ERIC Educational Resources Information Center
Buraphadeja, Vasa; Dawson, Kara
2008-01-01
This article reviews content analysis studies aimed to assess critical thinking in computer-mediated communication. It also discusses theories and content analysis models that encourage critical thinking skills in asynchronous learning environments and reviews theories and factors that may foster critical thinking skills and new knowledge…
The Influence of Computer-Mediated Communication Systems on Community
ERIC Educational Resources Information Center
Rockinson-Szapkiw, Amanda J.
2012-01-01
As higher education institutions enter the intense competition of the rapidly growing global marketplace of online education, the leaders within these institutions are challenged to identify factors critical for developing and for maintaining effective online courses. Computer-mediated communication (CMC) systems are considered critical to…
Falgares, Giorgio; Marchetti, Daniela; De Santis, Sandro; Carrozzino, Danilo; Kopala-Sibley, Daniel C.; Fulcheri, Mario; Verrocchio, Maria Cristina
2017-01-01
Insecure attachment and the personality dimensions of self-criticism and dependency have been proposed as risk factors for suicide in adolescents. The present study examines whether self-criticism and dependency mediate the relationship between insecure attachment styles and suicidality. A sample of 340 high-school students (73.2% females), ranging in age from 13 to 20 years (M = 16.47, SD = 1.52), completed the Depressive Experiences Questionnaire for Adolescents, the Depressive Experiences Questionnaire for Adolescents, the Attachment Style Questionnaire, and the Suicidal Behaviors Questionnaire-Revised. The results partially support the expected mediation effects. Self-criticism, but not dependency, mediates the link between insecure attachment (anxiety and avoidance) and suicide-related behaviors. Implications for suicide risk assessment and management are discussed. PMID:28344562
Hayashi, Junichiro
2009-02-01
The present study developed and evaluated the Automatic Thoughts List following Dilatory Behavior (ATL-DB) to explore the mediation hypothesis and the content-specificity hypothesis about the automatic thoughts with trait procrastination and emotions. In Study 1, data from 113 Japanese college students were used to choose 22 items to construct the ATL-DB. Two factors were indentified, I. Criticism of Self and Behavior, II. Difficulty in Achievement. These factors had high degrees of internal consistency and had positive correlations to trait procrastination. In Study 2, the relationships among trait procrastination, the automatic thoughts, depression, and anxiety were examined in 261 college students by using Structural Equation Modeling. The results showed that the influence of trait procrastination on depression was mainly mediated through Criticism of Self and Behavior only, while the influence of trait procrastination to anxiety was mediated through Criticism of Self and Behavior and Difficulty in Achievement. Therefore, the mediation hypothesis was supported and the content-specificity hypothesis was partially supported.
Yang, Wei-Lei; Jin, Guoxiang; Li, Chien-Feng; Jeong, Yun Seong; Moten, Asad; Xu, Dazhi; Feng, Zizhen; Chen, Wei; Cai, Zhen; Darnay, Bryant; Gu, Wei; Lin, Hui-Kuan
2013-01-01
K63-linked ubiquitination of Akt is a posttranslational modification that plays a critical role in growth factor-mediated membrane recruitment and activation of Akt. Although E3 ligases involved in growth factor-induced Akt ubiquitination have been defined, the deubiquitinating enzyme (DUB) that triggers deubiquitination of Akt and the function of Akt deubiquitination remain largely unclear. Here, we showed that CYLD was a DUB for Akt and suppressed growth factor-mediated Akt ubiquitination and activation. CYLD directly removed ubiquitin moieties on Akt under serum-starved conditions. CYLD dissociated from Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. CYLD deficiency also promoted cancer cell proliferation, survival, glucose uptake and growth of prostate tumors. Our findings reveal the crucial role of cycles of ubiquitination and deubiquitination of Akt in its membrane recruitment and activation, and further identifies CYLD as a molecular switch for these processes. PMID:23300340
Plant Mediator complex and its critical functions in transcription regulation.
Yang, Yan; Li, Ling; Qu, Li-Jia
2016-02-01
The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted. © 2015 Institute of Botany, Chinese Academy of Sciences.
USDA-ARS?s Scientific Manuscript database
Estrogen receptor-alpha (ERalpha) expressed by hypothalamic proopiomelanocortin and steroidogenic factor-1 neurons largely mediates the antiobesity effects of estrogens in females. However, the critical molecular events that are coupled to ERalpha and mediate estrogenic effects on energy balance rem...
Johns, Roger A.; Takimoto, Eiki; Meuchel, Lucas W.; Elsaigh, Esra; Zhang, Ailan; Heller, Nicola M.; Semenza, Gregg L.; Yamaji-Kegan, Kazuyo
2017-01-01
Objective Pulmonary hypertension (PH) is characterized by progressive elevation of pulmonary vascular resistance, right ventricular failure, and ultimately death. We have shown that in rodents, hypoxia-induced mitogenic factor (HIMF; also known as FIZZ1 or RELMα) causes PH by initiating lung vascular inflammation. We hypothesized that hypoxia-inducible factor-1 (HIF-1) is a critical downstream signal mediator of HIMF during PH development. Approach and Results In this study, we compared the degree of HIMF-induced pulmonary vascular remodeling and PH development in wild-type (HIF-1α+/+) and HIF-1α heterozygous null (HIF-1α+/−) mice. HIMF-induced PH was significantly diminished in HIF-1α+/− mice and was accompanied by a dysregulated VEGF-A–VEGF receptor 2 pathway. HIF-1α was critical for bone marrow-derived cell migration and vascular tube formation in response to HIMF. Furthermore, HIMF and its human homolog, resistin-like molecule-β (RELMβ), significantly increased IL-6 in macrophages and lung resident cells through a mechanism dependent on HIF-1α and, at least to some extent, on nuclear factor κB. Conclusions Our results suggest that HIF-1α is a critical downstream transcription factor for HIMF-induced pulmonary vascular remodeling and PH development. Importantly, both HIMF and human RELMβ significantly increased IL-6 in lung resident cells and increased perivascular accumulation of IL-6–expressing macrophages in the lungs of mice. These data suggest that HIMF can induce HIF-1, VEGF-A, and interleukin-6, which are critical mediators of both hypoxic inflammation and PH pathophysiology. PMID:26586659
Xu, Daichao; Shan, Bing; Lee, Byung-Hoon; Zhu, Kezhou; Zhang, Tao; Sun, Huawang; Liu, Min; Shi, Linyu; Liang, Wei; Qian, Lihui; Xiao, Juan; Wang, Lili; Pan, Lifeng; Finley, Daniel; Yuan, Junying
2015-01-01
Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells. DOI: http://dx.doi.org/10.7554/eLife.10510.001 PMID:26523394
O'Connor, Rory C; Noyce, Rosie
2008-03-01
Self-criticism and rumination have been related to suicidality. In the present study, we investigated the extent to which different types of rumination (brooding and reflection) mediate the relationship between self-criticism and suicidal ideation. Two hundred and thirty-two healthy adults completed a range of psychological inventories at Time 1 and were followed up approximately 3 months later (Time 2). Brooding was more strongly associated with suicidal ideation than reflection. Hierarchical regression analyses confirmed that among those who completed measures at both time points, brooding rumination fully mediated the self-criticism-Time 2 suicidal ideation relationship. Reflection did not mediate the self-criticism-suicidal ideation link. The findings support a growing corpus of research which highlights the utility of personality and cognitive factors in advancing our understanding of the suicidal process. The theoretical and clinical implications are discussed.
Guo, Xiaoyun; Yin, Haifeng; Li, Lei; Chen, Yi; Li, Jing; Doan, Jessica; Steinmetz, Rachel; Liu, Qinghang
2017-08-22
Programmed cell death, including apoptosis, mitochondria-mediated necrosis, and necroptosis, is critically involved in ischemic cardiac injury, pathological cardiac remodeling, and heart failure progression. Whereas apoptosis and mitochondria-mediated necrosis signaling is well established, the regulatory mechanisms of necroptosis and its significance in the pathogenesis of heart failure remain elusive. We examined the role of tumor necrosis factor receptor-associated factor 2 (Traf2) in regulating myocardial necroptosis and remodeling using genetic mouse models. We also performed molecular and cellular biology studies to elucidate the mechanisms by which Traf2 regulates necroptosis signaling. We identified a critical role for Traf2 in myocardial survival and homeostasis by suppressing necroptosis. Cardiac-specific deletion of Traf2 in mice triggered necroptotic cardiac cell death, pathological remodeling, and heart failure. Plasma tumor necrosis factor α level was significantly elevated in Traf2 -deficient mice, and genetic ablation of TNFR1 largely abrogated pathological cardiac remodeling and dysfunction associated with Traf2 deletion. Mechanistically, Traf2 critically regulates receptor-interacting proteins 1 and 3 and mixed lineage kinase domain-like protein necroptotic signaling with the adaptor protein tumor necrosis factor receptor-associated protein with death domain as an upstream regulator and transforming growth factor β-activated kinase 1 as a downstream effector. It is important to note that genetic deletion of RIP3 largely rescued the cardiac phenotype triggered by Traf2 deletion, validating a critical role of necroptosis in regulating pathological remodeling and heart failure propensity. These results identify an important Traf2-mediated, NFκB-independent, prosurvival pathway in the heart by suppressing necroptotic signaling, which may serve as a new therapeutic target for pathological remodeling and heart failure. © 2017 American Heart Association, Inc.
Radanielina-Hita, Marie Louise
2015-01-01
An online survey of undergraduates explored the effects of recalled parent-child interaction regarding media on their critical thinking skills, beliefs about alcohol and sex, and current reports of attitudes and risky sexual behaviors. Students from a northwestern university completed the questionnaire three times during the fall of 2011. Effective parental mediation was found to be a protective factor against the negative effects of objectionable content on sexual attitudes and behaviors through its effect on critical thinking toward media content and expectancies. Participants whose parents critiqued media portrayals reported a higher level of critical thinking. More critical orientation toward media decreased the effects of objectionable content on expectancies and sexual behaviors. On the other hand, participants whose parents endorsed media portrayals reported lower levels of critical thinking. Developing critical thinking toward media is an effective approach to helping young people make good decisions about their health. Although viewers' understanding of media content may be biased by the emotional aspect of decision making, critical thinking was shown to decrease the appeal of mediated messages on behaviors. Parents play an important role in developing children's critical thinking skills, and those who mediate their children's media use can establish behaviors that will prove beneficial to their children later in life.
ERIC Educational Resources Information Center
Ray, James V.; Frick, Paul J.; Thornton, Laura C.; Wall Myers, Tina D.; Steinberg, Laurence; Cauffman, Elizabeth
2017-01-01
Research has only recently begun to examine how callous-unemotional (CU) traits interact with contextual factors to predict delinquent behavior. The current study attempts to explain the well-established link between CU traits and offending by testing the potential mediating and moderating roles of 2 critical contextual factors: peer delinquency…
Schönberger, Tanja; Jürgens, Tobias; Müller, Julia; Armbruster, Nicole; Niermann, Christina; Gorressen, Simone; Sommer, Jan; Tian, Huasong; di Paolo, Gilbert; Scheller, Jürgen; Fischer, Jens W; Gawaz, Meinrad; Elvers, Margitta
2014-09-01
Myocardial inflammation is critical for ventricular remodeling after ischemia. Phospholipid mediators play an important role in inflammatory processes. In the plasma membrane they are degraded by phospholipase D1 (PLD1). PLD1 was shown to be critically involved in ischemic cardiovascular events. Moreover, PLD1 is coupled to tumor necrosis factor-α signaling and inflammatory processes. However, the impact of PLD1 in inflammatory cardiovascular disease remains elusive. Here, we analyzed the impact of PLD1 in tumor necrosis factor-α-mediated activation of monocytes after myocardial ischemia and reperfusion using a mouse model of myocardial infarction. PLD1 expression was highly up-regulated in the myocardium after ischemia/reperfusion. Genetic ablation of PLD1 led to defective cell adhesion and migration of inflammatory cells into the infarct border zone 24 hours after ischemia/reperfusion injury, likely owing to reduced tumor necrosis factor-α expression and release, followed by impaired nuclear factor-κB activation and interleukin-1 release. Moreover, PLD1 was found to be important for transforming growth factor-β secretion and smooth muscle α-actin expression of cardiac fibroblasts because myofibroblast differentiation and interstitial collagen deposition were altered in Pld1(-/-) mice. Consequently, infarct size was increased and left ventricular function was impaired 28 days after myocardial infarction in Pld1(-/-) mice. Our results indicate that PLD1 is crucial for tumor necrosis factor-α-mediated inflammation and transforming growth factor-β-mediated collagen scar formation, thereby augmenting cardiac left ventricular function after ischemia/reperfusion. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Pathogenesis of vascular leak in dengue virus infection.
Malavige, Gathsaurie Neelika; Ogg, Graham S
2017-07-01
Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease. © 2017 John Wiley & Sons Ltd.
Reconstitution of active human core Mediator complex reveals a critical role of the MED14 subunit.
Cevher, Murat A; Shi, Yi; Li, Dan; Chait, Brian T; Malik, Sohail; Roeder, Robert G
2014-12-01
The evolutionarily conserved Mediator complex is a critical coactivator for RNA polymerase II (Pol II)-mediated transcription. Here we report the reconstitution of a functional 15-subunit human core Mediator complex and its characterization by functional assays and chemical cross-linking coupled to MS (CX-MS). Whereas the reconstituted head and middle modules can stably associate, basal and coactivator functions are acquired only after incorporation of MED14 into the bimodular complex. This results from a dramatically enhanced ability of MED14-containing complexes to associate with Pol II. Altogether, our analyses identify MED14 as both an architectural and a functional backbone of the Mediator complex. We further establish a conditional requirement for metazoan-specific MED26 that becomes evident in the presence of heterologous nuclear factors. This general approach paves the way for systematic dissection of the multiple layers of functionality associated with the Mediator complex.
USDA-ARS?s Scientific Manuscript database
Growing evidence indicates deregulation of the epigenetic machinery comprising the microRNA (miRNA) network as a critical factor in the progression of various diseases including cancer. Concurrently, dietary phytochemicals are being intensively studied for their miRNA-mediated health beneficial prop...
Origins and activity of the Mediator complex.
Conaway, Ronald C; Conaway, Joan Weliky
2011-09-01
The Mediator is a large, multisubunit RNA polymerase II transcriptional regulator that was first identified in Saccharomyces cerevisiae as a factor required for responsiveness of Pol II and the general initiation factors to DNA binding transactivators. Since its discovery in yeast, Mediator has been shown to be an integral and highly evolutionarily conserved component of the Pol II transcriptional machinery with critical roles in multiple stages of transcription, from regulation of assembly of the Pol II initiation complex to regulation of Pol II elongation. Here we provide a brief overview of the evolutionary origins of Mediator, its subunit composition, and its remarkably diverse collection of activities in Pol II transcription. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lee, Junwoo; Choi, Eun Shik; Lee, Daeyoup
2018-01-01
The ability of elongating RNA polymerase II (RNAPII) to regulate the nucleosome barrier is poorly understood because we do not know enough about the involved factors and we lack a conceptual framework to model this process. Our group recently identified the conserved Fun30/SMARCAD1 family chromatin-remodeling factor, Fun30 Fft3 , as being critical for relieving the nucleosome barrier during RNAPII-mediated elongation, and proposed a model illustrating how Fun30 Fft3 may contribute to nucleosome disassembly during RNAPII-mediated elongation. Here, we present a model that describes nucleosome dynamics during RNAPII-mediated elongation in mathematical terms and addresses the involvement of Fun30 Fft3 in this process.
Regulation of endocytosis via the oxygen-sensing pathway.
Wang, Yi; Roche, Olga; Yan, Mathew S; Finak, Greg; Evans, Andrew J; Metcalf, Julie L; Hast, Bridgid E; Hanna, Sara C; Wondergem, Bill; Furge, Kyle A; Irwin, Meredith S; Kim, William Y; Teh, Bin T; Grinstein, Sergio; Park, Morag; Marsden, Philip A; Ohh, Michael
2009-03-01
Tumor hypoxia is associated with disease progression, resistance to conventional cancer therapies and poor prognosis. Hypoxia, by largely unknown mechanisms, leads to deregulated accumulation of and signaling via receptor tyrosine kinases (RTKs) that are critical for driving oncogenesis. Here, we show that hypoxia or loss of von Hippel-Lindau protein--the principal negative regulator of hypoxia-inducible factor (HIF)--prolongs the activation of epidermal growth factor receptor that is attributable to lengthened receptor half-life and retention in the endocytic pathway. The deceleration in endocytosis is due to the attenuation of Rab5-mediated early endosome fusion via HIF-dependent downregulation of a critical Rab5 effector, rabaptin-5, at the level of transcription. Primary kidney and breast tumors with strong hypoxic signatures show significantly lower expression of rabaptin-5 RNA and protein. These findings reveal a general role of the oxygen-sensing pathway in endocytosis and support a model in which tumor hypoxia or oncogenic activation of HIF prolongs RTK-mediated signaling by delaying endocytosis-mediated deactivation of receptors.
Park, Sang Won; Kim, Mihwa; Kim, Joo Yun; Brown, Kevin M.; Haase, Volker H.; D’Agati, Vivette D.; Lee, H. Thomas
2012-01-01
Renal ischemia reperfusion injury is a major cause of acute kidney injury. We previously found that renal A1 adenosine receptor (A1AR) activation attenuated multiple cell death pathways including necrosis, apoptosis and inflammation. Here, we tested whether induction of cytoprotective sphingosine kinase (SK)-1 and sphingosine-1 phosphate (S1P) synthesis might be the mechanism of protection. A selective A1AR agonist (CCPA) increased the synthesis of S1P and selectively induced SK-1 in mouse kidney and HK-2 cells. This agonist failed to protect SK1-knockout but protected SK2-knockout mice against renal ischemia reperfusion injury indicating a critical role of SK1 in A1AR-mediated renal protection. Inhibition of SK prevented A1AR-mediated defense against necrosis and apoptosis in HK-2 cells. A selective S1P1R antagonist (W146) and global in vivo gene knockdown of S1P1Rs with small interfering RNA completely abolished the renal protection provided by CCPA. Mice selectively deficient in renal proximal tubule S1P1Rs (S1P1Rflox/flox PEPCKCre/−) were not protected against renal ischemia reperfusion injury by CCPA. Mechanistically, CCPA increased nuclear translocation of hypoxia inducible factor-1α in HK-2 cells and selective hypoxia inducible factor-1α inhibition blocked A1AR-mediated induction of SK1. Thus, proximal tubule SK-1 has a critical role in A1AR-mediated protection against renal ischemia reperfusion injury. PMID:22695326
Serine 133 Phosphorylation Is Not Required for Hippocampal CREB-Mediated Transcription and Behavior
ERIC Educational Resources Information Center
Brian, Lisa A.; Lee, Bridgin G.; Lelay, John; Kaestner, Klaus H.; Blendy, Julie A.
2015-01-01
The cAMP response element (CRE)-binding protein, CREB, is a transcription factor whose activity in the brain is critical for long-term memory formation. Phosphorylation of Ser133 in the kinase-inducible domain (KID), that in turn leads to the recruitment of the transcriptional coactivator CREB-binding protein (CBP), is thought to mediate the…
Meng, Fanyan; Speyer, Cecilia L.; Zhang, Bin; Zhao, Yongzhong; Chen, Wei; Gorski, David H.; Miller, Fred R.; Wu, Guojun
2015-01-01
Many epithelial—mesenchymal transition (EMT)-promoting transcription factors have been implicated in tumorigenesis and metastasis as well as chemoresistance of cancer. However, the underlying mechanisms mediating these processes are unclear. Here, we report that Foxq1, a forkhead box-containing transcription factor and EMT-inducing gene, promotes stemness traits and chemoresistance in mammary epithelial cells. Using an expression profiling assay, we identified Twist1, Zeb2, and PDGFRα and β as Foxq1 downstream targets. We further show that PDGFRα and β can be directly regulated by Foxq1 or indirectly regulated through the Foxq1/Twist1 axis. Knockdown of both PDGFRα and β results in more significant effects on reversing Foxq1-promoted oncogenesis in vitro and in vivo than knockdown of either PDGFRα or β alone. In addition, PDGFRβ is a more potent mediator of Foxq1-promoted stemness traits than PDGFRα. Finally, pharmacologic inhibition or gene silencing of PDGFRs sensitizes mammary epithelial cells to chemotherapeutic agents in vitro and in vivo. These findings collectively implicate PDGFRs as critical mediators of breast cancer oncogenesis and chemoresistance driven by Foxq1, with potential implications for developing novel therapeutic combinations to treat breast cancer. PMID:25502837
Reading Attitude as a Mediator between Contextual Factors and Reading Behavior
ERIC Educational Resources Information Center
Lim, Hyo Jin; Bong, Mimi; Woo, Yeon-Kyung
2015-01-01
Background: Among the factors known to influence reading development and performance, attitude toward reading is shown to be particularly critical for developing learners. Reading attitude (McKenna, 1994; McKenna et al., 1995) enhances independent reading, levels of engagement in classroom reading activities, and the amount and variety of topics…
Unplanned extubations in an intensive care unit: Findings from a critical incident technique.
Danielis, Matteo; Chiaruttini, Simona; Palese, Alvisa
2018-05-15
Patients on mechanical ventilation are at risk of experiencing a potentially life-threatening unplanned extubation in the intensive care unit, which can lead to arrhythmias, bronchial aspiration, difficulty in reintubation or even sudden cardiac arrest. Although incidence and outcomes of the phenomenon have been documented in several quantitative studies, no studies have investigated the antecedents as experienced by critical care nurses. To gain a greater understanding of the antecedents of unplanned extubations. A qualitative study design involving the critical-incident technique. A total of 10 registered nurses who reported one or more episodes of unplanned extubations were involved in an in-depth interview. According to the nurses' experience, episodes of unplanned extubations are determined by predisposing, precipitating and mediating factors. The predisposing factors have been recognised in the (a) weaning programme (expected/unexpected decreased sedation) and in the (b) patient factors (increased needs due to discomfort, restlessness and desire to communicate). The precipitating factors have been divided into (a) organisational (failures in multi-professional communication), (b) environmental (excessive environmental chaos and barriers preventing direct surveillance) and (c) nursing care factors (ensuring privacy by creating barriers, avoiding disturbing other patients and poor nurse-to-patient ratio). Among the mediating factors, which are affected by the precipitating factors, decreased surveillance and mechanical restraints' use have been identified. Identifying risk factors of unplanned extubation, specifically those that are modifiable, such as increasing interprofessional communication, reducing excessive environment chaos, implementing strategies aimed at overcoming barriers threatening direct surveillance and ensuring appropriate nurse-to-patient ratio, can prevent the occurrence of these events. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo
2013-06-01
Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.
NASA Astrophysics Data System (ADS)
Wallis, David; Lloyd, Geoffrey E.; Hansen, Lars N.
2018-02-01
The onset of frictional failure and potentially seismogenic deformation in carbonate rocks undergoing exhumation within fault zones depends on hardening processes that reduce the efficiency of aseismic dislocation-mediated deformation as temperature decreases. However, few techniques are available for quantitative analysis of dislocation slip system activity and hardening in natural tectonites. Electron backscatter diffraction maps of crystal orientations offer one such approach via determination of Schmid factors, if the palaeostress conditions can be inferred and the critical resolved shear stresses of slip systems are constrained. We analyse calcite marbles deformed in simple shear within the Karakoram Fault Zone, NW India, to quantify changes in slip system activity as the rocks cooled during exhumation. Microstructural evidence demonstrates that between ∼300 °C and 200-250 °C the dominant deformation mechanisms transitioned from dislocation-mediated flow to twinning and frictional failure. However, Schmid factor analysis, considering critical resolved shear stresses for yield of undeformed single crystals, indicates that the fraction of grains with sufficient resolved shear stress for glide apparently increased with decreasing temperature. Misorientation analysis and previous experimental data indicate that strain-dependent work hardening is responsible for this apparent inconsistency and promoted the transition from dislocation-mediated flow to frictional, and potentially seismogenic, deformation.
Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui; Huang, Jiansheng; Liu, Xiangyuan
2012-12-14
The receptor activator of nuclear factor-κB ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier Inc. All rights reserved.
Ji, Weidong; Li, Yonghao; Wan, Ting; Wang, Jing; Zhang, Haifeng; Chen, Hong; Min, Wang
2012-09-01
The proinflammtory cytokine tumor necrosis factor (TNF), primarily via TNF receptor 1 (TNFR1), induces nuclear factor-κB (NF-κB)-dependent cell survival, and c-Jun N-terminal kinase (JNK) and caspase-dependent cell death, regulating vascular endothelial cell (EC) activation and apoptosis. However, signaling by the second receptor, TNFR2, is poorly understood. The goal of this study was to dissect how TNFR2 mediates NF-κB and JNK signaling in vascular EC, and its relevance to in vivo EC function. We show that TNFR2 contributes to TNF-induced NF-κB and JNK signaling in EC as TNFR2 deletion or knockdown reduces the TNF responses. To dissect the critical domains of TNFR2 that mediate the TNF responses, we examine the activity of TNFR2 mutant with a specific deletion of the TNFR2 intracellular region, which contains conserved domain I, domain II, domain III, and 2 TNFR-associated factor-2-binding sites. Deletion analyses indicate that different sequences on TNFR2 have distinct roles in NF-κB and JNK activation. Specifically, deletion of the TNFR-associated factor-2-binding sites (TNFR2-59) diminishes the TNFR2-mediated NF-κB, but not JNK activation; whereas, deletion of domain II or domain III blunts TNFR2-mediated JNK but not NF-κB activation. Interestingly, we find that the TNFR-associated factor-2-binding sites ensure TNFR2 on the plasma membrane, but the di-leucine LL motif within the domain II and aa338-355 within the domain III are required for TNFR2 internalization as well as TNFR2-dependent JNK signaling. Moreover, domain III of TNFR2 is responsible for association with ASK1-interacting protein-1, a signaling adaptor critical for TNF-induced JNK signaling. While TNFR2 containing the TNFR-associated factor-2-binding sites prevents EC cell death, a specific activation of JNK without NF-κB activation by TNFR2-59 strongly induces caspase activation and EC apoptosis. Our data reveal that both internalization and ASK1-interacting protein-1 association are required for TNFR2-dependent JNK and apoptotic signaling. Controlling TNFR2-mediated JNK and apoptotic signaling in EC may provide a novel strategy for the treatment of vascular diseases.
Histone modifications influence mediator interactions with chromatin
Zhu, Xuefeng; Zhang, Yongqiang; Bjornsdottir, Gudrun; Liu, Zhongle; Quan, Amy; Costanzo, Michael; Dávila López, Marcela; Westholm, Jakub Orzechowski; Ronne, Hans; Boone, Charles; Gustafsson, Claes M.; Myers, Lawrence C.
2011-01-01
The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild-type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator—histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization. PMID:21742760
RECK-Mediated β1-Integrin Regulation by TGF-β1 Is Critical for Wound Contraction in Mice.
Gutiérrez, Jaime; Droppelmann, Cristian A; Contreras, Osvaldo; Takahashi, Chiaki; Brandan, Enrique
2015-01-01
Fibroblasts are critical for wound contraction; a pivotal step in wound healing. They produce and modify the extracellular matrix (ECM) required for the proper tissue remodeling. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a key regulator of ECM homeostasis and turnover. However, its role in wound contraction is presently unknown. Here we describe that Transforming growth factor type β1 (TGF-β1), one of the main pro-fibrotic wound-healing promoting factors, decreases RECK expression in fibroblasts through the Smad and JNK dependent pathways. This TGF-β1 dependent downregulation of RECK occurs with the concomitant increase of β1-integrin, which is required for fibroblasts adhesion and wound contraction through the activation of focal adhesion kinase (FAK). Loss and gain RECK expression experiments performed in different types of fibroblasts indicate that RECK downregulation mediates TGF-β1 dependent β1-integrin expression. Also, reduced levels of RECK potentiate TGF-β1 effects over fibroblasts FAK-dependent contraction, without affecting its cognate signaling. The above results were confirmed on fibroblasts derived from the Reck+/- mice compared to wild type-derived fibroblasts. We observed that Reck+/- mice heal dermal wounds more efficiently than wild type mice. Our results reveal a critical role for RECK in skin wound contraction as a key mediator in the axis: TGF-β1-RECK-β1-integrin.
Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A.; Wan, Yisong Y.
2014-01-01
Summary Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. While Smad4 was dispensable for T cell generation, homeostasis and effector function, it was essential for T cell proliferation following activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity and anti-tumor immunity. PMID:25577439
Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A; Wan, Yisong Y
2015-01-20
Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. Although Smad4 was dispensable for T cell generation, homeostasis, and effector function, it was essential for T cell proliferation after activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity, and anti-tumor immunity. Copyright © 2015 Elsevier Inc. All rights reserved.
Recollections of parental rejection, self-criticism and depression in suicidality.
Campos, Rui C; Besser, Avi; Blatt, Sidney J
2013-01-01
The present study examines whether self-criticism and depressive symptoms mediate the relationship between recollections of parental rejection and suicidality. A community sample of 200 Portuguese adults completed, in counterbalanced order, a socio-demographic questionnaire, the short form of the Inventory for Assessing Memories of Parental Rearing Behaviour (EMBU), the Depressive Experiences Questionnaire (DEQ), the Center for Epidemiologic Studies Depression Scale (CES-D), and reports of any suicide intention and/or ideation and suicide attempts. Structural Equation Modeling (SEM) indicated that recollections of parental rejection are significantly associated with depressive symptoms and suicidality. Recollections of parental rejection are indirectly associated with depressive symptoms and suicidality through self-criticism. The association between self-criticism and suicidality is mediated by depressive symptoms. In addition to a significant direct association between recollections of parental rejection and suicidality, the final model indicated that recollections of parental rejection are significantly associated with self-criticism. That same self-criticism is significantly associated with depressive symptoms which, in turn, are significantly associated with suicidality. Individuals with recollections of parental rejection are at greater risk for suicide ideation and behavior, possibly because such experiences predispose them to intense self-criticism which is a risk factor for depression associated with suicidal ideation and behavior.
Factors Influencing Active Family Engagement in Care Among Critical Care Nurses.
Hetland, Breanna; Hickman, Ronald; McAndrew, Natalie; Daly, Barbara
2017-01-01
Critical care nurses are vital to promoting family engagement in the intensive care unit. However, nurses have varying perceptions about how much family members should be involved. The Questionnaire on Factors That Influence Family Engagement was given to a national sample of 433 critical care nurses. This correlational study explored the impact of nurse and organizational characteristics on barriers and facilitators to family engagement. Study results indicate that (1) nurses were most likely to invite family caregivers to provide simple daily care; (2) age, degree earned, critical care experience, hospital location, unit type, and staffing ratios influenced the scores; and (3) nursing work-flow partially mediated the relationships between the intensive care unit environment and nurses' attitudes and between patient acuity and nurses' attitudes. These results help inform nursing leaders on ways to promote nurse support of active family engagement in the intensive care unit. ©2017 American Association of Critical-Care Nurses.
NRF1 Is an ER Membrane Sensor that Is Central to Cholesterol Homeostasis.
Widenmaier, Scott B; Snyder, Nicole A; Nguyen, Truc B; Arduini, Alessandro; Lee, Grace Y; Arruda, Ana Paula; Saksi, Jani; Bartelt, Alexander; Hotamisligil, Gökhan S
2017-11-16
Cholesterol is a critical nutrient requiring tight constraint in the endoplasmic reticulum (ER) due to its uniquely challenging biophysical properties. While the mechanisms by which the ER defends against cholesterol insufficiency are well described, it remains unclear how the ER senses and effectively defends against cholesterol excess. Here, we identify the ER-bound transcription factor nuclear factor erythroid 2 related factor-1, Nrf1/Nfe2L1, as a critical mediator of this process. We show that Nrf1 directly binds to and specifically senses cholesterol in the ER through a defined domain and that cholesterol regulates Nrf1 turnover, processing, localization, and activity. In Nrf1 deficiency, in vivo cholesterol challenges induce massive hepatic cholesterol accumulation and damage, which is rescued by replacing Nrf1 exogenously. This Nrf1-mediated mechanism involves the suppression of CD36-driven inflammatory signaling and derepression of liver X receptor activity. These findings reveal Nrf1 as a guardian of cholesterol homeostasis and a core component of adaptive responses to excess cellular cholesterol. Copyright © 2017. Published by Elsevier Inc.
Chaos, Poverty, and Parenting: Predictors of Early Language Development
Vernon-Feagans, Lynne; Garrett-Peters, Patricia; Willoughby, Mike; Mills-Koonce, Roger
2011-01-01
Studies have shown that distal family risk factors like poverty and maternal education are strongly related to children's early language development. Yet, few studies have examined these risk factors in combination with more proximal day-to-day experiences of children that might be critical to understanding variation in early language. Young children's exposure to a chronically chaotic household may be one critical experience that is related to poorer language, beyond the contribution of SES and other demographic variables. In addition, it is not clear whether parenting might mediate the relationship between chaos and language. The purpose of this study was to understand how multiple indicators of chaos over children's first three years of life, in a representative sample of children living in low wealth rural communities, were related to child expressive and receptive language at 36 months. Factor analysis of 10 chaos indicators over five time periods suggested two factors that were named household disorganization and instability. Results suggested that after accounting for thirteen covariates like maternal education and poverty, one of two chaos composites (household disorganization) accounted for significant variance in receptive and expressive language. Parenting partially mediated this relationship although household disorganization continued to account for unique variance in predicting early language. PMID:23049162
Jorbozeh, Hamideh; Dehdari, Tahereh; Ashoorkhani, Mahnaz; Taghdisi, Mohammad Hossein
2014-01-01
Background: Empowerment of children and adolescents in terms of social skills is critical for promoting their social health. Objectives: This study attempts to explore a framework of influential factors on empowering primary school students by means of peer mediation from the stakeholders' point of view, as a qualitative content analysis design. Patients and Methods: This study was a qualitative content analysis (conventional method). Seven focused group discussions and six in-depth interviews were conducted with schoolchildren, parents and education authorities. Following each interview, recordings were entered to an open code software and analyzed. Data collection was continued up to data saturation. Results: Within the provided framework, the participants' views and comments were classified into two major categories “educational empowerment” and “social empowerment”, and into two themes; “program” and “advocacy”. The “program” theme included factors such as design and implementation, development, maintenance and improvement, and individual and social impact. The “advocacy” theme included factors such as social, emotional and physical support. Conclusions: The explained framework components regarding peer mediation are useful to design peace education programs and to empower school-age children in peer mediation. PMID:25763191
CELLULAR AND MOLECULAR MECHANISMS OF ABNORMAL REPRODUCTIVE DEVELOPMENT
This project will determine the critical factors that account for exposures to endocrine disrupting chemicals, or EDCs (ER, AR, AhR mediated and inhibitors of steroidogenesis) during development resulting in adverse effects seen later in life in male and female offspring. Such f...
Grants, Jennifer M.; Goh, Grace Y. S.; Taubert, Stefan
2015-01-01
The Mediator multiprotein complex (‘Mediator’) is an important transcriptional coregulator that is evolutionarily conserved throughout eukaryotes. Although some Mediator subunits are essential for the transcription of all protein-coding genes, others influence the expression of only subsets of genes and participate selectively in cellular signaling pathways. Here, we review the current knowledge of Mediator subunit function in the nematode Caenorhabditis elegans, a metazoan in which established and emerging genetic technologies facilitate the study of developmental and physiological regulation in vivo. In this nematode, unbiased genetic screens have revealed critical roles for Mediator components in core developmental pathways such as epidermal growth factor (EGF) and Wnt/β-catenin signaling. More recently, important roles for C. elegans Mediator subunits have emerged in the regulation of lipid metabolism and of systemic stress responses, engaging conserved transcription factors such as nuclear hormone receptors (NHRs). We emphasize instances where similar functions for individual Mediator subunits exist in mammals, highlighting parallels between Mediator subunit action in nematode development and in human cancer biology. We also discuss a parallel between the association of the Mediator subunit MED12 with several human disorders and the role of its C. elegans ortholog mdt-12 as a regulatory hub that interacts with numerous signaling pathways. PMID:25634893
Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R.; Hellmann, Hanjo
2013-01-01
Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that CULLIN3-based E3 ligases have the potential to interact with a broad range of ETHYLENE RESPONSE FACTOR (ERF)/APETALA2 (AP2) transcription factors, mediated by MATH-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the WRINKLED1 ERF/AP2 protein. Furthermore, loss of MATH-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members. PMID:23792371
Chiang, ChiaHsun
2014-01-01
Background College students’ health behavior is a topic that deserves attention. Individual factors and eHealth literacy may affect an individual’s health behaviors. The integrative model of eHealth use (IMeHU) provides a parsimonious account of the connections among the digital divide, health care disparities, and the unequal distribution and use of communication technologies. However, few studies have explored the associations among individual factors, eHealth literacy, and health behaviors, and IMeHU has not been empirically investigated. Objective This study examines the associations among individual factors, eHealth literacy, and health behaviors using IMeHU. Methods The Health Behavior Scale is a 12-item instrument developed to measure college students’ eating, exercise, and sleep behaviors. The eHealth Literacy Scale is a 12-item instrument designed to measure college students’ functional, interactive, and critical eHealth literacy. A nationally representative sample of 525 valid college students in Taiwan was surveyed. A questionnaire was administered to collect background information about participants’ health status, degree of health concern, major, and the frequency with which they engaged in health-related discussions. This study used Amos 6.0 to conduct a confirmatory factor analysis to identify the best measurement models for the eHealth Literacy Scale and the Health Behavior Scale. We then conducted a multiple regression analysis to examine the associations among individual factors, eHealth literacy, and health behaviors. Additionally, causal steps approach was used to explore indirect (mediating) effects and Sobel tests were used to test the significance of the mediating effects. Results The study found that perceptions of better health status (t520=2.14-6.12, P<.001-.03) and greater concern for health (t520=2.58-6.95, P<.001-.003) influenced college students’ development of 3 dimensions of eHealth literacy and adoption of healthy eating, exercise, and sleep behaviors. Moreover, eHealth literacy played an intermediary role in the association between individual factors and health behaviors (Sobel test=2.09-2.72, P<.001-.03). Specifically, higher levels of critical eHealth literacy promoted students’ health status and their practice of multiple positive health behaviors, including eating, exercise, and sleep behaviors. Conclusions Because this study showed that eHealth literacy mediates the association between individual factors and health behaviors, schools should aim to enhance students’ eHealth literacy and promote their health behaviors to help them achieve high levels of critical eHealth literacy. Although some of the study’s hypotheses were not supported in this study, the factors that influence health behaviors are complex and interdependent. Therefore, a follow-up study should be conducted to further explore how these factors influence one another. PMID:25499086
Hsu, WanChen; Chiang, ChiaHsun; Yang, ShuChing
2014-12-12
College students' health behavior is a topic that deserves attention. Individual factors and eHealth literacy may affect an individual's health behaviors. The integrative model of eHealth use (IMeHU) provides a parsimonious account of the connections among the digital divide, health care disparities, and the unequal distribution and use of communication technologies. However, few studies have explored the associations among individual factors, eHealth literacy, and health behaviors, and IMeHU has not been empirically investigated. This study examines the associations among individual factors, eHealth literacy, and health behaviors using IMeHU. The Health Behavior Scale is a 12-item instrument developed to measure college students' eating, exercise, and sleep behaviors. The eHealth Literacy Scale is a 12-item instrument designed to measure college students' functional, interactive, and critical eHealth literacy. A nationally representative sample of 525 valid college students in Taiwan was surveyed. A questionnaire was administered to collect background information about participants' health status, degree of health concern, major, and the frequency with which they engaged in health-related discussions. This study used Amos 6.0 to conduct a confirmatory factor analysis to identify the best measurement models for the eHealth Literacy Scale and the Health Behavior Scale. We then conducted a multiple regression analysis to examine the associations among individual factors, eHealth literacy, and health behaviors. Additionally, causal steps approach was used to explore indirect (mediating) effects and Sobel tests were used to test the significance of the mediating effects. The study found that perceptions of better health status (t520=2.14-6.12, P<.001-.03) and greater concern for health (t520=2.58-6.95, P<.001-.003) influenced college students' development of 3 dimensions of eHealth literacy and adoption of healthy eating, exercise, and sleep behaviors. Moreover, eHealth literacy played an intermediary role in the association between individual factors and health behaviors (Sobel test=2.09-2.72, P<.001-.03). Specifically, higher levels of critical eHealth literacy promoted students' health status and their practice of multiple positive health behaviors, including eating, exercise, and sleep behaviors. Because this study showed that eHealth literacy mediates the association between individual factors and health behaviors, schools should aim to enhance students' eHealth literacy and promote their health behaviors to help them achieve high levels of critical eHealth literacy. Although some of the study's hypotheses were not supported in this study, the factors that influence health behaviors are complex and interdependent. Therefore, a follow-up study should be conducted to further explore how these factors influence one another.
Anxiety, stress and perfectionism in bipolar disorder.
Corry, Justine; Green, Melissa; Roberts, Gloria; Frankland, Andrew; Wright, Adam; Lau, Phoebe; Loo, Colleen; Breakspear, Michael; Mitchell, Philip B
2013-12-01
Previous reports have highlighted perfectionism and related cognitive styles as a psychological risk factor for stress and anxiety symptoms as well as for the development of bipolar disorder symptoms. The anxiety disorders are highly comorbid with bipolar disorder but the mechanisms that underpin this comorbidity are yet to be determined. Measures of depressive, (hypo)manic, anxiety and stress symptoms and perfectionistic cognitive style were completed by a sample of 142 patients with bipolar disorder. Mediation models were used to explore the hypotheses that anxiety and stress symptoms would mediate relationships between perfectionistic cognitive styles, and bipolar disorder symptoms. Stress and anxiety both significantly mediated the relationship between both self-critical perfectionism and goal attainment values and bipolar depressive symptoms. Goal attainment values were not significantly related to hypomanic symptoms. Stress and anxiety symptoms did not significantly mediate the relationship between self-critical perfectionism and (hypo)manic symptoms. 1. These data are cross-sectional; hence the causality implied in the mediation models can only be inferred. 2. The clinic patients were less likely to present with (hypo)manic symptoms and therefore the reduced variability in the data may have contributed to the null findings for the mediation models with (hypo) manic symptoms. 3. Those patients who were experiencing current (hypo)manic symptoms may have answered the cognitive styles questionnaires differently than when euthymic. These findings highlight a plausible mechanism to understand the relationship between bipolar disorder and the anxiety disorders. Targeting self-critical perfectionism in the psychological treatment of bipolar disorder when there is anxiety comorbidity may result in more parsimonious treatments. © 2013 Published by Elsevier B.V.
Noone, Chris; Bunting, Brendan; Hogan, Michael J
2015-01-01
Mindfulness originated in the Buddhist tradition as a way of cultivating clarity of thought. Despite the fact that this behavior is best captured using critical thinking (CT) assessments, no studies have examined the effects of mindfulness on CT or the mechanisms underlying any such possible relationship. Even so, mindfulness has been suggested as being beneficial for CT in higher education. CT is recognized as an important higher-order cognitive process which involves the ability to analyze and evaluate evidence and arguments. Such non-automatic, reflective responses generally require the engagement of executive functioning (EF) which includes updating, inhibition, and shifting of representations in working memory. Based on research showing that mindfulness enhances aspects of EF and certain higher-order cognitive processes, we hypothesized that individuals higher in facets of dispositional mindfulness would demonstrate greater CT performance, and that this relationship would be mediated by EF. Cross-sectional assessment of these constructs in a sample of 178 university students was achieved using the observing and non-reactivity sub-scales of the Five Factor Mindfulness Questionnaire, a battery of EF tasks and the Halpern Critical Thinking Assessment. Our hypotheses were tested by constructing a multiple meditation model which was analyzed using Structural Equation Modeling. Evidence was found for inhibition mediating the relationships between both observing and non-reactivity and CT in different ways. Indirect-only (or full) mediation was demonstrated for the relationship between observing, inhibition, and CT. Competitive mediation was demonstrated for the relationship between non-reactivity, inhibition, and CT. This suggests additional mediators of the relationship between non-reactivity and CT which are not accounted for in this model and have a negative effect on CT in addition to the positive effect mediated by inhibition. These findings are discussed in the context of the Default Interventionist Dual Process Theory of Higher-order Cognition and previous studies on mindfulness, self-regulation, EF, and higher-order cognition. In summary, dispositional mindfulness appears to facilitate CT performance and this effect is mediated by the inhibition component of EF. However, this relationship is not straightforward which suggests many possibilities for future research.
Noone, Chris; Bunting, Brendan; Hogan, Michael J.
2016-01-01
Mindfulness originated in the Buddhist tradition as a way of cultivating clarity of thought. Despite the fact that this behavior is best captured using critical thinking (CT) assessments, no studies have examined the effects of mindfulness on CT or the mechanisms underlying any such possible relationship. Even so, mindfulness has been suggested as being beneficial for CT in higher education. CT is recognized as an important higher-order cognitive process which involves the ability to analyze and evaluate evidence and arguments. Such non-automatic, reflective responses generally require the engagement of executive functioning (EF) which includes updating, inhibition, and shifting of representations in working memory. Based on research showing that mindfulness enhances aspects of EF and certain higher-order cognitive processes, we hypothesized that individuals higher in facets of dispositional mindfulness would demonstrate greater CT performance, and that this relationship would be mediated by EF. Cross-sectional assessment of these constructs in a sample of 178 university students was achieved using the observing and non-reactivity sub-scales of the Five Factor Mindfulness Questionnaire, a battery of EF tasks and the Halpern Critical Thinking Assessment. Our hypotheses were tested by constructing a multiple meditation model which was analyzed using Structural Equation Modeling. Evidence was found for inhibition mediating the relationships between both observing and non-reactivity and CT in different ways. Indirect-only (or full) mediation was demonstrated for the relationship between observing, inhibition, and CT. Competitive mediation was demonstrated for the relationship between non-reactivity, inhibition, and CT. This suggests additional mediators of the relationship between non-reactivity and CT which are not accounted for in this model and have a negative effect on CT in addition to the positive effect mediated by inhibition. These findings are discussed in the context of the Default Interventionist Dual Process Theory of Higher-order Cognition and previous studies on mindfulness, self-regulation, EF, and higher-order cognition. In summary, dispositional mindfulness appears to facilitate CT performance and this effect is mediated by the inhibition component of EF. However, this relationship is not straightforward which suggests many possibilities for future research. PMID:26834669
Grants, Jennifer M; Goh, Grace Y S; Taubert, Stefan
2015-02-27
The Mediator multiprotein complex ('Mediator') is an important transcriptional coregulator that is evolutionarily conserved throughout eukaryotes. Although some Mediator subunits are essential for the transcription of all protein-coding genes, others influence the expression of only subsets of genes and participate selectively in cellular signaling pathways. Here, we review the current knowledge of Mediator subunit function in the nematode Caenorhabditis elegans, a metazoan in which established and emerging genetic technologies facilitate the study of developmental and physiological regulation in vivo. In this nematode, unbiased genetic screens have revealed critical roles for Mediator components in core developmental pathways such as epidermal growth factor (EGF) and Wnt/β-catenin signaling. More recently, important roles for C. elegans Mediator subunits have emerged in the regulation of lipid metabolism and of systemic stress responses, engaging conserved transcription factors such as nuclear hormone receptors (NHRs). We emphasize instances where similar functions for individual Mediator subunits exist in mammals, highlighting parallels between Mediator subunit action in nematode development and in human cancer biology. We also discuss a parallel between the association of the Mediator subunit MED12 with several human disorders and the role of its C. elegans ortholog mdt-12 as a regulatory hub that interacts with numerous signaling pathways. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Cytokines and their STATs in cutaneous and visceral leishmaniasis.
Cummings, Hannah E; Tuladhar, Rashmi; Satoskar, Abhay R
2010-01-01
Cytokines play a critical role in shaping the host immune response to Leishmania infection and directing the development of protective and non-protective immunities during infection. Cytokines exert their biological activities through the activation and translocation of transcription factors into the nucleus whether they drive the expression of specific cytokine-responsive genes. Signal transducer and activator of transcription (STATs) are transcription factors which play a critical role in mediating signaling downstream of cytokine receptors and are important for shaping the host immune response during Leishmania infection. Here we discuss the signature cytokines and their associated STATs involved in the host immune response during cutaneous and visceral leishmaniasis.
Critical Success Factors in a TRIDEM Exchange
ERIC Educational Resources Information Center
Hauck, Mirjam
2007-01-01
Computer-mediated-communication (CMC) tools allowing learners to be in contact with native speakers of their target language in other locations are becoming increasingly flexible, often combining different modes of communication in a single web- and internet-based environment. The literature on telecollaborative exchanges reveals, however, that…
Effect Of Simulated Microgravity On Activated T Cell Gene Transcription
NASA Technical Reports Server (NTRS)
Morrow, Maureen A.
2003-01-01
Studies of T lymphocytes under the shear stress environment of clinorotation have demonstrated an inhibition of activation in response to TCR mediated signaling. These results mimic those observed during space flight. This work investigates the molecular signaling events of T lymphocyte activation with clinorotation. Purified human T lymphocytes and the T cell clone Jurkat exhibit an uncoupling of signaling as mediated through the TCR. Activation of the transcription factor AP-1 is inhibited while activation of NFAT occurs. NFAT dephosphorylation and activation is dependent on sustained Ca(++) influx. Alternatively, AP-1, which consists of two transcription factors, jun and fos, is activated by PKC and Ras mediated pathways. TCR signaling is known to be dependent on cytoskeletal rearrangements, in particular, raft aggregation is critical. Raft aggregation, as mediated through GM, crosslinking, overcomes the inhibition of T lymphocyte activation with clinorotation, indicating that the block is occurring upstream of raft aggregation. Clinorotation is shown to have an effect similar to a weak TCR signal.
Dunkley, David M; Masheb, Robin M; Grilo, Carlos M
2010-04-01
We examined the mediating role of self-criticism in the relation between childhood maltreatment and both depressive symptoms and body dissatisfaction in patients with binge eating disorder (BED). Participants were 170 BED patients who completed measures of childhood maltreatment, self-criticism, self-esteem, depressive symptoms, and body dissatisfaction. Specific forms of childhood maltreatment (emotional abuse, sexual abuse) were significantly associated with body dissatisfaction. Path analyses demonstrated that self-criticism fully mediated the relation between emotional abuse and both depressive symptoms and body dissatisfaction. Specificity for the mediating role of self-criticism was demonstrated in comparison to other potential mediators (low self-esteem) and alternative competing mediation models. These results highlight self-criticism as a potential mechanism through which certain forms of childhood maltreatment may be associated with depressive symptoms and body dissatisfaction in BED patients.
Kelley, Eric E
2015-08-01
Xanthine oxidoreductase (XOR), the molybdoflavin enzyme responsible for the terminal steps of purine degradation in humans, is also recognized as a significant source of reactive species contributory to inflammatory disease. In animal models and clinical studies, inhibition of XOR has resulted in diminution of symptoms and enhancement of function in a number of pathologies including heart failure, diabetes, sickle cell anemia, hypertension and ischemia-reperfusion injury. For decades, XOR involvement in pathologic processes has been established by salutary outcomes attained from treatment with the XOR inhibitor allopurinol. This has served to frame a working dogma that elevation of XOR-specific activity is associated with enhanced rates of reactive species generation that mediate negative outcomes. While adherence to this narrowly focused practice of designating elevated XOR activity to be "bad" has produced some benefit, it has also led to significant underdevelopment of the processes mediating XOR regulation, identification of alternative reactants and products as well as micro-environmental factors that alter enzymatic activity. This is exemplified by recent reports: (1) identifying XOR as a nitrite reductase and thus a source of beneficial nitric oxide ((•)NO) under in vivo conditions similar to those where XOR inhibition has been assumed an optimal treatment choice, (2) describing XOR-derived uric acid (UA) as a critical pro-inflammatory mediator in vascular and metabolic disease and (3) ascribing an antioxidant/protective role for XOR-derived UA. When taken together, these proposed and countervailing functions of XOR affirm the need for a more comprehensive evaluation of product formation as well as the factors that govern product identity. As such, this review will critically evaluate XOR-catalyzed oxidant, (•)NO and UA formation as well as identify factors that mediate their production, inhibition and the resultant impact on inflammatory disease.
Tuli, Amit; Thiery, Jerome; James, Ashley M; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B; Orange, Jordan S; Lieberman, Judy; Brenner, Michael B
2013-12-01
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell-mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.
Tuli, Amit; Thiery, Jerome; James, Ashley M.; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B.; Orange, Jordan S.; Lieberman, Judy; Brenner, Michael B.
2013-01-01
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell–mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity. PMID:24088571
Reconceptualizing the Pedagogical Value of Student Facilitation
ERIC Educational Resources Information Center
Oztok, Murat
2016-01-01
Sustained discourse is critical to the learning potential of online courses. And, while research has surfaced many factors that mediate interaction, it further suggests that sustained interaction remains elusive. In this paper, I propose that student facilitation may have an impact on the quality of facilitators' interactions following a week of…
Huang, Yugang; Qi, HouBao; Zhang, Zhiqian; Wang, Enlin; Yun, Huan; Yan, Hui; Su, Xiaomin; Liu, Yingquan; Tang, Zenzen; Gao, Yunhuan; Shang, Wencong; Zhou, Jiang; Wang, Tianze; Che, Yongzhe; Zhang, Yuan; Yang, Rongcun
2017-01-01
Gut microbiota may not only affect composition of local immune cells but also affect systemic immune cells. However, it is not completely clear how gut microbiota modulate these immune systems. Here, we found that there exist expanded macrophage pools in huREG3γtgIEC mice. REG3γ-associated Lactobacillus, which is homology to Lactobacillus Taiwanese, could enlarge macrophage pools not only in the small intestinal lamina propria but also in the spleen and adipose tissues. STAT3-mediated signal(s) was a critical factor in the Lactobacillus-mediated anti-inflammatory macrophages. We also offered evidence for critical cellular links among REG3γ-associated Lactobacillus, tissue macrophages, and obesity diseases. Anti-inflammatory macrophages in the lamina propria, which are induced by REG3γ-associated Lactobacillus, may migrate into adipose tissues and are involved in resistance against high-fat diet-mediated obesity. Thus, REG3γ-associated Lactobacillus-induced anti-inflammatory macrophages in gut tissues may play a role in adipose tissue homeostasis. PMID:28928739
VISA is an adapter protein required for virus-triggered IFN-beta signaling.
