Sample records for critical current properties

  1. Development of a 10 m quasi-isotropic strand assembled from 2G wires

    NASA Astrophysics Data System (ADS)

    Kan, Changtao; Wang, Yinshun; Hou, Yanbing; Li, Yan; Zhang, Han; Fu, Yu; Jiang, Zhe

    2018-03-01

    Quasi-isotropic strands made of second generation (2G) high temperature superconducting (HTS) wires are attractive to applications of high-field magnets at low temperatures and power transmission cables at liquid nitrogen temperature in virtue of their high current carrying capability and well mechanical property. In this contribution, a 10 m length quasi-isotropic strand is manufactured and successfully tested in liquid nitrogen to verify the feasibility of an industrial scale production of the strand by the existing cabling technologies. The strand with copper sheath consists of 72 symmetrically assembled 2G wires. The uniformity of critical properties of long quasi-isotropic strands, including critical current and n-value, is very important for their using. Critical currents as well as n-values of the strand are measured every 1 m respectively and compared with the simulation results. Critical current and n-value of the strand are calculated basing on the self-consistent model solved by the finite element method (FEM). Effects of self-field on the critical current and n-value distributions in wires of the strand are analyzed in detail. The simulation results show good agreement with the experimental data and the 10 m quasi-isotropic strand has good critical properties uniformity.

  2. Utilization of low temperatures in electrical machines

    NASA Astrophysics Data System (ADS)

    Kwasniewska-Jankowicz, L.; Mirski, Z.

    1983-09-01

    The dimensions of conventional and superconducting direct and alternating current generators are compared and the advantages of using superconducting magnets are examined. The critical temperature, critical current, and critical magnetic field intensity of superconductors in an induction winding are discussed as well as the mechanical properties needed for bending connectors at small radii. Investigations of cryogenic cooling, cryostats, thermal insulation and rotary seals are reported as well as results of studies of the mechanical properties of austenitic Cr-Ni steels, welded joints and plastics for insulation.

  3. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    DOE PAGES

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; ...

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less

  4. Structural and critical current properties in Al-doped MgB 2

    NASA Astrophysics Data System (ADS)

    Zheng, D. N.; Xiang, J. Y.; Lang, P. L.; Li, J. Q.; Che, G. C.; Zhao, Z. W.; Wen, H. H.; Tian, H. Y.; Ni, Y. M.; Zhao, Z. X.

    2004-08-01

    A series of Al-doped Mg 1- xAl xB 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2, measurements on the superconducting transition temperature Tc, irreversible field Birr and critical current density Jc were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration.

  5. Critical current and electric transport properties of superconducting epitaxial Nb(Ti)N submicron structures

    NASA Astrophysics Data System (ADS)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.

    2016-12-01

    Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.

  6. Apparatus and method for measuring critical current properties of a coated conductor

    DOEpatents

    Mueller, Fred M [Los Alamos, NM; Haenisch, Jens [Dresden, DE

    2012-07-24

    The transverse critical-current uniformity in a superconducting tape was determined using a magnetic knife apparatus. A critical current I.sub.c distribution and transverse critical current density J.sub.c distribution in YBCO coated conductors was measured nondestructively with high resolution using a magnetic knife apparatus. The method utilizes the strong depression of J.sub.c in applied magnetic fields. A narrow region of low, including zero, magnetic field in a surrounding higher field is moved transversely across a sample of coated conductor. This reveals the critical current density distribution. A Fourier series inversion process was used to determine the transverse J.sub.c distribution in the sample.

  7. Effects of high-energy proton irradiation on the superconducting properties of Fe(Se,Te) thin films

    NASA Astrophysics Data System (ADS)

    Sylva, G.; Bellingeri, E.; Ferdeghini, C.; Martinelli, A.; Pallecchi, I.; Pellegrino, L.; Putti, M.; Ghigo, G.; Gozzelino, L.; Torsello, D.; Grimaldi, G.; Leo, A.; Nigro, A.; Braccini, V.

    2018-05-01

    In this paper we explore the effects of 3.5 MeV proton irradiation on Fe(Se,Te) thin films grown on CaF2. In particular, we carry out an experimental investigation with different irradiation fluences up to 7.30 · 1016 cm‑2 and different proton implantation depths, in order to clarify whether and to what extent the critical current is enhanced or suppressed, what are the effects of irradiation on the critical temperature, resistivity, and critical magnetic fields, and finally what is the role played by the substrate in this context. We find that the effect of irradiation on superconducting properties is generally small compared to the case of other iron-based superconductors. The irradiation effect is more evident on the critical current density Jc, while it is minor on the transition temperature Tc, normal state resistivity ρ, and on the upper critical field Hc2 up to the highest fluences explored in this work. In more detail, our analysis shows that when protons implant in the substrate far from the superconducting film, the critical current can be enhanced up to 50% of the pristine value at 7 T and 12 K; meanwhile, there is no appreciable effect on critical temperature and critical fields together with a slight decrease in resistivity. On the contrary, when the implantation layer is closer to the film–substrate interface, both critical current and temperature show a decrease accompanied by an enhancement of the resistivity and lattice strain. This result evidences that possible modifications induced by irradiation in the substrate may affect the superconducting properties of the film via lattice strain. The robustness of the Fe(Se,Te) system to irradiation-induced damage makes it a promising compound for the fabrication of magnets in high-energy accelerators.

  8. Effects of repeated bending load at room temperature for composite Nb3Sn wires

    NASA Astrophysics Data System (ADS)

    Awaji, Satoshi; Watanabe, Kazuo; Katagiri, Kazumune

    2003-09-01

    In order to realize a react and wind (R&W) method for Nb3Sn wires, the influences of a bending load at room temperature are investigated. Usually, the superconducting wires undergo bending loads at room temperature repeatedly during winding and insulation processes. We define these bending loads as 'pre-bending' treatments. We applied the pre-bending strain of 0 and 0.5% to the highly strengthened CuNb/(Nb, Ti)3Sn wires, and measured the stress/strain properties and critical currents. The improvements of stress dependence of normalized critical current and the increase of the maximum critical current by the pre-bending treatments were found. The model based on the distribution of the local tensile strain as a bending strain describes the experimental results well without the increase of the maximum critical current. When the pre-bending strain was applied, the calculated results indicate that the mechanical properties are improved due to the local work hardening, and hence the stress dependence of Ic increases.

  9. Transport properties of gases and binary liquids near the critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.

    1972-01-01

    A status report is presented on the anomalies observed in the behavior of transport properties near the critical point of gases and binary liquids. The shear viscosity exhibits a weak singularity near the critical point. An analysis is made of the experimental data for those transport properties, thermal conductivity and thermal diffusivity near the gas-liquid critical point and binary diffusion coefficient near the critical mixing point, that determine the critical slowing down of the thermodynamic fluctuations in the order parameter. The asymptotic behavior of the thermal conductivity appears to be closely related to the asymptotic behavior of the correlation length. The experimental data for the thermal conductivity and diffusivity are shown to be in substantial agreement with current theoretical predictions.

  10. Advanced development of TFA-MOD coated conductors

    NASA Astrophysics Data System (ADS)

    Rupich, M. W.; Li, X.; Sathyamurthy, S.; Thieme, C.; Fleshler, S.

    2011-11-01

    American Superconductor is manufacturing 2G wire for initial commercial applications. The 2G wire properties satisfy the requirements for these initial projects; however, improvements in the critical current, field performance and cost are required to address the broad range of potential commercial and military applications. In order to meet the anticipated the performance and cost requirements, AMSC's R&D effort is focused on two major areas: (1) higher critical current and (2) enhanced flux pinning. AMSC's current 2G production wire, designed around a 0.8 μm thick YBCO layer deposited by a Metal Organic Deposition (MOD) process, carries a critical current in the range of 200-300 A/cm-w (77 K, sf). Achieving higher critical current requires increasing the thickness of the YBCO layer. This paper describes recent progress at AMSC on increasing the critical current of MOD-YBCO films using processes compatible with low-cost, high-rate manufacturing.

  11. MgB2 wire diameter reduction by hot isostatic pressing—a route for enhanced critical current density

    NASA Astrophysics Data System (ADS)

    Morawski, A.; Cetner, T.; Gajda, D.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Rindfleisch, M. A.; Tomsic, M.; Przysłupski, P.

    2018-07-01

    The effect of wire diameter reduction on the critical current density of pristine MgB2 wire was studied. Wires were treated by a hot isostatic pressing method at 570 °C and at pressures of up to 1.1 GPa. It was found that the wire diameter reduction induces an increase of up to 70% in the mass density of the superconducting cores. This feature leads to increases in critical current, critical current density, and pinning force density. The magnitude and field dependence of the critical current density are related to both grain connectivity and structural defects, which act as effective pinning centers. High field transport properties were obtained without doping of the MgB2 phase. A critical current density jc of 3500 A mm‑2 was reached at 4 K, 6 T for the best sample, which was a five-fold increase compared to MgB2 samples synthesized at ambient pressure.

  12. Criticality and turbulence in a resistive magnetohydrodynamic current sheet

    NASA Astrophysics Data System (ADS)

    Klimas, Alexander J.; Uritsky, Vadim M.

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  13. Criticality and turbulence in a resistive magnetohydrodynamic current sheet.

    PubMed

    Klimas, Alexander J; Uritsky, Vadim M

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  14. Effects of densification of precursor pellets on microstructures and critical current properties of YBCO melt-textured bulks

    NASA Astrophysics Data System (ADS)

    Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo

    2016-12-01

    Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.

  15. Electromechanical properties of superconducting MgB2 wire

    NASA Astrophysics Data System (ADS)

    Salama, K.; Zhou, Y. X.; Hanna, M.; Alessandrini, M.; Putman, P. T.; Fang, H.

    2005-12-01

    The current-carrying capability of superconducting wires is degraded by stress. Therefore electromechanical properties are one of the key feedback parameters needed for progress in conductor applications. In this work, uniaxial tensile stresses and bending stresses were applied to Fe /MgB2 wires at room temperature, followed by measurement of critical current using a transport method at 4.2 K. Basic mechanical properties were calculated from the measured stress-strain characteristics. The irreversible tensile strain at which the critical current density of MgB2 wire starts to degrade was found to be 0.5%. In addition, the degradation of Ic with decreasing bending diameters was found to be very rapid for wires that were deformed after the heat treatment that forms the MgB2 compound, while not much degradation of Ic was found for wires that were bent before being annealed. SEM observations confirmed that cracks could be healed by post-annealing.

  16. Critical Current Properties in Longitudinal Magnetic Field of YBCO Superconductor with APC

    NASA Astrophysics Data System (ADS)

    Kido, R.; Kiuchi, M.; Otabe, E. S.; Matsushita, T.; Jha, A. K.; Matsumoto, K.

    The critical current density (Jc) properties of the Artificial Pinning Center (APC) introduced YBa2Cu3O7 (YBCO) films in the longitudinal magnetic field were measured. Y2O3 or Y2BaCuO5 (Y211) was introduced as APCs to YBCO, and YBCO films with APC were fabricated on SrTiO3 single crystal substrate. The sizes of Y2O3 and Y211 were 5-10 nm and 10-20 nm, respectively. As a result, Jc enhancement in the longitudinal magnetic field was observed in Y2O3 introduced YBCO films. However, it was not observed in Y211 introduced YBCO films. Therefore, it was considered that Jc properties in the longitudinal magnetic field were affected by introducing of small size APC, and it was necessary that APC does not disturb the current pathway in the superconductor.

  17. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  18. Weak links in high critical temperature superconductors

    NASA Astrophysics Data System (ADS)

    Tafuri, Francesco; Kirtley, John R.

    2005-11-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence of d-wave pairing for different types of barriers.

  19. NASA Astrophysics Data System (ADS)

    Nishimura, A.; Takeuchi, T.; Nishijima, S.; Ochiai, K.; Nishijima, G.; Watanabe, K.; Shikama, T.

    2010-04-01

    To investigate the effect of neutron irradiation on superconducting properties, a collaboration network was established among superconducting material engineering and neutronics fields. Within the framework, irradiation test of Nb3Sn and Nb3Al wires by 14 MeV fusion neutron was planned and carried out at Fusion Neutronics Source in Japan Atomic Energy Agency. After the irradiation, critical current and critical magnetic field were measured with 28 T hybrid magnet at Institute for Metals Research in Tohoku University. The irradiation to 3.52×1020 n/m2 showed a slight increase of the critical current of the Nb3Sn wire, and the irradiation to 1.78×1021 n/m2 made the critical current appreciably larger. Regarding the critical magnetic field, no clear change was observed. In the case of Nb3Al wire, a sample irradiated to 1.78×1021 n/m2 showed no increase of the critical current below 200 A which was the limit of the power supply. As for the critical magnetic field, there was no clear improvement similar to the Nb3Sn wire. The increase of the critical current would be caused by knock-on effect of the fast neutron.

  20. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  1. Critical current studies of a HTS rectangular coil

    NASA Astrophysics Data System (ADS)

    Zhong, Z.; Chudy, M.; Ruiz, H. S.; Zhang, X.; Coombs, T.

    2017-05-01

    Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  2. A Critical Ear: Analysis of Value Judgments in Reviews of Beethoven's Piano Sonata Recordings

    PubMed Central

    Alessandri, Elena; Williamson, Victoria J.; Eiholzer, Hubert; Williamon, Aaron

    2016-01-01

    What sets a great music performance apart? In this study, we addressed this question through an examination of value judgments in written criticism of recorded performance. One hundred reviews of recordings of Beethoven's piano sonatas, published in the Gramophone between 1934 and 2010, were analyzed through a three-step qualitative analysis that identified the valence (positive/negative) expressed by critics' statements and the evaluation criteria that underpinned their judgments. The outcome is a model of the main evaluation criteria used by professional critics: aesthetic properties, including intensity, coherence, and complexity, and achievement-related properties, including sureness, comprehension, and endeavor. The model also emphasizes how critics consider the suitability and balance of these properties across the musical and cultural context of the performance. The findings relate directly to current discourses on the role of evaluation in music criticism and the generalizability of aesthetic principles. In particular, the perceived achievement of the performer stands out as a factor that drives appreciation of a recording. PMID:27065900

  3. Transport properties of ultrathin YBa2Cu3O7 -δ nanowires: A route to single-photon detection

    NASA Astrophysics Data System (ADS)

    Arpaia, Riccardo; Golubev, Dmitri; Baghdadi, Reza; Ciancio, Regina; Dražić, Goran; Orgiani, Pasquale; Montemurro, Domenico; Bauch, Thilo; Lombardi, Floriana

    2017-08-01

    We report on the growth and characterization of ultrathin YBa2Cu3O7 -δ (YBCO) films on MgO (110) substrates, which exhibit superconducting properties at thicknesses down to 3 nm. YBCO nanowires, with thicknesses down to 10 nm and widths down to 65 nm, have also been successfully fabricated. The nanowires protected by a Au capping layer show superconducting properties close to the as-grown films and critical current densities, which are limited by only vortex dynamics. The 10-nm-thick YBCO nanowires without the Au capping present hysteretic current-voltage characteristics, characterized by a voltage switch which drives the nanowires directly from the superconducting to the normal state. We associate such bistability to the presence of localized normal domains within the superconductor. The presence of the voltage switch in ultrathin YBCO nanostructures, characterized by high sheet resistance values and high critical current values, makes our nanowires very attractive devices to engineer single-photon detectors.

  4. The influence of the shock treatment under heating on the structure and properties of HTS tapes

    NASA Astrophysics Data System (ADS)

    Mikhailov, B. P.; Mikhailova, A. B.; Borovitskaya, I. V.; Nikulin, V. Ya; Silin, P. V.; Peregudova, E. N.; Polukhin, S. N.; Shavkin, S. V.; Mineev, N. A.; Shamray, V. F.; Kolokoltsev, V. N.; Krutskih, N. A.; Alibekov, S. Y.

    2017-12-01

    The influence of shocks of different intensity on the structure and properties of multifilamentary superconducting tapes of Bi2Sr2Ca2Cu3O10+x (Bi-2223) and MgB2 compounds was studied. The Plasma Focus setup was used to produce the plasma shock waves, and a specially designed setup was utilized for the mechanical shock treatment. The experiments have shown a possibility to increase the critical current of MgB2 tapes by more than 60% in magnetic fields of 1.5-2.0 T due to the treatment. The critical current increase is caused by homogeneity improvement, densification of superconducting filaments and the pinning enhancement.

  5. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerkens, A.; Frenck, H.J.; Ewert, S.

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  6. Angular dependence of critical current density and magnetoresistance of sputtered high-T(sub c)-films

    NASA Technical Reports Server (NTRS)

    Geerkens, A.; Meven, M.; Frenck, H.-J.; Ewert, S.

    1995-01-01

    The angular dependence of the critical current density and the magnetoresistance of high-T(sub c)-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle Theta between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the Theta-rotation plane is discussed.

  7. Two ways to model voltage current curves of adiabatic MgB2 wires

    NASA Astrophysics Data System (ADS)

    Stenvall, A.; Korpela, A.; Lehtonen, J.; Mikkonen, R.

    2007-08-01

    Usually overheating of the sample destroys attempts to measure voltage-current curves of conduction cooled high critical current MgB2 wires at low temperatures. Typically, when a quench occurs a wire burns out due to massive heat generation and negligible cooling. It has also been suggested that high n values measured with MgB2 wires and coils are not an intrinsic property of the material but arise due to heating during the voltage-current measurement. In addition, quite recently low n values for MgB2 wires have been reported. In order to find out the real properties of MgB2 an efficient computational model is required to simulate the voltage-current measurement. In this paper we go back to basics and consider two models to couple electromagnetic and thermal phenomena. In the first model the magnetization losses are computed according to the critical state model and the flux creep losses are considered separately. In the second model the superconductor resistivity is described by the widely used power law. Then the coupled current diffusion and heat conduction equations are solved with the finite element method. In order to compare the models, example runs are carried out with an adiabatic slab. Both models produce a similar significant temperature rise near the critical current which leads to fictitiously high n values.

  8. A novel modeling to predict the critical current behavior of Nb3Sn PIT strand under transverse load based on a scaling law and Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Tiening; Chiesa, Luisa; Takayasu, Makoto; Bordini, Bernardo

    2014-09-01

    Superconducting Nb3Sn Powder-In-Tube (PIT) strands could be used for the superconducting magnets of the next generation Large Hadron Collider. The strands are cabled into the typical flat Rutherford cable configuration. During the assembly of a magnet and its operation the strands experience not only longitudinal but also transverse load due to the pre-compression applied during the assembly and the Lorentz load felt when the magnets are energized. To properly design the magnets and guarantee their safe operation, mechanical load effects on the strand superconducting properties are studied extensively; particularly, many scaling laws based on tensile load experiments have been established to predict the critical current dependence on strain. However, the dependence of the superconducting properties on transverse load has not been extensively studied so far. One of the reasons is that transverse loading experiments are difficult to conduct due to the small diameter of the strand (about 1 mm) and the data currently available do not follow a common measurement standard making the comparison between different data sets difficult. Recently at the University of Geneva, a new device has been developed to characterize the critical current of Nb3Sn strands under transverse loads. In this work we present a new 2D Finite Element Analysis (FEA) to predict the electro-mechanical response of a PIT strand that was tested at the University of Geneva when transverse load is applied. The FEA provides the strain map for the superconducting filaments when the load is applied. Those strain maps are then used to evaluate the critical current behavior of a PIT strand using a recently developed scaling law that correlates the superconducting properties of a wire with the strain invariants due to the load applied on the superconductor. The benefits and limitations of this method are discussed based on the comparison between the critical current simulation results obtained with the filament strain map and the experimental results available for PIT strands.

  9. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    NASA Astrophysics Data System (ADS)

    Selvamanickam, V.; Chen, Y.; Shi, T.; Liu, Y.; Khatri, N. D.; Liu, J.; Yao, Y.; Xiong, X.; Lei, C.; Soloveichik, S.; Galstyan, E.; Majkic, G.

    2013-03-01

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process, enhanced critical current densities have been achieved with high levels of Zr addition, including 3.83 MA cm-2 in 15 at.% Zr-added 1.1 μm thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/12 mm have been reached in (Gd,Y)BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape, corresponding to a pinning force value of 268 GN m-3. The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second-phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.

  10. Effect of fatigue loading on critical current in stainless steel-laminated DI-BSCCO superconducting composite tape

    NASA Astrophysics Data System (ADS)

    Hojo, M.; Osawa, K.; Adachi, T.; Inoue, Y.; Osamura, K.; Ochiai, S.; Ayai, N.; Hayashi, K.

    2010-11-01

    Tensile strain tolerance of the critical current in (Bi,Pb)2Sr2Ca2Cu3Ox (Bi2223) composite superconductor is dramatically improved when the tape is laminated with stainless steel. For practical applications, it is important to understand whether this reinforcement by lamination is effective under fatigue loading. In the present study, we carried out fatigue tests in LN2 and measured the critical current at the specific fatigue cycles to clarify the strain tolerance of the critical current in stainless steel-laminated drastically innovative Bi2223 (DI-BSCCO®) tapes. The fatigue tests were carried out using a computer-controlled 10 kN servo-hydraulic fatigue testing machine with a load cell capacity of 2.5 kN. Tests under static loading showed that the irreversible stress at which the critical current is reduced by 1% from the original value (tensile stress at Ic/Ic0 = 0.99) was 315 MPa when measured at unloading state. The present fatigue tests results indicated that the critical current was maintained at over 98% of the original value at unloading state after stress cycles of 106 when the static irreversible stress was selected as the maximum stress under fatigue loading. Thus, laminated DI-BSCCO tapes showed excellent mechanical properties even under fatigue loading.

  11. The Influence of Nano-Scale Silicon Nitride Additions on the Physical and Magnetic Properties of Iron Sheathed Magnesium Boride Wires

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Cave, J.

    2006-03-01

    The enhancement of flux line pinning in magnesium boride wires is a critical issue for their future applications in devices and machines. It is well known that small size dopants can significantly influence the current densities of these materials. Here, the influence of nanometric (<30nm) silicon nitride on physical properties and current density is presented. The iron-sheathed powder in tube wires were prepared using pure magnesium and boron powders with silicon nitride additions. The wires were rolled flat and treated at up to 900 degrees C in flowing argon. SEM and XRD were used to identify phases and microstructures. Magnetization critical currents, up to several 100 of thousands A/cm2, at various temperatures and fields (5K - 20K and up to 3 tesla) show that there are competing mechanisms from chemical and flux pinning effects.

  12. High field superconducting properties of Ba(Fe1-xCox)2As2 thin films

    NASA Astrophysics Data System (ADS)

    Hänisch, Jens; Iida, Kazumasa; Kurth, Fritz; Reich, Elke; Tarantini, Chiara; Jaroszynski, Jan; Förster, Tobias; Fuchs, Günther; Hühne, Ruben; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard

    2015-11-01

    In general, the critical current density, Jc, of type II superconductors and its anisotropy with respect to magnetic field orientation is determined by intrinsic and extrinsic properties. The Fe-based superconductors of the ‘122’ family with their moderate electronic anisotropies and high yet accessible critical fields (Hc2 and Hirr) are a good model system to study this interplay. In this paper, we explore the vortex matter of optimally Co-doped BaFe2As2 thin films with extended planar and c-axis correlated defects. The temperature and angular dependence of the upper critical field is well explained by a two-band model in the clean limit. The dirty band scenario, however, cannot be ruled out completely. Above the irreversibility field, the flux motion is thermally activated, where the activation energy U0 is going to zero at the extrapolated zero-kelvin Hirr value. The anisotropy of the critical current density Jc is both influenced by the Hc2 anisotropy (and therefore by multi-band effects) as well as the extended planar and columnar defects present in the sample.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvamanickam, V; Chen, Y; Shi, T

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process,enhanced critical current densities have been achieved with high levels of Zr addition,including 3.83 MA cm(-2) in 15 at.% Zr- added 1.1 mu m thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/ 12more » mm have been reached in (Gd,Y) BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape,corresponding to a pinning force value of 268 GN m(-3). The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second- phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.« less

  14. A study of enhancing critical current densities (J(sub c)) and critical temperature (T(sub c)) of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus

    1992-01-01

    The development of pure phase 123 and Bi-based 2223 superconductors has been optimized. The pre-heat processing appears to be a very important parameter in achieving optimal physical properties. The synthesis of pure phases in the Bi-based system involves effects due to oxygen partial pressure, time, and temperature. Orientation/melt-sintering effects include the extreme c-axis orientation of Yttrium 123 and Bismuth 2223, 2212, and 2201 phases. This orientation is conductive to increasing critical currents. A procedure was established to substitute Sr for Ba in Y-123 single crystals.

  15. Bootstrap current in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessel, C.E.

    1994-03-01

    The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.

  16. Capturing Safety Requirements to Enable Effective Task Allocation Between Humans and Automaton in Increasingly Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Neogi, Natasha A.

    2016-01-01

    There is a current drive towards enabling the deployment of increasingly autonomous systems in the National Airspace System (NAS). However, shifting the traditional roles and responsibilities between humans and automation for safety critical tasks must be managed carefully, otherwise the current emergent safety properties of the NAS may be disrupted. In this paper, a verification activity to assess the emergent safety properties of a clearly defined, safety critical, operational scenario that possesses tasks that can be fluidly allocated between human and automated agents is conducted. Task allocation role sets were proposed for a human-automation team performing a contingency maneuver in a reduced crew context. A safety critical contingency procedure (engine out on takeoff) was modeled in the Soar cognitive architecture, then translated into the Hybrid Input Output formalism. Verification activities were then performed to determine whether or not the safety properties held over the increasingly autonomous system. The verification activities lead to the development of several key insights regarding the implicit assumptions on agent capability. It subsequently illustrated the usefulness of task annotations associated with specialized requirements (e.g., communication, timing etc.), and demonstrated the feasibility of this approach.

  17. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    NASA Astrophysics Data System (ADS)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  18. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.

  19. Shielding and flux trapping properties of high temperature superconductors in the shape of hollow cylinders

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.

    1991-01-01

    Allowing for a field-dependent critical current density, the authors calculate the magnetic field that can be supported by hollow cylinders of varying wall thickness. An adiabatically stable field of 1.0 T can be shielded by or trapped in a cylinder with a wall thickness of 0.4 cm if the critical current density varies linearly with magnetic field and has a value of 104 A/sq cm at a field of 1.0 T. Such a current density appears to be within reach of present state-of-the-art melt-processed YBa2Cu3O7 (123) materials.

  20. Measurement properties of disease-specific questionnaires in patients with neck pain: a systematic review.

    PubMed

    Schellingerhout, Jasper M; Verhagen, Arianne P; Heymans, Martijn W; Koes, Bart W; de Vet, Henrica C; Terwee, Caroline B

    2012-05-01

    To critically appraise and compare the measurement properties of the original versions of neck-specific questionnaires. Bibliographic databases were searched for articles concerning the development or evaluation of the measurement properties of an original version of a self-reported questionnaire, evaluating pain and/or disability, which was specifically developed or adapted for patients with neck pain. The methodological quality of the selected studies and the results of the measurement properties were critically appraised and rated using a checklist, specifically designed for evaluating studies on measurement properties. The search strategy resulted in a total of 3,641 unique hits, of which 25 articles, evaluating 8 different questionnaires, were included in our study. The Neck Disability Index is the most frequently evaluated questionnaire and shows positive results for internal consistency, content validity, structural validity, hypothesis testing, and responsiveness, but a negative result for reliability. The other questionnaires show positive results, but the evidence for each measurement property is mostly limited, and at least 50% of the information on measurement properties per questionnaire is lacking. Our findings imply that studies of high methodological quality are needed to properly assess the measurement properties of the currently available questionnaires. Until high quality studies are available, we recommend using these questionnaires with caution. There is no need for the development of new neck-specific questionnaires until the current questionnaires have been adequately assessed.

  1. Optical properties of monolayer polystyrene microspheres driven by a direct current

    NASA Astrophysics Data System (ADS)

    Jiao, Xinbing; Pan, Qian; Zhao, Xinwei; Hao, Ruirui; Bai, Xue

    2018-04-01

    Polystyrene microspheres (PSMs) with diameters of 5 μm and 10 μm are prepared on garnet by a self-assembly method. The pressure generated by quartz sheet/PSM/garnet/graphite is measured by a resistance strain sensor as a function of the external direct current (DC) voltage. The surface morphology of the PSMs are observed by optical microscopy. The polarization properties of the linearly and circularly polarized laser beams with a wavelength of 1550 nm reflected from the different PSMs are researched by a Thorlabs PAX 5710 IR3 Polarization Analyzing System as a function of the external DC voltage. The results show that the PSMs with different sizes can be damaged when the external pressure exceeds its critical value of 3.0 MPa, but the critical DC voltages are different. The optical polarization properties of the circularly polarized laser beam can be changed with the external DC voltage, whereas the linearly polarized laser beam cannot be changed.

  2. A 2D finite element study on the role of material properties on eddy current losses in soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Ren, Xiaotao; Corcolle, Romain; Daniel, Laurent

    2016-02-01

    The use of soft magnetic composites (SMCs) in electrical engineering applications is growing. SMCs provide an effective alternative to laminated steels because they exhibit a high permeability with low eddy current losses. Losses are a critical feature in the design of electrical machines, and it is necessary to evaluate the role of microstructure and constitutive properties of SMCs during the predesign stage. In this paper we propose a simplified finite element approach to compute eddy current losses in these materials. The computations allow to quantify the role of exciting source and material properties on eddy current losses. This analysis can later be used in the development of homogenization models for SMC. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek

  3. Microstructural control and superconducting properties of YBCO melt textured single crystals

    NASA Astrophysics Data System (ADS)

    Jongprateep, Oratai

    The high temperature superconductor has great potential for practical applications such as superconducting energy storage systems. Since the levitation force, required specifically for these applications, largely depends on the critical current density and loop size of the superconducting current, large-sized single crystals with high critical current density are desired. To achieve the goal in fabricating YBa2Cu3O 7-delta (Y123) samples suitable for the applications, detailed and systematic studies are required to gain further understanding of the crystal growth and flux pinning mechanisms. This research is aimed at constituting a contribution to the knowledge base for the Y123 high temperature superconductor field by extending the study of processing conditions involved in controlling the microstructure of the Y123 superconductors for the enhancement of crystal growth and superconductor properties. Relations among processing parameters, microstructure, crystal growth, and critical current density of Y123 superconductors have been established. The experimental results reveal that low heating rate and short holding time can lead to refinement of Y2BaCuO5 (Y211) particles, which is strongly favorable to enhancement of the crystal growth and electrical properties of the Y123 superconductors. It was observed that relatively large Y123 crystals (17-22 mm in size) can be obtained with fine needle-shaped Y211 particles, processed with low heating rate and short holding time at the maximum temperatures. Additionally, the research also formulated a technique to fabricate Y123 superconductors with improved electrical properties required for the practical applications. By incorporating additives such as BaCeO3, BaSnO 3, Pt and Nd2O3 into Y123 superconductors, refinement of Y211 particles occurs. In addition, secondary phase particles with sizes in sub-micrometer and nanometer range can be formed in the Y123 superconductors. The interfaces between the Y123 matrix and these Y211 or secondary phase particles are believed to act as flux pinning sites and to enhance the critical current density (Jc) in the superconductor. The results showed that formation of secondary phase inclusions in Y123 by doping with BaCeO3, BaSnO 3, Pt or Nd2O3 result in enhancement of J c due to the effective flux pinning.

  4. High field superconducting properties of Ba(Fe1−xCox)2As2 thin films

    PubMed Central

    Hänisch, Jens; Iida, Kazumasa; Kurth, Fritz; Reich, Elke; Tarantini, Chiara; Jaroszynski, Jan; Förster, Tobias; Fuchs, Günther; Hühne, Ruben; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard

    2015-01-01

    In general, the critical current density, Jc, of type II superconductors and its anisotropy with respect to magnetic field orientation is determined by intrinsic and extrinsic properties. The Fe-based superconductors of the ‘122’ family with their moderate electronic anisotropies and high yet accessible critical fields (Hc2 and Hirr) are a good model system to study this interplay. In this paper, we explore the vortex matter of optimally Co-doped BaFe2As2 thin films with extended planar and c-axis correlated defects. The temperature and angular dependence of the upper critical field is well explained by a two-band model in the clean limit. The dirty band scenario, however, cannot be ruled out completely. Above the irreversibility field, the flux motion is thermally activated, where the activation energy U0 is going to zero at the extrapolated zero-kelvin Hirr value. The anisotropy of the critical current density Jc is both influenced by the Hc2 anisotropy (and therefore by multi-band effects) as well as the extended planar and columnar defects present in the sample. PMID:26612567

  5. Desiring Diversity and Backlash: White Property Rights in Higher Education

    ERIC Educational Resources Information Center

    Patel, Leigh

    2015-01-01

    In this theoretical essay, I argue that the current incidences of backlash to diversity are best understood as a dynamic of complicated, historic and intertwined desires for racial diversity and white entitlement to property. I frame this argument in the theories of critical race theory and settler colonialism, each of which provide necessary but…

  6. Influence of magnetic materials on the transport properties of superconducting composite conductors

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Majoros, M.; Campbell, A. M.; Hopkins, S. C.; Rutter, N. A.; Kozlowski, G.; Peterson, T. L.

    2009-03-01

    Magnetic materials can help to improve the performance of practical superconductors on the macro/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces ac losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa2Cu3O7 and (Pb,Bi)2Sr2Ca2Cu3O9 conductors, and buffer layers have to be used. In contrast, in MgB2 conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On the one hand, magnetic components reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause the destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  7. Electromechanical properties of superconductors for DOE fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekin, J.W.; Moreland, J.; Brauch, J.C.

    1986-03-01

    This is an interim report presenting data on superconductor performance under mechanical load, which are needed for the selection of superconductors and the mechanical design of superconducting magnets for DOE fusion energy systems. A further aim of the reported research is to measure and understand the electromechanical properties of promising new superconductor materials with strong application potential at high magnetic fields. Results include the following. The first strain vs. critical-current studies were made on a Chevrel-phase superconductor, PbMo/sub 6/S/sub 8/. Chevrel-phase superconductors were found to have a large strain effect, comparable in magnitude to A-15 superconductors like Nb/sub 3/Sn. Electromechanical-propertymore » measurements of an experimental liquid-tin-infiltrated Nb/sub 3/Sn conductor showed it to have an irreversible strain limit twice as large as bronze-process supercondutors and a significantly higher overall critical-current denstiy; the liquid-infiltration process thus has the potential for development of a practical Nb/sub 3/Sn conductors with both superior critical-current density and extremely good mechanical properties. Electromechanical parameters were obtained on several Nb/sub 3/Sn conductors that are candidate materials for superconducting fusion magnets, icluding conductors fabricated by the bronze, internal-tin, and jelly-roll processes. Thermal contraction data are reported on several new structural materials for superconductor sheathing and reinforcement, and a new diagnostic tool for probing the energy gap of practical superconductors has been developed using electron tunneling.« less

  8. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Majoros, M.

    2009-06-01

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa2Cu3O7 and (Pb,Bi)2Sr2Ca2Cu3O9 conductors, and buffer layers have to be used. In contrast, in MgB2 conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  9. Uncertainty in Antibiotic Dosing in Critically Ill Neonate and Pediatric Patients: Can Microsampling Provide the Answers?

    PubMed

    Dorofaeff, Tavey; Bandini, Rossella M; Lipman, Jeffrey; Ballot, Daynia E; Roberts, Jason A; Parker, Suzanne L

    2016-09-01

    With a decreasing supply of antibiotics that are effective against the pathogens that cause sepsis, it is critical that we learn to use currently available antibiotics optimally. Pharmacokinetic studies provide an evidence base from which we can optimize antibiotic dosing. However, these studies are challenging in critically ill neonate and pediatric patients due to the small blood volumes and associated risks and burden to the patient from taking blood. We investigate whether microsampling, that is, obtaining a biologic sample of low volume (<50 μL), can improve opportunities to conduct pharmacokinetic studies. We performed a literature search to find relevant articles using the following search terms: sepsis, critically ill, severe infection, intensive care AND antibiotic, pharmacokinetic, p(a)ediatric, neonate. For microsampling, we performed a search using antibiotics AND dried blood spots OR dried plasma spots OR volumetric absorptive microsampling OR solid-phase microextraction OR capillary microsampling OR microsampling. Databases searched include Web of Knowledge, PubMed, and EMbase. Of the 32 antibiotic pharmacokinetic studies performed on critically ill neonate or pediatric patients in this review, most of the authors identified changes to the pharmacokinetic properties in their patient group and recommended either further investigations into this patient population or therapeutic drug monitoring to ensure antibiotic doses are suitable. There remain considerable gaps in knowledge regarding the pharmacokinetic properties of antibiotics in critically ill pediatric patients. Implementing microsampling in an antibiotic pharmacokinetic study is contingent on the properties of the antibiotic, the pathophysiology of the patient (and how this can affect the microsample), and the location of the patient. A validation of the sampling technique is required before implementation. Current antibiotic regimens for critically ill neonate and pediatric patients are frequently suboptimal due to a poor understanding of altered pharmacokinetic properties. An assessment of the suitability of microsampling for pharmacokinetic studies in neonate and pediatric patients is recommended before wider use. The method of sampling, as well as the method of bioanalysis, also requires validation to ensure the data obtained reflect the true result. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  10. Macroscopic Quantum Tunneling in Superconducting Junctions of β-Ag2Se Topological Insulator Nanowire.

    PubMed

    Kim, Jihwan; Kim, Bum-Kyu; Kim, Hong-Seok; Hwang, Ahreum; Kim, Bongsoo; Doh, Yong-Joo

    2017-11-08

    We report on the fabrication and electrical transport properties of superconducting junctions made of β-Ag 2 Se topological insulator (TI) nanowires in contact with Al superconducting electrodes. The temperature dependence of the critical current indicates that the superconducting junction belongs to a short and diffusive junction regime. As a characteristic feature of the narrow junction, the critical current decreases monotonously with increasing magnetic field. The stochastic distribution of the switching current exhibits the macroscopic quantum tunneling behavior, which is robust up to T = 0.8 K. Our observations indicate that the TI nanowire-based Josephson junctions can be a promising building block for the development of nanohybrid superconducting quantum bits.

  11. Preface

    NASA Astrophysics Data System (ADS)

    2003-09-01

    MEM03: The Second International Workshop on Mechano-Electromagnetic Properties of Composite Superconductors (Kyoto, Japan, 3–5 March 2003) Superconductivity is on course to be widely applied in various advanced technologies including: (1) magnetically levitated vehicles (MAGLEV), international thermonuclear experimental reactors (ITER), electric generators, high energy accelerator and magnetic resonance imaging (MRI) using metallic composite superconductors; (2) cable, fault-current-limiters (FCL), transformers, flywheels and motors by using oxide composite superconductors; (3) high field NMR and other sophisticated devices by combining both metallic and oxide superconductors. In order to create a real market for these advanced technologies using superconductivity, it is absolutely essential to develop superconducting wires/tapes with better performance. The development of accompanying assessment technologies is therefore indispensable for their R&D. Some important properties are related to the mechanical properties of the conductors. It is well known that degraded superconducting and mechanical properties (during fabrication as well as under operation) can cause serious problems, because the critical current depends sensitively on bending and tensile stresses, electromagnetic force, and mechanical and thermal cycling. Therefore he assessment of mechanical properties and the effect of strain on transport properties is crucial for improving and developing high performance superconducting devices. It is now very timely to have a meeting in order to discuss common scientific problems systematically and comprehensively. The Second International Workshop on Mechano-Electromagnetic Properties of Composite Superconductors, MEM03, was held in Kyoto, Japan, 3–5 March 2003, mainly to discuss the fundamentals of the following topics. • Electromagnetic properties: change of critical current, RRR and ac loss due to external forces like bending, compressive and tensile stresses, electromagnetic force, and mechanical and thermal cycling. • Mechanical properties: tensile and compressive properties, fatigue characteristics and fracture behaviour. • Thermal properties: thermal conductivity, thermal dilatation and thermal strain. • Modelling: prediction of critical current and mechanical properties of composite superconductors through statistical analysis, finite element analysis, etc. • Test methods: international cooperative research work to establish test methods for assessing mechano-electromagnetic properties based on the activity of VAMAS/TWA-16. This discussion took place with respect to three types of composites: • MFC (multifilamentary composite): BSCCO, MgB2, Nb-Ti, Nb3Sn and Nb3Al. • CCC (coated conductor composite): YBCO and ReBCO. • BCC (bulk crystal composite): YBCO and ReBCO. More than 55 researchers attended the MEM03 workshop, coming from eight different countries. A total of 42 papers were presented. In this special issue of Superconductor Science and Technology selected papers have been included that are concerned with the comprehensive scientific research subjects mentioned above. The aim of this issue is to provide a snapshot of some of the current state-of-the-art research and to promote further research into the mechano-electromagnetic properties of composite superconductors. The workshop was organized under the activities of NEDO technology quest and VAMAS/TWA-16. We wish to thank the following for their contribution to the success of the workshop: NEDO Super-ACE project, AFOSR, AOARD and IEC/TC90-JNC. Guest Editors: Kozo Osamura Hitoshi Wada Arman Nyilas Damian Hampshire

  12. Nonequilibrium critical behavior of model statistical systems and methods for the description of its features

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Mamonova, M. V.

    2017-11-01

    This paper reviews features in critical behavior of far-from-equilibrium macroscopic systems and presents current methods of describing them by referring to some model statistical systems such as the three-dimensional Ising model and the two-dimensional XY model. The paper examines the critical relaxation of homogeneous and structurally disordered systems subjected to abnormally strong fluctuation effects involved in ordering processes in solids at second-order phase transitions. Interest in such systems is due to the aging properties and fluctuation-dissipation theorem violations predicted for and observed in systems slowly evolving from a nonequilibrium initial state. It is shown that these features of nonequilibrium behavior show up in the magnetic properties of magnetic superstructures consisting of alternating nanoscale-thick magnetic and nonmagnetic layers and can be observed not only near the film’s critical ferromagnetic ordering temperature Tc, but also over the wide temperature range T ⩽ Tc.

  13. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading

    DOE PAGES

    Barth, Christian; Seeber, B.; Rack, A.; ...

    2018-04-26

    Understanding the critical current performance variation of Nb 3Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation betweenmore » the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires’ void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Lastly, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.« less

  14. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Christian; Seeber, B.; Rack, A.

    Understanding the critical current performance variation of Nb 3Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation betweenmore » the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires’ void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Lastly, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.« less

  15. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading.

    PubMed

    Barth, C; Seeber, B; Rack, A; Calzolaio, C; Zhai, Y; Matera, D; Senatore, C

    2018-04-26

    Understanding the critical current performance variation of Nb 3 Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation between the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3 Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires' void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Finally, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.

  16. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe

    PubMed Central

    Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson

    2015-01-01

    We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444

  17. In situ hydrostatic pressure induced improvement of critical current density and suppression of magnetic relaxation in Y(Dy0.5)Ba2Cu3O7‑δ coated conductors

    NASA Astrophysics Data System (ADS)

    Sang, Lina; Gutiérrez, Joffre; Cai, Chuanbing; Dou, Shixue; Wang, Xiaolin

    2018-07-01

    We report on the effect of in situ hydrostatic pressure on the enhancement of the in-magnetic-field critical current density parallel to the crystallographic c-axis and vortex pinning in epitaxial Y(Dy0.5)Ba2Cu3O7‑δ coated conductors prepared by metal organic deposition. Our results show that in situ hydrostatic pressure greatly enhances the critical current density at high fields and high temperatures. At 80 K and 5 T we observe a ten-fold increase in the critical current density under the pressure of 1.2 GPa, and the irreversibility line is shifted to higher fields without changing the critical temperature. The normalized magnetic relaxation rate shows that vortex creep rates are strongly suppressed due to applied pressure, and the pinning energy is significantly increased based on the collective creep theory. After releasing the pressure, we recover the original superconducting properties. Therefore, we speculate that the in situ hydrostatic pressure exerted on the coated conductor enhances the pinning of existing extended defects. This is totally different from what has been observed in REBa2Cu3O7‑δ melt-textured crystals, where the effect of pressure generates point-like defects.

  18. Size and density avalanche scaling near jamming.

    PubMed

    Arévalo, Roberto; Ciamarra, Massimo Pica

    2014-04-28

    The current microscopic picture of plasticity in amorphous materials assumes local failure events to produce displacement fields complying with linear elasticity. Indeed, the flow properties of nonaffine systems, such as foams, emulsions and granular materials close to jamming, that produce a fluctuating displacement field when failing, are still controversial. Here we show, via a thorough numerical investigation of jammed materials, that nonaffinity induces a critical scaling of the flow properties dictated by the distance to the jamming point. We rationalize this critical behavior by introducing a new universal jamming exponent and hyperscaling relationships, and we use these results to describe the volume fraction dependence of the friction coefficient.

  19. The reduction of optimal heat treatment temperature and critical current density enhancement of ex situ processed MgB2 tapes using ball milled filling powder

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroki; Iwanade, Akio; Kawada, Satoshi; Kitaguchi, Hitoshi

    2018-01-01

    The optimal heat treatment temperature (Topt) at which best performance in the critical current density (Jc) property at 4.2 K is obtained is influenced by the quality or reactivity of the filling powder in ex situ processed MgB2 tapes. Using a controlled fabrication process, the Topt decreases to 705-735 °C, which is lower than previously reported by more than 50 °C. The Topt decrease is effective to suppress both the decomposition of MgB2 and hence the formation of impurities such as MgB4, and the growth of crystallite size which decreases upper critical filed (Hc2). These bring about the Jc improvement and the Jc value at 4.2 K and 10 T reaches 250 A/mm2. The milling process also decreases the critical temperature (Tc) below 30 K. The milled powder is easily contaminated in air and thus, the Jc property of the contaminated tapes degrades severely. The contamination can raise the Topt by more than 50 °C, which is probably due to the increased sintering temperature required against contaminated surface layer around the grains acting as a barrier.

  20. Effect of hydrogen intercalation on the critical parameters of YBa2Cu3O y

    NASA Astrophysics Data System (ADS)

    Bobylev, I. B.; Gerasimov, E. G.; Zyuzeva, N. A.; Terent'ev, P. B.

    2017-10-01

    The effect of hydrogenation at T = 150 and 200°C on the electrophysical properties of highly textured YBa2Cu3O y ceramics with different oxygen content has been investigated. Like hydration, hydrogenation results in the deterioration of these properties. However, in samples with high oxygen contents ( y = 6.96) hydrogenated at T = 150°C after oxidation (400°C) or recovery annealing with subsequent oxidation, the critical current density and first critical field increase compared to the initial state. The improvement of the properties occurs mainly in a magnetic field applied perpendicularly to the c axis. As after hydration, this is connected with the formation of planar defects in the course of low-temperature annealing. In addition, in the process of the hydrogenation, the partial reduction of copper occurs with the formation of microinclusions of Cu2O and other products of chemical decomposition, which are extra pinning centers of magnetic vortices.

  1. Pb/InAs nanowire josephson junction with high critical current and magnetic flux focusing.

    PubMed

    Paajaste, J; Amado, M; Roddaro, S; Bergeret, F S; Ercolani, D; Sorba, L; Giazotto, F

    2015-03-11

    We have studied mesoscopic Josephson junctions formed by highly n-doped InAs nanowires and superconducting Ti/Pb source and drain leads. The current-voltage properties of the system are investigated by varying temperature and external out-of-plane magnetic field. Superconductivity in the Pb electrodes persists up to ∼7 K and with magnetic field values up to 0.4 T. Josephson coupling at zero backgate voltage is observed up to 4.5 K and the critical current is measured to be as high as 615 nA. The supercurrent suppression as a function of the magnetic field reveals a diffraction pattern that is explained by a strong magnetic flux focusing provided by the superconducting electrodes forming the junction.

  2. Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN

    NASA Astrophysics Data System (ADS)

    Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.

    2016-08-01

    In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.

  3. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  4. Superconducting properties of nano-sized SiO2 added YBCO thick film on Ag substrate

    NASA Astrophysics Data System (ADS)

    Almessiere, Munirah Abdullah; Al-Otaibi, Amal lafy; Azzouz, Faten Ben

    2017-10-01

    The microstructure and the flux pinning capability of SiO2-added YBa2Cu3Oy thick films on Ag substrates were investigated. A series of YBa2Cu3Oy thick films with small amounts (0-0.5 wt%) of nano-sized SiO2 particles (12 nm) was prepared. The thicknesses of the prepared thick films was approximately 100 µm. Phase analysis by x-ray diffraction and microstructure examination by scanning electron microscopy were performed and the critical current density dependence on the applied magnetic field Jc(H) and electrical resistivity ρ(T) were investigated. The magnetic field and temperature dependence of the critical current density (Jc) was calculated from magnetization measurements using Bean's critical state model. The results showed that the addition of a small amount (≤0.02 wt%) of SiO2 was effective in enhancing the critical current densities in the applied magnetic field. The sample with 0.01 wt% of added SiO2 exhibited a superconducting characteristics under an applied magnetic field for a temperature ranging from 10 to 77 K.

  5. Superconducting properties of Ba(Fe1-xNix)2As2 thin films in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Richter, Stefan; Kurth, Fritz; Iida, Kazumasa; Pervakov, Kirill; Pukenas, Aurimas; Tarantini, Chiara; Jaroszynski, Jan; Hänisch, Jens; Grinenko, Vadim; Skrotzki, Werner; Nielsch, Kornelius; Hühne, Ruben

    2017-01-01

    We report on the electrical transport properties of epitaxial Ba(Fe1-xNix)2As2 thin films grown by pulsed laser deposition in static magnetic fields up to 35 T. The thin film shows a critical temperature of 17.2 K and a critical current density of 5.7 × 105 A/cm2 in self field at 4.2 K, while the pinning is dominated by elastic pinning at two-dimensional nonmagnetic defects. Compared to the single-crystal data, we find a higher slope of the upper critical field for the thin film at a similar doping level and a small anisotropy. Also, an unusual small vortex liquid phase was observed at low temperatures, which is a striking difference to Co-doped BaFe2As2 thin films.

  6. Quantum criticality and universal scaling of strongly attractive spin-imbalanced Fermi gases in a one-dimensional harmonic trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Xiangguo; Chen Shu; Guan Xiwen

    2011-07-15

    We investigate quantum criticality and universal scaling of strongly attractive Fermi gases confined in a one-dimensional harmonic trap. We demonstrate from the power-law scaling of the thermodynamic properties that current experiments on this system are capable of measuring universal features at quantum criticality, such as universal scaling and Tomonaga-Luttinger liquid physics. The results also provide insights on recent measurements of key features of the phase diagram of a spin-imbalanced atomic Fermi gas [Y. Liao et al., Nature (London) 467, 567 (2010)] and point to further study of quantum critical phenomena in ultracold atomic Fermi gases.

  7. V/sub 3/Ga wire fabricated by the modified jelly roll technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubser, D.U.; Francavilla, T.L.; Pande, C.S.

    V/sub 3/Ga wire has been fabricated by the modified jelly roll technique for the first time. Critical current densities in magnetic fields to 22 T, critical magnetic fields, and superconducting transition temperatures are reported for this wire as a function of reaction temperature for forming the interfacial V/sub 3/Ga layer. Superconducting properties of the reacted wire are optimized for reaction temperatures between 550--580 /sup 0/C. With a reaction temperature of 580 /sup 0/C, the overall (noncopper) current density of the wire is over 10/sup 4/ amp/cm/sup 2/ at 19 T.

  8. A statistical study of current-sheet formation above solar active regions based on selforganized criticality

    NASA Astrophysics Data System (ADS)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.; Anastasiadis, A.; Toutountzi, A.

    2013-09-01

    We treat flaring solar active regions as physical systems having reached the self-organized critical state. Their evolving magnetic configurations in the low corona may satisfy an instability criterion, related to the excession of a specific threshold in the curl of the magnetic field. This imposed instability criterion implies an almost zero resistivity everywhere in the solar corona, except in regions where magnetic-field discontinuities and. hence, local currents, reach the critical value. In these areas, current-driven instabilities enhance the resistivity by many orders of magnitude forming structures which efficiently accelerate charged particles. Simulating the formation of such structures (thought of as current sheets) via a refined SOC cellular-automaton model provides interesting information regarding their statistical properties. It is shown that the current density in such unstable regions follows power-law scaling. Furthermore, the size distribution of the produced current sheets is best fitted by power laws, whereas their formation probability is investigated against the photospheric magnetic configuration (e.g. Polarity Inversion Lines, Plage). The average fractal dimension of the produced current sheets is deduced depending on the selected critical threshold. The above-mentioned statistical description of intermittent electric field structures can be used by collisional relativistic test particle simulations, aiming to interpret particle acceleration in flaring active regions and in strongly turbulent media in astrophysical plasmas. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  9. Quantum critical singularities in two-dimensional metallic XY ferromagnets

    NASA Astrophysics Data System (ADS)

    Varma, Chandra M.; Gannon, W. J.; Aronson, M. C.; Rodriguez-Rivera, J. A.; Qiu, Y.

