface ligands that are induced preferentially or exclusively on these cells. These ligands are recognized by activating receptors on NK cells, such as NKG2D. In addition to activation by cell surface ligands, the acquisition of optimal effector activity by NK cells is driven in vivo by cytokines and other signals. This review addresses a developing theme in NK cell biology: that NK-activating ligands on cells, and the provision of cytokines and other signals that drive high effector function in NK cells, are driven by abnormalities that arise from transformation or the infected state. The pathways include genomic damage, which causes self DNA to be exposed in the cytosol of affected cells, where it activates the DNA sensor cGAS. The resulting signaling induces NKG2D ligands and also mobilizes NK cell activation. Other key pathways that regulate NKG2D ligands include PI-3 kinase activation, histone acetylation, and the integrated stress response. This review summarizes the roles of these pathways and their relevance in both viral infections and cancer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects
Chang, Howard C.; Sen, Anindya; Kalloo, Geetika; Harris, Jevede; Barsby, Tom; Walsh, Melissa B.; Satterlee, John S.; Li, Chris; Van Vactor, David; Artavanis-Tsakonas, Spyros; Hart, Anne C.
2010-01-01
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species. PMID:21124729
Button, Robert W.; Vincent, Joseph H.; Strang, Conor J.; Luo, Shouqing
2016-01-01
The PI-3 kinase (PI-3K)/mTOR pathway is critical for cell growth and proliferation. Strategies of antagonising this signaling have proven to be detrimental to cell survival. This observation, coupled with the fact many tumours show enhanced growth signaling, has caused dual inhibitors of PI-3K and mTOR to be implicated in cancer treatment, and have thus been studied across various tumour models. Since PI-3K (class-I)/mTOR pathway negatively regulates autophagy, dual inhibitors of PI-3K/mTOR are currently believed to be autophagy activators. However, our present data show that the dual PI-3K/mTOR inhibition (DKI) potently suppresses autophagic flux. We further confirm that inhibition of Vps34/PI3KC3, the class-III PI-3K, causes the blockade to autophagosome-lysosome fusion. Our data suggest that DKI induces cell death independently of apoptosis and necroptosis, whereas autophagy perturbation by DKI may contribute to cell death. Given that autophagy is critical in cellular homeostasis, our study not only clarifies the role of a dual PI-3K/mTOR inhibitor in autophagy, but also suggests that its autophagy inhibition needs to be considered if such an agent is used in cancer chemotherapy. PMID:26814436
Platinum nanoparticles in nanobiomedicine.
Pedone, Deborah; Moglianetti, Mauro; De Luca, Elisa; Bardi, Giuseppe; Pompa, Pier Paolo
2017-08-14
Oxidative stress-dependent inflammatory diseases represent a major concern for the population's health worldwide. Biocompatible nanomaterials with enzymatic properties could play a crucial role in the treatment of such pathologies. In this respect, platinum nanoparticles (PtNPs) are promising candidates, showing remarkable catalytic activity, able to reduce the intracellular reactive oxygen species (ROS) levels and impair the downstream pathways leading to inflammation. This review reports a critical overview of the growing evidence revealing the anti-inflammatory ability of PtNPs and their potential applications in nanomedicine. It provides a detailed description of the wide variety of synthetic methods recently developed, with particular attention to the aspects influencing biocompatibility. Special attention has been paid to the studies describing the toxicological profile of PtNPs with an attempt to draw critical conclusions. The emerging picture suggests that the material per se is not causing cytotoxicity, while other physicochemical features related to the synthesis and surface functionalization may play a crucial role in determining the observed impairment of cellular functions. The enzymatic activity of PtNPs is also summarized, analyzing their action against ROS produced by pathological conditions within the cells. In particular, we extensively discuss the potential of these properties in nanomedicine to down-regulate inflammatory pathways or to be employed as diagnostic tools with colorimetric readout. A brief overview of other biomedical applications of nanoplatinum is also presented.
Safia; Kamil, Mohd; Jadiya, Pooja; Sheikh, Saba; Haque, Ejazul; Nazir, Aamir; Lakshmi, Vijai; Mir, Snober S.
2015-01-01
The field of cancer research and treatment has made significant progress, yet we are far from having completely safe, efficient and specific therapies that target cancer cells and spare the healthy tissues. Natural compounds may reduce the problems related to cancer treatment. Currently, many plant products are being used to treat cancer. In this study, Rohitukine, a natural occurring chromone alkaloid extracted from Dysoxylum binectariferum, was investigated for cytotoxic properties against budding yeast as well as against lung cancer (A549) cells. We endeavored to specifically study Rohitukine in S. cerevisiae in the context of MAPK pathways as yeast probably represents the experimental model where the organization and regulation of MAPK pathways are best understood. MAPK are evolutionarily conserved protein kinases that transfer extracellular signals to the machinery controlling essential cellular processes like growth, migration, differentiation, cell division and apoptosis. We aimed at carrying out hypothesis driven studies towards targeting the important network of cellular communication, a critical process that gets awry in cancer. Employing mutant strains of genetic model system Saccharomyces cerevisiae. S. cerevisiae encodes five MAPKs involved in control of distinct cellular responses such as growth, differentiation, migration and apoptosis. Our study involves gene knockouts of Slt2 and Hog1 which are functional homologs of human ERK5 and mammalian p38 MAPK, respectively. We performed cytotoxicity assay to evaluate the effect of Rohitukine on cell viability and also determined the effects of drug on generation of reactive oxygen species, induction of apoptosis and expression of Slt2 and Hog1 gene at mRNA level in the presence of drug. The results of this study show a differential effect in the activity of drug between the WT, Slt2 and Hog1 gene deletion strain indicating involvement of MAPK pathway. Further, we investigated Rohitukine induced cytotoxic effects in lung cancer cells and stimulated the productions of ROS after exposure for 24 hrs. Results from western blotting suggest that Rohitukine triggered apoptosis in A549 cell line through upregulation of p53, caspase9 and down regulation of Bcl-2 protein. The scope of this study is to understand the mechanism of anticancer activity of Rohitukine to increase the repertoire of anticancer drugs, so that problem created by emergence of resistance towards standard anticancer compounds can be alleviated. PMID:26405812
Fahmi, Tazin; Port, Gary C.
2017-01-01
Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an attractive antimicrobial drug target and therefore has been the focus of intensive study in several important pathogens. PMID:28783096
Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair
Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J.; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D.; Wang, Zhao-Qi; Jasin, Maria
2005-01-01
Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca–/– cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice. PMID:15650050
Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.
Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D; Wang, Zhao-Qi; Jasin, Maria
2005-01-25
Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.
O'Reilly, Linda P; Benson, Joshua A; Cummings, Erin E; Perlmutter, David H; Silverman, Gary A; Pak, Stephen C
2014-09-01
Many human diseases result from a failure of a single protein to achieve the correct folding and tertiary conformation. These so-called 'conformational diseases' involve diverse proteins and distinctive cellular pathologies. They all engage the proteostasis network (PN), to varying degrees in an attempt to mange cellular stress and restore protein homeostasis. The insulin/insulin-like growth factor signaling (IIS) pathway is a master regulator of cellular stress response, which is implicated in regulating components of the PN. This review focuses on novel approaches to target conformational diseases. The authors discuss the evidence supporting the involvement of the IIS pathway in modulating the PN and regulating proteostasis in Caenorhabditis elegans. Furthermore, they review previous PN and IIS drug screens and explore the possibility of using C. elegans for whole organism-based drug discovery for modulators of IIS-proteostasis pathways. An alternative approach to develop individualized therapy for each conformational disease is to modulate the global PN. The involvement of the IIS pathway in regulating longevity and response to a variety of stresses is well documented. Increasing data now provide evidence for the close association between the IIS and the PN pathways. The authors believe that high-throughput screening campaigns, which target the C. elegans IIS pathway, may identify drugs that are efficacious in treating numerous conformational diseases.
Mitophagy in Parkinson's Disease: Pathogenic and Therapeutic Implications.
Gao, Fei; Yang, Jia; Wang, Dongdong; Li, Chao; Fu, Yi; Wang, Huaishan; He, Wei; Zhang, Jianmin
2017-01-01
Neurons affected in Parkinson's disease (PD) experience mitochondrial dysfunction and bioenergetic deficits that occur early and promote the disease-related α-synucleinopathy. Emerging findings suggest that the autophagy-lysosome pathway, which removes damaged mitochondria (mitophagy), is also compromised in PD and results in the accumulation of dysfunctional mitochondria. Studies using genetic-modulated or toxin-induced animal and cellular models as well as postmortem human tissue indicate that impaired mitophagy might be a critical factor in the pathogenesis of synaptic dysfunction and the aggregation of misfolded proteins, which in turn impairs mitochondrial homeostasis. Interventions that stimulate mitophagy to maintain mitochondrial health might, therefore, be used as an approach to delay the neurodegenerative processes in PD.
Cytokines and STATs in Liver Fibrosis.
Kong, Xiaoni; Horiguchi, Norio; Mori, Masatomo; Gao, Bin
2012-01-01
Liver fibrosis, or cirrhosis, is a common end-stage condition of many chronic liver diseases after incomplete recovery from hepatocyte damage. During fibrosis progression, hepatocellular damage and inflammation trigger complex cellular events that result in collagen deposition and the disruption of the normal liver architecture. Hepatic stellate cell activation and transdifferentiation into myofibroblasts are key events in liver fibrogenesis. Research findings from cell culture and animal models have revealed that the Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway, which can be activated by many cytokines, growth factors, and hormones, plays a critical role in hepatic fibrogenesis. This review summarizes the biological significance of diverse cytokines and their downstream signaling protein STATs in hepatic fibrogenesis.
Cytokines and STATs in Liver Fibrosis
Kong, Xiaoni; Horiguchi, Norio; Mori, Masatomo; Gao, Bin
2012-01-01
Liver fibrosis, or cirrhosis, is a common end-stage condition of many chronic liver diseases after incomplete recovery from hepatocyte damage. During fibrosis progression, hepatocellular damage and inflammation trigger complex cellular events that result in collagen deposition and the disruption of the normal liver architecture. Hepatic stellate cell activation and transdifferentiation into myofibroblasts are key events in liver fibrogenesis. Research findings from cell culture and animal models have revealed that the Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway, which can be activated by many cytokines, growth factors, and hormones, plays a critical role in hepatic fibrogenesis. This review summarizes the biological significance of diverse cytokines and their downstream signaling protein STATs in hepatic fibrogenesis. PMID:22493582
Cellular Innate Immunity: An Old Game with New Players.