Xu, Liang-Guo; Wang, Yan-Yi; Han, Ke-Jun; Li, Lian-Yun; Zhai, Zhonghe; Shu, Hong-Bing
2005-09-16
Viral infection or stimulation of TLR3 triggers signaling cascades, leading to activation of the transcription factors IRF-3 and NF-kappaB, which collaborate to induce transcription of type I interferon (IFN) genes. In this study, we identified a protein termed VISA (for virus-induced signaling adaptor) as a critical component in the IFN-beta signaling pathways. VISA recruits IRF-3 to the cytoplasmic viral dsRNA sensor RIG-I. Depletion of VISA inhibits virus-triggered and RIG-I-mediated activation of IRF-3, NF-kappaB, and the IFN-beta promoter, suggesting that VISA plays a central role in virus-triggered TLR3-independent IFN-beta signaling. Our data also indicate that VISA interacts with TRIF and TRAF6 and mediates bifurcation of the TLR3-triggered NF-kappaB and IRF-3 activation pathways. These findings suggest that VISA is critically involved in both virus-triggered TLR3-independent and TLR3-mediated antiviral IFN signaling.
Warnhoff, Kurt; Murphy, John T.; Kumar, Sandeep; Schneider, Daniel L.; Peterson, Michelle; Hsu, Simon; Guthrie, James; Robertson, J. David; Kornfeld, Kerry
2014-01-01
The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT) complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance. PMID:25330323
SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells.
Rybak, Adrian P; Tang, Damu
2013-12-01
SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013.
Wilbe, M; Andersson, G
2012-01-01
Major histocompatibility complex (MHC) class II genes are important genetic risk factors for development of immune-mediated diseases in mammals. Recently, the dog (Canis lupus familiaris) has emerged as a useful model organism to identify critical MHC class II genotypes that contribute to development of these diseases. Therefore, a study aimed to evaluate a potential genetic association between the dog leukocyte antigen (DLA) class II region and an immune-mediated disease complex in dogs of the Nova Scotia duck tolling retriever breed was performed. We show that DLA is one of several genetic risk factors for this disease complex and that homozygosity of the risk haplotype is disadvantageous. Importantly, the disease is complex and has many genetic risk factors and therefore we cannot provide recommendations for breeders exclusively on the basis of genetic testing for DLA class II genotype. © 2012 Blackwell Verlag GmbH.
Kloog, Yoel; Mor, Adam
2014-03-01
T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed that this factor is required for both T-cell receptor (TCR)-mediated and CTLA-4-mediated T-cell adhesion. Our data indicated that C3G translocates to the plasma membrane downstream of TCR signaling, where it regulates activation of Rap1. We also showed that CTLA-4 receptor signaling mediates tyrosine phosphorylation in the C3G protein, and that this is required for augmented activation of Rap1 and increased adhesion mediated by leukocyte function-associated antigen type 1 (LFA-1). Zap70 is required for C3G translocation to the plasma membrane, whereas the Src family member Hck facilitates C3G phosphorylation. These findings point to C3G and Hck as promising potential therapeutic targets for the treatment of T-cell-dependent autoimmune disorders.
Epidermal growth factor receptor and variant III targeted immunotherapy
Congdon, Kendra L.; Gedeon, Patrick C.; Suryadevara, Carter M.; Caruso, Hillary G.; Cooper, Laurence J.N.; Heimberger, Amy B.; Sampson, John H.
2014-01-01
Immunotherapeutic approaches to cancer have shown remarkable promise. A critical barrier to successfully executing such immune-mediated interventions is the selection of safe yet immunogenic targets. As patient deaths have occurred when tumor-associated antigens shared by normal tissue have been targeted by strong cellular immunotherapeutic platforms, route of delivery, target selection and the immune-mediated approach undertaken must work together to maximize efficacy with safety. Selected tumor-specific targets can spare potential toxicity to normal tissue; however, they are far less common than tumor-associated antigens and may not be present on all patients. In the context of immunotherapy for high-grade glioma, 2 of the most prominently studied antigens are the tumor-associated epidermal growth factor receptor and its tumor-specific genetic deletion variant III. In this review, we will summarize the immune-mediated strategies employed against these targets as well as the caveats particular to these approaches. PMID:25342601
Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation
Willard, Melinda D; Willard, Francis S; Li, Xiaoyan; Cappell, Steven D; Snider, William D; Siderovski, David P
2007-01-01
Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by heterotrimeric G-protein α subunits and thus inhibit signaling by many G protein-coupled receptors. Several RGS proteins have a multidomain architecture that adds further complexity to their roles in cell signaling in addition to their GTPase-accelerating activity. RGS12 contains a tandem repeat of Ras-binding domains but, to date, the role of this protein in Ras-mediated signal transduction has not been reported. Here, we show that RGS12 associates with the nerve growth factor (NGF) receptor tyrosine kinase TrkA, activated H-Ras, B-Raf, and MEK2 and facilitates their coordinated signaling to prolonged ERK activation. RGS12 is required for NGF-mediated neurite outgrowth of PC12 cells, but not outgrowth stimulated by basic fibroblast growth factor. siRNA-mediated knockdown of RGS12 expression also inhibits NGF-induced axonal growth in dissociated cultures of primary dorsal root ganglia neurons. These data suggest that RGS12 may play a critical, and receptor-selective, role in coordinating Ras-dependent signals that are required for promoting and/or maintaining neuronal differentiation. PMID:17380122
Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan
2016-02-01
Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. Copyright © 2016 by the Genetics Society of America.
Lee, Hopin; Moseley, G Lorimer; Hübscher, Markus; Kamper, Steven J; Traeger, Adrian C; Skinner, Ian W; McAuley, James H
2015-07-01
Pain education is a complex intervention developed to help clinicians manage low back pain. Although complex interventions are usually evaluated by their effects on outcomes, such as pain or disability, most do not directly target these outcomes; instead, they target intermediate factors that are presumed to be associated with the outcomes. The mechanisms underlying treatment effects, or the effect of an intervention on an intermediate factor and its subsequent effect on outcome, are rarely investigated in clinical trials. This leaves a gap in the evidence for understanding how treatments exert their effects on outcomes. Mediation analysis provides a method for identifying and quantifying the mechanisms that underlie interventions. To determine whether the effect of pain education on pain and disability is mediated by changes in self-efficacy, catastrophisation and back pain beliefs. Causal mediation analysis of the PREVENT randomised controlled trial. Two hundred and two participants with acute low back pain from primary care clinics in the Sydney metropolitan area. Participants will be randomised to receive either 'pain education' (intervention group) or 'sham education' (control group). All outcome measures (including patient characteristics), primary outcome measures (pain and disability), and putative mediating variables (self-efficacy, catastrophisation and back pain beliefs) will be measured prior to randomisation. Putative mediators and primary outcome measures will be measured 1 week after the intervention, and primary outcome measures will be measured 3 months after the onset of low back pain. Causal mediation analysis under the potential outcomes framework will be used to test single and multiple mediator models. A sensitivity analysis will be conducted to evaluate the robustness of the estimated mediation effects on the influence of violating sequential ignorability--a critical assumption for causal inference. Mediation analysis of clinical trials can estimate how much the total effect of the treatment on the outcome is carried through an indirect path. Using mediation analysis to understand these mechanisms can generate evidence that can be used to tailor treatments and optimise treatment effects. In this study, the causal mediation effects of a pain education intervention for acute non-specific low back pain will be estimated. This knowledge is critical for further development and refinement of interventions for conditions such as low back pain. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
The polyphosphate–factor XII pathway drives coagulation in prostate cancer-associated thrombosis
Nickel, Katrin F.; Ronquist, Göran; Langer, Florian; Labberton, Linda; Fuchs, Tobias A.; Bokemeyer, Carsten; Sauter, Guido; Graefen, Markus; Mackman, Nigel; Stavrou, Evi X.; Ronquist, Gunnar
2015-01-01
Cancer is a leading cause of thrombosis. We identify a new procoagulant mechanism that contributes to thromboembolism in prostate cancer and allows for safe anticoagulation therapy development. Prostate cancer-mediated procoagulant activity was reduced in plasma in the absence of factor XII or its substrate of the intrinsic coagulation pathway factor XI. Prostate cancer cells and secreted prostasomes expose long chain polyphosphate on their surface that colocalized with active factor XII and initiated coagulation in a factor XII-dependent manner. Polyphosphate content correlated with the procoagulant activity of prostasomes. Inherited deficiency in factor XI or XII or high-molecular-weight kininogen, but not plasma kallikrein, protected mice from prostasome-induced lethal pulmonary embolism. Targeting polyphosphate or factor XII conferred resistance to prostate cancer-driven thrombosis in mice, without increasing bleeding. Inhibition of factor XII with recombinant 3F7 antibody reduced the increased prostasome-mediated procoagulant activity in patient plasma. The data illustrate a critical role for polyphosphate/factor XII-triggered coagulation in prostate cancer-associated thrombosis with implications for anticoagulation without therapy-associated bleeding in malignancies. PMID:26153520
Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition
Balli, David; Ustiyan, Vladimir; Zhang, Yufang; Wang, I-Ching; Masino, Alex J; Ren, Xiaomeng; Whitsett, Jeffrey A; Kalinichenko, Vladimir V; Kalin, Tanya V
2013-01-01
Alveolar epithelial cells (AECs) participate in the pathogenesis of pulmonary fibrosis, producing pro-inflammatory mediators and undergoing epithelial-to-mesenchymal transition (EMT). Herein, we demonstrated the critical role of Forkhead Box M1 (Foxm1) transcription factor in radiation-induced pulmonary fibrosis. Foxm1 was induced in AECs following lung irradiation. Transgenic expression of an activated Foxm1 transcript in AECs enhanced radiation-induced pneumonitis and pulmonary fibrosis, and increased the expression of IL-1β, Ccl2, Cxcl5, Snail1, Zeb1, Zeb2 and Foxf1. Conditional deletion of Foxm1 from respiratory epithelial cells decreased radiation-induced pulmonary fibrosis and prevented the increase in EMT-associated gene expression. siRNA-mediated inhibition of Foxm1 prevented TGF-β-induced EMT in vitro. Foxm1 bound to and increased promoter activity of the Snail1 gene, a critical transcriptional regulator of EMT. Expression of Snail1 restored TGF-β-induced loss of E-cadherin in Foxm1-deficient cells in vitro. Lineage-tracing studies demonstrated that Foxm1 increased EMT during radiation-induced pulmonary fibrosis in vivo. Foxm1 is required for radiation-induced pulmonary fibrosis by enhancing the expression of genes critical for lung inflammation and EMT. PMID:23288041
Chen, Michael C.; Waugh, Christian E.; Joormann, Jutta; Gotlib, Ian H.
2015-01-01
Assessing neural commonalities and differences among depression, anxiety and their comorbidity is critical in developing a more integrative clinical neuroscience and in evaluating currently debated categorical vs dimensional approaches to psychiatric classification. Therefore, in this study, we sought to identify patterns of anomalous neural responding to criticism and praise that are specific to and common among major depressive disorder (MDD), social anxiety disorder (SAD) and comorbid MDD-SAD. Adult females who met formal diagnostic criteria for MDD, SAD or MDD-SAD and psychiatrically healthy participants underwent functional magnetic resonance imaging as they listened to statements directing praise or criticism at them or at another person. MDD groups showed reduced responding to praise across a distributed cortical network, an effect potentially mediated by thalamic nuclei undergirding arousal-mediated attention. SAD groups showed heightened anterior insula and decreased default-mode network response to criticism. The MDD-SAD group uniquely showed reduced responding to praise in the dorsal anterior cingulate cortex. Finally, all groups with psychopathology showed heightened response to criticism in a region of the superior frontal gyrus implicated in attentional gating. The present results suggest novel neural models of anhedonia in MDD, vigilance-withdrawal behaviors in SAD, and poorer outcome in MDD-SAD. Importantly, in identifying unique and common neural substrates of MDD and SAD, these results support a formulation in which common neural components represent general risk factors for psychopathology that, due to factors that are present at illness onset, lead to distinct forms of psychopathology with unique neural signatures. PMID:25038225
Yao, Xiao; Tang, Zhanyun; Fu, Xing; Yin, Jingwen; Liang, Yan; Li, Chonghui; Li, Huayun; Tian, Qing; Roeder, Robert G; Wang, Gang
2015-12-02
The Mediator complex orchestrates multiple transcription factors with the Pol II apparatus for precise transcriptional control. However, its interplay with the surrounding chromatin remains poorly understood. Here, we analyze differential histone modifications between WT and MED23(-/-) (KO) cells and identify H2B mono-ubiquitination at lysine 120 (H2Bub) as a MED23-dependent histone modification. Using tandem affinity purification and mass spectrometry, we find that MED23 associates with the RNF20/40 complex, the enzyme for H2Bub, and show that this association is critical for the recruitment of RNF20/40 to chromatin. In a cell-free system, Mediator directly and substantially increases H2Bub on recombinant chromatin through its cooperation with RNF20/40 and the PAF complex. Integrative genome-wide analyses show that MED23 depletion specifically reduces H2Bub on a subset of MED23-controlled genes. Importantly, MED23-coupled H2Bub levels are oppositely regulated during myogenesis and lung carcinogenesis. In sum, these results establish a mechanistic link between the Mediator complex and a critical chromatin modification in coordinating transcription with cell growth and differentiation. © 2015 The Authors.
ERIC Educational Resources Information Center
Sims, Alexandra J.; Boasso, Alyssa M.; Burch, Berre; Naser, Shereen; Overstreet, Stacy
2015-01-01
Background: School satisfaction is linked to a number of important school outcomes like academic performance and school engagement. Following exposure to disasters, adolescents may undergo mental health challenges that threaten factors critical to school satisfaction, such as positive school climate and supportive school relationships. Objective:…
A Critical Practice Analysis of Response to Intervention Appropriation in an Urban School
ERIC Educational Resources Information Center
King Thorius, Kathleen A.; Maxcy, Brendan D.; Macey, Erin; Cox, Adrienne
2014-01-01
This qualitative case study focuses on factors mediating an urban school's enactment of Response to Intervention (RTI). Over one school year, we (a) observed weekly RTI meetings, (b) debriefed observations weekly, (c) interviewed RTI team members, and (d) examined procedural documents. Analyses included post-observation debriefing and coding…
P38 MAPK / beta-catenin canonical wnt signaling mediated bone formation effects of blueberries
USDA-ARS?s Scientific Manuscript database
Appropriate nutrition is one of the critical factors that influences bone development. We studied the effects of dietary blueberry supplementation on bone growth in weanling rats. Weanling male and female rats were fed AIN-93G semi-purified diets supplemented with 10% whole blueberry powder for 14 a...
Li, Zhizhong; Zhang, Yunyu; Ramanujan, Krishnan; Ma, Yan; Kirsch, David G.; Glass, David J.
2013-01-01
Embryonic rhabdomyosarcoma (ERMS) is the most common soft-tissue tumor in children. Here, we report the identification of the minor groove DNA-binding factor high mobility group AT-hook 2 (HMGA2) as a driver of ERMS development. HMGA2 was highly expressed in normal myoblasts and ERMS cells, where its expression was essential to maintain cell proliferation, survival in vitro, and tumor outgrowth in vivo. Mechanistic investigations revealed that upregulation of the insulin–like growth factor (IGF) mRNA-binding protein IGF2BP2 was critical for HMGA2 action. In particular, IGF2BP2 was essential for mRNA and protein stability of NRAS, a frequently mutated gene in ERMS. shRNA-mediated attenuation of NRAS or pharmacologic inhibition of the MAP-ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) effector pathway showed that NRAS and NRAS-mediated signaling was required for tumor maintenance. Taken together, these findings implicate the HMGA2–IGFBP2–NRAS signaling pathway as a critical oncogenic driver in ERMS. PMID:23536553
Drosophila Heartless Acts with Heartbroken/Dof in Muscle Founder Differentiation
Dutta, Devkanya; Shaw, Sanjeev; Maqbool, Tariq; Pandya, Hetal
2005-01-01
The formation of a multi-nucleate myofibre is directed, in Drosophila, by a founder cell. In the embryo, founders are selected by Notch-mediated lateral inhibition, while during adult myogenesis this mechanism of selection does not appear to operate. We show, in the muscles of the adult abdomen, that the Fibroblast growth factor pathway mediates founder cell choice in a novel manner. We suggest that the developmental patterns of Heartbroken/Dof and Sprouty result in defining the domain and timing of activation of the Fibroblast growth factor receptor Heartless in specific myoblasts, thereby converting them into founder cells. Our results point to a way in which muscle differentiation could be initiated and define a critical developmental function for Heartbroken/Dof in myogenesis. PMID:16207075
Nagahama, Ryoji; Matoba, Tetsuya; Nakano, Kaku; Kim-Mitsuyama, Shokei; Sunagawa, Kenji; Egashira, Kensuke
2012-10-01
Critical limb ischemia is a severe form of peripheral artery disease (PAD) for which neither surgical revascularization nor endovascular therapy nor current medicinal therapy has sufficient therapeutic effects. Peroxisome proliferator activated receptor-γ agonists present angiogenic activity in vitro; however, systemic administration of peroxisome proliferator-activated receptor-γ agonists is hampered by its side effects, including heart failure. Here, we demonstrate that the nanoparticle (NP)-mediated delivery of the peroxisome proliferator activated receptor-γ agonist pioglitazone enhances its therapeutic efficacy on ischemia-induced neovascularization in a murine model. In a nondiabetic murine model of hindlimb ischemia, a single intramuscular injection of pioglitazone-incorporated NP (1 µg/kg) into ischemic muscles significantly improved the blood flow recovery in the ischemic limbs, significantly increasing the number of CD31-positive capillaries and α-smooth muscle actin-positive arterioles. The therapeutic effects of pioglitazone-incorporated NP were diminished by the peroxisome proliferator activated receptor-γ antagonist GW9662 and were not observed in endothelial NO synthase-deficient mice. Pioglitazone-incorporated NP induced endothelial NO synthase phosphorylation, as demonstrated by Western blot analysis, as well as expression of multiple angiogenic growth factors in vivo, including vascular endothelial growth factor-A, vascular endothelial growth factor-B, and fibroblast growth factor-1, as demonstrated by real-time polymerase chain reaction. Intramuscular injection of pioglitazone (1 µg/kg) was ineffective, and oral administration necessitated a >500 μg/kg per day dose to produce therapeutic effects equivalent to those of pioglitazone-incorporated NP. NP-mediated drug delivery is a novel modality that may enhance the effectiveness of therapeutic neovascularization, surpassing the effectiveness of current treatments for peripheral artery disease with critical limb ischemia.
Damiani, Elisabetta; Ullrich, Stephen E.
2016-01-01
Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome. PMID:27073146
Damiani, Elisabetta; Ullrich, Stephen E
2016-07-01
Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome. Copyright © 2016 Elsevier B.V. All rights reserved.
Williams, Kirk R; Stansfield, Richard
2017-08-01
To manage intimate partner violence (IPV), the criminal justice system has turned to risk assessment instruments to predict if a perpetrator will reoffend. Empirically determining whether offenders assessed as high risk are those who recidivate is critical for establishing the predictive validity of IPV risk assessment instruments and for guiding the supervision of perpetrators. But by focusing solely on the relation between calculated risk scores and subsequent IPV recidivism, previous studies of the predictive validity of risk assessment instruments omitted mediating factors intended to mitigate the risk of this behavioral recidivism. The purpose of this study was to examine the mediating effects of such factors and the moderating effects of risk assessment on the relation between assessed risk (using the Domestic Violence Screening Instrument-Revised [DVSI-R]) and recidivistic IPV. Using a sample of 2,520 perpetrators of IPV, results revealed that time sentenced to jail and time sentenced to probation each significantly mediated the relation between DVSI-R risk level and frequency of reoffending. The results also revealed that assessed risk moderated the relation between these mediating factors and IPV recidivism, with reduced recidivism (negative estimated effects) for high-risk perpetrators but increased recidivism (positive estimate effects) for low-risk perpetrators. The implication is to assign interventions to the level of risk so that no harm is done. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Sela, Dotan; Conkright, Juliana J.; Chen, Lu; Gilmore, Joshua; Washburn, Michael P.; Florens, Laurence; Conaway, Ronald C.; Conaway, Joan Weliky
2013-01-01
Transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. In response to ER stress, ATF6α translocates from its site of latency in the ER membrane to the nucleus, where it activates RNA polymerase II transcription of ER stress response genes upon binding sequence-specifically to ER stress response enhancer elements (ERSEs) in their promoter-regulatory regions. In a recent study, we demonstrated that ATF6α activates transcription of ER stress response genes by a mechanism involving recruitment to ERSEs of the multisubunit Mediator and several histone acetyltransferase (HAT) complexes, including Spt-Ada-Gcn5 (SAGA) and Ada-Two-A-containing (ATAC) (Sela, D., Chen, L., Martin-Brown, S., Washburn, M.P., Florens, L., Conaway, J.W., and Conaway, R.C. (2012) J. Biol. Chem. 287, 23035–23045). In this study, we extend our investigation of the mechanism by which ATF6α supports recruitment of Mediator to ER stress response genes. We present findings arguing that Mediator subunit MED25 plays a critical role in this process and identify a MED25 domain that serves as a docking site on Mediator for the ATF6α transcription activation domain. PMID:23864652
Brand, Serge; Kirov, Roumen; Kalak, Nadeem; Gerber, Markus; Pühse, Uwe; Lemola, Sakari; Correll, Christoph U; Cortese, Samuele; Meyer, Till; Holsboer-Trachsler, Edith
2015-01-01
Perfectionism is understood as a set of personality traits such as unrealistically high and rigid standards for performance, fear of failure, and excessive self-criticism. Previous studies showed a direct association between increased perfectionism and poor sleep, though without taking into account possible mediating factors. Here, we tested the hypothesis that perfectionism was directly associated with poor sleep, and that this association collapsed, if mediating factors such as stress and poor emotion regulation were taken into account. Three hundred and forty six young adult students (M=23.87 years) completed questionnaires relating to perfectionism traits, sleep, and psychological functioning such as stress perception, coping with stress, emotion regulation, and mental toughness. Perfectionism was directly associated with poor sleep and poor psychological functioning. When stress, poor coping, and poor emotion regulation were entered in the equation, perfectionism traits no longer contributed substantively to the explanation of poor sleep. Though perfectionism traits seem associated with poor sleep, the direct role of such traits seemed small, when mediating factors such as stress perception and emotion regulation were taken into account.
Brand, Serge; Kirov, Roumen; Kalak, Nadeem; Gerber, Markus; Pühse, Uwe; Lemola, Sakari; Correll, Christoph U; Cortese, Samuele; Meyer, Till; Holsboer-Trachsler, Edith
2015-01-01
Background Perfectionism is understood as a set of personality traits such as unrealistically high and rigid standards for performance, fear of failure, and excessive self-criticism. Previous studies showed a direct association between increased perfectionism and poor sleep, though without taking into account possible mediating factors. Here, we tested the hypothesis that perfectionism was directly associated with poor sleep, and that this association collapsed, if mediating factors such as stress and poor emotion regulation were taken into account. Methods Three hundred and forty six young adult students (M=23.87 years) completed questionnaires relating to perfectionism traits, sleep, and psychological functioning such as stress perception, coping with stress, emotion regulation, and mental toughness. Results Perfectionism was directly associated with poor sleep and poor psychological functioning. When stress, poor coping, and poor emotion regulation were entered in the equation, perfectionism traits no longer contributed substantively to the explanation of poor sleep. Conclusion Though perfectionism traits seem associated with poor sleep, the direct role of such traits seemed small, when mediating factors such as stress perception and emotion regulation were taken into account. PMID:25678791
Graham, Daniel B.; Robertson, Charles M.; Bautista, Jhoanne; Mascarenhas, Francesca; Diacovo, M. Julia; Montgrain, Vivianne; Lam, Siu Kit; Cremasco, Viviana; Dunne, W. Michael; Faccio, Roberta; Coopersmith, Craig M.; Swat, Wojciech
2007-01-01
Oxidative burst, a critical antimicrobial mechanism of neutrophils, involves the rapid generation and release of reactive oxygen intermediates (ROIs) by the NADPH oxidase complex. Genetic mutations in an NADPH oxidase subunit, gp91 (also referred to as NOX2), are associated with chronic granulomatous disease (CGD), which is characterized by recurrent and life-threatening microbial infections. To combat such infections, ROIs are produced by neutrophils after stimulation by integrin-dependent adhesion to the ECM in conjunction with stimulation from inflammatory mediators, or microbial components containing pathogen-associated molecular patterns. In this report, we provide genetic evidence that both the Vav family of Rho GTPase guanine nucleotide exchange factors (GEFs) and phospholipase C–γ2 (PLC-γ2) are critical mediators of adhesion-dependent ROI production by neutrophils in mice. We also demonstrated that Vav was critically required for neutrophil-dependent host defense against systemic infection by Staphylococcus aureus and Pseudomonas aeruginosa, 2 common pathogens associated with fatal cases of hospital-acquired pneumonia. We identified a molecular pathway in which Vav GEFs linked integrin-mediated signaling with PLC-γ2 activation, release of intracellular Ca2+ cations, and generation of diacylglycerol to control assembly of the NADPH oxidase complex and ROI production by neutrophils. Taken together, our data indicate that integrin-dependent signals generated during neutrophil adhesion contribute to the activation of NADPH oxidase by a variety of distinct effector pathways, all of which require Vav. PMID:17932569
Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Changhong; Zhao, Jinxia; Sun, Lin
Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which maymore » be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.« less
Kloog, Yoel
2014-01-01
T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed that this factor is required for both T-cell receptor (TCR)-mediated and CTLA-4-mediated T-cell adhesion. Our data indicated that C3G translocates to the plasma membrane downstream of TCR signaling, where it regulates activation of Rap1. We also showed that CTLA-4 receptor signaling mediates tyrosine phosphorylation in the C3G protein, and that this is required for augmented activation of Rap1 and increased adhesion mediated by leukocyte function-associated antigen type 1 (LFA-1). Zap70 is required for C3G translocation to the plasma membrane, whereas the Src family member Hck facilitates C3G phosphorylation. These findings point to C3G and Hck as promising potential therapeutic targets for the treatment of T-cell-dependent autoimmune disorders. PMID:24396067
Huang, Chi-Hung; Yang, Wen-Hao; Chang, Shyue-Yih; Tai, Shyh-Kuan; Tzeng, Cheng-Hwei; Kao, Jung-Yie; Wu, Kou-Juey; Yang, Muh-Hwa
2009-01-01
The hypoxic tumor environment has been shown to be critical to cancer metastasis through the promotion of angiogenesis, induction of epithelial-mesenchymal transition (EMT), and acquisition of invasive potential. However, the impact of hypoxia on the expression profile of the proteolytic enzymes involved in invasiveness is relatively unknown. Membrane-type 4 matrix metalloproteinase (MT4-MMP) is a glycosyl-phosphatidyl inositol-anchored protease that has been shown to be overexpressed in human cancers. However, detailed mechanisms regarding the regulation and function of MT4-MMP expression in tumor cells remain unknown. Here, we demonstrate that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α) induced MT4-MMP expression in human cancer cells. Activation of SLUG, a transcriptional factor regulating the EMT process of human cancers, by HIF-1α was critical for the induction of MT4-MMP under hypoxia. SLUG regulated the transcription of MT4-MMP through direct binding to the E-box located in its proximal promoter. Short-interference RNA-mediated knockdown of MT4-MMP attenuated in vitro invasiveness and in vivo pulmonary colonization of tumor cells without affecting cell migratory ability. MT4-MMP promoted invasiveness and pulmonary colonization through modulation of the expression profile of MMPs and angiogenic factors. Finally, coexpression of HIF-1α and MT4-MMP in human head and neck cancer was predictive of a worse clinical outcome. These findings establish a novel signaling pathway for hypoxia-mediated metastasis and elucidate the underlying regulatory mechanism and functional significance of MT4-MMP in cancer metastasis. PMID:20019845
Role of dietary immunomodulatory factors in the development of immune tolerance.
Prescott, Susan L
2009-01-01
The development of oral tolerance occurs during critical early stages of immune development. Rising rates of food allergy and other immune-mediated food reactions are an indication that oral tolerance is highly susceptible to environmental change. There is growing evidence that this many not be due food allergens per se, but rather to changing exposure to other key immunomodulatory exposures in this critical period. Successful tolerance appears to depend on many concurrent environmental influences during the period of first allergen encounter, including favorable gut colonization, and the presence of key immunomodulatory factors in breast milk and the infant diet. This review explores the potential effects of early dietary and nutritional factors in tolerogenic immune processes that are normally initiated during initial food allergen encounter. Copyright 2009 Nestec Ltd., Vevey/S. Karger AG, Basel.
AP-1 subunits: quarrel and harmony among siblings.
Hess, Jochen; Angel, Peter; Schorpp-Kistner, Marina
2004-12-01
The AP-1 transcription factor is mainly composed of Jun, Fos and ATF protein dimers. It mediates gene regulation in response to a plethora of physiological and pathological stimuli, including cytokines, growth factors, stress signals, bacterial and viral infections, as well as oncogenic stimuli. Studies in genetically modified mice and cells have highlighted a crucial role for AP-1 in a variety of cellular events involved in normal development or neoplastic transformation causing cancer. However, emerging evidence indicates that the contribution of AP-1 to determination of cell fates critically depends on the relative abundance of AP-1 subunits, the composition of AP-1 dimers, the quality of stimulus, the cell type and the cellular environment. Therefore, AP-1-mediated regulation of processes such as proliferation, differentiation, apoptosis and transformation should be considered within the context of a complex dynamic network of signalling pathways and other nuclear factors that respond simultaneously.
Mediators of the childhood emotional abuse-hopelessness association in African American women.
Lamis, Dorian A; Wilson, Christina K; Shahane, Amit A; Kaslow, Nadine J
2014-08-01
Although there is an association between experiencing childhood emotional abuse and feeling hopeless as an adult, it is critical to understand the factors that may be protective in this relationship. The goal of this study was to determine if two protective factors, namely spiritual well-being, including both religious and existential well-being, and positive self-esteem, served to mediate the association between childhood emotional abuse and adult hopelessness. The sample for this investigation was low-income African American women suicide attempters who were abused by a partner in the prior year (N=121). A path analysis revealed that in this sample, the childhood emotional abuse-hopelessness link was mediated by existential well-being and positive self-esteem, as well as by the two-mediator path of emotional abuse on existential well-being on self-esteem on hopelessness. Results suggested that existential well-being may be a more salient protective factor for hopelessness than religious well-being among abused, suicidal African American women who experienced childhood emotional abuse. Findings highlight the value of culturally relevant strategies for enhancing existential well-being and self-esteem in this at-risk population to reduce their vulnerability to feelings of hopelessness. Copyright © 2013 Elsevier Ltd. All rights reserved.
Breshears, Laura M; Gillman, Aaron N; Stach, Christopher S; Schlievert, Patrick M; Peterson, Marnie L
2016-01-01
Secreted factors of Staphylococcus aureus can activate host signaling from the epidermal growth factor receptor (EGFR). The superantigen toxic shock syndrome toxin-1 (TSST-1) contributes to mucosal cytokine production through a disintegrin and metalloproteinase (ADAM)-mediated shedding of EGFR ligands and subsequent EGFR activation. The secreted hemolysin, α-toxin, can also induce EGFR signaling and directly interacts with ADAM10, a sheddase of EGFR ligands. The current work explores the role of EGFR signaling in menstrual toxic shock syndrome (mTSS), a disease mediated by TSST-1. The data presented show that TSST-1 and α-toxin induce ADAM- and EGFR-dependent cytokine production from human vaginal epithelial cells. TSST-1 and α-toxin also induce cytokine production from an ex vivo porcine vaginal mucosa (PVM) model. EGFR signaling is responsible for the majority of IL-8 production from PVM in response to secreted toxins and live S. aureus. Finally, data are presented demonstrating that inhibition of EGFR signaling with the EGFR-specific tyrosine kinase inhibitor AG1478 significantly increases survival in a rabbit model of mTSS. These data indicate that EGFR signaling is critical for progression of an S. aureus exotoxin-mediated disease and may represent an attractive host target for therapeutics.
Reconstitution of active human core Mediator complex reveals a pivotal role of the MED14 subunit
Cevher, Murat A.; Shi, Yi; Li, Dan; Chait, Brian T.; Malik, Sohail; Roeder, Robert G.
2014-01-01
The evolutionarily conserved Mediator complex is a critical coactivator for RNA polymerase II (Pol II)-mediated transcription. Here, we report the reconstitution of a functional 15-subunit human core Mediator complex and its characterization by functional assays and chemical cross-linking coupled to mass spectrometry (CX-MS). Whereas the reconstituted head and middle modules can stably associate, only with incorporation of MED14 into the bi-modular complex does it acquire basal and coactivator functions. This results from a dramatically enhanced ability of MED14-containing complexes to associate with Pol II. Altogether, our analyses identify MED14 as both an architectural and a functional backbone of the Mediator complex. We further establish a conditional requirement for metazoan-specific MED26 that becomes evident in the presence of heterologous nuclear factors. This general approach paves the way for systematically dissecting the multiple layers of functionalities associated with the Mediator complex. PMID:25383669
Roitman, Yaakov; Gilboa-Schechtman, Eva
2014-07-01
According to Rapee (1997), maternal social anxiety (SA) is directly associated with adolescent SA because maternal SA causes overprotective and controlling parental behavior. A total of 127 adolescents who were in the process of transitioning to a boarding school for at-risk youth as well as their mothers participated in the current study, 30% of the adolescents had experienced at least one depressive episode; 17.5% had been diagnosed with SA. We analyzed an expanding model of mediation, of maternal SA and depression in which specifically, adolescent self-perception was constructed as a latent factor that was formed by self-reported dominance and self-criticism. The results supported our hypotheses that maternal SA is not directly associated with adolescent SA. Rather, these relationships are mediated by adolescents' self-perception (i.e., dominance and self-criticism). The results call into question Rapee's theoretical arguments and support Gilbert's evolutionary theory. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
School Motivation and High School Dropout: The Mediating Role of Educational Expectation
ERIC Educational Resources Information Center
Fan, Weihua; Wolters, Christopher A.
2014-01-01
Background: A good deal of evidence indicates that students' motivational beliefs and attitudes play a critical role in their academic success. Research studies on how motivational factors may help determine whether students remain in high school or drop out, however, are relatively few. More specifically, there is a lack of research…
Body Image as a Mediator of Non-Suicidal Self-Injury in Adolescents
ERIC Educational Resources Information Center
Muehlenkamp, Jennifer J.; Brausch, Amy M.
2012-01-01
Attitudes towards the body have been largely overlooked as a potential risk factor for adolescent non-suicidal self-injury (NSSI) despite theorizing that a negative body image may play a critical role in the development of this behavior. The current study used structural equation modeling to evaluate the fit of a theoretical model specifying body…
Hamilton, J Paul; Chen, Michael C; Waugh, Christian E; Joormann, Jutta; Gotlib, Ian H
2015-04-01
Assessing neural commonalities and differences among depression, anxiety and their comorbidity is critical in developing a more integrative clinical neuroscience and in evaluating currently debated categorical vs dimensional approaches to psychiatric classification. Therefore, in this study, we sought to identify patterns of anomalous neural responding to criticism and praise that are specific to and common among major depressive disorder (MDD), social anxiety disorder (SAD) and comorbid MDD-SAD. Adult females who met formal diagnostic criteria for MDD, SAD or MDD-SAD and psychiatrically healthy participants underwent functional magnetic resonance imaging as they listened to statements directing praise or criticism at them or at another person. MDD groups showed reduced responding to praise across a distributed cortical network, an effect potentially mediated by thalamic nuclei undergirding arousal-mediated attention. SAD groups showed heightened anterior insula and decreased default-mode network response to criticism. The MDD-SAD group uniquely showed reduced responding to praise in the dorsal anterior cingulate cortex. Finally, all groups with psychopathology showed heightened response to criticism in a region of the superior frontal gyrus implicated in attentional gating. The present results suggest novel neural models of anhedonia in MDD, vigilance-withdrawal behaviors in SAD, and poorer outcome in MDD-SAD. Importantly, in identifying unique and common neural substrates of MDD and SAD, these results support a formulation in which common neural components represent general risk factors for psychopathology that, due to factors that are present at illness onset, lead to distinct forms of psychopathology with unique neural signatures. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Individual Differences in Memory Search and Their Relation to Intelligence
Healey, M. Karl; Crutchley, Patrick; Kahana, Michael J.
2014-01-01
Attempts to understand why memory predicts intelligence have not fully leveraged state-of-the-art measures of recall dynamics. Using data from a multi–session free recall study we examine individual differences in measures of recall initiation and post–initiation transitions. We identify four sources of variation: a recency factor reflecting variation in the tendency to initiate recall from an item near the end of the list, a primacy factor reflecting a tendency to initiate from the beginning of the list, a temporal factor corresponding to transitions mediated by temporal associations, and a semantic factor corresponding to semantically–mediated transitions. Together these four factors account for 83% of the variability in overall recall accuracy, suggesting they provide a nearly complete picture of recall dynamics. We also show that these sources of variability account for over 80% of the variance shared between memory and intelligence. The temporal association factor was the most influential in predicting both recall accuracy and intelligence. We outline a theory of how controlled drift of temporal context may be critical across a range of cognitive activities. PMID:24730719
Paracrine regulation of matrix metalloproteinase expression in the normal human endometrium.
Osteen, K G; Keller, N R; Feltus, F A; Melner, M H
1999-01-01
Endometrial expression of matrix metalloproteinase (MMP)-3, MMP-7 and MMP-11 occurs during menstrual breakdown and subsequent estrogen-mediated growth, but not during the secretory phase. These enzymes are suppressed by progesterone treatment. Paracrine factors, including transforming growth factor-beta (TGF-beta) and retinoic acid, are also critical for MMP regulation in the endometrium. In contrast, inflammatory cytokines such as interleukin-1alpha may block or interfere with steroid-mediated MMP regulation at ectopic sites of growth. Using in vitro models, our laboratory has investigated the complex interactions between progesterone and locally produced cytokines that may affect MMP expression during the development of endometriosis. Our results indicate that targeting the regulation of MMPs may represent an appropriate therapeutic strategy for the treatment of endometriosis. Copyrightz1999S. KargerAG,Basel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee
Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes,more » SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL−17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL−17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti−CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. - Highlights: • Psoriasis-like skin inflammation increase dermal mast cells. • Keratinocyte produce stem cell factor in psoriasis-like skin inflammation. • Keratinocyte promote mast cell proliferation by stem cell factor dependent manner.« less
Expanding beyond individualism: Engaging critical perspectives on occupation.
Gerlach, Alison J; Teachman, Gail; Laliberte-Rudman, Debbie; Aldrich, Rebecca M; Huot, Suzanne
2018-01-01
Perspectives that individualize occupation are poorly aligned with socially responsive and transformative occupation-focused research, education, and practice. Their predominant use in occupational therapy risks the perpetuation, rather than resolution, of occupational inequities. In this paper, we problematize taken-for-granted individualistic analyses of occupation and illustrate how critical theoretical perspectives can reveal the ways in which structural factors beyond an individual's immediate control and environment shape occupational possibilities and occupational engagement. Using a critically reflexive approach, we draw on three distinct qualitative research studies to examine the potential of critical theorizing for expanding beyond a reliance on individualistic analyses and practices. Our studies highlight the importance of addressing the socio-historical and political contexts of occupation and demonstrate the contribution of critical perspectives to socially responsive occupational therapy. In expanding beyond individualistic analyses of occupation, critical perspectives advance research and practices towards addressing socio-political mediators of occupational engagement and equity.
Ke, Fang; Zhang, Lingyun; Liu, Zhaoyuan; Yan, Sha; Xu, Zhenyao; Bai, Jing; Zhu, Huiyuan; Lou, Fangzhou; Cai, Wei; Sun, Yang; Gao, Yuanyuan; Wang, Hong
2016-01-01
T helper 17 (Th17) cells play an important role in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Th17 cell differentiation from naïve T cells can be induced in vitro by the cytokines transforming growth factor β1 and interleukin-6. However, it remains unclear whether other regulatory factors control the differentiation of Th17 cells. Mesenchymal stem cells (MSCs) have emerged as a promising candidate for inhibiting Th17 cell differentiation and autoimmune diseases. Despite the fact that several molecules have been linked to the immunomodulatory function of MSCs, many other key MSC-secreted regulators that are involved in inhibiting Th17 cell polarization are ill-defined. In this study, we demonstrated that the intraperitoneal administration of skin-derived MSCs (S-MSCs) substantially ameliorated the development of EAE in mice. We found that the proinflammatory cytokine tumor necrosis factor (TNF)-α, a key mediator in the pathophysiology of MS and EAE, was capable of promoting Th17 cell differentiation. Moreover, under inflammatory conditions, we demonstrated that S-MSCs produced high amounts of soluble TNF receptor 1 (sTNFR1), which binds TNF-α and antagonizes its function. Knockdown of sTNFR1 in S-MSCs decreased their inhibitory effect on Th17 cell differentiation ex vivo and in vivo. Thus, our data identified sTNFR1 and its target TNF-α as critical regulators for Th17 cell differentiation, suggesting a previously unrecognized mechanism for MSC therapy in Th17-mediated autoimmune diseases. Significance This study showed that administration of skin-derived mesenchymal stem cells (S-MSCs) was able to alleviate the clinical score of experimental autoimmune encephalomyelitis by inhibiting the differentiation of T helper 17 (Th17) cells. Tumor necrosis factor (TNF)-α is a critical cytokine for promoting Th17 cell differentiation. It was discovered that activated S-MSCs produced high amount of soluble TNF receptor 1 (sTNFR1), which neutralized TNF-α and inhibited Th17 cell polarization. The data identified S-MSC-secreted sTNFR1 and its target TNF-α as essential regulators for Th17 cell differentiation and revealed a novel mechanism underlying MSC-mediated immunomodulatory function in autoimmunity. PMID:26819253
Sublytic complement protects prostate cancer cells from tumour necrosis factor-α-induced cell death.
Liu, L; Li, W; Li, Z; Kirschfink, M
2012-08-01
Inflammation is a critical component of tumour progression. Although complement and tumour necrosis factor (TNF)-α potentially exert significant anti-tumour effects, both mediators may also promote tumour progression. It has been demonstrated that sublytic complement confers resistance on tumour cells not only against lytic complement, but also other danger molecules such as perforin. In low concentrations, TNF promotes survival of malignant cells rather than exerting cytotoxic activity. In this study, we tested if sublytic complement is able to interfere with TNF-mediated tumour cell killing. Our results demonstrate that either subcytotoxic concentrations of TNF or sublytic complement rescue prostate carcinoma cells (DU145) from TNF-α-mediated cell death. Upon pretreatment with low-dose TNF-α, but not upon pre-exposure to sublytic complement, TNF resistance was associated with the down-regulation of TNF receptor 1 (TNF-R1) expression. Complement-induced protection against TNF-mediated apoptosis accompanied the induction of anti-apoptotic proteins [B cell leukaemia/lymphoma (Bcl)-2 and Bcl-xL] at an early stage followed by inhibition of the TNF-induced decrease in the amount of Bcl-2 and Bcl-xL. Cell protection also accompanied the inhibition of caspase-8 activation, poly (ADP-ribose) polymerase (PARP)-1 cleavage and the activation of nuclear factor (NF)-κB. Our data extend our current view on the induction of tumour cell resistance against cytotoxic mediators supporting the role of the tumour microenvironment in mediating protection against the anti-cancer immune response. © 2012 The Authors. Clinical and Experimental Immunology © 2012 British Society for Immunology.
Roles of EDR1 in non-host resistance of Arabidopsis.
Hiruma, Kei; Takano, Yoshitaka
2011-11-01
Entry control of Arabidopsis thaliana against non-adapted powdery mildews largely depends on the PEN1 secretion pathway and the PEN2-PEN3 antifungal metabolite pathway, and is critical for non-host resistance. In a recent study, we reported that ENHANCED DISEASE RESISTANCE 1 (EDR1) plays a role in entry control against a non-adapted anthracnose fungus, which exhibits an infection style distinct from that of powdery mildews. Results obtained using edr1 pen2 double mutants indicate that the contribution of EDR1 to non-host resistance is independent of that of the PEN2-mediated defence pathway. Comparative transcript profiling revealed that EDR1 is critical for expression of four plant defensin genes. The MYC2-encoded transcription factor represses defensin expression. Inactivation of MYC fully restored defensin expression in edr1 mutants, implying that EDR1 cancels MYC2 function to regulate defensin expression. These findings indicate that EDR1 exerts a critical role in non-host resistance, in part by inducing antifungal peptide expression via interference in MYC2-mediated repressor function.
p62 regulates CD40-mediated NFκB activation in macrophages through interaction with TRAF6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibold, Kristina; Ehrenschwender, Martin, E-mail: martin.ehrenschwender@ukr.de
CD40 is a member of the tumor necrosis factor (TNF) receptor family. Activation-induced recruitment of adapter proteins, so-called TNF-receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40 triggers signaling cascades important in the immune system, but has also been associated with excessive inflammation in diseases such as atherosclerosis and rheumatoid arthritis. Especially, pro-inflammatory nuclear factor κB (NFκB) signaling emanating from CD40-associated TRAF6 appears to be a key pathogenic driving force. Consequently, targeting the CD40-TRAF6 interaction is emerging as a promising therapeutic strategy, but the underlying molecular machinery of this signaling axis is to date poorly understood. Here, we identified themore » multifunctional adaptor protein p62 as a critical regulator in CD40-mediated NFκB signaling via TRAF6. CD40 activation triggered formation of a TRAF6-p62 complex. Disturbing this interaction tremendously reduced CD40-mediated NFκB signaling in macrophages, while TRAF6-independent signaling pathways remained unaffected. This highlights p62 as a potential target in hyper-inflammatory, CD40-associated pathologies. - Highlights: • CD40 activation triggers interaction of the adapter protein TRAF6 with p62. • TRAF6-p62 interaction regulates CD40-mediated NFκB signaling in macrophages. • Defective TRAF6-p62 interaction reduces CD40-mediated NFκB activation in macrophages.« less
Zhang, J; Jing, Y; Li, Y N; Zhou, L; Wang, B M
2016-09-20
Hepatocyte death mainly includes apoptosis and necrosis and is a critical process in the pathophysiological mechanism of liver injury caused by various reasons. Recent studies have shown that key regulatory molecules in the inhibition of apoptosis such as caspase cannot be used as targets for inhibiting disease progression in clinical practice. In recent years, programmed necrosis mediated by receptor-interacting protein 3(RIP3)becomes a new hot research topic. It not only plays an important role in inducing inflammatory response, but also is closely regulated by intracellular signal factors, and it is a type of active cell death which can be interfered with. Compared with apoptosis, programmed necrosis is accompanied by the release of various inflammatory factors, which significantly affects local immune microenvironment. RIP3-mediated programmed necrosis has been taken seriously in many diseases. Although its mechanism of action in liver disease remains unclear, the results of recent studies confirmed its important role in the development of liver disease. This article reviews the research advances in the role of RIP3-mediated programmed necrosis signaling pathway in liver disease of various causes and investigates the possibility of RIP3-mediated programmed necrosis as a new target in the treatment of liver disease.
Educational Leadership in Hong Kong Schools, 1950-2000: Critical Reflections on Changing Themes
ERIC Educational Resources Information Center
Evers, Colin W.; Katyal, Kokila
2008-01-01
As a former colony, Hong Kong's education system has been powerfully influenced by ideas from the West. However, these influences have been mediated by a number of factors of contingency--the most important of which is culture--which shapes implementation, particularly of what counts as successful practice. The aim of this paper is to trace the…
An HDAC3-PROX1 corepressor module acts on HNF4α to control hepatic triglycerides.
Armour, Sean M; Remsberg, Jarrett R; Damle, Manashree; Sidoli, Simone; Ho, Wesley Y; Li, Zhenghui; Garcia, Benjamin A; Lazar, Mitchell A
2017-09-15
The histone deacetylase HDAC3 is a critical mediator of hepatic lipid metabolism, and liver-specific deletion of HDAC3 leads to fatty liver. To elucidate the underlying mechanism, here we report a method of cross-linking followed by mass spectrometry to define a high-confidence HDAC3 interactome in vivo that includes the canonical NCoR-HDAC3 complex as well as Prospero-related homeobox 1 protein (PROX1). HDAC3 and PROX1 co-localize extensively on the mouse liver genome, and are co-recruited by hepatocyte nuclear factor 4α (HNF4α). The HDAC3-PROX1 module controls the expression of a gene program regulating lipid homeostasis, and hepatic-specific ablation of either component increases triglyceride content in liver. These findings underscore the importance of specific combinations of transcription factors and coregulators in the fine tuning of organismal metabolism.HDAC3 is a critical mediator of hepatic lipid metabolism and its loss leads to fatty liver. Here, the authors characterize the liver HDAC3 interactome in vivo, provide evidence that HDAC3 interacts with PROX1, and show that HDAC3 and PROX1 control expression of genes regulating lipid homeostasis.
Wang, Yan; Xu, Jun
2017-01-01
APE1 is a multifunctional protein with a DNA base excision repair function in its C-terminal domain and a redox activity in its N-terminal domain. The redox function of APE1 converts certain transcription factors from inactive oxidized to active reduced forms. Given that among the APE1-regulated transcription factors many are critical for KSHV replication and pathogenesis, we investigated whether inhibition of APE1 redox function blocks KSHV replication and Kaposi’s sarcoma (KS) phenotypes. With an shRNA-mediated silencing approach and a known APE-1 redox inhibitor, we demonstrated that APE1 redox function is indeed required for KSHV replication as well as KSHV-induced angiogenesis, validating APE1 as a therapeutic target for KSHV-associated diseases. A ligand-based virtual screening yielded a small molecular compound, C10, which is proven to bind to APE1. C10 exhibits low cytotoxicity but efficiently inhibits KSHV lytic replication (EC50 of 0.16 μM and selective index of 165) and KSHV-mediated pathogenic phenotypes including cytokine production, angiogenesis and cell invasion, demonstrating its potential to become an effective drug for treatment of KS. PMID:28380040
Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS.
Zepeda, Andrea B; Pessoa, Adalberto; Castillo, Rodrigo L; Figueroa, Carolina A; Pulgar, Victor M; Farías, Jorge G
2013-08-01
Reactive oxygen species such as superoxide anion radicals (O2 (-) ) and hydrogen peroxide (H2 O2 ) have for long time been recognized as undesirable by-products of the oxidative mitochondrial generation of adenosine triphosphate (ATP). Recently, these highly reactive species have been associated to important signaling pathways in diverse physiological conditions such as those activated in hypoxic microenvironments. The molecular response to hypoxia requires fast-acting mechanisms acting within a wide range of partial pressures of oxygen (O2 ). Intracellular O2 sensing is an evolutionary preserved feature, and the best characterized molecular responses to hypoxia are mediated through transcriptional activation. The transcription factor, hypoxia-inducible factor 1 (HIF-1), is a critical mediator of these adaptive responses, and its activation by hypoxia involves O2 -dependent posttranslational modifications and nuclear translocation. Through the induction of the expression of its target genes, HIF-1 coordinately regulates tissue O2 supply and energetic metabolism. Other transcription factors such as nuclear factor κB are also redox sensitive and are activated in pro-oxidant and hypoxic conditions. The purpose of this review is to summarize new developments in HIF-mediated O2 sensing mechanisms and their interactions with reactive oxygen species-generating pathways in normal and abnormal physiology. Copyright © 2013 John Wiley & Sons, Ltd.
Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy.
Yamaguchi, Shintaro; Yoshino, Jun
2017-05-01
Nicotinamide adenine dinucleotide (NAD + ) biosynthetic pathway, mediated by nicotinamide phosphoribosyltransferase (NAMPT), a key NAD + biosynthetic enzyme, plays a pivotal role in controlling many biological processes, such as metabolism, circadian rhythm, inflammation, and aging. Over the past decade, NAMPT-mediated NAD + biosynthesis, together with its key downstream mediator, namely the NAD + -dependent protein deacetylase SIRT1, has been demonstrated to regulate glucose and lipid metabolism in a tissue-dependent manner. These discoveries have provided novel mechanistic and therapeutic insights into obesity and its metabolic complications, such as insulin resistance, an important risk factor for developing type 2 diabetes and cardiovascular disease. This review will focus on the importance of adipose tissue NAMPT-mediated NAD + biosynthesis and SIRT1 in the pathophysiology of obesity and insulin resistance. We will also critically explore translational and clinical aspects of adipose tissue NAD + biology. © 2017 WILEY Periodicals, Inc.
New insights into the pathways initiating and driving pancreatitis
Gukovskaya, Anna S.; Pandol, Stephen J.; Gukovsky, Ilya
2016-01-01
Purpose of review In this article, we discuss recent studies that advance our understanding of molecular and cellular factors initiating and driving pancreatitis, with the emphasis on the role of acinar cell organelle disorders. Recent findings The central physiologic function of the pancreatic acinar cell – to synthesize, store, and secrete digestive enzymes – critically relies on coordinated actions of the endoplasmic reticulum (ER), the endolysosomal system, mitochondria, and autophagy. Recent studies begin to unravel the roles of these organelles’ disordering in the mechanism of pancreatitis. Mice deficient in key autophagy mediators Atg5 or Atg7, or lysosome-associated membrane protein-2, exhibit dysregulation of multiple signaling and metabolic pathways in pancreatic acinar cells and develop spontaneous pancreatitis. Mitochondrial dysfunction caused by sustained opening of the permeability transition pore is shown to mediate pancreatitis in several clinically relevant experimental models, and its inhibition by pharmacologic or genetic means greatly reduces local and systemic pathologic responses. Experimental pancreatitis is also alleviated with inhibitors of ORAI1, a key component of the plasma membrane channel mediating pathologic rise in acinar cell cytosolic Ca2+. Pancreatitis-promoting mutations are increasingly associated with the ER stress. These findings suggest novel pathways and drug targets for pancreatitis treatment. In addition, the recent studies identify new mediators (e.g., neutrophil extracellular traps) of the inflammatory and other responses of pancreatitis. Summary The recent findings illuminate a critical role of organelles regulating the autophagic, endolysosomal, mitochondrial, and ER pathways in maintaining pancreatic acinar cell homeostasis and secretory function; provide compelling evidence that organelle disordering is a key pathogenic mechanism initiating and driving pancreatitis; and identify molecular and cellular factors that could be targeted to restore organellar functions and thus alleviate or treat pancreatitis. PMID:27428704
Tumor Necrosis Factor-α, a Regulator and Therapeutic Agent on Breast Cancer.