    2018-02-01

    An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature, and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-critical point (QCP) is constructed, and its singularities are determined by comparing to the recent calculations of the correlation functions of the dissipative quantum XY model (DQXY). The calculations are motivated by the measured properties of the metallic compound YFe2Al10 , which is a realization of the DQXY model in 2D. The frequency, temperature, and magnetic field dependence of the scaling function as well as the singularities measured in the experiments are given by the theory without adjustable exponents. The same model is applicable to the superconductor-insulator transitions, classes of metallic AFM-QCPs, and as fluctuations of the loop-current ordered state in hole-doped cuprates. The results presented here lend credence to the solution found for the 2D-DQXY model and its applications in understanding quantum-critical properties of diverse systems.

  10. Effects of process variables on the properties of YBa2Cu3O(7-x) ceramics formed by investment casting

    NASA Technical Reports Server (NTRS)

    Hooker, M. W.; Taylor, T. D.; Leigh, H. D.; Wise, S. A.; Buckley, J. D.; Vasquez, P.; Buck, G. M.; Hicks, L. P.

    1993-01-01

    An investment casting process has been developed to produce net-shape, superconducting ceramics. In this work, a factorial experiment was performed to determine the critical process parameters for producing cast YBa2Cu3O7 ceramics with optimum properties. An analysis of variance procedure indicated that the key variables in casting superconductive ceramics are the particle size distribution and sintering temperature. Additionally, the interactions between the sintering temperature and the other process parameters (e.g., particle size distribution and the use of silver dopants) were also found to influence the density, porosity, and critical current density of the fired ceramics.

  11. Transport and contact-free investigation of REBCO thin film temperature dependent pinning landscapes

    NASA Astrophysics Data System (ADS)

    Sinclair, John; Jaroszynski, Jan; Hu, Xinbo; Santos, Michael

    2013-03-01

    Studies of the pinning mechanisms and landscapes of REBa2Cu3Ox (RE=rare earth elements) thin films have been a topic of study in recent years due to, among other reasons, their ability to introduce nonsuperconducting phases and defects. Here we will focus on REBCO thin films with BaZrO3 nanocolumns and other isotropic defects. The evolution of the dominant pinning mechanisms seems to change as a function of temperature even to the point that samples with similar critical current density properties at high temperatures can have distinctly different properties at low temperatures. Earlier work focused on the angular selectivity of the current density profile, though other properties (such as alpha values) can evolve as well. Characteristic results accentuating this evolution of current density properties will be presented. Challenges exist in evaluating these low temperature properties in high magnetic fields, therefore both transport and contact-free results were be presented to compliment the work. Support for this work is provided by the NHMFL via NSF DRM 0654118.

  12. Implications of Weak-Link Behavior on the Performance of Mo/Au Bilayer Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2011-01-01

    Understanding the physical properties of the superconducting-to-normal transition is fundamental for optimizing the design and performance of transition-edge sensors (TESs). Recent critical current measurements of Mol Au bilayer test structures show that they act as weak superconducting links, exhibiting oscillatory, Fraunhofer-like behavior with applied magnetic field. In this paper we investigate the implications of this behavior for TES X-ray detectors, under operational bias conditions. These devices include normal metal features used for absorber attachment and unexplained noise suppression, which result in modifications to the previously reported critical current behavior. We present measurements of the logarithmic resistance sensitivity with temperature, a, and current, b, as a function of applied magnetic field and bias point within the resistive transition. Results show that these important device parameters exhibit similar oscillatory behavior with applied magnetic field, which in turn affects the signal responsivity and noise, and hence the energy resolution. These results show the significance of the critical current in determining the performance of TESs and hold promise to improve future.

  13. Thermophysical properties of U 3 Si 2 to 1773K

    DOE PAGES

    White, Joshua Taylor; Nelson, Andrew Thomas; Dunwoody, John Tyler; ...

    2015-05-08

    Use of U 3Si 2 in nuclear reactors requires accurate thermophysical property data to capture heat transfer within the core. Compilation of the limited previous research efforts focused on the most critical property, thermal conductivity, reveals extensive disagreement. Assessment of this data is challenged by the fact that the critical structural and chemical details of the material used to provide historic data is either absent or confirms the presence of significant impurity phases. This study was initiated to fabricate high purity U 3Si 2 to quantify the coefficient of thermal expansion, heat capacity, thermal diffusivity, and thermal conductivity from roommore » temperature to 1773 K. Here, the datasets provided in this manuscript will facilitate more detailed fuel performance modeling to assess both current and proposed reactor designs that incorporate U 3Si 2.« less

  14. Sample and length-dependent variability of 77 and 4.2 K properties in nominally identical RE123 coated conductors

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Hu, X.; Kametani, F.; Abraimov, D.; Polyanskii, A.; Jaroszynski, J.; Larbalestier, D. C.

    2016-05-01

    We present a broad study by multiple techniques of the critical current and critical current density of a small but representative set of nominally identical commercial RE123 (REBa2Cu3O7-δ , RE = rare Earth, here Y and Gd) coated conductors (CC) recently fabricated by SuperPower Inc. to the same nominal high pinning specification with BaZrO3 and RE2O3 nanoprecipitate pinning centers. With high-field low-temperature applications to magnet technology in mind, we address the nature of their tape-to-tape variations and length-wise I c inhomogeneities by measurements on a scale of about 2 cm rather than the 5 m scale normally supplied by the vendor and address the question of whether these variations have their origin in cross-sectional or in vortex pinning variations. Our principal method has been a continuous measurement transport critical current tool (YateStar) that applies about 0.5 T perpendicular and parallel to the tape at 77 K, thus allowing variations of c-axis and ab-plane properties to be clearly distinguished in the temperature and field regime where strong pinning defects are obvious. We also find such in-field measurements at 77 K to be more valuable in predicting 4.2 K, high-field properties than self-field, 77 K properties because the pinning centers controlling 77 K performance play a decisive role in introducing point defects that also add strongly to J c at 4.2 K. We find that the dominant source of I c variation is due to pinning center fluctuations that control J c, rather than to production defects that locally reduce the active cross-section. Given the 5-10 nm scale of these pinning centers, it appears that the route to greater I c homogeneity is through more stringent control of the REBCO growth conditions in these Zr-doped coated conductors.

  15. PREFACE: MEM07: The 5th Annual Workshop on Mechanical and Electromagnetic Properties of Composite Superconductors (Princeton, NJ, USA, 21 24 August 2007)

    NASA Astrophysics Data System (ADS)

    Larbalestier, D. C.; Osamura, K.; Hampshire, D. P.

    2008-05-01

    MEM07 was the 5th international workshop concentrating on the mechanical and electrical properties of composite superconductors, which are the technological conductor forms from which practical superconducting devices are made. Such superconducting conductors respond to important challenges we currently face, especially those concerned with the proper management of the world's energy resources. Superconductivity provides a means to address the challenges in the generation, transmission and distribution, and use of energy. For energy generation, the ITER Fusion Tokomak (now underway in France) provides exciting new challenges for the whole superconductivity community, due to the enormous size and strong fields of the plasma confinement superconducting magnets that will form the largest and most powerful superconducting machine yet built. Significant attention was paid at MEM07 to the modeling, characterization, testing and validation of the high-amperage Nb3Sn cable-in-conduit conductors needed for ITER. As for electric energy industry uses, there was much discussion of both first generation (Bi,Pb)2Sr2Ca2Cu3Ox conductors and the rapidly emerging second generation coated conductors made from YBa2Cu37-x. High-performing, affordable conductors of these materials are vital for large capacity transmission cables, energy storage systems, fault current limiters, generators and motors—many prototypes of which are being pursued in technologically advanced countries. There is a broad consensus that the prototype stage for high-current-high-field superconducting applications is nearing its end and that large scale applications are technologically feasible. However full industrialization of large-scale superconducting technologies in electric utility applications will benefit from continuous improvement in critical current, lower ac loss, higher strength and other vital conductor properties. The establishment of optimal procedures for the system design accompanying scale-up is a second vital task. As system design is dependent on material development, there is a critical need to study the key issues in developing high performance superconducting materials. The emphases of MEM07 were The mechanical properties of superconductors including the influence of stress and strain on the critical current of practical conductors including YBCO and ReBCO coated conductors, BSCCO tapes, MgB2 wires and Nb3Sn filamentary conductors. The intrinsic strain effects on critical current density in Nb3Sn, YBCO, BSCCO and MgB2. Recent advances in critical current, the mechanical properties and the reduction in ac losses of HTS tapes and wires. The compositional and microstructural dependence of E-J characteristics and explanations based on flux pinning, grain boundary weak-links and other mechanisms. Standardized test-methods: international cooperative research work to establish test methods for assessing the mechano-electromagnetic properties of superconductors based on the activities of IEC/TC90 and VAMAS/TWA-16. More than 60 researchers from more than 12 countries attended the MEM07 workshop, and about 40 presentations were made. A small selection of papers (15) from the workshop are included in this special issue of Superconductor Science and Technology. Taken together with papers published at earlier MEM meetings, this issue provides an updated view of some of the current state-of-the-art research in the mechano-electromagnetic properties of composite superconductors. The workshop was organized under the activities of the NEDO Grant Project (Applied Superconductivity, 2004EA004) and VAMAS/TWA-16. The meeting was organized by a committee composed of David Larbalestier (Conference Chair) aided by MEM05 and MEM06 Conference Chairs Kozo Osamura (Research Institute for Applied Sciences, Kyoto, Japan), Damian Hampshire (Durham University, UK) and Arman Nyilas (CEME). The Program Committee was composed of Ettore Salpietro (European Fusion Development Agreement), Neil Mitchell (ITER), Kozo Osamura, Damian Hampshire and Arman Nyilas. We express our great thanks to all those whose efforts were key in organizing the meeting, with very special thanks to our Meeting Planner Kate Liu who organized matters large and small with discretion and great efficiency.

  16. SLO3 auxiliary subunit LRRC52 controls gating of sperm KSPER currents and is critical for normal fertility

    PubMed Central

    Zeng, Xu-Hui; Yang, Chengtao; Xia, Xiao-Ming; Liu, Min; Lingle, Christopher J.

    2015-01-01

    Following entry into the female reproductive tract, mammalian sperm undergo a maturation process termed capacitation that results in competence to fertilize ova. Associated with capacitation is an increase in membrane conductance to both Ca2+ and K+, leading to an elevation in cytosolic Ca2+ critical for activation of hyperactivated swimming motility. In mice, the Ca2+ conductance (alkalization-activated Ca2+-permeable sperm channel, CATSPER) arises from an ensemble of CATSPER subunits, whereas the K+ conductance (sperm pH-regulated K+ current, KSPER) arises from a pore-forming ion channel subunit encoded by the slo3 gene (SLO3) subunit. In the mouse, both CATSPER and KSPER are activated by cytosolic alkalization and a concerted activation of CATSPER and KSPER is likely a common facet of capacitation-associated increases in Ca2+ and K+ conductance among various mammalian species. The properties of heterologously expressed mouse SLO3 channels differ from native mouse KSPER current. Recently, a potential KSPER auxiliary subunit, leucine-rich-repeat-containing protein 52 (LRRC52), was identified in mouse sperm and shown to shift gating of SLO3 to be more equivalent to native KSPER. Here, we show that genetic KO of LRRC52 results in mice with severely impaired fertility. Activation of KSPER current in sperm lacking LRRC52 requires more positive voltages and higher pH than for WT KSPER. These results establish a critical role of LRRC52 in KSPER channels and demonstrate that loss of a non-pore-forming auxiliary subunit results in severe fertility impairment. Furthermore, through analysis of several genotypes that influence KSPER current properties we show that in vitro fertilization competence correlates with the net KSPER conductance available for activation under physiological conditions. PMID:25675513

  17. The Dynamic Lift of Developmental Process

    ERIC Educational Resources Information Center

    Smith, Linda B.; Breazeal, Cynthia

    2007-01-01

    What are the essential properties of human intelligence, currently unparalleled in its power relative to other biological forms and relative to artificial forms of intelligence? We suggest that answering this question depends critically on understanding developmental process. This paper considers three principles potentially essential to building…

  18. Intracardiac Origin of Heart Rate Variability, Pacemaker Funny Current and their Possible Association with Critical Illness

    PubMed Central

    Papaioannou, Vasilios E; Verkerk, Arie O; Amin, Ahmed S; de Bakker, Jaques MT

    2013-01-01

    Heart rate variability (HRV) is an indirect estimator of autonomic modulation of heart rate and is considered a risk marker in critical illness, particularly in heart failure and severe sepsis. A reduced HRV has been found in critically ill patients and has been associated with neuro-autonomic uncoupling or decreased baroreflex sensitivity. However, results from human and animal experimental studies indicate that intracardiac mechanisms might also be responsible for interbeat fluctuations. These studies have demonstrated that different membrane channel proteins and especially the so-called ‘funny’ current (If), an hyperpolarization-activated, inward current that drives diastolic depolarization resulting in spontaneous activity in cardiac pacemaker cells, are altered during critical illness. Furthermore, membrane channels kinetics seem to have significant impact upon HRV, whose early decrease might reflect a cellular metabolic stress. In this review article we present research findings regarding intracardiac origin of HRV, at the cellular level and in both isolated sinoatrial node and whole ex vivo heart preparations. In addition, we will review results from various experimental studies that support the interrelation between If and HRV during endotoxemia. We suggest that reduced HRV during sepsis could also be associated with altered pacemaker cell membrane properties, due to ionic current remodeling. PMID:22920474

  19. Isotropic enhancement in the critical current density of YBCO thin films incorporating nanoscale Y2BaCuO5 inclusions

    NASA Astrophysics Data System (ADS)

    Jha, Alok K.; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi

    2017-09-01

    The effect of incorporation of nanoscale Y2BaCuO5 (Y211) inclusions on the vortex pinning properties of YBa2Cu3O7-δ (YBCO or Y123) superconducting thin films is investigated in detail on the basis of variation of critical current density (JC) with applied magnetic field and also with the orientation of the applied magnetic field at two different temperatures: 77 K and 65 K. Surface modified target approach is employed to incorporate nanoscale Y211 inclusions into the superconducting YBCO matrix. The efficiency of Y211 nanoinclusions in reducing the angular anisotropy of critical current density is found to be significant. The observed angular dependence of the critical current density is discussed on the basis of mutually occupied volume by a vortex and spherical and/or planar defect. A dip in JC near the ab-plane is also observed which has been analyzed on the basis of variation of pinning potential corresponding to a spherical (3-D) or planar (2-D) pinning center and has been attributed to a reduced interaction volume of the vortices with a pinning center and competing nature of the potentials due to spherical and planar defects.

  20. Advantageous grain boundaries in iron pnictide superconductors

    PubMed Central

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2011-01-01

    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries—the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here we report that high critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (θGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (>1 MA cm−2) and nearly constant up to a critical angle θc of ∼9°, which is substantially larger than the θc of ∼5° for YBa2Cu3O7–δ. Even at θGB>θc, the decay of JcBGB was much slower than that of YBa2Cu3O7–δ. PMID:21811238

  1. Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment.

    PubMed

    Ulapane, Nalika; Alempijevic, Alen; Vidal Calleja, Teresa; Valls Miro, Jaime

    2017-09-26

    Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor's behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application.

  2. Iron chalcogenide superconductors at high magnetic fields

    PubMed Central

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  3. A Systematic Framework and Nanoperiodic Concept for Unifying Nanoscience: Hard/Soft Nanoelements, Superatoms, Meta-Atoms, New Emerging Properties, Periodic Property Patterns, and Predictive Mendeleev-like Nanoperiodic Tables.

    PubMed

    Tomalia, Donald A; Khanna, Shiv N

    2016-02-24

    Development of a central paradigm is undoubtedly the single most influential force responsible for advancing Dalton's 19th century atomic/molecular chemistry concepts to the current maturity enjoyed by traditional chemistry. A similar central dogma for guiding and unifying nanoscience has been missing. This review traces the origins, evolution, and current status of such a critical nanoperiodic concept/framework for defining and unifying nanoscience. Based on parallel efforts and a mutual consensus now shared by both chemists and physicists, a nanoperiodic/systematic framework concept has emerged. This concept is based on the well-documented existence of discrete, nanoscale collections of traditional inorganic/organic atoms referred to as hard and soft superatoms (i.e., nanoelement categories). These nanometric entities are widely recognized to exhibit nanoscale atom mimicry features reminiscent of traditional picoscale atoms. All unique superatom/nanoelement physicochemical features are derived from quantized structural control defined by six critical nanoscale design parameters (CNDPs), namely, size, shape, surface chemistry, flexibility/rigidity, architecture, and elemental composition. These CNDPs determine all intrinsic superatom properties, their combining behavior to form stoichiometric nanocompounds/assemblies as well as to exhibit nanoperiodic properties leading to new nanoperiodic rules and predictive Mendeleev-like nanoperiodic tables, and they portend possible extension of these principles to larger quantized building blocks including meta-atoms.

  4. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb3Sn Superconductor Wires.

    PubMed

    Heald, Steve M; Tarantini, Chiara; Lee, Peter J; Brown, Michael D; Sung, ZuHawn; Ghosh, Arup K; Larbalestier, David C

    2018-03-19

    To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3 Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb 3 Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.

  5. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb 3Sn Superconductor Wires

    DOE PAGES

    Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.; ...

    2018-03-19

    To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less

  6. Evidence from EXAFS for Different Ta/Ti Site Occupancy in High Critical Current Density Nb 3Sn Superconductor Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.

    To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less

  7. Crystalline orientation engineering and charge transport in thin film YBa(2)Cu(3)O(7-x) superconducting surface-coated conductors

    NASA Astrophysics Data System (ADS)

    Chudzik, Michael Patrick

    The weak-link behavior of grain boundaries in polycrystalline high-T c superconductors adversely affects the current density in these materials. The development of wire technology based on polycrystalline high-Tc materials requires understanding and controlling the development of low-angle grain boundaries in these conductors. The research goal is to comprehensively examine the methodology in fabrication and characterization to understand the structure-transport correlation in YBa2Cu3O 7-x (YBCO) surface-coated conductors. High current density YBCO coated conductors were fabricated and characterized as candidates for second generation high-Tc wire technology. Critical current densities (Jc) greater than 1 x 106 A/cm2 at 77 K and zero magnetic field were obtained using thin films epitaxially grown by metalorganic chemical vapor deposition (MOCVD) and pulsed laser deposition (PLD) on oriented buffer layers. The biaxially textured oxide buffer layers were deposited by ion-beam-assisted deposition (IBAD). The transport properties of coated conductors were evaluated in high magnetic fields for intrinsic and extrinsic flux vortex pinning effects for improved high-field properties. Transport Jc's of these coated conductors at 7 tesla (77 K) were measured at values greater than 105 A/cm 2 with the magnetic field perpendicular to the YBCO c-axis (B⊥ c) in both MOCVD and PLD derived conductors. The Jc's in B || c orientation fell an order of magnitude lower at 7 tesla to values near 10 4 A/cm2 due to decreased intrinsic flux pinning. The critical current densities as a function of grain boundary misorientation were found to deviate from the general trend determined for single grain boundary junctions, due to the mosaic structure, which allows meandering current flow. Extensive parametric investigations of relevant thin film growth techniques were utilized to establish growth-property relationships that led to optimized fabrication of high-Tc conductors. The work contained in this dissertation successfully addresses the challenge in engineering low-angle grain boundary polycrystalline conductors for high-current high-field applications and develops a structure-property correlation, which is essential for advancing this technology.

  8. Low temperature properties of spin filter NbN/GdN/NbN Josephson junctions

    NASA Astrophysics Data System (ADS)

    Massarotti, D.; Caruso, R.; Pal, A.; Rotoli, G.; Longobardi, L.; Pepe, G. P.; Blamire, M. G.; Tafuri, F.

    2017-02-01

    A ferromagnetic Josephson junction (JJ) represents a special class of hybrid system where different ordered phases meet and generate novel physics. In this work we report on the transport measurements of underdamped ferromagnetic NbN/GdN/NbN JJs at low temperatures. In these junctions the ferromagnetic insulator gadolinium nitride barrier generates spin-filtering properties and a dominant second harmonic component in the current-phase relation. These features make spin filter junctions quite interesting also in terms of fundamental studies on phase dynamics and dissipation. We discuss the fingerprints of spin filter JJs, through complementary transport measurements, and their implications on the phase dynamics, through standard measurements of switching current distributions. NbN/GdN/NbN JJs, where spin filter properties can be controllably tuned along with the critical current density (Jc), turn to be a very relevant term of reference to understand phase dynamics and dissipation in an enlarged class of JJs, not necessarily falling in the standard tunnel limit characterized by low Jc values.

  9. Preparation, patterning, and properties of thin YBa2Cu3O(7-delta) films

    NASA Astrophysics Data System (ADS)

    de Vries, J. W. C.; Dam, B.; Heijman, M. G. J.; Stollman, G. M.; Gijs, M. A. M.

    1988-05-01

    High T(c) superconducting thin films were prepared on (100) SrTiO3 substrates by dc triode sputtering and subsequent annealing. In these films Hall-bar structures having a width down to 5 microns were patterned using a reactive ion-etching technique. Superconductivity above 77 K was observed. When compared with the original film there is only a small reduction in T(c). The critical current density determined by electrical measurements is substantially reduced. On the other hand, the critical current density in the bulk of the grains as measured by the torque on a film is not reduced by the patterning process. It is suggested that superconductor-normal metal-superconductor junctions between the grains account for this difference.

  10. Biodegradable Materials and Metallic Implants—A Review

    PubMed Central

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2017-01-01

    Recent progress made in biomaterials and their clinical applications is well known. In the last five decades, great advances have been made in the field of biomaterials, including ceramics, glasses, polymers, composites, glass-ceramics and metal alloys. A variety of bioimplants are currently used in either one of the aforesaid forms. Some of these materials are designed to degrade or to be resorbed inside the body rather than removing the implant after its function is served. Many properties such as mechanical properties, non-toxicity, surface modification, degradation rate, biocompatibility, and corrosion rate and scaffold design are taken into consideration. The current review focuses on state-of-the-art biodegradable bioceramics, polymers, metal alloys and a few implants that employ bioresorbable/biodegradable materials. The essential functions, properties and their critical factors are discussed in detail, in addition to their challenges to be overcome. PMID:28954399

  11. Subsurface Hydrology: Data Integration for Properties and Processes

    NASA Astrophysics Data System (ADS)

    Hyndman, David W.; Day-Lewis, Frederick D.; Singha, Kamini

    Groundwater is a critical resource and the PrinciPal source of drinking water for over 1.5 billion people. In 2001, the National Research Council cited as a "grand challenge" our need to understand the processes that control water movement in the subsurface. This volume faces that challenge in terms of data integration between complex, multi-scale hydrologie processes, and their links to other physical, chemical, and biological processes at multiple scales. Subsurface Hydrology: Data Integration for Properties and Processes presents the current state of the science in four aspects: • Approaches to hydrologie data integration • Data integration for characterization of hydrologie properties • Data integration for understanding hydrologie processes • Meta-analysis of current interpretations Scientists and researchers in the field, the laboratory, and the classroom will find this work an important resource in advancing our understanding of subsurface water movement.

  12. Biodegradable Materials and Metallic Implants-A Review.

    PubMed

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2017-09-26

    Recent progress made in biomaterials and their clinical applications is well known. In the last five decades, great advances have been made in the field of biomaterials, including ceramics, glasses, polymers, composites, glass-ceramics and metal alloys. A variety of bioimplants are currently used in either one of the aforesaid forms. Some of these materials are designed to degrade or to be resorbed inside the body rather than removing the implant after its function is served. Many properties such as mechanical properties, non-toxicity, surface modification, degradation rate, biocompatibility, and corrosion rate and scaffold design are taken into consideration. The current review focuses on state-of-the-art biodegradable bioceramics, polymers, metal alloys and a few implants that employ bioresorbable/biodegradable materials. The essential functions, properties and their critical factors are discussed in detail, in addition to their challenges to be overcome.

  13. Critical current of SF-NFS Josephson junctions

    NASA Astrophysics Data System (ADS)

    Soloviev, I. I.; Klenov, N. V.; Bakursky, S. V.; Kupriyanov, M. Yu.; Golubov, A. A.

    2015-02-01

    The properties of SF-NFS sandwiches composed of two superconducting (S) electrodes separated by a weak-link region formed by a normal-metal (N) step with the thickness d N situated on the top of a lower S electrode and a ferromagnetic (F) layer with the thickness d F deposited onto the step and the remaining free surface of the lower electrode have been studied theoretically. It has been shown in the approximation of linearized semiclassical Usadel equations that the two-dimensional problem in the weak-link region can be reduced to two one-dimensional problems in its SFS and SNFS segments. The spatial distributions of the critical current density J c in the segments as a function of the layer thickness d F have been calculated. The dependences of the critical current I c of the structure on the magnitude of the magnetization vector M of the ferromagnetic layer have been found for various directions of the magnetization within the junction plane. It has been shown that these dependences are affected considerably by both the orientation of M and the spatial distribution of J c.

  14. Development of practical high temperature superconducting wire for electric power application

    NASA Technical Reports Server (NTRS)

    Hawsey, Robert A.; Sokolowski, Robert S.; Haldar, Pradeep; Motowidlo, Leszek R.

    1995-01-01

    The technology of high temperature superconductivity has gone from beyond mere scientific curiousity into the manufacturing environment. Single lengths of multifilamentary wire are now produced that are over 200 meters long and that carry over 13 amperes at 77 K. Short-sample critical current densities approach 5 x 104 A/sq cm at 77 K. Conductor requirements such as high critical current density in a magnetic field, strain-tolerant sheathing materials, and other engineering properties are addressed. A new process for fabricating round BSCCO-2212 wire has produced wires with critical current densities as high as 165,000 A/sq cm at 4.2 K and 53,000 A/sq cm at 40 K. This process eliminates the costly, multiple pressing and rolling steps that are commonly used to develop texture in the wires. New multifilamentary wires with strengthened sheathing materials have shown improved yield strengths up to a factor of five better than those made with pure silver. Many electric power devices require the wire to be formed into coils for production of strong magnetic fields. Requirements for coils and magnets for electric power applications are described.

  15. Development of high J c Bi2223/Ag thick film materials prepared by heat treatment under low P O2

    NASA Astrophysics Data System (ADS)

    Takeda, Y.; Shimoyama, J.; Motoki, T.; Nakamura, S.; Nakashima, T.; Kobayashi, S.; Kato, T.

    2018-07-01

    In general, a dense and c-axis grain-oriented microstructure is desirable in order to achieve the high critical current properties of Bi2223 polycrystalline materials. On the other hand, our recent studies have shown that precise control of the chemical compositions of Bi2223 is also effective for the enhancement of intergrain J c. In this study, the development of Bi2223 thick film materials with high critical current properties was attempted by controlling both the microstructure and the chemical compositions. A high intergrain J c of ∼8 kA cm‑2 at 77 K of a film with ∼40 μm t was achieved by increasing the Pb substitution level for the Bi site and controlling the nonstoichiometric chemical compositions. Furthermore, it was revealed that an increase in the thickness enabled us to obtain high I c films suitable for practical applications. In contrast, there are still issues, especially in controlling the grain alignment at the inner part of the film, which suggests that the J c properties of thick film materials could be further improved by forming a more ideal microstructure, as realized in the Bi2223 filaments of multi-filamentary Ag-sheathed tapes.

  16. Different kinetic properties of two T-type Ca2+ currents of rat reticular thalamic neurones and their modulation by enflurane

    PubMed Central

    Joksovic, Pavle M; Bayliss, Douglas A; Todorovic, Slobodan M

    2005-01-01

    Currents arising from T-type Ca2+ channels in nucleus reticularis thalami (nRT) play a critical role in generation of low-amplitude oscillatory bursting involving mutually interconnected cortical and thalamic neurones, and are implicated in the state of arousal and sleep, as well as seizures. Here we show in brain slices from young rats that two kinetically different T-type Ca2+ currents exist in nRT neurones, with a slowly inactivating current expressed only on proximal dendrites, and fast inactivating current predominantly expressed on soma. Nickel was about twofold more potent in blocking fast (IC50 64 μm) than slow current (IC50 107 μm). The halogenated volatile anaesthetic enflurane blocked both currents, but only the slowly inactivating current was affected in voltage-dependent fashion. Slow dendritic current was essential for generation of low-threshold Ca2+ spikes (LTS), and both enflurane and nickel also suppressed LTS and neuronal burst firing at concentrations that blocked isolated T currents. Differential kinetic properties of T currents expressed in cell soma and proximal dendrites of nRT neurones indicate that various subcellular compartments may exhibit different membrane properties in response to small membrane depolarizations. Furthermore, since blockade of two different T currents in nRT neurones by enflurane and other volatile anaesthetics occurs within concentrations that are relevant during clinical anaesthesia, our findings suggest that these actions could contribute to some important clinical effects of anaesthetics. PMID:15845580

  17. Numerical modelling of dynamic resistance in high-temperature superconducting coated-conductor wires

    NASA Astrophysics Data System (ADS)

    Ainslie, Mark D.; Bumby, Chris W.; Jiang, Zhenan; Toyomoto, Ryuki; Amemiya, Naoyuki

    2018-07-01

    The use of superconducting wire within AC power systems is complicated by the dissipative interactions that occur when a superconductor is exposed to an alternating current and/or magnetic field, giving rise to a superconducting AC loss caused by the motion of vortices within the superconducting material. When a superconductor is exposed to an alternating field whilst carrying a constant DC transport current, a DC electrical resistance can be observed, commonly referred to as ‘dynamic resistance.’ Dynamic resistance is relevant to many potential high-temperature superconducting (HTS) applications and has been identified as critical to understanding the operating mechanism of HTS flux pump devices. In this paper, a 2D numerical model based on the finite-element method and implementing the H -formulation is used to calculate the dynamic resistance and total AC loss in a coated-conductor HTS wire carrying an arbitrary DC transport current and exposed to background AC magnetic fields up to 100 mT. The measured angular dependence of the superconducting properties of the wire are used as input data, and the model is validated using experimental data for magnetic fields perpendicular to the plane of the wire, as well as at angles of 30° and 60° to this axis. The model is used to obtain insights into the characteristics of such dynamic resistance, including its relationship with the applied current and field, the wire’s superconducting properties, the threshold field above which dynamic resistance is generated and the flux-flow resistance that arises when the total driven transport current exceeds the field-dependent critical current, I c( B ), of the wire. It is shown that the dynamic resistance can be mostly determined by the perpendicular field component with subtle differences determined by the angular dependence of the superconducting properties of the wire. The dynamic resistance in parallel fields is essentially negligible until J c is exceeded and flux-flow resistance occurs.

  18. New Fe-based superconductors: properties relevant for applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putti, M; Pallecchi, I; Bellingeri, E

    2009-01-01

    Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O, F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length and unconventional pairing. On the other hand, the Fe-based superconductors have metallic parent compounds and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, and the supposed order parameter symmetry is s-wave, thus in principle not so detrimental to current transmission across grain boundaries.more » From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviors and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest T{sub c}, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates. On the other hand, the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the T{sub c} of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, and intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families.« less

  19. Thermogravimetric analysis of forest understory grasses

    Treesearch

    Thomas Elder; John S. Kush; Sharon M. Hermann

    2011-01-01

    Forest understory grasses are of significance in the initiation, establishment and maintenance of fire, whether used as a management tool or when occurring as wildfire. The fundamental thermal properties of such grasses are critical to their behavior in fire situations and have been investigated in the current work by the application of thermogravimetric analysis (TGA...

  20. Superwoman Schema: Using Structural Equation Modeling to Investigate Measurement Invariance in a Questionnaire

    ERIC Educational Resources Information Center

    Steed, Teneka C.

    2013-01-01

    Evaluating the psychometric properties of a newly developed instrument is critical to understanding how well an instrument measures what it intends to measure, and ensuring proposed use and interpretation of questionnaire scores are valid. The current study uses Structural Equation Modeling (SEM) techniques to examine the factorial structure and…

  1. Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy

    NASA Astrophysics Data System (ADS)

    Slimani, Y.; Hannachi, E.; Azzouz, F. Ben; Salem, M. Ben

    2018-06-01

    We have reported the influence of planetary high energy ball milling parameters on morphology, microstructure and flux pinning capability of polycrystalline Y3Ba5Cu8Oy. Samples were prepared through the standard solid-state reaction by using two different milling methods, ball milling in a planetary crusher and hand grinding in a mortar. Phase analysis by X-ray diffraction (XRD) method, microstructural examination by scanning electron microscope (SEM), electrical resistivity, the global and intra-granular critical current densities measurements are done to characterize the samples. The processing parameters of the planetary milling have a considerable impact on the final product properties. SEM observations show the presence of nanoscale entities submerged within the Y3Ba5Cu8Oy crystallites. The results show that the fine grain microstructure of the Y3Ba5Cu8Oy bulk induced by ball milling process contributes to critical currents density enhancement in the magnetic field and promotes an optimized flux pinning ability.

  2. Heat treatment influence on the superconducting properties of nanometric-scale Nb3Sn wires with Cu-Sn artificial pinning centers

    NASA Astrophysics Data System (ADS)

    Da Silva, L. B. S.; Rodrigues, C. A.; Oliveira, N. F., Jr.; Bormio-Nunes, C.; Rodrigues, D., Jr.

    2010-11-01

    Since the discovery of Nb3Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb3Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb3Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb3Sn wires reported up to now.

  3. Direct observation of in-plane anisotropy of the superconducting critical current density in Ba (Fe1-xCox) 2As2 crystals

    NASA Astrophysics Data System (ADS)

    Hecher, J.; Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Kagerbauer, D.; Eisterer, M.

    2018-01-01

    The phase diagram of iron-based superconductors exhibits structural transitions, electronic nematicity, and magnetic ordering, which are often accompanied by an electronic in-plane anisotropy and a sharp maximum of the superconducting critical current density (Jc) near the phase boundary of the tetragonal and the antiferromagnetic-orthorhombic phase. We utilized scanning Hall-probe microscopy to visualize the Jc of twinned and detwinned Ba (Fe1-xCox) 2As2 (x =5 %-8 % ) crystals to compare the electronic normal state properties with superconducting properties. We find that the electronic in-plane anisotropy continues into the superconducting state. The observed correlation between the electronic and the Jc anisotropy agrees qualitatively with basic models, however, the Jc anisotropy is larger than predicted from the resistivity data. Furthermore, our measurements show that the maximum of Jc at the phase boundary does not vanish when the crystals are detwinned. This shows that twin boundaries are not responsible for the large Jc, suggesting an exotic pinning mechanism.

  4. Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment

    PubMed Central

    2017-01-01

    Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor’s behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application. PMID:28954392

  5. New alloys to conserve critical elements

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1978-01-01

    Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.

  6. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larbalestier, David C.; Lee, Peter J.; Tarantini, Chiara

    All present circular accelerators use superconducting magnets to bend and to focus the particle beams. The most powerful of these machines is the large hadron collider (LHC) at CERN. The main ring dipole magnets of the LHC are made from Nb-Ti but, as the machine is upgraded to higher luminosity, more powerful magnets made of Nb 3Sn will be required. Our work addresses how to make the Nb 3Sn conductors more effective and more suitable for use in the LHC. The most important property of the superconducting conductor used for an accelerator magnet is that it must have very highmore » critical current density, the property that allows the generation of high magnetic fields in small spaces. Nb 3Sn is the original high field superconductor, the material which was discovered in 1960 to allow a high current density in the field of about 9 T. For the high luminosity upgrade of the LHC, much higher current densities in fields of about 12 Tesla will be required. The critical value of the current density is of order 2600 A/mm 2 in a field of 12 Tesla. But there are very important secondary factors that complicate the attainment of this critical current density. The first is that the effective filament diameter must be no larger than about 40 µm. The second factor is that 50% of the cross-section of the Nb 3Sn conductor that is pure copper must be protected from any poisoning by any Sn leakage through the diffusion barrier that protects the package of niobium and tin from which the Nb 3Sn is formed by a high temperature reaction. These three, somewhat conflicting requirements, mean that optimization of the conductor is complex. The work described in this contract report addresses these conflicting requirements. They show that very sophisticated characterizations can uncover the way to satisfy all 3 requirements and they also suggest that the ultimate optimization of Nb 3Sn is still not yet in sight« less

  8. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    NASA Astrophysics Data System (ADS)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-11-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  9. Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric

    PubMed Central

    Jang, Sung Kyu; Youn, Jiyoun; Song, Young Jae; Lee, Sungjoo

    2016-01-01

    Two different growth modes of large-area hexagonal boron nitride (h-BN) film, a conventional chemical vapor deposition (CVD) growth mode and a high-pressure CVD growth mode, were compared as a function of the precursor partial pressure. Conventional self-limited CVD growth was obtained below a critical partial pressure of the borazine precursor, whereas a thick h-BN layer (thicker than a critical thickness of 10 nm) was grown beyond a critical partial pressure. An interesting coincidence of a critical thickness of 10 nm was identified in both the CVD growth behavior and in the breakdown electric field strength and leakage current mechanism, indicating that the electrical properties of the CVD h-BN film depended significantly on the film growth mode and the resultant film quality. PMID:27458024

  10. Mars Simulant Development for In-Situ Resource Utilization (ISRU) Applications

    NASA Technical Reports Server (NTRS)

    Ming, Doug

    2016-01-01

    Current design reference missions for the Evolvable Mars Campaign (EMC) call for the use of in-situ resources to enable human missions to the surface of Mars. One potential resource is water extracted from the Martian regolith. Current Mars' soil analogs (JSC Mars-1) have 5-10 times more water than typical regolith on Mars. Therefore, there is a critical need to develop Mars simulants to be used in ISRU applications that mimic the chemical, mineralogical, and physical properties of the Martian regolith.

  11. Voltage current characteristics of type III superconductors

    NASA Astrophysics Data System (ADS)

    Dorofejev, G. L.; Imenitov, A. B.; Klimenko, E. Yu.

    1980-06-01

    An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogenious monofilament and multifilament Nb-Ti, Nb-Zr, Nb 3Sn wires were investigated in different ranges of magnetic field, temperature and current. The longitudinal electric field for homogenious wires may be described by E=J ρnexp- T c/T 0+ T/T 0+ B/B 0+ J/J 0, where To, Bo, Jo are the increasing parameters, which depend weakly on B and T, of the electric field. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (ie the surface corresponding to a certain conventional effective resistivity in T, B, J - space) and a description of any increasing parameter that depends on B and T.

  12. Vortex pinning properties in Fe-chalcogenides

    NASA Astrophysics Data System (ADS)

    Leo, A.; Grimaldi, G.; Guarino, A.; Avitabile, F.; Nigro, A.; Galluzzi, A.; Mancusi, D.; Polichetti, M.; Pace, S.; Buchkov, K.; Nazarova, E.; Kawale, S.; Bellingeri, E.; Ferdeghini, C.

    2015-12-01

    Among the families of iron-based superconductors, the 11-family is one of the most attractive for high field applications at low temperatures. Optimization of the fabrication processes for bulk, crystalline and/or thin film samples is the first step in producing wires and/or tapes for practical high power conductors. Here we present the results of a comparative study of pinning properties in iron-chalcogenides, investigating the flux pinning mechanisms in optimized Fe(Se{}1-xTe x ) and FeSe samples by current-voltage characterization, magneto-resistance and magnetization measurements. In particular, from Arrhenius plots in magnetic fields up to 9 T, the activation energy is derived as a function of the magnetic field, {U}0(H), whereas the activation energy as a function of temperature, U(T), is derived from relaxation magnetization curves. The high pinning energies, high upper critical field versus temperature slopes near critical temperatures, and highly isotropic pinning properties make iron-chalcogenide superconductors a technological material which could be a real competitor to cuprate high temperature superconductors for high field applications.

  13. An automated high throughput tribometer for adhesion, wear, and friction measurements

    NASA Astrophysics Data System (ADS)

    Kalihari, Vivek; Timpe, Shannon J.; McCarty, Lyle; Ninke, Matthew; Whitehead, Jim

    2013-03-01

    Understanding the origin and correlation of different surface properties under a multitude of operating conditions is critical in tribology. Diverse tribological properties and a lack of a single instrument to measure all make it difficult to compare and correlate properties, particularly in light of the wide range of interfaces commonly investigated. In the current work, a novel automated tribometer has been designed and validated, providing a unique experimental platform capable of high throughput adhesion, wear, kinetic friction, and static friction measurements. The innovative design aspects are discussed that allow for a variety of probes, sample surfaces, and testing conditions. Critical components of the instrument and their design criteria are described along with examples of data collection schemes. A case study is presented with multiple surface measurements performed on a set of characteristic substrates. Adhesion, wear, kinetic friction, and static friction are analyzed and compared across surfaces, highlighting the comprehensive nature of the surface data that can be generated using the automated high throughput tribometer.

  14. Effect of broadened-specification fuels on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may effect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are explored; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are examined. The ability of current technology to accept possible future fuel specification changes is assessed and selected technological advances that can reduce the severity of the potential problems are illustrated.

  15. Effect of broadened-specification fuels on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may affect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are described; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are discussed. The ability of current technology to accept possible future fuel-specification changes is discussed, and selected technological advances that can reduce the severity of the potential problems are illustrated.

  16. Improvement of critical current density in thallium-based (Tl,Bi)Sr(1.6)Ba(0.4)Ca2Cu3O(x) superconductors

    NASA Technical Reports Server (NTRS)

    Ren, Z. F.; Wang, C. A.; Wang, J. H.; Miller, D. J.; Goretta, K. C.

    1995-01-01

    Epitaxial (Tl,Bi)Sr(1.6)Ba(0.4)Ca2Cu3O(x) ((Tl,Bi)-1223) thin films on (100) single crystal LaAlO3 substrates were synthesized by a two-step procedure. Phase development, microstructure, and relationships between film and substrate were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Resistance versus temperature, zero-field-cooled and field cooled magnetization, and transport critical current density (J(sub c)) were measured. The zero-resistance temperature was 105-111 K. J(sub c) at 77 K and zero field was greater than 2 x 10(exp 6) A/sq cm. The films exhibited good flux pinning properties.

  17. Enhancement of bending strain tolerance and current carrying property of MgB2 based multifilamentary wires

    NASA Astrophysics Data System (ADS)

    Thomas, Syju; Varghese, Neson; Rahul, S.; Devadas, K. M.; Vinod, K.; Syamaprasad, U.

    2012-12-01

    The effect of bending strain on current carrying capacity of MgB2 multifilamentary wires was studied with 4, 8 and 16 multifilamentary wires. The critical current density (JC) of straight wires and bent wires with 5, 10, and 15 cm diameter was measured. Both annealed & bent and bent & annealed wires were used for measurement. The JC of annealed & bent wires were found to decrease with decrease in bent diameter and the rate of degradation of JC decreased with increasing number of filaments, while bent & annealed wires almost retained its JC at all diameters studied.

  18. RE-DEFINING THE ROLES OF SENSORS IN OBJECTIVE PHYSICAL ACTIVITY MONITORING

    PubMed Central

    Chen, Kong Y.; Janz, Kathleen F.; Zhu, Weimo; Brychta, Robert J.

    2011-01-01

    Background As physical activity researchers are increasingly using objective portable devices, this review describes current state of the technology to assess physical activity, with a focus on specific sensors and sensor properties currently used in monitors and their strengths and weakness. Additional sensors and sensor properties desirable for activity measurement and best practices for users and developers also are discussed. Best Practices We grouped current sensors into three broad categories for objectively measuring physical activity: associated body movement, physiology, and context. Desirable sensor properties for measuring physical activity and the importance of these properties in relationship to specific applications are addressed, and the specific roles of transducers and data acquisition systems within the monitoring devices are defined. Technical advancements in sensors, microcomputer processors, memory storage, batteries, wireless communication, and digital filters have made monitors more usable for subjects (smaller, more stable, and longer running time) and for researchers (less costly, higher time resolution and memory storage, shorter download time, and user-defined data features). Future Directions Users and developers of physical activity monitors should learn about the basic properties of their sensors, such as range, accuracy, precision, while considering the data acquisition/filtering steps that may be critical to data quality and may influence the desirable measurement outcome(s). PMID:22157770

  19. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies.

    PubMed

    Constantino, Nicolas G N; Anwar, Muhammad Shahbaz; Kennedy, Oscar W; Dang, Manyu; Warburton, Paul A; Fenton, Jonathan C

    2018-06-16

    Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20⁻250 nm. We present characterisation of the nanowires using DC electrical transport at temperatures down to 300 mK. We demonstrate that a range of different behaviours may be obtained in different nanowires, including bulk-like superconducting properties with critical-current features, the observation of phase-slip centres and the observation of zero conductance below a critical voltage, characteristic of coherent quantum phase-slips. We observe critical voltages up to 5 mV, an order of magnitude larger than other reports to date. The different prominence of quantum phase-slip effects in the various nanowires may be understood as arising from the differing importance of quantum fluctuations. Control of the nanowire properties will pave the way for routine fabrication of coherent quantum phase-slip nanowire devices for technology applications.

  20. Rheology Guided Rational Selection of Processing Temperature To Prepare Copovidone-Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME).

    PubMed

    Yang, Fengyuan; Su, Yongchao; Zhang, Jingtao; DiNunzio, James; Leone, Anthony; Huang, Chengbin; Brown, Chad D

    2016-10-03

    The production of amorphous solid dispersions via hot melt extrusion (HME) relies on elevated temperature and prolonged residence time, which can result in potential degradation and decomposition of thermally sensitive components. Herein, the rheological properties of a physical mixture of polymer and an active pharmaceutical ingredient (API) were utilized to guide the selection of appropriate HME processing temperature. In the currently studied copovidone-nifedipine system, a critical temperature, which is substantially lower (∼13 °C) than the melting point of crystalline API, was captured during a temperature ramp examination and regarded as the critical point at which the API could molecularly dissolve into the polymer. Based on the identification of this critical point, various solid dispersions were prepared by HME processing below, at, and above the critical temperature (both below and above the melting temperature (T m ) of crystalline API). In addition, the resultant extrudates along with two control solid dispersions prepared by physical mixing and cryogenic milling were assessed by X-ray diffraction, differential scanning calorimetry, hot stage microscopy, rheology, and solid-state NMR. Physicochemical properties of resultant solid dispersions indicated that the identified critical temperature is sufficient for the polymer-API system to reach a molecular-level mixing, manifested by the transparent and smooth appearance of extrudates, the absence of API crystalline diffraction and melting peaks, dramatically decreased rheological properties, and significantly improved polymer-API miscibility. Once the critical temperature has been achieved, further raising the processing temperature only results in limited improvement of API dispersion, reflected by slightly reduced storage modulus and complex viscosity and limited improvement in miscibility.

  1. Hot and cold water as a supercritical solvent

    NASA Astrophysics Data System (ADS)

    Fuentevilla, Daphne Anne

    This dissertation addresses the anomalous properties of water at high temperatures near the vapor-liquid critical point and at low temperatures in the supercooled liquid region. The first part of the dissertation is concerned with the concentration dependence of the critical temperature, density, and pressure of an aqueous sodium chloride solution. Because of the practical importance of an accurate knowledge of critical parameters for industrial, geochemical, and biological applications, an empirical equation for the critical locus of aqueous sodium chloride solutions was adopted in 1999 by the International Association for the Properties of Water and Steam (IAPWS) as a guideline. However, since this original Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride was developed, two new theoretical developments occurred, motivating the first part of this dissertation. Here, I present a theory-based formulation for the critical parameters of aqueous sodium chloride solutions as a proposed replacement for the empirical formulation currently in use. This formulation has been published in the International Journal of Thermophysics and recommended by the Executive Committee of IAPWS for adoption as a Revised Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride. The second part of the dissertation addresses a new concept, considering cold water as a supercritical solvent. Based on the idea of a second, liquid-liquid, critical point in supercooled water, we explore the possibility of supercooled water as a novel supercooled solvent through the thermodynamics of critical phenomena. In 2006, I published a Physical Review letter presenting a parametric scaled equation of state for supercooled-water. Further developments based on this work led to a phenomenological mean-field "two-state" model, clarifying the nature of the phase separation in a polyamorphic single-component liquid. In this dissertation, I modify this two-state model to incorporate solutes. Critical lines emanating from the pure-water critical point show how even small additions of solute may significantly affect the thermodynamic properties and phase behavior of supercooled aqueous solutions. Some solutes, such as glycerol, can prevent spontaneous crystallization, thus making liquid-liquid separation in supercooled water experimentally accessible. This work will help in resolving the question on liquid polyamorphism in supercooled water.

  2. Quantifying Ballistic Armor Performance: A Minimally Invasive Approach

    NASA Astrophysics Data System (ADS)

    Holmes, Gale; Kim, Jaehyun; Blair, William; McDonough, Walter; Snyder, Chad

    2006-03-01

    Theoretical and non-dimensional analyses suggest a critical link between the performance of ballistic resistant armor and the fundamental mechanical properties of the polymeric materials that comprise them. Therefore, a test methodology that quantifies these properties without compromising an armored vest that is exposed to the industry standard V-50 ballistic performance test is needed. Currently, there is considerable speculation about the impact that competing degradation mechanisms (e.g., mechanical, humidity, ultraviolet) may have on ballistic resistant armor. We report on the use of a new test methodology that quantifies the mechanical properties of ballistic fibers and how each proposed degradation mechanism may impact a vest's ballistic performance.

  3. La 2-xSr xCuO 4-δ superconducting samples prepared by the wet-chemical method

    NASA Astrophysics Data System (ADS)

    Loose, A.; Gonzalez, J. L.; Lopez, A.; Borges, H. A.; Baggio-Saitovitch, E.

    2009-10-01

    In this work, we report on the physical properties of good-quality polycrystalline superconducting samples of La 2-xSr xCu 1-yZn yO 4-δ ( y=0, 0.02) prepared by a wet-chemical method, focusing on the temperature dependence of the critical current. Using the wet-chemical method, we were able to produce samples with improved homogeneity compared to the solid-state method. A complete set of samples with several carrier concentrations, ranging from the underdoped (strontium concentration x≈0.05) to the highly overdoped ( x≈0.25) region, were prepared and investigated. The X-ray diffraction analysis, zero-field cooling magnetization and electrical resistivity measurements were reported on earlier. The structural parameters of the prepared samples seem to be slightly modified by the preparation method and their critical temperatures were lower than reported in the literature. The temperature dependence of the critical current was explained by a theoretical model which took the granular structure of the samples into account.

  4. Directional solidification of eutectic composites in space environment

    NASA Technical Reports Server (NTRS)

    Yue, A. S.

    1972-01-01

    The Ni-Ni3Ta eutectic and a nickel-base alloy containing 30 wt pct Ta were solidified unidirectionally in an electron beam floating zone melting apparatus. It was found that the volume fraction of the Ni3Ta phase in the Ni-Ni3Ta eutectic mixture was increased from 7.6 to 36 volume pct in agreement with the theory as predicted. Tensile properties of the randomly solidified and unidirectionally solidified Ni-Ni3Ta eutectic were determined as function of solidification rate and temperature. It was found that the ultimate tensile strength decreased as both the test temperature and solidification rate increased. An elongation of 40 pct was obtained for a nickelbase alloy containing 30 wt at room temperature. This unusually large elongation was attributed to the superplastic behavior of the alloy. The critical currents versus the external fields at 2.5, 3.0, 3.5 and 4.2 deg for the unidirectionally solidified Pb-Sn eutectic were measured. The values of critical fields at zero critical currents were obtained by extrapolation.

  5. Structural composite panel performance under long-term load

    Treesearch

    Theodore L. Laufenberg

    1988-01-01

    Information on the performance of wood-based structural composite panels under long-term load is currently needed to permit their use in engineered assemblies and systems. A broad assessment of the time-dependent properties of panels is critical for creating databases and models of the creep-rupture phenomenon that lead to reliability-based design procedures. This...

  6. Cherenkov sound on a surface of a topological insulator

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2013-11-01

    Topological insulators are currently of considerable interest due to peculiar electronic properties originating from helical states on their surfaces. Here we demonstrate that the sound excited by helical particles on surfaces of topological insulators has several exotic properties fundamentally different from sound propagating in nonhelical or even isotropic helical systems. Specifically, the sound may have strictly forward propagation absent for isotropic helical states. Its dependence on the anisotropy of the realistic surface states is of distinguished behavior which may be used as an alternative experimental tool to measure the anisotropy strength. Fascinating from the fundamental point of view backward, or anomalous, Cherenkov sound is excited above the critical angle π/2 when the anisotropy exceeds a critical value. Strikingly, at strong anisotropy the sound localizes into a few forward and backward beams propagating along specific directions.