Gasteiger, Georg; D'Osualdo, Andrea; Schubert, David A; Weber, Alexander; Bruscia, Emanuela M; Hartl, Dominik
2017-01-01
Innate immunity is a rapidly evolving field with novel cell types and molecular pathways being discovered and paradigms changing continuously. Innate and adaptive immune responses are traditionally viewed as separate from each other, but emerging evidence suggests that they overlap and mutually interact. Recently discovered cell types, particularly innate lymphoid cells and myeloid-derived suppressor cells, are gaining increasing attention. Here, we summarize and highlight current concepts in the field, focusing on innate immune cells as well as the inflammasome and DNA sensing which appear to be critical for the activation and orchestration of innate immunity, and may provide novel therapeutic opportunities for treating autoimmune, autoinflammatory, and infectious diseases. © 2016 S. Karger AG, Basel.
Self-eating and self-defense: autophagy controls innate immunity and adaptive immunity.
Liu, Guangwei; Bi, Yujing; Wang, Ruoning; Wang, Xianghui
2013-04-01
Autophagy (macroautophagy; "self-eating") is a degradation process, in which cytoplasmic content is engulfed and degraded by the lysosome. And, immunity is an important mechanism of the "self-defense" system. Autophagy has long been recognized as a stress response to nutrient deprivation. This will provide energy and anabolic building blocks to maintain cellular bioenergetic homeostasis. Thus, autophagy plays critical roles in regulating a wide variety of pathophysiological processes, including tumorigenesis, embryo development, tissue remodeling, and most recently, immunity. The latter shows that a self-eating (autophagy) process could regulate a self-defense (immune) system. In this review, we summarize the recent findings regarding the regulatory and mechanistic insights of the autophagy pathway in immunity.
Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast.
Isom, Daniel G; Page, Stephani C; Collins, Leonard B; Kapolka, Nicholas J; Taghon, Geoffrey J; Dohlman, Henrik G
2018-02-16
The yeast Saccharomyces cerevisiae employs multiple pathways to coordinate sugar availability and metabolism. Glucose and other sugars are detected by a G protein-coupled receptor, Gpr1, as well as a pair of transporter-like proteins, Rgt2 and Snf3. When glucose is limiting, however, an ATP-driven proton pump (Pma1) is inactivated, leading to a marked decrease in cytoplasmic pH. Here we determine the relative contribution of the two sugar-sensing pathways to pH regulation. Whereas cytoplasmic pH is strongly dependent on glucose abundance and is regulated by both glucose-sensing pathways, ATP is largely unaffected and therefore cannot account for the changes in Pma1 activity. These data suggest that the pH is a second messenger of the glucose-sensing pathways. We show further that different sugars differ in their ability to control cellular acidification, in the manner of inverse agonists. We conclude that the sugar-sensing pathways act via Pma1 to invoke coordinated changes in cellular pH and metabolism. More broadly, our findings support the emerging view that cellular systems have evolved the use of pH signals as a means of adapting to environmental stresses such as those caused by hypoxia, ischemia, and diabetes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
James, Emma L; Lane, James A E; Michalek, Ryan D; Karoly, Edward D; Parkinson, E Kenneth
2016-12-07
Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease.
James, Emma L.; Lane, James A. E.; Michalek, Ryan D.; Karoly, Edward D.; Parkinson, E. Kenneth
2016-01-01
Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease. PMID:27924925
Horal, Melissa; Zhang, Zhiquan; Stanton, Robert; Virkamäki, Antti; Loeken, Mary R
2004-08-01
Oxidative stress is critical to the teratogenic effects of diabetic pregnancy, yet the specific biochemical pathways responsible for oxidative stress have not been fully elucidated. The hexosamine pathway is activated in many tissues during diabetes and could contribute to oxidative stress by inhibiting the pentose shunt pathway, thereby diminishing production of the cellular antioxidant, reduced glutathione (GSH). To test the hypothesis that activation of the hexosamine pathway might contribute to the teratogenic effects of diabetic pregnancy, pregnant mice were injected with glucose, to induce hyperglycemia, or glucosamine, to directly activate the hexosamine pathway. Embryo tissue fragments were also cultured in physiological glucose, high glucose, or physiological glucose plus glucosamine, to test effects on oxidative stress and embryo gene expression. Glucosamine increased hexosamine synthesis and inhibited pentose shunt activity. There was a trend for transient hyperglycemia to have the same effects, but they did not reach statistical significance. However, both glucose and glucosamine significantly decreased GSH, and increased oxidative stress, as indicated by 2',7'-dichloro-dihydrofluorescein fluorescence. Glucose and glucosamine inhibited expression of Pax-3, a gene required for neural tube closure both in vivo and in vitro, and increased neural tube defects (NTDs) in vivo; these effects were prevented by GSH ethyl ester. High glucose and glucosamine inhibited Pax-3 expression by embryo culture, but culture in glutamine-free media to block the hexosamine pathway prevented the inhibition of Pax-3 expression by high glucose. Activation of the hexosamine pathway causes oxidative stress through depletion of GSH and consequent disruption of embryo gene expression. Activation of this pathway may contribute to diabetic teratogenesis.
Zhuang, Wei-Qin; Yi, Shan; Bill, Markus; Brisson, Vanessa L.; Feng, Xueyang; Men, Yujie; Conrad, Mark E.; Tang, Yinjie J.; Alvarez-Cohen, Lisa
2014-01-01
The acetyl-CoA “Wood–Ljungdahl” pathway couples the folate-mediated one-carbon (C1) metabolism to either CO2 reduction or acetate oxidation via acetyl-CoA. This pathway is distributed in diverse anaerobes and is used for both energy conservation and assimilation of C1 compounds. Genome annotations for all sequenced strains of Dehalococcoides mccartyi, an important bacterium involved in the bioremediation of chlorinated solvents, reveal homologous genes encoding an incomplete Wood–Ljungdahl pathway. Because this pathway lacks key enzymes for both C1 metabolism and CO2 reduction, its cellular functions remain elusive. Here we used D. mccartyi strain 195 as a model organism to investigate the metabolic function of this pathway and its impacts on the growth of strain 195. Surprisingly, this pathway cleaves acetyl-CoA to donate a methyl group for production of methyl-tetrahydrofolate (CH3-THF) for methionine biosynthesis, representing an unconventional strategy for generating CH3-THF in organisms without methylene-tetrahydrofolate reductase. Carbon monoxide (CO) was found to accumulate as an obligate by-product from the acetyl-CoA cleavage because of the lack of a CO dehydrogenase in strain 195. CO accumulation inhibits the sustainable growth and dechlorination of strain 195 maintained in pure cultures, but can be prevented by CO-metabolizing anaerobes that coexist with D. mccartyi, resulting in an unusual syntrophic association. We also found that this pathway incorporates exogenous formate to support serine biosynthesis. This study of the incomplete Wood–Ljungdahl pathway in D. mccartyi indicates a unique bacterial C1 metabolism that is critical for D. mccartyi growth and interactions in dechlorinating communities and may play a role in other anaerobic communities. PMID:24733917
Decomposition of complex microbial behaviors into resource-based stress responses
Carlson, Ross P.
2009-01-01
Motivation: Highly redundant metabolic networks and experimental data from cultures likely adapting simultaneously to multiple stresses can complicate the analysis of cellular behaviors. It is proposed that the explicit consideration of these factors is critical to understanding the competitive basis of microbial strategies. Results: Wide ranging, seemingly unrelated Escherichia coli physiological fluxes can be simply and accurately described as linear combinations of a few ecologically relevant stress adaptations. These strategies were identified by decomposing the central metabolism of E.coli into elementary modes (mathematically defined biochemical pathways) and assessing the resource investment cost–benefit properties for each pathway. The approach capitalizes on the inherent tradeoffs related to investing finite resources like nitrogen into different pathway enzymes when the pathways have varying metabolic efficiencies. The subset of ecologically competitive pathways represented 0.02% of the total permissible pathways. The biological relevance of the assembled strategies was tested against 10 000 randomly constructed pathway subsets. None of the randomly assembled collections were able to describe all of the considered experimental data as accurately as the cost-based subset. The results suggest these metabolic strategies are biologically significant. The current descriptions were compared with linear programming (LP)-based flux descriptions using the Euclidean distance metric. The current study's pathway subset described the experimental fluxes with better accuracy than the LP results without having to test multiple objective functions or constraints and while providing additional ecological insight into microbial behavior. The assembled pathways seem to represent a generalized set of strategies that can describe a wide range of microbial responses and hint at evolutionary processes where a handful of successful metabolic strategies are utilized simultaneously in different combinations to adapt to diverse conditions. Contact: rossc@biofilms.montana.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19008248
RIOK3 Is an Adaptor Protein Required for IRF3-Mediated Antiviral Type I Interferon Production
Feng, Jun; De Jesus, Paul D.; Su, Victoria; Han, Stephanie; Gong, Danyang; Wu, Nicholas C.; Tian, Yuan; Li, Xudong; Wu, Ting-Ting; Chanda, Sumit K.
2014-01-01
ABSTRACT Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-β. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3. IMPORTANCE The innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection. PMID:24807708
Holohan, Kelly N.; Lahiri, Debomoy K.; Schneider, Bryan P.; Foroud, Tatiana; Saykin, Andrew J.