Liu, Dongwu; Wang, Xiaoqian; Chen, Zhiwei
2016-01-01
The cell-mediated immunity and cytotoxic agents play a significant role on tumor cell apoptosis. Tumor necrosis factor-α (TNF-α) is an intricate linker between inflammation and cancer through mediating the process of apoptosis and cell-mediated immunity. A variety of evidences have confirmed the critical role of TNF-α on tumor migration, proliferation, matrix degradation, tumor metastasis, invasion, and angiogenesis. Through binding to receptors, TNF-α participates in activating multiple cell signaling cascades that link inflammation, survival and evolution towards breast cancer. TNF-α is an important agent for tumor biotherapy, but its clinical application is limited for its severe fatal systemic toxicity. The poly-lactic acid microspheres (PLAM) with intratumoral cytokine release hold tremendous potential for the immunotherapy of breast cancer, and TNF-α antagonists may offer therapeutic potential in solid tumors. In addition, TNF-α is related with the blockage of estrogen and progesterone receptors. For breast cancer treatment, it is necessary to understand the molecular signaling pathways that mediate TNF-α and the aggressive behavior of negative breast cancer. The aim of present review is to summarize the effect of TNF-α on breast cancer cells.
Zhen, Rui; Quan, Lijuan; Yao, Benxian; Zhou, Xiao
2016-01-01
Posttraumatic stress disorder (PTSD) is prevalent among adolescents following natural disasters, and the trauma experiences represent a critical risk factor for PTSD. Nevertheless, the underlying mechanism of adolescents' PTSD following trauma experiences remains unclear. Rumination appears to be a mediating factor between trauma experiences and PTSD, and social support may moderate this mediating relationship between trauma experiences, rumination, and PTSD, but few studies have examined these assumptions. Thus, this study aimed to assess the mediating role of rumination and the moderating role of social support in the relationship between rainstorm-related experiences and PTSD among adolescents, following a rainstorm in China. Nine hundred and fifty-one middle school students completed self-report questionnaires, and structural equation modeling was conducted to examine the potential moderated mediation effect. Rainstorm-related experiences had a direct and positive effect on PTSD, and also indirectly influenced PTSD via rumination. Moreover, social support work to buffer the direct effect of rainstorm-related experiences on PTSD, but not the effect of rumination on PTSD. Implications for clinical practice and research are discussed along with study limitations.
Zhen, Rui; Quan, Lijuan; Yao, Benxian; Zhou, Xiao
2016-01-01
Posttraumatic stress disorder (PTSD) is prevalent among adolescents following natural disasters, and the trauma experiences represent a critical risk factor for PTSD. Nevertheless, the underlying mechanism of adolescents’ PTSD following trauma experiences remains unclear. Rumination appears to be a mediating factor between trauma experiences and PTSD, and social support may moderate this mediating relationship between trauma experiences, rumination, and PTSD, but few studies have examined these assumptions. Thus, this study aimed to assess the mediating role of rumination and the moderating role of social support in the relationship between rainstorm-related experiences and PTSD among adolescents, following a rainstorm in China. Nine hundred and fifty-one middle school students completed self-report questionnaires, and structural equation modeling was conducted to examine the potential moderated mediation effect. Rainstorm-related experiences had a direct and positive effect on PTSD, and also indirectly influenced PTSD via rumination. Moreover, social support work to buffer the direct effect of rainstorm-related experiences on PTSD, but not the effect of rumination on PTSD. Implications for clinical practice and research are discussed along with study limitations. PMID:27695436
Resetting the transcription factor network reverses terminal chronic hepatic failure
Nishikawa, Taichiro; Bell, Aaron; Brooks, Jenna M.; Setoyama, Kentaro; Melis, Marta; Han, Bing; Fukumitsu, Ken; Handa, Kan; Tian, Jianmin; Kaestner, Klaus H.; Vodovotz, Yoram; Locker, Joseph; Soto-Gutierrez, Alejandro; Fox, Ira J.
2015-01-01
The cause of organ failure is enigmatic for many degenerative diseases, including end-stage liver disease. Here, using a CCl4-induced rat model of irreversible and fatal hepatic failure, which also exhibits terminal changes in the extracellular matrix, we demonstrated that chronic injury stably reprograms the critical balance of transcription factors and that diseased and dedifferentiated cells can be returned to normal function by re-expression of critical transcription factors, a process similar to the type of reprogramming that induces somatic cells to become pluripotent or to change their cell lineage. Forced re-expression of the transcription factor HNF4α induced expression of the other hepatocyte-expressed transcription factors; restored functionality in terminally diseased hepatocytes isolated from CCl4-treated rats; and rapidly reversed fatal liver failure in CCl4-treated animals by restoring diseased hepatocytes rather than replacing them with new hepatocytes or stem cells. Together, the results of our study indicate that disruption of the transcription factor network and cellular dedifferentiation likely mediate terminal liver failure and suggest reinstatement of this network has therapeutic potential for correcting organ failure without cell replacement. PMID:25774505
Silberman, Yuval; Winder, Danny G
2015-05-01
The central amygdala is a critical brain region for many aspects of alcohol dependence. Much of the work examining the mechanisms by which the central amygdala mediates the development of alcohol dependence has focused on the interaction of acute and chronic ethanol with central amygdala corticotropin releasing factor signaling. This work has led to a great deal of success in furthering the general understanding of central amygdala neurocircuitry and its role in alcohol dependence. Much of this work has primarily focused on the hypothesis that ethanol utilizes endogenous corticotropin releasing factor signaling to upregulate inhibitory GABAergic transmission in the central amygdala. Work that is more recent suggests that corticotropin releasing factor also plays an important role in mediating anxiety-like behaviors via the enhancement of central amygdala glutamatergic transmission, implying that ethanol/corticotropin releasing factor interactions may modulate excitatory neurotransmission in this brain region. In addition, a number of studies utilizing optogenetic strategies or transgenic mouse lines have begun to examine specific central amygdala neurocircuit dynamics and neuronal subpopulations to better understand overall central amygdala neurocircuitry and the role of neuronal subtypes in mediating anxiety-like behaviors. This review will provide a brief update on this literature and describe some potential future directions that may be important for the development of better treatments for alcohol addiction. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Bingjie; McHugh, Brian J; Qureshi, Ayub; Campopiano, Dominic J; Clarke, David J; Fitzgerald, J Ross; Dorin, Julia R; Weller, Richard; Davidson, Donald J
2017-01-01
Atopic dermatitis (AD) is a common chronic inflammatory skin disease that results in significant morbidity. A hallmark of AD is disruption of the critical barrier function of upper epidermal layers, causatively linked to environmental stimuli, genetics, and infection, and a critical current target for the development of new therapeutic and prophylactic interventions. Staphylococcus aureus is an AD-associated pathogen producing virulence factors that induce skin barrier disruption in vivo and contribute to AD pathogenesis. We show, using immortalized and primary keratinocytes, that S. aureus protease SspA/V8 is the dominant secreted factor (in laboratory and AD clinical strains of S. aureus) inducing barrier integrity impairment and tight junction damage. V8-induced integrity damage was inhibited by an IL-1β-mediated mechanism, independent of effects on claudin-1. Induction of keratinocyte expression of the antimicrobial/host defense peptide human β-defensin 2 (hBD2) was found to be the mechanism underpinning this protective effect. Endogenous hBD2 expression was required and sufficient for protection against V8 protease-mediated integrity damage, and exogenous application of hBD2 was protective. This modulatory property of hBD2, unrelated to antibacterial effects, gives new significance to the defective induction of hBD2 in the barrier-defective skin lesions of AD and indicates therapeutic potential. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Inhibition of IRF8 Negatively Regulates Macrophage Function and Impairs Cutaneous Wound Healing.
Guo, Yuanyuan; Yang, Zhiyin; Wu, Shan; Xu, Peng; Peng, Yinbo; Yao, Min
2017-02-01
The inflammatory response is essential for normal cutaneous wound healing. Macrophages, as critical inflammatory cells, coordinate inflammation and angiogenesis phases during wound healing. It has been reported that the transcription factor interferon regulatory factor 8 (IRF8), a member of the IRF family, plays a critical role in the development and function of macrophages and is associated with inflammation. However, the role of IRF8 in cutaneous wound healing and its underlying mechanism remain elusive. Through immunohistochemical (IHC) staining, we showed that IRF8 is involved in the wound repair process in mice and patients. Furthermore, we ascertain that the repression of IRF8 by small interfering RNA (siRNA) leads to delayed wound healing. To explore the mechanism by which IRF8 impacts wound healing, we observed its effect on macrophage-related mediators by IHC or real-time PCR. The results demonstrated that the inhibition of IRF8 decreases the mRNA expression of inflammatory mediators associated with M1 macrophage (il-1b, il-6, inos, and tnf-a) but no impact on M2 macrophage-related mediators (arg-1, mrc-1, and il-10) and the number of macrophages in the wounds. Furthermore, the inhibition of IRF8 induced apoptosis in the wounds. In summary, this study demonstrates that the down-regulation of IRF8 in the wound leads to impaired wound healing possibly through the regulation of macrophage function and apoptosis in skin wound.
Howard, George; Cushman, Mary; Kissela, Brett M; Kleindorfer, Dawn O; McClure, Leslie A; Safford, Monika M; Rhodes, J David; Soliman, Elsayed Z; Moy, Claudia S; Judd, Suzanne E; Howard, Virginia J
2011-12-01
Black/white disparities in stroke incidence are well documented, but few studies have assessed the contributions to the disparity. Here we assess the contribution of "traditional" risk factors. A total of 25 714 black and white men and women, aged≥45 years and stroke-free at baseline, were followed for an average of 4.4 years to detect stroke. Mediation analysis using proportional hazards analysis assessed the contribution of traditional risk factors to racial disparities. At age 45 years, incident stroke risk was 2.90 (95% CI: 1.72-4.89) times more likely in blacks than in whites and 1.66 (95% CI: 1.34-2.07) times at age 65 years. Adjustment for risk factors attenuated these excesses by 40% and 45%, respectively, resulting in relative risks of 2.14 (95% CI: 1.25-3.67) and 1.35 (95% CI: 1.08-1.71). Approximately one half of this mediation is attributable to systolic blood pressure. Further adjustment for socioeconomic factors resulted in total mediation of 47% and 53% to relative risks of 2.01 (95% CI: 1.16-3.47) and 1.30 (1.03-1.65), respectively. Between ages 45 to 65 years, approximately half of the racial disparity in stroke risk is attributable to traditional risk factors (primarily systolic blood pressure) and socioeconomic factors, suggesting a critical need to understand the disparity in the development of these traditional risk factors. Because half of the excess stroke risk in blacks is not attributable to traditional risk factors and socioeconomic factors, differential impact of risk factors, residual confounding, or nontraditional risk factors may also play a role.
Howard, George; Cushman, Mary; Kissela, Brett M.; Kleindorfer, Dawn O.; McClure, Leslie A.; Safford, Monika M.; Rhodes, J. David; Soliman, Elsayed Z.; Moy, Claudia S.; Judd, Suzanne E.; Howard, Virginia J.
2011-01-01
Background and Purpose Black/white disparities in stroke incidence are well-documented, but few studies have assessed the contributions to the disparity. Here we assess the contribution of “traditional” risk factors. Methods 25,714 black and white men and women, aged 45+ and stroke-free at baseline were followed for an average of 4.4 years to detect stroke. Mediation analysis employing proportional hazards analysis assessed the contribution of “traditional” risk factors to racial disparities. Results At age 45, incident stroke risk was 2.90 (95% CI: 1.72 – 4.89) times more likely in blacks than whites, and 1.66 (95% CI: 1.34 – 2.07) times at age 65. Adjustment for risk factors attenuated these excesses by 40% and 45%, respectively, resulting in relative risks of 2.14 (95% CI: 1.25 – 3.67) and 1.35 (95% CI: 1.08 – 1.71). Approximately one-half of this mediation is attributable to systolic blood pressure. Further adjustment for socioeconomic factors resulted in total mediation of 47% and 53% to relative risks of 2.01 (95% CI: 1.16 – 3.47) and 1.30 (1.03 – 1.65) respectively. Conclusions Between ages 45 to 65 years, approximately half of the racial disparity in stroke risk is attributable to traditional risk factors (primarily systolic blood pressure) and socioeconomic factors, suggesting a critical need to understand the disparity in the development of these traditional risk factors. Because half of the excess stroke risk in blacks is not attributable to traditional risk factors and socioeconomic factors, differential racial susceptibility to risk factors, residual confounding or non-traditional risk factors may also play a role. PMID:21960581
Identifying Cognitive and Interpersonal Predictors of Adolescent Depression
Auerbach, Randy P.; Ho, Moon Ho-Ringo; Kim, Judy C.
2014-01-01
Emerging research has begun to examine cognitive and interpersonal predictors of stress and subsequent depression in adolescents. This research is critical as cognitive and interpersonal vulnerability factors likely shape expectations, perspectives, and interpretations of a given situation prior to the onset of a stressor. In the current study, adolescents (n=157; boys=64, girls=93), ages 12 to 18, participated in a 6-month, multi-wave longitudinal study examining the impact of negative cognitive style, self-criticism, and dependency on stress and depression. Results of time-lagged, idiographic multilevel analyses indicate that depressogenic attributional styles (i.e., composite score and weakest link approach) and self-criticism predict dependent interpersonal, but not noninterpersonal stress. Moreover, the occurrence of stress mediates the relationship between cognitive vulnerability and depressive symptoms over time. At the same time, self-criticism predicts above and beyond depressogenic attributional styles (i.e., composite and weakest link approach). In contrast to our hypotheses, dependency does not contribute to the occurrence of stress, and additionally, no gender differences emerge. Taken together, the findings suggest that self-criticism may be a particularly damaging vulnerability factor in adolescence, and moreover, it may warrant greater attention in the context of psychotherapeutic interventions. PMID:24398789
NASA Astrophysics Data System (ADS)
Wijeratne, Sitara; Botello, Eric; Yeh, Hui-Chun; Zhou, Zhou; Bergeron, Angela; Frey, Eric; Moake, Joel; Dong, Jing-Fei; Kiang, Ching-Hwa
2011-10-01
Single-molecule manipulation allows us to study the real-time kinetics of complex cellular processes. The mechanochemistry of different forms of von Willebrand factor (VWF) and their receptor-ligand binding kinetics can be probed by atomic force microscopy (AFM). Since plasma VWF can be activated upon shear, the structural and functional properties of VWF that are critical in mediating thrombus formation become important. Here we characterized the mechanical resistance to domain unfolding of VWF to determine its conformational states. We found the shear-induced conformational changes, hence the mechanical property, can be detected by the change in unfolding forces. The relaxation rate of such effect is much longer than expected. Our results offer an insight in establishing strategies for regulating VWF adhesion activity, increasing our understanding of surface-induced thrombosis as mediated by VWF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Se Jeong; Gu, Dong Ryun; Center for Metabolic Function Regulation
2016-06-17
Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reducedmore » following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.« less
Cross-talk among HMGA1 and FoxO1 in control of nuclear insulin signaling.
Chiefari, Eusebio; Arcidiacono, Biagio; Palmieri, Camillo; Corigliano, Domenica Maria; Morittu, Valeria Maria; Britti, Domenico; Armoni, Michal; Foti, Daniela Patrizia; Brunetti, Antonio
2018-06-04
As a mediator of insulin-regulated gene expression, the FoxO1 transcription factor represents a master regulator of liver glucose metabolism. We previously reported that the high-mobility group AT-hook 1 (HMGA1) protein, a molecular switch for the insulin receptor gene, functions also as a downstream target of the insulin receptor signaling pathway, representing a critical nuclear mediator of insulin function. Here, we investigated whether a functional relationship existed between FoxO1 and HMGA1, which might help explain insulin-mediated gene transcription in the liver. To this end, as a model study, we investigated the canonical FoxO1-HMGA1-responsive IGFBP1 gene, whose hepatic expression is regulated by insulin. By using a conventional GST-pull down assay combined with co-immunoprecipitation and Fluorescence Resonance Energy Transfer (FRET) analyses, we provide evidence of a physical interaction between FoxO1 and HMGA1. Further investigation with chromatin immunoprecipitation, confocal microscopy, and Fluorescence Recovery After Photobleaching (FRAP) technology indicated a functional significance of this interaction, in both basal and insulin-stimulated states, providing evidence that, by modulating FoxO1 transactivation, HMGA1 is essential for FoxO1-induced IGFBP1 gene expression, and thereby a critical modulator of insulin-mediated FoxO1 regulation in the liver. Collectively, our findings highlight a novel FoxO1/HMGA1-mediated mechanism by which insulin may regulate gene expression and metabolism.
Mealer, Meredith; Jones, Jacqueline; Meek, Paula
2017-05-01
Job stress and cumulative exposure to traumatic events experienced by critical care nurses can lead to psychological distress and the development of burnout syndrome and posttraumatic stress disorder. Resilience can mitigate symptoms associated with these conditions. To identify factors that affect resilience and to determine if the factors have direct or indirect effects on resilience in development of posttraumatic stress disorder. Data from 744 respondents to a survey mailed to 3500 critical care nurses who were members of the American Association of Critical-Care Nurses were analyzed. Mplus was used to analyze a mediation model. Nurses who worked in any type of intensive care unit other than the medical unit and had high scores for resilience were 18% to 50% less likely to experience post-traumatic stress disorder than were nurses with low scores. Nurses with a graduate degree in nursing were 18% more likely to experience posttraumatic stress disorder than were nurses with a bachelor's degree. Because of their effects on resilience, working in a medical intensive care unit and having a graduate degree may influence the development of posttraumatic stress disorder. Future research is needed to better understand the impact of resilience on health care organizations, development of preventive therapies and treatment of posttraumatic stress disorder for critical care nurses, and the most appropriate mechanism to disseminate and implement strategies to address posttraumatic stress disorder. ©2017 American Association of Critical-Care Nurses.
Burnout and health among critical care professionals: The mediational role of resilience.
Arrogante, Oscar; Aparicio-Zaldivar, Eva
2017-10-01
To analyse the mediational role of resilience in relationships between burnout and health in critical care professionals; to determine relationships among resilience level, three burnout dimensions, and physical/mental health; and to establish demographic differences in psychological variables evaluated. Cross-sectional study. A total of 52 critical care professionals, mainly nurses, were recruited from an intensive care unit of Madrid (Spain). All participants were assessed with the questionnaires 10-item Connor-Davidson Resilience Scale, Maslach Burnout Inventory-Human Services Survey, and Short Form-12 Health Survey. No demographic differences were found. Three burnout dimensions were negatively associated with mental health and resilience. Mediational analyses revealed resilience mediated 1) the relationships between emotional exhaustion and depersonalisation with mental health (partial mediations) and 2) the relationship between personal accomplishment and mental health (total mediation). Resilience minimises and buffers the impact of negative outcomes of workplace stress on mental health of critical care professionals. As a result, resilience prevents the occurrence of burnout syndrome. Resilience improves not only their mental health, but also their ability to practice effectively. It is therefore imperative to develop resilience programs for critical care nurses in nursing schools, universities and health centres. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Sun-Ae; Song, Youngshin; Sim, Hee-Sook; Ahn, Eun-Kyong; Kim, Jung-Hee
2015-01-01
Despite the importance of critical thinking in clinical and educational settings, little is known about its role in evidence-based practice (EBP). This study examined whether critical thinking disposition (CTD) mediates the relationship between perceived barriers to research use and EBP in clinical nurses (N=409). A path diagram using structural equation modeling was used to estimate the direct and indirect effects of perceived barriers to research use on EBP, controlling for CTD as a mediator. CTD partially mediated the relationship between perceived barriers to research use and EBP. Furthermore, the hypothesized mediation model demonstrated an appropriate fit to the data. Individual and organizational efforts are needed to help nurses further improve their critical thinking skills. CTD is important as research barriers to engage effectively in EBP. Without the skills to evaluate evidence carefully, research utilization may be compromised.
ERIC Educational Resources Information Center
Pires, Paulo; Jenkins, Jennifer M.
2007-01-01
This study purports that parental rejection and warmth are critical to the development of adolescent drug use, and investigates a model that also considers children's vulnerability and deviant peer affiliations. It tests mediation through the proximal risk factor of deviant peers. Poisson growth curve modeling was used to examine participants from…
ERIC Educational Resources Information Center
O'Dwyer, Laura M.; Lee-St. John, Terrence; Raczek, Anastasia E.; Luna Bazaldua, Diego A.; Walsh, Mary
2016-01-01
Out-of-school factors can significantly impact students' readiness to learn and thrive in school. Research confirms that larger social structures and contexts beyond the school are critical, accounting for up to two-thirds of the variance in student achievement (Coleman et al., 1966; Rothstein, 2010; Phillips, Brooks-Gunn, Duncan, Klebanov, &…
Mobasheri, Ali; Henrotin, Yves; Biesalski, Hans-Konrad; Shakibaei, Mehdi
2012-01-01
Interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) are key cytokines that drive the production of inflammatory mediators and matrix-degrading enzymes in osteoarthritis (OA). These proinflammatory cytokines bind to their respective cell surface receptors and activate inflammatory signaling pathways culminating with the activation of nuclear factor κB (NF-κB), a transcription factor that can be triggered by a host of stress-related stimuli including, excessive mechanical stress and ECM degradation products. Once activated, NF-κB regulates the expression of many cytokines, chemokines, adhesion molecules, inflammatory mediators, and several matrix-degrading enzymes. Therefore, proinflammatory cytokines, their cell surface receptors, NF-κB and downstream signaling pathways are therapeutic targets in OA. This paper critically reviews the recent literature and outlines the potential prophylactic properties of plant-derived phytochemicals such as curcumin and resveratrol for targeting NF-κB signaling and inflammation in OA to determine whether these phytochemicals can be used as functional foods.
Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae
2011-01-01
Bartonella henselae, the agent of cat scratch disease and the vasculoproliferative disorders bacillary angiomatosis and peliosis hepatis, contains to date two groups of described pathogenicity factors: adhesins and type IV secretion systems. Bartonella adhesin A (BadA), the Trw system and possibly filamentous hemagglutinin act as promiscous or specific adhesins, whereas the virulence locus (Vir)B/VirD4 type IV secretion system modulates a variety of host cell functions. BadA mediates bacterial adherence to endothelial cells and extracellular matrix proteins and triggers the induction of angiogenic gene programming. The VirB/VirD4 type IV secretion system is responsible for, e.g., inhibition of host cell apoptosis, bacterial persistence in erythrocytes, and endothelial sprouting. The Trw-conjugation system of Bartonella spp. mediates host-specific adherence to erythrocytes. Filamentous hemagglutinins represent additional potential pathogenicity factors which are not yet characterized. The exact molecular functions of these pathogenicity factors and their contribution to an orchestral interplay need to be analyzed to understand B. henselae pathogenicity in detail. PMID:21489243
NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
Hawkins, Kate E.; Joy, Shona; Delhove, Juliette M.K.M.; Kotiadis, Vassilios N.; Fernandez, Emilio; Fitzpatrick, Lorna M.; Whiteford, James R.; King, Peter J.; Bolanos, Juan P.; Duchen, Michael R.; Waddington, Simon N.; McKay, Tristan R.
2016-01-01
Summary The potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα) activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation. PMID:26904936
Burns, John W; Gerhart, James; Post, Kristina M; Smith, David A; Porter, Laura S; Buvanendran, Asokumar; Fras, Anne Marie; Keefe, Francis J
2018-06-01
Spouse attributions regarding displays of pain behaviors by their partners with chronic pain may account for subsequent increases in spouse critical/hostile responses toward their partners. People with chronic low back pain (n = 105) and their pain-free spouses (n = 105) completed electronic diary measures five times per day for 14 consecutive days. Key items assessed spouse observations of patient pain behavior, attributions regarding these behaviors, and spouse critical/hostile responses toward patients. Results were: a) spouse observations of patient pain behavior at Time 1 predicted high levels of spouse critical/hostile responses toward the patient at Time 2; b) "internal" attributions (e.g., the patient was attempting to influence spouse's feelings) at Time 1 predicted high levels of spouse critical/hostile responses toward the patient at Time 2; c) internal attributions mediated links between spouse observed pain behaviors at Time 1 and levels of spouse critical/hostile responses at Time 2. Spouse observations of patient pain behavior was also related to an "external" attribution (i.e., patient pain behavior was due to pain condition), but this attribution was not a significant mediator. A vital factor linking spouse scrutiny to spouse critical/hostile responses may be the spouse's ascribed reasons for the patient's grimacing, bracing, complaining, and so forth. Results indicate that spouse internal and negative attributions for pain behaviors of their partners with chronic pain may influence subsequent spouse critical/hostile reactions to them. Findings suggest that replacing spouse internal and negative attributions with external, compassionate and accepting explanations may be useful therapeutic targets for couples coping with chronic pain. Copyright © 2018. Published by Elsevier Inc.
Feinson, Marjorie C; Hornik-Lurie, Tzipi
2016-12-01
Empirical studies have identified emotional abuse in childhood (CEA) as a risk factor with long-term implications for psychological problems. Indeed, recent studies indicate it is more prevalent than behavioral forms of abuse, (i.e. childhood sexual and physical abuse) and the childhood trauma most clearly associated with subsequent eating pathology in adulthood. However, relatively little is understood about the mechanisms linking these distal experiences. This study explores three psychological mechanisms - self-criticism (SC), depression and anxiety symptoms - as plausible mediators that may account for the relationship between CEA and binge eating (BE) among adult women. Detailed telephone interviews conducted with a community-based sample of 498 adult women (mean age 44) assess BE, CEA and SC along with the most frequently researched psychological variables, anxiety and depression. Regression analyses reveal that BE is partially explained by CEA along with the three mediators. Bootstrapping analysis, which compares multiple mediators within a single model using thousands of repeated random sampling observations from the data set, reveals a striking finding: SC is the only psychological variable that makes a significant contribution to explaining BE severity. The unique role of punitive self-evaluations vis-à-vis binge eating warrants additional research and, in the interim, that clinicians consider broadening treatment interventions accordingly. Copyright © 2016. Published by Elsevier Ltd.
Xie, Yilin; Su, Yingying; Tang, Jianxia; Goh, Bee Tin; Saigo, Leonardo; Zhang, Chunmei; Wang, Jinsong; Khojasteh, Arash; Wang, Songlin
2017-01-01
Antibody-mediated osseous regeneration (AMOR) has been introduced by our research group as a tissue engineering approach to capture of endogenous growth factors through the application of specific monoclonal antibodies (mAbs) immobilized on a scaffold. Specifically, anti-Bone Morphogenetic Protein- (BMP-) 2 mAbs have been demonstrated to be efficacious in mediating bone repair in a number of bone defects. The present study sought to investigate the application of AMOR for repair of mandibular continuity defect in nonhuman primates. Critical-sized mandibular continuity defects were created in Macaca fascicularis locally implanted with absorbable collagen sponges (ACS) functionalized with chimeric anti-BMP-2 mAb or isotype control mAb. 2D and 3D analysis of cone beam computed tomography (CBCT) imaging demonstrated increased bone density and volume observed within mandibular continuity defects implanted with collagen scaffolds functionalized with anti-BMP-2 mAb, compared with isotype-matched control mAb. Both CBCT imaging and histologic examination demonstrated de novo bone formation that was in direct apposition to the margins of the resected bone. It is hypothesized that bone injury may be necessary for AMOR. This is evidenced by de novo bone formation adjacent to resected bone margins, which may be the source of endogenous BMPs captured by anti-BMP-2 mAb, in turn mediating bone repair. PMID:28401163
Epidermal growth factor receptor and variant III targeted immunotherapy.
Congdon, Kendra L; Gedeon, Patrick C; Suryadevara, Carter M; Caruso, Hillary G; Cooper, Laurence J N; Heimberger, Amy B; Sampson, John H
2014-10-01
Immunotherapeutic approaches to cancer have shown remarkable promise. A critical barrier to successfully executing such immune-mediated interventions is the selection of safe yet immunogenic targets. As patient deaths have occurred when tumor-associated antigens shared by normal tissue have been targeted by strong cellular immunotherapeutic platforms, route of delivery, target selection and the immune-mediated approach undertaken must work together to maximize efficacy with safety. Selected tumor-specific targets can spare potential toxicity to normal tissue; however, they are far less common than tumor-associated antigens and may not be present on all patients. In the context of immunotherapy for high-grade glioma, 2 of the most prominently studied antigens are the tumor-associated epidermal growth factor receptor and its tumor-specific genetic deletion variant III. In this review, we will summarize the immune-mediated strategies employed against these targets as well as the caveats particular to these approaches. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Anderson, Per; Delgado, Mario
2008-01-01
Identification of the factors that regulate the immune tolerance and control the appearance of exacerbated inflammatory conditions is crucial for the development of new therapies of inflammatory and autoimmune diseases. Although much is known about the molecular basis of initiating signals and pro-inflammatory chemical mediators in inflammation, it has only recently become apparent that endogenous stop signals are critical at early checkpoints within the temporal events of inflammation. Some neuropeptides and lipid mediators that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that participate in the regulation of the processes that ensure self-tolerance and/or inflammation resolution. Here we examine the latest research findings, which indicate that neuropeptides participate in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors. On the other hand, we also focus on lipid mediators biosynthesized from ω-3 and ω-6 polyunsaturated fatty-acids in inflammatory exudates that promote the resolution phase of acute inflammation by regulating leucocyte influx to and efflux from local inflamed sites. Both anti-inflammatory neuropeptides and pro-resolving lipid mediators have shown therapeutic potential for a variety of inflammatory and autoimmune disorders and could be used as biotemplates for the development of novel pharmacologic agents. PMID:18554314
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen
2006-01-13
Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, andmore » the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.« less
Probing the Mechanical Properties of Plasma von Willebrand Factor Using Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Wijeratne, Sitara; Botello, Eric; Frey, Eric; Kiang, Ching-Hwa; Dong, Jing-Fei; Yeh, Hui-Chun
2010-03-01
Single-molecule manipulation allows us to study the real time kinetics of many complex cellular processes. The mechanochemistry of different forms of von Willebrand factor (VWF) and their receptor-ligand binding kinetics can be unraveled by atomic force microscopy (AFM). Since plasma VWF can be activated upon shear, the structural and functional properties of VWF are critical in mediating thrombus formation become important. Here we characterized the mechanical resistance to domain unfolding of VWF to determine the conformational states of VWF. We found the shear induced conformational, hence mechanical property changes can be detected by the change in unfolding forces. The relaxation rate of such effect is much longed than expected. This supports the model of lateral association VWF under shear stress. Our results offer an insight in establishing strategies for regulating VWF adhesion activity, increasing our understanding of surface-induced thrombosis as mediated by VWF.
Mobile DNA in the pathogenic Neisseria
Obergfell, Kyle P.; Seifert, H. Steven
2015-01-01
The genus Neisseria contains two pathogenic species of notable public health concern: Neisseria gonorrhoeae and Neisseria meningitidis. These pathogens display a notable ability to undergo frequent programmed recombination events. The recombination mediated pathways of transformation and pilin antigenic variation in the Neisseria are well studied systems that are critical for pathogenesis. Here we will detail the conserved and unique aspects of transformation and antigenic variation in the Neisseria. Transformation will be followed from initial DNA binding through recombination into the genome with consideration to the factors necessary at each step. Additional focus is paid to the unique type IV secretion system that mediates donation of transforming DNA in the pathogenic Neisseria. The pilin antigenic variation system uses programed recombinations to alter a major surface determinant which allows immune avoidance and promotes infection. We discuss the trans- and cis- acting factors which facilitate pilin antigenic variation and present the current understanding of the mechanisms involved in the process. PMID:25866700
Regulation of Ubiquitination-Mediated Protein Degradation by Survival Kinases in Cancer
Yamaguchi, Hirohito; Hsu, Jennifer L.; Hung, Mien-Chie
2011-01-01
The ubiquitin–proteasome system is essential for multiple physiological processes via selective degradation of target proteins and has been shown to plays a critical role in human cancer. Activation of oncogenic factors and inhibition of tumor suppressors have been shown to be essential for cancer development, and protein ubiquitination has been linked to the regulation of oncogenic factors and tumor suppressors. Three kinases, AKT, extracellular signal-regulated kinase, and IκB kinase, we refer to as oncokinases, are activated in multiple human cancers. We and others have identified several key downstream targets that are commonly regulated by these oncokinases, some of which are regulated directly or indirectly via ubiquitin-mediated proteasome degradation, including FOXO3, β-catenin, myeloid cell leukemia-1, and Snail. In this review, we summarize these findings from our and other groups and discuss potential future studies and applications in the clinic. PMID:22649777
Wynn, Robert F; Hart, Claire A; Corradi-Perini, Carla; O'Neill, Liam; Evans, Caroline A; Wraith, J Ed; Fairbairn, Leslie J; Bellantuono, Ilaria
2004-11-01
Homing of bone marrow stromal cells (MSCs) to bone and bone marrow after transplantation, important for the correction of conditions such as metabolic storage disorders, can occur but with poor efficiency. Substantial improvements in engraftment will be required in order to derive a clinical benefit from MSC transplantation. Chemokines are the most important factors controlling cellular migration. Stromal-derived factor-1 (SDF-1) has been shown to be critical in promoting the migration of cells to the bone marrow, via its specific receptor CXCR4. The aim of our study was to investigate CXCR4 expression on MSCs and its role in mediating migration to bone marrow. We show that CXCR4, although present at the surface of a small subset of MSCs, is important for mediating specific migration of these cells to bone marrow.
Hong, Hye-Young; Jeon, Woo-Kwang; Bae, Eun-Jin; Kim, Shin-Tae; Lee, Ho-Jae; Kim, Seong-Jin; Kim, Byung-Chul
2010-03-01
The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 zeta and 14-3-3 sigma on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-beta1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-beta1-mediated growth inhibition displayed increased expression of 14-3-3 zeta and decreased expression of 14-3-3 sigma compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 sigma or 14-3-3 zeta, we showed that 14-3-3 sigma is required for TGF-beta1-mediated growth inhibition whereas 14-3-3 zeta negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 zeta increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-beta1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 zeta phosphorylation sites in Smad3 markedly reduced the 14-3-3 zeta-mediated inhibition of TGF-beta1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 zeta in the suppression of TGF-beta1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 sigma or 14-3-3 zeta contributes to TGF-beta1 resistance in cancer cells.
Buchele, Vera; Abendroth, Benjamin; Büttner-Herold, Maike; Vogler, Tina; Rothamer, Johanna; Ghimire, Sakhila; Ullrich, Evelyn; Holler, Ernst; Neurath, Markus F; Hildner, Kai
2018-01-01
Intestinal graft-versus-host disease (GvHD) is a life-threatening, inflammatory donor T cell-mediated complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the light of the reported efficacy of interleukin-23 (IL-23)-blockade to mitigate syngeneic intestinal inflammation in inflammatory bowel disease patients, targeting IL-23 and thereby interleukin-17a (IL-17a) producing T helper (Th17) cells as the T cell subset assumed to be mostly regulated by IL-23, has emerged as a putatively general concept to harness immune-mediated mucosal inflammation irrespective of the underlying trigger. However, the role of Th17 cells during allo-response driven colitis remains ambiguous due to a series of studies with inconclusive results. Interestingly, we recently identified granulocyte-macrophage colony-stimulating factor (GM-CSF + ) T cells to be promoted by interleukin-7 (IL-7) signaling and controlled by the activating protein-1 transcription factor family member basic leucine zipper transcription factor ATF-like (BATF) as critical mediators of intestinal GvHD in mice. Given the dual role of BATF, the contribution of IL-23-mediated signaling within donor T cells and bona fide Th17 cells remains to be delineated from the regulation of GM-CSF + T cells in the absence of BATF. Here, we found in a complete MHC class I-mismatched model that genetic inactivation of the IL-23 receptor (IL-23R) or the transcription factor retinoic acid-related orphan receptor gamma t (RORγt) within donor T cells similarly ablated Th17 cell formation in vivo but preserved the T cells' ability to induce intestinal GvHD in a compared to wild-type controls indistinguishable manner. Importantly, RORγt-independent manifestation of intestinal GvHD was completely dependent on BATF-regulated GM-CSF + T cells as BATF/RORγt double-deficient T cells failed to induce colitis and the antibody-mediated blockage of IL-7/IL-7R interaction and GM-CSF significantly diminished signs of intestinal GvHD elicited by RORγt-deficient donor T cells. Finally, in analogy to our murine studies, colonic RORC expression levels inversely correlated with the presence of GvHD in allo-HSCT patients. Together, this study provides a crucial example of a BATF-dependent, however, IL-23R signaling- and RORγt-, i.e., Th17 fate-independent regulation of a colitogenic T cell population critically impacting the current understanding of intestinal GvHD.
Denys Yemshanov; Frank H. Koch; Mark J. Ducey; Marty Siltanen; Kirsty Wilson; Klaus Koehler
2013-01-01
Long-distance introductions of alien species are often driven by socioeconomic factors, such that conventional âbiologicalâ invasion models may not be capable of estimating spread fully and reliably. In this study, we demonstrate a new technique for assessing and reconstructing human-mediated pathways of alien forest species entries to major settlements in Canada via...
Cytokines and the neurodevelopmental basis of mental illness
Ratnayake, Udani; Quinn, Tracey; Walker, David W.; Dickinson, Hayley
2013-01-01
Epidemiological studies suggest that prenatal exposure to different types of viral or bacterial infections may be associated with similar outcomes; i.e., an increased risk of mental illness disorders in the offspring. Infections arising from various causes have similar debilitating effects in later life, suggesting that the exact pathogen may not be the critical factor in determining the neurological and cognitive outcome in the offspring. Instead, it is thought that response of the innate immune system, specifically the increased production of inflammatory cytokines, may be the critical mediator in altering fetal brain development pre-disposing the offspring to mental illness disorders later in life. Inflammatory cytokines are essential for normal brain development. Factors such as the site of cytokine production, a change in balance between anti- and pro- inflammatory cytokines, placental transfer of cytokines, the effects of cytokines on glial cells, and the effects of glucocorticoids are important when evaluating the impact of maternal infection on fetal brain development. Although it is clear that cytokines are altered in the fetal brain following maternal infection, further evidence is required to determine if cytokines are the critical factor that alters the trajectory of brain development, subsequently leading to postnatal behavioral and neurological abnormalities. PMID:24146637
Commensal microbiota stimulate systemic neutrophil migration through induction of Serum amyloid A
Kanther, Michelle; Tomkovich, Sarah; Sun, Xiaolun; Grosser, Melinda R.; Koo, Jaseol; Flynn, Edward J.; Jobin, Christian; Rawls, John F.
2015-01-01
Summary Neutrophils serve critical roles in inflammatory responses to infection and injury, and mechanisms governing their activity represent attractive targets for controlling inflammation. The commensal microbiota is known to regulate the activity of neutrophils and other leucocytes in the intestine, but the systemic impact of the microbiota on neutrophils remains unknown. Here we utilized in vivo imaging in gnotobiotic zebrafish to reveal diverse effects of microbiota colonization on systemic neutrophil development and function. The presence of a microbiota resulted in increased neutrophil number and myeloperoxidase expression, and altered neutrophil localization and migratory behaviours. These effects of the microbiota on neutrophil homeostasis were accompanied by an increased recruitment of neutrophils to injury. Genetic analysis identified the microbiota-induced acute phase protein serum amyloid A (Saa) as a host factor mediating microbial stimulation of tissue-specific neutrophil migratory behaviours. In vitro studies revealed that zebrafish cells respond to Saa exposure by activating NF-κB, and that Saa-dependent neutrophil migration requires NF-κB-dependent gene expression. These results implicate the commensal microbiota as an important environmental factor regulating diverse aspects of systemic neutrophil development and function, and reveal a critical role for a Saa-NF-κB signalling axis in mediating neutrophil migratory responses. PMID:24373309
Virus infection, antiviral immunity, and autoimmunity
Getts, Daniel R.; Chastain, Emily M. L.; Terry, Rachael L.; Miller, Stephen D.
2014-01-01
Summary As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity. PMID:23947356
Kingston, Cara; Schuurmans-Stekhoven, James
2016-12-01
An intertemporal association between major psychological stress and subsequent delusion formation has been established by others. The current study explores (1) whether the stress from life hassles predicts delusional ideation and (2) if so, do self-criticism, self-reassurance, and positive and negative affectivity (PA and NA, respectively) mediate this link. This paper thus aimed to scope-out viable psychological processes involved in the formation of stress-induced delusions. A cross-sectional survey using a non-clinical community sample. Responses (N = 251) to an online community survey were tested via a nonparametric bootstrap sampling approach to examine the effects of multiple mediators. Self-criticism and NA appear to mediate a connection found between life hassles and delusions. A second mediation analysis found that life hassles positively predicts NA directly and indirectly (via self-criticism). NA in turn predicted delusional tendencies. Life events had direct statistical effects on delusions in all models. Neither PA nor self-reassurance mediated the stress-delusion link. Self-criticism and NA seem to be viable mediators worth contemplating when elaborating upon the connection between life hassles and delusions. Compared to self-criticism, NA appears to be the intervening variable most proximal to delusions and explains more variance. Even if these cross-sectional results were interpreted as causative, life hassles and delusions remained directly interconnected in all mediation models (suggesting much of the association remains unexplained). Although the results are theory-consistent, investigations using longitudinal, known-group, and experimental methods are now warranted to establish causation and possible feedback loops - especially from delusion to life hassles. Self-criticism and negative affectivity (NA) mediate the link between stressful life events and delusions suggesting they might actively elicit delusional ideation, whereas self-reassurance and PA (although negatively associated with life hassles) have no unique predictive link to delusions. This study offers initial evidence that NA and self-criticism may be viable clinical intervention targets for early psychosis-sufferers under stress - especially for medically non-compliant and marginal (where drug treatment is not clinically indicated) cases. The clinical efficacy of alleviating self-criticism and/or negative emotional processes in those displaying early psychosis or at high risk appear worthy of exploration using both practice-based case studies and formal experimental research methods. © 2016 The British Psychological Society.
Martin, Sara M.; Holle, Lori A.; Cooley, Brian C.; Flick, Matthew J.
2018-01-01
The transglutaminase factor XIII (FXIII) stabilizes clots against mechanical and biochemical disruption and is essential for hemostasis. In vitro and in vivo models of venous thrombosis demonstrate that FXIII mediates clot size by promoting red blood cell (RBC) retention. However, the key source of FXIII and whether FXIII activity can be reduced to suppress thrombosis without imposing deleterious hemostatic consequences are 2 critical unresolved questions. FXIII is present in multiple compartments, including plasma (FXIIIplasma) as a heterotetramer of A2 and B2 subunits and platelets (FXIIIplt) as an A2 homodimer. We determined the role of the FXIII compartment and level in clot contraction, composition, and size in vitro and using in vivo models of hemostasis and venous thrombosis. Reducing overall FXIII levels decreased whole blood clot weight but did not alter thrombin generation or contraction of platelet-rich plasma clots. In reconstituted platelet-rich plasma and whole blood clot contraction assays, FXIIIplasma, but not FXIIIplt, produced high-molecular-weight fibrin crosslinks, promoted RBC retention, and increased clot weights. Genetically imposed reduction of FXIII delayed FXIII activation and fibrin crosslinking, suggesting FXIII levels mediate the kinetics of FXIII activation and activity and that the timing of these processes is a critical determinant of RBC retention during clot formation and contraction. A 50% reduction in FXIIIplasma produced significantly smaller venous thrombi but did not increase bleeding in tail transection or saphenous vein puncture models in vivo. Collectively, these findings suggest that partial FXIII reduction may be a therapeutic strategy for reducing venous thrombosis. PMID:29344582
Kattula, Sravya; Byrnes, James R; Martin, Sara M; Holle, Lori A; Cooley, Brian C; Flick, Matthew J; Wolberg, Alisa S
2018-01-09
The transglutaminase factor XIII (FXIII) stabilizes clots against mechanical and biochemical disruption and is essential for hemostasis. In vitro and in vivo models of venous thrombosis demonstrate that FXIII mediates clot size by promoting red blood cell (RBC) retention. However, the key source of FXIII and whether FXIII activity can be reduced to suppress thrombosis without imposing deleterious hemostatic consequences are 2 critical unresolved questions. FXIII is present in multiple compartments, including plasma (FXIII plasma ) as a heterotetramer of A 2 and B 2 subunits and platelets (FXIII plt ) as an A 2 homodimer. We determined the role of the FXIII compartment and level in clot contraction, composition, and size in vitro and using in vivo models of hemostasis and venous thrombosis. Reducing overall FXIII levels decreased whole blood clot weight but did not alter thrombin generation or contraction of platelet-rich plasma clots. In reconstituted platelet-rich plasma and whole blood clot contraction assays, FXIII plasma , but not FXIII plt , produced high-molecular-weight fibrin crosslinks, promoted RBC retention, and increased clot weights. Genetically imposed reduction of FXIII delayed FXIII activation and fibrin crosslinking, suggesting FXIII levels mediate the kinetics of FXIII activation and activity and that the timing of these processes is a critical determinant of RBC retention during clot formation and contraction. A 50% reduction in FXIII plasma produced significantly smaller venous thrombi but did not increase bleeding in tail transection or saphenous vein puncture models in vivo. Collectively, these findings suggest that partial FXIII reduction may be a therapeutic strategy for reducing venous thrombosis.
Developmental imaging genetics: linking dopamine function to adolescent behavior.
Padmanabhan, Aarthi; Luna, Beatriz
2014-08-01
Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. Copyright © 2014 Elsevier Inc. All rights reserved.
Sun, Min; Long, Juan; Yi, Yuxin; Xia, Wei
2017-10-28
Insulin-like growth factor-binding protein (IGFBP)-5 is a secreted protein that binds to IGFs and modulates IGF actions, as well as regulates cell proliferation, migration, and apoptosis independent of IGF. Proper cellular localization is critical for the effective function of most signaling molecules. In previous studies, we have shown that the nuclear IGFBP-5 comes from ER-cytosol retro-translocation. In this study, we further investigated the pathway mediating IGFBP-5 nuclear import after it retro-translocation. Importin-α5 was identified as an IGFBP-5-interacting protein with a yeast two-hybrid system, and its interaction with IGFBP-5 was further confirmed by GST pull down and co-immunoprecipitation. Binding affinity of IGFBP-5 and importins were determined by surface plasmon resonance (IGFBP-5/importin-β: K D =2.44e-7, IGFBP-5/importin-α5: K D =3.4e-7). Blocking the importin-α5/importin-β nuclear import pathway using SiRNA or dominant negative impotin-β dramatically inhibited IGFBP-5-EGFP nuclear import, though importin-α5 overexpress does not affect IGFBP-5 nuclear import. Furthermore, nuclear IGFBP-5 was quantified using luciferase report assay. When deleted the IGFBP-5 nuclear localization sequence (NLS), IGFBP-5 ΔNLS loss the ability to translocate into the nucleus and accumulation of IGFBP-5 ΔNLS was visualized in the cytosol. Altogether, our findings provide a substantially evidence showed that the IGFBP-5 nuclear import is mediated by importin-α/importin-β complex, and NLS is critical domain in IGFBP-5 nuclear translocation.
Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh
2016-01-01
Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. PMID:26887951
Personality disorder traits, risk factors, and suicide ideation among older adults.
Jahn, Danielle R; Poindexter, Erin K; Cukrowicz, Kelly C
2015-11-01
Personality disorder traits are relatively prevalent among older adults, and can be associated with complex and chronic difficulties, including suicide risk. However, there is a lack of research regarding personality disorders and suicide ideation in older adults. Depressive symptoms and hopelessness may be important to the relation between personality disorders and suicide risk. Additionally, variables from the interpersonal theory of suicide, perceived burdensomeness and thwarted belongingness, may be critical risk factors for suicide in this population. We hypothesized that perceived burdensomeness and thwarted belongingness, theory-based variables, would act as parallel mediators of the relation between personality disorder traits and suicide ideation, whereas depressive symptoms and hopelessness would not. The hypothesis was tested in a sample of 143 older adults recruited from a primary care setting. Participants completed self-report questionnaires of personality traits, suicide ideation, depressive symptoms, hopelessness, perceived burdensomeness, and thwarted belongingness. Findings from a non-parametric bootstrapping procedure indicated that perceived burdensomeness, thwarted belongingness, and depressive symptoms mediated the relation between total personality disorder traits and suicide ideation. Hopelessness did not act as a mediator. These findings indicate that perceived burdensomeness, thwarted belongingness, and depressive symptoms are likely important risk factors for suicide ideation among older adults. Clinicians should be aware of these issues when assessing and treating suicide risk among older adults.
Hun Lee, Jong; Shu, Limin; Fuentes, Francisco; Su, Zheng-Yuan; Tony Kong, Ah-Ng
2013-01-01
Excessive oxidative stress induced by reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2), a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including quinine oxidoreductase (NQO1), heme oxygenase-1 (HO-1), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs). The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM). In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer.
Ha, Chang Hoon; Wang, Weiye; Jhun, Bong Sook; Wong, Chelsea; Hausser, Angelika; Pfizenmaier, Klaus; McKinsey, Timothy A.; Olson, Eric N.; Jin, Zheng-Gen
2008-01-01
Vascular endothelial growth factor (VEGF) is essential for normal and pathological angiogenesis. However, the signaling pathways linked to gene regulation in VEGF-induced angiogenesis are not fully understood. Here we demonstrate a critical role of protein kinase D (PKD) and histone deacetylase 5 (HDAC5) in VEGF-induced gene expression and angiogenesis. We found that VEGF stimulated HDAC5 phosphorylation and nuclear export in endothelial cells through a VEGF receptor 2-phospholipase Cγ-protein kinase C-PKD-dependent pathway. We further showed that the PKD-HDAC5 pathway mediated myocyte enhancer factor-2 transcriptional activation and a specific subset of gene expression in response to VEGF, including NR4A1, an orphan nuclear receptor involved in angiogenesis. Specifically, inhibition of PKD by overexpression of the PKD kinase-negative mutant prevents VEGF-induced HDAC5 phosphorylation and nuclear export as well as NR4A1 induction. Moreover, a mutant of HDAC5 specifically deficient in PKD-dependent phosphorylation inhibited VEGF-mediated NR4A1 expression, endothelial cell migration, and in vitro angiogenesis. These findings suggest that the PKD-HDAC5 pathway plays an important role in VEGF regulation of gene transcription and angiogenesis. PMID:18332134
Nagaraja, Sridevi; Reifman, Jaques; Mitrophanov, Alexander Y.
2015-01-01
Timely resolution of inflammation is critical for the restoration of homeostasis in injured or infected tissue. Chronic inflammation is often characterized by a persistent increase in the concentrations of inflammatory cells and molecular mediators, whose distinct amount and timing characteristics offer an opportunity to identify effective therapeutic regulatory targets. Here, we used our recently developed computational model of local inflammation to identify potential targets for molecular interventions and to investigate the effects of individual and combined inhibition of such targets. This was accomplished via the development and application of computational strategies involving the simulation and analysis of thousands of inflammatory scenarios. We found that modulation of macrophage influx and efflux is an effective potential strategy to regulate the amount of inflammatory cells and molecular mediators in both normal and chronic inflammatory scenarios. We identified three molecular mediators − tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and the chemokine CXCL8 − as potential molecular targets whose individual or combined inhibition may robustly regulate both the amount and timing properties of the kinetic trajectories for neutrophils and macrophages in chronic inflammation. Modulation of macrophage flux, as well as of the abundance of TNF-α, TGF-β, and CXCL8, may improve the resolution of chronic inflammation. PMID:26633296
MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula.
Ryu, Hojin; Laffont, Carole; Frugier, Florian; Hwang, Ildoo
2017-01-01
Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula . The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN . We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors.
MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula
Ryu, Hojin; Laffont, Carole; Frugier, Florian; Hwang, Ildoo
2017-01-01
Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors. PMID:28152300
So depression is an inflammatory disease, but where does the inflammation come from?
2013-01-01
Background We now know that depression is associated with a chronic, low-grade inflammatory response and activation of cell-mediated immunity, as well as activation of the compensatory anti-inflammatory reflex system. It is similarly accompanied by increased oxidative and nitrosative stress (O&NS), which contribute to neuroprogression in the disorder. The obvious question this poses is ‘what is the source of this chronic low-grade inflammation?’ Discussion This review explores the role of inflammation and oxidative and nitrosative stress as possible mediators of known environmental risk factors in depression, and discusses potential implications of these findings. A range of factors appear to increase the risk for the development of depression, and seem to be associated with systemic inflammation; these include psychosocial stressors, poor diet, physical inactivity, obesity, smoking, altered gut permeability, atopy, dental cares, sleep and vitamin D deficiency. Summary The identification of known sources of inflammation provides support for inflammation as a mediating pathway to both risk and neuroprogression in depression. Critically, most of these factors are plastic, and potentially amenable to therapeutic and preventative interventions. Most, but not all, of the above mentioned sources of inflammation may play a role in other psychiatric disorders, such as bipolar disorder, schizophrenia, autism and post-traumatic stress disorder. PMID:24228900
Birkenbihl, Rainer P.; Diezel, Celia; Somssich, Imre E.
2012-01-01
The Arabidopsis (Arabidopsis thaliana) transcription factor WRKY33 is essential for defense toward the necrotrophic fungus Botrytis cinerea. Here, we aimed at identifying early transcriptional responses mediated by WRKY33. Global expression profiling on susceptible wrky33 and resistant wild-type plants uncovered massive differential transcriptional reprogramming upon B. cinerea infection. Subsequent detailed kinetic analyses revealed that loss of WRKY33 function results in inappropriate activation of the salicylic acid (SA)-related host response and elevated SA levels post infection and in the down-regulation of jasmonic acid (JA)-associated responses at later stages. This down-regulation appears to involve direct activation of several jasmonate ZIM-domain genes, encoding repressors of the JA-response pathway, by loss of WRKY33 function and by additional SA-dependent WRKY factors. Moreover, genes involved in redox homeostasis, SA signaling, ethylene-JA-mediated cross-communication, and camalexin biosynthesis were identified as direct targets of WRKY33. Genetic studies indicate that although SA-mediated repression of the JA pathway may contribute to the susceptibility of wrky33 plants to B. cinerea, it is insufficient for WRKY33-mediated resistance. Thus, WRKY33 apparently directly targets other still unidentified components that are also critical for establishing full resistance toward this necrotroph. PMID:22392279
CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation
Causton, Benjamin; Ramadas, Ravisankar A.; Cho, Josalyn L.; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J.