  7. Atmospheric Aerosol Properties and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; hide

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  8. Comparative simulation of switching regimes of magnetic explosion generators by copper and aluminum magnetodynamic current breakers taking into account elastoplastic properties of materials

    NASA Astrophysics Data System (ADS)

    Bazanov, A. A.; Ivanovskii, A. V.; Panov, A. I.; Samodolov, A. V.; Sokolov, S. S.; Shaidullin, V. Sh.

    2017-06-01

    We report on the results of the computer simulation of the operation of magnetodynamic break switches used as the second stage of current pulse formation in magnetic explosion generators. The simulation was carried out under the conditions when the magnetic field energy density on the surface of the switching conductor as a function of the current through it was close to but still did not exceed the critical value typical of the beginning of electric explosion. In the computational model, we used the parameters of experimentally tested sample of a coil magnetic explosion generator that can store energy of up to 2.7 MJ in the inductive storage circuit and equipped with a primary explosion stage of the current pulse formation. It has been shown that the choice of the switching conductor material, as well as its elastoplastic properties, considerably affects the breaker speed. Comparative results of computer simulation for copper and aluminum have been considered.

  9. Superconductivity of a Sn film controlled by an array of Co nanowires

    NASA Astrophysics Data System (ADS)

    Wei, Zhiyuan; Ye, Zuxin; Rathnayaka, Daya; Lyuksyutov, Igor; Wu, Wenhao; Naugle, Donald

    2012-02-01

    Superconducting properties of a hybrid structure composed of ferromagnetic Co nanowire arrays and a superconducting Sn film have been investigated. Ordered Co nanowires arrays with 60 nm, 150 nm and 200 nm diameter were electroplated into the pores of self organized anodic aluminum oxide (AAO) membranes. Hysteretic dependence of the Sn film superconducting properties on applied magnetic field and critical current enhancement at moderate fields has been observed. This behavior strongly depends on the ratio of the Sn film thickness to the Co nanowire diameter.

  10. Superconductivity of a Sn film controlled by an array of Co nanowires

    NASA Astrophysics Data System (ADS)

    Wei, Z.; Ye, Z.; Rathnayaka, K. D. D.; Lyuksyutov, I. F.; Wu, W.; Naugle, D. G.

    2012-09-01

    Superconducting properties of a hybrid structure composed of ferromagnetic Co nanowire arrays and a superconducting Sn film have been investigated. Ordered Co nanowires arrays with 60 nm, 150 nm and 200 nm diameter were electroplated into the pores of self organized Anodic Aluminum Oxide (AAO) membranes. Hysteretic dependence of the Sn film superconducting properties on applied magnetic field and critical current enhancement at moderate fields has been observed. This behavior strongly depends on the ratio of the Sn film thickness to the Co nanowire diameter.

  11. Large critical current densities and pinning forces in CSD-grown superconducting GdBa2Cu3O7-x -BaHfO3 nanocomposite films

    NASA Astrophysics Data System (ADS)

    Cayado, Pablo; Erbe, Manuela; Kauffmann-Weiss, Sandra; Bühler, Carl; Jung, Alexandra; Hänisch, Jens; Holzapfel, Bernhard

    2017-09-01

    GdBa2Cu3O7-x -BaHfO3 (GdBCO-BHO) nanocomposite (NC) films containing 12 mol% BHO nanoparticles were prepared by chemical solution deposition (CSD) following the TFA route on SrTiO3 (STO) single crystals and buffered metallic tapes supplied by two different companies: Deutsche Nanoschicht GmbH and SuperOx. We optimized the preparation of our GdBCO-BHO solutions with acetylacetone making the film synthesis very robust and reproducible, and obtained 220 nm films with excellent superconducting properties. We show the structural, morphological and superconducting properties of the films after a careful optimization of the processing parameters (growth temperature, oxygen partial pressure and heating ramp). The films reach critical temperatures (T c) of ˜94 K, self-field critical current densities (J c) of >7 MA cm- 2 and maximum pinning force densities (F p) of ˜16 GN m- 3 at 77 K on STO and T c of ˜94.5 K and J c > 1.5 MA cm- 2 on buffered metallic tapes. The transport properties under applied magnetic fields are significantly improved with respect to the pristine GdBCO films. The GdBCO-BHO NC films on STO present epitaxial c-axis orientation with excellent out-of-plane and in-plane texture. The films are, in general, very dense with a low amount of pores and only superficial indentations. On the other hand, we present, for the first time, a systematic study of CSD-grown GdBCO-BHO NC films on buffered metallic tapes. We have used the optimized growth conditions for STO as a reference and identified some limitations on the film synthesis that should be overcome for further improvement of the films’ superconducting properties.

  12. Structures in magnetohydrodynamic turbulence: Detection and scaling

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Pouquet, A.; Rosenberg, D.; Mininni, P. D.; Donovan, E. F.

    2010-11-01

    We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 15363 points and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X -point configuration embedded in three dimensions, the so-called Orszag-Tang vortex, or an Arn’old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic-field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of intermittency in terms of propagation of local instabilities.

  13. Intrinsic pinning and the critical current scaling of clean epitaxial Fe(Se,Te) thin films

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Hänisch, Jens; Reich, Elke; Kurth, Fritz; Hühne, Ruben; Schultz, Ludwig; Holzapfel, Bernhard; Ichinose, Ataru; Hanawa, Masafumi; Tsukada, Ichiro; Schulze, Michael; Aswartham, Saicharan; Wurmehl, Sabine; Büchner, Bernd

    2013-03-01

    We report on the transport properties of clean, epitaxial Fe(Se,Te) thin films prepared on Fe-buffered MgO (001) single crystalline substrates by pulsed laser deposition. Near Tc a steep slope of the upper critical field for H||ab was observed (74.1 T/K), leading to a very short out-of-plane coherence length, ξc(0), of 0.2 nm, yielding 2ξc(0)≈0.4nm. This value is shorter than the interlayer distance (0.605 nm) between the Fe-Se(Te) planes, indicative of modulation of the superconducting order parameter along the c axis. An inverse correlation between the power law exponent N of the electric field-current density(E-J) curve and the critical current density Jc has been observed at 4 K, when the orientation of H was close to the ab plane. These results prove the presence of intrinsic pinning in Fe(Se,Te). A successful scaling of the angular dependent Jc and the corresponding exponent N can be realized by the anisotropic Ginzburg Landau approach with appropriate Γ values 2˜3.5. The temperature dependence of Γ behaves almost identically to that of the penetration depth anisotropy.

  14. Impact of shock waves on the conductive properties and structure of MgB2 tapes

    NASA Astrophysics Data System (ADS)

    Mikhailov, Boris P.; Mikhailova, Alexandra B.; Borovitskaya, Irina V.; Nikulin, Valerii Ya.; Peregudova, Elena N.; Polukhin, Sergei N.; Silin, Pavel V.

    2017-10-01

    This article presents data on shock waves effect on the structure and the critical current of superconducting MgB2 tapes. To generate shock waves, a plasma focus installation (PF) was used. The conductive characteristics of the superconducting tapes dependence on the intensity of the impact and the number of shock pulses were studied. A distinct pattern of change in critical currents in transversal and longitudinal magnetic fields in the range of 2-9 T is studied at a temperature of 4.2 K. The microstructure of the superconducting tape and chemical composition of its layer are studied in the original state and after the shock wave effect. Changes were found in a microstructure of layers of MgB2 (granulation, subdivision of grains and consolidation), which arose due to the shock-wave impact (SWI), are found. The possibility of increasing the critical current of tapes on 50-80 A in a transversal magnetic field of 2-3 T by means of SWI has been established. In a parallel magnetic field, the impact of the shock effect was essential in magnetic fields lower than 4 T.

  15. Review: nanocomposites in food packaging.

    PubMed

    Arora, Amit; Padua, G W

    2010-01-01

    The development of nanocomposites is a new strategy to improve physical properties of polymers, including mechanical strength, thermal stability, and gas barrier properties. The most promising nanoscale size fillers are montmorillonite and kaolinite clays. Graphite nanoplates are currently under study. In food packaging, a major emphasis is on the development of high barrier properties against the migration of oxygen, carbon dioxide, flavor compounds, and water vapor. Decreasing water vapor permeability is a critical issue in the development of biopolymers as sustainable packaging materials. The nanoscale plate morphology of clays and other fillers promotes the development of gas barrier properties. Several examples are cited. Challenges remain in increasing the compatibility between clays and polymers and reaching complete dispersion of nanoplates. Nanocomposites may advance the utilization of biopolymers in food packaging.

  16. Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds

    NASA Astrophysics Data System (ADS)

    Partington, Daniel; Therrien, Rene; Simmons, Craig T.; Brunner, Philip

    2017-06-01

    The streambed constitutes the physical interface between the surface and the subsurface of a stream. Across all spatial scales, the physical properties of the streambed control surface water-groundwater interactions. Continuous alteration of streambed properties such as topography or hydraulic conductivity occurs through erosion and sedimentation processes. Recent studies from the fields of ecology, hydrogeology, and sedimentology provide field evidence that sedimentological processes themselves can be heavily influenced by surface water-groundwater interactions, giving rise to complex feedback mechanisms between sedimentology, hydrology, and hydrogeology. More explicitly, surface water-groundwater exchanges play a significant role in the deposition of fine sediments, which in turn modify the hydraulic properties of the streambed. We explore these feedback mechanisms and critically review the extent of current interaction between the different disciplines. We identify opportunities to improve current modeling practices. For example, hydrogeological models treat the streambed as a static rather than a dynamic entity, while sedimentological models do not account for critical catchment processes such as surface water-groundwater exchange. We propose a blueprint for a new modeling framework that bridges the conceptual gaps between sedimentology, hydrogeology, and hydrology. Specifically, this blueprint (1) fully integrates surface-subsurface flows with erosion, transport, and deposition of sediments and (2) accounts for the dynamic changes in surface elevation and hydraulic conductivity of the streambed. Finally, we discuss the opportunities for new research within the coupled framework.

  17. [GEIPC-SEIMC (Study Group for Infections in the Critically Ill Patient of the Spanish Society for Infectious Diseases and Clinical Microbiology) and GTEI-SEMICYUC ( Working Group on Infectious Diseases of the Spanish Society of Intensive Medicine, Critical Care, and Coronary Units) recommendations for antibiotic treatment of gram-positive cocci infections in the critical patient].

    PubMed

    Astigarraga, P M Olaechea; Montero, J Garnacho; Cerrato, S Grau; Colomo, O Rodríguez; Martínez, M Palomar; Crespo, R Zaragoza; García-Paredes, P Muñoz; Cerdá, E Cerdá; Lerma, F Alvarez

    2007-01-01

    In recent years, an increment of infections caused by gram-positive cocci has been documented in nosocomial and hospital-acquired-infections. In diverse countries, a rapid development of resistance to common antibiotics against gram-positive cocci has been observed. This situation is exceptional in Spain but our country might be affected in the near future. New antimicrobials active against these multi-drug resistant pathogens are nowadays available. It is essential to improve our current knowledge about pharmacokinetic properties of traditional and new antimicrobials to maximize its effectiveness and to minimize toxicity. These issues are even more important in critically ill patients because inadequate empirical therapy is associated with therapeutic failure and a poor outcome. Experts representing two scientific societies (Grupo de estudio de Infecciones en el Paciente Crítico de la SEIMC and Grupo de trabajo de Enfermedades Infecciosas de la SEMICYUC) have elaborated a consensus document based on the current scientific evidence to summarize recommendations for the treatment of serious infections caused by gram-positive cocci in critically ill patients.

  18. Critical time for acoustic wavesin weakly nonlinear poroelastic materials

    NASA Astrophysics Data System (ADS)

    Wilmanski, K.

    2005-05-01

    The final time of existence (critical time) of acoustic waves is a characteristic feature of nonlinear hyperbolic models. We consider such a problem for poroelastic saurated materials of which the material properties are described by Signorini-type constitutitve relations for stresses in the skeleton, and whose material parameters depend on the current porosity. In the one-dimensional case under consideration, the governing set of equations describes changes of extension of the skeleton, a mass density of the fluid, partial velocities of the skeleton and of the fluid and a porosity. We rely on a second order approximation. Relations of the critical time to an initial porosity and to an initial amplitude are discussed. The connection to the threshold of liquefaction is indicated.

  19. Representative equations for the thermodynamic and transport properties of fluids near the gas-liquid critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.

    1981-01-01

    A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.

  20. Let's Get Small: An Introduction to Transitional Issues in Nanotech and Intellectual Property.

    PubMed

    Koepsell, David

    2009-08-01

    Much of the discussion regarding nanotechnology centers around perceived and prosphesied harms and risks. While there are real risks that could emerge from futuristic nanotechnology, there are other current risks involved with its development, not involving physical harms, that could prevent its full promise from being realized. Transitional forms of the technology, involving "microfab," or localized, sometimes desk-top, manufacture, pose a good opportunity for case study. How can we develop legal and regulatory institutions, specifically centered around the problems of intellectual property, that both stimulate innovation, and make the best possible use of what will eventually be a market in "types" rather than "tokens"? This paper argues that this is the most critical, current issues facing nanotechnology, and suggests a manner to approach it.

  1. Oceanography and Mine Warfare

    DTIC Science & Technology

    2000-03-13

    of breaking waves , the position and strength of surface currents, and the propagation of the tide into very shallow waters. In the surf zone...6) sediment properties determine shock wave propagation , a method for mine neutralization in the surf zone. 48 OCEANOGRAPHY AND MINE WARFARE...mines will be buried in the sediments, sedimentary explosive shock wave propagation is critical for determining operational performance. Presently, we

  2. Improvement of critical current density in thallium-based (Tl,Bi)Sr{sub 1.6}Ba{sub 0.4}Ca{sub 2}Cu{sub 3}O{sub x} superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Z.F.; Wang, C.A.; Wang, J.H.

    1994-12-31

    Epitaxial (Tl,Bi)Sr{sub 1.6}Ba{sub 0.4}Ca{sub 2}Cu{sub 3}O{sub x} (Tl,Bi)-1223 thin films on (100) single crystal LaAlO{sub 3} substrates were synthesized by a two-step procedure. Phase development, microstructure, and relationships between film and substrate were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Resistance versus temperature, zero-field-cooled and field-cooled magnetization, and transport critical current density (J{sub c}) were measured. The zero-resistance temperature was 105-111 K. J{sub c} at 77 K and zero field was > 2 x 10{sup 6} A/cm{sup 2}. The films exhibited good flux pinning properties.

  3. Influence of B4C-doping and high-energy ball milling on phase formation and critical current density of (Bi,Pb)-2223 HTS

    NASA Astrophysics Data System (ADS)

    Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.

    2018-05-01

    In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.

  4. Theoretical design strategies of bipolar membrane fuel cell with enhanced self-humidification behavior

    NASA Astrophysics Data System (ADS)

    Li, Qiushi; Gong, Jian; Peng, Sikan; Lu, Shanfu; Sui, Pang-Chieh; Djilali, Ned; Xiang, Yan

    2016-03-01

    The bipolar membrane fuel cells (BPMFCs), which have a unique acid-alkaline jointed membrane electrode assembly (MEA) structure, have demonstrated their great potential for self-humidification during operation. Although the self-humidification ability of such bipolar membranes (BPMs) has recently been validated by a one-dimensional BPM model, the transport mechanism and the formation of self-humidification in the MEAs are not well understood. In the present study, a two-dimensional cross-channel MEA model is developed to elucidate the mechanisms and enhancement of water transport on self-humidification with comprehensive consideration of the three electrochemical reaction zones. The water-formation interface model has been successfully investigated by theoretical and experimental interface reaction kinetics, streamlines of water flux present the formation process and mechanism of self-humidification. A critical current (voltage) value, beyond which self-humidification is initiated, is identified. It is also found that such critical current (voltage) can be adjusted by changing the membrane thickness and the water uptake property of the ionomer. It is concluded that fabricating BPMs with proper membrane thickness and water uptake property are effective strategies to enhance the water management and cell performance in BPMFCs.

  5. Mechanics and stability of vesicles and droplets in confined spaces

    PubMed Central

    Benet, Eduard; Vernerey, Franck J.

    2017-01-01

    The permeation and trapping of soft colloidal particles in the confined space of porous media are of critical importance in cell migration studies, design of drug delivery vehicles, and colloid separation devices. Our current understanding of these processes is however limited by the lack of quantitative models that can relate how the elasticity, size, and adhesion properties of the vesicle-pore complex affect colloid transport. We address this shortcoming by introducing a semianalytical model that predicts the equilibrium shapes of a soft vesicle driven by pressure in a narrow pore. Using this approach, the problem is recast in terms of pressure and energy diagrams that characterize the vesicle stability and permeation pressures in different conditions. We particularly show that the critical permeation pressure for a vesicle arises from a compromise between the critical entry pressure and exit pressure, both of which are sensitive to geometrical features, mechanics, and adhesion. We further find that these results can be leveraged to rationally design microfluidic devices and diodes that can help characterize, select, and separate colloids based on physical properties. PMID:28085314

  6. Boundaries of the critical state stability in a hard superconductor Nb3Al in the H-T plane

    NASA Astrophysics Data System (ADS)

    Chabanenko, V. V.; Vasiliev, S. V.; Nabiałek, A.; Shishmakov, A. S.; Pérez-Rodríguez, F.; Rusakov, V. F.; Szewczyk, A.; Kodess, B. N.; Gutowska, M.; Wieckowski, J.; Szymczak, H.

    2013-04-01

    The instability of the critical state in a type-II superconductor Nb3Al is studied for the first time for simultaneous consideration of real dependences of thermal and conductive properties of the material on temperature T and magnetic field He. To do this the dependences of specific heat C(T,Hе), magnetization M(T,He) and magnetostriction ΔL(T,He) of the superconductor were investigated experimentally in a strong magnetic field (up to 12 T). The gap width, the coefficient of the linear term, which determines the electronic contribution to the specific heat, the Debye temperature, and other parameters were found using experimental data on the heat capacity in a wide range of temperatures and magnetic fields Hc1 ≤ He ≤ Hc2. From experimental studies of magnetization the dependences of the critical current of the superconductor, Jc(T,He), were reconstructed. The hysteresis loops of magnetization and magnetostriction were calculated using experimental data for temperature and field dependences of the thermal and conductive properties.

  7. Critical evaluation of biodegradable polymers used in nanodrugs

    PubMed Central

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  8. Urban Automation Networks: Current and Emerging Solutions for Sensed Data Collection and Actuation in Smart Cities.

    PubMed

    Gomez, Carles; Paradells, Josep

    2015-09-10

    Urban Automation Networks (UANs) are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost.

  9. Urban Automation Networks: Current and Emerging Solutions for Sensed Data Collection and Actuation in Smart Cities

    PubMed Central

    Gomez, Carles; Paradells, Josep

    2015-01-01

    Urban Automation Networks (UANs) are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost. PMID:26378534

  10. Controlling charge current through a DNA based molecular transistor

    NASA Astrophysics Data System (ADS)

    Behnia, S.; Fathizadeh, S.; Ziaei, J.

    2017-01-01

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I-V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive.

  11. Progress in the Assessment of Waste-forms for the Immobilisation of UK Civil Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, M.T.; Scales, C.R.; Maddrell, E.R.

    The alternatives for the disposition of the UK's civil plutonium stocks are currently being investigated by Nexia Solutions Ltd. on behalf of the Nuclear Decommissioning Authority (NDA). A number of scenarios are currently being considered depending on the strategic requirements of the UK. The two main disposition options are: re-use as MOX (Mixed Oxide) fuel in reactors, or immobilisation in the event of any material being declared surplus to requirements. The amount of Pu which will require immobilisation will depend on future UK nuclear strategy, along with the extent of any stocks deemed unsuitable for re-use. However, it is likelymore » that some portion will have to be immobilised and therefore three credible waste-forms are under consideration; ceramic, glass and 'immobilisation' MOX. These are currently being developed and assessed in a systematic programme that involves periodic evaluation against a range of criteria. In this way, by down-selecting on the basis of robust and technical review, the most appropriate option for immobilising surplus civil plutonium in the UK can be recommended. The latest results from the immobilisation experimental programme are presented following the de-selection of the least favourable glass and ceramic candidates. The main criteria for this decision were waste loading, durability, processability, criticality and proliferation resistance. In addition, the durability of unirradiated MOX fuel is being examined to determine its potential as a wasteform for Pu, and recent leach test data is discussed. The current evaluation comprises not only a comparison of the relevant physical properties of the various waste-forms, but also key processing parameters, e.g. glass viscosity and melter technology, ceramic fabrication routes, and criticality issues. Other important aspects of the long-term behaviour of the waste-forms under consideration in a potential repository environment, such as radiation damage, criticality control and the properties of any neutron poisons present, are also included. (authors)« less

  12. Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives.

    PubMed

    Djobo, Jean Noël Yankwa; Elimbi, Antoine; Tchakouté, Hervé Kouamo; Kumar, Sanjay

    2017-02-01

    The progress achieved with the use of volcanic ash for geopolymer synthesis has been critically reviewed in this paper. This consists of an overview of mineralogy and chemistry of volcanic ash. The role of chemical composition and mineral contents of volcanic ash on their reactivity during geopolymerization reaction and, consequently, mechanical properties have been accessed. An attempt has been made to establish a relationship between synthesis factors and final properties. A critical assessment of some synthesis conditions has been addressed and some practical recommendations given along with suggestions of future works that have to be done. All this has shown that there are still many works such as durability tests (carbonation, freeze-thaw, resistance, etc.), life cycle analysis, etc. that need to be done in order to satisfy both suitability and sustainability criteria for a large-scale or industrial application.

  13. Physical properties of hydrate‐bearing sediments

    USGS Publications Warehouse

    Waite, William F.; Santamarina, J.C.; Cortes, D.D.; Dugan, Brandon; Espinoza, D.N.; Germaine, J.; Jang, J.; Jung, J.W.; Kneafsey, T.J.; Shin, H.; Soga, K.; Winters, William J.; Yun, T.S.

    2009-01-01

    Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate‐bearing sediments. Formation phenomena include pore‐scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small‐strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate‐bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate‐bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.

  14. Nonequilibrium phase diagram of a one-dimensional quasiperiodic system with a single-particle mobility edge

    NASA Astrophysics Data System (ADS)

    Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas

    2017-11-01

    We investigate and map out the nonequilibrium phase diagram of a generalization of the well known Aubry-André-Harper (AAH) model. This generalized AAH (GAAH) model is known to have a single-particle mobility edge which also has an additional self-dual property akin to that of the critical point of the AAH model. By calculating the population imbalance, we get hints of a rich phase diagram. We also find a fascinating connection between single particle wave functions near the mobility edge of the GAAH model and the wave functions of the critical AAH model. By placing this model far from equilibrium with the aid of two baths, we investigate the open system transport via system size scaling of nonequilibrium steady state (NESS) current, calculated by fully exact nonequilibrium Green's function (NEGF) formalism. The critical point of the AAH model now generalizes to a `critical' line separating regions of ballistic and localized transport. Like the critical point of the AAH model, current scales subdiffusively with system size on the `critical' line (I ˜N-2 ±0.1 ). However, remarkably, the scaling exponent on this line is distinctly different from that obtained for the critical AAH model (where I ˜N-1.4 ±0.05 ). All these results can be understood from the above-mentioned connection between states near the mobility edge of the GAAH model and those of the critical AAH model. A very interesting high temperature nonequilibrium phase diagram of the GAAH model emerges from our calculations.

  15. Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms

    PubMed Central

    Balleza, Enrique; Alvarez-Buylla, Elena R.; Chaos, Alvaro; Kauffman, Stuart; Shmulevich, Ilya; Aldana, Maximino

    2008-01-01

    The coordinated expression of the different genes in an organism is essential to sustain functionality under the random external perturbations to which the organism might be subjected. To cope with such external variability, the global dynamics of the genetic network must possess two central properties. (a) It must be robust enough as to guarantee stability under a broad range of external conditions, and (b) it must be flexible enough to recognize and integrate specific external signals that may help the organism to change and adapt to different environments. This compromise between robustness and adaptability has been observed in dynamical systems operating at the brink of a phase transition between order and chaos. Such systems are termed critical. Thus, criticality, a precise, measurable, and well characterized property of dynamical systems, makes it possible for robustness and adaptability to coexist in living organisms. In this work we investigate the dynamical properties of the gene transcription networks reported for S. cerevisiae, E. coli, and B. subtilis, as well as the network of segment polarity genes of D. melanogaster, and the network of flower development of A. thaliana. We use hundreds of microarray experiments to infer the nature of the regulatory interactions among genes, and implement these data into the Boolean models of the genetic networks. Our results show that, to the best of the current experimental data available, the five networks under study indeed operate close to criticality. The generality of this result suggests that criticality at the genetic level might constitute a fundamental evolutionary mechanism that generates the great diversity of dynamically robust living forms that we observe around us. PMID:18560561

  16. KChIP2 genotype dependence of transient outward current (Ito) properties in cardiomyocytes isolated from male and female mice

    PubMed Central

    Waldschmidt, Lara; Junkereit, Vera; Bähring, Robert

    2017-01-01

    The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating. PMID:28141821

  17. KChIP2 genotype dependence of transient outward current (Ito) properties in cardiomyocytes isolated from male and female mice.

    PubMed

    Waldschmidt, Lara; Junkereit, Vera; Bähring, Robert

    2017-01-01

    The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating.

  18. Growth of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4-yZn yO 12-δ superconductor with optimum carriers

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Khan, Nawazish A.; Khan, E. U.

    2010-05-01

    We have tried to vary the carriers concentration in Cu 0.5Tl 0.5Ba 2Ca 3Cu 4-yZn yO 12-δ ( y = 0, 1, 1.5, 2, 2.5) superconductor with the help of post-annealing experiments carried out in nitrogen, oxygen and air and to investigate its effects on the superconductivity parameters. The zero resistivity critical temperature [ T c( R = 0)], the magnitude of diamagnetism and critical current [ I c( H = 0)] are found to increase in Zn free samples after post-annealing in oxygen and air, while these superconducting properties have been suppressed after post-annealing in nitrogen at 550 °C for 6 h. The post-annealing of Zn-doped samples in air has marginally increased the superconducting properties, while these properties have been suppressed after post-annealing in nitrogen and oxygen. These studies have led us to the definite conclusion that the Zn-doped material has grown with optimum carriers concentration.

  19. Bulk properties and near-critical behaviour of SiO2 fluid

    NASA Astrophysics Data System (ADS)

    Green, Eleanor C. R.; Artacho, Emilio; Connolly, James A. D.

    2018-06-01

    Rocky planets and satellites form through impact and accretion processes that often involve silicate fluids at extreme temperatures. First-principles molecular dynamics (FPMD) simulations have been used to investigate the bulk thermodynamic properties of SiO2 fluid at high temperatures (4000-6000 K) and low densities (500-2240 kg m-3), conditions which are relevant to protoplanetary disc condensation. Liquid SiO2 is highly networked at the upper end of this density range, but depolymerises with increasing temperature and volume, in a process characterised by the formation of oxygen-oxygen (Odbnd O) pairs. The onset of vaporisation is closely associated with the depolymerisation process, and is likely to be non-stoichiometric at high temperature, initiated via the exsolution of O2 molecules to leave a Si-enriched fluid. By 6000 K the simulated fluid is supercritical. A large anomaly in the constant-volume heat capacity occurs near the critical temperature. We present tabulated thermodynamic properties for silica fluid that reconcile observations from FPMD simulations with current knowledge of the SiO2 melting curve and experimental Hugoniot curves.

  20. Critical gases for critical issues: CO2 technologies for oral drug delivery.

    PubMed

    Danan, Hana; Esposito, Pierandrea

    2014-02-01

    In recent years, CO2-based technologies have gained considerable interest in the pharmaceutical industry for their potential applications in drug formulation and drug delivery. The exploitation of peculiar properties of gases under supercritical conditions has been studied in the last 20 years with mixed results. Promising drug-delivery technologies, based on supercritical CO2, have mostly failed when facing challenges of industrial scaleability and economical viability. Nevertheless, a 'second generation' of processes, based on CO2 around and below critical point has been developed, possibly offering technology-based solutions to some of the current issues of pharmaceutical development. In this review, we highlight the most recent advancements in this field, with a particular focus on the potential of CO2-based technologies in addressing critical issues in oral delivery, and briefly discuss the future perspectives of dense CO2-assisted processes as enabling technologies in drug delivery.

  1. Comparative study of electrical transport and magnetic measurements of Y3Ba5Cu8O18±δ and YBa2Cu3O7-δ compounds: intragranular and intergranular superconducting properties

    NASA Astrophysics Data System (ADS)

    Slimani, Y.; Hannachi, E.; Ben Salem, M. K.; Ben Azzouz, F.; Ben Salem, M.

    2018-02-01

    We compare the superconducting properties and flux pinning characteristics between YBa2Cu3O7-δ (called Y-123) and Y3Ba5Cu8O18±δ (called Y-358) compounds. Both samples were synthesized through the solid-state reaction. The samples were examined by X-ray diffraction, and scanning electron microscope coupled with energy dispersive spectrometry. The critical current densities of the prepared samples were investigated using current-voltage, magnetization measurements and ac-susceptibility. It is demonstrated that the Y-358 exhibits better superconducting and pinning properties than the Y-123 one. This may be ascribed to the layered structure and the occurrence of a greater number of insulating layers between the CuO2 planes that act as effective pinning sites and consequently conduce to a better fundamental pinning capacity in Y-358.

  2. Enhanced magnetocaloric properties and critical behavior of (Fe0.72Cr0.28)3Al alloys for near room temperature cooling

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Maheshwar Repaka, D. V.; Chaudhary, V.; Ramanujan, R. V.

    2017-04-01

    Magnetic cooling is an environmentally friendly, energy efficient, thermal management technology relying on high performance magnetocaloric materials (MCM). Current research has focused on low cost, corrosion resistant, rare earth (RE) free MCMs. We report the structural and magnetocaloric properties of novel, low cost, RE free, iron based (Fe0.72Cr0.28)3Al alloys. The arc melted buttons and melt spun ribbons possessed the L21 crystal structure and B2 crystal structure, respectively. A notable enhancement of 33% in isothermal entropy change (-ΔS m) and 25% increase in relative cooling power (RCP) for the ribbons compared to the buttons can be attributed to higher structural disorder in the Fe-Cr and Fe-Al sub-lattices of the B2 structure. The critical behavior was investigated using modified Arrott plots, the Kouvel-Fisher plot and the critical isotherm technique; the critical exponents were found to correspond to the short-range order 3D Heisenberg model. The field and temperature dependent magnetization curves of (Fe0.72Cr0.28)3Al alloys revealed their soft magnetic nature with negligible hysteresis. Thus, these alloys possess promising performance attributes for near room temperature magnetic cooling applications.

  3. Delafloxacin: Place in Therapy and Review of Microbiologic, Clinical and Pharmacologic Properties.

    PubMed

    Jorgensen, Sarah C J; Mercuro, Nicholas J; Davis, Susan L; Rybak, Michael J

    2018-03-31

    Delafloxacin (formerly WQ-3034, ABT492, RX-3341) is a novel fluoroquinolone chemically distinct from currently marketed fluoroquinolones with the absence of a protonatable substituent conferring a weakly acidic character to the molecule. This property results in increased intracellular penetration and enhanced bactericidal activity under acidic conditions that characterize the infectious milieu at a number of sites. The enhanced potency and penetration in low pH environments contrast what has been observed for other zwitterionic fluoroquinolones, which tend to lose antibacterial potency under acidic conditions, and may be particularly advantageous against methicillin-resistant Staphylococcus aureus, for which the significance of the intracellular mode of survival is increasingly being recognized. Delafloxacin is also unique in its balanced target enzyme inhibition, a property that likely explains the very low frequencies of spontaneous mutations in vitro. Delafloxacin recently received US Food and Drug Administration approval for the treatment of acute bacterial skin and skin structure infections and is currently being evaluated in a phase 3 trial among patients with community-acquired pneumonia. In the current era of a heightened awareness pertaining to collateral ecologic damage, safety issues and antimicrobial stewardship principles, it is critical to describe the unique properties of delafloxacin and define its potential role in therapy. The purpose of this article is to review available data pertaining to delafloxacin's biochemistry, pharmacokinetic/pharmacodynamics characteristics, in vitro activity and potential for resistance selection as well as current progress in clinical trials to ultimately assist clinicians in selecting patients who will benefit most from the distinctive properties of this agent.

  4. Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment

    NASA Astrophysics Data System (ADS)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-08-01

    The present study focuses on the effects of standby time of the MgB2 samples immersed in synthetic engine oil on the critical current density (Jc(H)), magnetic field dependence of the pinning force density fp(b) and Tc performances of MgB2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB2 sample because of the number of the pinning centers. The MgB2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The Jc value for the pure sample is 2.0 × 103 A/cm2, whereas for the MgB2 sample immersed at 300 min standby time in engine oil the Jc is enhanced to 4.8 × 103A/cm2 at 5 K and 3 T. The superconducting transition temperature (Tc) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB2 superconductors. It was found that all MgB2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB2 bulk superconductors makes MgB2 samples immersed in synthetic engine oil a good candidate for industrial applications.

  5. CRITICAL MECHANICAL PROPERTIES OF STRUCTURAL LIGHT-WEIGHT CONCRETE AND THE EFFECTS OF THESE PROPERTIES ON THE DESIGN OF THE PAVEMENT STRUCTURE.

    DOT National Transportation Integrated Search

    1965-01-01

    In this study, critical mechanical properties of structural lightweight concrete were determined and utilized in the evaluation of a design of concrete pavements. Also presented are the critical mechanical properties resulting from unrestrained and r...

  6. Critical current degradation behaviour of GdBCO CC tapes in pure torsion and combined tension-torsion modes

    NASA Astrophysics Data System (ADS)

    Gorospe, Alking; Bautista, Zhierwinjay; Shin, Hyung-Seop

    2016-10-01

    Coated conductor (CC) tapes utilized in high-current-density superconducting cables are commonly subjected to different loading modes, primarily torsion and tension especially in the case of twisted stacked-tape cable. Torsion load can occur due to twisting along the length or when winding the CC tapes around a former, while tension load can occur due to pre-tension when coiled and as a hoop stress when the coil is energized. In this study, electromechanical properties of single CC tapes under torsion load were investigated using a new test apparatus. The results could provide basic information for cable designers to fully characterize stacked cables. Copper-electroplated and brass-laminated CC tapes fabricated with different deposition techniques were subjected to pure torsion and combined tension-torsion loading. The critical current, I c degradation behaviours of CC tapes under torsional deformation were examined. Also, the effect of further external lamination on the I c degradation behaviour of the CC tapes under such loading conditions was investigated. In the case of the combined tension-torsion test, short samples were subjected to twist pitches of 200 mm and 100 mm. Critical parameters including reversible axial stress and strain in such twist pitch conditions were also investigated.

  7. High-Tc superconducting materials for electric power applications.

    PubMed

    Larbalestier, D; Gurevich, A; Feldmann, D M; Polyanskii, A

    2001-11-15

    Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.

  8. Intrinsic superconducting transport properties of ultra-thin Fe1+ y Te0.6Se0.4 microbridges

    NASA Astrophysics Data System (ADS)

    Sun, HanCong; Lv, YangYang; Lu, DaChuan; Yang, ZhiBao; Zhou, XianJing; Hao, LuYao; Xing, XiangZhuo; Zou, Wei; Li, Jun; Shi, ZhiXiang; Xu, WeiWei; Wang, HuaBing; Wu, PeiHeng

    2017-11-01

    We investigated the superconducting properties of Fe1+ y Te0.6Se0.4 single-crystalline microbridges with a width of 4 μm and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metal-insulator transition in the normal state. The critical current density ( J c) of the microbridge with a thickness of 136.2 nm was 82.3 kA/cm2 at 3K and reached 105 kA/cm2 after extrapolation to T = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.

  9. Percolation effect in thick film superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sali, R.; Harsanyi, G.

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density atmore » the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.« less

  10. Percolation effect in thick film superconductors: Using a Bi(Pb)SrCaCuO based paste to prepare a superconducting planar transformer

    NASA Technical Reports Server (NTRS)

    Sali, Robert; Harsanyi, Gabor

    1995-01-01

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to the T(sub c) and advantageous current density properties the base of the past was chosen to be of Bi(Pb)SrCaCu) system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density -at the boiling temperature of the liquid He- was between 200 - 300 A/sq cm. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency ans the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  11. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    NASA Technical Reports Server (NTRS)

    Cartier, S. L.; Dangelo, N.; Merlino, R. L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.

  12. Durability assessments of concrete using electrical properties and acoustic emission testing

    NASA Astrophysics Data System (ADS)

    Todak, Heather N.

    Premature damage deterioration has been observed in pavement joints throughout the Midwestern region of the United States. Over time, severe joint damage creates a transportation safety concern and the necessary repairs can be an extreme economic burden. The deterioration is due in part to freeze-thaw damage associated with fluid accumulation at the pavement joints. This very preventable problem is an indication that current specifications and construction practices for freeze-thaw durability of concrete are inadequate. This thesis serves to create a better understanding of moisture ingress, freeze-thaw damage mechanisms, and the effect of variations in mixture properties on freeze-thaw behavior of concrete. The concepts of the nick point degree of saturation, sorptivity rates, and critical degree of saturation are discussed. These factors contribute to service life, defined in this study as the duration of time a concrete element remains below levels of critical saturation which are required for damage development to initiate. A theoretical model and a simple experimental procedure are introduced which help determine the nick point for a series of 32 concrete mixtures with unique mixture proportions and air entrainment properties. This simple experimental procedure is also presented as a method to measure important electrical properties in order to establish the formation factor, a valuable measure of concrete transport properties. The results of freeze-thaw testing with acoustic emission monitoring are presented to help understand and quantify damage development in concrete specimens when conditioned to various degrees of saturation. This procedure was used to study the relationship between air entrainment properties and the critical degree of saturation. Applying the concepts of degree of saturation and sorptivity, a performance-based model is proposed as a new approach to specifications for freeze-thaw durability. Finally, a conceptual model is presented to illustrate the effect of various changes in mixture proportions and air void properties on service life.

  13. Relationship between critical mechanical properties and age for structural lightweight concrete.

    DOT National Transportation Integrated Search

    1964-02-25

    The necessity to use structural lightweight concrete has created : a need for investigations into its critical mechanical properties that : affect the design and performance of structures. The primary critical : properties were found to be direct ten...

  14. Material properties of biofilms – key methods for understanding permeability and mechanics

    PubMed Central

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  15. Material properties of biofilms—a review of methods for understanding permeability and mechanics

    NASA Astrophysics Data System (ADS)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-02-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the 3D biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gases, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms.

  16. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  17. Effect of Li 2O on the microstructure, magnetic and transport properties of Tl-2223 superconductor

    DOE PAGES

    Shipra, R.; Sefat, Athena Safa

    2015-10-08

    Here, the present study gives an account of the effect of addition of Li 2O on the ease of phase formation and superconducting properties of Tl 2Ba 2Ca 2Cu 3O 10 + δ (Tl-2223) material. Li 2O slightly decreases the superconducting transition temperature, while an optimal concentration of 20% Li 2O improves the critical current density (J c) by about two fold. We also found substantial effects on the synthesis temperature, microstructure and normal state transport properties of Tl-2223 with Li 2O addition. Short-time annealing under flowing Ar + 4%H 2 (1 h) further improves the superconducting volume fractions, asmore » well as J c.« less

  18. The influence of Pb and Ag doping on the Jc(H,T) dependence and the mechanical properties of Bi-2212 textured rods

    NASA Astrophysics Data System (ADS)

    Sotelo, A.; Madre, M. A.; Diez, J. C.; Rasekh, Sh; Angurel, L. A.; Martínez, E.

    2009-03-01

    Textured rods of Bi-2212 based materials with nominal compositions Bi2Sr2CaCu2O8+δ, Bi2Sr2CaCu2O8+δ+1 wt% Ag, Bi1.6Pb0.4Sr2CaCu2O8+δ, and Bi1.6Pb0.4Sr2CaCu2O8+δ+3 wt% Ag were fabricated using a laser floating zone (LFZ) melting method. The electrical, magnetic, and mechanical properties of the resulting rods after annealing were characterized. Pb doping results in the decrease of the transport critical current density, Jc,t (from 4.4 × 107 to 6 × 106 A m-2 at 65 K and self-field) as well as in the worsening of the mechanical properties, by about 35% compared to the undoped samples. In contrast, Ag doping results in the improvement of both the critical current density and mechanical strength. In this regard we have observed an increase of Jc,t (65 K) from 4.4 × 107 for Bi-2212 to 7.2 × 107 A m-2 for Bi-2212/Ag and from 6 × 106 for Bi(Pb)-2212 to 8 × 106 A m-2 for Bi(Pb)-2212/Ag. These described effects are related to the microstructural observations, since Pb doping dramatically reduces the texture while Ag doping improves it. Moreover, for samples with Ag addition, an intergrowth of Bi-2223 inside the Bi-2212 grains is observed, which would explain the improved superconducting properties of these samples.

  19. Critical current and flux dynamics in Ag-doped FeSe superconductor

    NASA Astrophysics Data System (ADS)

    Galluzzi, A.; Polichetti, M.; Buchkov, K.; Nazarova, E.; Mancusi, D.; Pace, S.

    2017-02-01

    The measurements of DC magnetization as a function of the temperature M(T), magnetic field M(H), and time M(t) have been performed in order to compare the superconducting and pinning properties of an undoped FeSe0.94 sample and a silver doped FeSe0.94 + 6 wt% Ag sample. The M(T) curves indicate an improvement of the superconducting critical temperature and a reduction of the non-superconducting phase Fe7Se8 due to the silver doping. This is confirmed by the field and temperature dependent critical current density Jc(H,T) extracted from the superconducting hysteresis loops at different temperatures within the Bean critical state model. Moreover, the combined analysis of the Jc(T) and of the pinning force Fp(H/Hirr) indicate that the pinning mechanisms in both samples can be described in the framework of the collective pinning theory. The U*(T, J) curves show a pinning crossover from an elastic creep regime of intermediate size flux bundles, for low temperatures, to a plastic creep regime at higher temperatures for both the samples. Finally, the vortex hopping attempt time has been evaluated for both samples and the results are comparable with the values reported in the literature for high Tc materials.

  20. Production of Aluminum Stabilized Superconducting Cable for the Mu2e Transport Solenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardo, Vito; Ambrosio, Giorgio; Evbota, Daniel

    Here, the Fermilab Mu2e experiment, currently under construction at Fermilab, has the goal of measuring the rare process of direct muon to electron conversion in the field of a nucleus. The experiment features three large superconducting solenoids: the production solenoid (PS), the transport solenoid (TS), and the detector solenoid (DS). The TS is an “S-shaped” solenoid that sits in between the PS and the DS producing a magnetic field ranging between 2.5 and 2.0 T. This paper describes the various steps that led to the successful procurement of over 740 km of superconducting wire and 44 km of Al-stabilized Rutherfordmore » cable needed to build the 52 coils that constitute the Mu2e TS cold mass. The main cable properties and results of electrical and mechanical test campaigns are summarized and discussed. Critical current measurements of the Al-stabilized cables are presented and compared to expected critical current values as measured on extracted strands from the final cables after chemical etching of the aluminum stabilizer. A robust and reliable approach to cable welding is presented, and the effect of cable bending on the transport current is also investigated and presented.« less

  1. Production of Aluminum Stabilized Superconducting Cable for the Mu2e Transport Solenoid

    DOE PAGES

    Lombardo, Vito; Ambrosio, Giorgio; Evbota, Daniel; ...

    2018-01-15

    Here, the Fermilab Mu2e experiment, currently under construction at Fermilab, has the goal of measuring the rare process of direct muon to electron conversion in the field of a nucleus. The experiment features three large superconducting solenoids: the production solenoid (PS), the transport solenoid (TS), and the detector solenoid (DS). The TS is an “S-shaped” solenoid that sits in between the PS and the DS producing a magnetic field ranging between 2.5 and 2.0 T. This paper describes the various steps that led to the successful procurement of over 740 km of superconducting wire and 44 km of Al-stabilized Rutherfordmore » cable needed to build the 52 coils that constitute the Mu2e TS cold mass. The main cable properties and results of electrical and mechanical test campaigns are summarized and discussed. Critical current measurements of the Al-stabilized cables are presented and compared to expected critical current values as measured on extracted strands from the final cables after chemical etching of the aluminum stabilizer. A robust and reliable approach to cable welding is presented, and the effect of cable bending on the transport current is also investigated and presented.« less

  2. An efficient and economical way to enhance the performance of present HTS Maglev systems by utilizing the anisotropy property of bulk superconductors

    NASA Astrophysics Data System (ADS)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    We report a simple, efficient and economical way to enhance the levitation or guidance performance of present high-temperature superconducting (HTS) Maglev systems by exploring the anisotropic properties of the critical current density in the a-b plane and along the c-axis of bulk superconductors. In the method, the bulk laying mode with different c-axis directions is designed to match with the magnetic field configuration of the applied permanent magnet guideway (PMG). Experimental results indicate that more than a factor of two improvement in the levitation force or guidance force is achieved when changing the laying mode of bulk superconductors from the traditional fashion of keeping the c-axis vertical to the PMG surface to the studied one of keeping the c-axis parallel to the PMG surface, at the maximum horizontal and vertical magnetic field positions of the PMG, respectively. These phenomena resulted from the physical nature of the generated levitation force and guidance force (electromagnetic forces) and the fact that there are different critical current densities in the a-b plane and along the c axis. Based on the experimental results, new HTS Maglev systems can be designed to meet the requirements of practical heavy-load or curved-route applications.

  3. A novel, rapid and automated conductometric method to evaluate surfactant-cells interactions by means of critical micellar concentration analysis.

    PubMed

    Tiecco, Matteo; Corte, Laura; Roscini, Luca; Colabella, Claudia; Germani, Raimondo; Cardinali, Gianluigi

    2014-07-25

    Conductometry is widely used to determine critical micellar concentration and micellar aggregates surface properties of amphiphiles. Current conductivity experiments of surfactant solutions are typically carried out by manual pipetting, yielding some tens reading points within a couple of hours. In order to study the properties of surfactant-cells interactions, each amphiphile must be tested in different conditions against several types of cells. This calls for complex experimental designs making the application of current methods seriously time consuming, especially because long experiments risk to determine alterations of cells, independently of the surfactant action. In this paper we present a novel, accurate and rapid automated procedure to obtain conductometric curves with several hundreds reading points within tens of minutes. The method was validated with surfactant solutions alone and in combination with Saccharomyces cerevisiae cells. An easy-to use R script, calculates conductometric parameters and their statistical significance with a graphic interface to visualize data and results. The validations showed that indeed the procedure works in the same manner with surfactant alone or in combination with cells, yielding around 1000 reading points within 20 min and with high accuracy, as determined by the regression analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Cortical pyramidal cells as non-linear oscillators: experiment and spike-generation theory.

    PubMed

    Brumberg, Joshua C; Gutkin, Boris S

    2007-09-26

    Cortical neurons are capable of generating trains of action potentials in response to current injections. These discharges can take different forms, e.g., repetitive firing that adapts during the period of current injection or bursting behaviors. We have used a combined experimental and computational approach to characterize the dynamics leading to action potential responses in single neurons. Specifically we investigated the origin of complex firing patterns in response to sinusoidal current injections. Using a reduced model, the theta-neuron, alongside recordings from cortical pyramidal cells we show that both real and simulated neurons show phase-locking to sine wave stimuli up to a critical frequency, above which period skipping and 1-to-x phase-locking occurs. The locking behavior follows a complex "devil's staircase" phenomena, where locked modes are interleaved with irregular firing. We further show that the critical frequency depends on the time scale of spike generation and on the level of spike frequency adaptation. These results suggest that phase-locking of neuronal responses to complex input patterns can be explained by basic properties of the spike-generating machinery.

  5. Diffusion studies and critical current in superconducting Nb-Ti-Ta artificial pinning center wire

    NASA Astrophysics Data System (ADS)

    Bormio-Nunes, C.; Gomes, P. M. N.; Tirelli, M. A.; Ghivelder, L.

    2005-08-01

    The diffusion between Nb-20%Ta (wt %) and pure Ti is studied at temperatures of 973, 1023, and 1073K, for duration times among 25 and 121h in an artificial pinning center (APC) wire composed of a Ti core surrounded by a Nb-20%Ta layer. The produced diffusion layer is a ternary alloy with superconducting properties, such as critical field Bc2 and critical current density JC, which intrinsically depend on the layer composition. Measurements of layer morphology and composition were performed, and the results show a preferential diffusion of Nb and Ta into Ti. There is a slight diffusion of Ti into Nb through grain boundaries. The presence of Ta also slows down the diffusion of Nb in Ti if compared to the couple formed by pure Nb and Ti. Regarding the mechanical properties of the composite wire, the use of lower temperatures to form the ternary phase is desirable in order to avoid a larger portion of the diffusion layer rich in Ti that favorites α-Ti precipitations that are detrimental to the wire ductility. The best JC value was obtained for the sample heat treated at 973K. The improvement of the flux-line pinning was associated with a sharp change of the diffusion layer composition rather than pinning by normal layer interfaces, suggesting a new source of pinning in this kind of material. Nb-Ti-Ta ternary alloys have the potential to be used in superconducting magnets when fields above 12T are required.

  6. Cooling Stability Test of MgB2 Wire Immersed in Liquid Hydrogen under External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Hikawa, Kyosuke; Shiotsu, Masahiro; Tatsumoto, Hideki; Naruo, Yoshihiro; Kobayashi, Hiroaki; Inagaki, Yoshifumi

    2014-05-01

    Liquid hydrogen (LH2), which has large latent heat, low viscosity coefficient, is expected to be a candidate for a cryogen for superconducting wires, not only MgB2 but also other HTC superconductors. LH2 cooled superconducting wires are expected to have excellent electro-magnetic characteristics, which is necessary to be clear for cooling stability design of LH2 cooled superconducting device, however, due to handling difficulties of LH2, there are only few papers on the properties of LH2 cooled superconductors, especially under external magnetic field. We designed and made an experimental setup which can energize superconducting wires immersed in LH2 with the current of up to 500A under the condition of external magnetic field up to 7 T and pressure up to 1.5 MPa. In order to confirm experimental method and safety operation of the setup, over current tests were carried out using MgB2 superconducting wires under various external magnetic field conditions. Critical current of the test wire at the temperature 21, 24, 27, 29 K under external magnetic fields up to 1.2 T was successfully measured. The resistance of the wire also was measured, while the transport current exceeded the critical current of the wire.

  7. DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer

    NASA Astrophysics Data System (ADS)

    Miyazaki, Shingo; Kasuya, Syohei; Mawardi Saari, Mohd; Sakai, Kenji; Kiwa, Toshihiko; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi; Tsukada, Keiji

    2014-05-01

    Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.

  8. The role of melatonin in anaesthesia and critical care.

    PubMed

    Kurdi, Madhuri S; Patel, Tushar

    2013-03-01

    Melatonin is a neurohormone secreted by the pineal gland. It is widely present in both plant and animal sources. In several countries, it is sold over the counter as tablets and as food supplement or additive. Currently, it is most often used to prevent jet lag and to induce sleep. It has been and is being used in several clinical trials with different therapeutic approaches. It has sedative, analgesic, anti-inflammatory, anti-oxidative and chronobiotic effects. In the present review, the potential therapeutic benefits of melatonin in anaesthesia and critical care are presented. This article aims to review the physiological properties of melatonin and how these could prove useful for several clinical applications in perioperative management, critical care and pain medicine. The topic was handsearched from textbooks and journals and electronically from PubMed, and Google scholar using text words.