2013-01-01
Two of the main research priorities in the United States are cancer and neurodegenerative diseases, which are attributed to abnormal patterns of cellular behavior. MicroRNAs (miRNA) have been implicated as regulators of cellular metabolism, and thus are an active topic of investigation in both disease areas. There is presently a more extensive body of work on the role of miRNAs in cancer compared to neurodegenerative diseases, and therefore it may be useful to examine whether there is any concordance between the functional roles of miRNAs in these diseases. As a case study, the roles of miRNAs in Alzheimer’s disease (AD) and their functions in various cancers will be compared. A number of miRNA expression patterns are altered in individuals with AD compared with healthy older adults. Among these, some have also been shown to correlate with neuropathological changes including plaque and tangle accumulation, as well as expression levels of other molecules known to be involved in disease pathology. Importantly, these miRNAs have also been shown to have differential expression and or functional roles in various types of cancer. To examine possible intersections between miRNA functions in cancer and AD, we review the current literature on these miRNAs in cancer and AD, focusing on their roles in known biological pathways. We propose a pathway-driven model in which some molecular processes show an inverse relationship between cancer and neurodegenerative disease (e.g., proliferation and apoptosis) whereas others are more parallel in their activity (e.g., immune activation and inflammation). A critical review of these and other molecular mechanisms in cancer may shed light on the pathophysiology of AD, and highlight key areas for future research. Conclusions from this work may be extended to other neurodegenerative diseases for which some molecular pathways have been identified but which have not yet been extensively researched for miRNA involvement. PMID:23335942
Localization and Sub-Cellular Shuttling of HTLV-1 Tax with the miRNA Machinery
Van Duyne, Rachel; Guendel, Irene; Klase, Zachary; Narayanan, Aarthi; Coley, William; Jaworski, Elizabeth; Roman, Jessica; Popratiloff, Anastas; Mahieux, Renaud; Kehn-Hall, Kylene; Kashanchi, Fatah
2012-01-01
The innate ability of the human cell to silence endogenous retroviruses through RNA sequences encoding microRNAs, suggests that the cellular RNAi machinery is a major means by which the host mounts a defense response against present day retroviruses. Indeed, cellular miRNAs target and hybridize to specific sequences of both HTLV-1 and HIV-1 viral transcripts. However, much like the variety of host immune responses to retroviral infection, the virus itself contains mechanisms that assist in the evasion of viral inhibition through control of the cellular RNAi pathway. Retroviruses can hijack both the enzymatic and catalytic components of the RNAi pathway, in some cases to produce novel viral miRNAs that can either assist in active viral infection or promote a latent state. Here, we show that HTLV-1 Tax contributes to the dysregulation of the RNAi pathway by altering the expression of key components of this pathway. A survey of uninfected and HTLV-1 infected cells revealed that Drosha protein is present at lower levels in all HTLV-1 infected cell lines and in infected primary cells, while other components such as DGCR8 were not dramatically altered. We show colocalization of Tax and Drosha in the nucleus in vitro as well as coimmunoprecipitation in the presence of proteasome inhibitors, indicating that Tax interacts with Drosha and may target it to specific areas of the cell, namely, the proteasome. In the presence of Tax we observed a prevention of primary miRNA cleavage by Drosha. Finally, the changes in cellular miRNA expression in HTLV-1 infected cells can be mimicked by the add back of Drosha or the addition of antagomiRs against the cellular miRNAs which are downregulated by the virus. PMID:22808228
Cellular compartmentalization of secondary metabolism
Kistler, H. Corby; Broz, Karen
2015-01-01
Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported. PMID:25709603
Control of proliferation and cancer growth by the Hippo signaling pathway
Ehmer, Ursula; Sage, Julien
2015-01-01
The control of cell division is essential for normal development and the maintenance of cellular homeostasis. Abnormal cell proliferation is associated with multiple pathological states, including cancer. While the Hippo/YAP signaling pathway was initially thought to control organ size and growth, increasing evidence indicates that this pathway also plays a major role in the control of proliferation independent of organ size control. In particular, accumulating evidence indicates that the Hippo/YAP signaling pathway functionally interacts with multiple other cellular pathways and serves as a central node in the regulation of cell division, especially in cancer cells. Here recent observations are highlighted that connect Hippo/YAP signaling to transcription, the basic cell cycle machinery, and the control of cell division. Furthermore, the oncogenic and tumor suppressive attributes of YAP/TAZ are reviewed which emphasizes the relevance of the Hippo pathway in cancer. PMID:26432795
The muscle fiber type–fiber size paradox: hypertrophy or oxidative metabolism?
van Wessel, T.; de Haan, A.; van der Laarse, W. J.
2010-01-01
An inverse relationship exists between striated muscle fiber size and its oxidative capacity. This relationship implies that muscle fibers, which are triggered to simultaneously increase their mass/strength (hypertrophy) and fatigue resistance (oxidative capacity), increase these properties (strength or fatigue resistance) to a lesser extent compared to fibers increasing either of these alone. Muscle fiber size and oxidative capacity are determined by the balance between myofibrillar protein synthesis, mitochondrial biosynthesis and degradation. New experimental data and an inventory of critical stimuli and state of activation of the signaling pathways involved in regulating contractile and metabolic protein turnover reveal: (1) higher capacity for protein synthesis in high compared to low oxidative fibers; (2) competition between signaling pathways for synthesis of myofibrillar proteins and proteins associated with oxidative metabolism; i.e., increased mitochondrial biogenesis via AMP-activated protein kinase attenuates the rate of protein synthesis; (3) relatively higher expression levels of E3-ligases and proteasome-mediated protein degradation in high oxidative fibers. These observations could explain the fiber type–fiber size paradox that despite the high capacity for protein synthesis in high oxidative fibers, these fibers remain relatively small. However, it remains challenging to understand the mechanisms by which contractile activity, mechanical loading, cellular energy status and cellular oxygen tension affect regulation of fiber size. Therefore, one needs to know the relative contribution of the signaling pathways to protein turnover in high and low oxidative fibers. The outcome and ideas presented are relevant to optimizing treatment and training in the fields of sports, cardiology, oncology, pulmonology and rehabilitation medicine. Electronic supplementary material The online version of this article (doi:10.1007/s00421-010-1545-0) contains supplementary material, which is available to authorized users. PMID:20602111
2015-01-01
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID:26023144
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaozhen; Institute of Systems Biology, Peking University, Beijing 100191; Lu, Guang
2014-02-14
Highlights: • The 2000–2634 aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the controlmore » of BRCA1 protein level. HUWE1binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaozhen; Institute of Systems Biology, Peking University, Beijing 100191; Lu, Guang
2014-02-21
Highlights: • The 2000–2634aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control ofmore » BRCA1 protein level. HUWE1 binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.« less
Prossnitz, Eric R; Arterburn, Jeffrey B
2015-07-01
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
McGuire, Christina M; Forgac, Michael
2018-06-08
The vacuolar H + -ATPase (V-ATPase) is an ATP-driven proton pump involved in many cellular processes. An important mechanism by which V-ATPase activity is controlled is the reversible assembly of its two domains, namely the peripheral V 1 domain and the integral V 0 domain. Although reversible assembly is conserved across all eukaryotic organisms, the signaling pathways controlling it have not been fully characterized. Here, we identify glucose starvation as a novel regulator of V-ATPase assembly in mammalian cells. During acute glucose starvation, the V-ATPase undergoes a rapid and reversible increase in assembly and activity as measured by lysosomal acidification. Because the V-ATPase has recently been implicated in the activation of AMP kinase (AMPK), a critical cellular energy sensor that is also activated upon glucose starvation, we compared the time course of AMPK activation and V-ATPase assembly upon glucose starvation. We observe that AMPK activation precedes increased V-ATPase activity. Moreover, the starvation-induced increase in V-ATPase activity and assembly are prevented by the AMPK inhibitor dorsomorphin. These results suggest that increased assembly and activity of the V-ATPase upon glucose starvation are dependent upon AMPK. We also find that the PI3K/Akt pathway, which has previously been implicated in controlling V-ATPase assembly in mammalian cells, also plays a role in the starvation-induced increase in V-ATPase assembly and activity. These studies thus identify a novel stimulus of V-ATPase assembly and a novel signaling pathway involved in regulating this process. The possible function of starvation-induced increase in lysosomal V-ATPase activity is discussed. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Host Response Signature to Staphylococcus aureus Alpha-Hemolysin Implicates Pulmonary Th17 Response
Zhou, Tong; Moreno-Vinasco, Liliana; Hollett, Brian; Garcia, Joe G. N.
2012-01-01
Staphylococcus aureus pneumonia causes significant morbidity and mortality. Alpha-hemolysin (Hla), a pore-forming cytotoxin of S. aureus, has been identified through animal models of pneumonia as a critical virulence factor that induces lung injury. In spite of considerable molecular knowledge of how this cytotoxin injures the host, the precise host response to Hla in the context of infection remains poorly understood. We employed whole-genome expression profiling of infected lungs to define the host response to wild-type S. aureus compared with the response to an Hla-deficient isogenic mutant in experimental pneumonia. These data provide a complete expression profile at 4 and at 24 h postinfection, revealing a unique response to the toxin-expressing strain. Gene ontogeny analysis revealed significant differences in the extracellular matrix and cardiomyopathy pathways, both of which govern cellular interactions in the tissue microenvironment. Evaluation of individual transcript responses to Hla-secreting staphylococci was notable for upregulation of host cytokine and chemokine genes, including the p19 subunit of interleukin-23. Consistent with this observation, the cellular immune response to infection was characterized by a prominent Th17 response to the wild-type pathogen. These findings define specific host mRNA responses to Hla-producing S. aureus, coupling the pulmonary Th17 response to the secretion of this cytotoxin. Expression profiling to define the host response to a single virulence factor proved to be a valuable tool in identifying pathways for further investigation in S. aureus pneumonia. This approach may be broadly applicable to the study of bacterial toxins, defining host pathways that can be targeted to mitigate toxin-induced disease. PMID:22733574
Belle, Ludovic; Agle, Kimberle; Zhou, Vivian; Yin-Yuan, Cheng; Komorowski, Richard; Eastwood, Daniel; Logan, Brent; Sun, Jie; Ghilardi, Nico; Cua, Daniel; Williams, Calvin B; Gaignage, Melanie; Marillier, Reece; van Snick, Jacques; Drobyski, William R
2016-10-20
Reestablishment of competent regulatory pathways has emerged as a strategy to reduce the severity of graft-versus-host disease (GVHD), and recalibrate the effector and regulatory arms of the immune system. However, clinically feasible, cost-effective strategies that do not require extensive ex vivo cellular manipulation have remained elusive. In the current study, we demonstrate that inhibition of the interleukin-27p28 (IL-27p28) signaling pathway through antibody blockade or genetic ablation prevented lethal GVHD in multiple murine transplant models. Moreover, protection from GVHD was attributable to augmented global reconstitution of CD4 + natural regulatory T cells (nTregs), CD4 + induced Tregs (iTregs), and CD8 + iTregs, and was more potent than temporally concordant blockade of IL-6 signaling. Inhibition of IL-27p28 also enhanced the suppressive capacity of adoptively transferred CD4 + nTregs by increasing the stability of Foxp3 expression. Notably, blockade of IL-27p28 signaling reduced T-cell-derived-IL-10 production in conventional T cells; however, there was no corresponding effect in CD4 + or CD8 + Tregs, indicating that IL-27 inhibition had differential effects on IL-10 production and preserved a mechanistic pathway by which Tregs are known to suppress GVHD. Targeting of IL-27 therefore represents a novel strategy for the in vivo expansion of Tregs and subsequent prevention of GVHD without the requirement for ex vivo cellular manipulation, and provides additional support for the critical proinflammatory role that members of the IL-6 and IL-12 cytokine families play in GVHD biology. © 2016 by The American Society of Hematology.