2015-01-01
Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein–coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain–containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536
Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion
Mutch, Laura Jane; Howden, Jake Davey; Jenner, Emma Poppy Louise; Poulter, Natalie Sarah; Rappoport, Joshua Zachary
2014-01-01
Directed cell migration is critical for numerous physiological processes including development and wound healing. However chemotaxis is also exploited during cancer progression. Recent reports have suggested links between vesicle trafficking pathways and directed cell migration. Very little is known about the potential roles of endocytosis pathways during metastasis. Therefore we performed a series of studies employing a previously characterised model for chemotactic invasion of cancer cells to assess specific hypotheses potentially linking endocytosis to directed cell migration. Our results demonstrate that clathrin-mediated endocytosis is indispensable for epidermal growth factor (EGF) directed chemotactic invasion of MDA-MB-231 cells. Conversely, caveolar endocytosis is not required in this mode of migration. We further found that chemoattractant receptor (EGFR) trafficking occurs by clathrin-mediated endocytosis and is polarised towards the front of migrating cells. However, we found no role for clathrin-mediated endocytosis in focal adhesion disassembly in this migration model. Thus, this study has characterised the role of endocytosis during chemotactic invasion and has identified functions mechanistically linking clathrin-mediated endocytosis to directed cell motility. PMID:24921075
Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer Mi; Doh, Kyung-Oh; Hui, Chi-Chung; Sung, Hoon-Ki
2017-11-01
Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.
Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer MI; Doh, Kyung-Oh; Hui, Chi-chung; Sung, Hoon-Ki
2017-01-01
Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders. PMID:29039412
Earnshaw, Valerie A.; Rosenthal, Lisa; Lewis, Jessica B.; Stasko, Emily C.; Tobin, Jonathan N.; Lewis, Tené T.; Reid, Allecia E.; Ickovics, Jeannette R.
2012-01-01
Background Racial/ethnic disparities in birth weight persist within the United States. Purpose Examine the association between maternal everyday discrimination and infant birth weight among young, urban women of color; as well as mediators (depressive symptoms, pregnancy distress, pregnancy symptoms) and moderators (age, race/ethnicity, attributions of discrimination) of this association. Methods 420 women participated (14–21 years old; 62% Latina, 38% Black), completing measures of everyday discrimination and moderators during their second trimester of pregnancy and mediators during their third trimester. Birth weight was primarily recorded from medical record review. Results Path analysis demonstrated that everyday discrimination was associated with lower birth weight. Depressive symptoms mediated this relationship, and no tested factors moderated this relationship. Conclusions Given the association between birth weight and health across the lifespan, it is critical to reduce discrimination directed at young, urban women of color so that all children can begin life with greater promise for health. PMID:22927016
Nurse turnover: the mediating role of burnout.
Leiter, Michael P; Maslach, Christina
2009-04-01
This study tested whether the mediation model of burnout could predict nurses' turnover intentions. A better understanding of what factors support a commitment to a nursing career could inform both policies and workplace practices. The mediation model of burnout provides a way of linking the quality of a nurse's worklife to various outcomes, such as turnover. Data on areas of worklife, burnout, and turnover intentions were collected by surveying 667 Canadian nurses in the Atlantic Provinces. The findings supported the mediation model of burnout, in which areas of worklife predicted burnout, which in turn predicted turnover intentions. Cynicism was the key burnout dimension for turnover, and the most critical areas of worklife were value conflicts and inadequate rewards. The results of this study provide some new insights into how the intention of nurses to leave their job is related to particular aspects of their worklife and to burnout. These results suggest what may be the most appropriate areas to target for interventions to reduce the risk of nurses exiting early from their chosen career.
Earnshaw, Valerie A; Rosenthal, Lisa; Lewis, Jessica B; Stasko, Emily C; Tobin, Jonathan N; Lewis, Tené T; Reid, Allecia E; Ickovics, Jeannette R
2013-02-01
Racial/ethnic disparities in birth weight persist within the USA. The purpose of this study is to examine the association between maternal everyday discrimination and infant birth weight among young, urban women of color as well as mediators (depressive symptoms, pregnancy distress, and pregnancy symptoms) and moderators (age, race/ethnicity, and attributions of discrimination) of this association. A total of 420 women participated (14-21 years old; 62 % Latina, 38 % Black), completing measures of everyday discrimination and moderators during their second trimester of pregnancy and mediators during their third trimester. Birth weight was primarily recorded from medical record review. Path analysis demonstrated that everyday discrimination was associated with lower birth weight. Depressive symptoms mediated this relationship, and no tested factors moderated this relationship. Given the association between birth weight and health across the lifespan, it is critical to reduce discrimination directed at young, urban women of color so that all children can begin life with greater promise for health.
The role of parental psychopathology and personality in adolescent non-suicidal self-injury.
Gromatsky, Molly A; Waszczuk, Monika A; Perlman, Greg; Salis, Katie Lee; Klein, Daniel N; Kotov, Roman
2017-02-01
Adolescent non-suicidal self-injury (NSSI), a significant risk factor for suicidal behavior, is strongly associated with adolescent psychopathology and personality traits, particularly those characterized by poor self-regulation. Some parental psychopathology and personality traits have also been identified as risk factors for adolescent NSSI, but specific parental characteristics and mechanisms involved in this association have not been systematically examined. The current study comprehensively investigated the contribution of parental psychopathology and personality to adolescent NSSI using data from the baseline wave of the Adolescent Development of Emotion and Personality Traits (ADEPT) study of 550 adolescent girls (mean age = 14.39 years, SD = 0.63) and their biological parents. We first investigated whether parental lifetime psychiatric diagnoses, and personality and clinical (rumination, self-criticism, emotional reliance) traits were associated with adolescent NSSI. We also tested whether adolescent history of psychiatric illness, personality, and clinical traits mediated the associations between parental characteristics and adolescent NSSI. Parental substance use disorder, adult-ADHD symptoms, self-criticism, and lower agreeableness and conscientiousness were associated with offspring's NSSI. These associations were mediated through adolescent characteristics. In contrast, parental mood and anxiety disorders and neuroticism were unrelated to adolescent NSSI. The results suggest that parental traits and disorders characterized by self-regulatory difficulties and lack of support constitute risk factors for self-injury in adolescent girls, acting via adolescent traits. This demonstrates that parental influences play a significant role in the etiology of adolescent NSSI. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis
Cobb, Dustin A.; Bhadra, Rajarshi
2016-01-01
CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)–susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell–intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches. PMID:27481131
Inslicht, Sabra S.; McCaslin, Shannon E.; Metzler, Thomas J.; Henn-Haase, Clare; Hart, Stacey L.; Maguen, Shira; Neylan, Thomas C.; Marmar, Charles R.
2009-01-01
Background Family history of psychiatric and substance use disorders has been associated with posttraumatic stress disorder (PTSD) in cross-sectional studies. Method Using a prospective design, we examined the relationships of family history of psychiatric and substance use disorders to posttraumatic stress symptoms in 278 healthy police recruits. During academy training, recruits were interviewed on family and personal psychopathology, prior cumulative civilian trauma exposure, and completed self-report questionnaires on nonspecific symptoms of distress and alcohol use. Twelve months after commencement of active duty, participants completed questionnaires on critical incident exposure over the previous year, peritraumatic distress to the worst critical incident during this time, and posttraumatic stress symptoms. Results A path model indicated: 1) family loading for mood and anxiety disorders had an indirect effect on posttraumatic stress symptoms at 12 months that was mediated through peritraumatic distress to the officer’s self-identified worst critical incident; 2) family loading for substance use disorders also predicted posttraumatic stress symptoms at 12 months and this relationship was mediated through peritraumatic distress. Conclusion These findings support a model in which family histories of psychopathology and substance abuse are pre-existing vulnerability factors for experiencing greater peritraumatic distress to critical incident exposure which, in turn, increases the risk for development of symptoms of posttraumatic stress disorder. Replication in other first responders, military and civilians will be important to determine generalizability of these findings. PMID:19683259
Inslicht, Sabra S; McCaslin, Shannon E; Metzler, Thomas J; Henn-Haase, Clare; Hart, Stacey L; Maguen, Shira; Neylan, Thomas C; Marmar, Charles R
2010-01-01
Family history of psychiatric and substance use disorders has been associated with posttraumatic stress disorder (PTSD) in cross-sectional studies. Using a prospective design, we examined the relationships of family history of psychiatric and substance use disorders to posttraumatic stress symptoms in 278 healthy police recruits. During academy training, recruits were interviewed on family and personal psychopathology, prior cumulative civilian trauma exposure, and completed self-report questionnaires on nonspecific symptoms of distress and alcohol use. Twelve months after commencement of active duty, participants completed questionnaires on critical incident exposure over the previous year, peritraumatic distress to the worst critical incident during this time, and posttraumatic stress symptoms. A path model indicated: (1) family loading for mood and anxiety disorders had an indirect effect on posttraumatic stress symptoms at 12 months that was mediated through peritraumatic distress to the officer's self-identified worst critical incident, (2) family loading for substance use disorders also predicted posttraumatic stress symptoms at 12 months and this relationship was mediated through peritraumatic distress. These findings support a model in which family histories of psychopathology and substance abuse are pre-existing vulnerability factors for experiencing greater peritraumatic distress to critical incident exposure which, in turn, increases the risk for development of symptoms of posttraumatic stress disorder. Replication in other first responders, military and civilians will be important to determine generalizability of these findings.
Captured on Film: A Critical Examination of Representations of Physical Education at the Movies
ERIC Educational Resources Information Center
Walton-Fisette, Jennifer L.; Walton-Fisette, Theresa A.; Chase, Laura Frances
2017-01-01
Background: Throughout this mediated society, young people, in particular, are mass consumers of corporatized media. The mediation of sport has long been critically examined within sociology and physical cultural studies [(e.g. Mcdonald, M. G., and S. Birrell. 1999. "Reading Sport Critically: A Methodology for Interrogating Power."…
Halvaiepour, Zohreh; Nosratabadi, Mehdi
2015-09-18
Obsessive-compulsive disorder (OCD) is considered as a rare disorder in children. According to cognitive theories, criticism triggers responsibility behavior and thus causes obsessive behaviors. The purpose of the present study was to investigate the mediating role of beliefs associated with responsibility in the relationship between external criticism of parents and obsessive beliefs in adolescents. In this study, 547 high school students aged from 15 to18 years were selected using multi-stage cluster random sampling from four regions of the education office in Shiraz. Obsessive Beliefs Questionnaire-child version (OBQ-CV), Pathway to Inflated Responsibility beliefs Scale (PIRBS), and perceived criticism questionnaire were used to collect data. Pearson's correlation was used to investigate the relationship between the study variables. For analysis of mediation model, multiple mediators analysis using Macro Software was used. External criticism only indirectly and through beliefs associated with inflated responsibility accounts for 6% of the variance of responsibility, 14% of the variance of threat estimation and 10% of the variance of perfectionism of obsessive beliefs (P<0.05). However, external criticism, both directly and indirectly and through beliefs associated with inflated responsibility accounts for 7% of the variance of the importance of obsessive beliefs. This study showed that the beliefs associated with inflated responsibility can mediate the relationship between external criticism and obsessive beliefs. According to the cognitive model of Salkovskis, criticism by parents, as a violation to and an influence on children, by affecting the subscales of inflated responsibility, can increase the symptoms of obsessive-compulsive disorder. In order to identify potential affecting mechanisms of criticism on obsessive-compulsive disorder, further experimental research is required.
ERIC Educational Resources Information Center
Rasmussen, Eric C.; White, Shawna R.; King, Andy J.; Holiday, Steven; Densley, Rebecca L.
2016-01-01
Many parents fail to interact with their children regularly about media content and past research has identified few predictors of parents' engagement in parental mediation behaviors. This correlational study explored the relationship between parents' critical thinking about media and parents' provision of both active and restrictive mediation of…
Regulation of COX-2–mediated signaling by α3 type IV noncollagenous domain in tumor angiogenesis
Boosani, Chandra Shekhar; Mannam, Arjuna P.; Cosgrove, Dominic; Silva, Rita; Hodivala-Dilke, Kairbaan M.; Keshamouni, Venkateshwar G.
2007-01-01
Human α3 chain, a noncollagenous domain of type IV collagen [α3(IV)NC1], inhibits angiogenesis and tumor growth. These biologic functions are partly attributed to the binding of α3(IV)NC1 to αVβ3 and α3β1 integrins. α3(IV)NC1 binds αVβ3 integrin, leading to translation inhibition by inhibiting focal adhesion kinase/phosphatidylinositol 3-kinase/Akt/mTOR/4E-BP1 pathways. In the present study, we evaluated the role of α3β1 and αVβ3 integrins in tube formation and regulation of cyclooxygenase-2 (COX-2) on α3(IV)NC1 stimulation. We found that although both integrins were required for the inhibition of tube formation by α3(IV)NC1 in endothelial cells, only α3β1 integrin was sufficient to regulate COX-2 in hypoxic endothelial cells. We show that binding of α3(IV)NC1 to α3β1 integrin leads to inhibition of COX-2–mediated pro-angiogenic factors, vascular endothelial growth factor, and basic fibroblast growth factor by regulating IκBα/NFκB axis, and is independent of αVβ3 integrin. Furthermore, β3 integrin–null endothelial cells, when treated with α3(IV)NC1, inhibited hypoxia-mediated COX-2 expression, whereas COX-2 inhibition was not observed in α3 integrin–null endothelial cells, indicating that regulation of COX-2 by α3(IV)NC1 is mediated by integrin α3β1. Our in vitro and in vivo findings demonstrate that α3β1 integrin is critical for α3(IV)NC1-mediated inhibition of COX-2–dependent angiogenic signaling and inhibition of tumor progression. PMID:17426256
Radanielina Hita, Marie Louise; Kareklas, Ioannis; Pinkleton, Bruce
2018-01-01
We demonstrate in our research that discussion-based parental mediation may successfully decrease the negative effects that youth's engagement with alcohol brands on social media may have on attitudes toward alcohol through its effects on critical thinking. A clear pattern was found with positive mediation leading to unhealthy outcomes and negative mediation predicting healthier behaviors. Youth whose parents critiqued media messages reported more critical thinking skills, which predicted less interaction with alcohol brands on social media and fewer expectancies toward alcohol. On the other hand, youth whose parents endorsed media portrayals of drinking reported fewer critical thinking skills and were thus more likely to interact with alcohol brands on social media. Including a media literacy component in alcohol education that target parental strategies and that are conducive to discussion may lead to beneficial health outcomes in the digital era.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieweke, M.H.; Bissell, M.J.; Thompson, N.L.
1990-06-29
In Rous sarcoma virus (RSV)-infected chickens, wounding leads to tumor formation with nearly 100% frequency in tissues that would otherwise remain tumor-free. Identifying molecular mediators of this phenomenon should yield important clues to the mechanisms involved in RSV tumorigenesis. Immunohistochemical staining showed that TGF-{beta} is present locally shortly after wounding, but not in unwounded controls. In addition, subcutaneous administration of recombinant transforming growth factor {beta}1 (TGF-{beta}1) could substitute completely for wounding in tumor induction. A treatment protocol of four doses of 800 nanograms of TGF-{beta} resulted in v-src-expressing tumors with 100% frequency; four doses of only 10 nanograms still ledmore » to tumor formation in 80% of the animals. This effect was specific, as other growth factors with suggested roles in would healing did not elicit the same response. Epidermal growth factor (EGF) or TGF-{alpha} had no effect, and platelet-derived growth factor (PDGF) or insulin-like growth factor-1 (IGF-1) yielded only occasional tumors after longer latency. TGF-{beta} release during the would-healing response may thus be a critical event that creates a conducive environment for RSV tumorigenesis and may act as a cofactor for transformation in this system. 31 refs., 3 figs., 2 tabs.« less
Marvels, mysteries, and misconceptions of vascular compensation to peripheral artery occlusion.
Ziegler, Matthew A; Distasi, Matthew R; Bills, Randall G; Miller, Steven J; Alloosh, Mouhamad; Murphy, Michael P; Akingba, A George; Sturek, Michael; Dalsing, Michael C; Unthank, Joseph L
2010-01-01
Peripheral arterial disease is a major health problem and there is a significant need to develop therapies to prevent its progression to claudication and critical limb ischemia. Promising results in rodent models of arterial occlusion have generally failed to predict clinical success and led to questions of their relevance. While sub-optimal models may have contributed to the lack of progress, we suggest that advancement has also been hindered by misconceptions of the human capacity for compensation and the specific vessels which are of primary importance. We present and summarize new and existing data from humans, Ossabaw miniature pigs, and rodents which provide compelling evidence that natural compensation to occlusion of a major artery (i) may completely restore perfusion, (ii) occurs in specific pre-existing small arteries, rather than the distal vasculature, via mechanisms involving flow-mediated dilation and remodeling (iii) is impaired by cardiovascular risk factors which suppress the flow-mediated mechanisms and (iv) can be restored by reversal of endothelial dysfunction. We propose that restoration of the capacity for flow-mediated dilation and remodeling in small arteries represents a largely unexplored potential therapeutic opportunity to enhance compensation for major arterial occlusion and prevent the progression to critical limb ischemia in the peripheral circulation.
Marvels, Mysteries, and Misconceptions of Vascular Compensation to Peripheral Artery Occlusion
ZIEGLER, MATTHEW A.; DISTASI, MATTHEW R.; BILLS, RANDALL G.; MILLER, STEVEN J.; ALLOOSH, MOUHAMAD; MURPHY, MICHAEL P.; AKINGBA, A. GEORGE; STUREK, MICHAEL; DALSING, MICHAEL C.; UNTHANK, JOSEPH L.
2010-01-01
Peripheral arterial disease is a major health problem and there is a significant need to develop therapies to prevent its progression to claudication and critical limb ischemia. Promising results in rodent models of arterial occlusion have generally failed to predict clinical success and led to questions of their relevance. While sub-optimal models may have contributed to the lack of progress, we suggest that advancement has also been hindered by misconceptions of the human capacity for compensation and the specific vessels which are of primary importance. We present and summarize new and existing data from humans, Ossabaw miniature pigs, and rodents which provide compelling evidence that natural compensation to occlusion of a major artery (i) may completely restore perfusion, (ii) occurs in specific pre-existing small arteries, rather than the distal vasculature, via mechanisms involving flow-mediated dilation and remodeling (iii) is impaired by cardiovascular risk factors which suppress the flow-mediated mechanisms and (iv) can be restored by reversal of endothelial dysfunction. We propose that restoration of the capacity for flow-mediated dilation and remodeling in small arteries represents a largely unexplored potential therapeutic opportunity to enhance compensation for major arterial occlusion and prevent the progression to critical limb ischemia in the peripheral circulation. PMID:20141596
Arginine depletion increases susceptibility to serious infections in preterm newborns
Badurdeen, Shiraz; Mulongo, Musa; Berkley, James A.
2015-01-01
Preterm newborns are highly susceptible to bacterial infections. This susceptibility is regarded as being due to immaturity of multiple pathways of the immune system. However, it is unclear whether a mechanism that unifies these different, suppressed pathways exists. Here, we argue that the immune vulnerability of the preterm neonate is critically related to arginine depletion. Arginine, a “conditionally essential” amino acid, is depleted in acute catabolic states, including sepsis. Its metabolism is highly compartmentalized and regulated, including by arginase-mediated hydrolysis. Recent data suggest that arginase II-mediated arginine depletion is essential for the innate immune suppression that occurs in newborn models of bacterial challenge, impairing pathways critical for the immune response. Evidence that arginine depletion mediates protection from immune activation during first gut colonization suggests a regulatory role in controlling gut-derived pathogens. Clinical studies show that plasma arginine is depleted during sepsis. In keeping with animal studies, small clinical trials of L-arginine supplementation have shown benefit in reducing necrotizing enterocolitis in premature neonates. We propose a novel, broader hypothesis that arginine depletion during bacterial challenge is a key factor limiting the neonate's ability to mount an adequate immune response, contributing to the increased susceptibility to infections, particularly with respect to gut-derived sepsis. PMID:25360828
The process by which self-reactive CD4+ T cells infiltrate the central nervous system (CNS) and trigger neuroinflammation is not fully understood. Lazarevic and colleagues show that NKp46+innate lymphoid cells dependent on the transcription factor T-bet are critical mediators in facilitating the entry of autoreactive CD4+ cells of the TH17 subset of helper T cells into the
β-catenin-mediated Wnt signaling regulates neurogenesis in the ventral telencephalon
Gulacsi, Alexandra A.; Anderson, Stewart A.
2009-01-01
Development of the telencephalon involves the coordinated growth of diversely patterned brain structures. Previous studies have demonstrated the importance of β-catenin-mediated Wnt signaling in proliferation and fate determination during cerebral cortical development. In this paper, we present novel evidence that β-catenin-mediated Wnt signaling also critically maintains progenitor proliferation in the subcortical (pallidal) telencephalon of mice. Targeted deletion of β-catenin severely impairs proliferation in the medial ganglionic eminence without grossly altering differentiated fate. Several lines of evidence suggest that this phenotype is primarily due to loss of canonical Wnt signaling. As previous studies have suggested that the ventral patterning factor Shh also stimulates dorsal telencephalic proliferation, we propose a model whereby Wnt and Shh signaling promote distinct dorsal-ventral patterning, while also having broader effects on proliferation that serve to coordinate the growth of telencephalic subregions. PMID:18997789
Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan
2016-04-01
Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Targeting the Interleukin-6/Jak/Stat Pathway in Human Malignancies
Sansone, Pasquale; Bromberg, Jacqueline
2012-01-01
The Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway was discovered 20 years ago as a mediator of cytokine signaling. Since this time, more than 2,500 articles have been published demonstrating the importance of this pathway in virtually all malignancies. Although there are dozens of cytokines and cytokine receptors, four Jaks, and seven Stats, it seems that interleukin-6–mediated activation of Stat3 is a principal pathway implicated in promoting tumorigenesis. This transcription factor regulates the expression of numerous critical mediators of tumor formation and metastatic progression. This review will examine the relative importance and function of this pathway in nonmalignant conditions as well as malignancies (including tumor intrinsic and extrinsic), the influence of other Stats, the development of inhibitors to this pathway, and the potential role of inhibitors in controlling or eradicating cancers. PMID:22355058
Fibroblast Growth Factor Signaling Mediates Pulmonary Endothelial Glycocalyx Reconstitution
Yang, Yimu; Haeger, Sarah M.; Suflita, Matthew A.; Zhang, Fuming; Dailey, Kyrie L.; Colbert, James F.; Ford, Joshay A.; Picon, Mario A.; Stearman, Robert S.; Lin, Lei; Liu, Xinyue; Han, Xiaorui; Linhardt, Robert J.
2017-01-01
The endothelial glycocalyx is a heparan sulfate (HS)–rich endovascular structure critical to endothelial function. Accordingly, endothelial glycocalyx degradation during sepsis contributes to tissue edema and organ injury. We determined the endogenous mechanisms governing pulmonary endothelial glycocalyx reconstitution, and if these reparative mechanisms are impaired during sepsis. We performed intravital microscopy of wild-type and transgenic mice to determine the rapidity of pulmonary endothelial glycocalyx reconstitution after nonseptic (heparinase-III mediated) or septic (cecal ligation and puncture mediated) endothelial glycocalyx degradation. We used mass spectrometry, surface plasmon resonance, and in vitro studies of human and mouse samples to determine the structure of HS fragments released during glycocalyx degradation and their impact on fibroblast growth factor receptor (FGFR) 1 signaling, a mediator of endothelial repair. Homeostatic pulmonary endothelial glycocalyx reconstitution occurred rapidly after nonseptic degradation and was associated with induction of the HS biosynthetic enzyme, exostosin (EXT)-1. In contrast, sepsis was characterized by loss of pulmonary EXT1 expression and delayed glycocalyx reconstitution. Rapid glycocalyx recovery after nonseptic degradation was dependent upon induction of FGFR1 expression and was augmented by FGF-promoting effects of circulating HS fragments released during glycocalyx degradation. Although sepsis-released HS fragments maintained this ability to activate FGFR1, sepsis was associated with the downstream absence of reparative pulmonary endothelial FGFR1 induction. Sepsis may cause vascular injury not only via glycocalyx degradation, but also by impairing FGFR1/EXT1–mediated glycocalyx reconstitution. PMID:28187268
Qian, Guoliang; Zhou, Yijing; Zhao, Yancun; Song, Zhiwei; Wang, Suyan; Fan, Jiaqin; Hu, Baishi; Venturi, Vittorio; Liu, Fengquan
2013-07-05
Quorum sensing (QS) in Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is mediated by the diffusible signal factor (DSF). DSF-mediating QS has been shown to control virulence and a set of virulence-related functions; however, the expression profiles and functions of extracellular proteins controlled by DSF signal remain largely unclear. In the present study, 33 DSF-regulated extracellular proteins, whose functions include small-protein mediating QS, oxidative adaptation, macromolecule metabolism, cell structure, biosynthesis of small molecules, intermediary metabolism, cellular process, protein catabolism, and hypothetical function, were identified by proteomics in Xoc. Of these, 15 protein encoding genes were in-frame deleted, and 4 of them, including three genes encoding type II secretion system (T2SS)-dependent proteins and one gene encoding an Ax21 (activator of XA21-mediated immunity)-like protein (a novel small-protein type QS signal) were determined to be required for full virulence in Xoc. The contributions of these four genes to important virulence-associated functions, including bacterial colonization, extracellular polysaccharide, cell motility, biofilm formation, and antioxidative ability, are presented. To our knowledge, our analysis is the first complete list of DSF-regulated extracellular proteins and functions in a Xanthomonas species. Our results show that DSF-type QS played critical roles in regulation of T2SS and Ax21-mediating QS, which sheds light on the role of DSF signaling in Xanthomonas.
Roh, Kyung-Baeg; Jung, Eunsun; Park, Deokhoon; Lee, Jongsung
2013-08-01
Eotaxin-1 is a potent chemoattractant for eosinophils and a critical mediator during the development of eosinophilic inflammation. Fumaric acid is an intermediate product of the citric acid cycle, which is source of intracellular energy. Although fumaric acid ameliorates psoriasis and multiple sclerosis, its involvement in eotaxin-1-mediated effects has not been assessed. In this study, we investigated the effects of fumaric acid on eotaxin-1 expression in a mouse fibroblast cell line. We found that fumaric acid significantly inhibited tumor necrosis factor-α (TNF-α-induced eotaxin-1 expression. This fumaric acid effect was mediated through the inhibition of p38 mitogen-activated protein kinase (MAPK)-dependent nuclear factor (NF)-κB signaling. We also found that fumaric acid operates downstream of MEKK3 during TNF-α-induced NF-κB signaling, which upregulated eotaxin-1 expression. In addition, fumaric acid attenuated expression of CC-chemokine receptor 3 (CCR3), an eotaxin-1 receptor, and adhesion molecules that play important roles in eosinophil binding to induce allergic inflammation. Taken together, these findings indicate that inhibiting TNF-α-induced eotaxin-1 expression by fumaric acid occurs primarily through suppression of NF-κB signaling, which is mediated by inhibiting p38 MAPK and suggest that fumaric acid may be used as a complementary treatment option for eotaxin-1-mediated diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.
The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells.
Saulep-Easton, D; Vincent, F B; Quah, P S; Wei, A; Ting, S B; Croce, C M; Tam, C; Mackay, F
2016-01-01
Interleukin (IL)-10-producing B cells (B10 cells) have emerged as important regulatory elements with immunosuppressive roles. Chronic lymphocytic leukemia (CLL) B cells also secrete IL-10 and share features of B10 cells, suggesting a possible contribution of CLL B cells to immunosuppression in CLL patients. Factors controlling the emergence of B10 cells are not known. B-cell-activating factor of the tumor necrosis factor (TNF) family (BAFF) is critical for B-cell maturation and survival, and is implicated in the development and progression of CLL. We sought to investigate the role of BAFF in the emergence of IL-10-producing regulatory B cells in healthy donors and CLL patients. Here, we report that BAFF signaling promotes IL-10 production by CLL B cells in a mouse model of CLL and in CLL patients. Moreover, BAFF-mediated IL-10 production by normal and CLL B cells is mediated via its receptor transmembrane activator and cyclophilin ligand interactor. Our work uncovered a major targetable pathway important for the generation of regulatory B cells that is detrimental to immunity in CLL.
Brass, Abraham L; Huang, I-Chueh; Benita, Yair; John, Sinu P; Krishnan, Manoj N; Feeley, Eric M; Ryan, Bethany J; Weyer, Jessica L; van der Weyden, Louise; Fikrig, Erol; Adams, David J; Xavier, Ramnik J; Farzan, Michael; Elledge, Stephen J
2009-12-24
Influenza viruses exploit host cell machinery to replicate, resulting in epidemics of respiratory illness. In turn, the host expresses antiviral restriction factors to defend against infection. To find host cell modifiers of influenza A H1N1 viral infection, we used a functional genomic screen and identified over 120 influenza A virus-dependency factors with roles in endosomal acidification, vesicular trafficking, mitochondrial metabolism, and RNA splicing. We discovered that the interferon-inducible transmembrane proteins IFITM1, 2, and 3 restrict an early step in influenza A viral replication. The IFITM proteins confer basal resistance to influenza A virus but are also inducible by interferons type I and II and are critical for interferon's virustatic actions. Further characterization revealed that the IFITM proteins inhibit the early replication of flaviviruses, including dengue virus and West Nile virus. Collectively this work identifies a family of antiviral restriction factors that mediate cellular innate immunity to at least three major human pathogens. Copyright 2009 Elsevier Inc. All rights reserved.
Chihara, Kazuyasu; Kimura, Yukihiro; Honjoh, Chisato; Yamauchi, Shota; Takeuchi, Kenji; Sada, Kiyonao
2014-03-10
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr(174), Tyr(183) and Tyr(446) in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr(183) and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr(174), Tyr(183) and Tyr(426) of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr(426) is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr(426) was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr(426) following BCR stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.
Angiogenesis is inhibitory for mammalian digit regeneration
Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong
2014-01-01
Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862
HCV NS5A Up-Regulates COX-2 Expression via IL-8-Mediated Activation of the ERK/JNK MAPK Pathway
Chen, Wei-Chun; Tseng, Chin-Kai; Chen, Yen-Hsu; Lin, Chun-Kuang; Hsu, Shih-hsien; Wang, Shen-Nien; Lee, Jin-Ching
2015-01-01
Chronic hepatitis C virus (HCV) infection leads to intrahepatic inflammation and liver cell injury, which are considered a risk factor for virus-associated hepatitis, cirrhosis, and hepatocellular carcinoma worldwide. Inflammatory cytokines are critical components of the immune system and influence cellular signaling, and genetic imbalances. In this study, we found that cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) were significantly induced by HCV infection and HCV NS5A expression, and induction of COX-2 correlated with HCV-induced IL-8 production. We also found that the ERK and JNK signaling pathways were involved in the regulation of IL-8-mediated COX-2 induction in response to HCV infection. Using a promoter-linked reporter assay, we identified that the C/EBP regulatory element within the COX-2 promoter was the dominant factor responsible for the induction of COX-2 by HCV. Silencing C/EBP attenuated HCV-induced COX-2 expression. Our results revealed that HCV-induced inflammation promotes viral replication, providing new insights into the involvement of IL-8-mediated COX-2 induction in HCV replication. PMID:26231035
Spence, Alison C; Campbell, Karen J; Crawford, David A; McNaughton, Sarah A; Hesketh, Kylie D
2014-11-04
Young children's diets are currently suboptimal. Given that mothers have a critical influence on children' diets, they are typically a target of interventions to improve early childhood nutrition. Understanding the maternal factors which mediate an intervention's effect on young children's diets is important, but has not been well investigated. This research aimed to test whether maternal feeding knowledge, maternal feeding practices, maternal self-efficacy, and maternal dietary intakes acted as mediators of the effect of an intervention to improve child diet quality. The Melbourne Infant Feeding Activity and Nutrition Trial (InFANT) Program was a cluster-randomized controlled trial, conducted from 2008-2010. This novel, low-dose, health promotion intervention was delivered quarterly over 15 months and involved educational activities, promotion of peer discussion, a DVD and written materials. Post-intervention, when children were approximately 18 months of age, child diets were assessed using multiple 24-hour recalls and a purpose-developed index of diet quality, the Obesity Protective Dietary Index. Maternal mediators were assessed using a combination of previously validated and purpose-deigned tools. Mediation analysis was conducted using the test of joint significance and difference of coefficients methods. Across 62 parents' groups in Melbourne, Australia, 542 parents were recruited. Post- intervention, higher maternal feeding knowledge and lower use of foods as rewards was found to mediate the direct intervention effect on child diet quality. While other aspects of maternal feeding practices, self-efficacy and dietary intakes did not act as mediators, they were associated with child diet quality. Mediation analysis of this novel health promotion intervention showed the importance of maternal feeding knowledge and use of foods as rewards in impacting child diet quality. The other maternal factors assessed were appropriate targets but further research on how to impact these in an intervention is important. This evidence of intervention efficacy and mediation provides important insights for planning future interventions. Current Controlled Trials ISRCTN81847050, registered 23 November 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chihara, Kazuyasu; Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193; Kimura, Yukihiro
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 446} in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr{sup 183} and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutationalmore » analysis showed that Tyr{sup 174}, Tyr{sup 183} and Tyr{sup 426} of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr{sup 426} is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr{sup 426} was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr{sup 426} following BCR stimulation. - Highlights: • 3BP2 is phosphorylated by Syk, but not Abl family kinases in BCR signaling. • Tyr183 and Tyr426 in chicken 3BP2 are the major phosphorylation sites by Syk. • The SH2 domain of 3BP2 is critical for tyrosine phosphorylation of 3BP2. • Phosphorylation of Tyr426 in 3BP2 is required for the inducible binding with Vav3. • 3BP2 is involved in the regulation of BCR-mediated Rac1 activation.« less
Rohner, Patrick T; Blanckenhorn, Wolf U; Schäfer, Martin A
2017-05-01
Ultimate factors driving insect body size are rather well understood, while-apart from a few model species-the underlying physiological and developmental mechanisms received less attention. We investigate the physiological basis of adaptive size variation in the yellow dung fly Scathophaga stercoraria, which shows pronounced male-biased sexual size dimorphism and strong body size plasticity. We estimate variation of a major physiological threshold, the critical weight, which is the mass at which a larva initiates pupariation. Critical weight was associated with sexual size dimorphism and sex-specific plasticity, and is thus a likely target of selection on adult size. Detailed larval growth trajectories derived from individuals raised at two food and temperature treatments further reveal that sex-specific size plasticity is mediated by faster initial growth of males that later becomes reduced by higher male weight loss during the wandering stage. We further demonstrate that integral growth rates, which are typically calculated as simple ratios of egg-to-adult development time and adult weight, do not necessarily well reflect variation in instantaneous growth rates. We illustrate the importance of detailed assessments of ontogenetic growth trajectories for the understanding of adaptive size variation and discuss the mechanistic basis of size determination in shaping sex-specific phenotypic plasticity. © 2017 Wiley Periodicals, Inc.
Hughes, A. Randall; Rooker, Kelly; Murdock, Meagan; Kimbro, David L.
2012-01-01
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions. PMID:22970316
Lu, Feng-Ying; Wen, Si; Deng, Gang; Tang, Yung-Lung
2017-05-01
Childhood maltreatment is widely accepted as a risk factor for drug addiction from adolescence to adulthood. However, the influence of childhood maltreatment on drug treatment related variables, such as drug abstinence motivation and self-concept, as well as self-efficacy, remains unclear. This study aims at exploring whether self-concept mediates the relationship between childhood maltreatment and abstinence motivation, as well as self-efficacy, among drug addicts. This study involves 816 (550 males, 226 females, mean age=34.59, range=16-58 years) drug addicts from compulsory detoxification units. Participants completed questionnaires, including the childhood trauma questionnaire 28 - item short form (CTQ - SF), Tennessee self-concept scale (TSCS), general self-efficacy scale (GSES), and drug abstinence motivation questionnaire (DAMQ). The structural equation model (SEM) analysis, including total and specific forms of maltreatment scores, showed that childhood maltreatment was negatively associated with self-concept, self-efficacy, and abstinence motivation. Self-concept was positively associated with self-efficacy and abstinence motivation. Conversely, significant association between self-efficacy and abstinence motivation did not exist. An indirect analysis showed that self-concept mediated the relationship between childhood maltreatment and self-efficacy. Critically, self-concept arbitrated the relationship between childhood maltreatment and abstinence motivation. The indirect effect of self-concept between childhood maltreatment and abstinence motivation still existed when the total scores of maltreatment were replaced by the scores of specific forms of maltreatment. These results demonstrated that self-concept is a critical factor in understanding the relationship between childhood maltreatment and abstinence motivation, as well as self-efficacy, among drug addicts. Improving the sense of self-worth may be an effective intervention therapy among drug addicts with childhood maltreatment history. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rangel-Salazar, Rubén; Wickström-Lindholm, Marie; Aguilar-Salinas, Carlos A; Alvarado-Caudillo, Yolanda; Døssing, Kristina B V; Esteller, Manel; Labourier, Emmanuel; Lund, Gertrud; Nielsen, Finn C; Rodríguez-Ríos, Dalia; Solís-Martínez, Martha O; Wrobel, Katarzyna; Wrobel, Kazimierz; Zaina, Silvio
2011-11-25
We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.
Li, Wenjing; Liu, Ting; Xiong, Yingluo; Lv, Jiaoyan; Cui, Xinyi; He, Rui
2018-06-05
BLT1, the primary functional receptor of Leukotriene B4 (LTB4), is involved in tissue inflammation by mediating leukocyte recruitment, and recently LTB4-dependent inflammation was reported to promote lung tumor growth. Exposure to diesel exhaust particle (DEP), the major component of particulate matter 2.5 (PM 2.5 ), can elicit lung inflammation, which may increase the risk of lung cancer. However, it remains unknown about the critical factors mediating DEP-induced lung inflammation and the subsequent effect on tumor metastasis. In this study, we found that DEP exposure led to acute lung inflammation, characterized by abundant infiltration of neutrophils and elevated lung levels in LTB4, as well as several pro-inflammatory cytokines and chemokines, including IL-1β, IL-6, TNF-α, CXCL1/2. Furthermore, DEP exposure promoted lung metastasis of 3LL and 4T1 cells. BLT1 blockade by its specific antagonist U75302 significantly inhibited neutrophilic lung inflammation following DEP exposure. Importantly, BLT1 blockade before the onset of inflammation significantly reduced DEP-enhanced lung metastasis, which was associated with greatly decreased infiltrating neutrophils in lungs. Interestingly, BLT1 blockade after the occurrence of lung metastases had no effect on the magnitude of lung metastasis, suggesting that inhibition of BLT1-mediated lung inflammation was insufficient to suppress established metastatic tumor. Administration of BLT2 inhibitor LY255283 fails to inhibit DEP-induced lung inflammation and tumor metastasis. Collectively, our results demonstrate that DEP exposure causes BLT1-mediated lung neutrophilic inflammation, which is critical for tumor lung metastasis, and suggest that interruption of the LTB4-BLT1 axis could be useful for preventing PM 2.5 -induced inflammation and subsequent susceptible to lung metastasis. Copyright © 2018 Elsevier Ltd. All rights reserved.
CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation.
Causton, Benjamin; Ramadas, Ravisankar A; Cho, Josalyn L; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J; Medoff, Benjamin D
2015-07-15
Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein-coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. Copyright © 2015 by The American Association of Immunologists, Inc.
Li, S; Schmalz, G; Schmidt, J; Krause, F; Haak, R; Ziebolz, D
2018-04-01
Antimicrobial peptides (AMPs) play a critical role in controlling innate and acquired immune responses. Local dysregulation of AMP is implicated in the pathogenesis of periodontal diseases as a response to periodontal pathogen challenge. Changes in AMP expression also characterize tobacco smoking, diabetes mellitus, obesity and rheumatoid arthritis, which are established risk factors of periodontal diseases, suggesting AMP may act as putative mechanistic links between these. The aim was to evaluate and summarize critically the current evidence pertaining to interrelationships between AMPs, periodontal diseases and selected periodontal disease risk factors. General and theme specific keywords were used to search the PUBMED database for studies relevant to AMP, periodontal diseases, smoking, diabetes mellitus, obesity and rheumatoid arthritis and critically reviewed. A total of 131 abstracts and 119 full text articles were screened for relevance; 13 studies were selected for inclusion after critical review. Local AMP dysregulation characteristic to periodontal diseases appears to occur within a broader landscape of complex systemic immune perturbations independently induced by smoking, metabolic and rheumatoid disease. The nature of these interactions and mechanistic pathways involved are inadequately understood. AMPs could be possible mechanistic interlinks between periodontal diseases and its risk factors. However, such evidence is very limited and more in vivo and in vitro studies are necessary to clarify the nature of such relationships. A greater understanding of AMPs as shared mediators is essential for unraveling their value as therapeutic or biomarker candidates. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Korner, Heinrich; Goodsall, Anna L.; Lemckert, Frances A.; Scallon, Bernard J.; Ghrayeb, John; Ford, Andrew L.; Sedgwick, Jonathon D.
1995-11-01
The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin α, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4^+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin α in autoimmune tissue damage.
Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation.
Gaughan, Luke; Logan, Ian R; Neal, David E; Robson, Craig N
2005-01-01
The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors and plays a critical role in regulating the expression of genes involved in androgen-dependent and -independent tumour formation. Regulation of the AR is achieved by alternate binding of either histone acetyltransferase (HAT)-containing co-activator proteins, or histone deacetylase 1 (HDAC1). Factors that control AR stability may also constitute an important regulatory mechanism, a notion that has been confirmed with the finding that the AR is a direct target for Mdm2-mediated ubiquitylation and proteolysis. Using chromatin immunoprecipitation (ChIP) and re-ChIP analyses, we show that Mdm2 associates with AR and HDAC1 at the active androgen-responsive PSA promoter in LNCaP prostate cancer cells. Furthermore, we demonstrate that Mdm2-mediated modification of AR and HDAC1 catalyses protein destabilization and attenuates AR sactivity, suggesting that ubiquitylation of the AR and HDAC1 may constitute an additional mechanism for regulating AR function. We also show that HDAC1 and Mdm2 function co-operatively to reduce AR-mediated transcription that is attenuated by the HAT activity of the AR co-activator Tip60, suggesting interplay between acetylation status and receptor ubiquitylation in AR regulation. In all, our data indicates a novel role for Mdm2 in regulating components of the AR transcriptosome.
Real-time PCR probe optimization using design of experiments approach.
Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F
2016-03-01
Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.
Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh
2016-04-15
Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Hun Lee, Jong; Shu, Limin; Fuentes, Francisco; Su, Zheng-Yuan; Tony Kong, Ah-Ng
2013-01-01
Excessive oxidative stress induced by reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2), a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including NAD(P)H:quinine oxidoreductase (NQO1), heme oxygenase-1 (HO-1), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs). The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM). In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer. PMID:24716158
Dykes, Samantha S; Steffan, Joshua J; Cardelli, James A
2017-10-04
Tumor invasion through a basement membrane is one of the earliest steps in metastasis, and growth factors, such as Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor (HGF), stimulate this process in a majority of solid tumors. Basement membrane breakdown is one of the hallmarks of invasion; therefore, tumor cells secrete a variety of proteases to aid in this process, including lysosomal proteases. Previous studies demonstrated that peripheral lysosome distribution coincides with the release of lysosomal cathepsins. Immunofluorescence microscopy, western blot, and 2D and 3D cell culture techniques were performed to evaluate the effects of EGF on lysosome trafficking and cell motility and invasion. EGF-mediated lysosome trafficking, protease secretion, and invasion is regulated by the activity of p38 mitogen activated protein kinase (MAPK) and sodium hydrogen exchangers (NHEs). Interestingly, EGF stimulates anterograde lysosome trafficking through a different mechanism than previously reported for HGF, suggesting that there are redundant signaling pathways that control lysosome positioning and trafficking in tumor cells. These data suggest that EGF stimulation induces peripheral (anterograde) lysosome trafficking, which is critical for EGF-mediated invasion and protease release, through the activation of p38 MAPK and NHEs. Taken together, this report demonstrates that anterograde lysosome trafficking is necessary for EGF-mediated tumor invasion and begins to characterize the molecular mechanisms required for EGF-stimulated lysosome trafficking.
Park, Ji-Wan; Yoon, Hye-Jin; Kang, Woo Youl; Cho, Seungil; Seong, Sook Jin; Lee, Hae Won; Yoon, Young-Ran; Kim, Hyun-Ju
2018-02-01
GPR84, a member of the G protein-coupled receptor family, is found predominantly in immune cells, such as macrophages, and functions as a pivotal modulator of inflammatory responses. In this study, we investigated the role of GPR84 in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. Our microarray data showed that GPR84 was significantly downregulated in osteoclasts compared to in their precursors, macrophages. The overexpression of GPR84 in bone marrow-derived macrophages suppressed the formation of multinucleated osteoclasts without affecting precursor proliferation. In addition, GPR84 overexpression attenuated the induction of c-Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), which are transcription factors that are critical for osteoclastogenesis. Furthermore, knockdown of GPR84 using a small hairpin RNA promoted RANKL-mediated osteoclast differentiation and gene expression of osteoclastogenic markers. Mechanistically, GPR84 overexpression blocked RANKL-stimulated phosphorylation of IκBα and three MAPKs, JNK, ERK, and p38. GPR84 also suppressed NF-κB transcriptional activity mediated by RANKL. Conversely, GPR84 knockdown enhanced RANKL-induced activation of IκBα and the three MAPKs. Collectively, our results revealed that GPR84 functions as a negative regulator of osteoclastogenesis, suggesting that it may be a potential therapeutic target for osteoclast-mediated bone-destructive diseases. © 2017 Wiley Periodicals, Inc.
Chen, Qian; Sun, Jiaqiang; Zhai, Qingzhe; Zhou, Wenkun; Qi, Linlin; Xu, Li; Wang, Bao; Chen, Rong; Jiang, Hongling; Qi, Jing; Li, Xugang; Palme, Klaus; Li, Chuanyou
2011-01-01
The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin. PMID:21954460
Hoffman, Michael D.
2015-01-01
Emulating autograft healing within the context of decellularized bone allografts has immediate clinical applications in the treatment of critical-sized bone defects. The periosteum, a thin, osteogenic tissue that surrounds bone, houses a heterogeneous population of stem cells and osteoprogenitors. There is evidence that periosteum-cell derived paracrine factors, specifically vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2), orchestrate autograft healing through host cell recruitment and subsequent tissue elaboration. In previous work, we demonstrated that the use of poly(ethylene glycol) (PEG) hydrogels as a tissue engineered (T.E.) periosteum to localize mesenchymal stem cells (MSCs) to the surface of decellularized bone enhances allograft healing and integration. Herein, we utilize a mixed population of 50:50 MSCs and osteoprogenitor cells to better mimic native periosteum cell population and paracrine factor production to further promote allograft healing. This mixed cell population was localized to the surface of decellularized allografts within degradable hydrogels and shown to expedite allograft healing. Specifically, bone callus formation and biomechanical graft-host integration are increased as compared to unmodified allografts. These results demonstrate the dual importance of periosteum-mediated paracrine factors orchestrating host cell recruitment as well as new bone formation while developing clinically translatable strategies for allograft healing and integration. PMID:25818449
Replication protein A: directing traffic at the intersection of replication and repair.
Oakley, Greg G; Patrick, Steve M
2010-06-01
Since the initial discovery of replication protein A (RPA) as a DNA replication factor, much progress has been made on elucidating critical roles for RPA in other DNA metabolic pathways. RPA has been shown to be required for DNA replication, DNA repair, DNA recombination, and the DNA damage response pathway with roles in checkpoint activation. This review summarizes the current understanding of RPA structure, phosphorylation and protein-protein interactions in mediating these DNA metabolic processes.
IKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation
Dong, Wen; Li, Yi; Gao, Ming; Hu, Meiru; Li, Xiaoguang; Mai, Sanyue; Guo, Ning; Yuan, Shengtao; Song, Lun
2012-01-01
Exposure to ultraviolet B (UVB) irradiation from sunlight induces the upregulation of VEGF, a potent angiogenic factor that is critical for mediating angiogenesis-associated photodamage. However, the molecular mechanisms related to UVB-induced VEGF expression have not been fully defined. Here, we demonstrate that one of the catalytic subunits of the IκB kinase complex (IKK), IKKα, plays a critical role in mediating UVB-induced VEGF expression in mouse embryonic fibroblasts (MEFs), which requires IKKα kinase activity but is independent of IKKβ, IKKγ and the transactivation of NF-κB. We further show that the transcriptional factor AP-1 functions as the downstream target of IKKα that is responsible for VEGF induction under UVB exposure. Both the accumulation of AP-1 component, c-Fos and the transactivation of AP-1 by UVB require the activated IKKα located within the nucleus. Moreover, nuclear IKKα can associate with c-Fos and recruit to the vegf promoter regions containing AP-1-responsive element and then trigger phosphorylation of the promoter-bound histone H3. Thus, our results have revealed a novel independent role for IKKα in controlling VEGF expression during the cellular UVB response by regulating the induction of the AP-1 component and phosphorylating histone H3 to facilitate AP-1 transactivation. Targeting IKKα shows promise for the prevention of UVB-induced angiogenesis and the associated photodamage. PMID:22169952
Yki/YAP, Sd/TEAD and Hth/MEIS Control Tissue Specification in the Drosophila Eye Disc Epithelium
Pignoni, Francesca
2011-01-01
During animal development, accurate control of tissue specification and growth are critical to generate organisms of reproducible shape and size. The eye-antennal disc epithelium of Drosophila is a powerful model system to identify the signaling pathway and transcription factors that mediate and coordinate these processes. We show here that the Yorkie (Yki) pathway plays a major role in tissue specification within the developing fly eye disc epithelium at a time when organ primordia and regional identity domains are specified. RNAi-mediated inactivation of Yki, or its partner Scalloped (Sd), or increased activity of the upstream negative regulators of Yki cause a dramatic reorganization of the eye disc fate map leading to specification of the entire disc epithelium into retina. On the contrary, constitutive expression of Yki suppresses eye formation in a Sd-dependent fashion. We also show that knockdown of the transcription factor Homothorax (Hth), known to partner Yki in some developmental contexts, also induces an ectopic retina domain, that Yki and Scalloped regulate Hth expression, and that the gain-of-function activity of Yki is partially dependent on Hth. Our results support a critical role for Yki- and its partners Sd and Hth - in shaping the fate map of the eye epithelium independently of its universal role as a regulator of proliferation and survival. PMID:21811580
Campos, Rui C; Besser, Avi; Blatt, Sidney J
2012-01-01
The present study examined whether distress mediates the relationship between suicidality and the personality predispositions of Self-Criticism, Dependency/Neediness, and Efficacy. A community sample of Portuguese young adults (N = 105) completed, in a counterbalanced order, a sociodemographic questionnaire, the Depressive Experiences Questionnaire (DEQ), the Brief Symptom Inventory (BSI), and reports of any suicide attempts and/or ideation. Structural equation modeling indicated that Self-Criticism is significantly associated with suicidality, but Dependency and Efficacy are not. High levels of Self-Criticism and of Dependency and low levels of Efficacy are associated with distress. Distress mediates the association between Self-Criticism and suicidality; whereas Dependency and Efficacy are indirectly associated with suicidality through their associations with distress. Self-Critical and Dependent individuals are at greater risk for suicide because of their vulnerability to distressful events; whereas certain levels of Efficacy may decrease vulnerability to distress and suicide risk.
Duncan, Melanie Laura; Horsington, Jacquelyn; Eldi, Preethi; Al Rumaih, Zahrah; Karupiah, Gunasegaran; Newsome, Timothy P
2018-03-05
Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted.
Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal
Kanatsu-Shinohara, Mito; Tanaka, Takashi; Ogonuki, Narumi; Ogura, Atsuo; Morimoto, Hiroko; Cheng, Pei Feng; Eisenman, Robert N.; Trumpp, Andreas; Shinohara, Takashi
2016-01-01
Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. PMID:28007786
Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal.
Kanatsu-Shinohara, Mito; Tanaka, Takashi; Ogonuki, Narumi; Ogura, Atsuo; Morimoto, Hiroko; Cheng, Pei Feng; Eisenman, Robert N; Trumpp, Andreas; Shinohara, Takashi
2016-12-01
Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. © 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press.
Duncan, Melanie Laura; Horsington, Jacquelyn; Eldi, Preethi; Al Rumaih, Zahrah; Karupiah, Gunasegaran
2018-01-01
Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted. PMID:29510577
Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun
2013-01-01
The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351
Thackray, Larissa B.; Duan, Erning; Lazear, Helen M.; Kambal, Amal; Schreiber, Robert D.; Diamond, Michael S.
2012-01-01
Human noroviruses (HuNoV) are the major cause of epidemic, nonbacterial gastroenteritis in the world. The short course of HuNoV-induced symptoms has implicated innate immunity in control of norovirus (NoV) infection. Studies using murine norovirus (MNV) confirm the importance of innate immune responses during NoV infection. Type I alpha and beta interferons (IFN-α/β) limit HuNoV replicon function, restrict MNV replication in cultured cells, and control MNV replication in vivo. Therefore, the cell types and transcription factors involved in antiviral immune responses and IFN-α/β-mediated control of NoV infection are important to define. We used mice with floxed alleles of the IFNAR1 chain of the IFN-α/β receptor to identify cells expressing lysozyme M or CD11c as cells that respond to IFN-α/β to restrict MNV replication in vivo. Furthermore, we show that the transcription factors IRF-3 and IRF-7 work in concert to initiate unique and overlapping antiviral responses to restrict MNV replication in vivo. IRF-3 and IRF-7 restrict MNV replication in both cultured macrophages and dendritic cells, are required for induction of IFN-α/β in macrophages but not dendritic cells, and are dispensable for the antiviral effects of IFN-α/β that block MNV replication. These studies suggest that expression of the IFN-α/β receptor on macrophages/neutrophils and dendritic cells, as well as of IRF-3 and IRF-7, is critical for innate immune responses to NoV infection. PMID:23035219
Goodwin, Justin; Choi, Hyunsung; Hsieh, Meng-Hsiung; Neugent, Michael L; Ahn, Jung-Mo; Hayenga, Heather N; Singh, Pankaj K; Shackelford, David B; Lee, In-Kyu; Shulaev, Vladimir; Dhar, Shanta; Takeda, Norihiko; Kim, Jung-Whan
2018-02-01
Hypoxia has long been implicated in the pathogenesis of fibrotic diseases. Aberrantly activated myofibroblasts are the primary pathological driver of fibrotic progression, yet how various microenvironmental influences, such as hypoxia, contribute to their sustained activation and differentiation is poorly understood. As a defining feature of hypoxia is its impact on cellular metabolism, we sought to investigate how hypoxia-induced metabolic reprogramming affects myofibroblast differentiation and fibrotic progression, and to test the preclinical efficacy of targeting glycolytic metabolism for the treatment of pulmonary fibrosis. Bleomycin-induced pulmonary fibrotic progression was evaluated in two independent, fibroblast-specific, promoter-driven, hypoxia-inducible factor (Hif) 1A knockout mouse models and in glycolytic inhibitor, dichloroacetate-treated mice. Genetic and pharmacological approaches were used to explicate the role of metabolic reprogramming in myofibroblast differentiation. Hypoxia significantly enhanced transforming growth factor-β-induced myofibroblast differentiation through HIF-1α, whereas overexpression of the critical HIF-1α-mediated glycolytic switch, pyruvate dehydrogenase kinase 1 (PDK1) was sufficient to activate glycolysis and potentiate myofibroblast differentiation, even in the absence of HIF-1α. Inhibition of the HIF-1α/PDK1 axis by genomic deletion of Hif1A or pharmacological inhibition of PDK1 significantly attenuated bleomycin-induced pulmonary fibrosis. Our findings suggest that HIF-1α/PDK1-mediated glycolytic reprogramming is a critical metabolic alteration that acts to promote myofibroblast differentiation and fibrotic progression, and demonstrate that targeting glycolytic metabolism may prove to be a potential therapeutic strategy for the treatment of pulmonary fibrosis.