  9. The role of melatonin in anaesthesia and critical care

    PubMed Central

    Kurdi, Madhuri S; Patel, Tushar

    2013-01-01

    Melatonin is a neurohormone secreted by the pineal gland. It is widely present in both plant and animal sources. In several countries, it is sold over the counter as tablets and as food supplement or additive. Currently, it is most often used to prevent jet lag and to induce sleep. It has been and is being used in several clinical trials with different therapeutic approaches. It has sedative, analgesic, anti-inflammatory, anti-oxidative and chronobiotic effects. In the present review, the potential therapeutic benefits of melatonin in anaesthesia and critical care are presented. This article aims to review the physiological properties of melatonin and how these could prove useful for several clinical applications in perioperative management, critical care and pain medicine. The topic was handsearched from textbooks and journals and electronically from PubMed, and Google scholar using text words. PMID:23825812

  10. Biological and chemical sensors based on graphene materials.

    PubMed

    Liu, Yuxin; Dong, Xiaochen; Chen, Peng

    2012-03-21

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

  11. Applications of Nanomaterials in Food Packaging.

    PubMed

    Bumbudsanpharoke, Nattinee; Choi, Jungwook; Ko, Seonghyuk

    2015-09-01

    Nanomaterials have drawn great interest in recent years due to their extraordinary properties that make them advantageous in food packaging applications. Specifically, nanoparticles can impart significant barrier properties, as well as mechanical, optical, catalytic, and antimicrobial properties into packaging. Silver nanoparticles (AgNPs) and nanoclay account for the majority of the nano-enabled food packaging on the market, while others, such as nano-zinc oxide (ZnO) and titanium, share less of the current market. In current food packaging, these nanomaterials are primarily used to impart antimicrobial function and to improve barrier properties, thereby extending the shelf life and freshness of packaged food. On the other hand, there is growing concern about the migration of nanomaterials from food contact materials to foodstuffs and its associated potential risks. Indeed, insufficient data about environmental and human safety assessments of migration and exposure of nanomaterials are hindering their market growth. To overcome this barrier, the public believes that legislation from government agencies is critical. This review provides an overview of the characteristics and functions of major nanomaterials that are commonly applied to food packaging, including available and near- future products. Migration research, safety issues, and public concerns are also discussed.

  12. Environmental application of biochar: Current status and perspectives.

    PubMed

    Oliveira, Fernanda R; Patel, Anil K; Jaisi, Deb P; Adhikari, Sushil; Lu, Hui; Khanal, Samir Kumar

    2017-12-01

    In recent years, there has been a significant interest on biochar for various environmental applications, e.g., pollutants removal, carbon sequestration, and soil amelioration. Biochar has several unique properties, which makes it an efficient, cost-effective and environmentally-friendly material for diverse contaminants removal. The variability in physicochemical properties (e.g., surface area, microporosity, and pH) provides an avenue for biochar to maximize its efficacy to targeted applications. This review aims to highlight the vital role of surface architecture of biochar in different environmental applications. Particularly, it provides a critical review of current research updates related to the pollutants interaction with surface functional groups of biochars and the effect of the parameters variability on biochar attributes pertinent to specific pollutants removal, involved mechanisms, and competence for these removals. Moreover, future research directions of biochar research are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Gas turbine coatings eddy current quantitative and qualitative evaluation

    NASA Astrophysics Data System (ADS)

    Ribichini, Remo; Giolli, Carlo; Scrinzi, Erica

    2017-02-01

    Gas turbine blades (buckets) are among the most critical and expensive components of the engine. Buckets rely on protective coatings in order to withstand the harsh environment in which they operate. The thickness and the microstructure of coatings during the lifespan of a unit are fundamental to evaluate their fitness for service. A frequency scanning Eddy Current instrument can allow the measurement of the thickness and of physical properties of coatings in a Non-Destructive manner. The method employed relies on the acquisition of impedance spectra and on the inversion of the experimental data to derive the coating properties and structure using some assumptions. This article describes the experimental validation performed on several samples and real components in order to assess the performance of the instrument as a coating thickness gage. The application of the technique to support residual life assessment of serviced buckets is also presented.

  14. The quality of evidence of psychometric properties of three-dimensional spinal posture-measuring instruments

    PubMed Central

    2011-01-01

    Background Psychometric properties include validity, reliability and sensitivity to change. Establishing the psychometric properties of an instrument which measures three-dimensional human posture are essential prior to applying it in clinical practice or research. Methods This paper reports the findings of a systematic literature review which aimed to 1) identify non-invasive three-dimensional (3D) human posture-measuring instruments; and 2) assess the quality of reporting of the methodological procedures undertaken to establish their psychometric properties, using a purpose-build critical appraisal tool. Results Seventeen instruments were identified, of which nine were supported by research into psychometric properties. Eleven and six papers respectively, reported on validity and reliability testing. Rater qualification and reference standards were generally poorly addressed, and there was variable quality reporting of rater blinding and statistical analysis. Conclusions There is a lack of current research to establish the psychometric properties of non-invasive 3D human posture-measuring instruments. PMID:21569486

  15. Superconductor-insulator transition in long MoGe nanowires.

    PubMed

    Kim, Hyunjeong; Jamali, Shirin; Rogachev, A

    2012-07-13

    The properties of one-dimensional superconducting wires depend on physical processes with different characteristic lengths. To identify the process dominant in the critical regime we have studied the transport properties of very narrow (9-20 nm) MoGe wires fabricated by advanced electron-beam lithography in a wide range of lengths, 1-25  μm. We observed that the wires undergo a superconductor-insulator transition (SIT) that is controlled by cross sectional area of a wire and possibly also by the width-to-thickness ratio. The mean-field critical temperature decreases exponentially with the inverse of the wire cross section. We observed that a qualitatively similar superconductor-insulator transition can be induced by an external magnetic field. Our results are not consistent with any currently known theory of the SIT. Some long superconducting MoGe nanowires can be identified as localized superconductors; namely, in these wires the one-electron localization length is much smaller than the length of a wire.

  16. Determination of hemispheric language dominance in the surgical epilepsy patient: diagnostic properties of functional magnetic resonance imaging.

    PubMed

    Spritzer, Scott D; Hoerth, Matthew T; Zimmerman, Richard S; Shmookler, Aaron; Hoffman-Snyder, Charlene R; Wellik, Kay E; Demaerschalk, Bart M; Wingerchuk, Dean M

    2012-09-01

    Presurgical evaluation for refractory epilepsy typically includes assessment of cognitive and language functions. The reference standard for determination of hemispheric language dominance has been the intracarotid amobarbital test (IAT) but functional magnetic resonance imaging (fMRI) is increasingly used. To critically assess current evidence regarding the diagnostic properties of fMRI in comparison with the IAT for determination of hemispheric language dominance. The objective was addressed through the development of a structured critically appraised topic. This included a clinical scenario, structured question, literature search strategy, critical appraisal, results, evidence summary, commentary, and bottom-line conclusions. Participants included consultant and resident neurologists, a medical librarian, clinical epidemiologists, and content experts in the fields of epilepsy and neurosurgery. A systematic review and meta-analysis that compared the sensitivity and specificity of fMRI to IAT-determined language lateralization was selected for critical appraisal. The review included data from 23 articles (n=442); study methodology varied widely. fMRI was 83.5% sensitive and 88.1% specific for detection of hemispheric language dominance. There are insufficient data to support routine use of fMRI for the purpose of determining hemispheric language dominance in patients with intractable epilepsy. Larger, well-designed studies of fMRI for language and other cognitive outcomes as part of the presurgical and postsurgical evaluation of epilepsy patients are necessary.

  17. On-Chip Optical Nonreciprocity Using an Active Microcavity

    PubMed Central

    Jiang, Xiaoshun; Yang, Chao; Wu, Hongya; Hua, Shiyue; Chang, Long; Ding, Yang; Hua, Qian; Xiao, Min

    2016-01-01

    Optically nonreciprocal devices provide critical functionalities such as light isolation and circulation in integrated photonic circuits for optical communications and information processing, but have been difficult to achieve. By exploring gain-saturation nonlinearity, we demonstrate on-chip optical nonreciprocity with excellent isolation performance within telecommunication wavelengths using only one toroid microcavity. Compatible with current complementary metal-oxide-semiconductor process, our compact and simple scheme works for a very wide range of input power levels from ~10 microwatts down to ~10 nanowatts, and exhibits remarkable properties of one-way light transport with sufficiently low insertion loss. These superior features make our device become a promising critical building block indispensable for future integrated nanophotonic networks. PMID:27958356

  18. Questionnaires on Family Satisfaction in the Adult ICU: A Systematic Review Including Psychometric Properties.

    PubMed

    van den Broek, Janneke M; Brunsveld-Reinders, Anja H; Zedlitz, Aglaia M E E; Girbes, Armand R J; de Jonge, Evert; Arbous, M Sesmu

    2015-08-01

    To perform a systematic review of the literature to determine which questionnaires are currently available to measure family satisfaction with care on the ICU and to provide an overview of their quality by evaluating their psychometric properties. We searched PubMed, Embase, The Cochrane Library, Web of Science, PsycINFO, and CINAHL from inception to October 30, 2013. Experimental and observational research articles reporting on questionnaires on family satisfaction and/or needs in the ICU were included. Two reviewers determined eligibility. Design, application mode, language, and the number of studies of the tools were registered. With this information, the tools were globally categorized according to validity and reliability: level I (well-established quality), II (approaching well-established quality), III (promising quality), or IV (unconfirmed quality). The quality of the highest level (I) tools was assessed by further examination of the psychometric properties and sample size of the studies. The search detected 3,655 references, from which 135 articles were included. We found 27 different tools that assessed overall or circumscribed aspects of family satisfaction with ICU care. Only four questionnaires were categorized as level I: the Critical Care Family Needs Inventory, the Society of Critical Care Medicine Family Needs Assessment, the Critical Care Family Satisfaction Survey, and the Family Satisfaction in the Intensive Care Unit. Studies on these questionnaires were of good sample size (n ≥ 100) and showed adequate data on face/content validity and internal consistency. Studies on the Critical Care Family Needs Inventory, the Family Satisfaction in the Intensive Care Unit also contained sufficient data on inter-rater/test-retest reliability, responsiveness, and feasibility. In general, data on measures of central tendency and sensitivity to change were scarce. Of all the questionnaires found, the Critical Care Family Needs Inventory and the Family Satisfaction in the Intensive Care Unit were the most reliable and valid in relation to their psychometric properties. However, a universal "best questionnaire" is indefinable because it depends on the specific goal, context, and population used in the inquiry.

  19. Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues

    PubMed Central

    Kim, Woong; Ferguson, Virginia L.; Borden, Mark; Neu, Corey P.

    2016-01-01

    The elastic properties of engineered biomaterials and tissues impact their post-implantation repair potential and structural integrity, and are critical to help regulate cell fate and gene expression. The measurement of properties (e.g., stiffness or shear modulus) can be attained using elastography, which exploits noninvasive imaging modalities to provide functional information of a material indicative of the regeneration state. In this review, we outline the current leading elastography methodologies available to characterize the properties of biomaterials and tissues suitable for repair and mechanobiology research. We describe methods utilizing magnetic resonance, ultrasound, and optical coherent elastography, highlighting their potential for longitudinal monitoring of implanted materials in vivo, in addition to spatiotemporal limits of each method for probing changes in cell-laden constructs. Micro-elastography methods now allow acquisitions at length scales approaching 5–100 μm in two and three dimensions. Many of the methods introduced in this review are therefore capable of longitudinal monitoring in biomaterials and tissues approaching the cellular scale. However, critical factors such as anisotropy, heterogeneity and viscoelasity—inherent in many soft tissues—are often not fully described and therefore require further advancements and future developments. PMID:26790865

  20. China-U.S. Relations: Current Issues and Implications for U.S. Policy

    DTIC Science & Technology

    2009-04-02

    exports, such as textiles, steel, and plastics , may soon be seeking similar remedies. Beijing sharply criticized the U.S. move. Intellectual Property...that U.S. policies toward the PRC should be reassessed in light of these trends. During the Bush Administration, Washington and Beijing cultivated...March 5, 2009 – China’s national legislature, the National People’s Congress, began its annual meeting in Beijing . The meeting focused on the

  1. A Submersible Holographic Camera for the Undisturbed Characterization of Optically Relevant Particles in Water (HOLOCAM)

    DTIC Science & Technology

    2012-09-01

    how to improve both reconstruction and analytical software during testing of the submersible system. IMPACT AND APPLICATIONS Quality of Life...project (see related projects below). It could also be used for sediment load monitoring and assesment . The HOLOCAM could provide critical data to any...Science Education and Communication Currently the link between the suspended particle field and the bulk scattering properties of natural waters is

  2. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties: Rice straw as a feedstock for biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satlewal, Alok; Agrawal, Ruchi; Bhagia, Samarthya

    The surplus availability of rice straw, its limited usage and environment pollution caused by inefficient burning has fostered research for its valorization to biofuels. This review elucidates the current status of rice straw potential around the globe along with recent advances in revealing the critical factors responsible for its recalcitrance and chemical properties. The role and accumulation of high silica content in rice straw has been elucidated with its impact on enzymatic hydrolysis in a biorefinery environment. The correlation of different pretreatment approaches in modifying the physiochemical properties of rice straw and improving the enzymatic accessibility has also been discussed.more » This study highlights new challenges, resolutions and opportunities for rice straw based biorefineries.« less

  3. Effects of interfacial stability between electron transporting layer and cathode on the degradation process of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chu, Ta-Ya; Lee, Yong-Han; Song, Ok-Keun

    2007-11-01

    The authors have demonstrated that the increase of electron injection barrier height between tris(8-hydroxyquinoline)aluminum (Alq3) and LiF /Al cathode is one of the most critical parameters to determine the reliability of organic light-emitting diode with the typical structure of indium tin oxide/N ,N'-bis(naphthalen-1-yl)-N ,N'-bis(phenyl) benzidine/Alq3/LiF /Al. The electrical properties of several devices (hole only, electron only, and integrated double-layered devices) have been measured in the function of operating time to analyze the bulk and interface property changes. Bulk properties of trap energy and mobility in an organic layer have been estimated by using trap-charge-limited currents and transient electroluminescence measurements.

  4. Effect of nanosized Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} on the transport critical current density of Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafiz, M.; Abd-Shukor, R.

    2014-09-03

    The effects of nano-sized Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} addition on the superconducting and transport properties of Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Bi-2223) in bulk form has been investigated. Bi-2223 superconductor was fabricated using co-precipitation method and 0.01 – 0.05 wt% of Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles with average size of 20 nm were added into the samples. The critical temperature (T{sub c}) and critical current density (J{sub c}) of the samples were measured by using the four-point probe method, while the phase formation and microstructure of the samples were examined using x-ray diffraction and SEM respectively.more » It was found that J{sub c} of all samples added with Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} were higher than non-added sample, with x = 0.01 wt. % sample showing the highest J{sub c}. This study showed that small addition of nano-Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} can effectively enhance the transport critical current density in Bi-2223 superconductor.« less

  5. Ternary NiFeX as soft biasing film in a magnetoresistive sensor

    NASA Astrophysics Data System (ADS)

    Chen, Mao-Min; Gharsallah, Neila; Gorman, Grace L.; Latimer, Jacquie

    1991-04-01

    The properties of NiFeX ternary films (X being Al, Au, Nb, Pd, Pt, Si, and Zr) have been studied for soft-film biasing of the magnetoresistive (MR) trilayer sensor. In general, the addition of the element X into the NiFe alloy film decreases the saturation magnetization Bs and magnetoresistance coefficient of the film, while increasing the film's electrical resistivity ρ. One of the desirable properties of a soft film for biasing is high sheet resistance for minimum current flow. A figure of merit Bsρ that takes into account both the rate of increase in Bs and the rate of decrease in ρ when adding X element was derived to compare the effectiveness of various X elements in reducing the current shunting through the soft-film layer. Using this criterion, NiFeNb and NiFeZr emerge as good soft-film materials having a maximum sheet resistance relative to the MR layer. Other critical properties such as magnetoresistance coefficient, magnetostriction, coercivity, and anisotropy field were also examined and are discussed in this paper.

  6. Developing Carbon Nanotube Standards at NASA

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs (Ref.1). The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST (Ref.2). Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  7. Developing Carbon Nanotube Standards at NASA

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs. The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST. Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Çataltepe, Ö. Aslan, E-mail: ozdenaslan@yahoo.com, E-mail: ozden.aslan@gedik.edu.tr; Özdemir, Z. Güven, E-mail: zguvenozdemir@yahoo.com; Onbaşlı, Ü., E-mail: phonon@doruk.net.tr

    In this work, the effect of oxygen doping on the critical parameters of the mercury based superconducting sample such as critical transition temperature, T{sub c}, critical magnetic field, H{sub c}, critical current density, J{sub c}, has been investigated by the magnetic susceptibility versus temperature (χ-T) and magnetization versus applied magnetic field (M-H) measurements and, X-Ray Diffraction (XRD) patterns. It has been observed that regardless of the oxygen doping concentration, the mercury cuprate system possesses two intrinsic superconducting phases together, HgBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8+x} and HgBa{sub 2}CaCu{sub 2}O{sub 6+x}. However, the highest T{sub c} has been determined for the optimummore » oxygen doped sample. Moreover, it has been revealed that superconducting properties, crystal lattice parameters, coherent lengths, ξ{sub ab}, ξ{sub c} and the anisotropy factor γ etc. are very sensitive to oxygen doping procedures. Hence, the results presented this work enables one to obtain the mercury based superconductor with the most desirable criticals and other parameters for theoretical and technological applications by arranging the oxygen doping concentration.« less

  9. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling.

    PubMed

    Xie, Chiyu; Zhang, Jianying; Bertola, Volfango; Wang, Moran

    2016-02-01

    The evaporation of water drop deposited on a horizontal substrate is investigated using a lattice Boltzmann method (LBM) for multiphase flows with a large-density ratio. To account for the variation of evaporation flux distribution along the drop interface, a novel evaporation scheme is introduced into the LBM framework, and validated by comparison with experimental data. We aim at discovering the effect of gravity on the evaporating drop in detail, and various evaporation conditions are considered as well as different wetting properties of the substrates. An effective diameter is introduced as an indicator of the critical drop size under which gravity is negligible. Our results show that such critical diameter is much smaller than the capillary length, which has been widely accepted as the critical size in previous and current works. The critical diameter is found to be almost independent of the evaporation conditions and the surface wettability. A correlation between this critical diameter and the capillary length is also proposed for easy use in applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Calculations of critical misfit and thickness: An overview

    NASA Technical Reports Server (NTRS)

    Vandermerwe, Jan H.; Jesser, W. A.

    1988-01-01

    This overview stresses the equilibrium/nonequilibrium nature of the physical properties, as well as the basic properties of the models, used to calculate critical misfit and critical thickness in epitaxy.

  11. Role of particle radiotherapy in the management of head and neck cancer.

    PubMed

    Laramore, George E

    2009-05-01

    Modern imaging techniques and powerful computers allow a radiation oncologist to design treatments delivering higher doses of radiation than previously possible. Dose distributions imposed by the physics of 'standard' photon and electron beams limit further dose escalation. Hadron radiotherapy offers advantages in either dose distribution and/or improved radiobiology that may significantly improve the treatment of certain head and neck malignancies. Clinical studies support the effectiveness of fast-neutron radiotherapy in the treatment of major and minor salivary gland tumors. Data show highly favorable outcomes with proton radiotherapy for skull-base malignancies and tumors near highly critical normal tissues compared with that expected with standard radiotherapy. Heavy-ion radiotherapy clinical studies are mainly being conducted with fully stripped carbon ions, and limited data seem to indicate a possible improvement over proton radiotherapy for the same subset of radioresistant tumors where neutrons show a benefit over photons. Fast-neutron radiotherapy has different radiobiological properties compared with standard radiotherapy but similar depth dose distributions. Its role in the treatment of head and neck cancer is currently limited to salivary gland malignancies and certain radioresistant tumors such as sarcomas. Protons have the same radiobiological properties as standard radiotherapy beams but more optimal depth dose distributions, making it particularly advantageous when treating tumors adjacent to highly critical structures. Heavy ions combine the radiobiological properties of fast neutrons with the physical dose distributions of protons, and preliminary data indicate their utility for radioresistant tumors adjacent to highly critical structures.

  12. Applications of antibodies in microfluidics-based analytical systems: challenges and strategies for success

    NASA Astrophysics Data System (ADS)

    O’Kennedy, Richard; Fitzgerald, Jenny; Cassedy, Arabelle; Crawley, Aoife; Zhang, Xin; Carrera, Sandro

    2018-06-01

    This review is designed to focus on antibodies and the attributes that make them ideal for applications in microfluidics-based diagnostic/separation platforms. The structures of different antibody formats and how they can be engineered to be highly effective in microfluidics-based environments will be highlighted. Suggested novel stratagems on the ideal way in which they can be employed in microfluidics systems, based on an informed knowledge of their structures and properties rather than random choice selection, as is often currently employed, will be provided. Finally, a critical assessment of current shortcomings in the approaches used along with possible ways for their resolution will be given.

  13. Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurements. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1991-01-01

    The purpose of this dissertation was the following: (1) to characterize the effect of pore fraction on a comprehensive set of electrical and magnetic properties for the yttrium-barium-copper-oxide (YBCO) high temperature ceramic superconductor; and (2) to determine the viability of using a room-temperature, nondestructive characterization method to aid in the prediction of superconducting (cryogenic) properties. The latter involved correlating ultrasonic velocity measurements at room temperature with property-affecting pore fraction and oxygen content variations. The use of ultrasonic velocity for estimating pore fraction in YBCO is presented, and other polycrystalline materials are reviewed, modeled, and statistically analyzed. This provides the basis for using ultrasonic velocity to interrogate microstructure. The effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples was characterized. Spatial (within-sample) variations in microstructure and superconductor properties were investigated, and the effect of oxygen content on elastic behavior was examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristics. An ultrasonic velocity image constructed from measurements at 1mm increments across a YBCO sample revealed microstructural variations that correlated with variations in magnetic shielding and a.c. loss behavior. Destructive examination using quantitative image analysis revealed pore fraction to be the varying microstructural feature.

  14. Earthquake nucleation on faults with rate-and state-dependent strength

    USGS Publications Warehouse

    Dieterich, J.H.

    1992-01-01

    Dieterich, J.H., 1992. Earthquake nucleation on faults with rate- and state-dependent strength. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 115-134. Faults with rate- and state-dependent constitutive properties reproduce a range of observed fault slip phenomena including spontaneous nucleation of slip instabilities at stresses above some critical stress level and recovery of strength following slip instability. Calculations with a plane-strain fault model with spatially varying properties demonstrate that accelerating slip precedes instability and becomes localized to a fault patch. The dimensions of the fault patch follow scaling relations for the minimum critical length for unstable fault slip. The critical length is a function of normal stress, loading conditions and constitutive parameters which include Dc, the characteristic slip distance. If slip starts on a patch that exceeds the critical size, the length of the rapidly accelerating zone tends to shrink to the characteristic size as the time of instability approaches. Solutions have been obtained for a uniform, fixed-patch model that are in good agreement with results from the plane-strain model. Over a wide range of conditions, above the steady-state stress, the logarithm of the time to instability linearly decreases as the initial stress increases. Because nucleation patch length and premonitory displacement are proportional to Dc, the moment of premonitory slip scales by D3c. The scaling of Dc is currently an open question. Unless Dc for earthquake faults is significantly greater than that observed on laboratory faults, premonitory strain arising from the nucleation process for earthquakes may by too small to detect using current observation methods. Excluding the possibility that Dc in the nucleation zone controls the magnitude of the subsequent earthquake, then the source dimensions of the smallest earthquakes in a region provide an upper limit for the size of the nucleation patch. ?? 1992.

  15. Co-current Doping Effect of Nanoscale Carbon and Aluminum Nitride on Critical Current Density and Flux Pinning Properties of Bulk MgB2 Superconductors

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Dey, T. K.

    2018-05-01

    The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk MgB2 superconductor has been investigated. Polycrystalline pellets of MgB2, MgB2 + 0.5 wt% AlN (nano), MgB_{1.99}C_{0.01} and MgB_{1.99}C_{0.01} + 0.5 wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (TC) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped MgB2 samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. MgB2 pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (J_C) of MgB2 in both low (≥ 3 times), as well as, high-field region (≥ 15 times). J_C versus H behavior of both pristine and doped MgB2 pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density f_p(= F_p/F_{pmax}) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., f_p{-}h data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.

  16. Synthesis, anisotropy, and superconducting properties of LiFeAs single crystal

    NASA Astrophysics Data System (ADS)

    Song, Yoo Jang; Ghim, Jin Soo; Min, Byeong Hun; Kwon, Yong Seung; Jung, Myung Hwa; Rhyee, Jong-Soo

    2010-05-01

    A LiFeAs single crystal with Tconset˜19.7 K was grown in a sealed tungsten crucible using the Bridgeman method. The electrical resistivity experiments revealed a ratio of room temperature to residual resistivity of approximately 46 and 18 for the in-plane and out-of plane directions, respectively. The estimated anisotropic resistivity, γρ=ρc/ρab, was approximately 3.3 at Tconset. The upper critical fields had large Hc2∥ab and Hc2∥c values of 83.4 T and 72.5 T, respectively, and an anisotropy ratio is γH=Hc2∥ab/Hc2∥c˜1.15. The high upper critical field value and small anisotropy highlight the potential use of LiFeAs in a variety of applications. The calculated critical current density (Jc) from the M-H loop is approximately 103 A/cm2

  17. Critical behavior of magnetization in URhAl: Quasi-two-dimensional Ising system with long-range interactions

    NASA Astrophysics Data System (ADS)

    Tateiwa, Naoyuki; Pospíšil, Jiří; Haga, Yoshinori; Yamamoto, Etsuji

    2018-02-01

    The critical behavior of dc magnetization in the uranium ferromagnet URhAl with the hexagonal ZrNiAl-type crystal structure has been studied around the ferromagnetic transition temperature TC. The critical exponent β for the temperature dependence of the spontaneous magnetization below TC,γ for the magnetic susceptibility, and δ for the magnetic isotherm at TC, have been obtained with a modified Arrott plot, a Kouvel-Fisher plot, the critical isotherm analysis, and the scaling analysis. We have determined the critical exponents as β =0.287 ±0.005 , γ =1.47 ±0.02 , and δ =6.08 ±0.04 by the scaling analysis and the critical isotherm analysis. These critical exponents satisfy the Widom scaling law δ =1 +γ /β . URhAl has strong uniaxial magnetic anisotropy, similar to its isostructural UCoAl that has been regarded as a three-dimensional (3D) Ising system in previous studies. However, the universality class of the critical phenomenon in URhAl does not belong to the 3D Ising model (β =0.325 , γ =1.241 , and δ =4.82 ) with short-range exchange interactions between magnetic moments. The determined exponents can be explained with the results of the renormalization group approach for a two-dimensional (2D) Ising system coupled with long-range interactions decaying as J (r ) ˜r-(d +σ ) with σ =1.44 . We suggest that the strong hybridization between the uranium 5 f and rhodium 4 d electrons in the U-RhI layer in the hexagonal crystal structure is a source of the low-dimensional magnetic property. The present result is contrary to current understandings of the physical properties in a series of isostructural UTX uranium ferromagnets (T: transition metals, X: p -block elements) based on the 3D Ising model.

  18. Influence of concentration polarization on DNA translocation through a nanopore.

    PubMed

    Zhai, Shengjie; Zhao, Hui

    2016-05-01

    Concentration polarization can be induced by the unique ion-perm selectivity of small nanopores, leading to a salt concentration gradient across nanopores. This concentration gradient can create diffusio-osmosis and induce an electric field, affecting ionic currents on DNA that translocates through a nanopore. Here this influence is theoretically investigated by solving the continuum Poisson-Nernst-Planck model for different salt concentrations, DNA surface charge densities, and pore properties. By implementing the perturbation method, we can explicitly compute the contribution of concentration polarization to the ionic current. The induced electric field by concentration polarization is opposite to the imposed electric field and decreases the migration current, and the induced diffusio-osmosis can decrease the convection current as well. Our studies suggest that the importance of the concentration polarization can be determined by the parameter λ/G where λ is the double-layer thickness and G is the gap size. When λ/G is larger than a critical value, the influence of concentration polarization becomes more prominent. This conclusion is supported by the studies on the dependence of the ionic current on salt concentration and pore properties, showing that the difference between two models with and without accounting for concentration polarization is larger for low salts and small pores, which correspond to larger λ/G.

  19. Temperature dependent pinning landscapes in REBCO thin films

    NASA Astrophysics Data System (ADS)

    Jaroszynski, Jan; Constantinescu, Anca-Monia; Hu, Xinbo Paul

    2015-03-01

    The pinning landscapes of REBCO (RE=rare earth elements) thin films have been a topic of study in recent years due to, among other reasons, their high ability to introduce various phases and defects. Pinning mechanisms studies in high temperature superconductors often require detailed knowledge of critical current density as a function of magnetic field orientation as well as field strength and temperature. Since the films can achieve remarkably high critical current, challenges exist in evaluating these low temperature (down to 4.2 K) properties in high magnetic fields up to 30 T. Therefore both conventional transport, and magnetization measurements in a vibrating coil magnetometer equipped with rotating sample platform were used to complement the study. Our results clearly show an evolution of pinning from strongly correlated effects seen at high temperatures to significant contributions from dense but weak pins that thermal fluctuations render ineffective at high temperatures but which become strong at lower temperatures Support for this work is provided by the NHMFL via NSF DRM 1157490

  20. [Indications of dexmedetomidine in the current sedoanalgesia tendencies in critical patients].

    PubMed

    Romera Ortega, M A; Chamorro Jambrina, C; Lipperheide Vallhonrat, I; Fernández Simón, I

    2014-01-01

    Recently, dexmedetomidine has been marketed in Spain and other European countries. The published experience regarding its use has placed dexmedetomidine on current trends in sedo-analgesic strategies in the adult critically ill patient. Dexmedetomidine has sedative and analgesic properties, without respiratory depressant effects, inducing a degree of depth of sedation in which the patient can open its eyes to verbal stimulation, obey simple commands and cooperate in nursing care. It is therefore a very useful drug in patients who can be maintained on mechanical ventilation with these levels of sedation avoiding the deleterious effects of over or infrasedation. Because of its effects on α2-receptors, it's very useful for the control and prevention of tolerance and withdrawal to other sedatives and psychotropic drugs. The use of dexmedetomidine has been associated with lower incidence of delirium when compared with other sedatives. Moreover, it's a potentially useful drug for sedation of patients in non-invasive ventilation. Copyright © 2013 Elsevier España, S.L. y SEMICYUC. All rights reserved.

  1. Fabrication and properties of multifilamentary MgB 2 wires by in-situ powder-in-tube process

    NASA Astrophysics Data System (ADS)

    Wang, Q. Y.; Jiao, G. F.; Liu, G. Q.; Xiong, X. M.; Yan, S. C.; Zhang, P. X.; Sulpice, A.; Mossang, E.; Feng, Y.; Yan, G.

    2010-11-01

    We have fabricated the long TiC-doped MgB2 wires with 6 filaments by in-situ powder-in-tube method using Nb as the barrier and copper as the stabilizer. To improve the strength of wires, the Nb-core was used as the central filament. The transport engineering critical current density (Jce) of the samples sintered at different temperature were measured, which reaches 2.5 × 104 A/cm2 at 4.2 K, 5 T. 100 m MgB2 wires with different diameter were wound into coils and the transport critical current (Ic) of the coil were measured at 30 K in self-field. The Jce value 100 m coil achieves 1.1 × 104 A/cm2 in 1.2 mm wire. The reasons leading to the enhancement of high field Jce were discussed. The results show a good potential to fabricate high performance MgB2 wires and tapes at ambient pressure on an industrial scale.

  2. Enhanced mechanical properties of self-polymerized polydopamine-coated recycled PLA filament used in 3D printing

    NASA Astrophysics Data System (ADS)

    Zhao, Xing Guan; Hwang, Kyung-Jun; Lee, Dongoh; Kim, Taemin; Kim, Namsu

    2018-05-01

    Dopamine readily adsorbs onto almost all kinds of surfaces and develops cohesive strength through self-polymerization; hence, aqueous solutions of dopamine can be used as adhesives. These properties were used to prevent the degradation in the mechanical properties of recycled PLA fabricated by 3D printer. The mechanical properties of 3D printed PLA play a critical role in determining its applications. To reduce the manufacturing cost as well as environmental pollutants, recycling of 3D printed materials has attracted many attentions. However, recycling of polymeric materials causes the degradation of the mechanical properties. Our study is aimed at advancing the current knowledge on the adhesion behavior of polydopamine coatings on PLA pellets used in 3D printing process. Polydopamine was synthesized by oxidative polymerization and used to coat PLA specimens. The adhesion behavior and mechanical properties of the 3D printed specimens were evaluated by tensile tests. It was found that the mechanical properties of recycled specimen with polydopamine coating have been improved. Microstructural and chemical characterization of the coated specimens was carried out using FE-SEM, FTIR, and XPS analyses.

  3. A critical evaluation of the enhancement of mechanical properties of epoxy modified using CNTs

    NASA Astrophysics Data System (ADS)

    Bedsole, Robert W.; Park, Cheol; Bogert, Philip B.; Tippur, Hareesh V.

    2015-09-01

    Carbon nanotubes (CNTs) have been widely shown in the literature to improve mechanical properties of epoxy, such as tensile strength, elastic modulus, strain to failure, and fracture toughness. These improvements in nanocomposite properties have been attributed to the extraordinary properties of the nanotubes, as well as the quality of their dispersion within and adhesion to the epoxy matrix. However, many authors have also struggled to show significant mechanical improvements using similar methodologies and despite, in some cases, showing qualitative improvements in dispersion with optical microscopy. These authors have frequently resorted to other methods for improving the mechanical properties of CNT/epoxy, such as electrically aligning CNTs, using different types of CNTs, or modifying the stoichiometry. The current work examines many different dispersion techniques, types of CNTs, types of epoxies, curing cycles, and other variables in an attempt to improve the mechanical properties of neat epoxy with CNTs. Despite seeing significant changes in the microscopy, no significant improvements in tensile or fracture properties have been attributed to CNTs in this work.

  4. Structure for Storing Properties of Particles (PoP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N. R.; Mattoon, C. M.; Beck, B. R.

    2014-06-01

    Some evaluated nuclear databases are critical for applications such as nuclear energy, nuclear medicine, homeland security, and stockpile stewardship. Particle masses, nuclear excitation levels, and other “Properties of Particles” are essential for making evaluated nuclear databases. Currently, these properties are obtained from various databases that are stored in outdated formats. Moreover, the “Properties of Particles” (PoP) structure is being designed that will allow storing all information for one or more particles in a single place, so that each evaluation, simulation, model calculation, etc. can link to the same data. Information provided in PoP will include properties of nuclei, gammas andmore » electrons (along with other particles such as pions, as evaluations extend to higher energies). Presently, PoP includes masses from the Atomic Mass Evaluation version 2003 (AME2003), and level schemes and gamma decays from the Reference Input Parameter Library (RIPL-3). The data are stored in a hierarchical structure. An example of how PoP stores nuclear masses and energy levels will be presented here.« less

  5. Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review.

    PubMed

    Lavoine, Nathalie; Desloges, Isabelle; Dufresne, Alain; Bras, Julien

    2012-10-01

    Interest in microfibrillated cellulose (MFC) has been increasing exponentially. During the last decade, this bio-based nanomaterial was essentially used in nanocomposites for its reinforcement property. Its nano-scale dimensions and its ability to form a strong entangled nanoporous network, however, have encouraged the emergence of new high-value applications. In previous years, its mode of production has completely changed, as many forms of optimization have been developed. New sources, new mechanical processes, and new pre- and post-treatments are currently under development to reduce the high energy consumption and produce new types of MFC materials on an industrial scale. The nanoscale characterization possibilities of different MFC materials are thus increasing intensively. Therefore, it is critical to review such MFC materials and their properties. Moreover, very recent studies have proved the significant barrier properties of MFC. Hence, it is proposed to focus on the barrier properties of MFC used in films, in nanocomposites, or in paper coating. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang

    2015-03-02

    The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less

  7. Structure for Storing Properties of Particles (PoP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N.R., E-mail: infinidhi@llnl.gov; Mattoon, C.M.; Beck, B.R.

    2014-06-15

    Evaluated nuclear databases are critical for applications such as nuclear energy, nuclear medicine, homeland security, and stockpile stewardship. Particle masses, nuclear excitation levels, and other “Properties of Particles” are essential for making evaluated nuclear databases. Currently, these properties are obtained from various databases that are stored in outdated formats. A “Properties of Particles” (PoP) structure is being designed that will allow storing all information for one or more particles in a single place, so that each evaluation, simulation, model calculation, etc. can link to the same data. Information provided in PoP will include properties of nuclei, gammas and electrons (alongmore » with other particles such as pions, as evaluations extend to higher energies). Presently, PoP includes masses from the Atomic Mass Evaluation version 2003 (AME2003), and level schemes and gamma decays from the Reference Input Parameter Library (RIPL-3). The data are stored in a hierarchical structure. An example of how PoP stores nuclear masses and energy levels will be presented here.« less

  8. Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    NASA Astrophysics Data System (ADS)

    Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.

    2017-10-01

    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.

  9. Magnetization and transport properties of silver-sheathed (Hg, Re)Ba2Ca2Cu3O8+delta tapes

    NASA Astrophysics Data System (ADS)

    Su, J. H.; Sastry, P. V. P. S. S.; Schwartz, J.

    2003-10-01

    (Hg, Re)Ba2Ca2Cu3O8+delta ((Hg, Re)-1223) samples have been fabricated by wrapping Re0.2Ba2Ca2Cu3Oy precursor powder within Ag foil and pressing or rolling. The Ag/precursor composite is then reacted with CaHgO2 in sealed reaction tubes. X-ray diffraction (XRD) patterns showed only one superconducting phase, (Hg, Re)-1223, in agreement with magnetization measurements showing an onset critical temperature (Tc) of 132 K. The magnetization properties were studied by dc magnetic measurements. The irreversibility line (Hirr), deduced from magnetization hysteresis loops, is approximated by a power law, Hirr ~ (1 - T/Tc)n, with n ~ 2.5, indicating moderate coupling between CuO2 layers compared to YBa2Cu3O7 (n ~ 1.5) and Bi/Tl-based superconductors (n ~ 5.5). The temperature dependence of the magnetization hysteresis loop width DeltaM showed three regimes, dominated by weak links at low temperature (regime I), thermally activated depinning of vortices at intermediate temperature (regime II) and giant flux creep at high temperature (regime III), respectively. Two field dependences were found in the intragrain critical current density (Jmagc) versus applied field at various temperatures: a weak one at lower temperature (leq50 K) and a stronger one at high temperature (geq65 K), indicating a transition from vortex lattice to vortex liquid in the tapes. The transport critical current density (Jtranc) of ~3 × 103 A cm-2 at 4.2 K and self-field was comparable to those for bulk Hg-based superconductors, indicating granular nature of the samples, which was confirmed further by XRD, scanning electron microscopy (SEM) and magneto-optical imaging (MOI).

  10. Stem Cells in the Face: Tooth Regeneration and Beyond

    PubMed Central

    Mao, Jeremy J.; Robey, Pamela G.; Prockop, Darwin J.

    2014-01-01

    Postnatal orofacial tissues contain rare cells that exhibit stem/progenitor cell properties. Despite a tremendous unmet clinical need for regeneration of tissues lost in congenital anomalies, infections, trauma or tumor resection, how orofacial stem/progenitor cells contribute to tissue development, pathogenesis and regeneration is largely a mystery. This perspective article critically analyzes the current status of orofacial stem/progenitor cells, identifies gaps in our understanding and highlights pathways for the development of regenerative therapies. PMID:22958928

  11. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, Joseph Christopher; Spearing, Dane Robert; Labouriau, Andrea

    Microclad is a composite material consisting of a thin copper coating applied on a single side over a Kapton substrate. Kapton is the commercial designator for polyimide supplied by DuPont. Microclad is a key material in detonator manufacture and function. Detonators which utilize Microclad function when a large current applied through a thin bridge etched into the copper produces a plasma, accelerating a Kapton flyer into an explosive (PETN) pellet. The geometry and properties of the Microclad are a critical element of this process.

  13. Nanostructuring superconductors by ion beams: A path towards materials engineering

    NASA Astrophysics Data System (ADS)

    Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto

    2013-07-01

    The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

  14. Machine-Checkable Timed CSP

    NASA Technical Reports Server (NTRS)

    Goethel, Thomas; Glesner, Sabine

    2009-01-01

    The correctness of safety-critical embedded software is crucial, whereas non-functional properties like deadlock-freedom and real-time constraints are particularly important. The real-time calculus Timed Communicating Sequential Processes (CSP) is capable of expressing such properties and can therefore be used to verify embedded software. In this paper, we present our formalization of Timed CSP in the Isabelle/HOL theorem prover, which we have formulated as an operational coalgebraic semantics together with bisimulation equivalences and coalgebraic invariants. Furthermore, we apply these techniques in an abstract specification with real-time constraints, which is the basis for current work in which we verify the components of a simple real-time operating system deployed on a satellite.

  15. A Critical Review of Lipid-based Nanoparticles for Taxane Delivery

    PubMed Central

    Feng, Lan; Mumper, Russell J.

    2012-01-01

    Nano-based delivery systems have attracted a great deal of attention in the past two decades as a strategy to overcome the low therapeutic index of conventional anticancer drugs and delivery barriers in solid tumors. Myriads of preclinical studies have been focused on developing nano-based formulations to effectively deliver taxanes, one of the most important and most prescribed anticancer drug types in the clinic. Given the hydrophobic property of taxanes, lipid-based NPs, serve as a viable alternative delivery system. This critical review will provide an overview and perspective of the advancement of lipid-based nanoparticles for taxane delivery. Currently available formulations of taxanes and their drawbacks as well as criteria for idea taxane delivery system will be discussed. PMID:22796606

  16. Nitrogen nucleation in a cryogenic supersonic nozzle

    NASA Astrophysics Data System (ADS)

    Bhabhe, Ashutosh; Wyslouzil, Barbara

    2011-12-01

    We follow the vapor-liquid phase transition of N2 in a cryogenic supersonic nozzle apparatus using static pressure measurements. Under our operating conditions, condensation always occurs well below the triple point. Mean field kinetic nucleation theory (MKNT) does a better job of predicting the conditions corresponding to the estimated maximum nucleation rates, Jmax = 1017±1 cm-3 s-1, than two variants of classical nucleation theory. Combining the current results with the nucleation pulse chamber measurements of Iland et al. [J. Chem. Phys. 130, 114508-1 (2009)], we use nucleation theorems to estimate the critical cluster properties. Both the theories overestimate the size of the critical cluster, but MKNT does a good job of estimating the excess internal energy of the clusters.

  17. Patterning techniques for metal organic frameworks.

    PubMed

    Falcaro, Paolo; Buso, Dario; Hill, Anita J; Doherty, Cara M

    2012-06-26

    The tuneable pore size and architecture, chemical properties and functionalization make metal organic frameworks (MOFs) attractive versatile stimuli-responsive materials. In this context, MOFs hold promise for industrial applications and a fervent research field is currently investigating MOF properties for device fabrication. Although the material properties have a crucial role, the ability to precisely locate the functional material is fundamental for device fabrication. In this progress report, advancements in the control of MOF positioning and precise localization of functional materials within MOF crystals are presented. Advantages and limitations of each reviewed technique are critically investigated, and several important gaps in the technological development for device fabrication are highlighted. Finally, promising patterning techniques are presented which are inspired by previous studies in organic and inorganic crystal patterning for the future of MOF lithography. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Fabrication Technique and Property Analysis of Racetrack-Type High Temperature Superconducting Magnet for High Power Motor

    NASA Astrophysics Data System (ADS)

    Xie, S. F.; Wang, Y.; Wang, D. Y.; Zhang, X. J.; Zhao, B.; Zhang, Y. Y.; Li, L.; Li, Y. N.; Chen, P. M.

    2013-03-01

    The superconducting motor is now the focus of the research on the application of high temperature superconducting (HTS) materials. In this manuscript, we mainly introduce the recent progress on the fabrication technique and property research of the superconducting motor magnet in Luoyang Ship Material Research Institute (LSMRI) in China, including the materials, the winding and impregnation technique, and property measurement of magnet. Several techniques and devices were developed to manufacture the magnet, including the technique of insulation and thermal conduction, the device for winding the racetrack-type magnet, etc. At last, the superconducting magnet used for the MW class motor were successfully developed, which is the largest superconducting motor magnet in china at present. The critical current of the superconducting magnet exceeds the design value (90 A at 30 K).

  19. Biophysical Insights into How Spike Threshold Depends on the Rate of Membrane Potential Depolarization in Type I and Type II Neurons

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Dynamic spike threshold plays a critical role in neuronal input-output relations. In many neurons, the threshold potential depends on the rate of membrane potential depolarization (dV/dt) preceding a spike. There are two basic classes of neural excitability, i.e., Type I and Type II, according to input-output properties. Although the dynamical and biophysical basis of their spike initiation has been established, the spike threshold dynamic for each cell type has not been well described. Here, we use a biophysical model to investigate how spike threshold depends on dV/dt in two types of neuron. It is observed that Type II spike threshold is more depolarized and more sensitive to dV/dt than Type I. With phase plane analysis, we show that each threshold dynamic arises from the different separatrix and K+ current kinetics. By analyzing subthreshold properties of membrane currents, we find the activation of hyperpolarizing current prior to spike initiation is a major factor that regulates the threshold dynamics. The outward K+ current in Type I neuron does not activate at the perithresholds, which makes its spike threshold insensitive to dV/dt. The Type II K+ current activates prior to spike initiation and there is a large net hyperpolarizing current at the perithresholds, which results in a depolarized threshold as well as a pronounced threshold dynamic. These predictions are further attested in several other functionally equivalent cases of neural excitability. Our study provides a fundamental description about how intrinsic biophysical properties contribute to the threshold dynamics in Type I and Type II neurons, which could decipher their significant functions in neural coding. PMID:26083350

  20. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity

    NASA Astrophysics Data System (ADS)

    Das, S.; Sahoo, T.; Meylan, M. H.

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  1. Preparation and physical properties of polycrystalline (Bi1-xPbx)2Sr2Ca2Cu3Oy high T c superconductors

    NASA Astrophysics Data System (ADS)

    Awan, M. S.; Maqsood, M.; Mirza, S. A.; Yousaf, M.; Maqsood, A.

    1995-02-01

    (Bi1-xPbx:)2Sr2Ca2Cu3Oy ( x = 0.3) high critical transition temperature ( T c) superconductors are synthesized by the solid-state reaction method in polycrystalline form. X-ray diffraction (XRD) studies, direct current (dc) electrical resistivity measurements, scanning electron microscopic (SEM) studies, critical current density measurements, and zero-field alternating current (ac) susceptibility measurements are performed to investigate the physical changes, structural changes, and magnetic behavior of the superconducting samples. X-ray diffraction studies show that a high T c phase exists with orthorhombic symmetry in the specimen. According to the XRD data, the lattice parameters of the high T c phase were determined as a = 0.537(1) nm, b = 0.539(1) nm, and c = 3.70(1) nm. The compound exhibits a superconducting transition at 106 ±1 K for zero resistance. The ac susceptibility measurements in zero field confirm the dc electrical resistivity results; hence both support the XRD results. The particle size and structural changes as a function of the cold-pressing and aging effect are also reported.

  2. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity.

    PubMed

    Das, S; Sahoo, T; Meylan, M H

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  3. 41 CFR 102-33.375 - What is a FSCAP Criticality Code?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is a FSCAP Criticality Code? 102-33.375 Section 102-33.375 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 33-MANAGEMENT OF...

  4. An experimental and theoretical study of new phosphors for full color field emission displays

    NASA Astrophysics Data System (ADS)

    Zhang, Fu-Li

    An in depth study is reported of the cathodoluminescent (CL) properties of three new highly efficiency blue phosphors for field emission display (FED) applications doped with fast activators. The superior performance of a new Eu-doped green SrGa2S4 will also be reported. This work addresses four main topics: (1) a detailed study of the dependence of the luminescent intensity on activator concentration, as a function of electron beam voltage and current density; (2) the optical properties of thew phosphors and the development of a CL efficiency characterization technique using a critical screen weight method, which can obtain maximum light output and improve measurement accuracy; (3) understanding the low voltage CL mechanism associated with nanocrystal size by developing a thin film and disk model based on transportation theory and experimental results; (4) Development of a comprehensive evaluation method of red, green, and blue (RGB) phosphors for full color displays by calculation of luminance ratios, required luminance, and measurements of spectra, efficiency and saturation behavior. For FEDs which combine the best properties of CRT and flat panel displays, the development of efficient phosphors at low voltages and high current densities is shown to be critical to meet the luminance and power requirement demands for portable displays. Of particular importance is the need for a good blue phosphor, and to understand the dependence of the CL efficiency on nanocrystal size, penetration depth, diffusion length and surface recombination rate. This has been obtained from the thin film and disk models and fits to experiment. Comparisons between full color phosphor sets show that the performance of a display can vary by over a factor of three depending on the choice of the RGB set. Other factors that are important for optimizing the performance of FED phosphors are reviewed.

  5. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    PubMed

    Yang, Lin; Dai, Meng; Xu, Canhua; Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  6. Numerical modelling of iron-pnictide bulk superconductor magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, Mark D.; Yamamoto, Akiyasu; Fujishiro, Hiroyuki; Weiss, Jeremy D.; Hellstrom, Eric E.

    2017-10-01

    Iron-based superconductors exhibit a number of properties attractive for applications, including low anisotropy, high upper critical magnetic fields (H c2) in excess of 90 T and intrinsic critical current densities above 1 MA cm-2 (0 T, 4.2 K). It was shown recently that bulk iron-pnictide superconducting magnets capable of trapping over 1 T (5 K) and 0.5 T (20 K) can be fabricated with fine-grain polycrystalline Ba0.6K0.4Fe2As2 (Ba122). These Ba122 magnets were processed by a scalable, versatile and low-cost method using common industrial ceramic processing techniques. In this paper, a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, is used to investigate the magnetisation properties of such iron-pnictide bulk superconductors. Using the measured J c(B, T) characteristics of a small specimen taken from a bulk Ba122 sample, experimentally measured trapped fields are reproduced well for a single bulk, as well as a stack of bulks. Additionally, the influence of the geometric dimensions (thickness and diameter) on the trapped field is analysed, with a view of fabricating larger samples to increase the magnetic field available from such trapped field magnets. It is shown that, with current state-of-the-art superconducting properties, surface trapped fields >2 T could readily be achieved at 5 K (and >1 T at 20 K) with a sample of diameter 50 mm. Finally, an aspect ratio of between 1 and 1.5 for R/H (radius/thickness) would be an appropriate compromise between the accessible, surface trapped field and volume of superconducting material for bulk Ba122 magnets.

  7. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz

    PubMed Central

    Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects’ heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection. PMID:28107524

  8. Critical de Broglie wavelength in superconductors

    NASA Astrophysics Data System (ADS)

    Talantsev, E. F.

    2018-03-01

    There are growing numbers of experimental evidences that the self-field critical currents, Jc(sf,T), are a new instructive tool to investigate fundamental properties of superconductors ranging from atomically thin films [M. Liao et al., Nat. Phys. 6 (2018), https://doi.org/10.1038/s41567-017-0031-6; E. F. Talantsev et al., 2D Mater. 4 (2017) 025072; A. Fete et al., Appl. Phys. Lett. 109 (2016) 192601] to millimeter-scale samples [E. F. Talantsev et al., Sci. Rep. 7 (2017) 10010]. The basic empirical equation which quantitatively accurately described experimental Jc(sf,T) was proposed by Talantsev and Tallon [Nat. Commun. 6 (2015) 7820] and it was the relevant critical field (i.e. thermodynamic field, Bc, for type-I and lower critical field, Bc1, for type-II superconductors) divided by the London penetration depth, λL. In this paper, we report new findings relating to this empirical equation. It is that the critical wavelength of the de Broglie wave, λdB,c, of the superconducting charge carrier which within a numerical pre-factor is equal to the largest of two characteristic lengths of Ginzburg-Landau theory, i.e. the coherence length, ξ, for type-I superconductors or the London penetration depth, λL, for type-II superconductors. We also formulate a microscopic criterion for the onset of dissipative transport current flow: ps ṡ 2ṡλL ln(1+2ṡ(λL ξ )) ≥ 1 2 ṡ ( h 2π), where ps is the charge carrier momentum, h is Planck’s constant and the inequality sign “ <” is reserved for the dissipation-free flow.