Nishihara, Kana; Huang, Ruili; Zhao, Jinghua; Shahane, Sampada A.; Witt, Kristine L.; Smith-Roe, Stephanie L.; Tice, Raymond R.; Takeda, Shunichi; Xia, Menghang
2016-01-01
DNA repair pathways play a critical role in maintaining cellular homeostasis by repairing DNA damage induced by endogenous processes and xenobiotics, including environmental chemicals. Induction of DNA damage may lead to genomic instability, disruption of cellular homeostasis and potentially tumours. Isogenic chicken DT40 B-lymphocyte cell lines deficient in DNA repair pathways can be used to identify genotoxic compounds and aid in characterising the nature of the induced DNA damage. As part of the US Tox21 program, we previously optimised several different DT40 isogenic clones on a high-throughput screening platform and confirmed the utility of this approach for detecting genotoxicants by measuring differential cytotoxicity in wild-type and DNA repair-deficient clones following chemical exposure. In the study reported here, we screened the Tox21 10K compound library against two isogenic DNA repair-deficient DT40 cell lines (KU70 −/−/RAD54 −/− and REV3 −/−) and the wild-type cell line using a cell viability assay that measures intracellular adenosine triphosphate levels. KU70 and RAD54 are genes associated with DNA double-strand break repair processes, and REV3 is associated with translesion DNA synthesis pathways. Active compounds identified in the primary screening included many well-known genotoxicants (e.g. adriamycin, melphalan) and several compounds previously untested for genotoxicity. A subset of compounds was further evaluated by assessing their ability to induce micronuclei and phosphorylated H2AX. Using this comprehensive approach, three compounds with previously undefined genotoxicity—2-oxiranemethanamine, AD-67 and tetraphenylolethane glycidyl ether—were identified as genotoxic. These results demonstrate the utility of this approach for identifying and prioritising compounds that may damage DNA. PMID:26243743
Belle, Ludovic; Agle, Kimberle; Zhou, Vivian; Yin-Yuan, Cheng; Komorowski, Richard; Eastwood, Daniel; Logan, Brent; Sun, Jie; Ghilardi, Nico; Cua, Daniel; Williams, Calvin B.; Gaignage, Melanie; Marillier, Reece; van Snick, Jacques
2016-01-01
Reestablishment of competent regulatory pathways has emerged as a strategy to reduce the severity of graft-versus-host disease (GVHD), and recalibrate the effector and regulatory arms of the immune system. However, clinically feasible, cost-effective strategies that do not require extensive ex vivo cellular manipulation have remained elusive. In the current study, we demonstrate that inhibition of the interleukin-27p28 (IL-27p28) signaling pathway through antibody blockade or genetic ablation prevented lethal GVHD in multiple murine transplant models. Moreover, protection from GVHD was attributable to augmented global reconstitution of CD4+ natural regulatory T cells (nTregs), CD4+ induced Tregs (iTregs), and CD8+ iTregs, and was more potent than temporally concordant blockade of IL-6 signaling. Inhibition of IL-27p28 also enhanced the suppressive capacity of adoptively transferred CD4+ nTregs by increasing the stability of Foxp3 expression. Notably, blockade of IL-27p28 signaling reduced T-cell–derived-IL-10 production in conventional T cells; however, there was no corresponding effect in CD4+ or CD8+ Tregs, indicating that IL-27 inhibition had differential effects on IL-10 production and preserved a mechanistic pathway by which Tregs are known to suppress GVHD. Targeting of IL-27 therefore represents a novel strategy for the in vivo expansion of Tregs and subsequent prevention of GVHD without the requirement for ex vivo cellular manipulation, and provides additional support for the critical proinflammatory role that members of the IL-6 and IL-12 cytokine families play in GVHD biology. PMID:27488350
Para-Nonylphenol Induces Apoptosis of U937 Human Monocyte Leukemia Cells in vitro.
Santa, Kazuki; Ohsawa, Tomonori; Sakimoto, Takehiko
2016-01-01
Human autoimmune diseases are caused by a variety of factors, such as environmental chemicals, including para-nonylphenol. Macrophages play many critical roles in the regulation of immunity and the progression of autoimmune diseases. However, little information is available regarding the effects of para-nonylphenol on cellular signaling pathways and the death of these cells in vitro. Here, we show that very high concentrations of para-nonylphenol (50-100 μM) induce apoptosis in U937 human monocyte leukemia cells in a dose-dependent manner. Cell viability was judged using the trypan blue exclusion method. FACS analysis for DNA fragmentation was conducted, cellular signaling pathways were evaluated using western blot analysis, and caspase activity was measured by using substrates. U937 cells were differentiated by PMA. Treatment with > 50 μM para-nonylphenol induced apoptosis in U937 monocyte cells and MCF- 7 and MDA-MB231 human breast cancer cells. We found cytochrome c release from the mitochondria to the cytoplasm, DNA fragmentation, and decreased expression of anti-apoptotic protein Bcl-XL. Caspase 3 and 9 were induced, but caspase 1 and 3-inhibitor treatment suppressed apoptosis. Para-nonylphenol decreased the levels of activated AKT and increased the levels of activated JNK/SAPK at 15 min after treatment. Furthermore, with PMA treatment, U937 cells were differentiated into a macrophage-like phenotype and showed attenuated cell death against para-nonylphenol. As this assay system is simple and rapid, it may represent a useful artificial tool to clarify the signaling pathways of apoptotic cell death in human monocytes in vitro. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Song, Shaoming; Abdelmohsen, Kotb; Zhang, Yongqing; Becker, Kevin G.; Gorospe, Myriam
2011-01-01
Interleukin-6 (IL-6) is a proinflammatory cytokine that exerts a wide range of cellular, physiological, and pathophysiological responses. Pyrrolidine dithiocarbamate (PDTC) antagonizes the cellular responsiveness to IL-6 through impairment in signal transducer and activator of transcription-3 activation and downstream signaling. To further elucidate the biological properties of PDTC, global gene expression profiling of human HepG2 hepatocellular carcinoma cells was carried out after treatment with PDTC or IL-6 for up to 8 h. Through an unbiased pathway analysis method, gene array analysis showed dramatic and temporal differences in expression changes in response to PDTC versus IL-6. A significant number of genes associated with metabolic pathways, inflammation, translation, and mitochondrial function were changed, with ribosomal protein genes and DNA damage-inducible transcript 4 protein (DDIT4) primarily up-regulated with PDTC but down-regulated with IL-6. Quantitative polymerase chain reaction and Western blot analyses validated the microarray data and showed the reciprocal expression pattern of the mammalian target of rapamycin (mTOR)-negative regulator DDIT4 in response to PDTC versus IL-6. Cell treatment with PDTC resulted in a rapid and sustained activation of Akt and subsequently blocked the IL-6-mediated increase in mTOR complex 1 function through up-regulation in DDIT4 expression. Conversely, down-regulation of DDIT4 with small interfering RNA dampened the capacity of PDTC to block IL-6-dependent mTOR activation. The overall protein biosynthetic capacity of the cells was severely blunted by IL-6 but increased in a rapamycin-independent pathway by PDTC. These results demonstrate a critical effect of PDTC on mTOR complex 1 function and provide evidence that PDTC can reverse IL-6-related signaling via induction of DDIT4. PMID:21917559
Demir, E; Babur, O; Dogrusoz, U; Gursoy, A; Nisanci, G; Cetin-Atalay, R; Ozturk, M
2002-07-01
Availability of the sequences of entire genomes shifts the scientific curiosity towards the identification of function of the genomes in large scale as in genome studies. In the near future, data produced about cellular processes at molecular level will accumulate with an accelerating rate as a result of proteomics studies. In this regard, it is essential to develop tools for storing, integrating, accessing, and analyzing this data effectively. We define an ontology for a comprehensive representation of cellular events. The ontology presented here enables integration of fragmented or incomplete pathway information and supports manipulation and incorporation of the stored data, as well as multiple levels of abstraction. Based on this ontology, we present the architecture of an integrated environment named Patika (Pathway Analysis Tool for Integration and Knowledge Acquisition). Patika is composed of a server-side, scalable, object-oriented database and client-side editors to provide an integrated, multi-user environment for visualizing and manipulating network of cellular events. This tool features automated pathway layout, functional computation support, advanced querying and a user-friendly graphical interface. We expect that Patika will be a valuable tool for rapid knowledge acquisition, microarray generated large-scale data interpretation, disease gene identification, and drug development. A prototype of Patika is available upon request from the authors.