Teng, Y-T A
2006-03-01
Based on the results of recent research in the field, the present paper will discuss the protective and destructive aspects of the innate vs. adaptive (humoral and cell-mediated) immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) the Toll-like receptors (TLR), the innate immune repertoire for recognizing the unique molecular patterns of microbial components that trigger innate and adaptive immunity for effective host defenses, in some general non-oral vs. periodontal microbial infections; (ii) T-cell-mediated immunity, Th-cytokines, and osteoclastogenesis in periodontal disease progression; and (iii) some molecular techniques developed and used to identify critical microbial virulence factors or antigens associated with host immunity (using Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species). Therefore, further understanding of the molecular interactions and mechanisms associated with the host's innate and adaptive immune responses will facilitate the development of new and innovative therapeutics for future periodontal treatments.
Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus
NASA Astrophysics Data System (ADS)
Zhou, Zhuo; Cao, Mengmeng; Guo, Yang; Zhao, Lili; Wang, Jingfeng; Jia, Xue; Li, Jianguo; Wang, Conghui; Gabriel, Gülsah; Xue, Qinghua; Yi, Yonghong; Cui, Sheng; Jin, Qi; Wang, Jianwei; Deng, Tao
2014-02-01
The ribonucleoprotein (RNP) of the influenza A virus is responsible for the transcription and replication of viral RNA in the nucleus. These processes require interplay between host factors and RNP components. Here, we report that the Fragile X mental retardation protein (FMRP) targets influenza virus RNA synthesis machinery and facilitates virus replication both in cell culture and in mice. We demonstrate that FMRP transiently associates with viral RNP and stimulates viral RNP assembly through RNA-mediated interaction with the nucleoprotein. Furthermore, the KH2 domain of FMRP mediates its association with the nucleoprotein. A point mutation (I304N) in the KH2 domain, identified from a Fragile X syndrome patient, disrupts the FMRP-nucleoprotein association and abolishes the ability of FMRP to participate in viral RNP assembly. We conclude that FMRP is a critical host factor used by influenza viruses to facilitate viral RNP assembly. Our observation reveals a mechanism of influenza virus RNA synthesis and provides insights into FMRP functions.
Voorhees, Jaymie R.; Genova, Rachel M.; Britt, Jeremiah K.; McDaniel, Latisha; Harper, Matthew M.
2016-01-01
Abstract Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain (WldS) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve–dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI. PMID:27822499
Yin, Terry C; Voorhees, Jaymie R; Genova, Rachel M; Davis, Kevin C; Madison, Ashley M; Britt, Jeremiah K; Cintrón-Pérez, Coral J; McDaniel, Latisha; Harper, Matthew M; Pieper, Andrew A
2016-01-01
Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain ( WldS ) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve-dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI.
Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies
Gambhir, Sahil; Vyas, Dinesh; Hollis, Michael; Aekka, Apporva; Vyas, Arpita
2015-01-01
Nuclear factor kappa B (NF-κB) has an established role in the regulation of innate immunity and inflammation. NF-κB is also involved in critical mechanisms connecting inflammation and cancer development. Recent investigations suggest that the NF-κB signaling cascade may be the central mediator of gastrointestinal malignancies including esophageal, gastric and colorectal cancers. This review will explore NF-κB’s function in inflammation-associated gastrointestinal malignancies, highlighting its oncogenic contribution to each step of carcinogenesis. NF-κB’s role in the inflammation-to-carcinoma sequence in gastrointestinal malignancies warrants stronger emphasis upon targeting this pathway in achieving greater therapeutic efficacy. PMID:25805923
Gudes, Sagi; Barkai, Omer; Caspi, Yaki; Katz, Ben; Lev, Shaya
2014-01-01
Tetrodotoxin-resistant (TTX-r) sodium channels are key players in determining the input-output properties of peripheral nociceptive neurons. Changes in gating kinetics or in expression levels of these channels by proinflammatory mediators are likely to cause the hyperexcitability of nociceptive neurons and pain hypersensitivity observed during inflammation. Proinflammatory mediator, tumor necrosis factor-α (TNF-α), is secreted during inflammation and is associated with the early onset, as well as long-lasting, inflammation-mediated increase in excitability of peripheral nociceptive neurons. Here we studied the underlying mechanisms of the rapid component of TNF-α-mediated nociceptive hyperexcitability and acute pain hypersensitivity. We showed that TNF-α leads to rapid onset, cyclooxygenase-independent pain hypersensitivity in adult rats. Furthermore, TNF-α rapidly and substantially increases nociceptive excitability in vitro, by decreasing action potential threshold, increasing neuronal gain and decreasing accommodation. We extended on previous studies entailing p38 MAPK-dependent increase in TTX-r sodium currents by showing that TNF-α via p38 MAPK leads to increased availability of TTX-r sodium channels by partial relief of voltage dependence of their slow inactivation, thereby contributing to increase in neuronal gain. Moreover, we showed that TNF-α also in a p38 MAPK-dependent manner increases persistent TTX-r current by shifting the voltage dependence of activation to a hyperpolarized direction, thus producing an increase in inward current at functionally critical subthreshold voltages. Our results suggest that rapid modulation of the gating of TTX-r sodium channels plays a major role in the mediated nociceptive hyperexcitability of TNF-α during acute inflammation and may lead to development of effective treatments for inflammatory pain, without modulating the inflammation-induced healing processes. PMID:25355965
Sirtuins-mediators of maternal obesity-induced complications in offspring?
Nguyen, Long T; Chen, Hui; Pollock, Carol A; Saad, Sonia
2016-04-01
Obesity is a complex metabolic disease, attributed to diverse and interactive genetic and environmental factors. The associated health consequences of obesity are pleiotropic, with individuals being more susceptible to chronic diseases such as type 2 diabetes mellitus, hypertension, and lipotoxicity-related chronic diseases. The contribution of maternal obesity to the offspring's predisposition to both obesity and its complications is increasingly recognized. Understanding the mechanisms underlying these "transmissible" effects is critical to develop therapeutic interventions to reduce the risk for "programmed" obesity. Sirtuins (SIRTs), particularly SIRT1 and SIRT3, are NAD(+)-dependent deacetylases that regulate metabolic balance and stress responses in both central and peripheral tissues, of which dysregulation is a well-established mediator for the development and effects of obesity. Nevertheless, their implication in the transmissible effects of maternal obesity across generations remains largely elusive. In this review, we examine multiple pathways and systems that are likely to mediate such effects, with particular emphasis on the role of SIRTs.-Nguyen, L. T., Chen, H., Pollock, C. A., Saad, S. Sirtuins-mediators of maternal obesity-induced complications in offspring? © FASEB.
Whey acidic proteins (WAPs): novel modulators of innate immunity to HIV infection.
Reading, James L; Meyers, Adrienne F A; Vyakarnam, Annapurna
2012-03-01
To discuss how whey acidic proteins (WAPs), a new class of immunomodulatory soluble mediators, impact innate immunity to HIV infection. Innate immunity to HIV infection is increasingly being recognized as critical in determining initial virus transmission and dissemination and may, therefore, be exploited in vaccine and microbicide intervention strategies to combat HIV infection. Several important innate immune mediators have recently been shown to regulate HIV infection in vitro and are, thus, implicated in in vivo immunity to the virus. These include soluble mediators, such as type I interferon, the defensins and more recently WAPs. Recent evidence is discussed, which show that WAPs are pleiotropic soluble mediators that may impact the course of HIV infection in two ways: as regulators of HIV replication and as regulators of innate and adaptive immunity. A better understanding of host factors that regulate HIV transmission is essential in the development of novel therapeutic strategies. This review focuses on recent findings that highlight the HIV regulatory and anti-inflammatory function of WAPs and assesses their potential to be exploited as novel therapeutics.
Liu, Bing; Li, Wenping; Song, Weiyu; Liu, Jian
2018-06-13
Carbonate intermediates have been reported to play an active role in CO oxidation over ceria-based catalysts in recent experimental studies. However, the detailed CO oxidation mechanism involving carbonate intermediates over ceria-based catalysts remains obscure. In this work, we carried out systematic density functional theory calculations corrected by on-site Coulomb interactions (DFT+U) to investigate the complete CO oxidation mechanism involving carbonate intermediates over cobalt-doped CeO2 catalysts, aiming to unravel how the carbonate participates in CO oxidation and shed light on the underlying factors that control the carbonate-mediated reaction mechanism. A novel carbonate-mediated Mars-van Krevelen (M-vK) mechanism was proposed, in which the carbonate acts as an active intermediate rather than a spectator and can react with CO to form CO2. This carbonate-mediated M-vK mechanism is facet-dependent because it is predominant on the (110) surface whereas the conventional M-vK mechanism is more favorable on (111) and (100) surfaces. The origin of facet-dependence was discussed by analyzing the geometric and electronic structures. It is found that the negatively charged bent CO2- intermediate formed on the (110) surface plays a critical role in the carbonate-mediated M-vK mechanism, whereas the formation of a neutral linear CO2 intermediate on (111) and (100) surfaces hinders the carbonate-mediated M-vK mechanism. The surface oxygen vacancy hinders the formation of carbonate intermediates, indicating that the carbonate-mediated M-vK mechanism is also vacancy-dependent. The formation of carbonate intermediates on different metal (Ti, V, W, Mo and Re) doped CeO2(110) surfaces was studied and the results indicate that the coordination environment of the dopant species is a key factor that determines the carbonate-mediated M-vK mechanism. This study provides atomic-scale insights into the reaction mechanism involving carbonate intermediates and the structure-mechanism relationship for CO oxidation over cobalt-ceria catalysts.
Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal
Lackford, Brad; Yao, Chengguo; Charles, Georgette M; Weng, Lingjie; Zheng, Xiaofeng; Choi, Eun-A; Xie, Xiaohui; Wan, Ji; Xing, Yi; Freudenberg, Johannes M; Yang, Pengyi; Jothi, Raja; Hu, Guang; Shi, Yongsheng
2014-01-01
mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3′ processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification. PMID:24596251
Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.
Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V
2007-09-14
The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.
Mui, Amanda M.; Yang, Victoria; Aung, Moe H.; Fu, Jieming; Adekunle, Adewumi N.; Prall, Brian C.; Sidhu, Curran S.; Park, Han na; Boatright, Jeffrey H.; Iuvone, P. Michael
2018-01-01
Visual experience during the critical period modulates visual development such that deprivation causes visual impairments while stimulation induces enhancements. This study aimed to determine whether visual stimulation in the form of daily optomotor response (OMR) testing during the mouse critical period (1) improves aspects of visual function, (2) involves retinal mechanisms and (3) is mediated by brain derived neurotrophic factor (BDNF) and dopamine (DA) signaling pathways. We tested spatial frequency thresholds in C57BL/6J mice daily from postnatal days 16 to 23 (P16 to P23) using OMR testing. Daily OMR-treated mice were compared to littermate controls that were placed in the OMR chamber without moving gratings. Contrast sensitivity thresholds, electroretinograms (ERGs), visual evoked potentials, and pattern ERGs were acquired at P21. To determine the role of BDNF signaling, a TrkB receptor antagonist (ANA-12) was systemically injected 2 hours prior to OMR testing in another cohort of mice. BDNF immunohistochemistry was performed on retina and brain sections. Retinal DA levels were measured using high-performance liquid chromatography. Daily OMR testing enhanced spatial frequency thresholds and contrast sensitivity compared to controls. OMR-treated mice also had improved rod-driven ERG oscillatory potential response times, greater BDNF immunoreactivity in the retinal ganglion cell layer, and increased retinal DA content compared to controls. VEPs and pattern ERGs were unchanged. Systemic delivery of ANA-12 attenuated OMR-induced visual enhancements. Daily OMR testing during the critical period leads to general visual function improvements accompanied by increased DA and BDNF in the retina, with this process being requisitely mediated by TrkB activation. These results suggest that novel combination therapies involving visual stimulation and using both behavioral and molecular approaches may benefit degenerative retinal diseases or amblyopia. PMID:29408880
Gideons, Erinn S.; Kavalali, Ege T.; Monteggia, Lisa M.
2014-01-01
Ketamine is an NMDA receptor (NMDAR) antagonist that elicits rapid antidepressant responses in patients with treatment-resistant depression. However, ketamine can also produce psychotomimetic effects that limit its utility as an antidepressant, raising the question of whether the clinically tolerated NMDAR antagonist memantine possesses antidepressant properties. Despite its similar potency to ketamine as an NMDAR antagonist, clinical data suggest that memantine does not exert rapid antidepressant actions for reasons that are poorly understood. In this study, we recapitulate the ketamine and memantine clinical findings in mice, showing that ketamine, but not memantine, has antidepressant-like effects in behavioral models. Using electrophysiology in cultured hippocampal neurons, we show that ketamine and memantine effectively block NMDAR-mediated miniature excitatory postsynaptic currents in the absence of Mg2+. However, in physiological levels of extracellular Mg2+, we identified key functional differences between ketamine and memantine in their ability to block NMDAR function at rest. This differential effect of ketamine and memantine extends to intracellular signaling coupled to NMDAR at rest, in that memantine does not inhibit the phosphorylation of eukaryotic elongation factor 2 or augment subsequent expression of BDNF, which are critical determinants of ketamine-mediated antidepressant efficacy. These results demonstrate significant differences between the efficacies of ketamine and memantine on NMDAR-mediated neurotransmission that have impacts on downstream intracellular signaling, which we hypothesize is the trigger for rapid antidepressant responses. These data provide a novel framework on the necessary functional requirements of NMDAR-mediated neurotransmission as a critical determinant necessary to elicit rapid antidepressant responses. PMID:24912158
Environmental endocrinology of salmon smoltification
Bjornsson, Bjorn Thrandur; Stefansson, S.O.; McCormick, S.D.
2011-01-01
Smolting is a hormone-driven developmental process that is adaptive for downstream migration and ocean survival and growth in anadromous salmonids. Smolting includes increased salinity tolerance, increased metabolism, downstream migratory and schooling behavior, silvering and darkened fin margins, and olfactory imprinting. These changes are promoted by growth hormone, insulin-like growth factor I, cortisol, thyroid hormones, whereas prolactin is inhibitory. Photoperiod and temperature are critical environmental cues for smolt development, and their relative importance will be critical in determining responses to future climate change. Most of our knowledge of the environmental control and endocrine mediation of smolting is based on laboratory and hatchery studies, yet there is emerging information on fish in the wild that indicates substantial differences. Such differences may arise from differences in environmental stimuli in artificial rearing environments, and may be critical to ocean survival and population sustainability. Endocrine disruptors, acidification and other contaminants can perturb smolt development, resulting in poor survival after seawater entry. ?? 2010.
Kang, Yuan-Lin; Yochem, John; Bell, Leslie; Sorensen, Erika B.; Chen, Lihsia; Conner, Sean D.
2013-01-01
Low-density lipoprotein receptor (LDLR) internalization clears cholesterol-laden LDL particles from circulation in humans. Defects in clathrin-dependent LDLR endocytosis promote elevated serum cholesterol levels and can lead to atherosclerosis. However, our understanding of the mechanisms that control LDLR uptake remains incomplete. To identify factors critical to LDLR uptake, we pursued a genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport. In doing so, we discovered an unanticipated requirement for the clathrin-binding endocytic adaptor epsin1 in LDLR endocytosis. Epsin1 depletion reduced LDLR internalization rates in mammalian cells, similar to the reduction observed following clathrin depletion. Genetic and biochemical analyses of epsin in C. elegans and mammalian cells uncovered a requirement for the ubiquitin-interaction motif (UIM) as critical for receptor transport. As the epsin UIM promotes the internalization of some ubiquitinated receptors, we predicted LDLR ubiquitination as necessary for endocytosis. However, engineered ubiquitination-impaired LDLR mutants showed modest internalization defects that were further enhanced with epsin1 depletion, demonstrating epsin1-mediated LDLR endocytosis is independent of receptor ubiquitination. Finally, we provide evidence that epsin1-mediated LDLR uptake occurs independently of either of the two documented internalization motifs (FxNPxY or HIC) encoded within the LDLR cytoplasmic tail, indicating an additional internalization mechanism for LDLR. PMID:23242996
Protein Tyrosine Phosphatase PRL2 Mediates Notch and Kit Signals in Early T Cell Progenitors.
Kobayashi, Michihiro; Nabinger, Sarah C; Bai, Yunpeng; Yoshimoto, Momoko; Gao, Rui; Chen, Sisi; Yao, Chonghua; Dong, Yuanshu; Zhang, Lujuan; Rodriguez, Sonia; Yashiro-Ohtani, Yumi; Pear, Warren S; Carlesso, Nadia; Yoder, Mervin C; Kapur, Reuben; Kaplan, Mark H; Daniel Lacorazza, Hugo; Zhang, Zhong-Yin; Liu, Yan
2017-04-01
The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow hematopoietic stem and progenitor cells (HSPCs) that continuously feed thymic progenitors remain largely unknown. While Notch signal is indispensable for T cell specification and differentiation, the downstream effectors are not well understood. PRL2, a protein tyrosine phosphatase that regulates hematopoietic stem cell proliferation and self-renewal, is highly expressed in murine thymocyte progenitors. Here we demonstrate that protein tyrosine phosphatase PRL2 and receptor tyrosine kinase c-Kit are critical downstream targets and effectors of the canonical Notch/RBPJ pathway in early T cell progenitors. While PRL2 deficiency resulted in moderate defects of thymopoiesis in the steady state, de novo generation of T cells from Prl2 null hematopoietic stem cells was significantly reduced following transplantation. Prl2 null HSPCs also showed impaired T cell differentiation in vitro. We found that Notch/RBPJ signaling upregulated PRL2 as well as c-Kit expression in T cell progenitors. Further, PRL2 sustains Notch-mediated c-Kit expression and enhances stem cell factor/c-Kit signaling in T cell progenitors, promoting effective DN1-DN2 transition. Thus, we have identified a critical role for PRL2 phosphatase in mediating Notch and c-Kit signals in early T cell progenitors. Stem Cells 2017;35:1053-1064. © 2016 AlphaMed Press.
Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R. Elaine; Vincent, Isaah S.; Burdick, Marie D.; Kadl, Alexandra; Mehrad, Borna
2016-01-01
Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. Macrophage-colony stimulating factor (M-CSF) has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, the proliferation of precursors or the recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and anti-microbial functions of both lung and liver mononuclear phagocytes during pneumonia and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and anti-microbial functions of mononuclear phagocytes in the lungs and liver. PMID:27183631
Jedidi, Iness; Zhang, Fan; Qiu, Hongfang; Stahl, Stephen J; Palmer, Ira; Kaufman, Joshua D; Nadaud, Philippe S; Mukherjee, Sujoy; Wingfield, Paul T; Jaroniec, Christopher P; Hinnebusch, Alan G
2010-01-22
Mediator is a multisubunit coactivator required for initiation by RNA polymerase II. The Mediator tail subdomain, containing Med15/Gal11, is a target of the activator Gcn4 in vivo, critical for recruitment of native Mediator or the Mediator tail subdomain present in sin4Delta cells. Although several Gal11 segments were previously shown to bind Gcn4 in vitro, the importance of these interactions for recruitment of Mediator and transcriptional activation by Gcn4 in cells was unknown. We show that interaction of Gcn4 with the Mediator tail in vitro and recruitment of this subcomplex and intact Mediator to the ARG1 promoter in vivo involve additive contributions from three different segments in the N terminus of Gal11. These include the KIX domain, which is a critical target of other activators, and a region that shares a conserved motif (B-box) with mammalian coactivator SRC-1, and we establish that B-box is a critical determinant of Mediator recruitment by Gcn4. We further demonstrate that Gcn4 binds to the Gal11 KIX domain directly and, by NMR chemical shift analysis combined with mutational studies, we identify the likely binding site for Gcn4 on the KIX surface. Gcn4 is distinctive in relying on comparable contributions from multiple segments of Gal11 for efficient recruitment of Mediator in vivo.
Dou, Lin; Wang, Shuyue; Sun, Libo; Huang, Xiuqing; Zhang, Yang; Shen, Tao; Guo, Jun; Man, Yong; Tang, Weiqing; Li, Jian
2017-01-01
Insulin resistance is a critical factor contributing to the pathogenesis of type 2 diabetes and other metabolic diseases. Recent studies have indicated that miR-338-3p plays an important role in cancer. Here, we investigated whether miR-338-3p mediates tumour necrosis factor-α (TNF-α)-induced hepatic insulin resistance. The activation of the insulin signalling pathway and the level of glycogenesis were examined in the livers of the db/db and high fat diet (HFD)-fed mice and in HEP1-6 cells transfected with miR-338-3p mimic or inhibitor. Computational prediction of microRNA target, luciferase assay and Western blot were used to assess the miR-338-3p target. Chromatin immunoprecipitation (ChIP) assay was used to determine the transcriptional regulator of miR-338-3p. miR-338-3p was down-regulated in the livers of the db/db, HFD-fed and TNF-α-treated C57BL/6J mice, as well as in mouse HEP1-6 hepatocytes treated with TNF-α. Importantly the down-regulation of miR-338-3p induced insulin resistance, as indicated by impaired glucose tolerance and insulin tolerance. Further research showed that the down-regulated miR-338-3p resulted in the impaired AKT/ glycogen synthase kinase 3 beta (GSl·Gβ) signalling pathway and glycogen synthesis. In contrast, hepatic over-expression of miR-338-3p rescued the TNF-α-induced insulin resistance. Moreover, protein phosphatase 4 regulator subunit 1 (PP4R1) was identified as a direct target of miR-338-3p that mediated hepatic insulin signalling by regulating protein phosphatase 4 (PP4). Finally we identified hepatic nuclear factor 4 alpha (HNF-4α) as the transcriptional regulator of miRNA-338-3p. Our studies provide novel insight into the critical role and molecular mechanism by which miR-338-3p is involved in TNF-α-induced hepatic insulin resistance. miR-338-3p might mediate TNF-α-induced hepatic insulin resistance by targeting PP4R1 to regulate PP4 expression. © 2017 The Author(s). Published by S. Karger AG, Basel.
Detrimental role of humoral signalling in cardio-renal cross-talk.
Cantaluppi, Vincenzo; Dellepiane, Sergio; Quercia, Alessandro D; Ferrario, Silvia
2014-01-22
In critically ill patients, any acute organ injury is associated with a sudden change of circulating factors that may play a role in distant organ dysfunction through a complex cross-talk. In this issue, Virzì and colleagues discuss the relevance of humoral signalling between heart and kidney, focusing on type 1 and type 3 cardio-renal syndrome. We herein review the mechanisms of heart-kidney cross-talk, discussing the role of circulating detrimental mediators in the pathogenetic mechanisms of cardio-renal syndrome.
Methotrexate-associated lymphoproliferative disorder.
Kaneko, Yuko
2017-01-01
Methotrexate-associated lymphproliferative disorder (MTX-LPD) is a rare but critical complication developing in patients treated with methotrexate. Now that methotrexate is an anchor drug in the management of rheumatoid arthritis and become commonly used, MTX-LPD cases have increased. Many things has been unclear such as incidence, demographic characters, and risk factors. However, as the researches increased, several interesting topics has been demonstrated like associations with Epsteiin-Barr virus and with cell-mediated immunity. This report reviews newly the latest findings and future challenges on MTX-LPD.
Nuclear receptors and metabolism: from feast to famine.
Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M
2014-05-01
The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs.
Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Ahn, Jee-Yin; Park, Won Soon
2017-01-24
Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague-Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.
Postage for the messenger: Designating routes for Nuclear mRNA Export
Natalizio, Barbara J.; Wente, Susan R.
2013-01-01
Transcription of messenger(m) RNA occurs in the nucleus, making the translocation of mRNA across the nuclear envelope (NE) boundary a critical determinant of proper gene expression and cell survival. A major mRNA export route occurs via the NXF1-dependent pathway through the nuclear pore complexes (NPCs) embedded in the NE. However, recent findings have discovered new evidence supporting the existence of multiple mechanisms for crossing the NE, including both NPC-mediated and NE budding-mediated pathways. An analysis of the trans-acting factors and cis components that define these pathways reveals shared elements as well as mechanistic differences. We review here the current understanding of the mechanisms that characterize each pathway and highlight the determinants that influence mRNA transport fate. PMID:23583578
Adrenocortical Gap Junctions and Their Functions
Bell, Cheryl L.; Murray, Sandra A.
2016-01-01
Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985
Cohen, Joseph R.; Young, Jami F.; Hankin, Benjamin L.; Yao, Shuqiao; Zhu, Xiong Zhao; Abela, John R.Z.
2015-01-01
The present study examined the prospective relation between two personality predispositions, self-criticism and dependency, and internalizing symptoms. Specifically, it was examined whether self-criticism and dependency predicted symptoms of depression and social anxiety, and if a moderation (e.g. diathesis-stress) or mediation model best explained the relation between the personality predispositions and emotional distress in Chinese adolescents. Participants included 1,150 adolescents (597 females and 553 males) from mainland China. Participants completed self-report measures of self-criticism, dependency, and neuroticism at baseline, and self-report measures of negative events, depressive symptoms, and social anxiety symptoms once a month for six months. Findings showed that self-criticism predicted depressive symptoms, while dependency predicted social anxiety symptoms. In addition, support was found for a mediation model, as opposed to a moderation model, with achievement stressors mediating the relation between self-criticism and depressive symptoms. Overall, these findings highlight new developmental pathways for the development of depression and social anxiety symptoms in mainland Chinese adolescents. Implications for cross-cultural developmental psychopathology research are discussed. PMID:25798026
Palmer, Guy H.; Machado, Joel; Fernandez, Paula; Heussler, Volker; Perinat, Therese; Dobbelaere, Dirk A. E.
1997-01-01
Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor κB (NFκB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFκB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IκB molecules which normally sequester NFκB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IκBα. However, IκBα reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFκB-mediated positive feedback loop which restores cytoplasmic IκBα. In contrast, T. parva mediated continuous degradation of IκBβ resulting in persistently low cytoplasmic IκBβ levels. Normal IκBβ levels were only restored following T. parva killing, indicating that viable parasites are required for IκBβ degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IκB degradation and consequent enhanced expression of NFκB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IκB levels or NFκB activation, indicating that the parasite subverts the normal IκB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function. PMID:9356483
Numerical Mediation and American Governmentality
ERIC Educational Resources Information Center
Monea, Alexander Paul
2016-01-01
This project looks to fill a critical gap in our knowledge of the emergence of new forms of power, knowledge, and subjectivation that emerged during the industrial period in the United States and that continue to operate today. This critical hole is the role of what we will term "numerical mediation," which is the means by which the…
Zhou, Guihua; Li, Cai; Cai, Lu
2004-01-01
Advanced glycation end-products (AGEs) play a critical role in diabetic nephropathy by stimulating extracellular matrix (ECM) synthesis. Connective tissue growth factor (CTGF) is a potent inducer of ECM synthesis and increases in the diabetic kidneys. To determine the critical role of CTGF in AGE-induced ECM accumulation leading to diabetic nephropathy, rats were given AGEs by intravenous injection for 6 weeks. AGE treatment induced a significant renal ECM accumulation, as shown by increases in periodic acid-Schiff-positive materials, fibronectin, and type IV collagen (Col IV) accumulation in glomeruli, and a mild renal dysfunction, as shown by increases in urinary volume and protein content. AGE treatment also caused significant increases in renal CTGF and transforming growth factor (TGF)-β1 mRNA and protein expression. Direct exposure of rat mesangial cells to AGEs in vitro significantly induced increases in fibronectin and Col IV production, which could be completely prevented by pretreatment with anti-CTGF antibody. AGE treatment also significantly increased both TGF-β1 and CTGF mRNA expression; however, inhibition of TGF-β1 mRNA expression by shRNA or neutralization of TGF-β1 protein by anti-TGF-β1 antibody did not significantly prevent AGE-increased expression of CTGF mRNA and protein. These results suggest that AGE-induced CTGF expression, predominantly through a TGF-β1-independent pathway, plays a critical role in renal ECM accumulation leading to diabetic nephropathy. PMID:15579446
Wang, Ming-Te; Degol, Jessica; Ye, Feifei
2015-01-01
Although young women now obtain higher course grades in math than boys and are just as likely to be enrolled in advanced math courses in high school, females continue to be underrepresented in some Science, Technology, Engineering, and Mathematics (STEM) occupations. This study drew on expectancy-value theory to assess (1) which intellectual and motivational factors in high school predict gender differences in career choices and (2) whether students' motivational beliefs mediated the pathway of gender on STEM career via math achievement by using a national longitudinal sample in the United States. We found that math achievement in 12th grade mediated the association between gender and attainment of a STEM career by the early to mid-thirties. However, math achievement was not the only factor distinguishing gender differences in STEM occupations. Even though math achievement explained career differences between men and women, math task value partially explained the gender differences in STEM career attainment that were attributed to math achievement. The identification of potential factors of women's underrepresentation in STEM will enhance our ability to design intervention programs that are optimally tailored to female needs to impact STEM achievement and occupational choices.
Zinc in Infection and Inflammation
Gammoh, Nour Zahi; Rink, Lothar
2017-01-01
Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli. PMID:28629136
Wang, Ming-Te; Degol, Jessica; Ye, Feifei
2015-01-01
Although young women now obtain higher course grades in math than boys and are just as likely to be enrolled in advanced math courses in high school, females continue to be underrepresented in some Science, Technology, Engineering, and Mathematics (STEM) occupations. This study drew on expectancy-value theory to assess (1) which intellectual and motivational factors in high school predict gender differences in career choices and (2) whether students’ motivational beliefs mediated the pathway of gender on STEM career via math achievement by using a national longitudinal sample in the United States. We found that math achievement in 12th grade mediated the association between gender and attainment of a STEM career by the early to mid-thirties. However, math achievement was not the only factor distinguishing gender differences in STEM occupations. Even though math achievement explained career differences between men and women, math task value partially explained the gender differences in STEM career attainment that were attributed to math achievement. The identification of potential factors of women’s underrepresentation in STEM will enhance our ability to design intervention programs that are optimally tailored to female needs to impact STEM achievement and occupational choices. PMID:25741292
MicroRNA Mediating Networks in Granulosa Cells Associated with Ovarian Follicular Development.
Zhang, Baoyun; Chen, Long; Feng, Guangde; Xiang, Wei; Zhang, Ke; Chu, Mingxing; Wang, Pingqing
2017-01-01
Ovaries, which provide a place for follicular development and oocyte maturation, are important organs in female mammals. Follicular development is complicated physiological progress mediated by various regulatory factors including microRNAs (miRNAs). To demonstrate the role of miRNAs in follicular development, this study analyzed the expression patterns of miRNAs in granulosa cells through investigating three previous datasets generated by Illumina miRNA deep sequencing. Furthermore, via bioinformatic analyses, we dissected the associated functional networks of the observed significant miRNAs, in terms of interacting with signal pathways and transcription factors. During the growth and selection of dominant follicles, 15 dysregulated miRNAs and 139 associated pathways were screened out. In comparison of different styles of follicles, 7 commonly abundant miRNAs and 195 pathways, as well as 10 differentially expressed miRNAs and 117 pathways in dominant follicles in comparison with subordinate follicles, were collected. Furthermore, SMAD2 was identified as a hub factor in regulating follicular development. The regulation of miR-26a/b on smad2 messenger RNA has been further testified by real time PCR. In conclusion, we established functional networks which play critical roles in follicular development including pivotal miRNAs, pathways, and transcription factors, which contributed to the further investigation about miRNAs associated with mammalian follicular development.
Zinc in Infection and Inflammation.
Gammoh, Nour Zahi; Rink, Lothar
2017-06-17
Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.
STAT3 selectively interacts with Smad3 to antagonize TGF-β signaling
Wang, Gaohang; Yu, Yi; Sun, Chuang; Liu, Ting; Liang, Tingbo; Zhan, Lixing; Lin, Xia; Feng, Xin-Hua
2015-01-01
Smad and STAT proteins are critical signal transducers and transcription factors in controlling cell growth and tumorigenesis. Here we report that the STAT3 signaling pathway attenuates TGF-β-induced responses through a direct Smad3-STAT3 interplay. Activated STAT3 blunts TGF-β-mediated signaling. Depletion of STAT3 promotes TGF-β-mediated transcriptional and physiological responses, including cell cycle arrest, apoptosis and epithelial-to-mesenchymal transition. STAT3 directly interacts with Smad3 in vivo and in vitro, resulting in attenuation of the Smad3-Smad4 complex formation and suppression of DNA-binding ability of Smad3. The N-terminal region of DNA-binding domain of STAT3 is responsible for the STAT3-Smad3 interaction and also indispensable for STAT3-mediated inhibition of TGF-β signaling. Thus, our finding illustrates a direct crosstalk between the STAT3 and Smad3 signaling pathways that may contribute to tumor development and inflammation. PMID:26616859
Intramolecular hydrophobic interactions are critical mediators of STAT5 dimerization
NASA Astrophysics Data System (ADS)
Fahrenkamp, Dirk; Li, Jinyu; Ernst, Sabrina; Schmitz-van de Leur, Hildegard; Chatain, Nicolas; Küster, Andrea; Koschmieder, Steffen; Lüscher, Bernhard; Rossetti, Giulia; Müller-Newen, Gerhard
2016-10-01
STAT5 is an essential transcription factor in hematopoiesis, which is activated through tyrosine phosphorylation in response to cytokine stimulation. Constitutive activation of STAT5 is a hallmark of myeloid and lymphoblastic leukemia. Using homology modeling and molecular dynamics simulations, a model of the STAT5 phosphotyrosine-SH2 domain interface was generated providing first structural information on the activated STAT5 dimer including a sequence, for which no structural information is available for any of the STAT proteins. We identified a novel intramolecular interaction mediated through F706, adjacent to the phosphotyrosine motif, and a unique hydrophobic interface on the surface of the SH2 domain. Analysis of corresponding STAT5 mutants revealed that this interaction is dispensable for Epo receptor-mediated phosphorylation of STAT5 but essential for dimer formation and subsequent nuclear accumulation. Moreover, the herein presented model clarifies molecular mechanisms of recently discovered leukemic STAT5 mutants and will help to guide future drug development.
ATP oscillations mediate inductive action of FGF and Shh signalling on prechondrogenic condensation.
Kwon, Hyuck Joon
2013-01-01
Skeletal patterns are prefigured by prechondrogenic condensation. Morphogens such as fibroblast growth factor (FGF) and sonic hedgehog (Shh) specify the skeletal patterns in limb development. However, how morphogens regulate prechondrogenic condensation has remained unclear. Recently, it was demonstrated that synchronized Adenosine triphosphate (ATP) oscillations play a critical role in prechondrogenic condensation. Thus, the present study has focused on whether ATP oscillations mediate the actions of major developmental morphogens such as FGF and Shh on prechondrogenic condensation. It has been shown that both FGF and Shh signalling promoted cellular condensation but not chondrogenic differentiation and also induced ATP oscillations. In addition, blockage of FGF and Shh signalling prevented both ATP oscillations and prechondrogenic condensation. Furthermore, it was found that inhibition of ATP oscillations suppressed FGF/Shh-induced prechondrogenic condensation. These results indicate that ATP oscillations mediate the actions of FGF and Shh signalling on prechondrogenic condensation. This study proposes that morphogens organize skeletal patterns via ATP oscillations. Copyright © 2012 John Wiley & Sons, Ltd.
The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease.
Townley-Tilson, W H Davin; Pi, Xinchun; Xie, Liang
2015-01-01
Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.
Intramolecular hydrophobic interactions are critical mediators of STAT5 dimerization
Fahrenkamp, Dirk; Li, Jinyu; Ernst, Sabrina; Schmitz-Van de Leur, Hildegard; Chatain, Nicolas; Küster, Andrea; Koschmieder, Steffen; Lüscher, Bernhard; Rossetti, Giulia; Müller-Newen, Gerhard
2016-01-01
STAT5 is an essential transcription factor in hematopoiesis, which is activated through tyrosine phosphorylation in response to cytokine stimulation. Constitutive activation of STAT5 is a hallmark of myeloid and lymphoblastic leukemia. Using homology modeling and molecular dynamics simulations, a model of the STAT5 phosphotyrosine-SH2 domain interface was generated providing first structural information on the activated STAT5 dimer including a sequence, for which no structural information is available for any of the STAT proteins. We identified a novel intramolecular interaction mediated through F706, adjacent to the phosphotyrosine motif, and a unique hydrophobic interface on the surface of the SH2 domain. Analysis of corresponding STAT5 mutants revealed that this interaction is dispensable for Epo receptor-mediated phosphorylation of STAT5 but essential for dimer formation and subsequent nuclear accumulation. Moreover, the herein presented model clarifies molecular mechanisms of recently discovered leukemic STAT5 mutants and will help to guide future drug development. PMID:27752093
The Volume-Outcome Relationship in Critical Care
Wallace, David J.; Yordanov, Youri; Trinquart, Ludovic; Blomkvist, Josefin; Angus, Derek C.; Kahn, Jeremy M.; Ravaud, Philippe; Guidet, Bertrand
2015-01-01
OBJECTIVE: The purpose of this study was to systematically review the research on volume and outcome relationships in critical care. METHODS: From January 1, 2001, to April 30, 2014, MEDLINE and EMBASE were searched for studies assessing the relationship between admission volume and clinical outcomes in critical illness. Bibliographies were reviewed to identify other articles of interest, and experts were contacted about missing or unpublished studies. Of 127 studies reviewed, 46 met inclusion criteria, covering seven clinical conditions. Two investigators independently reviewed each article using a standardized form to abstract information on key study characteristics and results. RESULTS: Overall, 29 of the studies (63%) reported a statistically significant association between higher admission volume and improved outcomes. The magnitude of the association (mortality OR between the lowest vs highest stratum of volume centers), as well as the thresholds used to characterize high volume, varied across clinical conditions. Critically ill patients with cardiovascular (n = 7, OR = 1.49 [1.11-2.00]), respiratory (n = 12, OR = 1.20 [1.04-1.38]), severe sepsis (n = 4, OR = 1.17 [1.03-1.33]), hepato-GI (n = 3, OR = 1.30 [1.08-1.78]), neurologic (n = 3, OR = 1.38 [1.22-1.57]), and postoperative admission diagnoses (n = 3, OR = 2.95 [1.05-8.30]) were more likely to benefit from admission to higher-volume centers compared with lower-volume centers. Studies that controlled for ICU or hospital organizational factors were less likely to find a significant volume-outcome relationship than studies that did not control for these factors. CONCLUSIONS: Critically ill patients generally benefit from care in high-volume centers, with more substantial benefits in selected high-risk conditions. This relationship may in part be mediated by specific ICU and hospital organizational factors. PMID:25927593
Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M
2017-03-01
The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Zhong, Mei; Niu, Wei; Lu, Zhi John; Sarov, Mihail; Murray, John I.; Janette, Judith; Raha, Debasish; Sheaffer, Karyn L.; Lam, Hugo Y. K.; Preston, Elicia; Slightham, Cindie; Hillier, LaDeana W.; Brock, Trisha; Agarwal, Ashish; Auerbach, Raymond; Hyman, Anthony A.; Gerstein, Mark; Mango, Susan E.; Kim, Stuart K.; Waterston, Robert H.; Reinke, Valerie; Snyder, Michael
2010-01-01
Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles. PMID:20174564
Developmental trajectories of brain maturation and behavior: Relevance to major mental illnesses.
Lockhart, Sedona; Sawa, Akira; Niwa, Minae
2018-05-01
Adverse events in childhood and adolescence, such as social neglect or drug abuse, are known to lead to behavioral changes in young adulthood. This is particularly true for the subset of people who are intrinsically more vulnerable to stressful conditions. Yet the underlying mechanisms for such developmental trajectory from early life insult to aberrant adult behavior remains elusive. Adolescence is a period of dynamic physiological, psychological, and behavioral changes, encompassing a distinct neurodevelopmental stage called the 'critical period'. During adolescence, the brain is uniquely susceptible to stress. Stress mediators may lead to disturbances to biological processes that can cause permanent alterations in the adult stage, even as severe as the onset of mental illness when paired with genetic risk and environmental factors. Understanding the molecular factors governing the critical period and how stress can disturb the maturation processes will allow for better treatment and prevention of late adolescent/young adult onset psychiatric disorders. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
The BCL11A Transcription Factor Directly Activates RAG Gene Expression and V(D)J Recombination
Lee, Baeck-seung; Dekker, Joseph D.; Lee, Bum-kyu; Iyer, Vishwanath R.; Sleckman, Barry P.; Shaffer, Arthur L.; Ippolito, Gregory C.
2013-01-01
Recombination-activating gene 1 protein (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining (VDJ) segment recombination, an essential process for antigen receptor expression and lymphocyte development. The transcription factor BCL11A is required for B cell development, but its molecular function(s) in B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds the RAG1 promoter and Erag enhancer to activate RAG1 and RAG2 transcription in pre-B cells. We employed BCL11A overexpression with recombination substrates in a cultured pre-B cell line as well as Cre recombinase-mediated Bcl11alox/lox deletion in explanted murine pre-B cells to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination. PMID:23438597
Nurses well-being in intensive care units: study of factors promoting team commitment.
Galletta, Maura; Portoghese, Igor; Coppola, Rosa C; Finco, Gabriele; Campagna, Marcello
2016-05-01
Intensive care units (ICUs) are challenging work environments because of the critical condition of patients, and ICU nurses frequently lament low job satisfaction and high staff turnover. Nevertheless, organizational and work characteristics, and the quality of relationships with staff can help to maintain nurses' enthusiasm and increase job satisfaction. The aim of this study was to analyse how nursing work environment factors affect identification and commitment among ICU nurses. A cross-sectional study was carried out in 12 ICUs from four Italian urban hospitals. A total of 222 nurses participated and completed a self-reported questionnaire. Results show that nursing work characteristics are directly related to team commitment, and that the nursing work characteristics and team commitment relationship was mediated by both perceived supervisor support and job satisfaction. Our findings may concretely contribute to literature and offer additional suggestions to improve nurses' work conditions and patient health in ICUs. © 2014 British Association of Critical Care Nurses.
Felici, Angelina; Giubellino, Alessio; Bottaro, Donald P.
2012-01-01
Hepatocyte growth factor (HGF)-stimulated mitogenesis, motogenesis and morphogenesis in various cell types begins with activation of the Met receptor tyrosine kinase and the recruitment of intracellular adaptors and kinase substrates. The adapter protein Gab1 is a critical effector and substrate of activated Met, mediating morphogenesis, among other activities, in epithelial cells. To define its role downstream of Met in hematopoietic cells, Gab1 was expressed in the HGF-responsive, Gab1-negative murine myeloid cell line 32D. Interestingly, the adhesion and motility of Gab1-expressing cells were significantly greater than parental cells, independent of growth factor treatment. Downstream of activated Met, Gab1 expression was specifically associated with rapid Shp-2 recruitment and activation, increased mitogenic potency, suppression of GATA-1 expression and concomitant upregulation of GATA-2 transcription. In addition to enhanced proliferation, continuous culture of Gab1-expressing 32D cells in HGF resulted in cell attachment, filopodia extension and phenotypic changes suggestive of monocytic differentiation. Our results suggest that in myeloid cells, Gab1 is likely to enhance HGF mitogenicity by coupling Met to Shp-2 and GATA-2 expression, thereby potentially contributing to normal myeloid differentiation as well as oncogenic transformation. PMID:20506405
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue-Yamauchi, Akane, E-mail: ainoyama@research.twmu.ac.jp; Oda, Hideaki
2012-04-27
Highlights: Black-Right-Pointing-Pointer DRP1 is required for mitochondrial fission in colon cancer cells. Black-Right-Pointing-Pointer DRP1 participates in inhibition of colon cancer cell apoptosis. Black-Right-Pointing-Pointer DRP1 can inhibit apoptosis through the regulation of cytochrome c release. -- Abstract: Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116more » and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.« less
The Lysine Acetyltransferase GCN5 Is Required for iNKT Cell Development through EGR2 Acetylation.
Wang, Yajun; Yun, Chawon; Gao, Beixue; Xu, Yuanming; Zhang, Yana; Wang, Yiming; Kong, Qingfei; Zhao, Fang; Wang, Chyung-Ru; Dent, Sharon Y R; Wang, Jian; Xu, Xiangping; Li, Hua-Bin; Fang, Deyu
2017-07-18
The development of CD1d-restricted invariant natural killer T (iNKT) cells, a population that is critical for both innate and adaptive immunity, is regulated by multiple transcription factors, but the molecular mechanisms underlying how the transcriptional activation of these factors are regulated during iNKT development remain largely unknown. We found that the histone acetyltransferase general control non-derepressible 5 (GCN5) is essential for iNKT cell development during the maturation stage. GCN5 deficiency blocked iNKT cell development in a cell-intrinsic manner. At the molecular level, GCN5 is a specific lysine acetyltransferase of early growth responsive gene 2 (EGR2), a transcription factor required for iNKT cell development. GCN5-mediated acetylation positively regulated EGR2 transcriptional activity, and both genetic and pharmacological GCN5 suppression specifically inhibited the transcription of EGR2 target genes in iNKT cells, including Runx1, promyelocytic leukemia zinc finger protein (PLZF), interleukin (IL)-2Rb, and T-bet. Therefore, our study revealed GCN5-mediated EGR2 acetylation as a molecular mechanism that regulates iNKT development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Kim, Yong-Bae; Shin, Yong Jae; Roy, Adhiraj; Kim, Jeong-Ho
2015-01-01
Upon growth factor stimulation, PAK1 is recruited to the plasma membrane and activated by a mechanism that requires its phosphorylation at Ser-223 by the protein kinase CK2. However, the upstream signaling molecules that regulate this phosphorylation event are not clearly defined. Here, we demonstrate a major role of the CK2α-interacting protein CKIP-1 in activation of PAK1. CK2α, CKIP-1, and PAK1 are translocated to membrane ruffles in response to the epidermal growth factor (EGF), where CKIP-1 mediates the interaction between CK2α and PAK1 in a PI3K-dependent manner. Consistently, PAK1 mediates phosphorylation and modulation of the activity of p41-Arc, one of its plasma membrane substrate, in a fashion that requires PI3K and CKIP-1. Moreover, CKIP-1 knockdown or PI3K inhibition suppresses PAK1-mediated cell migration and invasion, demonstrating the physiological significance of the PI3K-CKIP-1-CK2-PAK1 signaling pathway. Taken together, these findings identify a novel mechanism for the activation of PAK1 at the plasma membrane, which is critical for cell migration and invasion. PMID:26160174
Cytoskeleton in Mast Cell Signaling
Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda
2012-01-01
Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling. PMID:22654883
Li, Tianyuan; Tsang, Vivian Hiu-Ling
2016-12-01
Individuals' understanding of wealth and power largely determines their use of resources. Moreover, the age range of wealth and power holders is increasing in modern societies. Thus, the current study examines how people of different ages understand wealth and power. As varying future time perspective is related to changes in prioritised life goals, it was tested as a potential mediator of the age differences. A total of 133 participants aged 18-78 years were asked 8 open-ended questions regarding their understanding of the possible use and desired use of wealth and power, after which they reported their future time perspective. Compared with possible use, the participants mentioned relatively more prosocial elements when they talked about their desired use of the resources, especially power. The older adults expressed more prosocial understanding in regard to the desired use of wealth and the possible use of power compared to their younger counterparts. The age differences were fully mediated by future time perspective. The results suggest that age is a critical factor that influences individuals' conceptualisation of wealth and power. Life-span developmental stage and future time perspective are important factors to consider for explaining individual differences in the exercise of wealth and power and for promoting their prosocial usage.
Dalwadi, Dhwanil A.; Kim, Seongcheol; Schetz, John A.
2017-01-01
Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists. PMID:28188803
Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity.
Yao, Yongxue; Harrison, Kathleen A; Al-Hassani, Mohammed; Murphy, Robert C; Rezania, Samin; Konger, Raymond L; Travers, Jeffrey B
2012-03-16
To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.
Svitkin, Yuri V.; Herdy, Barbara; Costa-Mattioli, Mauro; Gingras, Anne-Claude; Raught, Brian; Sonenberg, Nahum
2005-01-01
Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5′ end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection. PMID:16287867
Svitkin, Yuri V; Herdy, Barbara; Costa-Mattioli, Mauro; Gingras, Anne-Claude; Raught, Brian; Sonenberg, Nahum
2005-12-01
Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.
CDC20 maintains tumor initiating cells
Xie, Qi; Wu, Qiulian; Mack, Stephen C.; Yang, Kailin; Kim, Leo; Hubert, Christopher G.; Flavahan, William A.; Chu, Chengwei; Bao, Shideng; Rich, Jeremy N.
2015-01-01
Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes – FOXM1 and p21CIP1/WAF1 — elucidating a potential point for therapeutic intervention. PMID:25938542
Goetz, Lindsey; Laskowski, Jennifer; Renner, Brandon; Pickering, Matthew C; Kulik, Liudmila; Klawitter, Jelena; Stites, Erik; Christians, Uwe; van der Vlag, Johan; Ravichandran, Kameswaran; Holers, V Michael; Thurman, Joshua M
2018-05-01
Natural IgM binds to glomerular epitopes in several progressive kidney diseases. Previous work has shown that IgM also binds within the glomerulus after ischemia/reperfusion (I/R) but does not fully activate the complement system. Factor H is a circulating complement regulatory protein, and congenital or acquired deficiency of factor H is a strong risk factor for several types of kidney disease. We hypothesized that factor H controls complement activation by IgM in the kidney after I/R, and that heterozygous factor H deficiency would permit IgM-mediated complement activation and injury at this location. We found that mice with targeted heterozygous deletion of the gene for factor H developed more severe kidney injury after I/R than wild-type controls, as expected, but that complement activation within the glomeruli remained well controlled. Furthermore, mice that are unable to generate soluble IgM were not protected from renal I/R, even in the setting of heterozygous factor H deficiency. These results demonstrate that factor H is important for limiting injury in the kidney after I/R, but it is not critical for controlling complement activation by immunoglobulin within the glomerulus in this setting. IgM binds to glomerular epitopes after I/R, but it is not a significant source of injury. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Tongren; Yao, Sufei; Hao, Lin; Zhao, Yuanyuan; Lu, Wenjing; Xiao, Kai
2016-11-01
Wheat bHLH family gene TabHLH1 is responsive to drought and salt stresses, and it acts as one crucial regulator in mediating tolerance to aforementioned stresses largely through an ABA-associated pathway. Osmotic stresses are adverse factors for plant growth and crop productivity. In this study, we characterized TabHLH1, a gene encoding wheat bHLH-type transcription factor (TF) protein, in mediating plant adaptation to osmotic stresses. TabHLH1 protein contains a conserved basic-helix-loop-helix (bHLH) domain shared by its plant counterparts. Upon PEG-simulated drought stress, salt stress, and exogenous abscisic acid (ABA), the TabHLH1 transcripts in roots and leaves were induced. Under PEG-simulated drought stress and salt stress treatments, the tobacco seedlings with TabHLH1 overexpression exhibited improved growth and osmotic stress-associated traits, showing increased biomass and reduced leaf water loss rate (WLR) relative to wild type (WT). The transgenic lines also possessed promoted stomata closure under drought stress, salt stress, and exogenous ABA and increased proline and soluble sugar contents and reduced hydrogen peroxide (H 2 O 2 ) amount under osmotic stress conditions, indicating that TabHLH1-mediated osmolyte accumulation and cellular ROS homeostasis contributed to the drought stress and salt stress tolerance. NtPYL12 and NtSAPK2;1, the genes encoding ABA receptor and SnRK2 family kinase, respectively, showed up-regulated expression in lines overexpressing TabHLH1 under osmotic stress and exogenous ABA conditions; overexpression of them conferred plants modified stomata movement, leaf WLR, and growth feature under drought and high salinity, suggesting that these ABA-signaling genes are mediated by wheat TabHLH1 gene and involved in regulating plant responses to simulated drought and salt stresses. Our investigation indicates that the TabHLH1 gene plays critical roles in plant tolerance to osmotic stresses largely through an ABA-dependent pathway.