  9. Critic: a new program for the topological analysis of solid-state electron densities

    NASA Astrophysics Data System (ADS)

    Otero-de-la-Roza, A.; Blanco, M. A.; Pendás, A. Martín; Luaña, Víctor

    2009-01-01

    In this paper we introduce CRITIC, a new program for the topological analysis of the electron densities of crystalline solids. Two different versions of the code are provided, one adapted to the LAPW (Linear Augmented Plane Wave) density calculated by the WIEN2K package and the other to the ab initio Perturbed Ion ( aiPI) density calculated with the PI7 code. Using the converged ground state densities, CRITIC can locate their critical points, determine atomic basins and integrate properties within them, and generate several graphical representations which include topological atomic basins and primary bundles, contour maps of ρ and ∇ρ, vector maps of ∇ρ, chemical graphs, etc. Program summaryProgram title: CRITIC Catalogue identifier: AECB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL, version 3 No. of lines in distributed program, including test data, etc.: 1 206 843 No. of bytes in distributed program, including test data, etc.: 12 648 065 Distribution format: tar.gz Programming language: FORTRAN 77 and 90 Computer: Any computer capable of compiling Fortran Operating system: Unix, GNU/Linux Classification: 7.3 Nature of problem: Topological analysis of the electron density in periodic solids. Solution method: The automatic localization of the electron density critical points is based on a recursive partitioning of the Wigner-Seitz cell into tetrahedra followed by a Newton search from significant points on each tetrahedra. Plotting of and integration on the atomic basins is currently based on a new implementation of Keith's promega algorithm. Running time: Variable, depending on the task. From seconds to a few minutes for the localization of critical points. Hours to days for the determination of the atomic basins shape and properties. Times correspond to a typical 2007 PC.

  10. High critical currents in heavily doped (Gd,Y)Ba 2Cu 3O x superconductor tapes

    DOE PAGES

    Selvamanickam, V.; Gharahcheshmeh, M. Heydari; Xu, A.; ...

    2015-01-20

    REBa 2Cu 3O x superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50 K and fields of 2–30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (J c) above 20 MA/cm 2 at 30 K, 3 T in heavily doped (25 mol. % Zr-added) (Gd,Y)Ba 2Cu 3O x superconductor tapes,more » which is more than three times higher than the J c typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m 3 have also been attained at 20 K. A composition map of lift factor in J c (ratio of J c at 30 K, 3 T to the J c at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO 3 (BZO) nanocolumn defect density of nearly 7 × 10 11 cm –2 as well as 2–3nm sized particles rich in Cu and Zr have been found in the high J c films.« less

  11. Tissue material properties and computational modelling of the human tibiofemoral joint: a critical review

    PubMed Central

    Akhtar, Riaz; Comerford, Eithne J.; Bates, Karl T.

    2018-01-01

    Understanding how structural and functional alterations of individual tissues impact on whole-joint function is challenging, particularly in humans where direct invasive experimentation is difficult. Finite element (FE) computational models produce quantitative predictions of the mechanical and physiological behaviour of multiple tissues simultaneously, thereby providing a means to study changes that occur through healthy ageing and disease such as osteoarthritis (OA). As a result, significant research investment has been placed in developing such models of the human knee. Previous work has highlighted that model predictions are highly sensitive to the various inputs used to build them, particularly the mathematical definition of material properties of biological tissues. The goal of this systematic review is two-fold. First, we provide a comprehensive summation and evaluation of existing linear elastic material property data for human tibiofemoral joint tissues, tabulating numerical values as a reference resource for future studies. Second, we review efforts to model tibiofemoral joint mechanical behaviour through FE modelling with particular focus on how studies have sourced tissue material properties. The last decade has seen a renaissance in material testing fuelled by development of a variety of new engineering techniques that allow the mechanical behaviour of both soft and hard tissues to be characterised at a spectrum of scales from nano- to bulk tissue level. As a result, there now exists an extremely broad range of published values for human tibiofemoral joint tissues. However, our systematic review highlights gaps and ambiguities that mean quantitative understanding of how tissue material properties alter with age and OA is limited. It is therefore currently challenging to construct FE models of the knee that are truly representative of a specific age or disease-state. Consequently, recent tibiofemoral joint FE models have been highly generic in terms of material properties even relying on non-human data from multiple species. We highlight this by critically evaluating current ability to quantitatively compare and model (1) young and old and (2) healthy and OA human tibiofemoral joints. We suggest that future research into both healthy and diseased knee function will benefit greatly from a subject- or cohort-specific approach in which FE models are constructed using material properties, medical imagery and loading data from cohorts with consistent demographics and/or disease states. PMID:29379690

  12. Tissue material properties and computational modelling of the human tibiofemoral joint: a critical review.

    PubMed

    Peters, Abby E; Akhtar, Riaz; Comerford, Eithne J; Bates, Karl T

    2018-01-01

    Understanding how structural and functional alterations of individual tissues impact on whole-joint function is challenging, particularly in humans where direct invasive experimentation is difficult. Finite element (FE) computational models produce quantitative predictions of the mechanical and physiological behaviour of multiple tissues simultaneously, thereby providing a means to study changes that occur through healthy ageing and disease such as osteoarthritis (OA). As a result, significant research investment has been placed in developing such models of the human knee. Previous work has highlighted that model predictions are highly sensitive to the various inputs used to build them, particularly the mathematical definition of material properties of biological tissues. The goal of this systematic review is two-fold. First, we provide a comprehensive summation and evaluation of existing linear elastic material property data for human tibiofemoral joint tissues, tabulating numerical values as a reference resource for future studies. Second, we review efforts to model tibiofemoral joint mechanical behaviour through FE modelling with particular focus on how studies have sourced tissue material properties. The last decade has seen a renaissance in material testing fuelled by development of a variety of new engineering techniques that allow the mechanical behaviour of both soft and hard tissues to be characterised at a spectrum of scales from nano- to bulk tissue level. As a result, there now exists an extremely broad range of published values for human tibiofemoral joint tissues. However, our systematic review highlights gaps and ambiguities that mean quantitative understanding of how tissue material properties alter with age and OA is limited. It is therefore currently challenging to construct FE models of the knee that are truly representative of a specific age or disease-state. Consequently, recent tibiofemoral joint FE models have been highly generic in terms of material properties even relying on non-human data from multiple species. We highlight this by critically evaluating current ability to quantitatively compare and model (1) young and old and (2) healthy and OA human tibiofemoral joints. We suggest that future research into both healthy and diseased knee function will benefit greatly from a subject- or cohort-specific approach in which FE models are constructed using material properties, medical imagery and loading data from cohorts with consistent demographics and/or disease states.

  13. A simple model of electron beam initiated dielectric breakdown

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Daniell, R. E.; Delmer, T. N.

    1985-01-01

    A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical.

  14. Recent advances in research on climate and human conflict

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2014-12-01

    A rapidly growing body of empirical, quantitative research examines whether rates of human conflict can be systematically altered by climatic changes. We discuss recent advances in this field, including Bayesian meta-analyses of the effect of temperature and rainfall on current and future large-scale conflicts, the impact of climate variables on gang violence and suicides in Mexico, and probabilistic projections of personal violence and property crime in the United States under RCP scenarios. Criticisms of this research field will also be explained and addressed.

  15. Superconducting MgB2 films via precursor postprocessing approach

    NASA Astrophysics Data System (ADS)

    Paranthaman, M.; Cantoni, C.; Zhai, H. Y.; Christen, H. M.; Aytug, T.; Sathyamurthy, S.; Specht, E. D.; Thompson, J. R.; Lowndes, D. H.; Kerchner, H. R.; Christen, D. K.

    2001-06-01

    Superconducting MgB2 films with Tc=38.6 K were prepared using a precursor-deposition, ex situ postprocessing approach. Precursor films of boron, ˜0.5 μm thick, were deposited onto Al2O3 (102) substrates by electron-beam evaporation; a postanneal at 890 °C in the presence of bulk MgB2 and Mg metal produced highly crystalline MgB2 films. X-ray diffraction indicated that the films exhibit some degree of c-axis alignment, but are randomly oriented in plane. Transport current measurements of the superconducting properties show high values of the critical current density and yield an irreversibility line that exceeds that determined by magnetic measurements on bulk polycrystalline materials.

  16. SOME EXPERIMENTS ON THE TURBULENCE AND MUTUAL FRICTION IN LIQUID HELIUM (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramers, H.C.

    1962-05-01

    Recent experiments on the hydrodynamic properties of liquid helium II, performed in the Kamerlingh Onnes Laboratorium (Leiden), are discussed on the basis of the twofluid model. Staas and Taconis measured temperature and pressure gradients occurring in a narrow circular capillary in the presence of a heat current. They discovered a turbulent phenomenon, very analogous to ordinary classical turbulence. The attenuation of second sound was studied by Wiarda and the present author in its dependence on a simultaneous continuous heat current. The method employed proves to be very suitable for a study of the so-called mutual friction and of phenomena occurringmore » in the critical velocity region. (auth)« less

  17. Mesenchymal Stem/Stromal Cells: A New "Cells as Drugs" Paradigm. Efficacy and Critical Aspects in Cell Therapy

    PubMed Central

    de Girolamo, Laura; Lucarelli, Enrico; Alessandri, Giulio; Avanzini, Maria Antonietta; Bernardo, Maria Ester; Biagi, Ettore; Brini, Anna Teresa; D’Amico, Giovanna; Fagioli, Franca; Ferrero, Ivana; Locatelli, Franco; Maccario, Rita; Marazzi, Mario; Parolini, Ornella; Pessina, Augusto; Torre, Maria Luisa

    2013-01-01

    Mesenchymal stem cells (MSCs) were first isolated more than 50 years ago from the bone marrow. Currently MSCs may also be isolated from several alternative sources and they have been used in more than a hundred clinical trials worldwide to treat a wide variety of diseases. The MSCs mechanism of action is undefined and currently under investigation. For in vivo purposes MSCs must be produced in compliance with good manufacturing practices and this has stimulated research on MSCs characterization and safety. The objective of this review is to describe recent developments regarding MSCs properties, physiological effects, delivery, clinical applications and possible side effects. PMID:23278600

  18. Computational Challenges in the Analysis of Petrophysics Using Microtomography and Upscaling

    NASA Astrophysics Data System (ADS)

    Liu, J.; Pereira, G.; Freij-Ayoub, R.; Regenauer-Lieb, K.

    2014-12-01

    Microtomography provides detailed 3D internal structures of rocks in micro- to tens of nano-meter resolution and is quickly turning into a new technology for studying petrophysical properties of materials. An important step is the upscaling of these properties as micron or sub-micron resolution can only be done on the sample-scale of millimeters or even less than a millimeter. We present here a recently developed computational workflow for the analysis of microstructures including the upscaling of material properties. Computations of properties are first performed using conventional material science simulations at micro to nano-scale. The subsequent upscaling of these properties is done by a novel renormalization procedure based on percolation theory. We have tested the workflow using different rock samples, biological and food science materials. We have also applied the technique on high-resolution time-lapse synchrotron CT scans. In this contribution we focus on the computational challenges that arise from the big data problem of analyzing petrophysical properties and its subsequent upscaling. We discuss the following challenges: 1) Characterization of microtomography for extremely large data sets - our current capability. 2) Computational fluid dynamics simulations at pore-scale for permeability estimation - methods, computing cost and accuracy. 3) Solid mechanical computations at pore-scale for estimating elasto-plastic properties - computational stability, cost, and efficiency. 4) Extracting critical exponents from derivative models for scaling laws - models, finite element meshing, and accuracy. Significant progress in each of these challenges is necessary to transform microtomography from the current research problem into a robust computational big data tool for multi-scale scientific and engineering problems.

  19. Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance.

    PubMed

    Salahshoor, Meisam; Guo, Yuebin

    2012-01-09

    Magnesium-Calcium (Mg-Ca) alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized.

  20. Improved interface growth and enhanced flux pinning in YBCO films deposited on an advanced IBAD-MgO based template

    NASA Astrophysics Data System (ADS)

    Khan, M. Z.; Zhao, Y.; Wu, X.; Malmivirta, M.; Huhtinen, H.; Paturi, P.

    2018-02-01

    The growth mechanism is studied from the flux pinning point of view in small-scale YBa2Cu3O6+x (YBCO) thin films deposited on a polycrystalline hastelloy with advanced IBAD-MgO based buffer layer architecture. When compared the situation with YBCO films grown on single crystal substrates, the most critical issues that affect the suitable defect formation and thus the optimal vortex pinning landscape, have been studied as a function of the growth temperature and the film thickness evolution. We can conclude that the best critical current property in a wide applied magnetic field range is observed in films grown at relatively low temperature and having intermediate thickness. These phenomena are linked to the combination of the improved interface growth, to the film thickness related crystalline relaxation and to the formation of linear array of edge dislocations that forms the low-angle grain boundaries through the entire film thickness and thus improve the vortex pinning properties. Hence, the optimized buffer layer structure proved to be particularly suitable for new coated conductor solutions.

  1. Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance

    PubMed Central

    Salahshoor, Meisam; Guo, Yuebin

    2012-01-01

    Magnesium-Calcium (Mg-Ca) alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized. PMID:28817036

  2. Ionization potential depression in an atomic-solid-plasma picture

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.

    2018-05-01

    Exotic solid density matter such as heated hollow crystals allow extended material studies while their physical properties and models such as the famous ionization potential depression are presently under renewed controversial discussion. Here we develop an atomic-solid-plasma (ASP) model that permits ionization potential depression studies also for single and multiple core hole states. Numerical calculations show very good agreement with recently available data not only in absolute values but also for Z-scaled properties while currently employed methods fail. For much above solid density compression, the ASP model predicts increased K-edge energies that are related to a Fermi surface rising. This is in good agreement with recent quantum molecular dynamics simulations. For hot dense matter a quantum number dependent optical electron finite temperature ion sphere model is developed that fits well with line shift and line disappearance data from dense laser produced plasma experiments. Finally, the physical transparency of the ASP picture allows a critical discussion of current methods.

  3. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering.

    PubMed

    Gentile, Piergiorgio; Chiono, Valeria; Carmagnola, Irene; Hatton, Paul V

    2014-02-28

    Poly(lactic-co-glycolic) acid (PLGA) has attracted considerable interest as a base material for biomedical applications due to its: (i) biocompatibility; (ii) tailored biodegradation rate (depending on the molecular weight and copolymer ratio); (iii) approval for clinical use in humans by the U.S. Food and Drug Administration (FDA); (iv) potential to modify surface properties to provide better interaction with biological materials; and (v) suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.

  4. Critical current enhancement driven by suppression of superconducting fluctuation in ion-gated ultrathin FeSe

    NASA Astrophysics Data System (ADS)

    Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.

    2018-05-01

    The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.

  5. The Role of Clouds in the Long-Term Habitability of Planets

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Tolbert, Margaret

    2000-01-01

    We proposed to conduct theoretical and laboratory investigations of the role that clouds play in the long-term climate history of the Earth and other habitable planets. We made significant progress in the first area we proposed to consider- the properties of carbon dioxide clouds in atmospheres that are rich in carbon dioxide. We submitted a modeling paper on the microphysical properties of the clouds to Icarus showing that such clouds are unlikely to play an important role in the early greenhouses on Earth or Mars. The model was based on lab studies of the nucleation and growth of carbon dioxide. We have also submitted a manuscript describing these lab studies to Icarus. These lab studies are critical not only to the ancient Mars atmosphere, but also to the current one. We also submitted a paper to Nature describing modeling of current Martian CO2 clouds. We will also model the properties of water clouds in the early history of Earth. Early in Earth's history the atmosphere contained no free oxygen. Without oxygen, sulfate aerosols that are currently the dominant cloud nuclei, cannot form. Without such nuclei the cloud structure would have been far different than it is now. We initiated studies of the aerosols on Titan as part of this work. We reported these studies in a short paper on nucleation and in several conferences.

  6. Shaping the Future of Nanomedicine: Anisotropy in Polymeric Nanoparticle Design

    PubMed Central

    Meyer, Randall A.; Green, Jordan J.

    2015-01-01

    Nanofabrication and biomedical applications of polymeric nanoparticles have become important areas of research. Biocompatible polymeric nanoparticles have been investigated for their use as delivery vehicles for therapeutic and diagnostic agents. Although polymeric nanoconstructs have traditionally been fabricated as isotropic spheres, anisotropic, non-spherical nanoparticles have gained interest in the biomaterials community due to their unique interactions with biological systems. Polymeric nanoparticles with different forms of anisotropy have been manufactured utilizing a variety of novel methods in recent years. In addition, they have enhanced physical, chemical, and biological properties compared to spherical nanoparticles, including increased targeting avidity and decreased non-specific in vivo clearance. With these desirable properties, anisotropic nanoparticles have been successfully utilized in many biomedical settings and have performed superiorly to analogous spherical nanoparticles. We summarize the current state-of-the-art fabrication methods for anisotropic polymeric nanoparticles including top-down, bottom-up, and microfluidic design approaches. We also summarize the current and potential future applications of these nanoparticles, including drug delivery, biological targeting, immunoengineering, and tissue engineering. Ongoing research into the properties and utility of anisotropic polymeric nanoparticles will prove critical to realizing their potential in nanomedicine. PMID:25981390

  7. International Critical Zone Science: Opportunities to Build a Global Understanding of Land-Water Linkages

    NASA Astrophysics Data System (ADS)

    McDowell, W. H.

    2015-12-01

    Critical Zone science examines the structure and properties of the thin veneer that links surface properties to deep geology, at time scales of seconds to millennia. One of the fundamental premises of the US Critical Zone Observatories program is that CZOs should include some measurements made in common at all sites, as these common measurements will enable us to make stronger inferences about how the structure and function of the critical zone interact to drive key processes such as soil formation, stream flow generation, and nutrient export. Recent advances in real-time sensors provide new opportunities to address some fundamental questions about how hillslope soils and streams are linked. Data from the Luquillo Critical Zone Observatory in Puerto Rico, for example, document a previously undescribed transition, or flipping, of stream and soil biogeochemistry in a tropical rain forest. Under typical conditions, soil moisture is high and soil oxygen content is often low, especially at depth. Streams, in contrast, are typically near oxygen saturation. Under severe drought, however, oxygen increases dramatically in soil air and declines to values that are well below saturation in streams. This flipping in redox conditions suggests that despite the strong hydrologic connection between hillslope and stream, gas dynamics and potentially solute dynamics are decoupled along the flow path. The international CZO community has the opportunity to develop a suite of sensor arrays to document soil air, groundwater chemistry, and stream water chemistry. Progress towards realizing the potential of these international networks to develop coherent sensor programs will be addressed based on the current status of sensor deployments in CZO networks in the US, China, and Europe.

  8. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion

    PubMed Central

    Hoppenrath, Kathrin; Härtig, Wolfgang; Funke, Klaus

    2016-01-01

    Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo—in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29–38, evident as higher rates of induced action potential firing at low current injections (100–200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26–28) and older animals (PD40–62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits. PMID:27065812

  9. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion.

    PubMed

    Hoppenrath, Kathrin; Härtig, Wolfgang; Funke, Klaus

    2016-01-01

    Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo-in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28) and older animals (PD40-62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits.

  10. Engineering thermoplastics for additive manufacturing: a critical perspective with experimental evidence to support functional applications.

    PubMed

    Cicala, Gianluca; Latteri, Alberta; Del Curto, Barbara; Lo Russo, Alessio; Recca, Giuseppe; Farè, Silvia

    2017-01-28

    Among additive manufacturing techniques, the filament-based technique involves what is referred to as fused deposition modeling (FDM). FDM materials are currently limited to a selected number of polymers. The present study focused on investigating the potential of using high-end engineering polymers in FDM. In addition, a critical review of the materials available on the market compared with those studied here was completed. Different engineering thermoplastics, ranging from industrial grade polycarbonates to novel polyetheretherketones (PEEKs), were processed by FDM. Prior to this, for innovative filaments based on PEEK, extrusion processing was carried out. Mechanical properties (i.e., tensile and flexural) were investigated for each extruded material. An industrial-type FDM machine (Stratasys Fortus® 400 mc) was used to fully characterize the effect of printing parameters on the mechanical properties of polycarbonate. The obtained properties were compared with samples obtained by injection molding. Finally, FDM samples made of PEEK were also characterized and compared with those obtained by injection molding. The effect of raster to raster air gap and raster angle on tensile and flexural properties of printed PC was evidenced; the potential of PEEK filaments, as novel FDM material, was highlighted in comparison to state of the art materials. Comparison with injection molded parts allowed to better understand FDM potential for functional applications. The study discussed pros and cons of the different materials. Finally, the development of novel PEEK filaments achieved important results offering a novel solution to the market when high mechanical and thermal properties are required.

  11. On the Evolution of the Standard Genetic Code: Vestiges of Critical Scale Invariance from the RNA World in Current Prokaryote Genomes

    PubMed Central

    José, Marco V.; Govezensky, Tzipe; García, José A.; Bobadilla, Juan R.

    2009-01-01

    Herein two genetic codes from which the primeval RNA code could have originated the standard genetic code (SGC) are derived. One of them, called extended RNA code type I, consists of all codons of the type RNY (purine-any base-pyrimidine) plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. In order to test if putative nucleotide sequences in the RNA World and in both extended RNA codes, share the same scaling and statistical properties to those encountered in current prokaryotes, we used the genomes of four Eubacteria and three Archaeas. For each prokaryote, we obtained their respective genomes obeying the RNA code or the extended RNA codes types I and II. In each case, we estimated the scaling properties of triplet sequences via a renormalization group approach, and we calculated the frequency distributions of distances for each codon. Remarkably, the scaling properties of the distance series of some codons from the RNA code and most codons from both extended RNA codes turned out to be identical or very close to the scaling properties of codons of the SGC. To test for the robustness of these results, we show, via computer simulation experiments, that random mutations of current genomes, at the rates of 10−10 per site per year during three billions of years, were not enough for destroying the observed patterns. Therefore, we conclude that most current prokaryotes may still contain relics of the primeval RNA World and that both extended RNA codes may well represent two plausible evolutionary paths between the RNA code and the current SGC. PMID:19183813

  12. Chitosan Biomaterials for Current and Potential Dental Applications

    PubMed Central

    Husain, Shehriar; Al-Samadani, Khalid H.; Najeeb, Shariq; Zafar, Muhammad S.; Khurshid, Zohaib; Zohaib, Sana; Qasim, Saad B.

    2017-01-01

    Chitosan (CHS) is a very versatile natural biomaterial that has been explored for a range of bio-dental applications. CHS has numerous favourable properties such as biocompatibility, hydrophilicity, biodegradability, and a broad antibacterial spectrum (covering gram-negative and gram-positive bacteria as well as fungi). In addition, the molecular structure boasts reactive functional groups that provide numerous reaction sites and opportunities for forging electrochemical relationships at the cellular and molecular levels. The unique properties of CHS have attracted materials scientists around the globe to explore it for bio-dental applications. This review aims to highlight and discuss the hype around the development of novel chitosan biomaterials. Utilizing chitosan as a critical additive for the modification and improvement of existing dental materials has also been discussed. PMID:28772963

  13. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    PubMed Central

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-01-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503

  14. Dynamic defect correlations dominate activated electronic transport in SrTiO 3

    DOE PAGES

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...

    2016-07-22

    Strontium titanate (SrTiO 3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. Themore » results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less

  15. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  16. Measurement properties of questionnaires assessing participation in children and adolescents with a disability: a systematic review.

    PubMed

    Rainey, Linda; van Nispen, Ruth; van der Zee, Carlijn; van Rens, Ger

    2014-12-01

    To critically appraise the measurement properties of questionnaires measuring participation in children and adolescents (0-18 years) with a disability. Bibliographic databases were searched for studies evaluating the measurement properties of self-report or parent-report questionnaires measuring participation in children and adolescents (0-18 years) with a disability. The methodological quality of the included studies and the results of the measurement properties were evaluated using a checklist developed on consensus-based standards. The search strategy identified 3,977 unique publications, of which 22 were selected; these articles evaluated the development and measurement properties of eight different questionnaires. The Child and Adolescent Scale of Participation was evaluated most extensively, generally showing moderate positive results on content validity, internal consistency, reliability and construct validity. The remaining questionnaires also demonstrated positive results. However, at least 50 % of the measurement properties per questionnaire were not (or only poorly) assessed. Studies of high methodological quality, using modern statistical methods, are needed to accurately assess the measurement properties of currently available questionnaires. Moreover, consensus is required on the definition of the construct 'participation' to determine content validity and to enable meaningful interpretation of outcomes.

  17. Fabrication of Bi2223 bulks with high critical current properties sintered in Ag tubes

    NASA Astrophysics Data System (ADS)

    Takeda, Yasuaki; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Nakashima, Takayoshi; Kagiyama, Tomohiro; Kobayashi, Shin-ichi; Hayashi, Kazuhiko

    2017-03-01

    Randomly grain oriented Bi2223 sintered bulks are one of the representative superconducting materials having weak-link problem due to very short coherence length particularly along the c-axis, resulting in poor intergrain Jc properties. In our previous studies, sintering and/or post-annealing under moderately reducing atmospheres were found to be effective for improving grain coupling in Bi2223 sintered bulks. Further optimizations of the synthesis process for Bi2223 sintered bulks were attempted in the present study to enhance their intergrain Jc. Effects of applied pressure of uniaxial pressing and sintering conditions on microstructure and superconducting properties have been systematically investigated. The best sample showed intergrain Jc of 2.0 kA cm-2 at 77 K and 8.2 kA cm-2 at 20 K, while its relative density was low ∼65%. These values are quite high as for a randomly oriented sintered bulk of cuprate superconductors.

  18. Improving Global Access to New Vaccines: Intellectual Property, Technology Transfer, and Regulatory Pathways

    PubMed Central

    2014-01-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers. PMID:25211753

  19. Assessing the Functional Role of Leptin in Energy Homeostasis and the Stress Response in Vertebrates

    PubMed Central

    Deck, Courtney A.; Honeycutt, Jamie L.; Cheung, Eugene; Reynolds, Hannah M.; Borski, Russell J.

    2017-01-01

    Leptin is a pleiotropic hormone that plays a critical role in regulating appetite, energy metabolism, growth, stress, and immune function across vertebrate groups. In mammals, it has been classically described as an adipostat, relaying information regarding energy status to the brain. While retaining poor sequence conservation with mammalian leptins, teleostean leptins elicit a number of similar regulatory properties, although current evidence suggests that it does not function as an adipostat in this group of vertebrates. Teleostean leptin also exhibits functionally divergent properties, however, possibly playing a role in glucoregulation similar to what is observed in lizards. Further, leptin has been recently implicated as a mediator of immune function and the endocrine stress response in teleosts. Here, we provide a review of leptin physiology in vertebrates, with a particular focus on its actions and regulatory properties in the context of stress and the regulation of energy homeostasis. PMID:28439255

  20. Protein fibrillation and nanoparticle interactions: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Morteza; Kalhor, Hamid R.; Laurent, Sophie; Lynch, Iseult

    2013-03-01

    Due to their ultra-small size, nanoparticles (NPs) have distinct properties compared with the bulk form of the same materials. These properties are rapidly revolutionizing many areas of medicine and technology. NPs are recognized as promising and powerful tools to fight against the human brain diseases such as multiple sclerosis or Alzheimer's disease. In this review, after an introductory part on the nature of protein fibrillation and the existing approaches for its investigations, the effects of NPs on the fibrillation process have been considered. More specifically, the role of biophysicochemical properties of NPs, which define their affinity for protein monomers, unfolded monomers, oligomers, critical nuclei, and other prefibrillar states, together with their influence on protein fibrillation kinetics has been described in detail. In addition, current and possible-future strategies for controlling the desired effect of NPs and their corresponding effects on the conformational changes of the proteins, which have significant roles in the fibrillation process, have been presented.

  1. Technical issues of a high-Tc superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki

    2000-06-01

    Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.

  2. Improving global access to new vaccines: intellectual property, technology transfer, and regulatory pathways.

    PubMed

    Crager, Sara Eve

    2014-11-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers.

  3. [Improving global access to new vaccines: intellectual property, technology transfer, and regulatory pathways].

    PubMed

    Crager, Sara Eve

    2015-01-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers.

  4. Properties of Josephson Junction Fabricated on Bicrystal Substrate with Different Misorientation Angles

    NASA Astrophysics Data System (ADS)

    Minotani, Tadashi; Kawakami, Satoru; Kuroki, Yukinori; Enpuku, Keiji

    1998-06-01

    In order to develop YBa2Cu3O7-δ bicrystal junctions suitable for high-performance superconducting quantum interference device (SQUID), the relationship between the junction properties and the misorientation angle of the bicrystal substrate is studied experimentally. Misorientation angles of 24°, 27°, 30°, 33° and 36.8° are used, and the angular dependencies of junction resistance Rs and critical current Io are investigated. It is shown that values of Rs and Io approximately follow the relation IoRs1.5=const. in these junctions. The obtained results are analyzed in terms of the direct and resonant tunneling mechanisms. It is also shown that values of Rs≈10 Ω and Io≈20 µA can be obtained rather reproducibly when we use the 30° junctions. The properties of this junction are very promising for the development of high-performance SQUID.

  5. New International Skeleton Tables for the Thermodynamic Properties of Ordinary Water Substance

    NASA Astrophysics Data System (ADS)

    Sato, H.; Uematsu, M.; Watanabe, K.; Saul, A.; Wagner, W.

    1988-10-01

    The current knowledge of thermodynamic properties of ordinary water substance is summarized in a condensed form of a set of skeleton steam tables, where the most probable values with the reliabilities on specific volume and enthalpy are provided in the range of temperatures from 273 to 1073 K and pressures from 101.325 kPa to 1 GPa and at the saturation state from the triple point to the critical point. These tables have been accepted as the IAPS Skeleton Tables 1985 for the Thermodynamic Properties of Ordinary Water Substance(IST-85) by the International Association for the Properties of Steam(IAPS). The former International Skeleton Steam Tables, October 1963(IST-63), have been withdrawn by IAPS. About 17 000 experimental thermodynamic data were assessed and classified previously by Working Group 1 of IAPS. About 10 000 experimental data were collected and evaluated in detail and especially about 7000 specific-volume data among them were critically analyzed with respect to their errors using the statistical method originally developed at Keio University by the first three authors. As a result, specific-volume and enthalpy values with associated reliabilities were determined at 1455 grid points of 24 isotherms and 61 isobars in the single-fluid phase state and at 54 temperatures along the saturation curve. The background, analytical procedure, and reliability of IST-85 as well as the assessment of the existing experimental data and equations of state are also discussed in this paper.

  6. Efficient C1-continuous phase-potential upwind (C1-PPU) schemes for coupled multiphase flow and transport with gravity

    NASA Astrophysics Data System (ADS)

    Jiang, Jiamin; Younis, Rami M.

    2017-10-01

    In the presence of counter-current flow, nonlinear convergence problems may arise in implicit time-stepping when the popular phase-potential upwinding (PPU) scheme is used. The PPU numerical flux is non-differentiable across the co-current/counter-current flow regimes. This may lead to cycles or divergence in the Newton iterations. Recently proposed methods address improved smoothness of the numerical flux. The objective of this work is to devise and analyze an alternative numerical flux scheme called C1-PPU that, in addition to improving smoothness with respect to saturations and phase potentials, also improves the level of scalar nonlinearity and accuracy. C1-PPU involves a novel use of the flux limiter concept from the context of high-resolution methods, and allows a smooth variation between the co-current/counter-current flow regimes. The scheme is general and applies to fully coupled flow and transport formulations with an arbitrary number of phases. We analyze the consistency property of the C1-PPU scheme, and derive saturation and pressure estimates, which are used to prove the solution existence. Several numerical examples for two- and three-phase flows in heterogeneous and multi-dimensional reservoirs are presented. The proposed scheme is compared to the conventional PPU and the recently proposed Hybrid Upwinding schemes. We investigate three properties of these numerical fluxes: smoothness, nonlinearity, and accuracy. The results indicate that in addition to smoothness, nonlinearity may also be critical for convergence behavior and thus needs to be considered in the design of an efficient numerical flux scheme. Moreover, the numerical examples show that the C1-PPU scheme exhibits superior convergence properties for large time steps compared to the other alternatives.

  7. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing

    NASA Astrophysics Data System (ADS)

    Werdell, P. Jeremy; McKinna, Lachlan I. W.; Boss, Emmanuel; Ackleson, Steven G.; Craig, Susanne E.; Gregg, Watson W.; Lee, Zhongping; Maritorena, Stéphane; Roesler, Collin S.; Rousseaux, Cécile S.; Stramski, Dariusz; Sullivan, James M.; Twardowski, Michael S.; Tzortziou, Maria; Zhang, Xiaodong

    2018-01-01

    Ocean color measured from satellites provides daily global, synoptic views of spectral water-leaving reflectances that can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents. Because of their dependence on the concentration and composition of marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This information is critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbon production and export, phytoplankton dynamics, and responses to climatic disturbances. Given their importance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products into the community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., the global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval of these core optical properties. Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separated based their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated with each approach are provided, as well as common performance metrics used to evaluate them. We discuss current knowledge gaps and make recommendations for future investment for upcoming missions whose instrument characteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches.

  8. Experimental Analysis of Critical Current and Alternating Current Losses of High-Temperature Superconductor Tape with Resin and Gallium-Indium-Tin

    PubMed Central

    Sun, Yajie; Zhang, Huiming; Meng, Yuanzhu

    2018-01-01

    This paper experimentally analyzes the critical current degradation and AC (alternating current) losses of second-generation (2G) high-temperature superconductor (HTS) tape during the impregnation process. Two impregnation materials were utilized: Gallium-Indium-Tin (GaInSn), and an epoxy resin, Araldite. The critical current of the impregnation materials was measured after different thermal cycles and compared with the tape with no impregnation process. The experimental results show that the critical current of Yttrium Barium Copper Oxide (YBCO) short samples varies between differently impregnated materials. The resin, Araldite, degraded the critical current; however, the GaInSn showed no degradation. Two degradation patterns with Araldite were identified due to the impregnation process, and the corresponding causes were analyzed. We further measured the AC losses of tapes impregnated with liquid metal at different frequencies, up to 600 Hz. Based on the experimental results, GaInSn liquid metal should be the most suitable impregnation material in terms of critical current degradation. PMID:29642490

  9. Experimental Analysis of Critical Current and Alternating Current Losses of High-Temperature Superconductor Tape with Resin and Gallium-Indium-Tin.

    PubMed

    Yu, Dongmin; Sun, Yajie; Zhang, Huiming; Meng, Yuanzhu; Liu, Huanan

    2018-04-08

    This paper experimentally analyzes the critical current degradation and AC (alternating current) losses of second-generation (2G) high-temperature superconductor (HTS) tape during the impregnation process. Two impregnation materials were utilized: Gallium-Indium-Tin (GaInSn), and an epoxy resin, Araldite. The critical current of the impregnation materials was measured after different thermal cycles and compared with the tape with no impregnation process. The experimental results show that the critical current of Yttrium Barium Copper Oxide (YBCO) short samples varies between differently impregnated materials. The resin, Araldite, degraded the critical current; however, the GaInSn showed no degradation. Two degradation patterns with Araldite were identified due to the impregnation process, and the corresponding causes were analyzed. We further measured the AC losses of tapes impregnated with liquid metal at different frequencies, up to 600 Hz. Based on the experimental results, GaInSn liquid metal should be the most suitable impregnation material in terms of critical current degradation.

  10. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.

    PubMed

    Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J

    2017-08-01

    Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.

  11. Role of polarizer-tilting-angle in zero-field spin-transfer nano-oscillators with perpendicular anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Fuentes, C.; Gallardo, R. A., E-mail: rodolfo.gallardo@usm.cl; Landeros, P.

    2015-10-05

    An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in amore » broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.« less

  12. Grain size dependence of the Wohlleben effect in Bi-2212 high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Knauf, N.; Fischer, J.; Schmidt, P.; Roden, B.; Borowski, R.; Büchner, B.; Micklitz, H.; Freimuth, A.; Khomskii, D.; Kataev, V.

    1998-04-01

    We report on a study of the Wohlleben effect (WE) in powders of Bi-2212 high temperature superconductor (HTSC) consisting of isolated grains with dimensions ranging between 1 μm< d<1 mm. Our main results are: (i) The WE is present in all powders studied; in particular, the effect is appreciable even for grains of dimension 1 μm. (ii) The field cooled and zero field-cooled susceptibilities as well as the microwave absorption (MWA) are strongly suppressed for d<30-50 μm. (iii) In aligned powders, the WE is strongest for magnetic fields parallel to the c-axes. Our data give evidence that the WE is an intragrain property, i.e., it is not predominantly determined by intergrain weak links, and that the spontaneous currents flow within the ab-planes. Furthermore, the presence of the WE in 1 μm grains requires that the critical current density of the π-contacts which are generally involved to explain the spontaneous currents in the WE, must be of order 10 5-10 6 A/cm 2, even close to Tc. Such large critical current densities are hardly achievable in conventional tunneling junctions suggesting that the π-contacts are highly transparent-eventually metallic-barriers. We argue that this result speaks strongly for an `intrinsic' nature of the π-contacts arising from an unconventional pairing state.

  13. Social Isolation During the Critical Period Reduces Synaptic and Intrinsic Excitability of a Subtype of Pyramidal Cell in Mouse Prefrontal Cortex.

    PubMed

    Yamamuro, Kazuhiko; Yoshino, Hiroki; Ogawa, Yoichi; Makinodan, Manabu; Toritsuka, Michihiro; Yamashita, Masayuki; Corfas, Gabriel; Kishimoto, Toshifumi

    2018-03-01

    Juvenile social experience is crucial for the functional development of forebrain regions, especially the prefrontal cortex (PFC). We previously reported that social isolation for 2 weeks after weaning induces prefrontal cortex dysfunction and hypomyelination. However, the effect of social isolation on physiological properties of PFC neuronal circuit remained unknown. Since hypomyelination due to isolation is prominent in deep-layer of medial PFC (mPFC), we focused on 2 types of Layer-5 pyramidal cells in the mPFC: prominent h-current (PH) cells and nonprominent h-current (non-PH) cells. We found that a 2-week social isolation after weaning leads to a specific deterioration in action potential properties and reduction in excitatory synaptic inputs in PH cells. The effects of social isolation on PH cells, which involve reduction in functional glutamatergic synapses and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate charge ratio, are specific to the 2 weeks after weaning and to the mPFC. We conclude that juvenile social experience plays crucial roles in the functional development in a subtype of Layer-5 pyramidal cells in the mPFC. Since these neurons project to subcortical structures, a deficit in social experience during the critical period may result in immature neural circuitry between mPFC and subcortical targets. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Improvement in the transport critical current density and microstructure of isotopic Mg11B2 monofilament wires by optimizing the sintering temperature

    PubMed Central

    Qiu, Wenbin; Jie, Hyunseock; Patel, Dipak; Lu, Yao; Luzin, Vladimir; Devred, Arnaud; Somer, Mehmet; Shahabuddin, Mohammed; Kim, Jung Ho; Ma, Zongqing; Dou, Shi Xue; Hossain, Md. Shahriar Al

    2016-01-01

    Superconducting wires are widely used in fabricating magnetic coils in fusion reactors. In consideration of the stability of 11B against neutron irradiation and lower induced radio-activation properties, MgB2 superconductor with 11B serving as boron source is an alternative candidate to be used in fusion reactor with severe irradiation environment. In present work, a batch of monofilament isotopic Mg11B2 wires with amorphous 11B powder as precursor were fabricated using powder-in-tube (PIT) process at different sintering temperature, and the evolution of their microstructure and corresponding superconducting properties was systemically investigated. Accordingly, the best transport critical current density (Jc) = 2 × 104 A/cm2 was obtained at 4.2 K and 5 T, which is even comparable to multi-filament Mg11B2 isotope wires reported in other work. Surprisingly, transport Jc vanished in our wire which was heat-treated at excessively high temperature (800 °C). Combined with microstructure observation, it was found that lots of big interconnected microcracks and voids that can isolate the MgB2 grains formed in this whole sample, resulting in significant deterioration in inter-grain connectivity. The results can be a constructive guide in fabricating Mg11B2 wires to be used as magnet coils in fusion reactor systems such as ITER-type tokamak magnet. PMID:27824144

  15. Heavy fermions, quantum criticality, and unconventional superconductivity in filled skutterudites and related materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andraka, Bohdan

    2015-05-14

    The main goal of this program was to explore the possibility of novel states and behaviors in Pr-based system exhibiting quantum critical behavior, PrOs₄Sb₁₂. Upon small changes of external parameter, such as magnetic field, physical properties of PrOs₄Sb₁₂ are drastically altered from those corresponding to a superconductor, to heavy fermion, to field-induced ordered phase with primary quadrupolar order parameter. All these states are highly unconventional and not understood in terms of current theories thus offer an opportunity to expand our knowledge and understanding of condensed matter. At the same time, these novel states and behaviors are subjects to intense internationalmore » controversies. In particular, two superconducting phases with different transition temperatures were observed in some samples and not observed in others leading to speculations that sample defects might be partially responsible for these exotic behaviors. This work clearly established that crystal disorder is important consideration, but contrary to current consensus this disorder suppresses exotic behavior. Superconducting properties imply unconventional inhomogeneous state that emerges from unconventional homogeneous normal state. Comprehensive structural investigations demonstrated that upper superconducting transition is intrinsic, bulk, and unconventional. The high quality of in-house synthesized single crystals was indirectly confirmed by de Haas-van Alphen quantum oscillation measurements. These measurements, for the first time ever reported, spanned several different phases, offering unprecedented possibility of studying quantum oscillations across phase boundaries.« less

  16. The structure and mechanics of Moso bamboo material

    PubMed Central

    Dixon, P. G.; Gibson, L. J.

    2014-01-01

    Although bamboo has been used structurally for millennia, there is currently increasing interest in the development of renewable and sustainable structural bamboo products (SBPs). These SBPs are analogous to wood products such as plywood, oriented strand board and glue-laminated wood. In this study, the properties of natural Moso bamboo (Phyllostachys pubescens) are investigated to further enable the processing and design of SBPs. The radial and longitudinal density gradients in bamboo give rise to variations in the mechanical properties. Here, we measure the flexural properties of Moso bamboo in the axial direction, along with the compressive strengths in the axial and transverse directions. Based on the microstructural variations (observed with scanning electron microscopy) and extrapolated solid cell wall properties of bamboo, we develop models, which describe the experimental results well. Compared to common North American construction woods loaded along the axial direction, Moso bamboo is approximately as stiff and substantially stronger, in both flexure and compression but denser. This work contributes to critical knowledge surrounding the microstructure and mechanical properties of bamboo, which are vital to the engineering and design of sustainable SBPs. PMID:25056211

  17. A review of finite size effects in quasi-zero dimensional superconductors.

    PubMed

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size dependence of the superconducting energy gap and associated properties. Finally, we discuss in section 7 the properties of ordered heterostructures (bilayers and multilayers of alternating superconducting and normal phases) and disordered heterostructures (nanocomposites consisting of superconducting and normal phases), which are primarily controlled by the proximity effect.

  18. Different Signatures of the Total Filling Factor 1 State

    NASA Astrophysics Data System (ADS)

    Tiemann, Lars; Yoon, Youngsoo; Schmult, Stefan; Hauser, Maik; Dietsche, Werner; von Klitzing, Klaus

    2009-03-01

    Bringing two 2-dimensional electron systems in close proximity can yield a correlated state as the electrons will experience the presence of the neighboring system. At the individual filling factors of 1/2 this leads to a new double-layer ground state as positive and negative charges from opposite layers couple to excitons. Many remarkable properties were found such as vanishing Hall and longitudinal resistances in the counterflow configuration [1], a resonantly enhanced zero bias tunneling peak [2], and more recently, a critical DC tunneling current and vanishingly small interlayer resistances in DC measurements [3]. We will show how it is possible to combine the results of these three different measurements into a consistent picture. Under certain conditions it is possible to exceed the critical currents but still observe a minimum at total filling factor 1 in the counterflow configuration.[1] M. Kellogg et al. PRL 93, 036801 (2004); E. Tutuc et al. PRL 93, 036802 (2004)[2] I.B. Spielman et al., PRL 87, 036803 (2001)[3] L. Tiemann et al., New Journal of Physics 10, 045018 (2008)

  19. Top and Split Gating Control of the Electrical Characteristics of a Two-dimensional Electron Gas in a LaAlO3/SrTiO3 Perovskite

    NASA Astrophysics Data System (ADS)

    Kwak, Yongsu; Song, Jonghyun; Kim, Jihwan; Kim, Jinhee

    2018-04-01

    A top gate field effect transistor was fabricated using polymethyl methacrylate (PMMA) as a gate insulator on a LaAlO3 (LAO)/SrTiO3 (STO) hetero-interface. It showed n-type behavior, and a depletion mode was observed at low temperature. The electronic properties of the 2-dimensional electron gas at the LAO/STO hetero-interface were not changed by covering LAO with PMMA following the Au top gate electrode. A split gate device was also fabricated to construct depletion mode by using a narrow constriction between the LAO/STO conduction interface. The depletion mode, as well as superconducting critical current, could be controlled by applying a split gate voltage. Noticeably, the superconducting critical current tended to decrease with decreasing the split gate voltage and finally became zero. These results indicate that a weak-linked Josephson junction can be constructed and destroyed by split gating. This observation opens the possibility of gate-voltage-adjustable quantum devices.

  20. The Maximum Levitation Force of High- T c Superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Xian-Feng; Liu, Yuan

    2007-11-01

    In this paper we present the dependence of the maximum levitation force ( F {/z max }) of a high- T c superconductor (HTS) on the structural factors of high- T c superconducting systems based on the Bean critical state model and Ampère’s law. A transition point of the surface magnetic field ( B s ) of a permanent magnet (PM) is found at which the relation between F {/z max } and B s changes: while the surface magnetic field is less than the transition value the dependence is subject to a nonlinear function, otherwise it is a linear one. The two different relations are estimated to correspond to partial penetration of the shielding currents inside the superconductor below the transition point and complete penetration above it respectively. The influence of geometric properties of superconductors on the dependence is also investigated. In addition, the relation between F {/z max } and the critical current density ( J c ) of the HTS is discussed. The maximum levitation force saturates at high J c . An optimum function of the J c and the B s is presented in order to achieve large F {/z max }.

  1. Dynamic causal modelling: a critical review of the biophysical and statistical foundations.

    PubMed

    Daunizeau, J; David, O; Stephan, K E

    2011-09-15

    The goal of dynamic causal modelling (DCM) of neuroimaging data is to study experimentally induced changes in functional integration among brain regions. This requires (i) biophysically plausible and physiologically interpretable models of neuronal network dynamics that can predict distributed brain responses to experimental stimuli and (ii) efficient statistical methods for parameter estimation and model comparison. These two key components of DCM have been the focus of more than thirty methodological articles since the seminal work of Friston and colleagues published in 2003. In this paper, we provide a critical review of the current state-of-the-art of DCM. We inspect the properties of DCM in relation to the most common neuroimaging modalities (fMRI and EEG/MEG) and the specificity of inference on neural systems that can be made from these data. We then discuss both the plausibility of the underlying biophysical models and the robustness of the statistical inversion techniques. Finally, we discuss potential extensions of the current DCM framework, such as stochastic DCMs, plastic DCMs and field DCMs. Copyright © 2009 Elsevier Inc. All rights reserved.

  2. Critical currents of Nb sub 3 Sn wires for the US-DPC coil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayasu, M.; Gung, C.Y.; Steeves, M.M.

    1991-03-01

    This paper evaluates the critical current of titanium-alloyed internal-tin, jelly-roll Nb{sub 3}Sn wire for use in the US-DPC coil. It was confirmed from 14 randomly-selected samples that the critical-current values were uniform and consistent: the non-copper critical-current density was approximately 700 A/mm{sup 2} at 10 T and 4.2 K in agreement with expectations. A 27-strand cable-in-conduit conductor (CICC) using the low-thermal-coefficient-of-expansion superalloy Incoloy 905 yielded a critical current 5--7% below the average value of the single-strand data.

  3. Modeling and simulating vortex pinning and transport currents for high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Sockwell, K. Chad

    Superconductivity is a phenomenon characterized by two hallmark properties, zero electrical resistance and the Meissner effect. These properties give great promise to a new generation of resistance free electronics and powerful superconducting magnets. However this possibility is limited by the extremely low critical temperature the superconductors must operate under, typically close to 0K. The recent discovery of high temperature superconductors has brought the critical temperature closer to room temperature than ever before, making the realization of room temperature superconductivity a possibility. Simulations of superconducting technology and materials will be necessary to usher in the new wave of superconducting electronics. Unfortunately these new materials come with new properties such as effects from multiple electron bands, as is the case for magnesium diboride. Moreover, we must consider that all high temperature superconductors are of a Type II variety, which possess magnetic tubes of flux, known as vortices. These vortices interact with transport currents, creating an electrical resistance through a process known as flux flow. Thankfully this process can be prevented by placing impurities in the superconductor, pinning the vortices, making vortex pinning a necessary aspect of our model. At this time there are no other models or simulations that are aimed at modeling vortex pinning, using impurities, in two-band materials. In this work we modify an existing Ginzburg-Landau model for two-band superconductors and add the ability to model normal inclusions (impurities) with a new approach which is unique to the two-band model. Simulations in an attempt to model the material magnesium diboride are also presented. In particular simulations of vortex pinning and transport currents are shown using the modified model. The qualitative properties of magnesium diboride are used to validate the model and its simulations. One main goal from the computational end of the simulations is to enlarge the domain size to produce more realistic simulations that avoid boundary pinning effects. In this work we also implement the numerical software library Trilinos in order to parallelize the simulation to enlarge the domain size. Decoupling methods are also investigated with a goal of enlarging the domain size as well. The One-Band Ginzburg-Landau model serves as a prototypical problem in this endeavor and the methods shown that enlarge the domain size can be easily implemented in the two-band model.

  4. Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets.

    PubMed

    Dave, Vivek S; Shahin, Hend I; Youngren-Ortiz, Susanne R; Chougule, Mahavir B; Haware, Rahul V

    2017-10-30

    The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Relating Cirrus Cloud Properties to Observed Fluxes: A Critical Assessment.

    NASA Astrophysics Data System (ADS)

    Vogelmann, A. M.; Ackerman, T. P.

    1995-12-01

    The accuracy needed in cirrus cloud scattering and microphysical properties is quantified such that the radiative effect on climate can he determined. Our ability to compute and observe these properties to within needed accuracies is assessed, with the greatest attention given to those properties that most affect the fluxes.Model calculations indicate that computing net longwave fluxes at the surface to within ±5% requires that cloud temperature be known to within as little as ±3 K in cold climates for extinction optical depths greater than two. Such accuracy could be more difficult to obtain than that needed in the values of scattering parameters. For a baseline case (defined in text), computing net shortwave fluxes at the surface to within ±5% requires accuracies in cloud ice water content that, when the optical depth is greater than 1.25, are beyond the accuracies of current measurements. Similarly, surface shortwave flux computations require accuracies in the asymmetry parameter that are beyond our current abilities when the optical depth is greater than four. Unless simplifications are discovered, the scattering properties needed to compute cirrus cloud fluxes cannot be obtained explicitly with existing scattering algorithms because the range of crystal sizes is too great and crystal shapes are too varied to be treated computationally. Thus, bulk cirrus scattering properties might be better obtained by inverting cirrus cloud fluxes and radiances. Finally, typical aircraft broadband flux measurements are not sufficiently accurate to provide a convincing validation of calculations. In light of these findings we recommend a reexamination of the methodology used in field programs such as FIRE and suggest a complementary approach.

  6. The Properties of Reconnection Current Sheets in GRMHD Simulations of Radiatively Inefficient Accretion Flows

    NASA Astrophysics Data System (ADS)

    Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-Kwan; Sironi, Lorenzo

    2018-02-01

    Non-ideal magnetohydrodynamic (MHD) effects may play a significant role in determining the dynamics, thermal properties, and observational signatures of radiatively inefficient accretion flows onto black holes. In particular, particle acceleration during magnetic reconnection events may influence black hole spectra and flaring properties. We use representative general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows to identify and explore the structures and properties of current sheets as potential sites of magnetic reconnection. In the case of standard and normal evolution (SANE) disks, we find that in the reconnection sites, the plasma beta ranges from 0.1 to 1000, the magnetization ranges from 10‑4 to 1, and the guide fields are weak compared with the reconnecting fields. In magnetically arrested (MAD) disks, we find typical values for plasma beta from 10‑2 to 103, magnetizations from 10‑3 to 10, and typically stronger guide fields, with strengths comparable to or greater than the reconnecting fields. These are critical parameters that govern the electron energy distribution resulting from magnetic reconnection and can be used in the context of plasma simulations to provide microphysics inputs to global simulations. We also find that ample magnetic energy is available in the reconnection regions to power the fluence of bright X-ray flares observed from the black hole in the center of the Milky Way.

  7. Liquid crystalline polymers

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The remarkable mechanical properties and thermal stability of fibers fabricated from liquid crystalline polymers (LCPs) have led to the use of these materials in structural applications where weight savings are critical. Advances in processing of LCPs could permit the incorporation of these polymers into other than uniaxial designs and extend their utility into new areas such as nonlinear optical devices. However, the unique feature of LCPs (intrinsic orientation order) is itself problematic, and current understanding of processing with control of orientation falls short of allowing manipulation of macroscopic orientation (except for the case of uniaxial fibers). The current and desirable characteristics of LCPs are reviewed and specific problems are identified along with issues that must be addressed so that advances in the use of these unique polymers can be expedited.