Wang, Fei; Yang, Yan; Wang, Zhe; Zhou, Jie; Fan, Baofang; Chen, Zhixiang
2015-01-01
Multivesicular bodies (MVBs) are unique endosomes containing vesicles in the lumen and play critical roles in many cellular processes. We have recently shown that Arabidopsis (Arabidopsis thaliana) Lyst-Interacting Protein5 (LIP5), a positive regulator of the Suppressor of K+ Transport Growth Defect1 (SKD1) AAA ATPase in MVB biogenesis, is a critical target of the mitogen-activated protein kinases MPK3 and MPK6 and plays an important role in the plant immune system. In this study, we report that the LIP5-regulated MVB pathway also plays a critical role in plant responses to abiotic stresses. Disruption of LIP5 causes compromised tolerance to both heat and salt stresses. The critical role of LIP5 in plant tolerance to abiotic stresses is dependent on its ability to interact with Suppressor of K+ Transport Growth Defect1. When compared with wild-type plants, lip5 mutants accumulate increased levels of ubiquitinated protein aggregates and NaCl under heat and salt stresses, respectively. Further analysis using fluorescent dye and MVB markers reveals that abiotic stress increases the formation of endocytic vesicles and MVBs in a largely LIP5-dependent manner. LIP5 is also required for the salt-induced increase of intracellular reactive oxygen species, which have been implicated in signaling of salt stress responses. Basal levels of LIP5 phosphorylation by MPKs and the stability of LIP5 are elevated by salt stress, and mutation of MPK phosphorylation sites in LIP5 reduces the stability and compromises the ability to complement the lip5 salt-sensitive mutant phenotype. These results collectively indicate that the MVB pathway is positively regulated by pathogen/stress-responsive MPK3/6 through LIP5 phosphorylation and plays a critical role in broad plant responses to biotic and abiotic stresses. PMID:26229051
Loch, Christian M; Strickler, James E
2012-11-01
Substrate ubiquitylation is a reversible process critical to cellular homeostasis that is often dysregulated in many human pathologies including cancer and neurodegeneration. Elucidating the mechanistic details of this pathway could unlock a large store of information useful to the design of diagnostic and therapeutic interventions. Proteomic approaches to the questions at hand have generally utilized mass spectrometry (MS), which has been successful in identifying both ubiquitylation substrates and profiling pan-cellular chain linkages, but is generally unable to connect the two. Interacting partners of the deubiquitylating enzymes (DUBs) have also been reported by MS, although substrates of catalytically competent DUBs generally cannot be. Where they have been used towards the study of ubiquitylation, protein microarrays have usually functioned as platforms for the identification of substrates for specific E3 ubiquitin ligases. Here, we report on the first use of protein microarrays to identify substrates of DUBs, and in so doing demonstrate the first example of microarray proteomics involving multiple (i.e., distinct, sequential and opposing) enzymatic activities. This technique demonstrates the selectivity of DUBs for both substrate and type (mono- versus poly-) of ubiquitylation. This work shows that the vast majority of DUBs are monoubiquitylated in vitro, and are incapable of removing this modification from themselves. This work also underscores the critical role of utilizing both ubiquitin chains and substrates when attempting to characterize DUBs. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics. Copyright © 2012 Elsevier B.V. All rights reserved.
Pizarro-Cerdá, Javier; Sousa, Sandra; Cossart, Pascale
2004-02-01
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection is a key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor C1q (gC1q-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans (including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells, including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis.
Pizarro-Cerdá, Javier; Sousa, Sandra; Cossart, Pascale
2004-06-01
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection isa key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor Clq (gClq-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans(including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells,including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Chaitali; Goswami, Ramansu; Centre for Environmental Studies, Visva-Bharati University, Santiniketan 731 235
2011-10-01
We had earlier shown that exposure to arsenic (0.50 {mu}M) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca{sup 2+}) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 andmore » interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca{sup 2+} homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca{sup 2+} levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: > Altered Ca{sup 2+} homeostasis leads to arsenic-induced HKM apoptosis. > Calpain-2 plays a critical role in the process. > ERK is pro-apoptotic in arsenic-induced HKM apoptosis. > Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.« less
Architecture of the human interactome defines protein communities and disease networks
Huttlin, Edward L.; Bruckner, Raphael J.; Paulo, Joao A.; Cannon, Joe R.; Ting, Lily; Baltier, Kurt; Colby, Greg; Gebreab, Fana; Gygi, Melanie P.; Parzen, Hannah; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Pontano-Vaites, Laura; Swarup, Sharan; White, Anne E.; Schweppe, Devin K.; Rad, Ramin; Erickson, Brian K.; Obar, Robert A.; Guruharsha, K.G.; Li, Kejie; Artavanis-Tsakonas, Spyros; Gygi, Steven P.; Harper, J. Wade
2017-01-01
The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidation of how genome variation contributes to disease1–3. Here, we present BioPlex 2.0 (Biophysical Interactions of ORFEOME-derived complexes), which employs robust affinity purification-mass spectrometry (AP-MS) methodology4 to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein coding genes from the human genome, and constitutes the largest such network to date. With >56,000 candidate interactions, BioPlex 2.0 contains >29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering (MCL)5 of interacting proteins identified more than 1300 protein communities representing diverse cellular activities. Genes essential for cell fitness6,7 are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization. PMID:28514442
Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology
Turan, Belma; Tuncay, Erkan
2017-01-01
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes. PMID:29137144
Mevalonate Biosynthesis Intermediates Are Key Regulators of Innate Immunity in Bovine Endometritis
Collier, Christine; Griffin, Sholeem; Schuberth, Hans-Joachim; Sandra, Olivier; Smith, David G.; Mahan, Suman; Dieuzy-Labaye, Isabelle; Sheldon, I. Martin
2016-01-01
Metabolic changes can influence inflammatory responses to bacteria. To examine whether localized manipulation of the mevalonate pathway impacts innate immunity, we exploited a unique mucosal disease model, endometritis, where inflammation is a consequence of innate immunity. IL responses to pathogenic bacteria and LPS were modulated in bovine endometrial cell and organ cultures by small molecules that target the mevalonate pathway. Treatment with multiple statins, bisphosphonates, squalene synthase inhibitors, and small interfering RNA showed that inhibition of farnesyl-diphosphate farnesyl transferase (squalene synthase), but not 3-hydroxy-3-methylglutaryl-CoA reductase or farnesyl diphosphate synthase, reduced endometrial organ and cellular inflammatory responses to pathogenic bacteria and LPS. Although manipulation of the mevalonate pathway reduced cellular cholesterol, impacts on inflammation were independent of cholesterol concentration as cholesterol depletion using cyclodextrins did not alter inflammatory responses. Treatment with the isoprenoid mevalonate pathway-intermediates, farnesyl diphosphate and geranylgeranyl diphosphate, also reduced endometrial cellular inflammatory responses to LPS. These data imply that manipulating the mevalonate pathway regulates innate immunity within the endometrium, and that isoprenoids are regulatory molecules in this process, knowledge that could be exploited for novel therapeutic strategies. PMID:26673142
DEFINING THE CELLULAR AND MOLECULAR MECHANISMS OF TOXICANT ACTION IN THE TESTIS
A symposium was held at the 41st annual meeting of the Society of Toxicology with presentations that emphasized novel molecular and cellular pathways that modulate the response to testicular toxicants. The first two presentations described cellular alterations after exposure to t...
Mapping biological process relationships and disease perturbations within a pathway network.
Stoney, Ruth; Robertson, David L; Nenadic, Goran; Schwartz, Jean-Marc
2018-01-01
Molecular interaction networks are routinely used to map the organization of cellular function. Edges represent interactions between genes, proteins, or metabolites. However, in living cells, molecular interactions are dynamic, necessitating context-dependent models. Contextual information can be integrated into molecular interaction networks through the inclusion of additional molecular data, but there are concerns about completeness and relevance of this data. We developed an approach for representing the organization of human cellular processes using pathways as the nodes in a network. Pathways represent spatial and temporal sets of context-dependent interactions, generating a high-level network when linked together, which incorporates contextual information without the need for molecular interaction data. Analysis of the pathway network revealed linked communities representing functional relationships, comparable to those found in molecular networks, including metabolism, signaling, immunity, and the cell cycle. We mapped a range of diseases onto this network and find that pathways associated with diseases tend to be functionally connected, highlighting the perturbed functions that result in disease phenotypes. We demonstrated that disease pathways cluster within the network. We then examined the distribution of cancer pathways and showed that cancer pathways tend to localize within the signaling, DNA processes and immune modules, although some cancer-associated nodes are found in other network regions. Altogether, we generated a high-confidence functional network, which avoids some of the shortcomings faced by conventional molecular models. Our representation provides an intuitive functional interpretation of cellular organization, which relies only on high-quality pathway and Gene Ontology data. The network is available at https://data.mendeley.com/datasets/3pbwkxjxg9/1.
Lin, Chan-Chan; Zhou, Jing-Ping; Liu, Yun-Peng; Liu, Jing-Jing; Yang, Xiao-Ning; Jazag, Amarsanaa; Zhang, Zhi-Ping; Guleng, Bayasi; Ren, Jian-Lin
2012-01-01
Pokemon (POK erythroid myeloid ontogenic factor), which belongs to the POK protein family, is also called LRF, OCZF and FBI-1. As a transcriptional repressor, Pokemon assumes a critical function in cellular differentiation and oncogenesis. Our study identified an oncogenic role for Pokemon in human hepatocellular carcinoma (HCC). We successfully established human HepG2 and Huh-7 cell lines in which Pokemon was stably knocked down. We demonstrated that Pokemon silencing inhibited cell proliferation and migration. Pokemon knockdown inhibited the PI3K/Akt and c-Raf/MEK/ERK pathways and modulated the expression of various cell cycle regulators in HepG2 and Huh-7 cells. Therefore, Pokemon may also be involved in cell cycle progression in these cells. We confirmed that Pokemon silencing suppresses hepatocellular carcinoma growth in tumor xenograft mice. These results suggest that Pokemon promotes cell proliferation and migration in hepatocellular carcinoma and accelerates tumor development in an Akt- and ERK-signaling-dependent manner.
STATs shape the active enhancer landscape of T cell populations.
Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-Wei; Sartorelli, Vittorio; Kanno, Yuka; O'Shea, John J
2012-11-21
Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. Although enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4(+) T cells as a model of differentiation, mapping the activity of cell-type-specific enhancer elements in T helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the activation of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. Copyright © 2012 Elsevier Inc. All rights reserved.
STATs Shape the Active Enhancer Landscape of T Cell Populations
Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-wei; Sartorelli, Vittorio; Kanno, Yuka; O’Shea, John J.
2012-01-01
SUMMARY Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. While enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4+ T cells as a model of differentiation, mapping the acquisition of cell-type-specific enhancer elements in T-helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the acquisition of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. PMID:23178119
All-atom molecular dynamics of virus capsids as drug targets
Perilla, Juan R.; Hadden, Jodi A.; Goh, Boon Chong; ...