Ali, Faleh Mohamed Hussain; Reka, Husein; Renwick, Matthew J; Roman, Gabriela D; Mossialos, Elias
2016-01-01
Aims Understanding type 2 diabetes mellitus is critical for designing effective diabetes prevention policies in Qatar and the Middle East. Methods Using the Qatar 2012 WHO STEPwise approach to surveillance survey, a subsample of 1224 Qatari participants aged 18–64 years was selected. Subjects had their fasting blood glucose levels tested, had not been diagnosed with or treated for diabetes, had a fasting time >12 hours and were not pregnant. We applied a hypothesized structural equation model (SEM) to assess sociodemographic, behavioral, anthropometric and metabolic variables affecting persons with type 2 diabetes mellitus. Results There is a direct effect of triglyceride levels (0.336) and body mass index (BMI) (0.164) on diabetes status. We also found that physical activity levels negatively affect BMI (−0.148) and positively affect high-density lipoprotein (HDL) (0.106); sociodemographic background negatively affects diet (−0.522) and BMI (−0.352); HDL positively affects total cholesterol (0.230) and has a negative effect on BMI (−0.108), triglycerides (−0.128) and waist circumference (−0.104). Diet has a positive effect on triglycerides (0.281) while family history of diabetes negatively affects total cholesterol (−0.104). BMI has a positive effect on waist circumference (0.788) and mediates the effects of physical activity over diabetes status (−0.028). BMI also mediates the effects that sociodemographic factors (−0.058) and physical activity (−0.024) have on diabetes status. BMI and HDL (−0.002) together mediate the effect of physical activity on diabetes status and similarly HDL and tryglycerides (−0.005) also mediate the effect of physical activity on diabetes status. Finally diet and tryglycerides mediate the effects that sociodemographic factors have on diabetes status (−0.049). Conclusions This study's main finding is that triglyceride levels and BMI are the main variables directly affecting diabetes status in the Qatari population. PMID:27752326
Umesalma, Shaikamjad; Houwen, Frederick Keith; Baumbach, Gary L; Chan, Siu-Lung
2016-03-01
Angiotensin II (Ang II) is a major determinant of inward remodeling and hypertrophy in pial arterioles that may have an important role in stroke during chronic hypertension. Previously, we found that epidermal growth factor receptor is critical in Ang II-mediated hypertrophy that may involve caveolin-1 (Cav-1). In this study, we examined the effects of Cav-1 and matrix metalloproteinase-9 (MMP9) on Ang II-mediated structural changes in pial arterioles. Cav-1-deficient (Cav-1(-/-)), MMP9-deficient (MMP9(-/-)), and wild-type mice were infused with either Ang II (1000 ng/kg per minute) or saline via osmotic minipumps for 28 days (n=6-8 per group). Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of pial arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined histologically in pressurized fixed pial arterioles. Expression of Cav-1, MMP9, phosphorylated epidermal growth factor receptor, and Akt was determined by Western blotting and immunohistochemistry. Deficiency of Cav-1 or MMP9 did not affect Ang II-induced hypertension. Ang II increased the expression of Cav-1, phosphorylated epidermal growth factor receptor, and Akt in wild-type mice, which was attenuated in Cav-1(-/-) mice. Ang II-induced hypertrophy, inward remodeling, and increased MMP9 expression in pial arterioles were prevented in Cav-1(-/-) mice. Ang II-mediated increases in MMP9 expression and inward remodeling, but not hypertrophy, were prevented in MMP9(-/-) mice. In conclusion, Cav-1 is essential in Ang II-mediated inward remodeling and hypertrophy in pial arterioles. Cav-1-induced MMP9 is exclusively involved in inward remodeling, not hypertrophy. Further studies are needed to determine the role of Akt in Ang II-mediated hypertrophy. © 2016 American Heart Association, Inc.
Inflammatory mediators in mastitis and lactation insufficiency.
Ingman, Wendy V; Glynn, Danielle J; Hutchinson, Mark R
2014-07-01
Mastitis is a common inflammatory disease during lactation that causes reduced milk supply. A growing body of evidence challenges the central role of pathogenic bacteria in mastitis, with disease severity associated with markers of inflammation rather than infection. Inflammation in the mammary gland may be triggered by microbe-associated molecular patterns (MAMPs) as well as danger-associated molecular patterns (DAMPs) binding to pattern recognition receptors such as the toll-like receptors (TLRs) on the surface of mammary epithelial cells and local immune cell populations. Activation of the TLR4 signalling pathway and downstream nuclear factor kappa B (NFkB) is critical to mediating local mammary gland inflammation and systemic immune responses in mouse models of mastitis. However, activation of NFkB also induces epithelial cell apoptosis and reduced milk protein synthesis, suggesting that inflammatory mediators activated during mastitis promote partial involution. Perturbed milk flow, maternal stress and genetic predisposition are significant risk factors for mastitis, and could lead to a heightened TLR4-mediated inflammatory response, resulting in increased susceptibility and severity of mastitis disease in the context of low MAMP abundance. Therefore, heightened host inflammatory signalling may act in concert with pathogenic or commensal bacterial species to cause both the inflammation associated with mastitis and lactation insufficiency. Here, we present an alternate paradigm to the widely held notion that breast inflammation is driven principally by infectious bacterial pathogens, and suggest there may be other therapeutic strategies, apart from the currently utilised antimicrobial agents, that could be employed to prevent and treat mastitis in women.
Zhang, Minli; Han, Juan; Shi, Junxin; Ding, Huisi; Wang, Kaiqiao; Kang, Chun; Gong, Jiangling
2018-08-01
Childhood trauma has been found to be a critical risk factor for depression in adolescents. Personality traits have been linked with mental health. However, the relationship between childhood trauma, personality traits, and depressive symptoms in adolescents is largely unclear. This study tried to examine the mediating effect of personality traits between childhood trauma and depressive symptoms among adolescents. Meanwhile, the possible bidirectional association between personality traits and depression was considered in the study. A group of community-based adolescents aged 10-17 years (N = 5793) were recruited from nine schools in Wuhan city, China. The participants completed self-report questionnaires, including the Center for Epidemiologic Studies Depression Scale (CES-D), the Childhood Trauma Questionnaire (CTQ) and the NEO-Five Factor Inventory (NEO-FFI). Results showed that childhood trauma experiences were positively related with depressive symptoms and neuroticism, and negatively related with extraversion and conscientiousness; depressive symptoms were related with high neuroticism, low extraversion, and conscientiousness. Neuroticism and extraversion partially mediated the relationship between childhood trauma and depressive symptoms. And 'childhood trauma-personality traits-depression' models showed better property than the alternative models of 'childhood trauma-depression-personality traits'. The current study provides preliminary evidence for mediation roles of neuroticism and extraversion in the effect of childhood trauma to depressive symptoms in adolescents. These findings may contribute to better prevention and interventions for depressive symptoms among adolescents with childhood trauma via personality traits improvement. Copyright © 2018. Published by Elsevier Ltd.
Wang, Chang-Ying; Huang, An-Qi; Zhou, Meng-Hua; Mei, Yan-Ai
2014-05-15
GDF15 (growth/differentiation factor 15), a novel member of the TGFβ (transforming growth factor β) superfamily, plays critical roles in the central and peripheral nervous systems, but the signal transduction pathways and receptor subtypes involved are not well understood. In the present paper, we report that GDF15 specifically increases the IK (delayed-rectifier outward K+ current) in rat CGNs (cerebellar granule neurons) in time- and concentration-dependent manners. The GDF15-induced amplification of the IK is mediated by the increased expression and reduced lysosome-dependent degradation of the Kv2.1 protein, the main α-subunit of the IK channel. Exposure of CGNs to GDF15 markedly induced the phosphorylation of ERK (extracellular-signal-regulated kinase), Akt and mTOR (mammalian target of rapamycin), but the GDF15-induced IK densities and increased expression of Kv2.1 were attenuated only by Akt and mTOR, and not ERK, inhibitors. Pharmacological inhibition of the Src-mediated phosphorylation of TGFβR2 (TGFβ receptor 2), not TGFβR1, abrogated the effect of GDF15 on IK amplification and Kv2.1 induction. Immunoprecipitation assays showed that GDF15 increased the tyrosine phosphorylation of TGFβRII in the CGN lysate. The results of the present study reveal a novel regulation of Kv2.1 by GDF15 mediated through the TGFβRII-activated Akt/mTOR pathway, which is a previously uncharacterized Smad-independent mechanism of GDF15 signalling.
GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
DAVIS J M
2007-10-11
Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, themore » ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.« less
Hai, Tao; Yeung, Man-Lung; Wood, Thomas G.; Wei, Yuanfen; Yamaoka, Shoji; Gatalica, Zoran; Jeang, Kuan-Teh; Brasier, Allan R.
2006-01-01
NF-κB is an inducible transcription factor mediating innate immune responses whose activity is controlled by the multiprotein IκB kinase (IKK) “signalsome”. The core IKK consists of two catalytic serine kinases, IKKα and IKKβ, and a noncatalytic subunit, IKKγ. IKKγ is required for IKK activity by mediating kinase oligomerization and serving to couple the core catalytic subunits to upstream mitogen-activated protein 3-kinase cascades. We have discovered an alternatively spliced IKKγ mRNA isoform, encoding an in-frame deletion of exon 5, termed IKKγ-Δ. Using a specific reverse transcription-PCR assay, we find that IKKγ-Δ is widely expressed in cultured human cells and normal human tissues. Because IKKγ-Δ protein is lacking a critical coiled-coil domain important in protein-protein interactions, we sought to determine its signaling properties by examining its ability to self associate, couple to activators of the canonical pathway, and mediate human T-cell leukemia virus type 1 (HTLV-1) Tax-induced NF-κB activity. Coimmunoprecipitation and confocal colocalization assays indicate IKKγ-Δ has strong homo- and heterotypic association with wild-type (WT) IKKγ and, like IKKγ WT, associates with the IKKβ kinase. Similarly, IKKγ-Δ mediates IKK kinase activity and downstream NF-κB-dependent transcription in response to tumor necrosis factor (TNF) and the NF-κB-inducing kinase-IKKα signaling pathway. Surprisingly, however, in contrast to IKKγ WT, IKKγ-Δ is not able to mediate HTLV-1 Tax-induced NF-κB-dependent transcription, even though IKKγ-Δ binds and colocalizes with Tax. These observations suggest that IKKγ-Δ is a functionally distinct alternatively spliced mRNA product differentially mediating TNF-induced, but not Tax-induced, signals converging on the IKK signalsome. Differing levels of IKKγ-Δ expression, therefore, may affect signal transduction cascades coupling to IKK. PMID:16611882
Processes Linking Weight Status and Self-Concept Among Girls From Ages 5 to 7 Years
Davison, Kirsten Krahnstoever; Birch, Leann Lipps
2008-01-01
This study assessed the relationship between girls’ weight status and self-concept and examined peer teasing and parent criticism as potential mediators of this relationship. Data were collected for 182 girls and their parents when the girls were 5 and 7 years old. At each age, girls’ body mass index, self-concept, peer weight-related teasing (child report), and parents’ criticism of girls’ weight status (spouse report) were assessed. At ages 5 and 7, girls who were more overweight reported lower self-concept. Peer teasing and parent criticism mediated the relationship between weight status and self-concept at age 7, but not at age 5. In addition, the duration and timing of parent criticism across ages 5 and 7 mediated the association between girls’ weight status at age 5 and perceived peer acceptance at age 7. PMID:12220051
Parental verbal abuse and the mediating role of self-criticism in adult internalizing disorders.
Sachs-Ericsson, Natalie; Verona, Edelyn; Joiner, Thomas; Preacher, Kristopher J
2006-07-01
Researchers (e.g., [Gibb, B.E., 2002. Childhood maltreatment and negative cognitive styles. A quantitative and qualitative review. Clinical Psychology Review, 22 (2), 223-246]; [Rose, D.T., Abramson, L.Y., 1992. Developmental predictors of depressive cognitive styles: developmental perspectives on depression. In Cicchetti, D., Toth, S.L. (Eds.), Developmental Perspectives on Depression. Rochester symposium on developmental psychopathology, vol. 4, pp. 323-349]) have proposed that when childhood abuse is verbal (rather than sexual or physical), the child is more likely to develop a negative self-schema because the negative self-cognitions are directly supplied to the child by the abuser (e.g., "you are stupid"). In a test of this theory in adult participants, and drawing on the National Comorbidity Survey (NCS) (N=5877), we investigate the mediating role of current levels of self-criticism on the relationship between retrospective reports of parental verbal abuse, as well as sexual and physical abuse, and adult internalizing symptoms. We found self-criticism, but not dependency traits, to fully mediate the relationship between childhood verbal abuse perpetrated by parents and internalizing (depression, anxiety) symptoms. On the other hand, self-criticism was only a partial mediator of the relationship between the other types of abuse and internalizing symptoms. The NCS data is cross-sectional, which limits any firm conclusions regarding causality. While these results are suggestive that self-criticism is a mediator of the relationship between abuse and internalizing symptoms, longitudinal data are necessary to help rule out alternative explanations. Results of this study suggest that childhood abuse experiences, and in particular verbal abuse, may confer risk for internalizing disorders in part because verbal abuse influences the development of a self-critical style.
Coulthurst, Sarah J.; Lilley, Kathryn S.; Hedley, Peter E.; Liu, Hui; Toth, Ian K.; Salmond, George P. C.
2008-01-01
Erwinia carotovora subsp. atroseptica is an enterobacterial phytopathogen causing economically significant soft rot disease. Pathogenesis is mediated by multiple secreted virulence factors, many of which are secreted by the type II (Out) secretion system. DsbA catalyzes the introduction of disulfide bonds into periplasmic and secreted proteins. In this study, the extracellular proteome (secretome) of wild type E. carotovora subsp. atroseptica SCRI1043, and dsbA and out mutants, was analyzed by spectral counting mass spectrometry. This revealed that dsbA inactivation had a huge impact on the secretome and identified diverse DsbA- and Out-dependent secreted proteins, representing known, predicted, and novel candidate virulence factors. Further characterization of the dsbA mutant showed that secreted enzyme activities, motility, production of the quorumsensing signal, and virulence were absent or substantially reduced. The impact of DsbA on secreted virulence factor production was mediated at multiple levels, including impacting on the Out secretion system and the virulence gene regulatory network. Transcriptome analyses revealed that the abundance of a broad, but defined, set of transcripts, including many virulence factors, was altered in the dsbA mutant, identifying a new virulence regulon responsive to extracytoplasmic conditions. In conclusion, DsbA plays a crucial, multifaceted role in the pathogenesis of E. carotovora subsp. atroseptica. PMID:18562317
Kondo, Yuya; Yokosawa, Masahiro; Kaneko, Shunta; Furuyama, Kotona; Segawa, Seiji; Tsuboi, Hiroto; Matsumoto, Isao; Sumida, Takayuki
2018-05-01
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation of the joint synovium and infiltration by activated inflammatory cells. CD4+ T cells form a large proportion of the inflammatory cells invading the synovial tissue, and are involved in the RA pathologic process. In general, CD4+ T cells differentiate into various T helper cell subsets and acquire the functional properties to respond to specific pathogens, and also mediate some autoimmune disorders such as RA. Because the differentiation of T helper cell subsets is determined by the expression of specific transcription factors in response to the cytokine environment, these transcription factors are considered to have a role in the pathology of RA. Treg cells control an excess of T cell-mediated immune response, and the transcription factor FoxP3 is critical for the differentiation and function of Treg cells. Treg cell dysfunction can result in the development of systemic autoimmunity. In this review, we summarize how the expression of transcription factors modulates T helper cell immune responses and the development of autoimmune diseases, especially in RA. Understanding the role of transcription factors in the pathogenesis of autoimmunity may lead to novel therapeutic strategies to control the differentiation and function of both T helper cells and Treg cells. © 2017 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.
Rahman, Saifur; Quann, Kevin; Pandya, Devanshi; Singh, Shruti; Khan, Zafar K.; Jain, Pooja
2012-01-01
RNA interference (RNAi) is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs) that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1) transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR) using a CD4+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type. PMID:22496815
Campos, Rui C; Besser, Avi; Blatt, Sidney J
2010-12-01
This study examined a theoretically based mediation model including participants' perceptions of early relationships with their mother, self-criticism, dependency, and current depressive symptoms. We expect that (a) early relationships characterized by low levels of care and high levels of overprotection will be positively associated with both current depressive state and self-criticism and dependency; (b) high levels of self-criticism and dependency will be positively associated with depressive symptoms; and (c) self-criticism and dependency will play a mediating role in the association between participants' perceptions of early relationships characterized by low levels of care and high levels of overprotection and their current depressive symptoms. A nonclinical community sample of 200 Portuguese adults participated in the study. Perceptions of early relationships were measured using the mother scales of the Parental Bonding Instrument (Parker et al. [1979: Br J Med Psychol 52:1-10]), levels of self-criticism and dependency were measured using the Depressive Experiences Questionnaire (Blatt et al. [1976: J Abn Psy 6:383-389]), and depressive symptoms were measured using the Center for the Epidemiological Studies of Depression Scale (Radloff [1977: Appl Psychol Meas 1:385-401]. Structural equation modeling showed that the link between participants' perceptions of early caretaking relationships with their mothers and their current depressive symptoms is mediated by high levels of self-criticism--a personality trait associated with vulnerability to depression--but not Dependency. However, an ancillary analysis indicated that the link between participants' perceptions of early maternal overprotective relationships and their current depressive symptoms is mediated by high levels of Neediness. Findings underscore the role of perceived early relationships in psychological vulnerability to depression among highly self-critical and among highly needy individuals and highlight the negative role played by perceived mothers' early dysfunctional practices, characterized by low levels of caring and high levels of overprotection, for the self-critical vulnerability to depression and by perceived mothers' high levels of overprotection, for the neediness vulnerability to depression. These potential causal mechanisms warrant longitudinal evaluation. Theoretical and clinical implications of the findings are discussed.
Datta-Mannan, Amita; Lu, Jirong; Witcher, Derrick R; Leung, Donmienne; Tang, Ying; Wroblewski, Victor J
2015-01-01
The application of protein engineering technologies toward successfully improving antibody pharmacokinetics has been challenging due to the multiplicity of biochemical factors that influence monoclonal antibody (mAb) disposition in vivo. Physiological factors including interactions with the neonatal Fc receptor (FcRn) and specific antigen binding properties of mAbs, along with biophysical properties of the mAbs themselves play a critical role. It has become evident that applying an integrated approach to understand the relative contribution of these factors is critical to rationally guide and apply engineering strategies to optimize mAb pharmacokinetics. The study presented here evaluated the influence of unintended non-specific interactions on the disposition of mAbs whose clearance rates are governed predominantly by either non-specific (FcRn) or target-mediated processes. The pharmacokinetics of 8 mAbs representing a diverse range of these properties was evaluated in cynomolgus monkeys. Results revealed complementarity-determining region (CDR) charge patch engineering to decrease charge-related non-specific binding can have a significant impact on improving the clearance. In contrast, the influence of enhanced in vitro FcRn binding was mixed, and related to both the strength of charge interaction and the general mechanism predominant in governing the clearance of the particular mAb. Overall, improved pharmacokinetics through enhanced FcRn interactions were apparent for a CDR charge-patch normalized mAb which was affected by non-specific clearance. The findings in this report are an important demonstration that mAb pharmacokinetics requires optimization on a case-by-case basis to improve the design of molecules with increased therapeutic application. PMID:26337808
Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling.
Tourki, Bochra; Halade, Ganesh
2017-10-01
In response to myocardial infarction (MI), time-dependent leukocyte infiltration is critical to program the acute inflammatory response. Post-MI leukocyte density, residence time in the infarcted area, and exit from the infarcted injury predict resolving or nonresolving inflammation. Overactive or unresolved inflammation is the primary determinant in heart failure pathology post-MI. Here, our review describes supporting evidence that the acute inflammatory response also guides the generation of healing and regenerative mediators after cardiac damage. Time-dependent leukocyte density and diversity and the magnitude of myocardial injury is responsible for the resolving and nonresolving pathway in myocardial healing. Post MI, the diversity of leukocytes, such as neutrophils, macrophages, and lymphocytes, has been explored that regulate the clearance of deceased cardiomyocytes by using the classic and reparative pathways. Among the innovative factors and intermediates that have been recognized as essential in acute the self-healing and clearance mechanism, we highlight specialized proresolving mediators as the emerging factor for post-MI reparative mechanisms-translational leukocyte modifiers, such as aging, the source of leukocytes, and the milieu around the leukocytes. In the clinical setting, it is possible that leukocyte diversity is more prominent as a result of risk factors, such as obesity, diabetes, and hypertension. Pharmacologic agents are critical modifiers of leukocyte diversity in healing mechanisms that may impair or stimulate the clearance mechanism. Future research is needed, with a focused approach to understand the molecular targets, cellular effectors, and receptors. A clear understanding of resolving and nonresolving inflammation in myocardial healing will help to develop novel targets with major emphasis on the resolution of inflammation in heart failure pathology.-Tourki, B., Halade, G. Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling. © FASEB.
Yu, Fang; Shi, Ying; Wang, Junfeng; Li, Juan; Fan, Daping; Ai, Walden
2013-01-01
Increasing evidence indicates that myeloid-derived suppressor cells (MDSCs) negatively regulate immune responses during tumor progression, inflammation and infection. However, the underlying molecular mechanisms of their development and mobilization remain to be fully delineated. Kruppel-like factor KLF4 is a transcription factor that has an oncogenic function in breast cancer development, but its function in tumor microenvironment, a critical component for tumorigenesis, has not been examined. By using a spontaneously metastatic 4T1 breast cancer mouse model and an immunodeficient NOD/SCID mouse model, we demonstrated that KLF4 knockdown delayed tumor development and inhibited pulmonary metastasis, which was accompanied by decreased accumulation of MDSCs in bone marrow, spleens and primary tumors. Mechanistically, we found that KLF4 knockdown resulted in a significant decrease of circulating GM-CSF, an important cytokine for MDSC biology. Consistently, recombinant GM-CSF restored the frequency of MDSCs in purified bone marrow cells incubated with conditioned medium from KLF4 deficient cells. In addition, we identified CXCL5 as a critical mediator to enhance the expression and function of GM-CSF. Reduced CXCL5 expression by KLF4 knockdown in primary tumors and breast cancer cells was correlated with a decreased GM-CSF expression in our mouse models. Finally, we found that CXCL5/CXCR2 axis facilitated MDSC migration and that anti-GM-CSF antibodies neutralized CXCL5-induced accumulation of MDSCs. Taken together, our data suggest that KLF4 modulates maintenance of MDSCs in bone marrow by inducing GM-CSF production via CXCL5 and regulates recruitment of MDSCs into the primary tumors through the CXCL5/CXCR2 axis, both of which contribute to KLF4-mediated mammary tumor development. PMID:23737434
Diaz-Meco, M T; Dominguez, I; Sanz, L; Municio, M M; Berra, E; Cornet, M E; Garcia de Herreros, A; Johansen, T; Moscat, J
1992-01-01
Cell growth and tumor transformation can be restrained in certain cell systems by the action of transforming growth factor beta (TGF-beta). It has been established that the mechanism whereby TGF-beta 1 inhibits cell growth does not interfere with the triggering of early mitogenic signal transduction mechanisms. Phospholipase C-catalyzed hydrolysis of phosphatidylcholine (PC) is a relatively late step in the cascade activated by growth factors. Therefore, conceivably activation of phospholipase C-catalyzed hydrolysis of PC could be the target of TGF-beta 1 action. In the study reported here, we demonstrate that TGF-beta 1 inhibits the coupling of ras p21 to the activation of PC hydrolysis, which appears to be critical for the antiproliferative effects of TGF-beta 1. Images PMID:1309592
Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.
Hsu, Peter; Nanan, Ralph
2014-10-01
In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Development of Peptidomimetic Inhibitors of the ERG Gene Fusion Product in Prostate Cancer.
Wang, Xiaoju; Qiao, Yuanyuan; Asangani, Irfan A; Ateeq, Bushra; Poliakov, Anton; Cieślik, Marcin; Pitchiaya, Sethuramasundaram; Chakravarthi, Balabhadrapatruni V S K; Cao, Xuhong; Jing, Xiaojun; Wang, Cynthia X; Apel, Ingrid J; Wang, Rui; Tien, Jean Ching-Yi; Juckette, Kristin M; Yan, Wei; Jiang, Hui; Wang, Shaomeng; Varambally, Sooryanarayana; Chinnaiyan, Arul M
2017-04-10
Transcription factors play a key role in the development of diverse cancers, and therapeutically targeting them has remained a challenge. In prostate cancer, the gene encoding the transcription factor ERG is recurrently rearranged and plays a critical role in prostate oncogenesis. Here, we identified a series of peptides that interact specifically with the DNA binding domain of ERG. ERG inhibitory peptides (EIPs) and derived peptidomimetics bound ERG with high affinity and specificity, leading to proteolytic degradation of the ERG protein. The EIPs attenuated ERG-mediated transcription, chromatin recruitment, protein-protein interactions, cell invasion and proliferation, and tumor growth. Thus, peptidomimetic targeting of transcription factor fusion products may provide a promising therapeutic strategy for prostate cancer as well as other malignancies. Copyright © 2017 Elsevier Inc. All rights reserved.
Stigma, Expressed Emotion, and Quality of Life in Caregivers of Individuals with Dementia.
Weisman de Mamani, Amy; Weintraub, Marc J; Maura, Jessica; Martinez de Andino, Ana; Brown, Caitlin A
2017-10-15
Expressed emotion (EE) is a measure of a caregiver's critical and emotionally overinvolved (EOI; e.g., intrusive, self-sacrificing) attitudes and behaviors toward a person with a mental illness. Mounting evidence indicates that high levels of these critical and EOI attitudes and behaviors (collectively termed high EE) in family members are associated with a poorer course of illness for people with a range of disorders, including dementia (Nomura et al., 2005). However, less is known about factors that might trigger high EE and how high EE might impact dementia caregivers' own mental health. In this study we propose that caregivers who perceive stigma from their relative's illness may be more likely to be critical or intrusive (high EOI) toward their relative in an attempt to control symptomatic behaviors. We further hypothesized that high EE would partially mediate the link between stigma and quality of life (QoL) as there is some evidence that high EE is associated with poorer mental health in caregivers themselves (Safavi et al., 2015). In line with study hypotheses and using a sample of 106 dementia caregivers, we found that greater caregiver stigma was associated with both high EE (for criticism and EOI) and with poorer QoL. Mediational analyses further confirmed that high EE accounts for much of the association between stigma and poorer QoL. Study results suggest that addressing caregiver stigma in therapy could reduce levels of high EE and indirectly therefore improve caregiver QoL. Intervening directly to reduce high EE could also improve caregiver QoL. © 2017 Family Process Institute.
NASA Astrophysics Data System (ADS)
Druhan, J. L.; Giannetta, M.; Sanford, R. A.
2017-12-01
In recent years, reactive transport principles have expanded from early applications, largely based in contaminant hydrology, to a wide range of biologically mediated redox environments including marine sedimentary diagenesis, terrestrial metal ore deposits, soils, and critical zone weathering profiles. A common observation across this diversity of systems is that they often function under energetically limited conditions in comparison to those typical of contaminated aquifers subject to engineered remediation techniques. As a result, the kinetic rate expressions traditionally employed within reactive transport frameworks to simulate microbially mediated redox transformations have required modification. This was recognized in a series of seminal papers by Jin and Bethke (2005, 2007) in which the authors expanded upon a Monod rate law to include a thermodynamic potential factor `Ft' which exerts a limitation on the overall rate based on the thermodynamic driving force of the electron transfer reaction. This new rate expression is now commonly implemented within many of the major reactive transport software packages, though appropriate application has yet to be thoroughly demonstrated. Notably, the characteristically large partitioning of stable isotopes during microbially mediated reactions, which is extensively utilized to identify and quantify these redox transformations, has yet to be simulated under conditions in which the Ft term may be expected to exert a significant mass dependent influence. Here, we develop a series of simplified simulations for the microbially mediated reduction of sulfate based on the datasets reported by Jin and Bethke, and apply appropriate mass-bias within the Ft term to consider the extent to which the resulting isotopic fractionation is consistent with that observed in energetically limited systems. We show that the Ft term can exert a significant influence on the observed fractionation factor under common environmental conditions, resulting in model behavior which is, in effect, a microbial redox analog to the variable observed fractionation factor resulting from a transition state theory rate law as derived by DePaolo (2011).
Angels and demons: neurotrophic factors and epilepsy.
Simonato, Michele; Tongiorgi, Enrico; Kokaia, Merab
2006-12-01
Several lines of evidence indicate that neurotrophic factors (NTFs) could be key causal mediators in the development of acquired epileptic syndromes. Yet the trophic properties of NTFs indicate that they might be used to treat epilepsy-associated damage. Accordingly, different NTFs, or even the same NTF, could produce functionally contrasting effects in the context of epilepsy. Recent experimental evidence begins to shed light on the mechanisms underlying these contrasting effects. Understanding these mechanisms will be instrumental for the development of effective therapies, which must be based on a careful consideration of the biological properties of NTFs. Here, we critically evaluate new information emerging in this area and discuss its implications for clinical treatment.
Interaction and Critical Inquiry in Asynchronous Computer-Mediated Conferencing: A Research Agenda
ERIC Educational Resources Information Center
Hopkins, Joseph; Gibson, Will; Ros i. Sole, Cristina; Savvides, Nicola; Starkey, Hugh
2008-01-01
This paper reviews research on learner and tutor interaction in asynchronous computer-mediated (ACM) conferences used in distance learning. The authors note claims made for the potential of ACM conferences to promote higher-order critical inquiry and the social construction of knowledge, and argue that there is a general lack of evidence regarding…
Ham, Jong Hyun
2013-04-01
Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.
Theorizing with/out "Mediators".
Roth, Wolff-Michael; Jornet, Alfredo
2017-01-05
Mediation is one of the most often cited concepts in current cultural-historical theory literature, in which cultural actions and artifacts are often characterized as mediators standing between situational stimuli and behavioral responses. Most often presented as a means to overcome Cartesian dualism between subject and object, and between individual and society, some scholars have nonetheless raised criticism suggesting that such mediators are problematic for a dialectical psychology that takes a unit analysis (monist) approach. In fact, Spinoza develops a monist theory of mind and body that goes without and even excludes every form of mediation. In this study, we follow up on the latter criticisms and explore what we consider to be problematic uses of the notion of mediation as an analytical construct in the literature. We elaborate an empirically grounded discussion on the ways the concept of mediation may lead to dualistic readings; and we offer an alternative account where the notion of mediator is not needed. We conclude discussing prospects for and implications of a cultural-historical theory where the notion of mediation no longer is invoked to account for human action and development.
Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways.
Seifert, Lena; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Werba, Gregor; Pansari, Mridul; Pergamo, Matthew; Ochi, Atsuo; Torres-Hernandez, Alejandro; Levie, Elliot; Tippens, Daniel; Greco, Stephanie H; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Eisenthal, Andrew; van Heerden, Eliza; Avanzi, Antonina; Barilla, Rocky; Zambirinis, Constantinos P; Rendon, Mauricio; Daley, Donnele; Pachter, H Leon; Hajdu, Cristina; Miller, George
2015-12-01
Dectin-1 is a C-type lectin receptor critical in anti-fungal immunity, but Dectin-1 has not been linked to regulation of sterile inflammation or oncogenesis. We found that Dectin-1 expression is upregulated in hepatic fibrosis and liver cancer. However, Dectin-1 deletion exacerbates liver fibro-inflammatory disease and accelerates hepatocarcinogenesis. Mechanistically, we found that Dectin-1 protects against chronic liver disease by suppressing TLR4 signaling in hepatic inflammatory and stellate cells. Accordingly, Dectin-1(-/-) mice exhibited augmented cytokine production and reduced survival in lipopolysaccharide (LPS)-mediated sepsis, whereas Dectin-1 activation was protective. We showed that Dectin-1 inhibits TLR4 signaling by mitigating TLR4 and CD14 expression, which are regulated by Dectin-1-dependent macrophage colony stimulating factor (M-CSF) expression. Our study suggests that Dectin-1 is an attractive target for experimental therapeutics in hepatic fibrosis and neoplastic transformation. More broadly, our work deciphers critical cross-talk between pattern recognition receptors and implicates a role for Dectin-1 in suppression of sterile inflammation, inflammation-induced oncogenesis, and LPS-mediated sepsis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Dynamics between actin and the VE-cadherin/catenin complex
Abu Taha, Abdallah; Schnittler, Hans-J
2014-01-01
Endothelial adherens junctions are critical for physiological and pathological processes such as differentiation, maintenance of entire monolayer integrity, and the remodeling. The endothelial-specific VE-cadherin/catenin complex provides the backbone of adherens junctions and acts in close interaction with actin filaments and actin/myosin-mediated contractility to fulfill the junction demands. The functional connection between the cadherin/catenin complex and actin filaments might be either directly through α-catenins, or indirectly e.g., via linker proteins such as vinculin, p120ctn, α-actinin, or EPLIN. However, both junction integrity and dynamic remodeling have to be contemporarily coordinated. The actin-related protein complex ARP2/3 and its activating molecules, such as N-WASP and WAVE, have been shown to regulate the lammellipodia-mediated formation of cell junctions in both epithelium and endothelium. Recent reports now demonstrate a novel aspect of the ARP2/3 complex and the nucleating-promoting factors in the maintenance of endothelial barrier function and junction remodeling of established endothelial cell junctions. Those mechanisms open novel possibilities; not only in fulfilling physiological demands but obtained information may be of critical importance in pathologies such as wound healing, angiogenesis, inflammation, and cell diapedesis. PMID:24621569
Thrombopoietin as biomarker and mediator of cardiovascular damage in critical diseases.
Lupia, Enrico; Goffi, Alberto; Bosco, Ornella; Montrucchio, Giuseppe
2012-01-01
Thrombopoietin (TPO) is a humoral growth factor originally identified for its ability to stimulate the proliferation and differentiation of megakaryocytes. In addition to its actions on thrombopoiesis, TPO directly modulates the homeostatic potential of mature platelets by influencing their response to several stimuli. In particular, TPO does not induce platelet aggregation per se but is able to enhance platelet aggregation in response to different agonists ("priming effect"). Our research group was actively involved, in the last years, in characterizing the effects of TPO in several human critical diseases. In particular, we found that TPO enhances platelet activation and monocyte-platelet interaction in patients with unstable angina, chronic cigarette smokers, and patients with burn injury and burn injury complicated with sepsis. Moreover, we showed that TPO negatively modulates myocardial contractility by stimulating its receptor c-Mpl on cardiomyocytes and the subsequent production of NO, and it mediates the cardiodepressant activity exerted in vitro by serum of septic shock patients by cooperating with TNF-α and IL-1β. This paper will summarize the most recent results obtained by our research group on the pathogenic role of elevated TPO levels in these diseases and discuss them together with other recently published important studies on this topic.
Mogessie, Binyam; Roth, Daniel; Rahil, Zainab; Straube, Anne
2015-01-01
The microtubule cytoskeleton is critical for muscle cell differentiation and undergoes reorganisation into an array of paraxial microtubules, which serves as template for contractile sarcomere formation. In this study, we identify a previously uncharacterised isoform of microtubule-associated protein MAP4, oMAP4, as a microtubule organising factor that is crucial for myogenesis. We show that oMAP4 is expressed upon muscle cell differentiation and is the only MAP4 isoform essential for normal progression of the myogenic differentiation programme. Depletion of oMAP4 impairs cell elongation and cell–cell fusion. Most notably, oMAP4 is required for paraxial microtubule organisation in muscle cells and prevents dynein- and kinesin-driven microtubule–microtubule sliding. Purified oMAP4 aligns dynamic microtubules into antiparallel bundles that withstand motor forces in vitro. We propose a model in which the cooperation of dynein-mediated microtubule transport and oMAP4-mediated zippering of microtubules drives formation of a paraxial microtubule array that provides critical support for the polarisation and elongation of myotubes. DOI: http://dx.doi.org/10.7554/eLife.05697.001 PMID:25898002
Binge eating & childhood emotional abuse: The mediating role of anger.
Feinson, Marjorie C; Hornik-Lurie, Tzipi
2016-10-01
Recent studies reveal that childhood emotional abuse (CEA) is the trauma most clearly associated with adult eating pathology. Yet, relatively little is understood about psychological mechanisms linking these distal experiences. Anger's mediational role in the relationship between CEA and adult binge eating (BE) is explored in a community-based sample of 498 adult women (mean age 44). Detailed telephone interviews assess BE (7 items), CEA (single item), and unresolved anger (single item) along with self-criticism (modified Rosenberg self-esteem scale), depression and anxiety symptoms (BSI sub-scales). Statistical analyses include Pearson correlations, Baron and Kenny's steps for mediation, and Preacher and Hayes bootstrapping method to test proposed multiple mediators simultaneously. Findings reveal significantly more respondents (n = 476 with complete data) with serious BE behaviors report a history of CEA compared to women with considerable and/or minimal BE (53% vs 37%, p = 0.002 respectively). Significant correlations are found among all study variables. Mediation analyses focus on anger together with self-criticism, depression and anxiety. Findings reveal anger and self-criticism fully mediate the CEA-BE relationship. In contrast, depression and anxiety symptoms are not significant mediators in a model that includes anger and self-criticism. Although additional research is warranted to more fully understand complex causal processes, in the interim, treatment interventions should be broadened to include assessments of anger among adult women with BE behaviors, especially those with histories of childhood abuse. Additionally, prevention strategies that incorporate learning how to express anger directly and positively may be particularly effective in reducing various disordered eating behaviors among women and girls. Copyright © 2016. Published by Elsevier Ltd.
Kimura, Yukihiro; Chihara, Kazuyasu; Honjoh, Chisato; Takeuchi, Kenji; Yamauchi, Shota; Yoshiki, Hatsumi; Fujieda, Shigeharu; Sada, Kiyonao
2014-11-07
Dectin-1 recognizes β-glucan and plays important roles for the antifungal immunity through the activation of spleen tyrosine kinase (Syk) in dendritic cells or macrophages. Recently, expression of Dectin-1 was also identified in human and mouse mast cells, although its physiological roles were largely unknown. In this report, rat mast cell line RBL-2H3 was analyzed to investigate the molecular mechanism of Dectin-1-mediated activation and responses of mast cells. Treatment of cells with Dectin-1-specific agonist curdlan induced tyrosine phosphorylation of cellular proteins and the interaction of Dectin-1 with the Src homology 2 domain of Syk. These responses depended on tyrosine phosphorylation of the hemi-immunoreceptor tyrosine-based activation motif in the cytoplasmic tail of Dectin-1, whereas they were independent of the γ-subunit of high-affinity IgE receptor. DNA microarray and real-time PCR analyses showed that Dectin-1-mediated signaling stimulated gene expression of transcription factor Nfkbiz and inflammatory cytokines, such as monocyte chemoattractant protein-1, IL-3, IL-4, IL-13, and tumor necrosis factor (TNF)-α. The response was abrogated by pretreatment with Syk inhibitor R406. These results suggest that Syk is critical for Dectin-1-mediated activation of mast cells, although the signaling differs from that triggered by FcϵRI activation. In addition, these gene expressions induced by curdlan stimulation were specifically observed in mast cells, suggesting that Dectin-1-mediated signaling of mast cells offers new insight into the antifungal immunity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Delgado Tascón, Julia; Nyffenegger-Jann, Naja J.; Hauck, Christof R.
2012-01-01
Background CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. Principal Findings In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Conclusions Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment. PMID:22448228
Pils, Stefan; Kopp, Kathrin; Peterson, Lisa; Delgado Tascón, Julia; Nyffenegger-Jann, Naja J; Hauck, Christof R
2012-01-01
CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.
Rapino, F; Abhari, B A; Jung, M; Fulda, S
2015-03-12
Recently, we reported that induction of the co-chaperone Bcl-2-associated athanogene 3 (BAG3) is critical for recovery of rhabdomyosarcoma (RMS) cells after proteotoxic stress upon inhibition of the two constitutive protein degradation pathways, that is, the ubiquitin-proteasome system by Bortezomib and the aggresome-autophagy system by histone deacetylase 6 (HDAC6) inhibitor ST80. In the present study, we investigated the molecular mechanisms mediating BAG3 induction under these conditions. Here, we identify nuclear factor-kappa B (NF-κB)-inducing kinase (NIK) as a key mediator of ST80/Bortezomib-stimulated NF-κB activation and transcriptional upregulation of BAG3. ST80/Bortezomib cotreatment upregulates mRNA and protein expression of NIK, which is accompanied by an initial increase in histone H3 acetylation. Importantly, NIK silencing by siRNA abolishes NF-κB activation and BAG3 induction by ST80/Bortezomib. Furthermore, ST80/Bortezomib cotreatment stimulates NF-κB transcriptional activity and upregulates NF-κB target genes. Genetic inhibition of NF-κB by overexpression of dominant-negative IκBα superrepressor (IκBα-SR) or by knockdown of p65 blocks the ST80/Bortezomib-stimulated upregulation of BAG3 mRNA and protein expression. Interestingly, inhibition of lysosomal activity by Bafilomycin A1 inhibits ST80/Bortezomib-stimulated IκBα degradation, NF-κB activation and BAG3 upregulation, indicating that IκBα is degraded via the lysosome in the presence of Bortezomib. Thus, by demonstrating a critical role of NIK in mediating NF-κB activation and BAG3 induction upon ST80/Bortezomib cotreatment, our study provides novel insights into mechanisms of resistance to proteotoxic stress in RMS.
Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation.
Zhang, Song; Takaku, Motoki; Zou, Liyun; Gu, Ai-di; Chou, Wei-Chun; Zhang, Ge; Wu, Bing; Kong, Qing; Thomas, Seddon Y; Serody, Jonathan S; Chen, Xian; Xu, Xiaojiang; Wade, Paul A; Cook, Donald N; Ting, Jenny P Y; Wan, Yisong Y
2017-11-02
T helper 17 (T H 17) cells are critically involved in host defence, inflammation, and autoimmunity. Transforming growth factor β (TGFβ) is instrumental in T H 17 cell differentiation by cooperating with interleukin-6 (refs 6, 7). Yet, the mechanism by which TGFβ enables T H 17 cell differentiation remains elusive. Here we reveal that TGFβ enables T H 17 cell differentiation by reversing SKI-SMAD4-mediated suppression of the expression of the retinoic acid receptor (RAR)-related orphan receptor γt (RORγt). We found that, unlike wild-type T cells, SMAD4-deficient T cells differentiate into T H 17 cells in the absence of TGFβ signalling in a RORγt-dependent manner. Ectopic SMAD4 expression suppresses RORγt expression and T H 17 cell differentiation of SMAD4-deficient T cells. However, TGFβ neutralizes SMAD4-mediated suppression without affecting SMAD4 binding to the Rorc locus. Proteomic analysis revealed that SMAD4 interacts with SKI, a transcriptional repressor that is degraded upon TGFβ stimulation. SKI controls histone acetylation and deacetylation of the Rorc locus and T H 17 cell differentiation via SMAD4: ectopic SKI expression inhibits H3K9 acetylation of the Rorc locus, Rorc expression, and T H 17 cell differentiation in a SMAD4-dependent manner. Therefore, TGFβ-induced disruption of SKI reverses SKI-SMAD4-mediated suppression of RORγt to enable T H 17 cell differentiation. This study reveals a critical mechanism by which TGFβ controls T H 17 cell differentiation and uncovers the SKI-SMAD4 axis as a potential therapeutic target for treating T H 17-related diseases.
A bipartite graph of Neuroendocrine System
NASA Astrophysics Data System (ADS)
Guo, Zhong-Wei; Zou, Sheng-Rong; Peng, Yu-Jing; Zhou, Ta; Gu, Chang-Gui; He, Da-Ren
2008-03-01
We present an empirical investigation on the neuroendocrine system and suggest describe it by a bipartite graph. In the net the cells can be regarded as collaboration acts and the mediators can be regarded as collaboration actors. The act degree stands for the number of the cells that secrete a single mediator. Among them bFGF (the basic fibroblast growth factor) has the largest node act degree. It is the most important mitogenic cytokine, followed by TGF-beta, IL-6, IL1-beta, VEGF, IGF-1and so on. They are critical in neuroendocrine system to maintain bodily healthiness, emotional stabilization and endocrine harmony. The act degree distribution shows a shifted power law (SPL) function forms [1]. The average act degree of neuroendocrine network is h=3.01, It means that each mediator is secreted by three cells on average. The similarity, which stands for the average probability of secreting the same mediators by all neuroendocrine cells, is observed as s=0.14. Our results may be used in the research of the medical treatment of neuroendocrine diseases. [1] Assortativity and act degree distribution of some collaboration networks, Hui Chang, Bei-Bei Su, Yue-Ping Zhou, Daren He, Physica A, 383 (2007) 687-702
Deng, Changwang; Li, Ying; Zhou, Lei; Cho, Joonseok; Patel, Bhavita; Terada, Naohiro; Li, Yangqiu; Bungert, Jörg; Qiu, Yi; Huang, Suming
2016-01-05
Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1(+) mesoderm and then promotes hematopoietic differentiation through regulation of hoxb pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated knockdown or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1(+) precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1(+) precursors and differentiation of Flk1(+) cells into hematopoietic lineages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Deng, Changwang; Li, Ying; Zhou, Lei; Cho, Joonseok; Patel, Bhavita; Terada, Nao; Li, Yangqiu; Bungert, Jörg; Qiu, Yi; Huang, Suming
2015-01-01
Summary Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1+ mesoderm and then promotes hematopoietic differentiation through regulating hoxb gene pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated KD or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb gene expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1+ precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1+ precursors and differentiation of Flk1+ cells into hematopoietic lineages. PMID:26725110
Mami, Iadh; Bouvier, Nicolas; El Karoui, Khalil; Gallazzini, Morgan; Rabant, Marion; Laurent-Puig, Pierre; Li, Shuping; Tharaux, Pierre-Louis; Beaune, Philippe; Thervet, Eric; Chevet, Eric; Hu, Guo-Fu
2016-01-01
Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang−/−) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism. PMID:26195817
Contending Claims to Causality: A Critical Review of Mediation Research in HRD
ERIC Educational Resources Information Center
Ghosh, Rajashi; Jacobson, Seth
2016-01-01
Purpose: The purpose of this paper is to conduct a critical review of the mediation studies published in the field of Human Resource Development (HRD) to discern if the study designs, the nature of data collection and the choice of statistical methods justify the causal claims made in those studies. Design/methodology/approach: This paper conducts…
Chen, Jun-An; Huang, Yuan-Ping; Mazzoni, Esteban O.; Tan, G. Christopher; Zavadil, Jiri; Wichterle, Hynek
2011-01-01
SUMMARY Neural patterning relies on transcriptional cross-repressive interactions that ensure unequivocal assignment of neural progenitor identity to proliferating cells. Progenitors of spinal motor neurons (pMN) and V2 interneurons (p2) are specified by a pair of cross-repressive transcription factors Olig2 and Irx3. Lineage tracing revealed that many p2 progenitors transiently express the pMN marker Olig2 during spinal cord development. Here we demonstrate that the repression of Olig2 in p2 domain is controlled by mir-17-3p microRNA-mediated silencing of Olig2 mRNA. Mice lacking all microRNAs or just the mir-17~92 cluster manifest a dorsal shift in pMN/p2 boundary and impairment in the production of V2 interneurons. Our findings suggest that microRNA-mediated repression of Olig2 mRNA plays a critical role during the patterning of ventral spinal progenitor domains by shifting the balance of cross-repressive interactions between Olig2 and Irx3 transcription factors. PMID:21338882
Rothman, Sarah M; Griffioen, Kathleen J; Wan, Ruiqian; Mattson, Mark P
2012-01-01
Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders. PMID:22548651
Ikaros controls isotype selection during immunoglobulin class switch recombination.
Sellars, MacLean; Reina-San-Martin, Bernardo; Kastner, Philippe; Chan, Susan
2009-05-11
Class switch recombination (CSR) allows the humoral immune response to exploit different effector pathways through specific secondary antibody isotypes. However, the molecular mechanisms and factors that control immunoglobulin (Ig) isotype choice for CSR are unclear. We report that deficiency for the Ikaros transcription factor results in increased and ectopic CSR to IgG(2b) and IgG(2a), and reduced CSR to all other isotypes, regardless of stimulation. Ikaros suppresses active chromatin marks, transcription, and activation-induced cytidine deaminase (AID) accessibility at the gamma2b and gamma2a genes to inhibit class switching to these isotypes. Further, Ikaros directly regulates isotype gene transcription as it directly binds the Igh 3' enhancer and interacts with isotype gene promoters. Finally, Ikaros-mediated repression of gamma2b and gamma2a transcription promotes switching to other isotype genes by allowing them to compete for AID-mediated recombination at the single-cell level. Thus, our results reveal transcriptional competition between constant region genes in individual cells to be a critical and general mechanism for isotype specification during CSR. We show that Ikaros is a master regulator of this competition.
Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis.
Kuwabara, Tomoko; Hsieh, Jenny; Muotri, Alysson; Yeo, Gene; Warashina, Masaki; Lie, Dieter Chichung; Moore, Lynne; Nakashima, Kinichi; Asashima, Makoto; Gage, Fred H
2009-09-01
In adult hippocampus, new neurons are continuously generated from neural stem cells (NSCs), but the molecular mechanisms regulating adult neurogenesis remain elusive. We found that Wnt signaling, together with the removal of Sox2, triggered the expression of NeuroD1 in mice. This transcriptional regulatory mechanism was dependent on a DNA element containing overlapping Sox2 and T-cell factor/lymphoid enhancer factor (TCF/LEF)-binding sites (Sox/LEF) in the promoter. Notably, Sox/LEF sites were also found in long interspersed nuclear element 1 (LINE-1) elements, consistent with their critical roles in the transition of NSCs to proliferating neuronal progenitors. Our results describe a previously unknown Wnt-mediated regulatory mechanism that simultaneously coordinates activation of NeuroD1 and LINE-1, which is important for adult neurogenesis and survival of neuronal progenitors. Moreover, the discovery that LINE-1 retro-elements embedded in the mammalian genome can function as bi-directional promoters suggests that Sox/LEF regulatory sites may represent a general mechanism, at least in part, for relaying environmental signals to other nearby loci to promote adult hippocampal neurogenesis.
Clifford, Jennifer C; Rapicavoli, Jeannette N; Roper, M Caroline
2013-06-01
Xylella fastidiosa is a gram-negative, xylem-limited bacterium that causes a lethal disease of grapevine called Pierce's disease. Lipopolysaccharide (LPS) composes approximately 75% of the outer membrane of gram-negative bacteria and, because it is largely displayed on the cell surface, it mediates interactions between the bacterial cell and its surrounding environment. LPS is composed of a conserved lipid A-core oligosaccharide component and a variable O-antigen portion. By targeting a key O-antigen biosynthetic gene, we demonstrate the contribution of the rhamnose-rich O-antigen to surface attachment, cell-cell aggregation, and biofilm maturation: critical steps for successful infection of the host xylem tissue. Moreover, we have demonstrated that a fully formed O-antigen moiety is an important virulence factor for Pierce's disease development in grape and that depletion of the O-antigen compromises its ability to colonize the host. It has long been speculated that cell-surface polysaccharides play a role in X. fastidiosa virulence and this study confirms that LPS is a major virulence factor for this important agricultural pathogen.
Delevoye, Cédric; Romao, Maryse; Owen, David J.; Raposo, Graça
2016-01-01
Endomembrane organelle maturation requires cargo delivery via fusion with membrane transport intermediates and recycling of fusion factors to their sites of origin. Melanosomes and other lysosome-related organelles obtain cargoes from early endosomes, but the fusion machinery involved and its recycling pathway are unknown. Here, we show that the v-SNARE VAMP7 mediates fusion of melanosomes with tubular transport carriers that also carry the cargo protein TYRP1 and that require BLOC-1 for their formation. Using live-cell imaging, we identify a pathway for VAMP7 recycling from melanosomes that employs distinct tubular carriers. The recycling carriers also harbor the VAMP7-binding scaffold protein VARP and the tissue-restricted Rab GTPase RAB38. Recycling carrier formation is dependent on the RAB38 exchange factor BLOC-3. Our data suggest that VAMP7 mediates fusion of BLOC-1–dependent transport carriers with melanosomes, illuminate SNARE recycling from melanosomes as a critical BLOC-3–dependent step, and likely explain the distinct hypopigmentation phenotypes associated with BLOC-1 and BLOC-3 deficiency in Hermansky–Pudlak syndrome variants. PMID:27482051
Li, Qisheng; Pène, Véronique; Krishnamurthy, Siddharth; Cha, Helen; Liang, T. Jake
2013-01-01
Hepatitis C virus interacts extensively with host factors not only to establish productive infection but also to trigger unique pathological processes. Our recent genome-wide siRNA screen demonstrated that IKKα is a critical host factor for HCV. Here we describe a novel NF-κB-independent and kinase-mediated nuclear function of IKKα in HCV assembly. HCV infection, through its 3’-untranslated region, interacts with DDX3X to activate IKKα, which translocates to the nucleus and induces a CBP/p300-mediated transcriptional program involving SREBPs. This novel innate pathway induces lipogenic genes and enhances core-associated lipid droplet formation to facilitate viral assembly. Chemical inhibitors of IKKα suppress HCV infection and IKKα-induced lipogenesis, offering a proof-of-concept approach for novel HCV therapeutic development. Our results show that HCV commands a novel mechanism to its advantage by exploiting intrinsic innate response and hijacking lipid metabolism, which likely contributes to a high chronicity rate and the pathological hallmark of steatosis in HCV infection. PMID:23708292
SRC activates TAZ for intestinal tumorigenesis and regeneration.
Byun, Mi Ran; Hwang, Jun-Ha; Kim, A Rum; Kim, Kyung Min; Park, Jung Il; Oh, Ho Taek; Hwang, Eun Sook; Hong, Jeong-Ho
2017-12-01
Proto-oncogene tyrosine-protein kinase Src (cSRC) is involved in colorectal cancer (CRC) development and damage-induced intestinal regeneration, although the cellular mechanisms involved are poorly understood. Here, we report that transcriptional coactivator with PDZ binding domain (TAZ) is activated by cSRC, regulating CRC cell proliferation and tumor formation, where cSRC overexpression increases TAZ expression in CRC cells. In contrast, knockdown of cSRC decreases TAZ expression. Additionally, direct phosphorylation of TAZ at Tyr316 by cSRC stimulates nuclear localization and facilitates transcriptional enhancer factor TEF-3 (TEAD4)-mediated transcription. However, a TAZ phosphorylation mutant significantly decreased cell proliferation, wound healing, colony forming, and tumor formation. In a CRC mouse model, Apc Min/+ , activated SRC expression was associated with increased TAZ expression in polyps and TAZ depletion decreased polyp formation. Moreover, intestinal TAZ knockout mice had intestinal regeneration defects following γ-irradiation. Finally, significant correspondence between SRC activation and TAZ overexpression was observed in CRC patients. These results suggest that TAZ is a critical factor for SRC-mediated intestinal tumor formation and regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3
Ni, Weimin; Xu, Shou-Ling; González-Grandío, Eduardo; ...