  8. Systematic parameter estimation and sensitivity analysis using a multidimensional PEMFC model coupled with DAKOTA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao Yang; Luo, Gang; Jiang, Fangming

    2010-05-01

    Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated inmore » order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.« less

  9. Current-limiting challenges for all-spin logic devices

    PubMed Central

    Su, Li; Zhang, Youguang; Klein, Jacques-Olivier; Zhang, Yue; Bournel, Arnaud; Fert, Albert; Zhao, Weisheng

    2015-01-01

    All-spin logic device (ASLD) has attracted increasing interests as one of the most promising post-CMOS device candidates, thanks to its low power, non-volatility and logic-in-memory structure. Here we investigate the key current-limiting factors and develop a physics-based model of ASLD through nano-magnet switching, the spin transport properties and the breakdown characteristic of channel. First, ASLD with perpendicular magnetic anisotropy (PMA) nano-magnet is proposed to reduce the critical current (Ic0). Most important, the spin transport efficiency can be enhanced by analyzing the device structure, dimension, contact resistance as well as material parameters. Furthermore, breakdown current density (JBR) of spin channel is studied for the upper current limitation. As a result, we can deduce current-limiting conditions and estimate energy dissipation. Based on the model, we demonstrate ASLD with different structures and channel materials (graphene and copper). Asymmetric structure is found to be the optimal option for current limitations. Copper channel outperforms graphene in term of energy but seriously suffers from breakdown current limit. By exploring the current limit and performance tradeoffs, the optimization of ASLD is also discussed. This benchmarking model of ASLD opens up new prospects for design and implementation of future spintronics applications. PMID:26449410

  10. The strength of plants: theory and experimental methods to measure the mechanical properties of stems.

    PubMed

    Shah, Darshil U; Reynolds, Thomas P S; Ramage, Michael H

    2017-07-20

    From the stems of agricultural crops to the structural trunks of trees, studying the mechanical behaviour of plant stems is critical for both commerce and science. Plant scientists are also increasingly relying on mechanical test data for plant phenotyping. Yet there are neither standardized methods nor systematic reviews of current methods for the testing of herbaceous stems. We discuss the architecture of plant stems and highlight important micro- and macrostructural parameters that need to be controlled and accounted for when designing test methodologies, or that need to be understood in order to explain observed mechanical behaviour. Then, we critically evaluate various methods to test structural properties of stems, including flexural bending (two-, three-, and four-point bending) and axial loading (tensile, compressive, and buckling) tests. Recommendations are made on best practices. This review is relevant to fundamental studies exploring plant biomechanics, mechanical phenotyping of plants, and the determinants of mechanical properties in cell walls, as well as to application-focused studies, such as in agro-breeding and forest management projects, aiming to understand deformation processes of stem structures. The methods explored here can also be extended to other elongated, rod-shaped organs (e.g. petioles, midribs, and even roots). © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Variation of mechanical properties and oxidation with radiation dose and source in highly crosslinked remelted UHMWPE.

    PubMed

    Fung, Mitchell; Bowsher, John G; Van Citters, Douglas W

    2018-06-01

    Ultra-high molecular weight polyethylene (UHMWPE) is the current gold standard for bearing materials used in total joint arthroplasty. High-dose radiation is commonly used to crosslink UHMWPE, thereby improving its wear resistance. A subsequent remelting step eliminates trapped residual free radicals to promote oxidative stability on the shelf, and to prevent material degradation over the long term. Assessment of clinically retrieved, highly crosslinked UHMWPE devices shows signs of unanticipated oxidation occurring in vivo, despite the absence of free radicals prior to implantation. These findings warrant further investigation into possible factors impacting this phenomenon along with its clinical implications. The overall objective of this work is to quantify the influence of irradiation dose and source on UHMWPE's oxidative stability, along with the effects of oxidation on the ultimate mechanical properties, including strength, ductility, and toughness. The results showed a strong positive correlation between maximum oxidation and initial transvinylene content. Critical oxidation levels in the context of mechanical property loss were determined for e-beam and gamma treatments at various radiation doses. Further, it was shown that critical oxidation was more dependent on radiation dose and less dependent on source. If in vivo oxidation persists in these devices, this can potentially lead to mechanical failure (e.g. fatigue damage) as observed in terminally gamma-sterilized devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beebe, Melissa R., E-mail: mrbeebe@email.wm.edu; Beringer, Douglas B.; Burton, Matthew C.

    2016-03-15

    The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films tomore » exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB{sub 2} thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature T{sub C}, the authors are the first to report on the correlation between stoichiometry and the lower critical field H{sub C1}.« less

  13. On the universal behavior of some thermodynamic properties along the whole liquid-vapor coexistence curve

    NASA Astrophysics Data System (ADS)

    Román, F. L.; White, J. A.; Velasco, S.; Mulero, A.

    2005-09-01

    When thermodynamic properties of a pure substance are transformed to reduced form by using both critical- and triple-point values, the corresponding experimental data along the whole liquid-vapor coexistence curve can be correlated with a very simple analytical expression that interpolates between the behavior near the triple and the critical points. The leading terms of this expression contain only two parameters: the critical exponent and the slope at the triple point. For a given thermodynamic property, the critical exponent has a universal character but the slope at the triple point can vary significantly from one substance to another. However, for certain thermodynamic properties including the difference of coexisting densities, the enthalpy of vaporization, and the surface tension of the saturated liquid, one finds that the slope at the triple point also has a nearly universal value for a wide class of fluids. These thermodynamic properties thus show a corresponding apparently universal behavior along the whole coexistence curve.

  14. Durability Characterization of Advanced Polymeric Composites at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, T. S.

    2001-01-01

    The next generation of reusable launch vehicles will require technology development in several key areas. Of these key areas, the development of polymeric composite cryogenic fuel tanks promises to present one of the most difficult technical challenges. It is envisioned that a polymer matrix composite (PMC) tank would be a large shell structure capable of containing cryogenic fuels and carrying a range of structural loads. The criteria that will be imposed on such a design include reduced weight, conformal geometry, and impermeability. It is this last criterion, impermeability, that will provide the focus of this paper. The essence of the impermeability criterion is that the tank remains leak free throughout its design lifetime. To address this criterion, one of the first steps is to conduct a complete durability assessment of the PMC materials. At Langley Research Center, a durability assessment of promising new polyimide-based PMCs is underway. This durability program has focused on designing a set of critical laboratory experiments that will determine fundamental material properties under combined thermal-mechanical loading at cryogenic temperatures. The test program provides measurements of lamina and laminate properties, including strength, stiffness, and fracture toughness. The performance of the PMC materials is monitored as a function of exposure conditions and aging time. Residual properties after exposure are measured at cryogenic temperatures and provide quantitative values of residual strength and stiffness. Primary degradation mechanisms and the associated damage modes are measured with both destructive and nondestructive techniques. In addition to mechanical properties, a range of physical properties, such as weight, glass transition, and crack density, are measured and correlated with the test conditions. This paper will report on the progress of this research program and present critical results and illustrative examples of current findings.

  15. Vortex lines in layered superconductors. II. Pinning and critical currents in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Manuel, P.

    1994-02-01

    In this article, a qualitative survey is given on the various phenomena which influence the critical current of high temperature superconductors. Critical current is defined as a property related to a non-zero electric field criterion, the level of which is fixed by experimental considerations, or efficiency requirements of applications. The presentation is restricted to extrinsic intragranular critical current, which depends in a complex way on the interplay between the characteristics of pinning centres and the properties of the vortex lattice. The discussion is focussed on the configuration {B} / / {c}, which contains the main elements of this problem. Differences of behaviour between Y(123) and BSCCO (Bi(2212) or Bi(2223)) are analysed in the context of their respective anisotropy factors. Possible regimes for pinning and creep are discussed in various temperature domains. From critical current results, a strong pinning regime is found to occur in BSCCO, whereas the pinning strength in Y(123) is still an open question. The thermal decrease of critical current allows a collective creep regime to appear in both materials, but at different temperature ranges. The disappearance of correlation effects near the irreversibility line results in a fall of the effective pinning energy. We show that in BSCCO, the effective pinning energy deduced from experimental results is not in agreement with pinning by randomly dispersed oxygen vacancies. Finally, we shortly describe the microstructures which could allow a more efficient pinning in future materials. On effectue une présentation qualitative des divers phénomènes qui contrôlent la valeur du courant critique dans les supraconducteurs à haute température. La notion de courant critique qui est utilisée est reliée à un critère de champ électrique non nul, fixé par des considérations expérimentales ou des exigences de rendement pour les applications. On se restreint au problème des courants critiques intragranulaires d'origine extrinsèque, qui dépendent de façon complexe des caractéristiques d'ancrage des défauts présents dans le matériau et des propriétés du réseau de vortex. On privilégie la configuration de champ {B} / / {c} qui est la plus révélatrice à cet égard. On analyse les différences de comportement entre les composés Y(123) et BSCCO (Bi(2212) ou Bi(2223)) en liaison avec leurs degrés d'anisotropie respectifs. Les différents régimes d'ancrage et de ll creep gg possibles pour ces composés sont examinés en fonction de la température. Les courants critiques obtenus pour BSCCO semblent correspondre à un régime d'ancrage fort, alors que la question reste ouverte pour Y(l23). La décroissance en température du courant critique expérimental suscite l'apparition d'un régime de ll creep gg collectif pour ces deux composés, avec cependant des différences notables sur la position et l'étendue des domaines correspondants. Au voisinage de la ligne d'irréversibilité, la disparition progressive des corrélations entre vortex provoque une chute de l'énergie d'ancrage effective. Dans BSCCO, celle-ci ne semble pas compatible avec l'hypothèse d'un ancrage par des lacunes d'oxygène réparties de façon aléatoire. On donne en conclusion quelques indications concernant les microstructures susceptibles d'améliorer les propriétés d'ancrage des futurs matériaux.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borroto, A.; Altshuler, E., E-mail: ealtshuler@fisica.uh.cu; Del Río, L.

    We propose a model for a superconductor-metal composite that allows to derive intrinsic transport properties of the superconducting phase based on 2D images of its cross section, and a minimal set of parameters. The method is tested experimentally by using, as model composite, a “transversal bridge” made on a Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} (BSCCO)-Ag multi-filamentary tape. It is shown that the approach allows to predict the measured I−〈E〉 curves of the filaments. In addition, one can determine the critical current anisotropy between the longitudinal and transverse directions of the Ag-BSCCO tape, and also of its superconducting filaments separately,more » which emphasizes the role of the morphology of the composite in the transport properties.« less

  17. Structures with high number density of carbon nanotubes and 3-dimensional distribution

    NASA Technical Reports Server (NTRS)

    Chen, Zheng (Inventor); Tzeng, Yonhua (Inventor)

    2002-01-01

    A composite is described having a three dimensional distribution of carbon nanotubes. The critical aspect of such composites is a nonwoven network of randomly oriented fibers connected at their junctions to afford macropores in the spaces between the fibers. A variety of fibers may be employed, including metallic fibers, and especially nickel fibers. The composite has quite desirable properties for cold field electron emission applications, such as a relatively low turn-on electric field, high electric field enhancement factors, and high current densities. The composites of this invention also show favorable properties for other an electrode applications. Several methods, which also have general application in carbon nanotube production, of preparing these composites are described and employ a liquid feedstock of oxyhydrocarbons as carbon nanotube precursors.

  18. Electronic Biosensors Based on III-Nitride Semiconductors.

    PubMed

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  19. Survey of inorganic polymers. [for composite matrix resins

    NASA Technical Reports Server (NTRS)

    Gerber, A. H.; Mcinerney, E. F.

    1979-01-01

    A literature search was carried out in order to identify inorganic, metallo-organic, and hybrid inorganic-organic polymers that could serve as potential matrix resins for advanced composites. The five most promising candidates were critically reviewed and recommendations were made for the achievement of their potential in terms of performance and cost. These generic polymer classes comprise: (1) Poly(arylsil sesquioxanes); (2) Poly(silyl arylene siloxanes); (3) Poly(silarylenes); (4) Poly(silicon-linked ferrocenes); and (5) Poly(organo phosphazenes). No single candidate currently possesses the necessary combination of physicomechanical properties, thermal stability, processability, and favorable economics. The first three classes exhibit the best thermal performance. On the other hand, poly (organo phosphazenes), the most extensively studied polymer class, exhibit the best combination of structure-property control, processability, and favorable economics.

  20. Spartan Release Engagement Mechanism (REM) stress and fracture analysis

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.

  1. Critical current densities of powder-in-tube MgB2 tapes fabricated with nanometer-size Mg powder

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Hirakawa, M.; Kumakura, H.; Matsumoto, A.; Kitaguchi, H.

    2004-03-01

    We fabricated powder-in-tube MgB2/Fe tapes using a powder mixture of nanometer-size Mg and commercial amorphous B and investigated the transport properties. High-purity nanometer-size Mg powder was fabricated by applying the thermal plasma method. 5-10 mol % SiC powder doping was tried to enhance the Jc properties. We found that the use of nanometer-size Mg powder was effective to increase the Jc values. The transport Jc values of the nondoped and 10 mol % SiC-doped tapes prepared with nanometer-size Mg powder reached 90 and 250 A/mm2 at 4.2 K and 10 T, respectively. These values were about five times higher than those of the tapes prepared with commercial Mg powder.

  2. Study of the inhomogeneity of critical current under in-situ tensile stress for YBCO tape

    NASA Astrophysics Data System (ADS)

    Zhu, Y. P.; Chen, W.; Zhang, H. Y.; Liu, L. Y.; Pan, X. F.; Yang, X. S.; Zhao, Y.

    2018-07-01

    A Hall sensor system was used to measure the local critical current of YBCO tape with high spatial resolution under in-situ tensile stress. The hot spot generation and minimum quench energy of YBCO tape, which depended on the local critical current, was calculated through the thermoelectric coupling model. With the increase in tensile stress, the cracks which have different dimensions and critical current degradation arose more frequently and lowered the thermal stability of the YBCO tape.

  3. Spacelab experiment definition study on phase transition and critical phenomena in fluids: Interim report on experimental justification

    NASA Technical Reports Server (NTRS)

    Moldover, M. R.; Hocken, M. R.; Gammon, R. W.; Sengers, J. V.

    1976-01-01

    Pure fluids and fluid mixtures near critical points are identified and are related to the progress of several disciplines. Consideration is given to thermodynamic properties, transport properties, and the complex nonlinear phenomena which occur when fluids undergo phase transitions in the critical region. The distinction is made between practical limits which may be extended by advances in technology and intrinsic ones which arise from the modification of fluid properties by the earth's gravitational field. The kinds of experiments near critical points which could best exploit the low gravity environment of an orbiting laboratory are identified. These include studies of the index of refraction, constant volume specific heat, and phase separation.

  4. Selective mass enhancement close to the quantum critical point in BaFe 2(As 1-xP x) 2

    DOE PAGES

    Grinenko, V.; Iida, K.; Kurth, F.; ...

    2017-07-04

    A quantum critical point (QCP) is currently being conjectured for the BaFe 2(As 1-xP x) 2 system at the critical value x c ≈ 0.3. In the proximity of a QCP, all thermodynamic and transport properties are expected to scale with a single characteristic energy, given by the quantum fluctuations. Such a universal behavior has not, however, been found in the superconducting upper critical field H c2. Here we report H c2 data for epitaxial thin films extracted from the electrical resistance measured in very high magnetic fields up to 67 Tesla. Using a multi-band analysis we find that Hmore » c2 is sensitive to the QCP, implying a significant charge carrier effective mass enhancement at the doping-induced QCP that is essentially band-dependent. Our results point to two qualitatively different groups of electrons in BaFe 2(As 1-xP x) 2. The first one (possibly associated to hot spots or whole Fermi sheets) has a strong mass enhancement at the QCP, and the second one is insensitive to the QCP. The observed duality could also be present in many other quantum critical systems.« less

  5. Sphingolipids role in the regulation of inflammatory response: From leukocyte biology to bacterial infection.

    PubMed

    Chiricozzi, Elena; Loberto, Nicoletta; Schiumarini, Domitilla; Samarani, Maura; Mancini, Giulia; Tamanini, Anna; Lippi, Giuseppe; Dechecchi, Maria Cristina; Bassi, Rosaria; Giussani, Paola; Aureli, Massimo

    2018-03-01

    Sphingolipids (SLs) are amphiphilic molecules mainly associated with the external leaflet of eukaryotic plasma membrane, and are structural membrane components with key signaling properties. Since the beginning of the last century, a large number of papers described the involvement of these molecules in several aspects of cell physiology and pathology. Several lines of evidence support the critical role of SLs in inflammatory diseases, by acting as anti- or pro-inflammatory mediators. They are involved in control of leukocyte activation and migration, and are recognized as essential players in host response to pathogenic infection. We propose here a critical overview of current knowledge on involvement of different classes of SLs in inflammation, focusing on the role of simple and complex SLs in pathogen-mediated inflammatory response. ©2018 Society for Leukocyte Biology.

  6. [The risk of direct current countershock].

    PubMed

    Gajek, J; Zyśko, D

    2001-07-01

    Direct current cardioversion (DCC) is a procedure commonly used to restore the sinus rhythm in patients with supraventricular and ventricular arrhythmias. Its safety, regarding the use of electric current, is still a matter of controversy and debate. The patients with atrial fibrillation/flutter, supraventricular or ventricular tachycardia represent a broad spectrum of clinical conditions and it is difficult to draw the conclusions. The high success rate of DCC in restoring the sinus rhythm, may be partly responsible for enhancing and revealing proarrhythmic properties of antiarrhythmic drugs. The deaths described as a complications of DCC were mainly due to the proarrhythmia and less common to the progression of the pathologic process. The embolic, arrhythmic and anesthetic complications of DCC can be prevented if the known recommendations of performing the DCC are followed. The authors review critically the literature data about the complications of the procedure and come to the conclusion of safety of DCC.

  7. Analysis and measurements of low frequency lightning component penetration through aerospace vehicle metal and graphite skins

    NASA Technical Reports Server (NTRS)

    Robb, J. D.; Chen, T.

    1980-01-01

    An analysis of the shielding properties of mixed metal and graphite composite structures has illustrated some important aspects of electromagnetic field penetration into the interior. These include: (1) that graphite access doors on metallic structures will attenuate lightning magnetic fields very little; conversely, metal doors on a graphite structure will also attenuate fields from lightning strike currents very little, i.e., homogeneity of the shield is a critical factor in shielding and (2) that continuous conductors between two points inside a graphite skin such as an air data probe metallic tubing connection to an air data computer can allow large current penetrations into a vehicle interior. The true weight savings resulting from the use of composite materials can only be evaluated after the resulting electromagnetic problems such as current penetrations have been solved, and this generally requires weight addition in the form of cable shields, conductor bonding or external metallization.

  8. The Effects of Grain Boundaries on the Current Transport Properties in YBCO-Coated Conductors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Xia, Yudong; Xue, Yan; Zhang, Fei; Tao, Bowan; Xiong, Jie

    2015-10-01

    We report a detailed study of the grain orientations and grain boundary (GB) networks in Y2O3 films grown on Ni-5 at.%W substrates. Electron back scatter diffraction (EBSD) exhibited different GB misorientation angle distributions, strongly decided by Y2O3 films with different textures. The subsequent yttria-stabilized zirconia (YSZ) barrier and CeO2 cap layer were deposited on Y2O3 layers by radio frequency sputtering, and YBa2Cu3O7-δ (YBCO) films were deposited by pulsed laser deposition. For explicating the effects of the grain boundaries on the current carry capacity of YBCO films, a percolation model was proposed to calculate the critical current density ( J c) which depended on different GB misorientation angle distributions. The significantly higher J c for the sample with sharper texture is believed to be attributed to improved GB misorientation angle distributions.

  9. The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Omri, K.; Bettaibi, A.; Khirouni, K.; El Mir, L.

    2018-05-01

    In the current study, we synthesized a Cu-doped ZnO (CZO) nanoparticles material using a sol-gel method with different doping concentrations of Cu (0, 2, 3 and 4 at.%). The control of the Cu concentration on structural, electrical and optical properties of CZO nanoparticles was investigated in detail. The XRD analysis of the CZO nanoparticles reveals the formation of ZnO hexagonal wurtzite structure for all samples which confirm the incorporation of Cu2+ ions into the ZnO lattice by substitution. Furthermore, CZO nanoparticles showed a small red shift of absorption band with the incorporation of Cu from 0 to 4 at.%; i.e. a decreased band gap value from 3.34 eV to 3.27 eV with increasing of Cu doping content. The frequency dispersion of the electric conductivity were studied using the Jonscher universal power law, according to relation σ(ω) = σDC + A ωs(T). Alternative current conductivity increases with increasing Cu content in spite of the decrease the activation energy with copper loading. It was found that the conductivity reached its maximum value for critical Cu concentration of 3 at.%. The frequency relaxation phenomenon was also investigated and all results were discussed in term of the copper doping concentration.

  10. From Single Nucleotide Polymorphisms to Constant Immunosuppression: Mesenchymal Stem Cell Therapy for Autoimmune Diseases

    PubMed Central

    Galipeau, Jacques; Nooka, Ajay K.

    2013-01-01

    The regenerative abilities and the immunosuppressive properties of mesenchymal stromal cells (MSCs) make them potentially the ideal cellular product of choice for treatment of autoimmune and other immune mediated disorders. Although the usefulness of MSCs for therapeutic applications is in early phases, their potential clinical use remains of great interest. Current clinical evidence of use of MSCs from both autologous and allogeneic sources to treat autoimmune disorders confers conflicting clinical benefit outcomes. These varied results may possibly be due to MSC use across wide range of autoimmune disorders with clinical heterogeneity or due to variability of the cellular product. In the light of recent genome wide association studies (GWAS), linking predisposition of autoimmune diseases to single nucleotide polymorphisms (SNPs) in the susceptible genetic loci, the clinical relevance of MSCs possessing SNPs in the critical effector molecules of immunosuppression is largely undiscussed. It is of further interest in the allogeneic setting, where SNPs in the target pathway of MSC's intervention may also modulate clinical outcome. In the present review, we have discussed the known critical SNPs predisposing to disease susceptibility in various autoimmune diseases and their significance in the immunomodulatory properties of MSCs. PMID:24350294

  11. Thermal hydrolysis for sewage treatment: A critical review.

    PubMed

    Barber, W P F

    2016-11-01

    A review concerning the development and applicability of sewage sludge thermal hydrolysis especially prior to anaerobic digestion is presented. Thermal hydrolysis has proven to be a successful approach to making sewage sludge more amenable to anaerobic digestion. Currently there are 75 facilities either in operation or planning, spanning several continents with the first installation in 1995. The reported benefits of thermal hydrolysis relate to: increased digestion loading rate due to altered rheological properties, improved biodegradation of (especially activated) sludge and enhanced dewaterability. In spite of its relative maturity, there has been no attempt to perform a critical review of the pertinent literature relating to the technology. Closer look at the literature reveals complications with comparing both experimental- and full-scale results due to differences in experimental set-up and capability, and also site-specific conditions at full-scale. Furthermore, it appears that understanding of thermodynamic and rheological properties of sludge is key to optimizing the process, however these parameters are largely overlooked by the literature. This paper aims to bridge these complexities in order to elucidate the benefits of thermal hydrolysis for sewage treatment, and makes recommendations for further development and research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinenko, V.; Iida, K.; Kurth, F.

    A quantum critical point (QCP) is currently being conjectured for the BaFe 2(As 1-xP x) 2 system at the critical value x c ≈ 0.3. In the proximity of a QCP, all thermodynamic and transport properties are expected to scale with a single characteristic energy, given by the quantum fluctuations. Such a universal behavior has not, however, been found in the superconducting upper critical field H c2. Here we report H c2 data for epitaxial thin films extracted from the electrical resistance measured in very high magnetic fields up to 67 Tesla. Using a multi-band analysis we find that Hmore » c2 is sensitive to the QCP, implying a significant charge carrier effective mass enhancement at the doping-induced QCP that is essentially band-dependent. Our results point to two qualitatively different groups of electrons in BaFe 2(As 1-xP x) 2. The first one (possibly associated to hot spots or whole Fermi sheets) has a strong mass enhancement at the QCP, and the second one is insensitive to the QCP. The observed duality could also be present in many other quantum critical systems.« less

  13. Hidden Criticality of Counterion Condensation Near a Charged Cylinder.

    PubMed

    Cha, Minryeong; Yi, Juyeon; Kim, Yong Woon

    2017-09-05

    Counterion condensation onto a charged cylinder, known as the Manning transition, has received a great deal of attention since it is essential to understand the properties of polyelectrolytes in ionic solutions. However, the current understanding is still far from complete and poses a puzzling question: While the strong-coupling theory valid at large ionic correlations suggests a discontinuous nature of the counterion condensation, the mean-field theory always predicts a continuous transition at the same critical point. This naturally leads to a question how one can reconcile the mean-field theory with the strong-coupling prediction. Here, we study the counterion condensation transition on a charged cylinder via Monte Carlo simulations. Varying the cylinder radius systematically in relation to the system size, we find that in addition to the Manning transition, there exists a novel transition where all counterions are bound to the cylinder and the heat capacity shows a drop at a finite Manning parameter. A finite-size scaling analysis is carried out to confirm the criticality of the complete condensation transition, yielding the same critical exponents with the Manning transition. We show that the existence of the complete condensation is essential to explain how the condensation nature alters from continuous to discontinuous transition.

  14. F-actin-based Ca signaling-a critical comparison with the current concept of Ca signaling.

    PubMed

    Lange, Klaus; Gartzke, Joachim

    2006-11-01

    A short comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect, the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating endoplasmic/sarcoplasmic reticulum-derived vesicles equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive channel-receptors for Ca-release. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of actin filaments. Cellular sites of F-actin-based Ca storage are microvilli and the submembrane cytoskeleton. Several specific features of Ca signaling such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release (CICR), which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling. Copyright 2006 Wiley-Liss, Inc.

  15. Electron Cyclotron Radiation, Related Power Loss, and Passive Current Drive in Tokamaks: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidone, Ignazio; Giruzzi, Gerardo; Granata, Giovanni

    2001-01-15

    A critical review on emission of weakly damped, high-harmonics electron cyclotron radiation, the related synchrotron power loss, and passive current drive in tokamaks with a fish-scale first wall is presented. First, the properties of overlapping harmonics are discussed using general analytical formulas and numerical applications. Next, the radiation power loss and efficiency of passive current drive in tokamak reactors are derived for the asymmetric fish-scale first wall. The radiation power loss is determined by the direction-averaged reflection coefficient {sigma}{sub 0} and the passive current drive by the differential reflectivity {delta}{sigma}/(1 - {sigma}{sub 0}). Finally, the problem of experimental investigations ofmore » the high harmonics radiation spectra, of {sigma}{sub 0} and {delta}{sigma}/(1 - {sigma}{sub 0}) in existing and next-step tokamaks, is discussed. Accurate measurements of the radiation spectra and the fish-scale reflectivity can be performed at arbitrary electron temperature using a partial fish-scale structure located near the tokamak equatorial plane.« less

  16. Non-destructive system to evaluate critical properties of asphalt compaction : [research brief].

    DOT National Transportation Integrated Search

    2013-12-01

    The Wisconsin Highway Research Program sponsored a two-stage investigation to develop a non-destructive system to evaluate critical compaction properties and characteristics of asphalt pavements during the densification process. Stage One activities ...

  17. Current Status of Tissue-Engineered Scaffolds for Rotator Cuff Repair.

    PubMed

    Chainani, Abby; Little, Dianne

    2016-06-01

    Rotator cuff tears continue to be at significant risk for re-tear or for failure to heal after surgical repair despite the use of a variety of surgical techniques and augmentation devices. Therefore, there is a need for functionalized scaffold strategies to provide sustained mechanical augmentation during the critical first 12-weeks following repair, and to enhance the healing potential of the repaired tendon and tendon-bone interface. Tissue engineered approaches that combine the use of scaffolds, cells, and bioactive molecules towards promising new solutions for rotator cuff repair are reviewed. The ideal scaffold should have adequate initial mechanical properties, be slowly degrading or non-degradable, have non-toxic degradation products, enhance cell growth, infiltration and differentiation, promote regeneration of the tendon-bone interface, be biocompatible and have excellent suture retention and handling properties. Scaffolds that closely match the inhomogeneity and non-linearity of the native rotator cuff may significantly advance the field. While substantial pre-clinical work remains to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical translation.

  18. Current Status of Tissue-Engineered Scaffolds for Rotator Cuff Repair

    PubMed Central

    Chainani, Abby; Little, Dianne

    2015-01-01

    Rotator cuff tears continue to be at significant risk for re-tear or for failure to heal after surgical repair despite the use of a variety of surgical techniques and augmentation devices. Therefore, there is a need for functionalized scaffold strategies to provide sustained mechanical augmentation during the critical first 12-weeks following repair, and to enhance the healing potential of the repaired tendon and tendon-bone interface. Tissue engineered approaches that combine the use of scaffolds, cells, and bioactive molecules towards promising new solutions for rotator cuff repair are reviewed. The ideal scaffold should have adequate initial mechanical properties, be slowly degrading or non-degradable, have non-toxic degradation products, enhance cell growth, infiltration and differentiation, promote regeneration of the tendon-bone interface, be biocompatible and have excellent suture retention and handling properties. Scaffolds that closely match the inhomogeneity and non-linearity of the native rotator cuff may significantly advance the field. While substantial pre-clinical work remains to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical translation. PMID:27346922

  19. Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics.

    PubMed

    Kaneko, Satoshi; Murai, Daigo; Marqués-González, Santiago; Nakamura, Hisao; Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Ikeda, Katsuyoshi; Tsukagoshi, Kazuhito; Kiguchi, Manabu

    2016-02-03

    Adsorption sites of molecules critically determine the electric/photonic properties and the stability of heterogeneous molecule-metal interfaces. Then, selectivity of adsorption site is essential for development of the fields including organic electronics, catalysis, and biology. However, due to current technical limitations, site-selectivity, i.e., precise determination of the molecular adsorption site, remains a major challenge because of difficulty in precise selection of meaningful one among the sites. We have succeeded the single site-selection at a single-molecule junction by performing newly developed hybrid technique: simultaneous characterization of surface enhanced Raman scattering (SERS) and current-voltage (I-V) measurements. The I-V response of 1,4-benzenedithiol junctions reveals the existence of three metastable states arising from different adsorption sites. Notably, correlated SERS measurements show selectivity toward one of the adsorption sites: "bridge sites". This site-selectivity represents an essential step toward the reliable integration of individual molecules on metallic surfaces. Furthermore, the hybrid spectro-electric technique reveals the dependence of the SERS intensity on the strength of the molecule-metal interaction, showing the interdependence between the optical and electronic properties in single-molecule junctions.

  20. Rectifying and photovoltaic properties of the heterojunction composed of CaMnO3 and Nb-doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Sun, J. R.; Zhang, S. Y.; Shen, B. G.; Wong, H. K.

    2005-01-01

    A heterojunction composed of CaMnO3 (CMO) and Nb-doped SrTiO3 (STON) was fabricated and its properties were studied and compared with La0.67Ca0.33MnO3/STON and LaMnO3+δ/STON p-n, junctions. This CMO/STON junction exhibits an asymmetric current-voltage relation similar to a p-n junction. The most remarkable discovery is that the magnetic state of the manganites has a strong impact on the rectifying behaviors. The diffusion voltage, which is the critical voltage for the current rush, shows a tendency to decrease/increase with the establishment of the antiferromagnetic/ferromagnetic order in the manganites of the junction. Similar to other manganite p-n junctions, CMO/STON also exhibits a significant photovoltaic effect, and the maximum photovoltage is ˜2.2mV under the illumination of ˜7mW light (λ=460nm). A qualitative explanation is given based on an analysis on the band diagram of the junctions.

  1. Process-Structure-Property Relationships of Micron Thick Gadolinium Oxide Films Deposited by Reactive Electron Beam-Physical Vapor Deposition (EB-PVD)

    DTIC Science & Technology

    2014-12-01

    surface roughness on film properties must be considered. Stability at the interface between the film and the substrate becomes critical with...etc.). Addition of atoms to the growing surface creates additional surface energy. Therefore, nuclei of a critical size 23 must be formed in order... critical nuclei size and a lower nucleation rate. Higher deposition rates result in a decreased critical nuclei size which leads to an increase in

  2. Influence of artificial pinning centers on structural and superconducting properties of thick YBCO films on ABAD-YSZ templates

    NASA Astrophysics Data System (ADS)

    Pahlke, Patrick; Sieger, Max; Ottolinger, Rick; Lao, Mayraluna; Eisterer, Michael; Meledin, Alexander; Van Tendeloo, Gustaaf; Hänisch, Jens; Holzapfel, Bernhard; Schultz, Ludwig; Nielsch, Kornelius; Hühne, Ruben

    2018-04-01

    Recent efforts in the development of YBa2Cu3O7-x (YBCO) coated conductors are devoted to the increase of the critical current I c in magnetic fields. This is typically realized by growing thicker YBCO layers as well as by the incorporation of artificial pinning centers. We studied the growth of doped YBCO layers with a thickness of up to 7 μm using pulsed laser deposition with a growth rate of about 1.2 nm s-1. Industrially fabricated ion-beam textured YSZ templates based on metal tapes were used as substrates for this study. The incorporation of BaHfO3 (BHO) or Ba2Y(Nb0.5Ta0.5)O6 (BYNTO) secondary phase additions leads to a denser microstructure compared to undoped films. A purely c-axis-oriented YBCO growth is preserved up to a thickness of about 4 μm, whereas misoriented texture components were observed in thicker films. The critical temperature is slightly reduced compared to undoped films and independent of film thickness. The critical current density J c of the BHO- and BYNTO-doped YBCO layers is lower at 77 K and self-field compared to pure YBCO layers; however, I c increases up to a thickness of 5 μm. A comparison between films with a thickness of 1.3 μm revealed that the anisotropy of the critical current density J c(θ) strongly depends on the incorporated pinning centers. Whereas BHO nanorods lead to a strong B∣∣c-axis peak, the overall anisotropy is significantly reduced by the incorporation of BYNTO forming a mixture of short c-axis-oriented nanorods and small (a-b)-oriented platelets. As a result, the J c values of the doped films outperform the undoped samples at higher fields and lower temperatures for most magnetic field directions.

  3. Nanoinformatics workshop report: Current resources, community needs, and the proposal of a collaborative framework for data sharing and information integration.

    PubMed

    Harper, Stacey L; Hutchison, James E; Baker, Nathan; Ostraat, Michele; Tinkle, Sally; Steevens, Jeffrey; Hoover, Mark D; Adamick, Jessica; Rajan, Krishna; Gaheen, Sharon; Cohen, Yoram; Nel, Andre; Cachau, Raul E; Tuominen, Mark

    2013-01-01

    The quantity of information on nanomaterial properties and behavior continues to grow rapidly. Without a concerted effort to collect, organize and mine disparate information coming out of current research efforts, the value and effective use of this information will be limited at best. Data will not be translated to knowledge. At worst, erroneous conclusions will be drawn and future research may be misdirected. Nanoinformatics can be a powerful approach to enhance the value of global information in nanoscience and nanotechnology. Much progress has been made through grassroots efforts in nanoinformatics resulting in a multitude of resources and tools for nanoscience researchers. In 2012, the nanoinformatics community believed it was important to critically evaluate and refine currently available nanoinformatics approaches in order to best inform the science and support the future of predictive nanotechnology. The Greener Nano 2012: Nanoinformatics Tools and Resources Workshop brought together informatics groups with materials scientists active in nanoscience research to evaluate and reflect on the tools and resources that have recently emerged in support of predictive nanotechnology. The workshop goals were to establish a better understanding of current nanoinformatics approaches and to clearly define immediate and projected informatics infrastructure needs of the nanotechnology community. The theme of nanotechnology environmental health and safety (nanoEHS) was used to provide real-world, concrete examples on how informatics can be utilized to advance our knowledge and guide nanoscience. The benefit here is that the same properties that impact the performance of products could also be the properties that inform EHS. From a decision management standpoint, the dual use of such data should be considered a priority. Key outcomes include a proposed collaborative framework for data collection, data sharing and information integration.

  4. Nanoinformatics workshop report: Current resources, community needs, and the proposal of a collaborative framework for data sharing and information integration

    PubMed Central

    Harper, Stacey L; Hutchison, James E; Baker, Nathan; Ostraat, Michele; Tinkle, Sally; Steevens, Jeffrey; Hoover, Mark D; Adamick, Jessica; Rajan, Krishna; Gaheen, Sharon; Cohen, Yoram; Nel, Andre; Cachau, Raul E; Tuominen, Mark

    2014-01-01

    The quantity of information on nanomaterial properties and behavior continues to grow rapidly. Without a concerted effort to collect, organize and mine disparate information coming out of current research efforts, the value and effective use of this information will be limited at best. Data will not be translated to knowledge. At worst, erroneous conclusions will be drawn and future research may be misdirected. Nanoinformatics can be a powerful approach to enhance the value of global information in nanoscience and nanotechnology. Much progress has been made through grassroots efforts in nanoinformatics resulting in a multitude of resources and tools for nanoscience researchers. In 2012, the nanoinformatics community believed it was important to critically evaluate and refine currently available nanoinformatics approaches in order to best inform the science and support the future of predictive nanotechnology. The Greener Nano 2012: Nanoinformatics Tools and Resources Workshop brought together informatics groups with materials scientists active in nanoscience research to evaluate and reflect on the tools and resources that have recently emerged in support of predictive nanotechnology. The workshop goals were to establish a better understanding of current nanoinformatics approaches and to clearly define immediate and projected informatics infrastructure needs of the nanotechnology community. The theme of nanotechnology environmental health and safety (nanoEHS) was used to provide real-world, concrete examples on how informatics can be utilized to advance our knowledge and guide nanoscience. The benefit here is that the same properties that impact the performance of products could also be the properties that inform EHS. From a decision management standpoint, the dual use of such data should be considered a priority. Key outcomes include a proposed collaborative framework for data collection, data sharing and information integration. PMID:24454543

  5. 78 FR 4042 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... provides an option for a high frequency eddy current inspection for cracking of the critical fastener holes... for a high frequency eddy current inspection for cracking of the critical fastener holes, and repair..., August 9, 2007)), do a high frequency eddy current (HFEC) inspection for cracking of the four critical...

  6. A quantitative risk-based model for reasoning over critical system properties

    NASA Technical Reports Server (NTRS)

    Feather, M. S.

    2002-01-01

    This position paper suggests the use of a quantitative risk-based model to help support reeasoning and decision making that spans many of the critical properties such as security, safety, survivability, fault tolerance, and real-time.

  7. The effect of fast neutron irradiation on the superconducting properties of REBCO coated conductors with and without artificial pinning centers

    NASA Astrophysics Data System (ADS)

    Fischer, D. X.; Prokopec, R.; Emhofer, J.; Eisterer, M.

    2018-04-01

    Superconductors are essential components of future fusion power plants. The magnet coils responsible for producing the field required for confining the fusion plasma are exposed to considerable neutron radiation. This makes irradiation studies necessary for understanding the radiation response of the superconductor. High temperature superconductors are promising candidates as magnet coil materials. YBCO and GdBCO tapes of several manufacturers were irradiated to fast neutron fluences of up to 3.9 × 1022 m-2 in the research reactor at the Atominstitut. Low energy neutrons contribute to the fission reactor spectrum but not to the expected spectrum at the fusion magnets. Low energy neutrons have to be shielded in irradiation experiments to avoid their substantial effect on the superconducting properties of tapes containing gadolinium. The critical current (I c) of the tapes in this study was examined at fields of up to 15 T and down to a temperature of 30 K. I c first increases upon irradiation and reaches a maximum at a certain fluence, which depends highly on temperature, being highest at low temperature. I c declines at high fluences and eventually degrades with respect to its initial value. Tapes with artificial pinning centers (APCs) degrade at lower fluences than tapes without them. The n-values decrease in all types of tapes after irradiation even when the critical currents are increased. The field dependence of the volume pinning force differs in pristine tapes with and without APCs but shows the same behavior after irradiation.

  8. Anisotropic nanomaterials: structure, growth, assembly, and functions

    PubMed Central

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  9. Quantum critical scaling near the antiferromagnetic quantum critical point in CeCu6-xPdx

    NASA Astrophysics Data System (ADS)

    Wu, Liusuo; Poudel, L.; May, A. F.; Nelson, W. L.; Gallagher, A.; Lai, Y.; Graf, D. E.; Besara, T.; Siegrist, T. M.; Baumbach, R.; Ehlers, G.; Podlesnyak, A. A.; Lumsden, M. D.; Mandrus, D.; Christianson, A. D.

    A remarkable behavior of many quantum critical systems is the scaling of physical properties such as the dynamic susceptibility near a quantum critical point (QCP), where Fermi liquid physics usually break down. The quantum critical behavior in the vicinity of a QCP in metallic systems remains an important open question. In particular, a self-consistent universal scaling of both magnetic susceptibility and the specific heat remains missing for most cases. Recently, we have studied CeCu6-xTx (T =Au, Ag, Pd), which is a prototypical heavy fermion material that hosts an antiferromagnetic (AF) QCP. We have investigated the low temperature thermal properties including the specific heat and magnetic susceptibility. We also investigated the spin fluctuation spectrum at both critical doping and within the magnetically ordered phase. A key finding is the spin excitations exhibit a strong Ising character, resulting in the strong suppression of transverse fluctuations. A detailed scaling analysis of the quantum critical behaviors relating the thermodynamic properties to the dynamic susceptibility will be presented. DOE, ORNL LDRD.

  10. Influence of test capacitor features on piezoelectric and dielectric measurement of ferroelectric films.

    PubMed

    Wang, Zhihong; Lau, Gih Keong; Zhu, Weiguang; Chao, Chen

    2006-01-01

    This paper presents both theoretical and numerical analyses of the piezoelectric and dielectric responses of a highly idealized film-on-substrate system, namely, a polarized ferroelectric film perfectly bonded to an elastic silicon substrate. It shows that both effective dielectric and piezoelectric properties of the films change with the size and configuration of the test capacitor. There exists a critical electrode size that is smaller than the diameter of the commonly used substrate. The effective film properties converge to their respective constrained values as capacitor size increases to the critical size. If capacitor size is smaller than the critical size, the surface displacement at the top electrode deviates from the net thickness change in response to an applied voltage because the film is deformable at the film/substrate interface. The constrained properties of the films depend only on those of bulk ferroelectrics but are independent of film thickness and substrate properties. The finding of the critical capacitor size together with analytical expressions of the constrained properties makes it possible to realize consistent measurement of piezoelectric and dielectric properties of films. A surface scanning technique is recommended to measure the profile of piezoresponses of the film so that the constrained properties of the film can be identified accurately.

  11. Combination nucleoside/nucleotide reverse transcriptase inhibitors for treatment of HIV infection.

    PubMed

    Akanbi, Maxwell O; Scarsi, Kimberly K; Scarci, Kimberly; Taiwo, Babafemi; Murphy, Robert L

    2012-01-01

    The combination of two nucleoside/nucleotide reverse transcriptase inhibitors (N(t)RTIs) and a third agent from another antiretroviral class is currently recommended for initial antiretroviral therapy. In general, N(t)RTIs remain relevant in subsequent regimens. There are currently six nucleoside reverse transcriptase inhibitors and one nucleotide reverse transcriptase inhibitor drug entities available, and several formulations that include two or more N(t)RTIs in a fixed-dose combination. These entities have heterogeneous pharmacological and clinical properties. Accordingly, toxicity, pill burden, dosing frequency, potential drug-drug interaction, preexisting antiretroviral drug resistance and comorbid conditions should be considered when constructing a regimen. This approach is critical in order to optimize virologic efficacy and clinical outcomes. This article reviews N(t)RTI combinations used in the treatment of HIV-infected adults. The pharmacological properties of each N(t)RTI, and the clinical trials that have influenced treatment guidelines are discussed. It is likely that N(t)RTIs will continue to dominate the global landscape of HIV treatment and prevention, despite emerging interest in N(t)RTI-free combination therapy. Clinical domains where only few alternatives to N(t)RTIs exist include treatment of HIV/HBV coinfection and HIV-2. There is a need for novel N(t)RTIs with enhanced safety and resistance profiles compared with current N(t)RTIs.

  12. Mechanistic materials modeling for nuclear fuel performance

    DOE PAGES

    Tonks, Michael R.; Andersson, David; Phillpot, Simon R.; ...

    2017-03-15

    Fuel performance codes are critical tools for the design, certification, and safety analysis of nuclear reactors. However, their ability to predict fuel behavior under abnormal conditions is severely limited by their considerable reliance on empirical materials models correlated to burn-up (a measure of the number of fission events that have occurred, but not a unique measure of the history of the material). In this paper, we propose a different paradigm for fuel performance codes to employ mechanistic materials models that are based on the current state of the evolving microstructure rather than burn-up. In this approach, a series of statemore » variables are stored at material points and define the current state of the microstructure. The evolution of these state variables is defined by mechanistic models that are functions of fuel conditions and other state variables. The material properties of the fuel and cladding are determined from microstructure/property relationships that are functions of the state variables and the current fuel conditions. Multiscale modeling and simulation is being used in conjunction with experimental data to inform the development of these models. Finally, this mechanistic, microstructure-based approach has the potential to provide a more predictive fuel performance capability, but will require a team of researchers to complete the required development and to validate the approach.« less

  13. Evidence for a critical Earth: the New Geophysics

    NASA Astrophysics Data System (ADS)

    Crampin, Stuart; Gao, Yuan

    2015-04-01

    Phenomena that are critical-systems verging on criticality with 'butterfly wings' sensitivity are common - the weather, climate change; stellar radiation; the New York Stock Exchange; population explosions; population collapses; the life cycle of fruit-flies; and many more. It must be expected that the Earth, an archetypal complex heterogeneous interactive phenomena, is a critical-system, hence there is a New Geophysics imposing fundamentally new properties on conventional sub-critical geophysics. We shall show that, despite shear waves and shear-wave splitting (SWS) being observationally neglected, azimuthally-varying stress-aligned SWS is nearly universally observed throughout the Earth's crust and uppermost ~400km of the mantle. Caused by stress-aligned fluid-saturated microcracks (intergranular films of hydrolysed melt in the mantle), the microcracks are so closely-spaced that they verge on failure in fracturing and earthquakes. Phenomena that verge on failure in this way are critical-systems which impose a range of fundamental-new properties on conventional sub-critical geophysics including: self-similarity; monitorability; calculability; predictability; controllability; universality; and butterfly wings' sensitivity. We shall show how these phenomena have been consistently observed along millions of source-to-receiver ray paths confirming the New Geophysics. New Geophysics helps to explain many otherwise inexplicable observations including a number of geophysical conundrums such as the Gutenberg-Richter relationship which is used to describe the behaviour of conventional classic geophysics despite being massively non-linear. The great advantage of the critical Earth is that, unlike other critical-systems, the progress towards criticality can be monitored at almost any point within the deep interior of the material, by analysing observations of seismic SWS. This gives an unrivalled understanding of the detailed behaviour of a particular critical-system. This new understanding of fluid-rock deformation unifies much of the behaviour and has currently-relevant applications: 1) The times, magnitudes, and in some circumstances locations, of impending earthquakes can be stress-forecast (predicted); 2) The times of impending volcanic eruptions can be stress-forecast (predicted); 3) The production of hydrocarbon reservoirs can be, in principle, calculated; 4) Recovery from hydrocarbon reservoirs will be increased if production is slower; 5) Time-lapse of SWS single-well imaging can monitor movement of oil/water contacts; 6) Time-lapse of SWS can monitor behaviour of fluids in fracking reservoirs; 7) Time-lapse SWS can monitor leakage in underground nuclear-waste repositories. Papers referring to these developments can be found in geos.ed.ac.uk/home/scrampin/opinion. Also see abstracts in EGU2015 Sessions: Gao & Crampin (SM3.1), Liu & Crampin (NH2.5), and Crampin & Gao (GD.1).

  14. Flux flow and flux dynamics in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Turchinskaya, M.; Swartzendruber, L. J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D. L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  15. Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa

    PubMed Central

    Zeng, Xu-Hui; Yang, Chengtao; Kim, Sung Tae; Lingle, Christopher J.; Xia, Xiao-Ming

    2011-01-01

    Mouse spermatozoa express a pH-dependent K+ current (KSper) thought to be composed of subunits encoded by the Slo3 gene. However, the equivalence of KSper and Slo3-dependent current remains uncertain, because heterologous expression of Slo3 results in currents that are less effectively activated by alkalization than are native KSper currents. Here, we show that genetic deletion of Slo3 abolishes all pH-dependent K+ current at physiological membrane potentials in corpus epididymal sperm. A residual pH-dependent outward current (IKres) is observed in Slo3−/− sperm at potentials of >0 mV. Differential inhibition of KSper/Slo3 and IKres by clofilium reveals that the amplitude of IKres is similar in both wild-type (wt) and Slo3−/− sperm. The properties of IKres suggest that it likely represents outward monovalent cation flux through CatSper channels. Thus, KSper/Slo3 may account for essentially all mouse sperm K+ current and is the sole pH-dependent K+ conductance in these sperm. With physiological ionic gradients, alkalization depolarizes Slo3−/− spermatozoa, presumably from CatSper activation, in contrast to Slo3/KSper-mediated hyperpolarization in wt sperm. Slo3−/− male mice are infertile, but Slo3−/− sperm exhibit some fertility within in vitro fertilization assays. Slo3−/− sperm exhibit a higher incidence of morphological abnormalities accentuated by hypotonic challenge and also exhibit deficits in motility in the absence of bicarbonate, revealing a role of KSper under unstimulated conditions. Together, these results show that KSper/Slo3 is the primary spermatozoan K+ current, that KSper may play a critical role in acquisition of normal morphology and sperm motility when faced with hyperosmotic challenges, and that Slo3 is critical for fertility. PMID:21427226

  16. Dynamics of magnetization in ferromagnet with spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. The precession frequency can be expressed as a function of the current and external magnetic field.

  17. Development, preparation, and characterization of high-performance superconducting materials for space applications

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Barkatt, Aaron

    1991-01-01

    The preparation of high-temperature superconducting ceramics in bulk form is a major challenge in materials science. The current status of both partial melting and melt quenching techniques, with or without an intermediate powder processing stage, is described in detail, and the problems associated with each of the methods are discussed. Results of studies performed on melt-processed materials are reported and discussed. The discussion places emphasis on magnetization and on other physical properties associated with it, such as critical current density, levitation force, and flux creep. The nature of structural features which give rise to flux pinning, including both small and large defects, is discussed with reference to theoretical considerations. The rates of flux creep and the factors involved in attempting to retard the decay of the magnetization are surveyed.

  18. Current Sheet Thinning Associated with Dayside Reconnection

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Otto, A.; Ma, X.

    2011-12-01

    The thinning of the near-Earth current sheet during the growth phase is of critical importance to understand geomagnetic substorms and the conditions that lead to the onset of the expansion phase. We have proposed that convection from the midnight tail region to the dayside as the cause for this current sheet thinning. Adiabatic convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of the magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. The process is examined by three-dimensional MHD simulations. The properties of the current sheet thinning are determined as a function of the magnitude of convection toward the dayside and the lobe boundary conditions. It is shown that the model yields a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase.

  19. Current characterization methods for cellulose nanomaterials.

    PubMed

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  20. Mechanistics and photo-energetics of macrocycles and photodynamic therapy: An overview of aspects to consider for research.

    PubMed

    Horne, Tamarisk K; Cronjé, Marianne J

    2017-02-01

    Research within the field of photodynamic therapy has escalated over the past 20 years. The required conjunctional use of photosensitizers, particularly of the macrocycle structure, has lead to a vast repertoire of derivatives that branch classes and subclasses thereof. Each exhibits a differential range of physiochemical properties that influence their potential applications within the larger phototherapy field for use in either diagnostics, photodynamic therapy, both or none. Herein, we provide an overview of these properties as they relate to photodynamic therapy and to a lesser extent diagnostics. By summarizing the mechanistics of photodynamic therapy coupled to the photo-energetics displayed by macrocycle photosensitizers, we aimed to highlight the critical aspects any researcher should be aware of and consider when selecting and performing research for therapeutic application purposes. These include photosensitizer, photophysical and structural properties, synthesis design and subsequent attributes, main applications within research, common shortcomings exhibited and the current methods practiced to overcome them. © 2017 John Wiley & Sons A/S.

  1. Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes-A Review.