2016-04-29
Virus capsids are protein shells that package the viral genome. Although their morphology and biological functions can vary markedly, capsids often play critical roles in regulating viral infection pathways. A detailed knowledge of virus capsids, including their dynamic structure, interactions with cellular factors, and the specific roles that they play in the replication cycle, is imperative for the development of antiviral therapeutics. The following Perspective introduces an emerging area of computational biology that focuses on the dynamics of virus capsids and capsid–protein assemblies, with particular emphasis on the effects of small-molecule drug binding on capsid structure, stability, and allosteric pathways.more » When performed at chemical detail, molecular dynamics simulations can reveal subtle changes in virus capsids induced by drug molecules a fraction of their size. Finally, the current challenges of performing all-atom capsid–drug simulations are discussed, along with an outlook on the applicability of virus capsid simulations to reveal novel drug targets.« less
Control of B Lymphocyte Development and Functions by the mTOR Signaling Pathways
Iwata, Terri N.; Ramírez-Komo, Julita A.; Park, Heon; Iritani, Brian M.
2017-01-01
Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells. PMID:28583723
Silencing of karyopherin α2 inhibits cell growth and survival in human hepatocellular carcinoma
Yang, Yunfeng; Guo, Jian; Hao, Yuxia; Wang, Fuhua; Li, Fengxia; Shuang, Shaomin; Wang, Junping
2017-01-01
Karyopherin α2 (KPNA2), involved in nucleocytoplasmic transport, has been reported to be upregulated in hepatocellular carcinoma and considered as a biomarker for poor prognosis. However, comprehensive studies of KPNA2 functions in hepatocellular carcinogenesis are still lacking. Our study examine the roles and related molecular mechanisms of KPNA2 in hepatocellular carcinoma development. Results show that KPNA2 knockdown inhibited the proliferation and growth of hepatocellular carcinoma cells in vitro and in vivo. KPNA2 knockdown also inhibited colony formation ability, induced cell cycle arrest and cellular apoptosis in two hepatocellular carcinoma cell lines, HepG2 and SMMC-7721. Furthermore, gene expression microarray analysis in HepG2 cells with KPNA2 knockdown revealed that critical signaling pathways involved in cell proliferation and survival were deregulated. In conclusion, this study provided systematic evidence that KPNA2 was an essential factor promoting hepatocellular carcinoma and unraveled potential molecular pathways and networks underlying KPNA2-induced hepatocellular carcinogenesis. PMID:28422734
Silencing of karyopherin α2 inhibits cell growth and survival in human hepatocellular carcinoma.
Yang, Yunfeng; Guo, Jian; Hao, Yuxia; Wang, Fuhua; Li, Fengxia; Shuang, Shaomin; Wang, Junping
2017-05-30
Karyopherin α2 (KPNA2), involved in nucleocytoplasmic transport, has been reported to be upregulated in hepatocellular carcinoma and considered as a biomarker for poor prognosis. However, comprehensive studies of KPNA2 functions in hepatocellular carcinogenesis are still lacking. Our study examine the roles and related molecular mechanisms of KPNA2 in hepatocellular carcinoma development. Results show that KPNA2 knockdown inhibited the proliferation and growth of hepatocellular carcinoma cells in vitro and in vivo. KPNA2 knockdown also inhibited colony formation ability, induced cell cycle arrest and cellular apoptosis in two hepatocellular carcinoma cell lines, HepG2 and SMMC-7721. Furthermore, gene expression microarray analysis in HepG2 cells with KPNA2 knockdown revealed that critical signaling pathways involved in cell proliferation and survival were deregulated. In conclusion, this study provided systematic evidence that KPNA2 was an essential factor promoting hepatocellular carcinoma and unraveled potential molecular pathways and networks underlying KPNA2-induced hepatocellular carcinogenesis.
All-atom molecular dynamics of virus capsids as drug targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perilla, Juan R.; Hadden, Jodi A.; Goh, Boon Chong
Virus capsids are protein shells that package the viral genome. Although their morphology and biological functions can vary markedly, capsids often play critical roles in regulating viral infection pathways. A detailed knowledge of virus capsids, including their dynamic structure, interactions with cellular factors, and the specific roles that they play in the replication cycle, is imperative for the development of antiviral therapeutics. The following Perspective introduces an emerging area of computational biology that focuses on the dynamics of virus capsids and capsid–protein assemblies, with particular emphasis on the effects of small-molecule drug binding on capsid structure, stability, and allosteric pathways.more » When performed at chemical detail, molecular dynamics simulations can reveal subtle changes in virus capsids induced by drug molecules a fraction of their size. Finally, the current challenges of performing all-atom capsid–drug simulations are discussed, along with an outlook on the applicability of virus capsid simulations to reveal novel drug targets.« less
Jannik, G T
1999-06-01
Many different radionuclides have been released to the environment from the Savannah River Site (SRS) during the facility's operational history. However, as shown by this analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to off-site people. This article documents the radiological critical contaminant/critical pathway analysis performed for SRS. If site missions and operations remain constant over the next 30 years, only tritium oxide releases are projected to exceed a maximally exposed individual (MEI) risk of 1.0E-06 for either the airborne or liquid pathways. The critical exposure pathways associated with site airborne releases are inhalation and vegetation consumption, whereas the critical exposure pathways associated with liquid releases are drinking water and fish consumption. For the SRS-specific, nontypical exposure pathways (i.e., recreational fishing and deer and hog hunting), cesium-137 is the critical radionuclide.
Understanding the cancer cell phenotype beyond the limitations of current omics analyses.
Moreno-Sánchez, Rafael; Saavedra, Emma; Gallardo-Pérez, Juan Carlos; Rumjanek, Franklin D; Rodríguez-Enríquez, Sara
2016-01-01
Efforts to understand the mechanistic principles driving cancer metabolism and proliferation have been lately governed by genomic, transcriptomic and proteomic studies. This paper analyzes the caveats of these approaches. As molecular biology's central dogma proposes a unidirectional flux of information from genes to mRNA to proteins, it has frequently been assumed that monitoring the changes in the gene sequences and in mRNA and protein contents is sufficient to explain complex cellular processes. Such a stance commonly disregards that post-translational modifications can alter the protein function/activity and also that regulatory mechanisms enter into action, to coordinate the protein activities of pathways/cellular processes, in order to keep the cellular homeostasis. Hence, the actual protein activities (as enzymes/transporters/receptors) and their regulatory mechanisms ultimately dictate the final outcomes of a pathway/cellular process. In this regard, it is here documented that the mRNA levels of many metabolic enzymes and transcriptional factors have no correlation with the respective protein contents and activities. The validity of current clinical mRNA-based tests and proposed metabolite biomarkers for cancer detection/prognosis is also discussed. Therefore, it is proposed that, to achieve a thorough understanding of the modifications undergone by proliferating cancer cells, it is mandatory to experimentally analyze the cellular processes at the functional level. This could be achieved (a) locally, by examining the actual protein activities in the cell and their kinetic properties (or at least kinetically characterize the most controlling steps of the pathway/cellular process); (b) systemically, by analyzing the main fluxes of the pathway/cellular process, and how they are modulated by metabolites, all which should contribute to comprehending the regulatory mechanisms that have been altered in cancer cells. By adopting a more holistic approach it may become possible to improve the design of therapeutic strategies that would target cancer cells more specifically. © 2015 FEBS.
Scaffolding protein RanBPM and its interactions in diverse signaling pathways in health and disease.
Das, Soumyadip; Haq, Saba; Ramakrishna, Suresh
2018-04-01
Ran-binding protein in the microtubule-organizing center (RanBPM) is an evolutionarily conserved, nucleocytoplasmic scaffolding protein involved in various cellular processes and several signal transduction pathways. RanBPM has a crucial role in mediating disease pathology by interacting with diverse proteins to regulate their functions. Previously, we compiled diverse cellular functions of RanBPM. Since then the functions of RanBPM have increased exponentially. In this article, we have updated the functions of RanBPM through its manifold interactions that have been investigated to date, according to their roles in protein stability, transcriptional activity, cellular development, neurobiology, and the cell cycle. Our review provides a complete guide on RanBPM interactors, the physiological role of RanBPM in cellular functions, and potential applications in disease therapeutics.
Integrating disease management and wound care critical pathways in home care.
Barr, J E
1999-10-01
This article discusses the need for an integration of the concepts of disease management and critical pathways as a foundation of a healthcare delivery system. The steps in the process for development, implementation, and evaluation of a wound care critical pathway are reviewed and variance classifications are defined. Co-pathways and algorithms are presented as methodologies for dealing with variances. A template of a wound care critical pathway that has been developed for use in the home care setting is included.
Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F
2016-01-01
Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 PMID:26779719
Safe use of cellular telephones in hospitals: fundamental principles and case studies.
Cohen, Ted; Ellis, Willard S; Morrissey, Joseph J; Bakuzonis, Craig; David, Yadin; Paperman, W David
2005-01-01
Many industries and individuals have embraced cellular telephones. They provide mobile, synchronous communication, which could hypothetically increase the efficiency and safety of inpatient healthcare. However, reports of early analog cellular telephones interfering with critical life-support machines had led many hospitals to strictly prohibit cellular telephones. A literature search revealed that individual hospitals now are allowing cellular telephone use with various policies to prevent electromagnetic interference with medical devices. The fundamental principles underlying electromagnetic interference are immunity, frequency, modulation technology, distance, and power Electromagnetic interference risk mitigation methods based on these principles have been successfully implemented. In one case study, a minimum distance between cellular telephones and medical devices is maintained, with restrictions in critical areas. In another case study, cellular telephone coverage is augmented to automatically control the power of the cellular telephone. While no uniform safety standard yet exists, cellular telephones can be safely used in hospitals when their use is managed carefully.