2017-05-11
Upon light-induced nuclear translocation, phytochrome (phy) sensory photoreceptors interact with, and induce rapid phosphorylation and consequent ubiquitin-mediated degradation of, transcription factors, called PIFs, thereby regulating target gene expression and plant development. Nevertheless, the biochemical mechanism of phy-induced PIF phosphorylation has remained ill-defined. Here in this paper we identify a family of nuclear protein kinases, designated Photoregulatory Protein Kinases (PPK1–4; formerly called MUT9-Like Kinases (MLKs)), that interact with PIF3 and phyB in a light-induced manner in vivo. Genetic analyses demonstrate that the PPKs are collectively necessary for the normal light-induced phosphorylation and degradation of PIF3. PPK1 directly phosphorylates PIF3 in vitro,more » with a phosphosite pattern that strongly mimics the light-induced pattern in vivo. These data establish that the PPKs are directly involved in catalysing the photoactivated-phy-induced phosphorylation of PIF3 in vivo, and thereby are critical components of a transcriptionally centred signalling hub that pleiotropically regulates plant growth and development in response to multiple signalling pathways.« less
The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling
Chakraborty, Atanu; Diefenbacher, Markus E.; Mylona, Anastasia; Kassel, Olivier; Behrens, Axel
2015-01-01
The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterised, the mechanism of activation by Ras was elusive. Here we identify the uncharacterised ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras–Raf–MEK–ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilisation. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation. PMID:25851810
Effect of supercoiling on formation of protein-mediated DNA loops
NASA Astrophysics Data System (ADS)
Purohit, P. K.; Nelson, P. C.
2006-12-01
DNA loop formation is one of several mechanisms used by organisms to regulate genes. The free energy of forming a loop is an important factor in determining whether the associated gene is switched on or off. In this paper we use an elastic rod model of DNA to determine the free energy of forming short (50-100 basepair), protein mediated DNA loops. Superhelical stress in the DNA of living cells is a critical factor determining the energetics of loop formation, and we explicitly account for it in our calculations. The repressor protein itself is regarded as a rigid coupler; its geometry enters the problem through the boundary conditions it applies on the DNA. We show that a theory with these ingredients is sufficient to explain certain features observed in modulation of in vivo gene activity as a function of the distance between operator sites for the lac repressor. We also use our theory to make quantitative predictions for the dependence of looping on superhelical stress, which may be testable both in vivo and in single-molecule experiments such as the tethered particle assay and the magnetic bead assay.
[Monoclonal antibodies against inflammatory mediators for the treatment of patients with sepsis].
Matsubara, Tomoyo
2002-03-01
Sepsis is a common cause of morbidity and mortality, particularly in immunocompromised and critically ill patients. Recently, a new designation, systemic inflammatory response syndrome(SIRS), has been studied. When an abnormal generalized inflammatory reaction is due to an infection, the terms sepsis and SIRS are synonymous. The systemic response to infection is mediated via the macrophage-derived cytokines that target end organ receptors in response to injury or infection. One strategy used to perturb the septic cascade is to block a particular inflammatory molecule. Results have been published on clinical trials in sepsis patients treated with several monoclonal antibodies, such as antiendotoxin antibodies, anti-tumor necrosis factor antibodies, and anti CD14 antibodies. In this chapter, the results of clinical trials in patients and in vivo data from animal models of sepsis are summarized.
FGFR2c-mediated ERK-MAPK activity regulates coronal suture development
Pfaff, Miles J.; Xue, Ke; Li, Li; Horowitz, Mark C.; Steinbacher, Derek M.; Eswarakumar, Jacob V.P.
2017-01-01
Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor’s gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. PMID:27034231
Zhang, Huiyong; Zhao, Xin; Li, Jigang; Cai, Huaqing; Deng, Xing Wang; Li, Lei
2014-01-01
Light and copper are important environmental determinants of plant growth and development. Despite the wealth of knowledge on both light and copper signaling, the molecular mechanisms that integrate the two pathways remain poorly understood. Here, we use Arabidopsis thaliana to demonstrate an interaction between SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7) and ELONGATED HYPOCOTYL5 (HY5), which mediate copper and light signaling, respectively. Through whole-genome chromatin immunoprecipitation and RNA sequencing analyses, we elucidated the SPL7 regulon and compared it with that of HY5. We found that the two transcription factors coregulate many genes, including those involved in anthocyanin accumulation and photosynthesis. Moreover, SPL7 and HY5 act coordinately to transcriptionally regulate MIR408, which results in differential expression of microRNA408 (miR408) and its target genes in response to changing light and copper conditions. We demonstrate that this regulation is tied to copper allocation to the chloroplast and plastocyanin levels. Finally, we found that constitutively activated miR408 rescues the distinct developmental defects of the hy5, spl7, and hy5 spl7 mutants. These findings revealed the existence of crosstalk between light and copper, mediated by a HY5-SPL7 network. Furthermore, integration of transcriptional and posttranscriptional regulation is critical for governing proper metabolism and development in response to combined copper and light signaling. PMID:25516599
FGFR2c-mediated ERK-MAPK activity regulates coronal suture development.
Pfaff, Miles J; Xue, Ke; Li, Li; Horowitz, Mark C; Steinbacher, Derek M; Eswarakumar, Jacob V P
2016-07-15
Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor's gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.
Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K
2011-10-01
Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.
Epidermal Growth Factor Increases LRF/Pokemon Expression in Human Prostate Cancer Cells
Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K.
2011-01-01
Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721
Control of jasmonate biosynthesis and senescence by miR319 targets.
Schommer, Carla; Palatnik, Javier F; Aggarwal, Pooja; Chételat, Aurore; Cubas, Pilar; Farmer, Edward E; Nath, Utpal; Weigel, Detlef
2008-09-23
Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate.
VEGF is a chemoattractant for FGF-2–stimulated neural progenitors
Zhang, Huanxiang; Vutskits, Laszlo; Pepper, Michael S.; Kiss, Jozsef Z.
2003-01-01
Mmigration of undifferentiated neural progenitors is critical for the development and repair of the nervous system. However, the mechanisms and factors that regulate migration are not well understood. Here, we show that vascular endothelial growth factor (VEGF)-A, a major angiogenic factor, guides the directed migration of neural progenitors that do not display antigenic markers for neuron- or glia-restricted precursor cells. We demonstrate that progenitor cells express both VEGF receptor (VEGFR) 1 and VEGFR2, but signaling through VEGFR2 specifically mediates the chemotactic effect of VEGF. The expression of VEGFRs and the chemotaxis of progenitors in response to VEGF require the presence of fibroblast growth factor 2. These results demonstrate that VEGF is an attractive guidance cue for the migration of undifferentiated neural progenitors and offer a mechanistic link between neurogenesis and angiogenesis in the nervous system. PMID:14691144
Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1.
Ruthenborg, Robin J; Ban, Jae-Jun; Wazir, Anum; Takeda, Norihiko; Kim, Jung-Whan
2014-09-01
Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.
Physiological and Therapeutic Vascular Remodeling Mediated by Hypoxia-Inducible Factor 1
NASA Astrophysics Data System (ADS)
Sarkar, Kakali; Semenza, Gregg L.
Angiogenesis along with arteriogenesis and vasculogenesis is a fundamental process in ischemic repair in adult animals including humans. Hypoxia-inducible factor 1 (HIF-1) plays a central role in mediating adaptive responses to hypoxia/ischemia by expressing angiogenic cytokines/growth factors and their cognate receptors. Angiogenic growth factors are the homing signal for circulating angiogenic cells (CACs), which are mobilized to peripheral blood from bone marrow, recruited to target tissues, and promote vascularization. Impairment of HIF-1-mediated gene transcription contributes to the impaired vascular responses in peripheral vascular disease that are associated with aging and diabetes. Promoting neovascularization in ischemic tissues is a promising strategy for the treatment of peripheral vascular disease when surgical or catheter-based revascularization is not possible. Intramuscular injection of an adenovirus encoding a constitutively active form of HIF-1α (AdCA5), into the ischemic limb of diabetic mice increases the recovery of limb perfusion and function, rescues the diabetes-associated impairment of CACs, and increases vascularization. Administration of AdCA5 overcomes the effect of aging on recovery of blood flow in middle-aged mice following femoral artery ligation in a mouse model of age-dependent critical limb ischemia. Intramuscular injection of AdCA5 along with intravenous injection of bone-marrow-derived angiogenic cells cultured in the presence of prolyl-4-hydroxylase inhibitor dimethyloxalylglycine, increases blood flow and limb salvage in old mice following femoral artery ligation. HIF-1α gene therapy increases homing of bone-marrow-derived cells, whereas induction of HIF-1 in these cells increases their retention in the ischemic tissue by increasing their adhesion to endothelium leading to synergistic effects of combined therapy on improving blood flow.
Assessment of Undergraduates' Real-World Outcomes of Critical Thinking in Everyday Situations.
Franco, Amanda R; Costa, Patrício S; Butler, Heather A; Almeida, Leandro S
2017-01-01
Critical thinking is a kind of "good" thinking that integrates a set of cognitive skills and dispositions to use those skills with knowledge to increase the chances of success in academic settings, job market, and daily life. The impact of critical thinking on life events, in face of everyday decisions and challenges, is still unclear, and further research is needed. In this exploratory study, a sample of 230 first-year students of a Bachelor's Degree or a Master's Degree in Portugal completed an experimental Portuguese version of the Real-World Outcomes, a self-report inventory measuring everyday negative life events that are mediated by a lack of critical thinking. Based on exploratory factor analysis results and theoretical premises, changes were made to the Portuguese version of the inventory that was administered, and items were aggregated into six dimensions, creating a new version that is more familiar to Portuguese young adults in college. This original proposal of the inventory presents six types of negative life events resulting from a lack of critical thinking: health neglect, mismanagement, slackness, poor impulse control, academic negligence, and rashness. Both limitations and future potentialities of this version are presented.
Lang, Charles H; Frost, Robert A
2002-05-01
The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.
Enhancer Activation Requires Trans-Recruitment of a Mega Transcription Factor Complex
Liu, Zhijie; Merkurjev, Daria; Yang, Feng; Li, Wenbo; Oh, Soohwan; Friedman, Meyer J.; Song, Xiaoyuan; Zhang, Feng; Ma, Qi; Ohgi, Kenneth; Krones, Anna; Rosenfeld, Michael G.
2014-01-01
Summary Enhancers provide critical information directing cell-type specific transcriptional programs, regulated by binding of signal-dependent transcription factors and their associated cofactors. Here we report that the most strongly activated estrogen (E2)-responsive enhancers are characterized by trans-recruitment and in situ assembly of a large 1-2 MDa complex of diverse DNA-binding transcription factors by ERα at ERE-containing enhancers. We refer to enhancers recruiting these factors as mega transcription factor-bound in trans (MegaTrans) enhancers. The MegaTrans complex is a signature of the most potent functional enhancers and is required for activation of enhancer RNA transcription and recruitment of coactivators, including p300 and Med1. The MegaTrans complex functions, in part, by recruiting specific enzymatic machinery, exemplified by DNA-dependent protein kinase. Thus, MegaTrans-containing enhancers represent a cohort of functional enhancers that mediate a broad and important transcriptional program and provide a molecular explanation for transcription factor clustering and hotspots noted in the genome. PMID:25303530
Higashi, Yusuke; Sukhanov, Sergiy; Parthasarathy, Sampath; Delafontaine, Patrice
2008-01-01
Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 μg/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2 ± 1.7 h from 24.4 ± 4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. PMID:18723765
Tang, Wei; Lu, Yi; Tian, Qing-Yun; Zhang, Yan; Guo, Feng-Jin; Liu, Guang-Yi; Syed, Nabeel Muzaffar; Lai, Yongjie; Lin, Edward Alan; Kong, Li; Su, Jeffrey; Yin, Fangfang; Ding, Ai-Hao; Zanin-Zhorov, Alexandra; Dustin, Michael L.; Tao, Jian; Craft, Joseph; Yin, Zhinan; Feng, Jian Q.; Abramson, Steven B.; Yu, Xiu-Ping; Liu, Chuan-ju
2011-01-01
The growth factor progranulin (PGRN) has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation, but its receptors remain unidentified. We report that PGRN bound directly to tumor necrosis factor receptors (TNFR), and disturbed the TNFα/TNFR interaction. PGRN-deficient mice were susceptible to collagen-induced arthritis, and administration of PGRN reversed inflammatory arthritis. Atsttrin, an engineered protein composed of three PGRN fragments, exhibited selective TNFR binding. PGRN and Atsttrin prevented inflammation in multiple arthritis mouse models and inhibited TNFα-activated intracellular signaling. Collectively, these findings demonstrate that PGRN is a ligand of TNFR, an antagonist of TNFα signaling and plays a critical role in the pathogenesis of inflammatory arthritis in mice. They also suggest new potential therapeutic interventions for various TNFα-mediated pathologies and conditions, including rheumatoid arthritis. PMID:21393509
Kolesnikoff, Natasha; Attema, Joanne L; Roslan, Suraya; Bert, Andrew G; Schwarz, Quenten P; Gregory, Philip A; Goodall, Gregory J
2014-04-18
Epithelial-mesenchymal transition (EMT) is required for the specification of tissues during embryonic development and is recapitulated during the metastatic progression of tumors. The miR-200 family plays a critical role in enforcing the epithelial state with their expression lost in cells undergoing EMT. EMT can be mediated by activation of the ZEB1 and ZEB2 (ZEB) transcription factors, which repress miR-200 expression via a self-reinforcing double negative feedback loop to promote the mesenchymal state. However, it remains unclear what factors drive and maintain epithelial-specific expression of miR-200 in the absence of EMT-inducing factors. Here, we show that the transcription factor Specificity Protein 1 (Sp1) binds to the miR-200b∼200a∼429 proximal promoter and activates miR-200 expression in epithelial cells. In mesenchymal cells, Sp1 expression is maintained, but its ability to activate the miR-200 promoter is perturbed by ZEB-mediated repression. Reduction of Sp1 expression caused changes in EMT-associated markers in epithelial cells. Furthermore, we observed co-expression of Sp1 and miR-200 during mouse embryonic development wherein miR-200 expression was only lost in regions with high ZEB expression. Together, these findings indicate that miR-200 family members require Sp1 to drive basal expression and to maintain an epithelial state.
Zinc Oxide Nanoparticles Demoted MDM2 Expression to Suppress TSLP-Induced Mast Cell Proliferation.
Kim, Min-Ho; Jeong, Hyun-Ja
2016-03-01
Activation of murine double minute 2 (MDM2) through thymic stromal lymphopoietin (TSLP)-induced signal transducers and activators of transcription (STAT6) phosphorylation plays a critical role in proliferation and survival of mast cells. Previously, we reported that zinc oxide nanoparticles (ZnO-NP) effectively decrease the mast cell-mediated allergic inflammatory reactions. Here, we evaluated the effect of ZnO-NP on TSLP-induced proliferation of mast cells. ZnO-NP significantly reduced the number of BrdU-incorporating mast cells increased by TSLP. ZnO-NP decreased the expression of MDM2 through the blockade of STAT6 phosphorylation. TSLP increased the production and mRNA expression of interleukin-13 (a growth factor of mast cells), its increase was significantly decreased by ZnO-NP (10 μg/mL). ZnO-NP induced the down-regulation of Bcl2 (an anti-apoptotic factor) and up-regulation of Bax (an apoptotic factor) through the stabilization of p53 protein. However, ZnO-NP has no effect on caspase-3 activation, cytochrome c release into cytosol, and apoptosis-inducing factor translocation into nucleus in TSLP-stimulated cells. The results of the present study demonstrated that ZnO-NP inhibited the proliferation of mast cells through the regulation of MDM2 and p53 protein levels. These finding suggest that ZnO-NP could be improved mast cell-mediated various diseases.
The Innate Immune System in Acute and Chronic Wounds
MacLeod, Amanda S.; Mansbridge, Jonathan N.
2016-01-01
Significance: This review article provides an overview of the critical roles of the innate immune system to wound healing. It explores aspects of dysregulation of individual innate immune elements known to compromise wound repair and promote nonhealing wounds. Understanding the key mechanisms whereby wound healing fails will provide seed concepts for the development of new therapeutic approaches. Recent Advances: Our understanding of the complex interactions of the innate immune system in wound healing has significantly improved, particularly in our understanding of the role of antimicrobials and peptides and the nature of the switch from inflammatory to reparative processes. This takes place against an emerging understanding of the relationship between human cells and commensal bacteria in the skin. Critical Issues: It is well established and accepted that early local inflammatory mediators in the wound bed function as an immunological vehicle to facilitate immune cell infiltration and microbial clearance upon injury to the skin barrier. Both impaired and excessive innate immune responses can promote nonhealing wounds. It appears that the switch from the inflammatory to the proliferative phase is tightly regulated and mediated, at least in part, by a change in macrophages. Defining the factors that initiate the switch in such macrophage phenotypes and functions is the subject of multiple investigations. Future Directions: The review highlights processes that may be useful targets for further investigation, particularly the switch from M1 to M2 macrophages that appears to be critical as dysregulation of this switch occurs during defective wound healing. PMID:26862464
Waadt, Rainer; Schroeder, Julian I.
2016-01-01
The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by “monomeric” PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA. PMID:27192441
Galletta, Maura; Portoghese, Igor; D'Aloja, Ernesto; Mereu, Alessandra; Contu, Paolo; Coppola, Rosa Cristina; Finco, Gabriele; Campagna, Marcello
2016-06-01
Burnout is a serious problem for critical care unit workers because they are exposed to chronic psychosocial stressors, including high responsibility, advanced technology and high patient acuity. Recent evidence showed that staff burnout was directly associated with hospital infections, thus affecting quality and safety of care provided. The research aim was to investigate how burnout was associated with some psychosocial factors and with health care-associated infections in hospitalised patients. A total of 130 healthcare professionals from critical care units completed a self-reported questionnaire. The infection data were collected prospectively over a six-month period. The results showed that emotional exhaustion was related to cynicism due to high work demands. Cynicism affected team communication, which in turn was positively related to team efficacy, thus acting as a mediator. Finally, team efficacy was negatively related to infections. The study showed that emotional exhaustion and cynicism were related to psychosocial aspects, which in turn had a significant impact on healthcare-associated infections. Our findings suggest how burnout can indirectly affect healthcare-related infections as a result of the quality of teamwork. Thus, reducing burnout can be a good strategy to decrease infections, thus increasing workers' well-being while improving patient care. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dalwadi, Dhwanil A; Kim, Seongcheol; Schetz, John A
2017-05-01
Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists. Copyright © 2017 Elsevier Ltd. All rights reserved.
Newman, Andrea K; Van Dyke, Benjamin P; Torres, Calia A; Baxter, Jacob W; Eyer, Joshua C; Kapoor, Shweta; Thorn, Beverly E
2017-09-01
Chronic pain is a pervasive condition that is complicated by economic, educational, and racial disparities. This study analyzes key factors associated with chronic pain within an understudied and underserved population. The sample is characterized by a triple disparity with respect to income, education/literacy, and racial barriers that substantially increase the vulnerability to the negative consequences of chronic pain. The study examined the pretreatment data of 290 participants enrolled in the Learning About My Pain trial, a randomized controlled comparative effectiveness trial of psychosocial interventions (B.E.T., Principal Investigator, Patient-Centered Outcomes Research Institute Contract No. 941; clinicaltrials.gov identifier NCT01967342) for chronic pain. Hierarchical multiple regression analyses evaluated the relationships among sociodemographic (sex, age, race, poverty status, literacy, and education level) and psychological (depressive symptoms and pain catastrophizing) variables and pain interference, pain severity, and disability. The indirect effects of depressive symptoms and pain catastrophizing on the sociodemographic and pain variables were investigated using bootstrap resampling. Reversed mediation models were also examined. Results suggested that the experience of chronic pain within this low-income sample is better accounted for by psychological factors than sex, age, race, poverty status, literacy, and education level. Depressive symptoms and pain catastrophizing mediated the relationships between age and pain variables, whereas pain catastrophizing mediated the effects of primary literacy and poverty status. Some reversed models were equivalent to the hypothesized models, suggesting the possibility of bidirectionality. Although cross-sectional findings cannot establish causality, our results highlight the critical role psychological factors play in individuals with chronic pain and multiple health disparities.
Morrison, Sandra G; Giebel, Amanda M; Toh, Evelyn C; Spencer, Horace J; Nelson, David E; Morrison, Richard P
2018-07-01
Some members of the genus Chlamydia , including the human pathogen Chlamydia trachomatis , infect multiple tissues, including the genital and gastrointestinal (GI) tracts. However, it is unknown if bacterial targeting to these sites is mediated by multifunctional or distinct chlamydial factors. We previously showed that disruption of individual large clostridial toxin homologs encoded within the Chlamydia muridarum plasticity zone were not critical for murine genital tract infection. Here, we assessed whether cytotoxin genes contribute to C. muridarum GI tropism. Infectivity and shedding of wild-type (WT) C. muridarum and three mutants containing nonsense mutations in different cytotoxin genes, tc0437 , tc0438 , and tc0439 , were compared in mouse genital and GI infection models. One mutant, which had a nonsense mutation in tc0439 , was highly attenuated for GI infection and had a GI 50% infectious dose (ID 50 ) that was 1,000 times greater than that of the WT. GI inoculation with this mutant failed to elicit anti-chlamydial antibodies or to protect against subsequent genital tract infection. Genome sequencing of the tc0439 mutant revealed additional chromosomal mutations, and phenotyping of additional mutants suggested that the GI attenuation might be linked to a nonsense mutation in tc0600 The molecular mechanism underlying this dramatic difference in tissue-tropic virulence is not fully understood. However, isolation of these mutants demonstrates that distinct chlamydial chromosomal factors mediate chlamydial tissue tropism and provides a basis for vaccine initiatives to isolate chlamydia strains that are attenuated for genital infection but retain the ability to colonize the GI tract and elicit protective immune responses. Copyright © 2018 Morrison et al.
Ivashkiv, Lionel B; Hu, Xiaoyu
2004-01-01
A variety of cytokines and growth factors use the Janus kinase (Jak)-STAT signaling pathway to transmit extracellular signals to the nucleus. STATs (signal transducers and activators of transcription) are latent cytoplasmic transcription factors. There are seven mammalian STATs and they have critical, nonredundant roles in mediating cellular transcriptional responses to cytokines. The physiological roles of STATs have been elucidated by analysis of mice rendered deficient in STAT genes. STAT activation is regulated and can be modulated in a positive or negative fashion; it can be reprogrammed to drive different cellular responses. Several auto-regulatory and signaling crosstalk mechanisms for regulating Jak-STAT signaling have been described. Understanding and manipulation of the function of STATs will help in the development of therapeutic strategies for diseases that are regulated by cytokines.
Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1
Ye, Shoudong; Li, Ping; Tong, Chang; Ying, Qi-Long
2013-01-01
Mouse embryonic stem cell (mESC) self-renewal can be maintained by activation of the leukaemia inhibitory factor (LIF)/signal transducer and activator of transcription 3 (Stat3) signalling pathway or dual inhibition (2i) of glycogen synthase kinase 3 (Gsk3) and mitogen-activated protein kinase kinase (MEK). Several downstream targets of the pathways involved have been identified that when individually overexpressed can partially support self-renewal. However, none of these targets is shared among the involved pathways. Here, we show that the CP2 family transcription factor Tfcp2l1 is a common target in LIF/Stat3- and 2i-mediated self-renewal, and forced expression of Tfcp2l1 can recapitulate the self-renewal-promoting effect of LIF or either of the 2i components. In addition, Tfcp2l1 can reprogram post-implantation epiblast stem cells to naïve pluripotent ESCs. Tfcp2l1 upregulates Nanog expression and promotes self-renewal in a Nanog-dependent manner. We conclude that Tfcp2l1 is at the intersection of LIF- and 2i-mediated self-renewal pathways and plays a critical role in maintaining ESC identity. Our study provides an expanded understanding of the current model of ground-state pluripotency. PMID:23942238
HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB.
Ma, Yunyun; Zhang, Bo; Wang, Dong; Qian, Lili; Song, Xianmei; Wang, Xueyin; Yang, Chaokuan; Zhao, Guoqiang
2017-03-01
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. It can cause adult T cell leukemia (ATL) and other diseases. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which is encoded by the minus-strand of the provirus, is expressed in all cases of ATL and involved in T cell proliferation. However, the exact mechanism underlying its growth-promoting activity is poorly understood. Herein, we demonstrated that HBZ suppressed cyclin D1 expression by inhibiting the nuclear factor (NF)-κB signaling pathway. Among the potential mechanisms of cyclin D1 inhibition mediated by HBZ, we found that HBZ suppressed cyclin D1 promoter activity. Luciferase assay analysis revealed that HBZ repressed cyclin D1 promoter activity by suppressing NF-κB‑driven transcription mediated by the p65 subunit. Using an immunoprecipitation assay, we found that HBZ could bind to p65, but not p50. Finally, we showed that HBZ selectively interacted with p65 via its AD+bZIP domains. By suppressing cyclin D1 expression, HBZ can alter cell cycle progression of HTLV-1-infected cells, which may be critical for oncogenesis.
Mahabeleshwar, Ganapati H.; Qureshi, Muhammad Awais; Takami, Yoichi; Sharma, Nikunj; Lingrel, Jerry B.; Jain, Mukesh K.
2012-01-01
Although Gram-positive infections account for the majority of cases of sepsis, the molecular mechanisms underlying their effects remains poorly understood. We investigated how cell wall components of Gram-positive bacteria contribute to the development of sepsis. Experimental observations derived from cultured primary macrophages and the cell line indicate that Gram-positive bacterial endotoxins induce hypoxia-inducible factor 1α (HIF-1α) mRNA and protein expression. Inoculation of live or heat-inactivated Gram-positive bacteria with macrophages induced HIF-1 transcriptional activity in macrophages. Concordant with these results, myeloid deficiency of HIF-1α attenuated Gram-positive bacterial endotoxin-induced cellular motility and proinflammatory gene expression in macrophages. Conversely, Gram-positive bacteria and their endotoxins reduced expression of the myeloid anti-inflammatory transcription factor Krüppel-like transcription factor 2 (KLF2). Sustained expression of KLF2 reduced and deficiency of KLF2 enhanced Gram-positive endotoxins induced HIF-1α mRNA and protein expression in macrophages. More importantly, KLF2 attenuated Gram-positive endotoxins induced cellular motility and proinflammatory gene expression in myeloid cells. Consistent with these results, mice deficient in myeloid HIF-1α were protected from Gram-positive endotoxin-induced sepsis mortality and clinical symptomatology. By contrast, myeloid KLF2-deficient mice were susceptible to Gram-positive sepsis induced mortality and clinical symptoms. Collectively, these observations identify HIF-1α and KLF2 as critical regulators of Gram-positive endotoxin-mediated sepsis. PMID:22110137
Antiphospholipid antibodies promote tissue factor-dependent angiogenic switch and tumor progression.
Wu, Yuan-Yuan; V Nguyen, Andrew; Wu, Xiao-Xuan; Loh, Mingyu; Vu, Michelle; Zou, Yiyu; Liu, Qiang; Guo, Peng; Wang, Yanhua; Montgomery, Leslie L; Orlofsky, Amos; Rand, Jacob H; Lin, Elaine Y
2014-12-01
Progression to an angiogenic state is a critical event in tumor development, yet few patient characteristics have been identified that can be mechanistically linked to this transition. Antiphospholipid autoantibodies (aPLs) are prevalent in many human cancers and can elicit proangiogenic expression in several cell types, but their role in tumor biology is unknown. Herein, we observed that the elevation of circulating aPLs among breast cancer patients is specifically associated with invasive-stage tumors. By using multiple in vivo models of breast cancer, we demonstrated that aPL-positive IgG from patients with autoimmune disease rapidly accelerates tumor angiogenesis and consequent tumor progression, particularly in slow-growing avascular tumors. The action of aPLs was local to the tumor site and elicited leukocytic infiltration and tumor invasion. Tumor cells treated with aPL-positive IgG expressed multiple proangiogenic genes, including vascular endothelial growth factor, tissue factor (TF), and colony-stimulating factor 1. Knockdown and neutralization studies demonstrated that the effects of aPLs on tumor angiogenesis and growth were dependent on tumor cell-derived TF. Tumor-derived TF was essential for the development of pericyte coverage of tumor microvessels and aPL-induced tumor cell expression of chemokine ligand 2, a mediator of pericyte recruitment. These findings identify antiphospholipid autoantibodies as a potential patient-specific host factor promoting the transition of indolent tumors to an angiogenic malignant state through a TF-mediated pathogenic mechanism. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Redox-regulated growth factor survival signaling.
Woolley, John F; Corcoran, Aoife; Groeger, Gillian; Landry, William D; Cotter, Thomas G
2013-11-20
Once the thought of as unwanted byproducts of cellular respiration in eukaryotes, reactive oxygen species (ROS) have been shown to facilitate essential physiological roles. It is now understood that ROS are critical mediators of intracellular signaling. Control of signal transduction downstream of growth factor receptors by ROS is a complex process whose details are only recently coming to light. Indeed, recent evidence points to control of signal propagation by ROS at multiple levels in the typical cascade. Growth factor stimulation activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Noxs) at the membrane, producing superoxide in the extracellular matrix, which is catalyzed to the membrane-permeable hydrogen peroxide (H2O2) that mediates intracellular signaling events. The potential for H2O2, however, to disrupt cellular functions by damaging proteins and nucleic acids demands that its levels are kept in check by receptor-associated peroxiredoxins. This interplay of Nox and peroxiredoxin activity moderates levels of H2O2 sufficiently to modify signaling partners locally. Among the best studied of these partners are redox-controlled phosphatases that are inactivated by H2O2. Phosphatases regulate signal propagation downstream of receptors, and thus their inactivation allows a further level of control. Transmission of information further downstream to targets such as transcription factors, themselves regulated by ROS, completes this pathway. Thus, signal propagation or attenuation can be dictated by ROS at multiple points. Given the complex nature of these processes, we envisage the emerging trends in the field of redox signaling in the context of growth factor stimulation.
Genotoxicity of retroviral hematopoietic stem cell gene therapy
Trobridge, Grant D
2012-01-01
Introduction Retroviral vectors have been developed for hematopoietic stem cell (HSC) gene therapy and have successfully cured X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy, and Wiskott-Aldrich syndrome. However, in HSC gene therapy clinical trials, genotoxicity mediated by integrated vector proviruses has led to clonal expansion, and in some cases frank leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity with the aim of developing safer vectors and safer gene therapy protocols. These genotoxicity studies are critical to advancing HSC gene therapy. Areas covered This review provides an introduction to the mechanisms of retroviral vector genotoxicity. It also covers advances over the last 20 years in designing safer gene therapy vectors, and in integration site analysis in clinical trials and large animal models. Mechanisms of retroviral-mediated genotoxicity, and the risk factors that contribute to clonal expansion and leukemia in HSC gene therapy are introduced. Expert opinion Continued research on virus–host interactions and next-generation vectors should further improve the safety of future HSC gene therapy vectors and protocols. PMID:21375467
Downregulation of active IKKβ by Ro52-mediated autophagy
Niida, Motoko; Tanaka, Makoto; Kamitani, Tetsu
2010-01-01
Upon activation, NF-κB translocates into the nucleus and initiates many biological events. This NF-κB signaling is mainly induced by the protein kinase IKKβ. Early in this signaling pathway, IKKβ is phosphorylated for activation by several factors, such as pro-inflammatory cytokines and the Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1). In cells expressing Tax protein, IKKβ is persistently phosphorylated, which chronically activates NF-κB signaling. But the active IKKβ is conjugated with a monoubiquitin by the E3 ubiquitin ligase Ro52, and the IKKβ-induced NF-κB signaling is downregulated. However, the mechanism of the downregulation has been unknown. Here, we show that Ro52-mediated monoubiquitination is involved in the subcellular translocation of active IKKβ to autophagosomes. Furthermore, using reporter assays, we show that Ro52 suppresses IKKβ-induced NF-κB signaling and that this suppression is blocked by an autophagy inhibitor. These results suggest that Ro52-mediated monoubiquitination plays a critical role in the downregulation of active IKKβ through autophagy. PMID:20627395
Rethinking the Question of Quality in Art.
ERIC Educational Resources Information Center
Ewens, Thomas
1994-01-01
Discusses the concept of quality in art from the standpoint of the theory of mediation. Traces the idea of quality from Aristotelian criticism to Gagnepain's theory of mediation. Concludes that mediation aesthetics seek inspiration and quality only from the art work, not its contemporary meaning. (CFR)
Endocytosis of glycosylphosphatidylinositol-anchored proteins
2009-01-01
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies. PMID:19832981
Guo, Hongtao; Mi, Zhiyong; Kuo, Paul C.
2008-01-01
The local structural properties and spatial conformations of chromosomes are intimately associated with gene expression. The spatial associations of critical genomic elements in inducible nitric-oxide synthase (iNOS) transcription have not been previously examined. In this regard, the murine iNOS promoter contains 2 NF-κB binding sites (nt –86 and nt –972) that are essential for maximal transactivation of iNOS by LPS. Although AP-1 is commonly listed as an essential transcription factor for LPS-mediated iNOS transactivation, the relationship between AP-1 and NF-κB in this setting is not well studied. In this study using a model of LPS-stimulated ANA-1 murine macrophages, we demonstrate that short range DNA looping occurs at the iNOS promoter. This looping requires the presence of AP-1, c-Jun, NF-κB p65, and p300-associated acetyltransferase activity. The distal AP-1 binding site interacts via p300 with the proximal NF-κB binding site to create this DNA loop to participate in iNOS transcription. Other geographically distant AP-1 and NF-κB sites are certainly occupied, but selected sites are critical for iNOS transcription and the formation of the c-Jun, p65, and p300 transcriptional complex. In this “simplified” model of murine iNOS promoter, numerous transcription factors recognize and bind to various response elements, but these locales do not equally contribute to iNOS gene transcription. PMID:18596035
Platelet-derived Growth Factor-mediated Induction of the Synaptic Plasticity Gene Arc/Arg3.1*
Peng, Fuwang; Yao, Honghong; Bai, Xuetao; Zhu, Xuhui; Reiner, Benjamin C.; Beazely, Michael; Funa, Keiko; Xiong, Huangui; Buch, Shilpa
2010-01-01
Platelet-derived growth factor (PDGF) is a pleiotropic protein with critical roles in both developmental as well as pathogenic processes. In the central nervous system specifically, PDGF is critical for neuronal proliferation and differentiation and has also been implicated as a neuroprotective agent. Whether PDGF also plays a role in synaptic plasticity, however, remains poorly understood. In the present study we demonstrated that in the rat hippocampal neurons PDGF regulated the expression of Arc/Arg3.1 gene that has been implicated in both synapse plasticity and long term potentiation. Relevance of these findings was further confirmed in vivo by injecting mice with intracerebral inoculations of PDGF, which resulted in a rapid induction of Arc in the hippocampus of the injected mice. PDGF induced long term potentiation in rat hippocampal slices, which was abolished by PDGF receptor-tyrosine kinase inhibitor STI-571. We also present evidence that PDGF-mediated induction of Arc/Arg3.1 involved activation of the MAPK/ERK (MEK) pathway. Additionally, induction of Arc/Arg3.1 also involved the upstream release of intracellular calcium stores, an effect that could be blocked by thapsigargin but not by EGTA. Pharmacological approach using inhibitors specific for either MAPK/ERK phosphorylation or calcium release demonstrated that the two pathways converged downstream at a common point involving activation of the immediate early gene Egr-1. Chromatin immunoprecipitation assays demonstrated the binding of Egr-1, but not Egr-3, to the Arc promoter. These findings for the first time, thus, suggest an additional role of PDGF, that of induction of Arc. PMID:20452974
Yan, Jianyun; Li, Jun; Hu, Jun; Zhang, Lu; Wei, Chengguo; Sultana, Nishat; Cai, Xiaoqiang; Zhang, Weijia; Cai, Chen-Leng
2018-06-15
Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre ( Tbx18 Cre /+ ) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 ( Smad4 f/f ) in the limbs of mice. We found that the Smad4 -deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan , in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 ( Runx2 ), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4 -deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia. © 2018 Yan et al.
Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke
2008-01-01
Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737
NASA Astrophysics Data System (ADS)
Shamir, Adina; Zion, Michal; Spector Levi, Ornit
2008-08-01
The main objective of the study reported was to explore the effect on young children's critical thinking of a peer-tutoring training embedded with the metacognitive processes required for problem-based learning and, consequently, for critical thinking. The sample consisted of 90 first- and third-grade pupils (45 pairs) randomly assigned to the experimental or control group. The experimental tutors received the Peer Mediation training, an intervention containing embedded metacognitive processes. The control children received a general preparation for peer-assisted learning. Following their respective preparations, all the children participated in a peer-tutoring condition, videotaped for 25 min and subsequently analyzed with an adaptation of the Newman et al. (Interpers Comput Technol 3(2):56-77, 1995) content analysis instrument. Analysis of the discourse conducted during the tutoring session indicated that the tutors and tutees in the experimental groups exhibited greater depth of critical thinking, demonstrated in the higher Quality of Discourse Ratio calculated, than did the tutors and tutees in the control group. The findings supported previous results showing the efficacy of the Peer Mediation for Young Children mediation-training program, with its embedded metacognitive competencies, for reinforcing young children's higher-order thinking. Implications for educators are discussed.
Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis
van Waardenburg, Robert C.A.M.
2016-01-01
Tyrosyl-DNA phosphodiesterase I (TDP1), like most DNA repair associated proteins, is not essential for cell viability. However, dysfunctioning TDP1 or ATM (ataxia telangiectasia mutated) results in autosomal recessive neuropathology with similar phenotypes, including cerebellar atrophy. Dual inactivation of TDP1 and ATM causes synthetic lethality. A TDP1H493R catalytic mutant is associated with spinocerebellar ataxia with axonal neuropathy (SCAN1), and stabilizes the TDP1 catalytic obligatory enzyme-DNA covalent complex. The ATM kinase activates proteins early on in response to DNA damage. Tdp1−/− and Atm−/− mice exhibit accumulation of DNA topoisomerase I-DNA covalent complexes (TOPO1-cc) explicitly in neuronal tissue during development. TDP1 resolves 3’- and 5’-DNA adducts including trapped TOPO1-cc and TOPO1 protease resistant peptide-DNA complex. ATM appears to regulate the response to TOPO1-cc via a noncanonical function by regulating SUMO/ubiquitin-mediated TOPO1 degradation. In conclusion, TDP1 and ATM are critical factors for neuronal cell viability via two independent but cooperative pathways. PMID:27747316
Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis.
van Waardenburg, Robert C A M
2016-01-01
Tyrosyl-DNA phosphodiesterase I (TDP1), like most DNA repair associated proteins, is not essential for cell viability. However, dysfunctioning TDP1 or ATM (ataxia telangiectasia mutated) results in autosomal recessive neuropathology with similar phenotypes, including cerebellar atrophy. Dual inactivation of TDP1 and ATM causes synthetic lethality. A TDP1H 493 R catalytic mutant is associated with spinocerebellar ataxia with axonal neuropathy (SCAN1), and stabilizes the TDP1 catalytic obligatory enzyme-DNA covalent complex. The ATM kinase activates proteins early on in response to DNA damage. Tdp1-/- and Atm-/- mice exhibit accumulation of DNA topoisomerase I-DNA covalent complexes (TOPO1-cc) explicitly in neuronal tissue during development. TDP1 resolves 3'- and 5'-DNA adducts including trapped TOPO1-cc and TOPO1 protease resistant peptide-DNA complex. ATM appears to regulate the response to TOPO1-cc via a noncanonical function by regulating SUMO/ubiquitin-mediated TOPO1 degradation. In conclusion, TDP1 and ATM are critical factors for neuronal cell viability via two independent but cooperative pathways.
Ka, Minhan; Kim, Woo-Yang
2016-11-01
Dendritic arborization and axon outgrowth are critical steps in the establishment of neural connectivity in the developing brain. Changes in the connectivity underlie cognitive dysfunction in neurodevelopmental disorders. However, molecules and associated mechanisms that play important roles in dendritic and axon outgrowth in the brain are only partially understood. Here, we show that microtubule-actin crosslinking factor 1 (MACF1) regulates dendritic arborization and axon outgrowth of developing pyramidal neurons by arranging cytoskeleton components and mediating GSK-3 signaling. MACF1 deletion using conditional mutant mice and in utero gene transfer in the developing brain markedly decreased dendritic branching of cortical and hippocampal pyramidal neurons. MACF1-deficient neurons showed reduced density and aberrant morphology of dendritic spines. Also, loss of MACF1 impaired the elongation of callosal axons in the brain. Actin and microtubule arrangement appeared abnormal in MACF1-deficient neurites. Finally, we found that GSK-3 is associated with MACF1-controlled dendritic differentiation. Our findings demonstrate a novel role for MACF1 in neurite differentiation that is critical to the creation of neuronal connectivity in the developing brain.
Bhalla, Nishank; Sun, Chengqun; Lam, L. K. Metthew; Gardner, Christina L.; Ryman, Kate D.; Klimstra, William B.
2016-01-01
Most previous studies of interferon-alpha/beta (IFN-α/β) response antagonism by alphaviruses have focused upon interruption of IFN-α/β induction and/or receptor signaling cascades. Infection of mice with Venezuelan equine encephalitis alphavirus (VEEV) or Sindbis virus (SINV) induces serum IFN-α/β, that elicits a systemic antiviral state in uninfected cells successfully controlling SINV but not VEEV replication. Furthermore, VEEV replication is more resistant than that of SINV to a pre-existing antiviral state in vitro. While host macromolecular shutoff is proposed as a major antagonist of IFN-α/β induction, the underlying mechanisms of alphavirus resistance to a pre-existing antiviral state are not fully defined, nor is the mechanism for the greater resistance of VEEV. Here, we have separated viral transcription and translation shutoff with multiple alphaviruses, identified the viral proteins that induce each activity, and demonstrated that VEEV nonstructural protein 2-induced translation shutoff is likely a critical factor in enhanced antiviral state resistance of this alphavirus. PMID:27318152
Human Urinary Composition Controls Antibacterial Activity of Siderocalin* ♦
Shields-Cutler, Robin R.; Crowley, Jan R.; Hung, Chia S.; Stapleton, Ann E.; Aldrich, Courtney C.; Marschall, Jonas; Henderson, Jeffrey P.
2015-01-01
During Escherichia coli urinary tract infections, cells in the human urinary tract release the antimicrobial protein siderocalin (SCN; also known as lipocalin 2, neutrophil gelatinase-associated lipocalin/NGAL, or 24p3). SCN can interfere with E. coli iron acquisition by sequestering ferric iron complexes with enterobactin, the conserved E. coli siderophore. Here, we find that human urinary constituents can reverse this relationship, instead making enterobactin critical for overcoming SCN-mediated growth restriction. Urinary control of SCN activity exhibits wide ranging individual differences. We used these differences to identify elevated urinary pH and aryl metabolites as key biochemical host factors controlling urinary SCN activity. These aryl metabolites are well known products of intestinal microbial metabolism. Together, these results identify an innate antibacterial immune interaction that is critically dependent upon individualistic chemical features of human urine. PMID:25861985
Dudek, Steven M.; Chiang, Eddie T.; Camp, Sara M.; Guo, Yurong; Zhao, Jing; Brown, Mary E.; Singleton, Patrick A.; Wang, Lichun; Desai, Anjali; Arce, Fernando T.; Lal, Ratnesh; Van Eyk, Jennifer E.; Imam, Syed Z.
2010-01-01
Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement. PMID:20861316
Kostrouchová, Markéta; Kostrouch, David; Kaššák, Filip; Kostrouchová, Veronika; Benda, Aleš; Krause, Michael W.; Saudek, Vladimír; Kostrouchová, Marta
2017-01-01
The evolutionarily conserved Mediator complex is a critical player in regulating transcription. Comprised of approximately two dozen proteins, the Mediator integrates diverse regulatory signals through direct protein-protein interactions that, in turn, modulate the influence of Mediator on RNA Polymerase II activity. One Mediator subunit, MED28, is known to interact with cytoplasmic structural proteins, providing a potential direct link between cytoplasmic dynamics and the control of gene transcription. Although identified in many animals and plants, MED28 is not present in yeast; no bona fide MED28 has been described previously in Caenorhabditis elegans. Here, we identify bioinformatically F28F8.5, an uncharacterized predicted protein, as the nematode homologue of MED28. As in other Metazoa, F28F8.5 has dual nuclear and cytoplasmic localization and plays critical roles in the regulation of development. F28F8.5 is a vital gene and its null mutants have severely malformed gonads and do not reproduce. F28F8.5 interacts on the protein level with the Mediator subunits MDT-6 and MDT-30. Our results indicate that F28F8.5 is an orthologue of MED28 and suggest that the potential to link cytoplasmic and nuclear events is conserved between MED28 vertebrate and nematode orthologues. PMID:28603670
Kostrouchová, Markéta; Kostrouch, David; Chughtai, Ahmed A; Kaššák, Filip; Novotný, Jan P; Kostrouchová, Veronika; Benda, Aleš; Krause, Michael W; Saudek, Vladimír; Kostrouchová, Marta; Kostrouch, Zdeněk
2017-01-01
The evolutionarily conserved Mediator complex is a critical player in regulating transcription. Comprised of approximately two dozen proteins, the Mediator integrates diverse regulatory signals through direct protein-protein interactions that, in turn, modulate the influence of Mediator on RNA Polymerase II activity. One Mediator subunit, MED28, is known to interact with cytoplasmic structural proteins, providing a potential direct link between cytoplasmic dynamics and the control of gene transcription. Although identified in many animals and plants, MED28 is not present in yeast; no bona fide MED28 has been described previously in Caenorhabditis elegans. Here, we identify bioinformatically F28F8.5, an uncharacterized predicted protein, as the nematode homologue of MED28. As in other Metazoa, F28F8.5 has dual nuclear and cytoplasmic localization and plays critical roles in the regulation of development. F28F8.5 is a vital gene and its null mutants have severely malformed gonads and do not reproduce. F28F8.5 interacts on the protein level with the Mediator subunits MDT-6 and MDT-30. Our results indicate that F28F8.5 is an orthologue of MED28 and suggest that the potential to link cytoplasmic and nuclear events is conserved between MED28 vertebrate and nematode orthologues.
Kim, Ji S; Jin, Min J; Jung, Wookyoung; Hahn, Sang W; Lee, Seung-Hwan
2017-01-01
Objective: Although there is strong evidence that childhood trauma is associated with the development of depression and anxiety, relatively few studies have explored potential mediating factors for this relationship. The present study aimed to evaluate the mediating role of rumination in the link between childhood trauma and mood status such as depression, anxiety and affective lability. Materials and Methods: Two hundred and seven non-clinical participants completed the Childhood Trauma Questionnaire, the Ruminative Response Scale, the Beck Depression Inventory, the State Anxiety Inventory, and the Affective Lability Scale. Structural equation modeling was used to evaluate the results. Results: Our results supported that rumination is a meaningful mediator between childhood trauma and depression/anxiety in non-clinical participants. The mediation model indicated that childhood trauma and its subtypes are linked to depression and anxiety through three subtypes of rumination, thereby supporting a significant indirect relationship (Standardized coefficient [SC] = 0.56, p < 0.001 for the path from trauma to rumination; SC = 0.67, p < 0.001, from rumination to mood). The direct relationship between childhood trauma and mood symptoms was also significant in a model including rumination (SC = 0.68, p < 0.001). The mediation effect of rumination in the relationship between childhood trauma and mood was more predominant in female participants. Conclusions: The present study found that rumination mediates the influence of childhood trauma on the development of mood symptoms in non-clinical participants. Childhood trauma appears to be a critical determinant for developing symptoms of depression and anxiety.
Besser, Avi; Priel, Beatriz
2011-01-01
This study evaluated the intervening role of meaning-making processes in emotional responses to negative life events based on Blatt's (1974, 2004) formulations concerning the role of personality predispositions in depression. In a pre/post within-subject study design, a community sample of 233 participants reacted to imaginary scenarios of interpersonal rejection and achievement failure. Meaning-making processes relating to threats to self-definition and interpersonal relatedness were examined following the exposure to the scenarios. The results indicated that the personality predisposition of Dependency, but not Self-Criticism predicted higher levels of negative affect following the interpersonal rejection event, independent of baseline levels of negative affect. This effect was mediated by higher levels of negative meaning-making processes related to the effect of the interpersonal rejection scenario on Dependent individuals' senses of interpersonal relatedness and self-worth. In addition, both Self-Criticism and Dependency predicted higher levels of negative affect following the achievement failure event, independent of baseline levels of negative affect. Finally, the effect of Self-Criticism was mediated by higher levels of negative meaning-making processes related to the effect of the achievement failure scenario on self-critical individuals' senses of self-definition.
Is the Relationship Between ADHD Symptoms and Binge Eating Mediated by Impulsivity?
Steadman, Kylie M; Knouse, Laura E
2016-11-01
Individuals with ADHD may be at risk of developing binge eating disorder (BED). Impulsivity correlates with both BED and ADHD; however, more research is needed to explore whether impulsivity plays an underlying role in the observed relationship between ADHD and BED. Questionnaires were used to assess ADHD and BED symptoms. Multiple questionnaires and a behavioral task were used to assess impulsivity in undiagnosed undergraduate participants (n = 50). Expected correlations were found among ADHD symptoms, BED tendencies, and measures of impulsivity with the exception of impulsivity on the behavioral task and BED symptoms; however, none of the measures of impulsivity were found to be significant mediators between ADHD and BED symptoms. Although impulsivity may play an important role in the interrelationship of ADHD and binge eating, other factors may also be critical in the development of this comorbidity. Investigation of this research question in clinical samples is needed. © The Author(s) 2014.
Pedersen, Jannie; LaCasse, Eric C; Seidelin, Jakob B; Coskun, Mehmet; Nielsen, Ole H
2014-11-01
The inhibitor of apoptosis (IAP) family members, notably cIAP1, cIAP2, and XIAP, are critical and universal regulators of tumor necrosis factor (TNF) mediated survival, inflammatory, and death signaling pathways. Furthermore, IAPs mediate the signaling of nucleotide-binding oligomerization domain (NOD)1/NOD2 and other intracellular NOD-like receptors in response to bacterial pathogens. These pathways are important to the pathogenesis and treatment of inflammatory bowel disease (IBD). Inactivating mutations in the X-chromosome-linked IAP (XIAP) gene causes an immunodeficiency syndrome, X-linked lymphoproliferative disease type 2 (XLP2), in which 20% of patients develop severe intestinal inflammation. In addition, 4% of males with early-onset IBD also have inactivating mutations in XIAP. Therefore, the IAPs play a greater role in gut homeostasis, immunity and IBD development than previously suspected, and may have therapeutic potential. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jansen, A J Gerard; Josefsson, Emma C; Rumjantseva, Viktoria; Liu, Qiyong Peter; Falet, Hervé; Bergmeier, Wolfgang; Cifuni, Stephen M; Sackstein, Robert; von Andrian, Ulrich H; Wagner, Denisa D; Hartwig, John H; Hoffmeister, Karin M
2012-02-02
When refrigerated platelets are rewarmed, they secrete active sialidases, including the lysosomal sialidase Neu1, and express surface Neu3 that remove sialic acid from platelet von Willebrand factor receptor (VWFR), specifically the GPIbα subunit. The recovery and circulation of refrigerated platelets is greatly improved by storage in the presence of inhibitors of sialidases. Desialylated VWFR is also a target for metalloproteinases (MPs), because GPIbα and GPV are cleaved from the surface of refrigerated platelets. Receptor shedding is inhibited by the MP inhibitor GM6001 and does not occur in Adam17(ΔZn/ΔZn) platelets expressing inactive ADAM17. Critically, desialylation in the absence of MP-mediated receptor shedding is sufficient to cause the rapid clearance of platelets from circulation. Desialylation of platelet VWFR therefore triggers platelet clearance and primes GPIbα and GPV for MP-dependent cleavage.
Jansen, A. J. Gerard; Josefsson, Emma C.; Rumjantseva, Viktoria; Liu, Qiyong Peter; Falet, Hervé; Bergmeier, Wolfgang; Cifuni, Stephen M.; Sackstein, Robert; von Andrian, Ulrich H.; Wagner, Denisa D.; Hartwig, John H.
2012-01-01
When refrigerated platelets are rewarmed, they secrete active sialidases, including the lysosomal sialidase Neu1, and express surface Neu3 that remove sialic acid from platelet von Willebrand factor receptor (VWFR), specifically the GPIbα subunit. The recovery and circulation of refrigerated platelets is greatly improved by storage in the presence of inhibitors of sialidases. Desialylated VWFR is also a target for metalloproteinases (MPs), because GPIbα and GPV are cleaved from the surface of refrigerated platelets. Receptor shedding is inhibited by the MP inhibitor GM6001 and does not occur in Adam17ΔZn/ΔZn platelets expressing inactive ADAM17. Critically, desialylation in the absence of MP-mediated receptor shedding is sufficient to cause the rapid clearance of platelets from circulation. Desialylation of platelet VWFR therefore triggers platelet clearance and primes GPIbα and GPV for MP-dependent cleavage. PMID:22101895
The transcription factor DREAM represses A20 and mediates inflammation
Tiruppathi, Chinnaswamy; Soni, Dheeraj; Wang, Dong-Mei; Xue, Jiaping; Singh, Vandana; Thippegowda, Prabhakar B.; Cheppudira, Bopaiah P.; Mishra, Rakesh K.; DebRoy, Auditi; Qian, Zhijian; Bachmaier, Kurt; Zhao, Youyang; Christman, John W.; Vogel, Stephen M.; Ma, Averil; Malik, Asrar B.
2014-01-01
Here we show that the transcription-repressor DREAM binds to the A20 promoter to repress the expression of A20, the deubiquitinase suppressing inflammatory NF-κB signaling. DREAM-deficient (Dream−/−) mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, USF1 binding to the DRE-associated E-box domain activated A20 expression in response to inflammatory stimuli. These studies define the critical opposing functions of DREAM and USF1 in inhibiting and inducing A20 expression, respectively, and thereby the strength of NF-κB signaling. Targeting of DREAM to induce USF1-mediated A20 expression is therefore a potential anti-inflammatory strategy in diseases such as acute lung injury associated with unconstrained NF-κB activity. PMID:24487321
Inhibition of homodimerization of toll-like receptor 4 by 6-shogaol.