    PubMed

    Rajput, Nav Nidhi; Seguin, Trevor J; Wood, Brandon M; Qu, Xiaohui; Persson, Kristin A

    2018-04-26

    Fundamental molecular-level understanding of functional properties of liquid solutions provides an important basis for designing optimized electrolytes for numerous applications. In particular, exhaustive knowledge of solvation structure, stability, and transport properties is critical for developing stable electrolytes for fast-charging and high-energy-density next-generation energy storage systems. Accordingly, there is growing interest in the rational design of electrolytes for beyond lithium-ion systems by tuning the molecular-level interactions of solvate species present in the electrolytes. Here we present a review of the solvation structure of multivalent electrolytes and its impact on the electrochemical performance of these batteries. A direct correlation between solvate species present in the solution and macroscopic properties of electrolytes is sparse for multivalent electrolytes and contradictory results have been reported in the literature. This review aims to illustrate the current understanding, compare results, and highlight future needs and directions to enable the deep understanding needed for the rational design of improved multivalent electrolytes.

  2. Challenges of utilizing healthy fats in foods.

    PubMed

    Vieira, Samantha A; McClements, David Julian; Decker, Eric A

    2015-05-01

    Over the past few decades, the Dietary Guidelines for Americans has consistently recommended that consumers decrease consumption of saturated fatty acids due to the correlation of saturated fatty acid intake with coronary artery disease. This recommendation has not been easy to achieve because saturated fatty acids play an important role in the quality, shelf life, and acceptability of foods. This is because solid fats are critical to producing desirable textures (e.g., creaminess, lubrication, and melt-away properties) and are important in the structure of foods such as frozen desserts, baked goods, and confectionary products. In addition, replacement of saturated fats with unsaturated fats is limited by their susceptibility to oxidative rancidity, which decreases product shelf life, causes destruction of vitamins, and forms potentially toxic compounds. This article will discuss the fundamental chemical and physical properties in fats and how these properties affect food texture, structure, flavor, and susceptibility to degradation. The current sources of solid fats will be reviewed and potential replacements for solid fats will be discussed. © 2015 American Society for Nutrition.

  3. Challenges of Utilizing Healthy Fats in Foods123

    PubMed Central

    Vieira, Samantha A; McClements, David Julian; Decker, Eric A

    2015-01-01

    Over the past few decades, the Dietary Guidelines for Americans has consistently recommended that consumers decrease consumption of saturated fatty acids due to the correlation of saturated fatty acid intake with coronary artery disease. This recommendation has not been easy to achieve because saturated fatty acids play an important role in the quality, shelf life, and acceptability of foods. This is because solid fats are critical to producing desirable textures (e.g., creaminess, lubrication, and melt-away properties) and are important in the structure of foods such as frozen desserts, baked goods, and confectionary products. In addition, replacement of saturated fats with unsaturated fats is limited by their susceptibility to oxidative rancidity, which decreases product shelf life, causes destruction of vitamins, and forms potentially toxic compounds. This article will discuss the fundamental chemical and physical properties in fats and how these properties affect food texture, structure, flavor, and susceptibility to degradation. The current sources of solid fats will be reviewed and potential replacements for solid fats will be discussed. PMID:25979504

  4. The Effect of Scan Length on the Structure and Mechanical Properties of Electron Beam-Melted Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Everhart, Wesley; Dinardo, Joseph; Barr, Christian

    2017-02-01

    Electron beam melting (EBM) is a powder bed fusion-based additive manufacturing process in which selective areas of a layer of powder are melted with an electron beam and a part is built layer by layer. EBM scanning strategies within the Arcam AB® A2X EBM system rely upon governing relationships between the scan length of the beam path, the beam current, and speed. As a result, a large parameter process window exists for Ti-6Al-4V. Many studies have reviewed various properties of EBM materials without accounting for this effect. The work performed in this study demonstrates the relationship between scan length and the resulting density, microstructure, and mechanical properties of EBM-produced Ti-6Al-4V using the scanning strategies set by the EBM control software. This emphasizes the criticality of process knowledge and careful experimental design, and provides an alternate explanation for reported orientation-influenced strength differences.

  5. Tuning Fork Oscillators as Downhole Viscometers in Oilfield Applications

    NASA Astrophysics Data System (ADS)

    Gonzalez, Miguel; Bernero, Greg; Alvarez, Oliverio; Ham, Gregory; Max, Deffenbaugh; Sensors Development Team

    2015-03-01

    The commerciality of oil wells is greatly influenced by the physical properties of the fluids being produced. A key parameter in determining how producible the hydrocarbons are is their viscosity. Pressure and temperature changes in recovering a downhole sample to the surface can alter viscosity while accurate downhole measurement of this critical property remains a rudimentary effort in the industry. In this presentation we describe the challenges of measuring and quantifying the viscosity of reservoir fluids in situ at downhole conditions, as well as present an overview of some of the different measurement techniques currently used. Additionally, we show our characterization of a piezoelectric tuning fork oscillator used as a viscosity sensor. In an attempt to recreate the environment found in oil wells, its mechanical and electrical properties were studied while the device was immersed in different fluids and, separately, under different conditions of pressure and temperature. This device is a first step toward the development of an inexpensive, integrated, and miniaturized sensing platform for the in situ characterization of reservoir fluids.

  6. Enhancing critical current density of cuprate superconductors

    DOEpatents

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  7. Enhancing superconducting critical current by randomness

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; Shen, B.; Pearson, J. E.; Divan, R.; Ocola, L. E.; Crabtree, G. W.; Kwok, W. K.

    2016-01-01

    The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Contrary to earlier understanding on nanopatterned artificial pinning, here we show unequivocally the advantages of a random pinscape over an ordered array in a wide magnetic field range. We reveal that the better performance of a random pinscape is due to the variation of its local density of pinning sites (LDOPS), which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, where the distribution of the LDOPS is further enlarged. The demonstrated key role of LDOPS in enhancing superconducting critical currents gets at the heart of random versus commensurate pinning. Our findings highlight the importance of random pinscapes in enhancing the superconducting critical currents of applied superconductors.

  8. Emerging Drugs for the Treatment of Anxiety

    PubMed Central

    Murrough, James W.; Yaqubi, Sahab; Sayed, Sehrish; Charney, Dennis S.

    2016-01-01

    Introduction Anxiety disorders are among the most prevalent and disabling psychiatric disorders in the United States and worldwide. Basic research has provided critical insights into the mechanism regulating fear behavior in animals and a host of animal models have been developed in order to screen compounds for anxiolytic properties. Despite this progress, no mechanistically novel agents for the treatment of anxiety have come to market in more than two decades. Areas covered The current review will provide a critical summary of current pharmacological approaches to the treatment of anxiety and will examine the pharmacotherapeutic pipeline for treatments in development. Anxiety and related disorders considered herein include panic disorder, social anxiety disorder, generalized anxiety disorder and posttraumatic stress disorder. The glutamate, neuropeptide and endocannabinoid systems show particular promise as future targets for novel drug development. Expert opinion In the face of an ever-growing understanding of fear related behavior, the field awaits the translation of this research into mechanistically novel treatments. Obstacles will be overcome through close collaboration between basic and clinical researchers with the goal of aligning valid endophenotypes of human anxiety disorders with improved animal models. Novel approaches are needed to move basic discoveries into new, more effective treatments for our patients. PMID:26012843

  9. Shaping and reinforcement of melt textured YBa2Cu3O7-δ superconductors

    NASA Astrophysics Data System (ADS)

    Meslin, S.; Harnois, C.; Chubilleau, C.; Horvath, D.; Grossin, D.; Suddhakar, E. R.; Noudem, J. G.

    2006-07-01

    From porous Y2BaCuO5 (Y211) with various grain sizes, single domain ceramic composites YBa2Cu3Oy/Y2BaCuO5 have been prepared by combination of the infiltration and top seed growth (ITSG) process. In addition, perforated Y123 has been prepared from Y211 by the ITSG method in order to magnify the specific surface and then increase oxygen diffusion into the core of the material. Magnetic and electrical properties were determined and correlate well with the microstructure of the composites and were compared to the conventional doped or undoped YBa2Cu3Oy (Y123). From magnetic measurements, high critical current densities, Jc, of 86 000 A cm-2 have been measured. Transport Jc values higher than 10 600 A cm-2 are reached at 77 K and 0 T, corresponding to the nominal critical currents of 325 A injected reproducibly through sections less than 3.082 mm2. This confirms the high quality of single domains obtained with a well controlled ITSG process. On the other hand, the perforated samples were reinforced using resin impregnation and the flux mapping has been investigated.

  10. Effects of oxygen stoichiometry on the scaling behaviors of YBa2Cu3O(x) grain boundary weak-links

    NASA Technical Reports Server (NTRS)

    Wu, K. H.; Fu, C. M.; Jeng, W. J.; Juang, J. Y.; Uen, T. M.; Gou, Y. S.

    1995-01-01

    The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa2Cu3O(x) bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealing processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e with x = 7.0 in YBa2Cu3O(x) stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g with x = 6.9 in YBa2Cu3O(x) stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given.

  11. Trimming the electrical properties on nanoscale YBa2Cu3O7-x constrictions by focus ion beam technique

    NASA Astrophysics Data System (ADS)

    Lam, Simon K. H.; Bendavid, Avi; Du, Jia

    2017-09-01

    High temperature superconducting (HTS) nanostructure has a great potential in photon sensing at high frequency due to its fast recovery time. For maximising the coupling efficiency, the normal resistance of the nanostructure needs to be better matched to that of the thin-film antenna, which is typically few tens of ohm. We report on the fabrication of nanoscale high temperature superconducting YBa2Cu3O7-x (YBCO) constrictions using Gallium ion focus ion beam (FIB) technique. The FIB has been used to both remove the YBCO in lateral dimension and also tune its critical current and normal resistance by a combination of surface etching and implantation on the YBCO top layer. High critical current density of 2.5 MA/cm2 at 77 K can be obtained on YBCO nanobridges down to 100 nm in width. Subsequent trimming of the naobridges can lead to a normal resistance value over 50 Ω. Simulation of the Ga ion trajectory has also been performed to compare the measurement results. This method provides a simple step of fabricating nanoscale superconducting detectors such as hot electron bolometer.

  12. Magnetic Field Dependence of the Critical Current in S-N Bilayer Thin Films

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen James; Bandler, Simon; Chervenak, James; Kilbourne, Caroline A.; Finkbeiner, Fred M.; Porter, Frederick S.; Kelley, Richard L.; Adams, Joseph S.; hide

    2013-01-01

    Here we investigate the effects a non-uniform applied magnetic field has on superconducting transition-edge sensors (TESs) critical current. This has implications on TES optimization. It has been shown that TESs resistive transition can be altered by magnetic fields. We have observed critical current rectification effects and explained these effects in terms of a magnetic self-field arising from asymmetric current injection into the sensor. Our TES physical model shows that this magnetic self-field can result in significantly degraded or improved TES performance. In order for this magnetically tuned TES strategy to reach its full potential we are investigating the effect a non-uniform applied magnetic field has on the critical current.

  13. Electrical Characterization of Critical Phase Change Conditions in Nanoscale Ge2Sb2Te5 Pillars

    NASA Astrophysics Data System (ADS)

    Ozatay, Ozhan; Stipe, Barry; Katine, Jordan; Terris, Bruce

    2008-03-01

    Following the original work of Ovshinsky on disordered semiconductors that exhibit ovonic threshold switching (OTS) there has been substantial interest in the electronic reversible switching properties of chalcogenides^1. The current induced phase transitions between polycrystalline and amorphous states in these materials offer orders of magnitude changes in the conductance which makes them an ideal candidate for non-volatile data storage applications. In this work we investigate the scaling of critical programming conditions required to observe such transitions between highly resistive (disordered) and highly conductive (ordered) states by constructing a resistance map with various pulse widths and amplitudes under different cooling conditions (as a function of pulse trailing edge). We study the evolution of critical phase change conditions as a function of contact size (50nm-1μm) and shape (circle-square-rectangle). We compare the resulting switching behaviour with the predictions of a finite-element model of the electro-thermal physics to analyze the nature of the switching dynamics at the nanoscale. ^1 S-H. Lee, Y. Jung, R. Agarwal, Nature Nanotechnology; doi:10:1038/nnano.2007.291

  14. Decoupling of critical temperature and superconducting gaps in irradiated films of a Fe-based superconductor

    NASA Astrophysics Data System (ADS)

    Daghero, Dario; Tortello, Mauro; Ummarino, Giovanni A.; Piatti, Erik; Ghigo, Gianluca; Hatano, Takafumi; Kawaguchi, Takahiko; Ikuta, Hiroshi; Gonnelli, Renato S.

    2018-07-01

    We report on direct measurements of the energy gaps (carried out by means of point-contact Andreev reflection spectroscopy, PCARS) and of the critical temperature in thin, optimally doped, epitaxial films of BaFe2(As1-x P x )2 irradiated with 250 MeV Au ions. The low-temperature PCARS spectra (taken with the current flowing along the c axis) can be fitted by a modified Blonder-Tinkham-Klapwijk model with two nodeless gaps; this is not in contrast with the possible presence of node lines suggested by various experiments in literature. Up to a fluence Φ = 7.3 × 1011 cm-2, we observe a monotonic suppression of the critical temperature and of the gap amplitudes Δ1 and Δ2. Interestingly, while T c decreases by about 3%, the gaps decrease much more (by about 37% and 25% respectively), suggesting a decoupling between high-temperature and low-temperature superconducting properties. An explanation for this finding is proposed within an effective two-band Eliashberg model, in which such decoupling is inherently associated to defects created by irradiation.

  15. Dynamics of Charge Transfer in DNA Wires: A Proton-Coupled Approach

    NASA Astrophysics Data System (ADS)

    Behnia, Sohrab; Fathizadeh, Samira; Ziaei, Javid; Akhshani, Afshin

    2017-12-01

    The advent of molecular electronics has fueled interest in studying DNA as a nanowire. The well-known Peyrard-Bishop-Dauxois (PBD) model, which was proposed for the purpose of understanding the mechanism of DNA denaturation, has a limited number of degrees of freedom. In addition, considering the Peyrard-Bishop-Holstein (PBH) model as a means of studying the charge transfer effect, in which the dynamical motion is described via the PBD model, may apply limitations on observing all the phenomena. Therefore, we have attempted to add the mutual interaction of a proton and electron in the form of proton-coupled electron transfer (PCET) to the PBH model. PCET has been implicated in a variety of oxidative processes that ultimately lead to mutations. When we have considered the PCET approach to DNA based on a proton-combined PBH model, we were able to extract the electron and proton currents independently. In this case, the reciprocal influence of electron and proton current is considered. This interaction does not affect the general form of the electronic current in DNA, but it changes the threshold of the occurrence of phenomena such as negative differential resistance. It is worth mentioning that perceiving the structural properties of the attractors in phase space via the Rényi dimension and concentrating on the critical regions through a scalogram can present a clear picture of the critical points in such phenomena.

  16. Place recognition using batlike sonar.

    PubMed

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-08-02

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map.

  17. Computing Legacy Software Behavior to Understand Functionality and Security Properties: An IBM/370 Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linger, Richard C; Pleszkoch, Mark G; Prowell, Stacy J

    Organizations maintaining mainframe legacy software can benefit from code modernization and incorporation of security capabilities to address the current threat environment. Oak Ridge National Laboratory is developing the Hyperion system to compute the behavior of software as a means to gain understanding of software functionality and security properties. Computation of functionality is critical to revealing security attributes, which are in fact specialized functional behaviors of software. Oak Ridge is collaborating with MITRE Corporation to conduct a demonstration project to compute behavior of legacy IBM Assembly Language code for a federal agency. The ultimate goal is to understand functionality and securitymore » vulnerabilities as a basis for code modernization. This paper reports on the first phase, to define functional semantics for IBM Assembly instructions and conduct behavior computation experiments.« less

  18. Comparative studies of '1212' superconductors

    NASA Astrophysics Data System (ADS)

    Gapud, Albert Agcaoili

    Several properties of highly isomorphic species of HgBa2CaCu 2O6+delta (Hg-1212) and TlBa2CaCu2O 7-delta (Tl-1212) were compared. The samples used were high-quality, c-oriented thin films with epitaxial growth. In particular, the Hg-1212 films were made from either Tl-2212 or Tl-1212 films using a novel method in which the Tl cations were surgically replaced by Hg cations, during which the 1212 structure was retained. Properties studied were: the irreversibility line, critical current density, the magnetic phase diagram, the normal-state Hall effect, and the mixed-state Hall effect. There are several indications that the most significant difference between the 1212 species is mostly in their superconducting charge carrier density. However, the subtle differences in their electronic band structure may have also been discerned.

  19. Silk-Its Mysteries, How It Is Made, and How It Is Used.

    PubMed

    Ebrahimi, Davoud; Tokareva, Olena; Rim, Nae Gyune; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J

    2015-10-12

    This article reviews fundamental and applied aspects of silk-one of Nature's most intriguing materials in terms of its strength, toughness, and biological role-in its various forms, from protein molecules to webs and cocoons, in the context of mechanical and biological properties. A central question that will be explored is how the bridging of scales and the emergence of hierarchical structures are critical elements in achieving novel material properties, and how this knowledge can be explored in the design of synthetic materials. We review how the function of a material system at the macroscale can be derived from the interplay of fundamental molecular building blocks. Moreover, guidelines and approaches to current experimental and computational designs in the field of synthetic silklike materials are provided to assist the materials science community in engineering customized finetuned biomaterials for biomedical applications.

  20. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    PubMed Central

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  1. From physics to biology by extending criticality and symmetry breakings.

    PubMed

    Longo, G; Montévil, M

    2011-08-01

    Symmetries play a major role in physics, in particular since the work by E. Noether and H. Weyl in the first half of last century. Herein, we briefly review their role by recalling how symmetry changes allow to conceptually move from classical to relativistic and quantum physics. We then introduce our ongoing theoretical analysis in biology and show that symmetries play a radically different role in this discipline, when compared to those in current physics. By this comparison, we stress that symmetries must be understood in relation to conservation and stability properties, as represented in the theories. We posit that the dynamics of biological organisms, in their various levels of organization, are not "just" processes, but permanent (extended, in our terminology) critical transitions and, thus, symmetry changes. Within the limits of a relative structural stability (or interval of viability), variability is at the core of these transitions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    PubMed

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  3. Unit mechanisms of fission gas release: Current understanding and future needs

    DOE PAGES

    Tonks, Michael; Andersson, David; Devanathan, Ram; ...

    2018-03-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less

  4. Quantitative magneto-optical analysis of the role of finite temperatures on the critical state in YBCO thin films

    NASA Astrophysics Data System (ADS)

    Albrecht, Joachim; Brück, Sebastian; Stahl, Claudia; Ruoß, Stephen

    2016-11-01

    We use quantitative magneto-optical microscopy to investigate the influence of finite temperatures on the critical state of thin YBCO films. In particular, temperature and time dependence of supercurrents in inhomogeneous and anisotropic films are analyzed to extract the role of temperature on the supercurrents themselves and the influence of thermally activated relaxation. We find that inhomogeneities and anisotropies of the current density distribution correspond to a different temperature dependence of local supercurrents. In addition, the thermally activated decay of supercurrents can be used to extract local vortex pinning energies. With these results the modification of vortex pinning introduced by substrate structures is studied. In summary the local investigation of supercurrent densities allows the full description of the vortex pinning landscape with respect to pinning forces and energies in superconducting films with complex properties under the influence of finite temperatures.

  5. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    PubMed Central

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  6. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    PubMed

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  7. Unit mechanisms of fission gas release: Current understanding and future needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, Michael; Andersson, David; Devanathan, Ram

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less

  8. Issues deserve attention in encapsulating probiotics: Critical review of existing literature.

    PubMed

    Chen, Jun; Wang, Qi; Liu, Cheng-Mei; Gong, Joshua

    2017-04-13

    Probiotic bacteria are being increasingly added to food for developing products with health-promoting properties. However, the efficacy of probiotics in commercial products is often questioned due to the loss of their viability during shelf storage and in human gastrointestinal tracts. Encapsulation of probiotics has been expected to provide protection to probiotics, but not many commercial products contain encapsulated and viable probiotic cells owing to various reasons. To promote the development and application of encapsulation technologies, this paper has critically reviewed previous publications with a focus on the areas where studies have fallen short, including insufficient consideration of structural effects of encapsulating material, general defects in encapsulating methods and issues in evaluation methodologies and risk assessments for application. Corresponding key issues that require further studies are highlighted. Some emerging trends in the field, such as current treads in encapsulating material and recently advanced encapsulation techniques, have also been discussed.

  9. Unit mechanisms of fission gas release: Current understanding and future needs

    NASA Astrophysics Data System (ADS)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  10. Process feasibility study in support of silicon material, task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1979-01-01

    Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon.

  11. Chemical hydrogen storage material property guidelines for automotive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less

  12. Critical properties and high-pressure volumetric behavior of the carbon dioxide+propane system at T=308.15 k. Krichevskii function and related thermodynamic properties.

    PubMed

    Blanco, Sofía T; Gil, Laura; García-Giménez, Pilar; Artal, Manuela; Otín, Santos; Velasco, Inmaculada

    2009-05-21

    Critical properties and volumetric behavior for the {CO2(1)+C3H8(2)} system have been studied. The critical locus was measured with a flow apparatus and detected by critical opalescence. For the mixtures, repeatabilities in critical temperature and pressure are rTc

  13. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  14. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production.

    PubMed

    Kourmentza, Constantina; Plácido, Jersson; Venetsaneas, Nikolaos; Burniol-Figols, Anna; Varrone, Cristiano; Gavala, Hariklia N; Reis, Maria A M

    2017-06-11

    Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility. Designing efficient and economic bioprocesses, combined with the respective social and environmental benefits, has brought together scientists from different backgrounds highlighting the multidisciplinary character of such a venture. In the current review, challenges and opportunities regarding polyhydroxyalkanoate production are presented and discussed, covering key steps of their overall production process by applying pure and mixed culture biotechnology, from raw bioprocess development to downstream processing.

  15. Cirrus Susceptibility to Changes in Ice Nuclei: Physical Processes, Model Uncertainties, and Measurement Needs

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2017-01-01

    In this talk, I will begin by discussing the physical processes that govern the competition between heterogeneous and homogeneous ice nucleation in upper tropospheric cirrus clouds. Next, I will review the current knowledge of low-temperature ice nucleation from laboratory experiments and field measurements. I will then discuss the uncertainties and deficiencies in representations of cirrus processes in global models used to estimate the climate impacts of changes in cirrus clouds. Lastly, I will review the critical field measurements needed to advance our understanding of cirrus and their susceptibility to changes in aerosol properties.

  16. Modelling DC responses of 3D complex fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beskardes, Gungor Didem; Weiss, Chester Joseph

    Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.

  17. Instruction set commutivity

    NASA Technical Reports Server (NTRS)

    Windley, P.

    1992-01-01

    We present a state property called congruence and show how it can be used to demonstrate commutivity of instructions in a modern load-store architecture. Our analysis is particularly important in pipelined microprocessors where instructions are frequently reordered to avoid costly delays in execution caused by hazards. Our work has significant implications to safety and security critical applications since reordering can easily change the meaning and an instruction sequence and current techniques are largely ad hoc. Our work is done in a mechanical theorem prover and results in a set of trustworthy rules for instruction reordering. The mechanization makes it practical to analyze the entire instruction set.

  18. Modelling DC responses of 3D complex fracture networks

    DOE PAGES

    Beskardes, Gungor Didem; Weiss, Chester Joseph

    2018-03-01

    Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.

  19. Effects influencing the grain connectivity in ex-situ MgB 2 wires

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Hušek, I.; Kulich, M.; Melišek, T.; Hušeková, K.; Dobročka, E.

    2010-03-01

    Single-core MgB 2/Fe ex-situ wires have been made by powder-in-tube (PIT) using: (i) commercial Alfa Aesar (AA) powder deformed by variable modes, (ii) AA powder oxidized by air milling and heat treatment and (iii) AA powder chemically treated by acetic and benzoic acid. All samples were finally annealed at 950 °C/0.5 h in Argon. The effect of deformation, oxidation and chemical treatment on the transport properties of MgB 2 wires was tested. Differences in critical currents, transition temperatures and normal state resistivity are shown and discussed.

  20. Properties of MgB 2 superconductor chemically treated by acetic acid

    NASA Astrophysics Data System (ADS)

    Hušeková, K.; Hušek, I.; Kováč, P.; Kulich, M.; Dobročka, E.; Štrbík, V.

    2010-03-01

    Commercial Alfa Aesar MgB 2 powder was chemically treated by acetic acid with the aim of MgO removing. Single-core MgB 2/Fe ex situ wires have been made by powder-in-tube (PIT) process using the powders treated with different acid concentration. All samples were annealed in argon at 950 °C/0.5 h. Differences in transition temperatures and critical currents of acetic acid treated MgB 2 are related to the normal state resistivity, effective carbon substitution from the organic solvent and the active area fraction (grain-connectivity).

  1. Reappraisal of criticality for two-layer flows and its role in the generation of internal solitary waves

    NASA Astrophysics Data System (ADS)

    Bridges, Thomas J.; Donaldson, Neil M.

    2007-07-01

    A geometric view of criticality for two-layer flows is presented. Uniform flows are classified by diagrams in the momentum-massflux space for fixed Bernoulli energy, and cuspoidal curves on these diagrams correspond to critical uniform flows. Restriction of these surfaces to critical flow leads to new subsurfaces in energy-massflux space. While the connection between criticality and the generation of solitary waves is well known, we find that the nonlinear properties of these bifurcating solitary waves are also determined by the properties of the criticality surfaces. To be specific, the case of two layers with a rigid lid is considered, and application of the theory to other multilayer flows is sketched.

  2. Whole bone mechanics and bone quality.

    PubMed

    Cole, Jacqueline H; van der Meulen, Marjolein C H

    2011-08-01

    The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.

  3. A review on on-board challenges of magnesium-based hydrogen storage materials for automobile applications

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Wasikur

    2017-06-01

    The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.

  4. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation.

    PubMed

    Kim, Sung-Yup; Ostadhossein, Alireza; van Duin, Adri C T; Xiao, Xingcheng; Gao, Huajian; Qi, Yue

    2016-02-07

    Surface coatings as artificial solid electrolyte interphases have been actively pursued as an effective way to improve the cycle efficiency of nanostructured Si electrodes for high energy density lithium ion batteries, where the mechanical stability of the surface coatings on Si is as critical as Si itself. However, the chemical composition and mechanical property change of coating materials during the lithiation and delithiation process imposed a grand challenge to design coating/Si nanostructure as an integrated electrode system. In our work, we first developed reactive force field (ReaxFF) parameters for Li-Si-Al-O materials to simulate the lithiation process of Si-core/Al2O3-shell and Si-core/SiO2-shell nanostructures. With reactive dynamics simulations, we were able to simultaneously track and correlate the lithiation rate, compositional change, mechanical property evolution, stress distributions, and fracture. A new mechanics model based on these varying properties was developed to determine how to stabilize the coating with a critical size ratio. Furthermore, we discovered that the self-accelerating Li diffusion in Al2O3 coating forms a well-defined Li concentration gradient, leading to an elastic modulus gradient, which effectively avoids local stress concentration and mitigates crack propagation. Based on these results, we propose a modulus gradient coating, softer outside, harder inside, as the most efficient coating to protect the Si electrode surface and improve its current efficiency.

  5. High-field transport properties of a P-doped BaFe2As2 film on technical substrate

    PubMed Central

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-01

    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E − J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis. PMID:28079117

  6. High-field transport properties of a P-doped BaFe2As2 film on technical substrate

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-01

    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E - J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.

  7. Flare Energy Release: Internal Conflict, Contradiction with High Resolution Observations, Possible Solutions

    NASA Astrophysics Data System (ADS)

    Pustilnik, L.

    2017-06-01

    All accepted paradigm of solar and stellar flares energy release based on 2 whales: 1. Source of energy is free energy of non-potential force free magnetic field in atmosphere above active region; 2. Process of ultrafast dissipation of magnetic fields is Reconnection in Thin Turbulent Current Sheet (RTTCS). Progress in observational techniques in last years provided ultra-high spatial resolution and in physics of turbulent plasma showed that real situation is much more complicated and standard approach is in contradiction both with observations and with problem of RTTCS stability. We present critical analysis of classic models of pre-flare energy accumulation and its dissipation during flare energy release from pioneer works Giovanelli (1939, 1947) up to topological reconnection. We show that all accepted description of global force-free fields as source of future flare cannot be agreed with discovered in last years fine and ultra-fine current-magnetic structure included numerouse arcs-threads with diameters up to 100 km with constant sequence from photosphere to corona. This magnetic skeleton of thin current magnetic threads with strong interaction between them is main source of reserved magnetic energy insolar atmosphere. Its dynamics will be controlled by percolation of magnetic stresses through network of current-magnetic threads with transition to flare state caused by critical value of global current. We show that thin turbulent current sheet is absolutely unstable configuration both caused by splitting to numerous linear currents by dissipative modes like to tearing, and as sequence of suppress of plasma turbulence caused by anomalous heating of turbulent plasma. In result of these factors primary RTTCS will be disrupted in numerous turbulent and normal plasma domains like to resistors network. Current propagation through this network will have percolation character with all accompanied properties of percolated systems: self-organization with formation power spectrum of distribution of flares and micro-flares, and possibility of phase transition to flare energy release with huge increasing of energy release.

  8. Interplay between low threshold voltage-gated K+ channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis

    PubMed Central

    Hamlet, William R.; Liu, Yu-Wei; Tang, Zheng-Quan; Lu, Yong

    2014-01-01

    Central auditory neurons that localize sound in horizontal space have specialized intrinsic and synaptic cellular mechanisms to tightly control the threshold and timing for action potential generation. However, the critical interplay between intrinsic voltage-gated conductances and extrinsic synaptic conductances in determining neuronal output are not well understood. In chicken, neurons in the nucleus laminaris (NL) encode sound location using interaural time difference (ITD) as a cue. Along the tonotopic axis of NL, there exist robust differences among low, middle, and high frequency (LF, MF, and HF, respectively) neurons in a variety of neuronal properties such as low threshold voltage-gated K+ (LTK) channels and depolarizing inhibition. This establishes NL as an ideal model to examine the interactions between LTK currents and synaptic inhibition across the tonotopic axis. Using whole-cell patch clamp recordings prepared from chicken embryos (E17–E18), we found that LTK currents were larger in MF and HF neurons than in LF neurons. Kinetic analysis revealed that LTK currents in MF neurons activated at lower voltages than in LF and HF neurons, whereas the inactivation of the currents was similar across the tonotopic axis. Surprisingly, blockade of LTK currents using dendrotoxin-I (DTX) tended to broaden the duration and increase the amplitude of the depolarizing inhibitory postsynaptic potentials (IPSPs) in NL neurons without dependence on coding frequency regions. Analyses of the effects of DTX on inhibitory postsynaptic currents led us to interpret this unexpected observation as a result of primarily postsynaptic effects of LTK currents on MF and HF neurons, and combined presynaptic and postsynaptic effects in LF neurons. Furthermore, DTX transferred subthreshold IPSPs to spikes. Taken together, the results suggest a critical role for LTK currents in regulating inhibitory synaptic strength in ITD-coding neurons at various frequencies. PMID:24904297

  9. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis.

    PubMed

    Hamlet, William R; Liu, Yu-Wei; Tang, Zheng-Quan; Lu, Yong

    2014-01-01

    Central auditory neurons that localize sound in horizontal space have specialized intrinsic and synaptic cellular mechanisms to tightly control the threshold and timing for action potential generation. However, the critical interplay between intrinsic voltage-gated conductances and extrinsic synaptic conductances in determining neuronal output are not well understood. In chicken, neurons in the nucleus laminaris (NL) encode sound location using interaural time difference (ITD) as a cue. Along the tonotopic axis of NL, there exist robust differences among low, middle, and high frequency (LF, MF, and HF, respectively) neurons in a variety of neuronal properties such as low threshold voltage-gated K(+) (LTK) channels and depolarizing inhibition. This establishes NL as an ideal model to examine the interactions between LTK currents and synaptic inhibition across the tonotopic axis. Using whole-cell patch clamp recordings prepared from chicken embryos (E17-E18), we found that LTK currents were larger in MF and HF neurons than in LF neurons. Kinetic analysis revealed that LTK currents in MF neurons activated at lower voltages than in LF and HF neurons, whereas the inactivation of the currents was similar across the tonotopic axis. Surprisingly, blockade of LTK currents using dendrotoxin-I (DTX) tended to broaden the duration and increase the amplitude of the depolarizing inhibitory postsynaptic potentials (IPSPs) in NL neurons without dependence on coding frequency regions. Analyses of the effects of DTX on inhibitory postsynaptic currents led us to interpret this unexpected observation as a result of primarily postsynaptic effects of LTK currents on MF and HF neurons, and combined presynaptic and postsynaptic effects in LF neurons. Furthermore, DTX transferred subthreshold IPSPs to spikes. Taken together, the results suggest a critical role for LTK currents in regulating inhibitory synaptic strength in ITD-coding neurons at various frequencies.

  10. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less

  11. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    NASA Astrophysics Data System (ADS)

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z.-L.; Kwok, W.-K.; Glatz, A.

    2017-02-01

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.

  12. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    NASA Astrophysics Data System (ADS)

    Sadovskyy, Ivan; Wang, Yonglei; Xiao, Zhili; Kwok, Wai-Kwong; Glatz, Andreas

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers - varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic field dependent critical current. We compare our result directly with available experimental measurements on patterned molybdenum-germanium films, obtaining good agreement. Our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.

  13. Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films

    DOE PAGES

    Sadovskyy, I. A.; Wang, Y. L.; Xiao, Z. -L.; ...

    2017-02-07

    Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use the time-dependent Ginzburg-Landau equations to study thin superconducting films with artificially created pinning centers arranged periodically in hexagonal lattices. We calculate the critical current density for various geometries of the pinning centers—varying their size, strength, and density. Furthermore, we shed light upon the influence of pattern distortion on the magnetic-field-dependent critical current. We compare our result directly with available experimental measurements on patternedmore » molybdenum-germanium films, obtaining good agreement. In conclusion, our results give important systematic insights into the mechanisms of pinning in these artificial pinning landscapes and open a path for tailoring superconducting films with desired critical current behavior.« less

  14. Supply and demand of some critical metals and present status of their recycling in WEEE.

    PubMed

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Chang, Chein-Chi

    2017-07-01

    New development and technological innovations make electrical and electronic equipment (EEE) more functional by using an increasing number of metals, particularly the critical metals (e.g. rare and precious metals) with specialized properties. As millions of people in emerging economies adopt a modern lifestyle, the demand for critical metals is soaring. However, the increasing demand causes the crisis of their supply because of their simple deficiency in the Earth's crust or geopolitical constraints which might create political issues for their supply. This paper focuses on the sustainable supply of typical critical metals (indium, rare earth elements (REEs), lithium, cobalt and precious metals) through recycling waste electrical and electronic equipment (WEEE). To illuminate this issue, the production, consumption, expected future demand, current recycling situation of critical metals, WEEE management and their recycling have been reviewed. We find that the demand of indium, REEs, lithium and cobalt in EEE will continuously increasing, while precious metals are decreasing because of new substitutions with less or even without precious metals. Although the generation of WEEE in 2014 was about 41.9 million tons (Mt), just about 15% (6.5 Mt) was treated environmentally. The inefficient collection of WEEE is the main obstacle to relieving the supply risk of critical metals. Furthermore, due to the widespread use in low concentrations, such as indium, their recycling is not just technological problem, but economic feasibility is. Finally, relevant recommendations are point out to address these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Critical flavor number of the Thirring model in three dimensions

    NASA Astrophysics Data System (ADS)

    Wellegehausen, Björn H.; Schmidt, Daniel; Wipf, Andreas

    2017-11-01

    The Thirring model is a four-fermion theory with a current-current interaction and U (2 N ) chiral symmetry. It is closely related to three-dimensional QED and other models used to describe properties of graphene. In addition, it serves as a toy model to study chiral symmetry breaking. In the limit of flavor number N →1 /2 it is equivalent to the Gross-Neveu model, which shows a parity-breaking discrete phase transition. The model was already studied with different methods, including Dyson-Schwinger equations, functional renormalization group methods, and lattice simulations. Most studies agree that there is a phase transition from a symmetric phase to a spontaneously broken phase for a small number of fermion flavors, but no symmetry breaking for large N . But there is no consensus on the critical flavor number Ncr above which there is no phase transition anymore and on further details of the critical behavior. Values of N found in the literature vary between 2 and 7. All earlier lattice studies were performed with staggered fermions. Thus it is questionable if in the continuum limit the lattice model recovers the internal symmetries of the continuum model. We present new results from lattice Monte Carlo simulations of the Thirring model with SLAC fermions which exactly implement all internal symmetries of the continuum model even at finite lattice spacing. If we reformulate the model in an irreducible representation of the Clifford algebra, we find, in contradiction to earlier results, that the behavior for even and odd flavor numbers is very different: for even flavor numbers, chiral and parity symmetry are always unbroken; for odd flavor numbers, parity symmetry is spontaneously broken below the critical flavor number Nircr=9 , while chiral symmetry is still unbroken.

  16. Memory characteristics of ring-shaped ceramic superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, A.; Hasunuma, M.; Sakaiya, S.

    1989-03-01

    For the practical application of ceramic superconductors, the authors investigated the residual magnetic field characteristics of ring-shaped ceramic superconductors in a Y-Ba-Cu-O system with high Tc. The residual magnetic field of a ring with asymmetric current paths, supplied by external currents, appeared when one of the branch currents was above the critical current. The residual magnetic field saturated when both brach currents exceeded the critical current of the ring and showed hysteresis-like characteristics. The saturated magnetic field is subject to the critical current of the ring. A superconducting ring with asymmetric current paths suggests a simple and quite new persistent-currentmore » type memory device.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, Gregory; Sadovskyy, Ivan A.; Glatz, Andreas

    For many technological applications of superconductors the performance of a material is determined by the highest current it can carry losslessly-the critical current. In turn, the critical current can be controlled by adding nonsuperconducting defects in the superconductor matrix. Here we report on systematic comparison of different local and global optimization strategies to predict optimal structures of pinning centers leading to the highest possible critical currents. We demonstrate performance of these methods for a superconductor with randomly placed spherical, elliptical, and columnar defects.

  18. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, John R

    2011-02-17

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ{sub ∥}) and flux flow (ρ{sub ⊥}), and their ratio r=ρ{sub ∥}/ρ{sub ⊥}. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle Φ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}(Φ) that makes the vortex arc unstable.« less

  19. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, John R.

    2011-02-17

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting ({rho}{parallel}) and flux flow ({rho}{perpendicular}), and their ratio r = {rho}{parallel}/{rho}{perpendicular}. When r < 1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle {phi}. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}({phi}) that makes the vortex arc unstable.« less

  20. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    NASA Astrophysics Data System (ADS)

    Clem, John R.

    2011-06-01

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ∥) and flux flow (ρ⊥), and their ratio r=ρ∥/ρ⊥. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle ϕ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density Jc(ϕ) that makes the vortex arc unstable.

  1. Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges.

    PubMed

    Cheng, Lixin; Bandarra Filho, Enio P; Thome, John R

    2008-07-01

    Nanofluids are a new class of fluids engineered by dispersing nanometer-size solid particles in base fluids. As a new research frontier, nanofluid two-phase flow and thermal physics have the potential to improve heat transfer and energy efficiency in thermal management systems for many applications, such as microelectronics, power electronics, transportation, nuclear engineering, heat pipes, refrigeration, air-conditioning and heat pump systems. So far, the study of nanofluid two-phase flow and thermal physics is still in its infancy. This field of research provides many opportunities to study new frontiers but also poses great challenges. To summarize the current status of research in this newly developing interdisciplinary field and to identify the future research needs as well, this paper focuses on presenting a comprehensive review of nucleate pool boiling, flow boiling, critical heat flux, condensation and two-phase flow of nanofluids. Even for the limited studies done so far, there are some controversies. Conclusions and contradictions on the available nanofluid studies on physical properties, two-phase flow, heat transfer and critical heat flux (CHF) are presented. Based on a comprehensive analysis, it has been realized that the physical properties of nanofluids such as surface tension, liquid thermal conductivity, viscosity and density have significant effects on the nanofluid two-phase flow and heat transfer characteristics but the lack of the accurate knowledge of these physical properties has greatly limited the study in this interdisciplinary field. Therefore, effort should be made to contribute to the physical property database of nanofluids as a first priority. Secondly, in particular, research on nanofluid two-phase flow and heat transfer in microchannels should be emphasized in the future.

  2. A computerized Langmuir probe system

    NASA Astrophysics Data System (ADS)

    Pilling, L. S.; Bydder, E. L.; Carnegie, D. A.

    2003-07-01

    For low pressure plasmas it is important to record entire single or double Langmuir probe characteristics accurately. For plasmas with a depleted high energy tail, the accuracy of the recorded ion current plays a critical role in determining the electron temperature. Even for high density Maxwellian distributions, it is necessary to accurately model the ion current to obtain the correct electron density. Since the electron and ion current saturation values are, at best, orders of magnitude apart, a single current sensing resistor cannot provide the required resolution to accurately record these values. We present an automated, personal computer based data acquisition system for the determination of fundamental plasma properties in low pressure plasmas. The system is designed for single and double Langmuir probes, whose characteristics can be recorded over a bias voltage range of ±70 V with 12 bit resolution. The current flowing through the probes can be recorded within the range of 5 nA-100 mA. The use of a transimpedance amplifier for current sensing eliminates the requirement for traditional current sensing resistors and hence the need to correct the raw data. The large current recording range is realized through the use of a real time gain switching system in the negative feedback loop of the transimpedance amplifier.

  3. Electrical Characterization of Semiconductor and Dielectric Materials with a Non-Damaging FastGateTM Probe

    NASA Astrophysics Data System (ADS)

    Robert, Hillard; William, Howland; Bryan, Snyder

    2002-03-01

    Determination of the electrical properties of semiconductor materials and dielectrics is highly desirable since these correlate best to final device performance. The properties of SiO2 and high k dielectrics such as Equivalent Oxide Thickness(EOT), Interface Trap Density(Dit), Oxide Effective Charge(Neff), Flatband Voltage Hysteresis(Delta Vfb), Threshold Voltage(VT) and, bulk properties such as carrier density profile and channel dose are all important parameters that require monitoring during front end processing. Conventional methods for determining these parameters involve the manufacturing of polysilicon or metal gate MOS capacitors and subsequent measurements of capacitance-voltage(CV) and/or current-voltage(IV). These conventional techniques are time consuming and can introduce changes to the materials being monitored. Also, equivalent circuit effects resulting from excessive leakage current, series resistance and stray inductance can introduce large errors in the measured results. In this paper, a new method is discussed that provides rapid determination of these critical parameters and is robust against equivalent circuit errors. This technique uses a small diameter(30 micron), elastically deformed probe to form a gate for MOSCAP CV and IV and can be used to measure either monitor wafers or test areas within scribe lines on product wafers. It allows for measurements of dielectrics thinner than 10 Angstroms. A detailed description and applications such as high k dielectrics, will be presented.

  4. Investigation and development of a non-destructive system to evaluate critical properties of asphalt pavements during the compaction process.

    DOT National Transportation Integrated Search

    2013-10-01

    The purpose of this report is to present findings from a two-stage investigation to develop a non-destructive system to : evaluate critical properties and characteristics of asphalt pavements during the compaction process. The first stage aligned : c...

  5. O the Size Dependence of the Chemical Properties of Cloud Droplets: Exploratory Studies by Aircraft

    NASA Astrophysics Data System (ADS)

    Twohy, Cynthia H.

    1992-09-01

    Clouds play an important role in the climate of the earth and in the transport and transformation of chemical species, but many questions about clouds remain unanswered. In particular, the chemical properties of droplets may vary with droplet size, with potentially important consequences. The counterflow virtual impactor (CVI) separates droplets from interstitial particles and gases in a cloud and also can collect droplets in discrete size ranges. As such, the CVI is a useful tool for investigating the chemical components present in droplets of different sizes and their potential interactions with cloud processes. The purpose of this work is twofold. First, the sampling characteristics of the airborne CVI are investigated, using data from a variety of experiments. A thorough understanding of CVI properties is necessary in order to utilize the acquired data judiciously and effectively. Although the impaction characteristics of the CVI seem to be predictable by theory, the airborne instrument is subject to influences that may result in a reduced transmission efficiency for droplets, particularly if the inlet is not properly aligned. Ways to alleviate this problem are being investigated, but currently the imperfect sampling efficiency must be taken into account during data interpretation. Relationships between the physical and chemical properties of residual particles from droplets collected by the CVI and droplet size are then explored in both stratiform and cumulus clouds. The effects of various cloud processes and measurement limitations upon these relationships are discussed. In one study, chemical analysis of different -sized droplets sampled in stratiform clouds showed a dependence of chemical composition on droplet size, with larger droplets containing higher proportions of sodium than non-sea-salt sulfate and ammonium. Larger droplets were also associated with larger residual particles, as expected from simple cloud nucleation theory. In a study of marine cumulus clouds, the CVI was combined with a cloud condensation nucleus spectrometer to study the supersaturation spectra of residual particles from droplets. The median critical supersaturation of the droplet residual particles was consistently less than or equal to the median critical supersaturation of ambient particles except at cloud top, where residual particles exhibited a variety of critical supersaturations.

  6. Leading Modes of the 3pi0 production in proton-proton collisions at incident proton momentum 3.35GeV/c

    NASA Astrophysics Data System (ADS)

    Jampana, Balakrishnam R.

    The III-nitride semiconductor material system, which consists of InN, GaN, AlN and their alloys, offers a substantial potential in developing ultra-high efficiency photovoltaics mainly due to its wide range of direct-bandgap (0.7 eV -- 3.4 eV), and other electronic, optical and mechanical properties. However, this novel InGaN material system poses technological challenges which extended into the performance of InGaN devices. The development of wide-band gap p--n InGaN homojunction solar cells with bandgap < 2.4 eV is investigated in the present work. The growth, fabrication and characterization of a 2.7 eV bandgap InGaN solar cell with a 1.73 eV open-circuit voltage is demonstrated. Limited solar cell performance, in terms of short-circuit current and efficiency, is observed. The poor performance of the InGaN solar cell is related to the formation of extended crystalline defects in InGaN epilayers of the solar cell structure. To investigate the influence of extended crystalline defects on InGaN epilayer properties, a few In0.12Ga0.88N epilayers with different thicknesses are grown and characterized for structural properties using high-resolution X-ray diffraction. The structural parameters, modeled as mosaic blocks, indicate deterioration in InGaN crystal quality when the film thickness exceeds a critical layer thickness. An associated increase in density of threading dislocations with deteriorated InGaN crystal quality is observed. The critical layer thickness is determined for a few InGaN compositions in the range of 6 -- 21 % In, and it decreases with increasing InGaN composition. Surface roughening and formation of V-defects are observed on InGaN surface beyond the critical layer thickness. An Urbach tail in optical absorption of InGaN epilayer is observed and it is related to the formation of V-defects. The direct consequence of light absorption via V-defects is a decrease in photoluminescence peak intensity with increasing InGaN epilayer thickness beyond critical layer thickness. Two p-i-n InGaN solar cell structures were designed, with InGaN epilayer thickness in one solar cell greater than the critical layer thickness and the other with a lower thickness, to investigate the influence of V-defects on performance of the solar cells. The photoresponse of the p-i-n InGaN solar cell with thicker InGaN epilayer is poor, while the other solar cell had good photoresponse and external quantum efficiency. Extending this investigation to a p-n InGaN solar cell, a solar cell with total InGaN epilayer less than the critical layer thickness is grown. The photoresponse and external quantum efficiency of the present solar cell is superior compared to the initially designed p-n InGaN homojunction solar cells. Solar cell characteristics without p-GaN capping layer in the above p-n InGaN solar cell are also investigated. Good open-circuit voltage is observed, but the short-circuit current and efficiency are limited by the formation of extended crystalline defects, as observed with other initial solar cell designs. A processing sequence is developed to coat III-nitride sidewalls, created during fabrication to form electrical contacts, with SiO2 to maximize the active device area and minimize accidental damage of solar cell during fabrication. Additionally, deposition of current spreading layers on p-type III-nitride epilayer to reduce the series resistance is evaluated. The III-nitrides are primarily grown on sapphire substrate and in a continued effort they are realized later on silicon substrate. InGaN solar cell structures were grown simultaneously on GaN/sapphire and GaN/silicon templates and their photoresponse is compared.

  7. Technologies for Developing Predictive Atomistic and Coarse-Grained Force Fields for Ionic Liquid Property Prediction

    DTIC Science & Technology

    2008-07-29

    studied are set to zero and a constrained MM minimization is performed. It is critical that all other force field parameters (for bonds, angles, charges...identifying the symmetry of the problem and tailoring the parameterization accordingly may be critical . For Phase I, the above described procedure was...tasks and the evaluation of their properties. The tremendous number of possible ionic liquids that are within reach makes it critical that a reliable

  8. Effect of geometry structure on critical properties

    NASA Astrophysics Data System (ADS)

    Jiang, Qing; Jiang, Xue-fan

    1997-02-01

    The effective-field renormalization group (EFRG) scheme is utilized to compute critical properties of the transverse Ising model (TIM) in a quantum-spin system. We distinguish differences between lattices of the same coordination number but of different structures and take effects of the first fluctuation correction into account. The improved results for the critical transverse field are obtained for several lattice structures even by considering the smallest possible cluster, which is in good agreement with series results.

  9. Perovskite Solar Cells: From the Laboratory to the Assembly Line.

    PubMed

    Abate, Antonio; Correa-Baena, Juan-Pablo; Saliba, Michael; Su'ait, Mohd Sukor; Bella, Federico

    2018-03-02

    Despite the fact that perovskite solar cells (PSCs) have a strong potential as a next-generation photovoltaic technology due to continuous efficiency improvements and the tunable properties, some important obstacles remain before industrialization is feasible. For example, the selection of low-cost or easy-to-prepare materials is essential for back-contacts and hole-transporting layers. Likewise, the choice of conductive substrates, the identification of large-scale manufacturing techniques as well as the development of appropriate aging protocols are key objectives currently under investigation by the international scientific community. This Review analyses the above aspects and highlights the critical points that currently limit the industrial production of PSCs and what strategies are emerging to make these solar cells the leaders in the photovoltaic field. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Eating beyond metabolic need: how environmental cues influence feeding behavior.

    PubMed

    Johnson, Alexander W

    2013-02-01

    Animals use current, past, and projected future states of the organism and the world in a finely tuned system to control ingestion. They must not only deal effectively with current nutrient deficiencies, but also manage energy resources to meet future needs, all within the constraints of the mechanisms of metabolism. Many recent approaches to understanding the control of ingestive behavior distinguish between homeostatic mechanisms concerned with energy balance, and hedonic and incentive processes based on palatability and reward characteristics of food. In this review, I consider how learning about environmental cues influences homeostatic and hedonic brain signals, which may lead to increases in the affective taste properties of food and desire to over consume. Understanding these mechanisms may be critical for elucidating the etiology of the obesity epidemic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.

    to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision.more » The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.« less

  12. Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves.

    PubMed

    Meyer, Cora; Stenberg, Lena; Gonzalez-Perez, Francisco; Wrobel, Sandra; Ronchi, Giulia; Udina, Esther; Suganuma, Seigo; Geuna, Stefano; Navarro, Xavier; Dahlin, Lars B; Grothe, Claudia; Haastert-Talini, Kirsten

    2016-01-01

    Biosynthetic nerve grafts are developed in order to complement or replace autologous nerve grafts for peripheral nerve reconstruction. Artificial nerve guides currently approved for clinical use are not widely applied in reconstructive surgery as they still have limitations especially when it comes to critical distance repair. Here we report a comprehensive analysis of fine-tuned chitosan nerve guides (CNGs) enhanced by introduction of a longitudinal chitosan film to reconstruct critical length 15 mm sciatic nerve defects in adult healthy Wistar or diabetic Goto-Kakizaki rats. Short and long term investigations demonstrated that the CNGs enhanced by the guiding structure of the introduced chitosan film significantly improved functional and morphological results of nerve regeneration in comparison to simple hollow CNGs. Importantly, this was detectable both in healthy and in diabetic rats (short term) and the regeneration outcome almost reached the outcome after autologous nerve grafting (long term). Hollow CNGs provide properties likely leading to a wider clinical acceptance than other artificial nerve guides and their performance can be increased by simple introduction of a chitosan film with the same advantageous properties. Therefore, the chitosan film enhanced CNGs represent a new generation medical device for peripheral nerve reconstruction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. A tympanal insect ear exploits a critical oscillator for active amplification and tuning.