Singh, Shilpee; Englander, Ella W
2012-11-01
Apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) is a multifunctional protein critical for cellular survival. Its involvement in adaptive survival responses includes key roles in redox sensing, transcriptional regulation, and repair of DNA damage via the base excision repair (BER) pathway. Ape1 is abundant in most cell types and central in integrating the first BER step catalyzed by different DNA glycosylases. BER is the main process for removal of oxidative DNA lesions in postmitotic brain cells, and after ischemic brain injury preservation of Ape1 coincides with neuronal survival, while its loss has been associated with neuronal death. Here, we report that in cultured primary neurons, diminution of cellular ATP by either oligomycin or H(2)O(2) is accompanied by depletion of nuclear Ape1, while other BER proteins are unaffected and retain their nuclear localization under these conditions. Importantly, while H(2)O(2) induces γH2AX phosphorylation, indicative of chromatin rearrangements in response to DNA damage, oligomycin does not. Furthermore, despite comparable diminution of ATP content, H(2)O(2) and oligomycin differentially affect critical parameters of mitochondrial respiration that ultimately determine cellular ATP content. Taken together, our findings demonstrate that in neurons, nuclear compartmentalization of Ape1 depends on ATP and loss of nuclear Ape1 reflects disruption of neuronal energy homeostasis. Energy crisis is a hallmark of stroke and other ischemic/hypoxic brain injuries. In vivo studies have shown that Ape1 deficit precedes neuronal loss in injured brain regions. Thus, our findings bring to light the possibility that energy failure-induced Ape1 depletion triggers neuronal death in ischemic brain injuries. Copyright © 2012 Elsevier Inc. All rights reserved.
Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity.
Calabrese, Vittorio; Cornelius, Carolin; Cuzzocrea, Salvatore; Iavicoli, Ivo; Rizzarelli, Enrico; Calabrese, Edward J
2011-08-01
Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by co-ordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as carnosine, carnitines or polyphenols, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. In this review we discuss the most current and up to date understanding of the possible signaling mechanisms by which caloric restriction, as well hormetic caloric restriction-mimetics compounds by activating vitagenes can enhance defensive systems involved in bioenergetic and stress resistance homeostasis with consequent impact on longevity processes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kiser, Paul J; Liu, Zijing; Wilt, Steven D; Mower, George D
2011-04-06
This study describes postnatal critical period changes in cellular and laminar expression of Dab-1, a gene shown to play a role in controlling neuronal positioning during embryonic brain development, in cat visual cortex and the effects of dark rearing (DR). At 1week, there is dense cellular staining which is uniform across cortical layers and very light neuropil staining. At the peak of the critical period (5weeks), dense cell staining is largely restricted to large pyramidal cells of deep layer III and layer V, there is faint cell body staining throughout all cortical layers, neuropil staining is markedly increased and uniform in layers III to VI. This dramatic change in laminar and cellular labeling is independent of visual input, since immunostaining is similar in 5-week DR cats. By 10weeks, the mature laminar and cellular staining pattern is established and the major subsequent change is a further reduction in the density of cellular staining in all cortical layers. Neuropil staining is pronounced and uniform across cortical layers. These developmental changes are altered by DR. Quantification by cell counts indicated that age and DR interact such that differences in cellular expression are opposite in direction between 5- and 20-week-old cats. This bidirectional regulation of cellular expression is the same in all cortical laminae. The bidirectional regulation of cellular expression matches the effects of age and DR on physiological plasticity during the critical period as assessed by ocular dominance shifts in response to monocular deprivation. Copyright © 2011 Elsevier B.V. All rights reserved.
Moulder, David E; Hatoum, Diana; Tay, Enoch; Lin, Yiguang; McGowan, Eileen M
2018-06-08
Cancer research has been heavily geared towards genomic events in the development and progression of cancer. In contrast, metabolic regulation, such as aberrant metabolism in cancer, is poorly understood. Alteration in cellular metabolism was once regarded simply as a consequence of cancer rather than as playing a primary role in cancer promotion and maintenance. Resurgence of cancer metabolism research has identified critical metabolic reprogramming events within biosynthetic and bioenergetic pathways needed to fulfill the requirements of cancer cell growth and maintenance. The tumor suppressor protein p53 is emerging as a key regulator of metabolic processes and metabolic reprogramming in cancer cells—balancing the pendulum between cell death and survival. This review provides an overview of the classical and emerging non-classical tumor suppressor roles of p53 in regulating mitochondrial dynamics: mitochondrial engagement in cell death processes in the prevention of cancer. On the other hand, we discuss p53 as a key metabolic switch in cellular function and survival. The focus is then on the conceivable roles of p53 in breast cancer metabolism. Understanding the metabolic functions of p53 within breast cancer metabolism will, in due course, reveal critical metabolic hotspots that cancers advantageously re-engineer for sustenance. Illustration of these events will pave the way for finding novel therapeutics that target cancer metabolism and serve to overcome the breast cancer burden.
p63 regulates glutaminase 2 expression
Giacobbe, Arianna; Bongiorno-Borbone, Lucilla; Bernassola, Francesca; Terrinoni, Alessandro; Markert, Elke Katrin; Levine, Arnold J.; Feng, Zhaohui; Agostini, Massimilano; Zolla, Lello; Agrò, Alessandro Finazzi; Notterman, Daniel A.; Melino, Gerry; Peschiaroli, Angelo
2013-01-01
The transcription factor p63 is critical for many biological processes, including development and maintenance of epidermal tissues and tumorigenesis. Here, we report that the TAp63 isoforms regulate cell metabolism through the induction of the mitochondrial glutaminase 2 (GLS2) gene both in primary cells and tumor cell lines. By ChIP analysis and luciferase assay, we confirmed that TAp63 binds directly to the p53/p63 consensus DNA binding sequence within the GLS2 promoter region. Given the critical role of p63 in epidermal differentiation, we have investigated the regulation of GLS2 expression during this process. GLS2 and TAp63 expression increases during the in vitro differentiation of primary human keratinocytes, and depletion of GLS2 inhibits skin differentiation both at molecular and cellular levels. We found that GLS2 and TAp63 expression are concomitantly induced in cancer cells exposed to oxidative stresses. siRNA-mediated depletion of GLS2 sensitizes cells to ROS-induced apoptosis, suggesting that the TAp63/GLS2 axis can be functionally important as a cellular antioxidant pathway in the absence of p53. Accordingly, we found that GLS2 is upregulated in colon adenocarcinoma. Altogether, our findings demonstrate that GLS2 is a bona fide TAp63 target gene, and that the TAp63-dependent regulation of GLS2 is important for both physiological and pathological processes. PMID:23574722
Targeting protein neddylation: a novel therapeutic strategy for the treatment of cancer.
Wang, Meng; Medeiros, Bruno C; Erba, Harry P; DeAngelo, Daniel J; Giles, Francis J; Swords, Ronan T
2011-03-01
The NEDD8 (neural precursor cell-expressed developmentally downregulated 8) conjugation pathway regulates the post-translational modification of oncogenic proteins. This pathway has important potential for cancer therapeutics. Several proteins vital in cancer biology are regulated by protein neddylation. These observations led to the development of a small molecule inhibitor that disrupts protein neddylation and leads to cancer cell death and important activity in early phase clinical trials. This review provides an extensive coverage of cellular protein homeostasis with particular emphasis on the NEDD8 conjugation pathway. Insights into a new investigational drug that specifically disrupts the NEDD8 pathway are discussed. The clinical data for this agent are also updated. Neddylation controls key cellular pathways found to be dysregulated in many cancers. Protein neddylation is a relatively under-explored pathway for pharmacologic inhibition in cancer. Selective disruption of this pathway has demonstrated clinical activity in patients with myeloid neoplasms and is worth exploring further in combination with other anti-leukemia agents.
Pollen Acceptance or Rejection: A Tale of Two Pathways.
Doucet, Jennifer; Lee, Hyun Kyung; Goring, Daphne R
2016-12-01
While the molecular and cellular basis of self-incompatibility leading to self-pollen rejection in the Brassicaceae has been extensively studied, relatively little attention has been paid to compatible pollen recognition and the corresponding cellular responses in the stigmatic papillae. This is now changing because research has started to uncover steps in the Brassicaceae 'basal compatible pollen response pathway' in the stigma leading to pollen hydration and germination. Furthermore, recent studies suggest that self-incompatible pollen activates both the basal compatible pathway and the self-incompatibility pathway in the stigma, with the self-incompatibility response ultimately prevailing to reject self-pollen. We review here recent discoveries in both pathways and discuss how compatible pollen is accepted by the stigma versus the rejection of self-incompatible pollen. Copyright © 2016 Elsevier Ltd. All rights reserved.
mTOR Pathways in Cancer and Autophagy.
Paquette, Mathieu; El-Houjeiri, Leeanna; Pause, Arnim
2018-01-12
TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.
Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.
Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying
2017-06-01
Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RP<0.01 were defined as critical pathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RP<0.01, and the top 10 pathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing diagnosis and therapy of neonatal sepsis. Copyright © 2017 Elsevier Ltd. All rights reserved.
FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP
Tsuchiya, Yuichi; Nakabayashi, Osamu; Nakano, Hiroyasu
2015-01-01
cFLIP (cellular FLICE-like inhibitory protein) is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR). cFLIP controls not only the classical death receptor-mediated extrinsic apoptosis pathway, but also the non-conventional pattern recognition receptor-dependent apoptotic pathway. In addition, cFLIP regulates the formation of the death receptor-independent apoptotic platform named the ripoptosome. Moreover, recent studies have revealed that cFLIP is also involved in a non-apoptotic cell death pathway known as programmed necrosis or necroptosis. These functions of cFLIP are strictly controlled in an isoform-, concentration- and tissue-specific manner, and the ubiquitin-proteasome system plays an important role in regulating the stability of cFLIP. In this review, we summarize the current scientific findings from biochemical analyses, cell biological studies, mathematical modeling, and gene-manipulated mice models to illustrate the critical role of cFLIP as a switch to determine the destiny of cells among survival, apoptosis, and necroptosis. PMID:26694384
Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling
Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat
2016-01-01
The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937
Molecular facets of sphingolipids: mediators of diseases.
Ozbayraktar, Fatma Betul Kavun; Ulgen, Kutlu O
2009-07-01
Sphingolipids constitute a biologically active lipid class that is significantly important from both structural and regulatory aspects. The manipulation of sphingolipid metabolism is currently being studied as a novel strategy for cancer therapy. The basics of this therapeutic approach lie in the regulation property of sphingolipids on cellular processes, which are important in a cell's fate, such as cell proliferation, apoptosis, cell cycle arrest, senescence, and inflammation. Furthermore, the mutations in the enzymes catalyzing some specific reactions in the sphingolipid metabolism cause mortal lysosomal storage diseases like Fabry, Gaucher, Niemann-Pick, Farber, Krabbe, and Metachromatic Leukodystrophy. Therefore, the alteration of the sphingolipid metabolic pathway determines the choice between life and death. Understanding the sphingolipid metabolism and regulation is significant for the development of new therapeutic approaches for all sphingolipid-related diseases, as well as for cancer. An important feature of the sphingolipid metabolic pathway is the compartmentalization into endoplasmic reticulum, the Golgi apparatus, lysosome and plasma membrane, and this compartmentalization makes the transport of sphingolipids critical for proper functioning. This paper focuses on the structures, metabolic pathways, localization, transport mechanisms, and diseases of sphingolipids in Saccharomyces cerevisiae and humans, and provides the latest comprehensive information on sphingolipid research.
Copper trafficking to the secretory pathway
Lutsenko, Svetlana
2017-01-01
Copper (Cu) is indispensible for growth and development of human organisms. It is required for such fundamental and ubiquitous processes as respiration and protection against reactive oxygen species. Cu also enables catalytic activity of enzymes that critically contribute to the functional identity of many cells and tissues. Pigmentation, production of norepinephrine by the adrenal gland, the key steps in the formation of connective tissue, neuroendocrine signaling, wound healing – all these processes require Cu and depend on Cu entering the secretory pathway. To reach the Cu-dependent enzymes in a lumen of the trans-Golgi network and various vesicular compartments, Cu undertakes a complex journey crossing the extracellular and intracellular membranes and staying firmly on course while traveling in a cytosol. The proteins that assist Cu in this journey by mediating its entry, distribution, and export, have been identified. The accumulating data also indicate that the current model of cellular Cu homeostasis is still a “skeleton” that has to be fleshed out with many new details. This review summarizes recent data on the mechanisms responsible for Cu transfer to the secretory pathway. The emerging new concepts and gaps in our knowledge are discussed. PMID:27603756
Recent advances in the Suf Fe-S cluster biogenesis pathway: Beyond the Proteobacteria
Outten, F. Wayne
2014-01-01
Fe-S clusters play critical roles in cellular function throughout all three kingdoms of life. Consequently, Fe-S cluster biogenesis systems are present in most organisms. The Suf (sulfur formation) system is the most ancient of the three characterized Fe-S cluster biogenesis pathways, which also include the Isc and Nif systems. Much of the first work on the Suf system took place in Gram-negative Proteobacteria used as model organisms. These early studies led to a wealth of biochemical, genetic, and physiological information on Suf function. From those studies we have learned that SufB functions as an Fe-S scaffold in conjunction with SufC (and in some cases SufD). SufS and SufE together mobilize sulfur for cluster assembly and SufA traffics the complete Fe-S cluster from SufB to target apo-proteins. However, recent progress on the Suf system in other organisms has opened up new avenues of research and new hypotheses about Suf function. This review focuses primarily on the most recent discoveries about the Suf pathway and where those new models may lead the field. PMID:25447545
A drug-compatible and temperature-controlled microfluidic device for live-cell imaging.
Chen, Tong; Gomez-Escoda, Blanca; Munoz-Garcia, Javier; Babic, Julien; Griscom, Laurent; Wu, Pei-Yun Jenny; Coudreuse, Damien
2016-08-01
Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging. © 2016 The Authors.
A drug-compatible and temperature-controlled microfluidic device for live-cell imaging
Chen, Tong; Gomez-Escoda, Blanca; Munoz-Garcia, Javier; Babic, Julien; Griscom, Laurent; Wu, Pei-Yun Jenny
2016-01-01
Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging. PMID:27512142
Diverse mechanisms evolved by DNA viruses to inhibit early host defenses
Sheng, Xinlei; Song, Bokai; Cristea, Ileana M.
2016-01-01
In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent upon the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments. PMID:27650455
The quantification of cellular viability and inflammatory response to stainless steel alloys.
Bailey, LeeAnn O; Lippiatt, Sherry; Biancanello, Frank S; Ridder, Stephen D; Washburn, Newell R
2005-09-01
The biocompatibility of metallic alloys is critical to the success of many orthopedic therapies. Corrosion resistance and the immune response of the body to wear debris products ultimately determine the performance of these devices. The establishment of quantitative tests of biocompatibility is an important issue for biomaterials development. We have developed an in vitro model to measure the pro-inflammatory cytokine production and in this study investigated the cellular responses induced by nitrogenated and 316L stainless steel alloys in both particulate and solid form. We utilized a murine macrophage cell line, RAW 264.7, to characterize and compare the mRNA profiles of TNF-alpha and IL-1beta in these cells using real time-polymerase chain reaction (RT-PCR). Fluorescence microscopy and flow cytometry were used to probe the viability of the population and to examine the apoptotic pathway. The goals of this work were to develop improved measurement methods for the quantification of cellular inflammatory responses to biomaterials and to obtain data that leads to an enhanced understanding of the ways in which the body responds to biomaterials. Using these techniques, we observed evidence for an association between the upregulation of IL-1beta and reversible apoptosis, and the upregulation of TNF-alpha and irreversible apoptosis.
Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D.
2016-01-01
Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors. PMID:27005662
Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D
2016-03-08
Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors.
Rao, Dinesh S; Hyun, Teresa S; Kumar, Priti D; Mizukami, Ikuko F; Rubin, Mark A; Lucas, Peter C; Sanda, Martin G; Ross, Theodora S
2002-08-01
Huntingtin-interacting protein 1 (HIP1) is a cofactor in clathrin-mediated vesicle trafficking. It was first implicated in cancer biology as part of a chromosomal translocation in leukemia. Here we report that HIP1 is expressed in prostate and colon tumor cells, but not in corresponding benign epithelia. The relationship between HIP1 expression in primary prostate cancer and clinical outcomes was evaluated with tissue microarrays. HIP1 expression was significantly associated with prostate cancer progression and metastasis. Conversely, primary prostate cancers lacking HIP1 expression consistently showed no progression after radical prostatectomy. In addition, the expression of HIP1 was elevated in prostate tumors from the transgenic mouse model of prostate cancer (TRAMP). At the molecular level, expression of a dominant negative mutant of HIP1 led to caspase-9-dependent apoptosis, suggesting that HIP1 is a cellular survival factor. Thus, HIP1 may play a role in tumorigenesis by allowing the survival of precancerous or cancerous cells. HIP1 might accomplish this via regulation of clathrin-mediated trafficking, a fundamental cellular pathway that has not previously been associated with tumorigenesis. HIP1 represents a putative prognostic factor for prostate cancer and a potential therapy target in prostate as well as colon cancers.
Rao, Dinesh S.; Hyun, Teresa S.; Kumar, Priti D.; Mizukami, Ikuko F.; Rubin, Mark A.; Lucas, Peter C.; Sanda, Martin G.; Ross, Theodora S.
2002-01-01
Huntingtin-interacting protein 1 (HIP1) is a cofactor in clathrin-mediated vesicle trafficking. It was first implicated in cancer biology as part of a chromosomal translocation in leukemia. Here we report that HIP1 is expressed in prostate and colon tumor cells, but not in corresponding benign epithelia. The relationship between HIP1 expression in primary prostate cancer and clinical outcomes was evaluated with tissue microarrays. HIP1 expression was significantly associated with prostate cancer progression and metastasis. Conversely, primary prostate cancers lacking HIP1 expression consistently showed no progression after radical prostatectomy. In addition, the expression of HIP1 was elevated in prostate tumors from the transgenic mouse model of prostate cancer (TRAMP). At the molecular level, expression of a dominant negative mutant of HIP1 led to caspase-9–dependent apoptosis, suggesting that HIP1 is a cellular survival factor. Thus, HIP1 may play a role in tumorigenesis by allowing the survival of precancerous or cancerous cells. HIP1 might accomplish this via regulation of clathrin-mediated trafficking, a fundamental cellular pathway that has not previously been associated with tumorigenesis. HIP1 represents a putative prognostic factor for prostate cancer and a potential therapy target in prostate as well as colon cancers. PMID:12163454
Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform
Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin
2015-01-01
Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3. PMID:25644994
Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform
NASA Astrophysics Data System (ADS)
Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin
2015-02-01
Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3.
Rab protein evolution and the history of the eukaryotic endomembrane system
Brighouse, Andrew; Dacks, Joel B.
2010-01-01
Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity. PMID:20582450
The Role of Non-Targeted Effects as Mediators in the Biological Effects of Proton Irradiation
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Dicello, John F.
2006-01-01
In recent years, the hypothesis that non-DNA targets are primary initiators and mediators of the biological effects of ionizing radiation, such as proton beams and heavy ions, has gained much interest. These phenomena have been denoted as non-targeted or bystander effects to distinguish them from the more traditionally studied model that focuses on direct damage to DNA causing chromosomal rearrangements and mutations as causative of most biological endpoints such as cell killing, tissue damage, and cancer. We review cellular and extra-cellular structures and signal transduction pathways that have been implemented in these recent studies. Non-targeted effects of interest include oxidative damage to the cytoplasm and mitochondria, disruption of the extra-cellular matrix, and modification of cytokine signaling including TGF-beta, and gap junction communication. We present an introduction to these targets and pathways, and contrast there role with DNA damage pathways.
Goldberg, Deborah S; Ghandehari, Hamidreza; Swaan, Peter W
2010-08-01
This study investigates the mechanisms of G3.5 poly (amido amine) dendrimer cellular uptake, intracellular trafficking, transepithelial transport and tight junction modulation in Caco-2 cells in the context of oral drug delivery. Chemical inhibitors blocking clathrin-, caveolin- and dynamin-dependent endocytosis pathways were used to investigate the mechanisms of dendrimer cellular uptake and transport across Caco-2 cells using flow cytometry and confocal microscopy. Dendrimer cellular uptake was found to be dynamin-dependent and was reduced by both clathrin and caveolin endocytosis inhibitors, while transepithelial transport was only dependent on dynamin- and clathrin-mediated endocytosis. Dendrimers were quickly trafficked to the lysosomes after 15 min of incubation and showed increased endosomal accumulation at later time points, suggesting saturation of this pathway. Dendrimers were unable to open tight junctions in cell monolayers treated with dynasore, a selective inhibitor of dynamin, confirming that dendrimer internalization promotes tight junction modulation. G3.5 PAMAM dendrimers take advantage of several receptor-mediated endocytosis pathways for cellular entry in Caco-2 cells. Dendrimer internalization by dynamin-dependent mechanisms promotes tight junction opening, suggesting that dendrimers act on intracellular cytoskeletal proteins to modulate tight junctions, thus catalyzing their own transport via the paracellular route.