    PubMed

    Mhatre, Natasha; Robert, Daniel

    2013-10-07

    A dominant theme of acoustic communication is the partitioning of acoustic space into exclusive, species-specific niches to enable efficient information transfer. In insects, acoustic niche partitioning is achieved through auditory frequency filtering, brought about by the mechanical properties of their ears. The tuning of the antennal ears of mosquitoes and flies, however, arises from active amplification, a process similar to that at work in the mammalian cochlea. Yet, the presence of active amplification in the other type of insect ears--tympanal ears--has remained uncertain. Here we demonstrate the presence of active amplification and adaptive tuning in the tympanal ear of a phylogenetically basal insect, a tree cricket. We also show that the tree cricket exploits critical oscillator-like mechanics, enabling high auditory sensitivity and tuning to conspecific songs. These findings imply that sophisticated auditory mechanisms may have appeared even earlier in the evolution of hearing and acoustic communication than currently appreciated. Our findings also raise the possibility that frequency discrimination and directional hearing in tympanal systems may rely on physiological nonlinearities, in addition to mechanical properties, effectively lifting some of the physical constraints placed on insects by their small size [6] and prompting an extensive reexamination of invertebrate audition. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Self-organized criticality in type I X-ray bursts

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Wang, F. Y.; Dai, Z. G.

    2017-11-01

    Type I X-ray bursts in a low-mass X-ray binary are caused by unstable nuclear burning of accreted materials. Semi-analytical and numerical studies of unstable nuclear burning have successfully reproduced the partial properties of this kind of burst. However, some other properties (e.g. the waiting time) are not well explained. In this paper, we find that the probability distributions of fluence, peak count, rise time, duration and waiting time can be described as power-law-like distributions. This indicates that type I X-ray bursts may be governed by a self-organized criticality (SOC) process. The power-law index of the waiting time distribution (WTD) is around -1, which is not predicted by any current waiting time model. We propose a physical burst rate model, in which the mean occurrence rate is inversely proportional to time: λ ∝ t-1. In this case, the WTD is explained well by a non-stationary Poisson process within the SOC theory. In this theory, the burst size is also predicted to follow a power-law distribution, which requires that the emission area covers only part of the neutron star surface. Furthermore, we find that the WTDs of some astrophysical phenomena can also be described by similar occurrence rate models.

  15. Effect of Dopant Activation on Device Characteristics of InGaN-based Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Lacroce, Nicholas; Liu, Guangyu; Tan, Chee-Keong; Arif, Ronald A.; Lee, Soo Min; Tansu, Nelson

    2015-03-01

    Achieving high uniformity in growths and device characteristics of InGaN-based light-emitting diodes (LEDs) is important for large scale manufacturing. Dopant activation and maintaining control of variables affecting dopant activation are critical steps in the InGaN-based light emitting diodes (LEDs) fabrication process. In the epitaxy of large scale production LEDs, in-situ post-growth annealing is used for activating the Mg acceptor dopant in the p-AlGaN and p-GaN of the LEDs. However, the annealing temperature varies with respect to position in the reactor chamber, leading to severe uniform dopant activation issue across the devices. Thus, it is important to understand how the temperature gradient and the resulting variance in Mg acceptor activation will alter the device properties. In this work, we examine the effect of varying p-type doping levels in the p-GaN layers and AlGaN electron blocking layer of the GaN LEDs on the optoelectronic properties including the band profile, carrier concentration, current density, output power and quantum efficiency. By understanding the variations and its effect, the identification of the most critical p-type doping layer strategies to address this variation will be clarified.

  16. Transport on percolation clusters with power-law distributed bond strengths.

    PubMed

    Alava, Mikko; Moukarzel, Cristian F

    2003-05-01

    The simplest transport problem, namely finding the maximum flow of current, or maxflow, is investigated on critical percolation clusters in two and three dimensions, using a combination of extremal statistics arguments and exact numerical computations, for power-law distributed bond strengths of the type P(sigma) approximately sigma(-alpha). Assuming that only cutting bonds determine the flow, the maxflow critical exponent v is found to be v(alpha)=(d-1)nu+1/(1-alpha). This prediction is confirmed with excellent accuracy using large-scale numerical simulation in two and three dimensions. However, in the region of anomalous bond capacity distributions (0< or =alpha< or =1) we demonstrate that, due to cluster-structure fluctuations, it is not the cutting bonds but the blobs that set the transport properties of the backbone. This "blob dominance" avoids a crossover to a regime where structural details, the distribution of the number of red or cutting bonds, would set the scaling. The restored scaling exponents, however, still follow the simplistic red bond estimate. This is argued to be due to the existence of a hierarchy of so-called minimum cut configurations, for which cutting bonds form the lowest level, and whose transport properties scale all in the same way. We point out the relevance of our findings to other scalar transport problems (i.e., conductivity).

  17. Transport properties of ultrathin BaFe1.84Co0.16As2 superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Pusheng; Xu, Zhongtang; Li, Chen; Quan, Baogang; Li, Junjie; Gu, Changzhi; Ma, Yanwei

    2018-07-01

    Superconducting nanowire single-photon detectors (SNSPDs) have an absolute advantage over other types of single-photon detectors, except for the low operating temperature. Therefore, much effort has been devoted to finding high-temperature superconducting materials that are suitable for preparing SNSPDs. Copper-based and MgB2 ultrathin superconducting nanowires have already been reported. However, the transport properties of iron-based ultrathin superconducting nanowires have not been studied. In this work, a 10 nm thick × 200 nm wide × 30 μm long high-quality superconducting nanowire was fabricated from ultrathin BaFe1.84Co0.16As2 films by a lift-off process. The precursor BaFe1.84Co0.16As2 film with a thickness of 10 nm and root-mean-square roughness of 1 nm was grown on CaF2 substrates by pulsed laser deposition. The nanowire shows a high superconducting critical temperature {T}{{c}}{{zero}} = 20 K with a narrow transition width of ΔT = 2.5 K and exhibits a high critical current density J c of 1.8 × 107 A cm-2 at 10 K. These results of ultrathin BaFe1.84Co0.16As2 nanowire will attract interest in electronic applications, including SNSPDs.

  18. EDITORIAL: The electromagnetic properties of iron-based superconductors The electromagnetic properties of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Prozorov, Ruslan; Gurevich, Alex; Luke, Graeme

    2010-05-01

    Iron-based superconductors, discovered just a few years ago, are members of a diverse family of pnictides and chalcogenides which may potentially contain hundreds of superconducting compounds. The unconventional, multiband superconductivity in these materials most likely emerges from the quintessential magnetic Fe ions. Along with many similarities to the high-Tc cuprates, the proximity of antiferromagnetism to superconductivity in these semi-metallic materials has attracted much attention. The massive effort aimed at understanding superconductivity in the high-Tc cuprates has stimulated the development of numerous state-of-the-art experimental techniques, improved crystal growth methods and a variety of new theoretical insights. These tools and models were already available and readily applied to the new iron-based superconductors for which lots of high quality new results are being reported literally every day. The current special section represents only a snapshot of these extensive studies performed in the second half of 2009, less than two years after the discovery of 26 K superconductivity in the LaFeAsO compound. The range of various experiments is impressive and this issue is mostly focused on the electromagnetic properties of these iron-based materials. The electromagnetic response is sensitive to the microscopic electronic behavior and therefore can be used to probe the mechanism of superconductivity. On the other hand, it is the electromagnetic response that determines many possible applications of these superconductors, particularly given their extremely high upper critical fields. At this point it is already quite clear that the iron-based superconductors cannot unambiguously fit into any known type of superconductor class and have been placed in one of their own. The metallic ground state of the parent compounds is different from the insulating state of the cuprates and generally exhibits a lower electromagnetic anisotropy. However, similar to the cuprates, a superconducting 'dome' is formed upon doping the parent compounds, which exhibits antiferromagnetic and structural transitions at temperatures well above the superconducting critical temperature. This special section touches on several key aspects of these new iron-based superconductors. These topics include materials synthesis and basic characterization, the role of impurities and pairing symmetry, and mapping of the superconducting phase diagram as a function of chemical doping and pressure. Studies of transport, magnetic and optical properties account for a substantial portion of this special section. Particular attention is devoted to the role of magnetic excitations and the issue of the possible coexistence of magnetism and superconductivity. Attempts to understand the nature of the superconducting pairing are discussed from several angles, including tunneling spectroscopy and the London penetration depth. The vortex state is probed by magnetization, transport and neutron scattering, while the irreversible state is probed by studies of magnetic and transport critical current density.

  19. Ceramics in Restorative and Prosthetic DENTISTRY1

    NASA Astrophysics Data System (ADS)

    Kelly, J. Robert

    1997-08-01

    This review is intended to provide the ceramic engineer with information about the history and current use of ceramics in dentistry, contemporary research topics, and potential research agenda. Background material includes intra-oral design considerations, descriptions of ceramic dental components, and the origin, composition, and microstructure of current dental ceramics. Attention is paid to efforts involving net-shape processing, machining as a forming method, and the analysis of clinical failure. A rationale is presented for the further development of all-ceramic restorative systems. Current research topics receiving attention include microstructure/processing/property relationships, clinical failure mechanisms and in vitro testing, wear damage and wear testing, surface treatments, and microstructural modifications. The status of the field is critically reviewed with an eye toward future work. Significant improvements seem possible in the clinical use of ceramics based on engineering solutions derived from the study of clinically failed restorations, on the incorporation of higher levels of "biomimicry" in new systems, and on the synergistic developments in dental cements and adhesive dentin bonding.

  20. Evaluation of metal-foil strain gages for cryogenic application in magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.

    1977-07-08

    The requirement for the design and construction of large superconducting magnet systems for fusion research has raised a number of new questions regarding the properties of composite superconducting conductors. One of these, the effect of mechanical stress on the current-carrying capacity of Nb/sub 3/Sn, is of major importance in determining the feasibility of constructing large magnets with this material. A typical experiment for determining such data involves the measurement of critical current versus magnetic field while the conductor is being mechanically strained to various degrees. Techniques are well developed for the current and field measurements, but much less so formore » the accurate measurement of strain at liquid-helium temperature in a high magnetic field. A study was made of commercial, metal-foil strain gages for use under these conditions. The information developed can also be applied to the use of strain gages as diagnostic tools in superconducting magnets.« less

  1. Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making.

    PubMed

    Hendren, Christine Ogilvie; Lowry, Michael; Grieger, Khara D; Money, Eric S; Johnston, John M; Wiesner, Mark R; Beaulieu, Stephen M

    2013-02-05

    As the use of engineered nanomaterials becomes more prevalent, the likelihood of unintended exposure to these materials also increases. Given the current scarcity of experimental data regarding fate, transport, and bioavailability, determining potential environmental exposure to these materials requires an in depth analysis of modeling techniques that can be used in both the near- and long-term. Here, we provide a critical review of traditional and emerging exposure modeling approaches to highlight the challenges that scientists and decision-makers face when developing environmental exposure and risk assessments for nanomaterials. We find that accounting for nanospecific properties, overcoming data gaps, realizing model limitations, and handling uncertainty are key to developing informative and reliable environmental exposure and risk assessments for engineered nanomaterials. We find methods suited to recognizing and addressing significant uncertainty to be most appropriate for near-term environmental exposure modeling, given the current state of information and the current insufficiency of established deterministic models to address environmental exposure to engineered nanomaterials.

  2. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  3. Self-current induced spin-orbit torque in FeMn/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Xu, Yanjun; Yang, Yumeng; Yao, Kui; Xu, Baoxi; Wu, Yihong

    2016-05-01

    Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications.

  4. Vortices in high-performance high-temperature superconductors

    DOE PAGES

    Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; ...

    2016-09-21

    The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. In this paper, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Finally, we discuss an emerging new paradigm of criticalmore » current by design—a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg–Landau approach to simulating vortex dynamics.« less

  5. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  6. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  7. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  8. Encapsulation and backsheet adhesion metrology for photovoltaic modules

    DOE PAGES

    Tracy, Jared; Bosco, Nick; Novoa, Fernando; ...

    2016-09-26

    Photovoltaic modules are designed to operate for decades in terrestrial environments. However, mechanical stress, moisture, and ultraviolet radiation eventually degrade protective materials in modules, particularly their adhesion properties, eventually leading to reduced solar cell performance. Despite the significance of interfacial adhesion to module durability, currently there is no reliable technique for characterizing module adhesion properties. We present a simple and reproducible metrology for characterizing adhesion in photovoltaic modules that is grounded in fundamental concepts of beam and fracture mechanics. Using width-tapered cantilever beam fracture specimens, interfacial adhesion was evaluated on relevant interfaces of encapsulation and backsheet structures of new andmore » 27-year-old historic modules. The adhesion energy, Gc [J/m 2], was calculated from the critical value of the strain energy release rate, G, using G = βP2, where β (a mechanical and geometric parameter of the fracture specimen) and P (the experimentally measured critical load) are constants. Under some circumstances where testing may result in cracking of brittle layers in the test specimen, measurement of the delamination length in addition to the critical load was necessary to determine G. Relative to new module materials, backsheet adhesion was 95% and 98% lower for historic modules that were exposed (operated in the field) and unexposed (stored on-site, but out of direct sunlight), respectively. Encapsulation adhesion was 87-94% lower in the exposed modules and 31% lower in the unexposed module. As a result, the metrology presented here can be used to improve module materials and assess long-term reliability.« less

  9. Aggregation of Culture Expanded Human Mesenchymal Stem Cells in Microcarrier-based Bioreactor.

    PubMed

    Yuan, Xuegang; Tsai, Ang-Chen; Farrance, Iain; Rowley, Jon; Ma, Teng

    2018-03-15

    Three-dimensional aggregation of human mesenchymal stem cells (hMSCs) has been used to enhance their therapeutic properties but current fabrication protocols depend on laboratory methods and are not scalable. In this study, we developed thermal responsive poly(N-isopropylacrylamide) grafted microcarriers (PNIPAM-MCs), which supported expansion and thermal detachment of hMSCs at reduced temperature (23.0 °C). hMSCs were cultured on the PNIPAM-MCs in both spinner flask (SF) and PBS Vertical-Wheel (PBS-VW) bioreactors for expansion. At room temperature, hMSCs were detached as small cell sheets, which subsequently self-assembled into 3D hMSC aggregates in PBS-VW bioreactor and remain as single cells in SF bioreactor owing to different hydrodynamic conditions. hMSC aggregates generated from the bioreactor maintained comparable immunomodulation and cytokine secretion properties compared to the ones made from the AggreWell ® . The results of the current study demonstrate the feasibility of scale-up production of hMSC aggregates in the suspension bioreactor using thermal responsive microcarriers for integrated cell expansion and 3D aggregation in a close bioreactor system and highlight the critical role of hydrodynamics in self-assembly of detached hMSC in suspension.

  10. Conformation of ionizable poly Para phenylene ethynylene in dilute solutions

    DOE PAGES

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...

    2015-11-03

    The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less

  11. Conformation of ionizable poly Para phenylene ethynylene in dilute solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora

    The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less

  12. RETRACTED: Neoteric FT-IR investigation on the functional groups of phosphonium-based deep eutectic solvents.

    PubMed

    Aissaoui, Tayeb; AlNashef, Inas M; Hayyan, Maan; Hashim, Mohd Ali

    2015-10-05

    Deep eutectic solvents (DESs) are novel solvent media that are currently under investigation as an alternative to ionic liquids and conventional solvents. The physical properties of DESs as well as their mild environmental footprint and potentially critical industrial application necessitate understanding the interaction of functional groups on both the salt and hydrogen bond donor (HBD). In this study, four DESs were prepared by mixing triethylenglycol, diethylenglycol, ethylenglycol, and glycerol as HBDs with methyltriphenylphosphonium bromide as a salt at a molar ratio of 1:4. Fourier transform infrared spectroscopy was conducted to highlight the chemical structure and mechanism of the combination of the four DESs. New spectra illustrating the combination of the functional groups of the HBDs and salt were observed and interpreted. This study is the first to investigate the properties of neoteric phosphonium-based DESs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review

    PubMed Central

    Sivam, Anusooya S; Sun-Waterhouse, Dongxiao; Quek, SiewYoung; Perera, Conrad O

    2010-01-01

    During breadmaking, different ingredients are used to ensure the development of a continuous protein network that is essential for bread quality. Interests in incorporating bioactive ingredients such as dietary fiber (DF) and phenolic antioxidants into popular foods such as bread have grown rapidly, due to the increased consumer health awareness. The added bioactive ingredients may or may not promote the protein cross-links. Appropriate cross-links among wheat proteins, fiber polysaccharides, and phenolic antioxidants could be the most critical factor for bread dough enhanced with DF and phenolic antioxidants. Such cross-links may influence the structure and properties of a bread system during baking. This article presents a brief overview of our current knowledge of the fate of the key components (wheat proteins, fibers, and phenolic antioxidants) and how they might interact during bread dough development and baking. PMID:21535512

  14. Fiber-Based Tissue Engineering: Progress, Challenges, and Opportunities

    PubMed Central

    Tamayol, Ali; Akbari, Mohsen; Annabi, Nasim; Paul, Arghya; Khademhosseini, Ali; Juncker, David

    2013-01-01

    Tissue engineering aims to improve the function of diseased or damaged organs by creating biological substitutes. To fabricate a functional tissue, the engineered construct should mimic the physiological environment including its structural, topographical, and mechanical properties. Moreover, the construct should facilitate nutrients and oxygen diffusion as well as removal of metabolic waste during tissue regeneration. In the last decade, fiber-based techniques such as weaving, knitting, braiding, as well as electrospinning, and direct writing have emerged as promising platforms for making 3D tissue constructs that can address the above mentioned challenges. Here, we critically review the techniques used to form cell-free and cell-laden fibers and to assemble them into scaffolds. We compare their mechanical properties, morphological features and biological activity. We discuss current challenges and future opportunities of fiber-based tissue engineering (FBTE) for use in research and clinical practice. PMID:23195284

  15. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives

    NASA Astrophysics Data System (ADS)

    Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G. A.; Rödel, J.

    2017-12-01

    We present a critical review that encompasses the fundamentals and state-of-the-art knowledge of barium titanate-based piezoelectrics. First, the essential crystallography, thermodynamic relations, and concepts necessary to understand piezoelectricity and ferroelectricity in barium titanate are discussed. Strategies to optimize piezoelectric properties through microstructure control and chemical modification are also introduced. Thereafter, we systematically review the synthesis, microstructure, and phase diagrams of barium titanate-based piezoelectrics and provide a detailed compilation of their functional and mechanical properties. The most salient materials treated include the (Ba,Ca)(Zr,Ti)O3, (Ba,Ca)(Sn,Ti)O3, and (Ba,Ca)(Hf,Ti)O3 solid solution systems. The technological relevance of barium titanate-based piezoelectrics is also discussed and some potential market indicators are outlined. Finally, perspectives on productive lines of future research and promising areas for the applications of these materials are presented.

  16. Process parameters, orientation, and functional properties of melt-processed bulk Y-Ba-Cu-O superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharchenko, I.V.; Terryll, K.M.; Rao, K.V.

    1995-03-01

    This study compared the microstructure, texturing, and functional properties (critical currents) of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}-based bulk pellets that were prepared by the quench-melt-growth-process (QMGP), melt-textured growth (MTG), and conventional solid-state reaction (SSR) approaches. Using two X-ray diffraction (XRD) methods, {theta}-2{theta}, and rocking curves, the authors found that the individual grains of two melt-processed pellets exhibited remarkable preferred orientational alignment (best rocking curve width = 3.2{degree}). However, the direction of the preferred orientation among the grains was random. Among the three types of bulk materials studied, the QMGP sample was found to have the best J{sub c} values, {approx} 4,500more » A/cm{sup 2} at 77 K in a field of 2 kG, as determined from SQUID magnetic data.« less

  17. Place recognition using batlike sonar

    PubMed Central

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-01-01

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map. DOI: http://dx.doi.org/10.7554/eLife.14188.001 PMID:27481189

  18. Blood cell interactions and segregation in flow.

    PubMed

    Munn, Lance L; Dupin, Michael M

    2008-04-01

    For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall.

  19. Rheological behavior of mammalian cells.

    PubMed

    Stamenović, D

    2008-11-01

    Rheological properties of living cells determine how cells interact with their mechanical microenvironment and influence their physiological functions. Numerous experimental studies have show that mechanical contractile stress borne by the cytoskeleton and weak power-law viscoelasticity are governing principles of cell rheology, and that the controlling physics is at the level of integrative cytoskeletal lattice properties. Based on these observations, two concepts have emerged as leading models of cytoskeletal mechanics. One is the tensegrity model, which explains the role of the contractile stress in cytoskeletal mechanics, and the other is the soft glass rheology model, which explains the weak power-law viscoelasticity of cells. While these two models are conceptually disparate, the phenomena that they describe are often closely associated in living cells for reasons that are largely unknown. In this review, we discuss current understanding of cell rheology by emphasizing the underlying biophysical mechanism and critically evaluating the existing rheological models.

  20. Management of the aging of critical safety-related concrete structures in light-water reactor plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naus, D.J.; Oland, C.B.; Arndt, E.G.

    1990-01-01

    The Structural Aging Program has the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant safety-related structures for continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued-service determinations. Objectives, accomplishments, and planned activities under each of these tasks are presented. Major program accomplishments include development of a materials property data base for structural materials as well as an aging assessment methodology for concrete structures in nuclear power plants. Furthermore, a review and assessment of inservice inspection techniquesmore » for concrete materials and structures has been complete, and work on development of a methodology which can be used for performing current as well as reliability-based future condition assessment of concrete structures is well under way. 43 refs., 3 tabs.« less

  1. Reduced-Scale Transition-Edge Sensor Detectors for Solar and X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Datesman, Aaron M.; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chang, Meng-Ping; Chervenak, James A.; Eckart, Megan E.; Ewin, Audrey E.; Finkbeiner, Fred M.; Ha, Jong Yoon; hide

    2017-01-01

    We have developed large-format, close-packed X-ray microcalorimeter arrays fabricated on solid substrates, designed to achieve high energy resolution with count rates up to a few hundred counts per second per pixel for X-ray photon energies upto 8 keV. Our most recent arrays feature 31-micron absorbers on a 35-micron pitch, reducing the size of pixels by about a factor of two. This change will enable an instrument with significantly higher angular resolution. In order to wire out large format arrays with an increased density of smaller pixels, we have reduced the lateral size of both the microstrip wiring and the Mo/Au transition-edge sensors (TES). We report on the key physical properties of these small TESs and the fine Nb leads attached, including the critical currents and weak-link properties associated with the longitudinal proximity effect.

  2. Numerical simulations of thermoacoustic waves in transcritical fluids employing the spectral difference approach

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Migliorino, Mario Tindaro; Chapelier, Jean-Baptiste

    2017-11-01

    We investigate the stability properties of thermoacoustically unstable planar waves in transcritical fluids via high-fidelity Navier-Stokes simulations based on a Spectral Difference (SD) discretization coupled with the Peng-Robinson equation of state and Chung's method for the fluid transport properties. A canonical thermoacoustically unstable standing-wave resonator filled with supercritical CO2 kept in pseudoboiling conditions in the stack is considered. Real fluid effects near the critical point are shown to boost thermoacoustic energy production, as also confirmed by companion eigenvalue analysis supporting the closure of the acoustic energy budgets. A kink in the eigenmode shape is observed at the location of pseudo phase change, consistent with the abrupt change in base impedance. The current study demonstrates a transformative approach to thermoacoustic energy generation, exploiting otherwise unwanted fluid dynamics instabilities commonly observed in aeronautical applications employing transcritical fluids.

  3. Material Innovation in Advancing Organometal Halide Perovskite Functionality.

    PubMed

    Zheng, Fan; Saldana-Greco, Diomedes; Liu, Shi; Rappe, Andrew M

    2015-12-03

    Organometal halide perovskites (OMHPs) have garnered much attention recently for their unprecedented rate of increasing power conversion efficiency (PCE), positioning them as a promising basis for the next-generation photovoltaic devices. However, the gap between the rapid increasing PCE and the incomplete understanding of the structure-property-performance relationship prevents the realization of the true potential of OMHPs. This Perspective aims to provide a concise overview of the current status of OMHP research, highlighting the unique properties of OMHPs that are critical for solar applications but still not adequately explained. Stability and performance challenges of OMHP solar cells are discussed, calling upon combined experimental and theoretical efforts to address these challenges for pioneering commercialization of OMHP solar cells. Various material innovation strategies for improving the performance and stability of OMHPs are surveyed, showing that the OMHP architecture can serve as a promising and robust platform for the design and optimization of materials with desired functionalities.

  4. Electrical and magnetic properties of conductive Cu-based coated conductors

    NASA Astrophysics Data System (ADS)

    Aytug, T.; Paranthaman, M.; Thompson, J. R.; Goyal, A.; Rutter, N.; Zhai, H. Y.; Gapud, A. A.; Ijaduola, A. O.; Christen, D. K.

    2003-11-01

    The development of YBa2Cu3O7-δ (YBCO)-based coated conductors for electric power applications will require electrical and thermal stabilization of the high-temperature superconducting (HTS) coating. In addition, nonmagnetic tape substrates are an important factor in order to reduce the ferromagnetic hysteresis energy loss in ac applications. We report progress toward a conductive buffer layer architecture on biaxially textured nonmagnetic Cu tapes to electrically couple the HTS layer to the underlying metal substrate. A protective Ni overlayer, followed by a single buffer layer of La0.7Sr0.3MnO3, was employed to avoid Cu diffusion and to improve oxidation resistance of the substrate. Property characterizations of YBCO films on short prototype samples revealed self-field critical current density (Jc) values exceeding 2×106 A/cm2 at 77 K and good electrical connectivity. Magnetic hysteretic loss due to Ni overlayer was also investigated.

  5. La0.7Sr0.3MnO3: A single, conductive-oxide buffer layer for the development of YBa2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    Aytug, T.; Paranthaman, M.; Kang, B. W.; Sathyamurthy, S.; Goyal, A.; Christen, D. K.

    2001-10-01

    Coated conductor applications in power technologies require stabilization of the high-temperature superconducting (HTS) layers against thermal runaway. Conductive La0.7Sr0.3MnO3 (LSMO) has been epitaxially grown on biaxially textured Ni substrates as a single buffer layer. The subsequent epitaxial growth of YBa2Cu3O7-δ (YBCO) coatings by pulsed laser deposition yielded self-field critical current densities (Jc) of 0.5×106A/cm2 at 77 K, and provided good electrical connectivity over the entire structure (HTS+conductive-buffer+metal substrate). Property characterizations of YBCO/LSMO/Ni architecture revealed excellent crystallographic and morphological properties. These results have demonstrated that LSMO, used as a single, conductive buffer layer, may offer potential for use in fully stabilized YBCO coated conductors.

  6. A review of polymer nanofibres by electrospinning and their application in oil-water separation for cleaning up marine oil spills.

    PubMed

    Sarbatly, Rosalam; Krishnaiah, Duduku; Kamin, Zykamilia

    2016-05-15

    The growths of oil and gas exploration and production activities have increased environmental problems, such as oil spillage and the resulting pollution. The study of the methods for cleaning up oil spills is a critical issue to protect the environment. Various techniques are available to contain oil spills, but they are typically time consuming, energy inefficient and create secondary pollution. The use of a sorbent, such as a nanofibre sorbent, is a technique for controlling oil spills because of its good physical and oil sorption properties. This review discusses about the application of nanofibre sorbent for oil removal from water and its current developments. With their unique physical and mechanical properties coupled with their very high surface area and small pore sizes, nanofibre sorbents are alternative materials for cleaning up oil spills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. ERG voltage-gated K+ channels regulate excitability and discharge dynamics of the medial vestibular nucleus neurones

    PubMed Central

    Pessia, Mauro; Servettini, Ilenio; Panichi, Roberto; Guasti, Leonardo; Grassi, Silvarosa; Arcangeli, Annarosa; Wanke, Enzo; Pettorossi, Vito Enrico

    2008-01-01

    The discharge properties of the medial vestibular nucleus neurones (MVNn) critically depend on the activity of several ion channel types. In this study we show, immunohistochemically, that the voltage-gated K+ channels ERG1A, ERG1B, ERG2 and ERG3 are highly expressed within the vestibular nuclei of P10 and P60 mice. The role played by these channels in the spike-generating mechanisms of the MVNn and in temporal information processing was investigated electrophysiologically from mouse brain slices, in vitro, by analysing the spontaneous discharge and the response to square-, ramp- and sinusoid-like intracellular DC current injections in extracellular and whole-cell patch-clamp studies. We show that more than half of the recorded MVNn were responsive to ERG channel block (WAY-123,398, E4031), displaying an increase in spontaneous activity and discharge irregularity. The response to step and ramp current injection was also modified by ERG block showing a reduction of first spike latency, enhancement of discharge rate and reduction of the slow spike-frequency adaptation process. ERG channels influence the interspike slope without affecting the spike shape. Moreover, in response to sinusoid-like current, ERG channel block caused frequency-dependent gain enhancement and phase-lead shift. Taken together, the data demonstrate that ERG channels control the excitability of MVNn, their discharge regularity and probably their resonance properties. PMID:18718985

  8. ERG voltage-gated K+ channels regulate excitability and discharge dynamics of the medial vestibular nucleus neurones.

    PubMed

    Pessia, Mauro; Servettini, Ilenio; Panichi, Roberto; Guasti, Leonardo; Grassi, Silvarosa; Arcangeli, Annarosa; Wanke, Enzo; Pettorossi, Vito Enrico

    2008-10-15

    The discharge properties of the medial vestibular nucleus neurones (MVNn) critically depend on the activity of several ion channel types. In this study we show, immunohistochemically, that the voltage-gated K(+) channels ERG1A, ERG1B, ERG2 and ERG3 are highly expressed within the vestibular nuclei of P10 and P60 mice. The role played by these channels in the spike-generating mechanisms of the MVNn and in temporal information processing was investigated electrophysiologically from mouse brain slices, in vitro, by analysing the spontaneous discharge and the response to square-, ramp- and sinusoid-like intracellular DC current injections in extracellular and whole-cell patch-clamp studies. We show that more than half of the recorded MVNn were responsive to ERG channel block (WAY-123,398, E4031), displaying an increase in spontaneous activity and discharge irregularity. The response to step and ramp current injection was also modified by ERG block showing a reduction of first spike latency, enhancement of discharge rate and reduction of the slow spike-frequency adaptation process. ERG channels influence the interspike slope without affecting the spike shape. Moreover, in response to sinusoid-like current, ERG channel block caused frequency-dependent gain enhancement and phase-lead shift. Taken together, the data demonstrate that ERG channels control the excitability of MVNn, their discharge regularity and probably their resonance properties.

  9. The transverse stress effect on the critical current of jelly-roll multifilamentary Nb sub 3 Al wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeritis, D.; Iwasa, Y.; Ando, T.

    This paper reports on experiments conducted to determine the effect of transverse compressive stress (TCS) on the critical current of jelly-roll multifilamentary Nb{sub 3}Al wire (0.8-mm dia.) for magnetic flux densities up to 12 T. For comparison, identical experiments were performed for bronze-process Ti-alloyed multifilamentary Nb{sub 3}Sn wire (1.0-mm dia.). Although the unstressed critical current density of Nb{sub 3}Al was inferior to that of (NbTi){sub 3}Sn at high fields, under applied TCS Nb{sub 3}Al exhibited less critical current degradation than (NbTi){sub 3}Sn. For example, at 12 T and 150 MPa, TCS-induced critical current degradation was approximately 20% for Nb{sub 3}Al,more » whereas it was approximately 65% for (NbTi){sub 3}Sn. There is optimism that Nb{sub 3}Al will evolve into a useful superconductor for large-scale, high-field applications.« less

  10. Crack problem in superconducting cylinder with exponential distribution of critical-current density

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Xu, Chi; Shi, Liang

    2018-04-01

    The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.

  11. Effects of Zn on the grain boundary properties of La 2-xSr xCu 1-yZn yO 4 superconductors

    NASA Astrophysics Data System (ADS)

    Naqib, S. H.; Islam, R. S.

    2010-12-01

    The properties of the grain boundaries (GBs) are of significant importance in high- T c cuprates. Most large scale applications of cuprate superconductors involve usage of sintered compounds. The critical current density and the ability to trap high magnetic flux inside the sample depend largely on the quality of the GBs. Zn has the ability to pin vortices but it also degrades superconductivity. In this study we have investigated the effect of Zn impurity on the intergrain coupling properties in high-quality La 2-xSr xCu 1-yZn yO 4 sintered samples with different hole concentrations, p (≡ x), over a wide range of Zn contents ( y) using field-dependent AC susceptibility (ACS) measurements. The ACS results enabled us to determine the superconducting transition temperature T c, and the temperature T gcp, at which the randomly oriented superconducting grains become coupled as a function of hole and disorder contents. We have analyzed the behavior of the GBs from the systematic evolution of the values of T gcp( p, y), T c( p, y), and from the contribution to the field-dependent ACS signal coming from the intergrain shielding current. Zn suppresses both T c and T gcp in a similar fashion. The hole content and the carrier localization due to Zn substitution seem to have significant effect on the coupling properties of the GBs. We have discussed the possible implications of these findings in detail in this article.

  12. Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds.

    PubMed

    Vivanco, Juan; Aiyangar, Ameet; Araneda, Aldo; Ploeg, Heidi-Lynn

    2012-05-01

    Bioactive ceramic materials like tricalcium phosphate (TCP) have been emerging as viable material alternatives to the current therapies of bone scaffolding to target fracture healing and osteoporosis. Both material and architectural characteristics play a critical role in the osteoconductive capacity and strength of bone scaffolds. Thus, the objective of this research was to investigate the sintering temperature effect of a cost-effective manufacturing process on the architecture and mechanical properties of a controlled macro porous bioceramic bone scaffold. In this study the physical and mechanical properties of β-TCP bioceramic scaffolds were investigated as a function of the sintering temperature in the range of 950-1150 °C. Physical properties investigated included bulk dimensions, pore size, and strut thickness; and, compressive mechanical properties were evaluated in air at room temperature and in saline solution at body temperature. Statistically significant increases in apparent elastic modulus were measured for scaffolds sintered at higher temperatures. Structural stiffness for all the specimens was significantly reduced when tested at body temperature in saline solution. These findings support the development of clinically successful bioceramic scaffolds that may stimulate bone regeneration and scaffold integration while providing structural integrity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Compound activity prediction using models of binding pockets or ligand properties in 3D

    PubMed Central

    Kufareva, Irina; Chen, Yu-Chen; Ilatovskiy, Andrey V.; Abagyan, Ruben

    2014-01-01

    Transient interactions of endogenous and exogenous small molecules with flexible binding sites in proteins or macromolecular assemblies play a critical role in all biological processes. Current advances in high-resolution protein structure determination, database development, and docking methodology make it possible to design three-dimensional models for prediction of such interactions with increasing accuracy and specificity. Using the data collected in the Pocketome encyclopedia, we here provide an overview of two types of the three-dimensional ligand activity models, pocket-based and ligand property-based, for two important classes of proteins, nuclear and G-protein coupled receptors. For half the targets, the pocket models discriminate actives from property matched decoys with acceptable accuracy (the area under ROC curve, AUC, exceeding 84%) and for about one fifth of the targets with high accuracy (AUC > 95%). The 3D ligand property field models performed better than 95% in half of the cases. The high performance models can already become a basis of activity predictions for new chemicals. Family-wide benchmarking of the models highlights strengths of both approaches and helps identify their inherent bottlenecks and challenges. PMID:23116466

  14. From Field to Laboratory: A New Database Approach for Linking Microbial Field Ecology with Laboratory Studies

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; Keller, R.; Miller, S.; Jahnke, L.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Ames Exobiology Culture Collection Database (AECC-DB) has been developed as a collaboration between microbial ecologists and information technology specialists. It allows for extensive web-based archiving of information regarding field samples to document microbial co-habitation of specific ecosystem micro-environments. Documentation and archiving continues as pure cultures are isolated, metabolic properties determined, and DNA extracted and sequenced. In this way metabolic properties and molecular sequences are clearly linked back to specific isolates and the location of those microbes in the ecosystem of origin. Use of this database system presents a significant advancement over traditional bookkeeping wherein there is generally little or no information regarding the environments from which microorganisms were isolated. Generally there is only a general ecosystem designation (i.e., hot-spring). However within each of these there are a myriad of microenvironments with very different properties and determining exactly where (which microenvironment) a given microbe comes from is critical in designing appropriate isolation media and interpreting physiological properties. We are currently using the database to aid in the isolation of a large number of cyanobacterial species and will present results by PI's and students demonstrating the utility of this new approach.

  15. Influence of Ti addition on fracture behaviour of HSLA steel using TIG melting technique

    NASA Astrophysics Data System (ADS)

    Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.

    2017-03-01

    The welding process is a critical stage in the production of structural parts and the microstructure and mechanical properties of the welded joints must be appropriate in order to guarantee the reliability and durability of the components. The fracture toughness behaviour, which accounts for the residual strength of the component in the presence of flaws or cracks, is one of the most important properties to be evaluated in terms of microstructure and mechanical properties. In this present study, the surface of high strength low alloy (HSLA) steel was surface modified with the preplacement of pure Titanium (Ti) powder using a tungsten inert gas (TIG) arc heat source, at 100 ampere current with a voltage 30 V and a constant traversing speed of 1.0 mm/s using Argon shielded gas. The effect of preplaced Ti powder on the strength and toughness properties of the modified HSLA steel surface was investigated. The results indicated that the tensile and yield strength of HSLA steel decreased by ∼12% and ∼14%, respectively. While the impact toughness increased by ∼33% and the ductility decreased by ∼50%. The fractography analysis results by scanning electron microscopy (SEM) were also presented in this paper.

  16. Use of recycled plastics in concrete: A critical review.

    PubMed

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.

    PubMed

    Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2018-03-21

    Blood-brain barrier (BBB) permeability of a compound determines whether the compound can effectively enter the brain. It is an essential property which must be accounted for in drug discovery with a target in the brain. Several computational methods have been used to predict the BBB permeability. In particular, support vector machine (SVM), which is a kernel-based machine learning method, has been used popularly in this field. For SVM training and prediction, the compounds are characterized by molecular descriptors. Some SVM models were based on the use of molecular property-based descriptors (including 1D, 2D, and 3D descriptors) or fragment-based descriptors (known as the fingerprints of a molecule). The selection of descriptors is critical for the performance of a SVM model. In this study, we aimed to develop a generally applicable new SVM model by combining all of the features of the molecular property-based descriptors and fingerprints to improve the accuracy for the BBB permeability prediction. The results indicate that our SVM model has improved accuracy compared to the currently available models of the BBB permeability prediction.

  18. Physical, Hydraulic, and Transport Properties of Sediments and Engineered Materials Associated with Hanford Immobilized Low-Activity Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockhold, Mark L.; Zhang, Z. F.; Meyer, Philip D.

    2015-02-28

    Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parametersmore » for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.« less

  19. Physical properties of the human head: mass, center of gravity and moment of inertia.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Zhang, Jiangyue; Baisden, Jamie L

    2009-06-19

    This paper presents a synthesis of biomedical investigations of the human head with specific reference to certain aspects of physical properties and development of anthropometry data, leading to the advancement of dummies used in crashworthiness research. As a significant majority of the studies have been summarized as reports, an effort has been made to chronologically review the literature with the above objectives. The first part is devoted to early studies wherein the mass, center of gravity (CG), and moment of inertia (MOI) properties are obtained from human cadaver experiments. Unembalmed and preserved whole-body and isolated head and head-neck experiments are discussed. Acknowledging that the current version of the Hybrid III dummy is the most widely used anthropomorphic test device in motor vehicle crashworthiness research for frontal impact applications for over 30 years, bases for the mass and MOI-related data used in the dummy are discussed. Since the development and federalization of the dummy in the United States, description of methods used to arrive at these properties form a part of the manuscript. Studies subsequent to the development of this dummy including those from the US Military are also discussed. As the head and neck are coupled in any impact, and increasing improvements in technology such as advanced airbags, and pre-tensioners and load limiters in manual seatbelts affect the kinetics of the head-neck complex, the manuscript underscores the need to pursue studies to precisely determine all the physical properties of the head. Because the most critical parameters (locations of CG and occipital condyles (OC), mass, and MOI) have not been determined on a specimen-by-specimen basis in any single study, it is important to gather these data in future experiments. These critical data will be of value for improving occupant safety, designing advanced restraint systems, developing second generation dummies, and assessing the injury mitigating characteristics of modern vehicle components in all impact modalities.

  20. Carotenoid Derivates in Achiote (Bixa orellana) Seeds: Synthesis and Health Promoting Properties

    PubMed Central

    Rivera-Madrid, Renata; Aguilar-Espinosa, Margarita; Cárdenas-Conejo, Yair; Garza-Caligaris, Luz E.

    2016-01-01

    Bixa orellana (family Bixaceae) is a neotropical fast growing perennial tree of great agro-industrial value because its seeds have a high carotenoid content, mainly bixin. It has been used since pre-colonial times as a culinary colorant and spice, and for healing purposes. It is currently used as a natural pigment in the food, in pharmaceutical, and cosmetic industries, and it is commercially known as annatto. Recently, several studies have addressed the biological and medical properties of this natural pigment, both as potential source of new drugs or because its ingestion as a condiment or diet supplement may protect against several diseases. The most documented properties are anti-oxidative; but its anti-cancer, hypoglucemic, antibiotic and anti-inflammatory properties are also being studied. Bixin’s pathway elucidation and its regulation mechanisms are critical to improve the produce of this important carotenoid. Even though the bixin pathway has been established, the regulation of the genes involved in bixin production remains largely unknown. Our laboratory recently published B. orellana’s transcriptome and we have identified most of its MEP (methyl-D-erythritol 4-phosphate) and carotenoid pathway genes. Annatto is a potential source of new drugs and can be a valuable nutraceutical supplement. However, its nutritional and healing properties require further study. PMID:27708658

  1. Apparatus and method for critical current measurements

    DOEpatents

    Martin, Joe A.; Dye, Robert C.

    1992-01-01

    An apparatus for the measurement of the critical current of a superconductive sample, e.g., a clad superconductive sample, the apparatus including a conductive coil, a means for maintaining the coil in proximity to a superconductive sample, an electrical connection means for passing a low amplitude alternating current through the coil, a cooling means for maintaining the superconductive sample at a preselected temperature, a means for passing a current through the superconductive sample, and, a means for monitoring reactance of the coil, is disclosed, together with a process of measuring the critical current of a superconductive material, e.g., a clad superconductive material, by placing a superconductive material into the vicinity of the conductive coil of such an apparatus, cooling the superconductive material to a preselected temperature, passing a low amplitude alternating current through the coil, the alternating current capable of generating a magnetic field sufficient to penetrate, e.g., any cladding, and to induce eddy currents in the superconductive material, passing a steadily increasing current through the superconductive material, the current characterized as having a different frequency than the alternating current, and, monitoring the reactance of the coil with a phase sensitive detector as the current passed through the superconductive material is steadily increased whereby critical current of the superconductive material can be observed as the point whereat a component of impedance deviates.

  2. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids

    NASA Astrophysics Data System (ADS)

    Fuentes-Herrera, M.; Moreno-Razo, J. A.; Guzmán, O.; López-Lemus, J.; Ibarra-Tandi, B.

    2016-06-01

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  3. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids.

    PubMed

    Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B

    2016-06-07

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  4. Wetting properties and critical micellar concentration of benzalkonium chloride mixed in sodium hypochlorite.

    PubMed

    Bukiet, Frédéric; Couderc, Guillaume; Camps, Jean; Tassery, Hervé; Cuisinier, Frederic; About, Imad; Charrier, Anne; Candoni, Nadine

    2012-11-01

    The purposes of the present study were to (1) assess the effect of the addition of benzalkonium chloride to sodium hypochlorite on its wetting properties, contact angle, and surface energy; (2) determine the critical micellar concentration of benzalkonium chloride in sodium hypochlorite; and (3) investigate the influence of addition of benzalkonium chloride on the free chlorine level, cytotoxicity, and antiseptic properties of the mixture. Solutions of benzalkonium chloride, with concentrations ranging from 0%-1%, were mixed in 2.4% sodium hypochlorite and tested as follows. The wetting properties were investigated by measuring the contact angle of the solutions on a nondehydrated dentin surface by using the static sessile drop method. The pending drop technique was subsequently used to determine the surface energy of the solutions. The critical micellar concentration of benzalkonium chloride mixed in sodium hypochlorite was calculated from the data. When 2.4% NaOCl was mixed with benzalkonium chloride at the critical micellar concentration, 3 parameters were tested: free chloride content, cytotoxicity, and antibacterial effects against Enterococcus faecalis. The contact angle (P < .001) as well as the surface energy (P < .001) significantly decreased with increasing benzalkonium chloride concentrations. The critical micellar concentration of benzalkonium chloride in sodium hypochlorite was 0.008%. At this concentration, the addition of benzalkonium chloride had no effect on the free chlorine content, cytotoxicity, or antibacterial efficiency of the mixture. The addition of benzalkonium chloride to sodium hypochlorite at the critical micellar concentration reduced the contact angle by 51.2% and the surface energy by 53.4%, without affecting the free chloride content, cytotoxicity, or antibacterial properties of the mixture. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Steady state and transient simulation of anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon

    2018-01-01

    We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.

  6. A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations.

    PubMed

    Matthiessen, Peter; Wheeler, James R; Weltje, Lennart

    2018-03-01

    This review critically examines the data on claimed endocrine-mediated adverse effects of chemicals on wildlife populations. It focuses on the effects of current-use chemicals, and compares their apparent scale and severity with those of legacy chemicals which have been withdrawn from sale or use, although they may still be present in the environment. The review concludes that the effects on wildlife of many legacy chemicals with endocrine activity are generally greater than those caused by current-use chemicals, with the exception of ethinylestradiol and other estrogens found in sewage effluents, which are causing widespread effects on fish populations. It is considered that current chemical testing regimes and risk assessment procedures, at least those to which pesticides and biocides are subjected, are in part responsible for this improvement. This is noteworthy as most ecotoxicological testing for regulatory purposes is currently focused on characterizing apical adverse effect endpoints rather than identifying the mechanism(s) responsible for any observed effects. Furthermore, a suite of internationally standardized ecotoxicity tests sensitive for potential endocrine-mediated effects is now in place, or under development, which should ensure further characterization of substances with these properties so that they can be adequately regulated.

  7. Evolution of Government and Industrial Partnerships to Open the Space Frontier

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2008-01-01

    If the logical extension of the current exploration program is to develop self-sustaining settlements on the Moon and Mars over the next few centuries, then there is a path that takes civilization from its current one planet existence to a multi-world future. By considering the far term goal of space settlements as a desired endpoint and using the current state as a starting point, the policy drivers and potential pathways to the goal of sustainable space settlements can be explored. This paper describes a three-phased evolution of government and industrial partnerships from current day relationships to a time when there are sustainable settlements in space. Phase I details the current state government-led exploration while Phase III describes a desired endpoint of self-sufficient settlements in space. Phase II is an important transition phase, which acts as a bridge between now and the future. This paper discusses the critical evolution that must take place in two key areas to ensure a thriving future in space; space transportation and the right to use space property and resources. This paper focuses on the enabling role of government necessary to achieve United States (U.S.) goals for space exploration and open the frontier.

  8. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    NASA Astrophysics Data System (ADS)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting force, temperature and surface roughness data is developed and used to study the deformation mechanisms of porous tungsten under different machining conditions. It is found that when hmax = hc, ductile mode machining of otherwise highly brittle porous tungsten is possible. The value of hc is approximately the same as the average ligament size of the 80% density porous tungsten workpiece.

  9. Microstructural and crystallographic imperfections of MgB2 superconducting wire and their correlation with the critical current density

    NASA Astrophysics Data System (ADS)

    Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho

    2014-01-01

    A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.

  10. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    NASA Astrophysics Data System (ADS)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-05-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  11. Influence of field dependent critical current density on flux profiles in high Tc superconductors

    NASA Technical Reports Server (NTRS)

    Takacs, S.

    1990-01-01

    The field distribution for superconducting cylinders and slabs with field dependent critical current densities in combined DC and AC magnetic fields and the corresponding magnetic fluxes are calculated. It is shown that all features of experimental magnetic-field profile measurements can be explained in the framework of field dependent critical current density. Even the quantitative agreement between the experimental and theoretical results using Kim's model is very good.

  12. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  13. Imaging and computational considerations for image computed permeability: Operating envelope of Digital Rock Physics

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias

    2018-06-01

    This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.

  14. Physics through the 1990s: Condensed-matter physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations.

  15. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production

    PubMed Central

    Kourmentza, Constantina; Plácido, Jersson; Venetsaneas, Nikolaos; Burniol-Figols, Anna; Varrone, Cristiano; Gavala, Hariklia N.; Reis, Maria A. M.

    2017-01-01

    Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility. Designing efficient and economic bioprocesses, combined with the respective social and environmental benefits, has brought together scientists from different backgrounds highlighting the multidisciplinary character of such a venture. In the current review, challenges and opportunities regarding polyhydroxyalkanoate production are presented and discussed, covering key steps of their overall production process by applying pure and mixed culture biotechnology, from raw bioprocess development to downstream processing. PMID:28952534

  16. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals.

    PubMed

    Zhou, Chun-Hui Clayton; Beltramini, Jorge N; Fan, Yong-Xian; Lu, G Q Max

    2008-03-01

    New opportunities for the conversion of glycerol into value-added chemicals have emerged in recent years as a result of glycerol's unique structure, properties, bioavailability, and renewability. Glycerol is currently produced in large amounts during the transesterification of fatty acids into biodiesel and as such represents a useful by-product. This paper provides a comprehensive review and critical analysis on the different reaction pathways for catalytic conversion of glycerol into commodity chemicals, including selective oxidation, selective hydrogenolysis, selective dehydration, pyrolysis and gasification, steam reforming, thermal reduction into syngas, selective transesterification, selective etherification, oligomerization and polymerization, and conversion of glycerol into glycerol carbonate.

  17. Ground correlation investigation of thruster spacecraft interactions to be measured on the IAPS flight test

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1984-01-01

    Preliminary ground correlation testing has been conducted with an 8 cm mercury ion thruster and diagnostic instrumentation replicating to a large extent the IAPS flight test hardware, configuration, and electrical grounding/isolation. Thruster efflux deposition retained at 25 C was measured and characterized. Thruster ion efflux was characterized with retarding potential analyzers. Thruster-generated plasma currents, the spacecraft common (SCC) potential, and ambient plasma properties were evaluated with a spacecraft potential probe (SPP). All the measured thruster/spacecraft interactions or their IAPS measurements depend critically on the SCC potential, which can be controlled by a neutralizer ground switch and by the SPP operation.

  18. The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Liu, Xiaoying; Zhao, Dongyuan; Jiang, Zhiyu

    2004-05-01

    The electrochemical properties of the ordered three-dimensional (3D) mesoporous carbon, synthesized by using mesoporous silica (FDU-5) as a hard template from an impregnation procedure, has been firstly explored as an anode material for lithium-ion batteries. The material presents uniform pore size of 7.4 nm, BET surface area of 750 m 2/g. As a novel nano-material C-FDU-5 shows almost constant resistance and Li + diffusion coefficient when the potential is lower than the critical potential. The material also presents a reversible capacity higher than that of carbon nanotubes, and can be charge/discharged at the large current rate.

  19. Artificial gravity for long duration spaceflight

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M.

    1989-01-01

    This paper reviews the fundamental physical properties of gravitational and centrifugal forces, describes the physiological changes that result from long-term exposure to the nearly gravity-free environment of space, and explores the nature of these changes. The paper then cites currently employed and advanced techniques that can be used to prevent some of these changes. Following this review, the paper examines the potential use of artificial gravity as the ultimate technique to maintain terrestrial levels of physiological functioning in space, and indicates some of the critical studies that must be conducted and some of the trade-offs that must be made before artificial gravity can intelligently be used for long duration spaceflight.

  20. Assessment of Chemical Solution Synthesis and Properties of Gd2Zr2O7 Thin Films as Buffer Layers for Second-Generation High-Temperature Superconductor Wires (Postprint)

    DTIC Science & Technology

    2012-02-01

    AC05-00OR22725. REFERENCES 1. D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht , Q. He, B. Saffian, M. Paranthaman, C.E...critical current density. Science 274, 755 (1996). 2. A. Goyal, D.P. Norton, J.D. Budai, M. Paranthaman, E.D. Specht , D.M. Kroeger, D.K. Christen, Q...D.K. Christen, M. Paranthaman, E.D. Specht , J.D. Budai, Q. He, B. Saffian, F.A. List, D.F. Lee, E. Hatfield, P.M. Martin, C.E. Klabunde, J. Mathis

Top