Ahn, Sang-Il; Lee, Jun-Kyung; Youn, Hyung-Sun
2009-02-28
Toll-like receptors (TLRs) play a critical role in sensing microbial components and inducing innate immune and inflammatory responses by recognizing invading microbial pathogens. Lipopolysaccharide-induced dimerization of TLR4 is required for the activation of downstream signaling pathways including nuclear factor-kappa B (NF-kappaB). Therefore, TLR4 dimerization may be an early regulatory event in activating ligand-induced signaling pathways and induction of subsequent immune responses. Here, we report biochemical evidence that 6-shogaol, the most bioactive component of ginger, inhibits lipopolysaccharide-induced dimerization of TLR4 resulting in the inhibition of NF-kappaB activation and the expression of cyclooxygenase-2. Furthermore, we demonstrate that 6-shogaol can directly inhibit TLR-mediated signaling pathways at the receptor level. These results suggest that 6-shogaol can modulate TLR-mediated inflammatory responses, which may influence the risk of chronic inflammatory diseases.
Interpreting estimates of heritability--a note on the twin decomposition.
Stenberg, Anders
2013-03-01
While most outcomes may in part be genetically mediated, quantifying genetic heritability is a different matter. To explore data on twins and decompose the variation is a classical method to determine whether variation in outcomes, e.g. IQ or schooling, originate from genetic endowments or environmental factors. Despite some criticism, the model is still widely used. The critique is generally related to how estimates of heritability may encompass environmental mediation. This aspect is sometimes left implicit by authors even though its relevance for the interpretation is potentially profound. This short note is an appeal for clarity from authors when interpreting the magnitude of heritability estimates. It is demonstrated how disregarding existing theoretical contributions can easily lead to unnecessary misinterpretations and/or controversies. The key arguments are relevant also for estimates based on data of adopted children or from modern molecular genetics research. Copyright © 2012 Elsevier B.V. All rights reserved.
ARF1 and SAR1 GTPases in Endomembrane Trafficking in Plants
Cevher-Keskin, Birsen
2013-01-01
Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Among the small GTP-binding proteins, ARF1 (ADP-ribosylation factor 1) and SAR1 (Secretion-Associated RAS super family 1) are commonly conserved among all eukaryotes with respect to both their functional and sequential characteristics. The ARF1 and SAR1 GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in COPI (Coat Protein Complex I)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular COPII-mediated protein trafficking from the ER to the Golgi apparatus. This review offers a summary of vesicular trafficking with an emphasis on the ARF1 and SAR1 expression patterns at early growth stages and in the de-etiolation process. PMID:24013371
Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response
Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie
2015-01-01
Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159
Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi
2018-05-16
Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders. Copyright © 2018 the authors 0270-6474/18/384791-20$15.00/0.
B cell biology: implications for treatment of systemic lupus erythematosus.
Anolik, J H
2013-04-01
B cells are critical players in the orchestration of properly regulated immune responses, normally providing protective immunity without autoimmunity. Balance in the B cell compartment is achieved through the finely regulated participation of multiple B cell populations with different antibody-dependent and independent functions. Both types of functions allow B cells to modulate other components of the innate and adaptive immune system. Autoantibody-independent B cell functions include antigen presentation, T cell activation and polarization, and dendritic cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines and chemokines and by their critical contribution to lymphoid tissue development and organization including the development of ectopic tertiary lymphoid tissue. Additionally, the functional versatility of B cells enables them to play either protective or pathogenic roles in autoimmunity. In turn, B cell dysfunction has been critically implicated in the pathophysiology of systemic lupus erythematosus (SLE), a complex disease characterized by the production of autoantibodies and heterogeneous clinical involvement. Thus, the breakdown of B cell tolerance is a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B cell activation thresholds, B cell longevity, and apoptotic cell processing. Once tolerance is broken, autoantibodies contribute to autoimmunity by multiple mechanisms including immune-complex mediated Type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines including IFNα, TNF and IL-1. The complexity of B cell functions has been highlighted by the variable success of B cell-targeted therapies in multiple autoimmune diseases, including those conventionally viewed as T cell-mediated conditions. Given the widespread utilization of B cell depletion therapy in autoimmune diseases and the need for new therapeutic approaches in SLE, a better understanding of human B cell subsets and the balance of pathogenic and regulatory functions is of the essence.
Segi-Nishida, Eri
2017-01-01
Antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs) specifically increase serotonin (5-HT) levels in the synaptic cleft and are widely used to treat mood and anxiety disorders. There are 14 established subtypes of 5-HT receptors in rodents, each of which has regionally different expression patterns. Many preclinical studies have suggested that the hippocampus, which contains abundant 5-HT1A and 5-HT4 receptor subtypes in the dentate gyrus (DG), is critically involved in the mechanisms of action of antidepressants. This review article will analyze studies demonstrating regulation of hippocampal functions and hippocampus-dependent behaviors by SSRIs and similar serotonergic agents. Multiple studies indicate that 5-HT1A and 5-HT4 receptor signaling in the DG contributes to SSRI-mediated promotion of neurogenesis and increased neurotrophic factors expression. Chronic SSRI treatment causes functions and phenotypes of mature granule cells (GCs) to revert to immature-like phenotypes defined as a “dematured” state in the DG, and to increase monoamine reactivity at the dentate-to-CA3 synapses, via 5-HT4 receptor signaling. Behavioral studies demonstrate that the 5-HT1A receptors on mature GCs are critical for expression of antidepressant effects in the forced swim test and in novelty suppressed feeding; such studies also note that 5-HT4 receptors mediate neurogenesis-dependent antidepressant activity in, for example, novelty-suppressed feeding. Despite their limitations, the collective results of these studies describe a potential new mechanism of action, in which 5-HT1A and 5-HT4 receptor signaling, either independently or cooperatively, modulates the function of the hippocampal DG at multiple levels, any of which could play a critical role in the antidepressant actions of 5-HT-enhancing drugs. PMID:28559799
Neurotrophin receptor structure and interactions.
Yano, H; Chao, M V
2000-03-01
Although ligand-induced dimerization or oligomerization of receptors is a well established mechanism of growth factor signaling, increasing evidence indicates that biological responses are often mediated by receptor trans-signaling mechanisms involving two or more receptor systems. These include G protein-coupled receptors, cytokine, growth factor and trophic factor receptors. Greater flexibility is provided when different signaling pathways are merged through multiple receptor signaling systems. Trophic factors exemplified by NGF and its family members, ciliary neurotrophic factor (CNTF) and glial derived neurotrophic factor (GDNF) all utilize increased tyrosine phosphorylation of cellular substrates to mediate neuronal cell survival. Actions of the NGF family of neurotrophins are not only dictated by ras activation through the Trk family of receptor tyrosine kinases, but also a survival pathway defined by phosphatidylinositol-3-kinase activity (Yao and Cooper, 1995), which gives rise to phosphoinositide intermediates that activate the serine/threonine kinase Akt/PKB (Dudek et al., 1997). Induction of the serine-threonine kinase activity is critical for cell survival, as well as cell proliferation. Hence, for many trophic factors, multiple proteins constitute a functional multisubunit receptor complex that activates ras-dependent and ras-independent intracellular signaling. The NGF receptors provide an example of bidirectional crosstalk. In the presence of TrkA receptors, p75 can participate in the formation of high affinity binding sites and enhanced neurotrophin responsiveness leading to a survival or differentiation signal. In the absence of TrkA receptors, p75 can generate, in only specific cell populations, a death signal. These activities include the induction of NF kappa B (Carter et al., 1996); the hydrolysis of sphingomyelin to ceramide (Dobrowsky et al., 1995); and the pro-apoptotic functions attributed to p75. Receptors are generally drawn and viewed as isolated integral membrane proteins which span the lipid bilayer, with signal transduction proceeding in a linear step-wise fashion. There are now numerous examples which indicate that each receptor acts not only in a linear, independent manner, but can also influence the activity of other cell surface receptors, either directly or through signaling intermediates. Which step and which intermediates are utilized for crosstalk between the receptors is a critical question. For neurotrophins, their primary function in sustaining the viability of neurons is counterbalanced by a receptor mechanism to eliminate cells by an apoptotic mechanism. It is conceivable that this bidirectional system may be utilized selectively during development and in neurodegenerative diseases.
Parent engagement and attendance in PEACH™ QLD - an up-scaled parent-led childhood obesity program.
Williams, Susan L; Van Lippevelde, Wendy; Magarey, Anthea; Moores, Carly J; Croyden, Debbie; Esdaile, Emma; Daniels, Lynne
2017-06-09
Parenting, Eating and Activity for Child Health (PEACH™) is a multicomponent treatment program delivered over ten group sessions to parents of overweight/obese primary school-aged children. It has been shown to be efficacious in an RCT and was recently translated to a large-scale community intervention funded by the Queensland (Australia) Government. Engagement (enrolment and attendance) was critical to achieving program outcomes and was challenging. The purpose of the present study was to examine sample characteristics and mediating factors that potentially influenced program attendance. Data collected from parents who attended at least one PEACH™ Queensland session delivered between October 2013 and October 2015 (47 programs implemented in 29 discrete sites), was used in preliminary descriptive analyses of sample characteristics and multilevel single linear regression analyses. Mediation analysis examined associations between socio-demographic and parent characteristics and attendance at group sessions and potential mediation by child and parent factors. 365/467 (78%) enrolled families (92% mothers) including 411/519 (79%) children (55% girls, mean age 9 ± 2 years) attended at least one session (mean 5.6 ± 3.2). A majority of families (69%) self-referred to the program. Program attendance was greater in: advantaged (5.9 ± 3.1 sessions) vs disadvantaged families (5.4 ± 3.4 sessions) (p < 0.05); partnered (6.1 ± 3.1 sessions) vs un-partnered parents (5.0 ± 3.1 sessions) (p < 0.01); higher educated (6.1 ± 3.0 sessions) vs lower educated parents (5.1 ± 3.3 sessions) (p = 0.02); and self-referral (6.1 ± 3.1) vs professional referral (4.7 ± 3.3) (p < 0.001). Child (age, gender, pre-program healthy eating) and parent (perceptions of child weight, self-efficacy) factors did not mediate these relationships. To promote reach and effectiveness of up-scaled programs, it is important to identify ways to engage less advantaged families who carry higher child obesity risk. Understanding differences in referral source and parent readiness for change may assist in tailoring program content. The influence of program-level factors (e.g. facilitator and setting characteristics) should be investigated as possible alternative mediators to program engagement.
De Meester, Femke; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Cardon, Greet
2014-06-20
During the last decades, the use of active travel modes declined in all age groups. Childhood is a critical time to establish lifelong healthy patterns. To develop effective interventions in this age group, insight in the correlates of health behaviors and the possible mediating factors is necessary. Among children, the role of parents may not be overlooked. Therefore, this study aimed to examine the associations of parental perceptions of neighborhood environmental attributes with active transport and total physical activity in 10-12 year old Belgian boys and girls. Furthermore, this study examined the potential mediating effect of independent mobility on these associations. In the present study, 736 10-12 year old children and their parents from 44 elementary schools in Flanders, Belgium, participated. The children were asked to wear an activity monitor and to fill in a survey questioning demographic factors and the Flemish Physical Activity Questionnaire. The parents filled in a survey concerning demographic factors, the child's level of independent mobility and environmental perceptions (Neighborhood Environmental Walkability Scale). Overall, boys reported more active transport when parents perceived more land use mix diversity, shorter distances to school, good land use mix access, higher residential density and less pleasing neighborhood aesthetics. Higher total physical activity levels were reported when parents perceived shorter distances to school and availability of walking/cycling infrastructure. None of the associations was mediated by independent mobility in boys. Girls reported more active transport when parents perceived higher residential density, more land use mix diversity, shorter distances to school, good land use mix access, available walking/cycling infrastructure and convenient recreational facilities. Girls reported higher total physical activity levels when parents perceived high residential density, good land use mix access, well-maintained and high quality walking/cycling infrastructures and more traffic safety. Independent mobility was found to be an important mediator of these associations in girls. Neighborhood environmental interventions to increase children's active transport and physical activity can be effective when combined with awareness raising programs for parents. Furthermore, among girls encouraging independent mobility may contribute to behavior change.
Liang, Chia-Hua; Wang, Guey-Horng; Chou, Tzung-Han; Wang, Shih-Hao; Lin, Rong-Jyh; Chan, Leong-Perng; So, Edmund Cheung; Sheu, Jyh-Horng
2012-07-01
Skin cancers are reportedly increasing worldwide. Developing novel anti-skin cancer drugs with minimal side effects is necessary to address this public health issue. Sinuleptolide has been demonstrated to possess anti-cancer cell activities; however, the mechanisms underlying the anti-skin cancer effects of 5-epi-sinuleptolide and sinuleptolide remain poorly understood. Apoptosis cell, cell-cycle-related regulatory factors, and mitochondria- and death receptor-dependent caspase pathway in 5-epi-sinuleptolide-induced cell apoptosis were examined using SCC25 cells. 5-epi-Sinuleptolide inhibited human skin cancer cell growth more than did sinuleptolide. Treatment of SCC25 cells with 5-epi-sinuleptolide increased apoptotic body formation, and induced cell-cycle arrest during the G2/M phase. Notably, 5-epi-sinuleptolide up-regulated p53 and p21 expression and inhibited G2/M phase regulators of cyclin B1 and cyclin-dependent kinease 1 (CDK1) in SCC25 cells. Additionally, 5-epi-sinuleptolide induced apoptosis by mitochondria-mediated cytochrome c and Bax up-expression, down-regulated Bcl-2, and activated caspase-9 and -3. 5-epi-Sinuleptolide also up-regulated tBid, which is associated with up-regulation of tumor necrosis factor-α (TNF-α) and Fas ligand (FasL) and their cognate receptors (i.e., TNF-RI, TNF-R2 and Fas), downstream adaptor TNF-R1-associated death domain (TRADD) and Fas-associated death domain (FADD), and activated caspase-8 in SCC25 cells. The analytical results indicate that the death receptor- and mitochondria-mediated caspase pathway is critical in 5-epi-sinuleptolide-induced apoptosis of skin cancer cells. This is the first report suggesting that the apoptosis mediates the anti-tumor effect of 5-epi-sinuleptolide. The results of this study might provide useful suggestions for designing of anti-tumor drugs for skin cancer patients. Copyright © 2012 Elsevier B.V. All rights reserved.
Alekseev, Oleg; Limonnik, Vladimir; Donovan, Kelly; Azizkhan-Clifford, Jane
2015-01-01
Herpes simplex virus (HSV) type I keratitis remains a leading cause of corneal morbidity, despite the availability of effective antiviral drugs. Improved understanding of virus-host interactions at the level of the host DNA damage response (DDR), a known factor in the development of HSV-1 keratitis, may shed light on potential new therapeutic targets. This report examines the role of checkpoint kinase 2 (Chk2), a DDR mediator protein, in corneal epithelial HSV-1 infection. A small-molecule inhibitor of Chk2 (Chk2 inhibitor II) was applied to HSV-1-infected cultured human corneal epithelial cells (hTCEpi and HCE) as well as to explanted and organotypically cultured human and rabbit corneas. Infection levels were assessed by plaque assay and real-time PCR. RNAi-mediated depletion of Chk2 was performed to confirm the effect of the inhibitor. Inhibition of the Chk2 kinase activity greatly suppresses the cytopathic effect, genome replication and infectious progeny production in vitro and ex vivo. This report demonstrates the critical role of Chk2 kinase in the establishment of HSV-1 corneal epithelial infection. These data contribute to our understanding of herpesvirus-host interactions and underscore the significance of DDR activation in HSV-1 keratitis.
Nobs, Samuel Philip; Schneider, Christoph; Heer, Alex Kaspar; Huotari, Jatta; Helenius, Ari; Kopf, Manfred
2016-01-01
Phosphoinositide-3-kinases have been shown to be involved in influenza virus pathogenesis. They are targeted directly by virus proteins and are essential for efficient viral replication in infected lung epithelial cells. However, to date the role of PI3K signaling in influenza infection in vivo has not been thoroughly addressed. Here we show that one of the PI3K subunits, p110γ, is in fact critically required for mediating the host’s antiviral response. PI3Kγ deficient animals exhibit a delayed viral clearance and increased morbidity during respiratory infection with influenza virus. We demonstrate that p110γ is required for the generation and maintenance of potent antiviral CD8+ T cell responses through the developmental regulation of pulmonary cross-presenting CD103+ dendritic cells under homeostatic and inflammatory conditions. The defect in lung dendritic cells leads to deficient CD8+ T cell priming, which is associated with higher viral titers and more severe disease course during the infection. We thus identify PI3Kγ as a novel key host protective factor in influenza virus infection and shed light on an unappreciated layer of complexity concerning the role of PI3K signaling in this context. PMID:27030971
The HDAC complex and cytoskeleton.
Kovacs, Jeffery J; Hubbert, Charlotte; Yao, Tso-Pang
2004-01-01
HDAC6 is a cytoplasmic deacetylase that dynamically associates with the microtubule and actin cytoskeletons. HDAC6 regulates growth factor-induced chemotaxis by its unique deacetylase activity towards microtubules or other substrates. Here we describe a non-catalytic structural domain that is essential for HDAC6 function and places HDAC6 as a critical mediator linking the acetylation and ubiquitination network. This evolutionarily conserved motif, termed the BUZ domain, has features of a zinc finger and binds both mono- and polyubiquitinated proteins. Furthermore, the BUZ domain promotes HDAC6 mono-ubiquitination. These results establish the BUZ domain, in addition to the UIM and CUE domains, as a novel motif that both binds ubiquitin and mediates mono-ubiquitination. Importantly, the BUZ domain is essential for HDAC6 to promote chemotaxis, indicating that communication with the ubiquitin network is critical for proper HDAC6 function. The unique presence of the UIM and CUE domains in proteins involved in endocytic trafficking suggests that HDAC6 might also regulate vesicle transport and protein degradation. Indeed, we have found that HDAC6 is actively transported and concentrated in vesicular compartments. We propose that an integration of reversible acetylation and ubiquitination by HDAC6 may be a novel component in regulating the cytoskeleton, vesicle transport and protein degradation.
Thrombopoietin as Biomarker and Mediator of Cardiovascular Damage in Critical Diseases
Lupia, Enrico; Goffi, Alberto; Bosco, Ornella; Montrucchio, Giuseppe
2012-01-01
Thrombopoietin (TPO) is a humoral growth factor originally identified for its ability to stimulate the proliferation and differentiation of megakaryocytes. In addition to its actions on thrombopoiesis, TPO directly modulates the homeostatic potential of mature platelets by influencing their response to several stimuli. In particular, TPO does not induce platelet aggregation per se but is able to enhance platelet aggregation in response to different agonists (“priming effect”). Our research group was actively involved, in the last years, in characterizing the effects of TPO in several human critical diseases. In particular, we found that TPO enhances platelet activation and monocyte-platelet interaction in patients with unstable angina, chronic cigarette smokers, and patients with burn injury and burn injury complicated with sepsis. Moreover, we showed that TPO negatively modulates myocardial contractility by stimulating its receptor c-Mpl on cardiomyocytes and the subsequent production of NO, and it mediates the cardiodepressant activity exerted in vitro by serum of septic shock patients by cooperating with TNF-α and IL-1β. This paper will summarize the most recent results obtained by our research group on the pathogenic role of elevated TPO levels in these diseases and discuss them together with other recently published important studies on this topic. PMID:22577249
Munsch, Simone; Dremmel, Daniela; Kurz, Susanne; De Albuquerque, Jiske; Meyer, Andrea H; Hilbert, Anja
2017-01-01
We investigated whether parental expressed emotion (criticism and emotional overinvolvement) is related to children's emotional eating and whether this relationship is mediated by children's negative urgency. One hundred children, aged 8 to 13 years, either healthy or have binge-eating disorder and/or attention-deficit/hyperactivity disorder, completed the questionnaires, along with their parents. Parental criticism and, to a lesser extent, parental emotional overinvolvement were both positively related to children's emotional eating, and this relationship was mediated by children's negative urgency. Further exploratory analyses revealed that the mediating role of children's negative urgency in the relationship between parental criticism and children's emotional eating was pronounced in the clinical group of children with binge-eating disorder and attention-deficit/hyperactivity disorder but almost absent in the healthy control group. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.
Genome-wide characterization of Mediator recruitment, function, and regulation.
Grünberg, Sebastian; Zentner, Gabriel E
2017-05-27
Mediator is a conserved and essential coactivator complex broadly required for RNA polymerase II (RNAPII) transcription. Recent genome-wide studies of Mediator binding in budding yeast have revealed new insights into the functions of this critical complex and raised new questions about its role in the regulation of gene expression.
Olagnier, David; Sze, Alexandre; Bel Hadj, Samar; Chiang, Cindy; Steel, Courtney; Han, Xiaoying; Routy, Jean-Pierre; Lin, Rongtuan; Hiscott, John; van Grevenynghe, Julien
2014-12-01
The mechanisms involved in the persistence of activated CD4+ T lymphocytes following primary human T leukemia/lymphoma virus type 1 (HTLV-1) infection remain unclear. Here, we demonstrate that the HTLV-1 Tax oncoprotein modulates phosphorylation and transcriptional activity of the FOXO3a transcription factor, via upstream activation of the AKT pathway. De novo HTLV-1 infection of CD4+ T cells or direct lentiviral-mediated introduction of Tax led to AKT activation and AKT-dependent inactivation of FOXO3a, via phosphorylation of residues Ser253 and Thr32. Inhibition of FOXO3a signalling led to the long-term survival of a population of highly activated, terminally differentiated CD4+Tax+CD27negCCR7neg T cells that maintained the capacity to disseminate infectious HTLV-1. CD4+ T cell persistence was reversed by chemical inhibition of AKT activity, lentiviral-mediated expression of a dominant-negative form of FOXO3a or by specific small interfering RNA (siRNA)-mediated silencing of FOXO3a. Overall this study provides new mechanistic insight into the strategies used by HTLV-1 to increase long-term maintenance of Tax+CD4+ T lymphocytes during the early stages of HTLV-1 pathogenesis.
Bel Hadj, Samar; Chiang, Cindy; Steel, Courtney; Han, Xiaoying; Routy, Jean-Pierre; Lin, Rongtuan; Hiscott, John; van Grevenynghe, Julien
2014-01-01
The mechanisms involved in the persistence of activated CD4+ T lymphocytes following primary human T leukemia/lymphoma virus type 1 (HTLV-1) infection remain unclear. Here, we demonstrate that the HTLV-1 Tax oncoprotein modulates phosphorylation and transcriptional activity of the FOXO3a transcription factor, via upstream activation of the AKT pathway. De novo HTLV-1 infection of CD4+ T cells or direct lentiviral-mediated introduction of Tax led to AKT activation and AKT-dependent inactivation of FOXO3a, via phosphorylation of residues Ser253 and Thr32. Inhibition of FOXO3a signalling led to the long-term survival of a population of highly activated, terminally differentiated CD4+Tax+CD27negCCR7neg T cells that maintained the capacity to disseminate infectious HTLV-1. CD4+ T cell persistence was reversed by chemical inhibition of AKT activity, lentiviral-mediated expression of a dominant-negative form of FOXO3a or by specific small interfering RNA (siRNA)-mediated silencing of FOXO3a. Overall this study provides new mechanistic insight into the strategies used by HTLV-1 to increase long-term maintenance of Tax+CD4+ T lymphocytes during the early stages of HTLV-1 pathogenesis. PMID:25521510
Leader-member exchange and safety citizenship behavior: The mediating role of coworker trust.
Jiang, Li; Li, Feng; Li, YongJuan; Li, Rui
2017-01-01
To achieve high safety levels, mere compliance with safety regulations is not sufficient; employees must be proactive and demonstrate safety citizenship behaviors. Trust is considered as a mechanism for facilitating the effects of a leader on employee citizenship behaviors. Increasingly research has focused on the role of trust in a safety context; however, the role of coworker trust has been overlooked. The mediating role of coworker trust in the relationship between the leader-member exchange and safety citizenship behavior is the focus of this field study. Front-line employees from an air traffic control center and an airline maintenance department completed surveys measuring leader-member exchange, co-worker trust, and safety citizenship behavior. Structural Equation Modeling revealed affective and cognitive trust in coworkers is influenced by leader-member exchange. A trust-based mediation model where cognitive trust and affective trust mediate the relationship between the leader-member exchange and safety citizenship behavior emerged. Results of this study add to our understanding of the relationship between leader-member exchange and safety behavior. The effect of co-worker trust and the extent to which employees participate in workplace safety practice were identified as critical factors. The findings show that managers need to focus on developing cognitive and affective coworker trust to improve safety citizenship behaviors.
Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V
2013-09-05
Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.
Irons, C; Gilbert, P; Baldwin, M W; Baccus, J R; Palmer, M
2006-09-01
When things go wrong for people they can become self-critical or focus on positive, reassuring aspects of the self. This study explored the relationship between forms of self-criticism and self-reassurance, recall of parental experiences and attachment style in relation to depressed symptoms in students. A sample of 197 undergraduate students from the UK and Canada completed self-report questionnaires measuring recall of parental styles, attachment, forms of self-criticism, self-reassurance, and depression symptoms. Recall of parents as rejecting and overprotecting was significantly related to both inadequacy and self-hating self-criticism. In contrast, parental warmth was negatively correlated with these forms of self-criticism. In addition, when things go wrong for the person, recall of parental warmth was associated with the ability to be self-reassuring. A mediator analysis suggested that (I) the impact of recall of negative parenting on depression is mediated through the forms of self-criticism and (2) the effect of parental warmth on depression was mediated by the ability to be self-reassuring. The impacts of negative parenting styles may translate into vulnerabilities to depression via the way children (and later adults) develop their self-to-self relating (e.g. as self-critical versus self-reassuring). Hence, there is a need for further research on the link between attachment experiences, recall of parental rejection/warmth and their relationship to internal, self-evaluative and affect systems in creating vulnerabilities to psychopathology.
A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage
Moggs, Jonathan G.; Grandi, Paola; Quivy, Jean-Pierre; Jónsson, Zophonías O.; Hübscher, Ulrich; Becker, Peter B.; Almouzni, Geneviève
2000-01-01
Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This nucleosome assembly pathway involves the histone chaperone chromatin assembly factor 1 (CAF-1). The largest subunit (p150) of this factor interacts directly with proliferating cell nuclear antigen (PCNA), and critical regions for this interaction on both proteins have been mapped. To isolate proteins specifically recruited during DNA repair, damaged DNA linked to magnetic beads was used. The binding of both PCNA and CAF-1 to this damaged DNA was dependent on the number of DNA lesions and required ATP. Chromatin assembly linked to the repair of single-strand breaks was disrupted by depletion of PCNA from a cell-free system. This defect was rescued by complementation with recombinant PCNA, arguing for role of PCNA in mediating chromatin assembly linked to DNA repair. We discuss the importance of the PCNA–CAF-1 interaction in the context of DNA damage processing and checkpoint control. PMID:10648606
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu
2010-01-01
Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNF{alpha})-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNF{alpha}-induced activation of ERK andmore » DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNF{alpha} hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.« less
Ski can negatively regulates macrophage differentiation through its interaction with PU.1
Ueki, N; Zhang, L; Haymann, MJ
2010-01-01
In the hematopoietic cell system, the oncoprotein Ski dramatically affects growth and differentiation programs, in some cases leading to malignant leukemia. However, little is known about the interaction partners or signaling pathways involved in the Ski-mediated block of differentiation in hematopoietic cells. Here we show that Ski interacts with PU.1, a lineage-specific transcription factor essential for terminal myeloid differentiation, and thereby represses PU.1-dependent transcriptional activation. Consistent with this, Ski inhibits the biological function of PU.1 to promote myeloid cells to differentiate into macrophage colony-stimulating factor receptor (M-CSFR)-positive macrophages. Using a Ski mutant deficient in PU.1 binding, we demonstrate that Ski–PU.1 interaction is critical for Ski's ability to repress PU.1-dependent transcription and block macrophage differentiation. Furthermore, we provide evidence that Ski-mediated repression of PU.1 is due to Ski's ability to recruit histone deacetylase 3 to PU.1 bound to DNA. Since inactivation of PU.1 is closely related to the development of myeloid leukemia and Ski strongly inhibits PU.1 function, we propose that aberrant Ski expression in certain types of myeloid cell lineages might contribute to leukemogenesis. PMID:17621263
Everyday exposure to benevolent sexism and condom use among college women.
Fitz, Caroline C; Zucker, Alyssa N
2015-01-01
Understanding factors related to condom use is critical in reducing the spread of sexually transmitted infections (STIs), especially for women, who are disproportionately affected by many STIs. Extant work has shown that perceived sexism is one such factor associated with lower levels of condom use among women, but has yet to explore whether benevolent sexism in particular-a subtle form of sexism that often goes unnoticed and increases cognitions and behaviors consistent with traditional female gender roles (e.g., sexual submissiveness)-relates negatively to this safer-sex practice. The present research tested this possibility and, in addition, examined whether relational sex motives, which reflect a desire to engage in sex as a means to foster partners' sexual satisfaction, mediated the relation between benevolent sexism and condom use. During the spring of 2011, female college students (N = 158) reported how often they experienced benevolent sexism in their daily lives and, 2 weeks later, their relational sex motives and condom use. Supporting hypotheses results indicated that greater exposure to benevolent sexism was associated significantly with lower condom use, and that relational sex motives mediated this relationship. We discuss implications for women's well-being, including ways to promote safer sex in the face of sexism.
Yu, Yizhi; Liu, Shuxun; Wang, Wenya; Song, Wengang; Zhang, Minghui; Zhang, Weiping; Qin, Zhihai; Cao, Xuetao
2002-01-01
Dendritic cells (DC) are potent antigen-presenting cells (APC) specialized in T-cell mediated immune responses, and also play critical roles in the homeostasis of T cells for controlling immune responses. In the present study, we demonstrated that during mouse bone-marrow-derived DC activation of ovalbumin (OVA)-specific Ia-kb-restricted T hybridoma cells, MF2.2D9 and OVA257–264-specific H-2kb-restricted RF33.70 T cells, respectively, both hybridomas undergo cell death, partially mediated via apoptotic ligand–tumour necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL). Lipopolysaccharide enhanced the cytotoxic effect on the two activated T hybridoma cells, which was correlated with up-regulation of TRAIL-expression on DC to some extent. The activation of caspase-3 in activated T hybridoma cells cocultured with DC contributed to the programmed cell death pathway T cells underwent. Therefore, our results show that activation-induced cell death of T hybridoma cells can be influenced by DC, suggesting that DC may be involved in elimination of activated T cells at the end of primary immune responses. PMID:12100718
Yu, Yizhi; Liu, Shuxun; Wang, Wenya; Song, Wengang; Zhang, Minghui; Zhang, Weiping; Qin, Zhihai; Cao, Xuetao
2002-07-01
Dendritic cells (DC) are potent antigen-presenting cells (APC) specialized in T-cell mediated immune responses, and also play critical roles in the homeostasis of T cells for controlling immune responses. In the present study, we demonstrated that during mouse bone-marrow-derived DC activation of ovalbumin (OVA)-specific Ia-kb-restricted T hybridoma cells, MF2.2D9 and OVA257-264-specific H-2kb-restricted RF33.70 T cells, respectively, both hybridomas undergo cell death, partially mediated via apoptotic ligand-tumour necrosis factor-alpha (TNF-alpha)-related apoptosis-inducing ligand (TRAIL). Lipopolysaccharide enhanced the cytotoxic effect on the two activated T hybridoma cells, which was correlated with up-regulation of TRAIL-expression on DC to some extent. The activation of caspase-3 in activated T hybridoma cells cocultured with DC contributed to the programmed cell death pathway T cells underwent. Therefore, our results show that activation-induced cell death of T hybridoma cells can be influenced by DC, suggesting that DC may be involved in elimination of activated T cells at the end of primary immune responses.
Montoya, Carlos J; Jie, Hyun-Bae; Al-Harthi, Lena; Mulder, Candice; Patiño, Pablo J; Rugeles, María T; Krieg, Arthur M; Landay, Alan L; Wilson, S Brian
2006-07-15
CD1d-restricted invariant NK T (iNKT) cells and dendritic cells (DCs) have been shown to play crucial roles in various types of immune responses, including TLR9-dependent antiviral responses initiated by plasmacytoid DCs (pDCs). However, the mechanism by which this occurs is enigmatic because TLRs are absent in iNKT cells and human pDCs do not express CD1d. To explore this process, pDCs were activated with CpG oligodeoxyribonucleotides, which stimulated the secretion of several cytokines such as type I and TNF-alpha. These cytokines and other soluble factors potently induced the expression of activation markers on iNKT cells, selectively enhanced double-negative iNKT cell survival, but did not induce their expansion or production of cytokines. Notably, pDC-derived factors licensed iNKT cells to respond to myeloid DCs: an important downstream cellular target of iNKT cell effector function and a critical contributor to the initiation of adaptive immune responses. This interaction supports the notion that iNKT cells can mediate cross-talk between DC subsets known to express mutually exclusive TLR and cytokine profiles.
Ivashkiv, Lionel B; Hu, Xiaoyu
2004-01-01
A variety of cytokines and growth factors use the Janus kinase (Jak)–STAT signaling pathway to transmit extracellular signals to the nucleus. STATs (signal transducers and activators of transcription) are latent cytoplasmic transcription factors. There are seven mammalian STATs and they have critical, nonredundant roles in mediating cellular transcriptional responses to cytokines. The physiological roles of STATs have been elucidated by analysis of mice rendered deficient in STAT genes. STAT activation is regulated and can be modulated in a positive or negative fashion; it can be reprogrammed to drive different cellular responses. Several auto-regulatory and signaling crosstalk mechanisms for regulating Jak–STAT signaling have been described. Understanding and manipulation of the function of STATs will help in the development of therapeutic strategies for diseases that are regulated by cytokines. PMID:15225360
Minireview: The Role of Nuclear Receptors in Photoreceptor Differentiation and Disease
Swaroop, Anand
2012-01-01
Rod and cone photoreceptors are specialized sensory cells that mediate vision. Transcriptional controls are critical for the development and long-term survival of photoreceptors; when these controls become ineffective, retinal dysfunction or degenerative disease may result. This review discusses the role of nuclear receptors, a class of ligand-regulated transcription factors, at key stages of photoreceptor life in the mammalian retina. Nuclear receptors with known ligands, such as retinoids or thyroid hormone, together with several orphan receptors without identified physiological ligands, complement other classes of transcription factors in directing the differentiation and functional maintenance of photoreceptors. The potential of nuclear receptors to respond to ligands introduces versatility into the control of photoreceptor development and function and may suggest new opportunities for treatments of photoreceptor disease. PMID:22556342
Understanding epigenetic architecture of suicide neurobiology: A critical perspective
Roy, Bhaskar; Dwivedi, Yogesh
2016-01-01
Current understanding of environmental cross-talk with genetic makeup is found to be mediated through an epigenetic interface which is associated with prominent reversible and heritable changes at gene expression level. Recent emergence of epigenetic modulation in shaping the genetic information has become a key regulatory factor in answering the underlying complexities associated with several mental disorders. A comprehensive understanding of the pertinent changes in the epigenetic makeup of suicide phenotype exhibits a characteristic signature with the possibility of using it as a biomarker to help predict the risk factors associated with suicide. Within the scope of this current review, the most sought after epigenetic changes of DNA methylation and histone modification are thoroughly scrutinized to understand their close functional association with the broad spectrum of suicide phenotype. PMID:27836463
Differentiation of Effector CD4 T Cell Populations*
Zhu, Jinfang; Yamane, Hidehiro; Paul, William E.
2012-01-01
CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation. PMID:20192806
MAP4-regulated dynein-dependent trafficking of BTN3A1 controls the TBK1–IRF3 signaling axis
Seo, Minji; Lee, Seong-Ok; Kim, Ji-Hoon; Hong, Yujin; Kim, Seongchan; Kim, Yeumin; Min, Dal-Hee; Kong, Young-Yun; Shin, Jinwook; Ahn, Kwangseog
2016-01-01
The innate immune system detects viral nucleic acids and induces type I interferon (IFN) responses. The RNA- and DNA-sensing pathways converge on the protein kinase TANK-binding kinase 1 (TBK1) and the transcription factor IFN-regulatory factor 3 (IRF3). Activation of the IFN signaling pathway is known to trigger the redistribution of key signaling molecules to punctate perinuclear structures, but the mediators of this spatiotemporal regulation have yet to be defined. Here we identify butyrophilin 3A1 (BTN3A1) as a positive regulator of nucleic acid-mediated type I IFN signaling. Depletion of BTN3A1 inhibits the cytoplasmic nucleic acid- or virus-triggered activation of IFN-β production. In the resting state, BTN3A1 is constitutively associated with TBK1. Stimulation with nucleic acids induces the redistribution of the BTN3A1–TBK1 complex to the perinuclear region, where BTN3A1 mediates the interaction between TBK1 and IRF3, leading to the phosphorylation of IRF3. Furthermore, we show that microtubule-associated protein 4 (MAP4) controls the dynein-dependent transport of BTN3A1 in response to nucleic acid stimulation, thereby identifying MAP4 as an upstream regulator of BTN3A1. Thus, the depletion of either MAP4 or BTN3A1 impairs cytosolic DNA- or RNA-mediated type I IFN responses. Our findings demonstrate a critical role for MAP4 and BTN3A1 in the spatiotemporal regulation of TBK1, a central player in the intracellular nucleic acid-sensing pathways involved in antiviral signaling. PMID:27911820
Sarcopenia and critical illness: a deadly combination in the elderly.
Hanna, Joseph S
2015-03-01
Sarcopenia is the age-associated loss of lean skeletal muscle mass. It is the result of multiple physiologic derangements, ultimately resulting in an insidious functional decline. Frailty, the clinical manifestation of sarcopenia and physical infirmity, is associated with significant morbidity and mortality in the elderly population. The underlying pathology results in a disruption of the individual's ability to tolerate internal and external stressors such as injury or illness. This infirmity results in a markedly increased risk of falls and subsequent morbidity and mortality from the resulting traumatic injury, as well as an inability to recover from medical insults, resulting in critical illness. The increasing prevalence of sarcopenia and critical illness in the elderly has resulted in a deadly intersection of disease processes. The lethality of this combination appears to be the result of altered muscle metabolism, decreased mitochondrial energetics needed to survive critical illness, and a chronically activated catabolic state likely mediated by tumor necrosis factor-α. Furthermore, these underlying derangements are independently associated with an increased incidence of critical illness, resulting in a progressive downward spiral. Considerable evidence has been gathered supporting the role of aggressive nutrition support and physical therapy in improving outcomes. Critical care practitioners must consider sarcopenia and the resulting frailty phenotype a comorbid condition so that the targeted interventions can be instituted and research efforts focused. © 2015 American Society for Parenteral and Enteral Nutrition.
Castilho, Paula; Pinto-Gouveia, José; Amaral, Vânia; Duarte, Joana
2014-01-01
Research has robustly shown that early negative parenting experiences are associated with psychopathology and self-criticism in adulthood. This study investigates recall of personal feelings of perceived threat and subordination in childhood and its relation to psychopathology. In addition, we explore the mediator role of self-criticism in this association. A sample of 193 subjects from the general population completed self-report questionnaires measuring the study variables. The mediator analyses suggested that the impact of submissiveness experiences in childhood on depression and anxiety is mediated by self-criticism. Our findings highlight the route through which the recall of personal feelings of perceived involuntary subordination to parents contributes to depression and anxiety in adulthood. Although the relation between early experiences of abuse and later psychological problems is now well established, there has been less study on subtler forms of threat and subordinate behaviour in childhood. Given ours and previous findings, therapists should be aware of, and prone to explore, these early experiences. Most studies exploring early negative experiences mainly refer to attachment theory-related constructs (e.g., attachment style). We also highlight the importance of noting rank structure and rank style in the family. Self-criticism seems to be a key process in the relation between early aversive experiences of subordination and psychopathology. Given the idea that self-reassuring operates through a different affect system, helping people develop inner warmth and compassion for the self may be important to counteract feelings of self-hatred and self-attack. Copyright © 2012 John Wiley & Sons, Ltd.
Jarome, Timothy J; Butler, Anderson A; Nichols, Jessica N; Pacheco, Natasha L; Lubin, Farah D
2015-01-01
Gadd45-mediated DNA demethylation mechanisms have been implicated in the process of memory formation. However, the transcriptional mechanisms involved in the regulation of Gadd45 gene expression during memory formation remain unexplored. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) controls transcription of genes in neurons and is a critical regulator of synaptic plasticity and memory formation. In silico analysis revealed several NF-κB (p65/RelA and cRel) consensus sequences within the Gadd45β gene promoter. Whether NF-κB activity regulates Gadd45 expression and associated DNA demethylation in neurons during memory formation is unknown. Here, we found that learning in a fear conditioning paradigm increased Gadd45β gene expression and brain-derivedneurotrophic factor (BDNF) DNA demethylation in area CA1 of the hippocampus, both of which were prevented with pharmacological inhibition of NF-κB activity. Further experiments found that conditional mutations in p65/RelA impaired fear memory formation but did not alter changes in Gadd45β expression. The learning-induced increases in Gadd45β mRNA levels, Gadd45β binding at the BDNF gene and BDNF DNA demethylation were blocked in area CA1 of the c-rel knockout mice. Additionally, local siRNA-mediated knockdown of c-rel in area CA1 prevented fear conditioning-induced increases in Gadd45β expression and BDNF DNA demethylation, suggesting that c-Rel containing NF-κB transcription factor complex is responsible for Gadd45β regulation during memory formation. Together, these results support a novel transcriptional role for NF-κB in regulation of Gadd45β expression and DNA demethylation in hippocampal neurons during fear memory.
Armenti, Nicholas A; Babcock, Julia C
2018-04-01
Individuals with borderline personality features may be susceptible to react to situational stressors with negative and interpersonally maladaptive emotionality (e.g., anger) and aggression. The current study attempted to test two moderated mediation models to investigate dispositional risk factors associated with borderline personality features and intimate partner violence (IPV). Results from an experimental rejection induction paradigm were examined using moderated regression to observe contextual reactions to imagined romantic rejection from a current romantic partner among individuals with borderline personality features. An ethnically diverse sample of 218 undergraduates at a large public university in the southwestern United States was recruited. Participants responded to demographic questions and self-report measures, and engaged in an experimental rejection induction paradigm. Borderline personality features was positively associated with rejection sensitivity, physical assault, and psychological aggression. Contrary to initial hypotheses, rejection sensitivity did not serve as a mediator of the relations between borderline personality features and physical assault and psychological aggression. However, trait anger mediated the relation between borderline personality features and psychological aggression. As such, trait anger may be an important explanatory variable in the relation between borderline personality features and psychological aggression specifically. Results of the rejection induction paradigm indicated that, for individuals who were asked to imagine an ambiguous rejection, the relation between borderline personality features and state anger post-rejection was strengthened. For individuals who imagined a critical rejection, there was no significant relation between borderline personality features and state anger post-rejection. Findings suggest that trait anger may be an important dispositional factor in the link between borderline personality features and IPV. In addition, contextual factors, such as ambiguous rejection by an intimate partner, may be especially relevant in activating anger or aggression in individuals with borderline personality features.
Vittori, Daniela; Vota, Daiana; Callero, Mariana; Chamorro, María E; Nesse, Alcira
2010-05-04
The TNF-alpha (tumour necrosis factor) affects a wide range of biological activities, such as cell proliferation and apoptosis. Cell life or death responses to this cytokine might depend on cell conditions. This study focused on the modulation of factors that would affect the sensitivity of erythroid-differentiated cells to TNF-alpha. Hemin-differentiated K562 cells showed higher sensitivity to TNF-induced apoptosis than undifferentiated cells. At the same time, hemin-induced erythroid differentiation reduced c-FLIP (cellular FLICE-inhibitory protein) expression. However, this negative effect was prevented by prior treatment with Epo (erythropoietin), which allowed the cell line to maintain c-FLIP levels. On the other hand, erythroid-differentiated UT-7 cells - dependent on Epo for survival - showed resistance to TNF-alpha pro-apoptotic action. Only after the inhibition of PI3K (phosphatidylinositol-3 kinase)-mediated pathways, which was accompanied by negative c-FLIP modulation and increased erythroid differentiation, were UT-7 cells sensitive to TNF-alpha-triggered apoptosis. In summary, erythroid differentiation might deregulate the balance between growth promotion and death signals induced by TNF-alpha, depending on cell type and environmental conditions. The role of c-FLIP seemed to be critical in the protection of erythroid-differentiated cells from apoptosis or in the determination of their sensitivity to TNF-mediated programmed cell death. Epo, which for the first time was found to be involved in the prevention of c-FLIP down-regulation, proved to have an anti-apoptotic effect against the pro-inflammatory factor. The identification of signals related to cell life/death switching would have significant implications in the control of proliferative diseases and would contribute to the understanding of mechanisms underlying the anaemia associated with inflammatory processes.
Serbin, Lisa A; Stack, Dale M; Kingdon, Danielle
2013-09-01
Successful academic performance during adolescence is a key predictor of lifetime achievement, including occupational and social success. The present study investigated the important transition from primary to secondary schooling during early adolescence, when academic performance among youth often declines. The goal of the study was to understand how risk factors, specifically lower family resources and male gender, threaten academic success following this "critical transition" in schooling. The study involved a longitudinal examination of the predictors of academic performance in grades 7-8 among 127 (56 % girls) French-speaking Quebec (Canada) adolescents from lower-income backgrounds. As hypothesized based on transition theory, hierarchical regression analyses showed that supportive parenting and specific academic, social and behavioral competencies (including spelling ability, social skills, and lower levels of attention problems) predicted success across this transition among at-risk youth. Multiple-mediation procedures demonstrated that the set of compensatory factors fully mediated the negative impact of lower family resources on academic success in grades 7-8. Unique mediators (social skills, spelling ability, supportive parenting) also were identified. In addition, the "gender gap" in performance across the transition could be attributed statistically to differences between boys and girls in specific competencies observed prior to the transition, as well as differential parenting (i.e., support from mother) towards girls and boys. The present results contribute to our understanding of the processes by which established risk factors, such as low family income and gender impact development and academic performance during early adolescence. These "transitional" processes and subsequent academic performance may have consequences across adolescence and beyond, with an impact on lifetime patterns of achievement and occupational success.
How Can Research Mediators Better Mediate?: The Importance of Inward-Looking Processes
ERIC Educational Resources Information Center
Shaw, Jessica
2018-01-01
Science can provide empirically-informed strategies and resources to inform and improve policy and practice, though all too often science, policy, and practice operate independently from one another. Research mediators play a critical role by attempting to connect these different worlds. This practice paper presents lessons learned and…
Genome-wide characterization of Mediator recruitment, function, and regulation
2017-01-01
ABSTRACT Mediator is a conserved and essential coactivator complex broadly required for RNA polymerase II (RNAPII) transcription. Recent genome-wide studies of Mediator binding in budding yeast have revealed new insights into the functions of this critical complex and raised new questions about its role in the regulation of gene expression. PMID:28301289
Adenosine A2a receptors and O2 sensing in development
2011-01-01
Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O2 sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5′-nucleotidase and the resulting activation of adenosine A2A receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A2A receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A2A receptors mediate hypoxic inhibition of breathing and rapid eye movements. A2A receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A2A receptors play virtually no role in O2 sensing by the carotid bodies, but brain A2A receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A2A receptors have been implicated in O2 sensing by carotid glomus cells, while central A2A receptors likely blunt hypoxic hyperventilation. In conclusion, A2A receptors are crucially involved in the transduction mechanisms of O2 sensing in fetal carotid bodies and brains. Postnatally, central A2A receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O2 sensing in carotid chemoreceptors, particularly in developing lambs. PMID:21677265
Chen, Ying; Yang, Li-Na; Cheng, Li; Tu, Shun; Guo, Shu-Juan; Le, Huang-Ying; Xiong, Qian; Mo, Ran; Li, Chong-Yang; Jeong, Jun-Seop; Jiang, Lizhi; Blackshaw, Seth; Bi, Li-Jun; Zhu, Heng; Tao, Sheng-Ce; Ge, Feng
2013-01-01
Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach. PMID:23824909
Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer
Drewell, Robert A.; Nevarez, Michael J.; Kurata, Jessica S.; Winkler, Lauren N.; Li, Lily; Dresch, Jacqueline M.
2013-01-01
Summary In Drosophila, the 330 kb bithorax complex regulates cellular differentiation along the anterio-posterior axis during development in the thorax and abdomen and is comprised of three homeotic genes: Ultrabithorax, abdominal-A, and Abdominal-B. The expression of each of these genes is in turn controlled through interactions between transcription factors and a number of cis-regulatory modules in the neighboring intergenic regions. In this study, we examine how the sequence architecture of transcription factor binding sites mediates the functional activity of one of these cis-regulatory modules. Using computational, mathematical modeling and experimental molecular genetic approaches we investigate the IAB7b enhancer, which regulates Abdominal-B expression specifically in the presumptive seventh and ninth abdominal segments of the early embryo. A cross-species comparison of the IAB7b enhancer reveals an evolutionarily conserved signature motif containing two FUSHI-TARAZU activator transcription factor binding sites. We find that the transcriptional repressors KNIRPS, KRUPPEL and GIANT are able to restrict reporter gene expression to the posterior abdominal segments, using different molecular mechanisms including short-range repression and competitive binding. Additionally, we show the functional importance of the spacing between the two FUSHI-TARAZU binding sites and discuss the potential importance of cooperativity for transcriptional activation. Our results demonstrate that the transcriptional output of the IAB7b cis-regulatory module relies on a complex set of combinatorial inputs mediated by specific transcription factor binding and that the sequence architecture at this enhancer is critical to maintain robust regulatory function. PMID:24514265
Fibroblast growth factor receptor inhibitors.
Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma
2013-01-01
Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.
NASA Astrophysics Data System (ADS)
Hidayat, D.; Nurlaelah, E.; Dahlan, J. A.
2017-09-01
The ability of mathematical creative and critical thinking are two abilities that need to be developed in the learning of mathematics. Therefore, efforts need to be made in the design of learning that is capable of developing both capabilities. The purpose of this research is to examine the mathematical creative and critical thinking ability of students who get rigorous mathematical thinking (RMT) approach and students who get expository approach. This research was quasi experiment with control group pretest-posttest design. The population were all of students grade 11th in one of the senior high school in Bandung. The result showed that: the achievement of mathematical creative and critical thinking abilities of student who obtain RMT is better than students who obtain expository approach. The use of Psychological tools and mediation with criteria of intentionality, reciprocity, and mediated of meaning on RMT helps students in developing condition in critical and creative processes. This achievement contributes to the development of integrated learning design on students’ critical and creative thinking processes.
Bedreag, Ovidiu Horea; Rogobete, Alexandru Florin; Sarandan, Mirela; Cradigati, Alina Carmen; Papurica, Marius; Dumbuleu, Maria Corina; Chira, Alexandru Mihai; Rosu, Oana Maria; Sandesc, Dorel
2015-01-01
Multiple trauma patients require extremely good management and thus, the trauma team needs to be prepared and to be up to date with the new standards of intensive therapy. Oxidative stress and free radicals represent an extremely aggressive factor to cells, having a direct consequence upon the severity of lung inflammation. Pulmonary tissue is damaged by oxidative stress, leading to biosynthesis of mediators that exacerbate inflammation modulators. The subsequent inflammation spreads throughout the body, leading most of the time to multiple organ dysfunction and death. In this paper, we briefly present an update of biochemical effects of oxidative stress and free radical damage to the pulmonary tissue in patients in critical condition in the intensive care unit. Also, we would like to present a series of active substances that substantially reduce the aggressiveness of free radicals, increasing the chances of survival.
Alterations in Ca2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer.
Kerkhofs, Martijn; Giorgi, Carlotta; Marchi, Saverio; Seitaj, Bruno; Parys, Jan B; Pinton, Paolo; Bultynck, Geert; Bittremieux, Mart
2017-01-01
Inter-organellar contact sites establish microdomains for localised Ca 2+ -signalling events. One of these microdomains is established between the ER and the mitochondria. Importantly, the so-called mitochondria-associated ER membranes (MAMs) contain, besides structural proteins and proteins involved in lipid exchange, several Ca 2+ -transport systems, mediating efficient Ca 2+ transfer from the ER to the mitochondria. These Ca 2+ signals critically control several mitochondrial functions, thereby impacting cell metabolism, cell death and survival, proliferation and migration. Hence, the MAMs have emerged as critical signalling hubs in physiology, while their dysregulation is an important factor that drives or at least contributes to oncogenesis and tumour progression. In this book chapter, we will provide an overview of the role of the MAMs in cell function and how alterations in the MAM composition contribute to oncogenic features and behaviours.
Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses.
Liu, Wei; Li, Jing; Zheng, Weinan; Shang, Yingli; Zhao, Zhendong; Wang, Shanshan; Bi, Yuhai; Zhang, Shuang; Xu, Chongfeng; Duan, Ziyuan; Zhang, Lianfeng; Wang, Yue L; Jiang, Zhengfan; Liu, Wenjun; Sun, Lei
2017-06-08
RIG-I is a key cytosolic pattern recognition receptor that interacts with MAVS to induce type I interferons (IFNs) against RNA virus infection. In this study, we found that cyclophilin A (CypA), a peptidyl-prolyl cis/trans isomerase, functioned as a critical positive regulator of RIG-I-mediated antiviral immune responses. Deficiency of CypA impaired RIG-I-mediated type I IFN production and promoted viral replication in human cells and mice. Upon Sendai virus infection, CypA increased the interaction between RIG-I and its E3 ubiquitin ligase TRIM25, leading to enhanced TRIM25-mediated K63-linked ubiquitination of RIG-I that facilitated recruitment of RIG-I to MAVS. In addition, CypA and TRIM25 competitively interacted with MAVS, thereby inhibiting TRIM25-induced K48-linked ubiquitination of MAVS. Taken together, our findings reveal an essential role of CypA in boosting RIG-I-mediated antiviral immune responses by controlling the ubiquitination of RIG-I and MAVS.
Liu, Guan-Ting; Huang, Yuan-Li; Tzeng, Huey-En; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin
2015-02-28
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki; Yonezawa, Kazuya
2017-10-01
The functional genetic polymorphism of aldehyde dehydrogenase 2 (ALDH2) influences the enzymatic activities of its wild type (Glu504 encoded by ALDH2*1) and mutant type (Lys504 encoded by ALDH2*2) proteins. The enzymatic activities of mutant-type ALDH2 are limited compared with those of the wild type. ALDH2 has been suggested as a critical factor for nitroglycerin-mediated vasodilation by some human studies and in vitro studies. Currently, there is no research on direct observations of the vasodilatory effect of nitroglycerin sublingual tablets, which is the generally used dosage form. In the present study, the contribution of ALDH2 to the vasodilatory effect of nitroglycerin sublingual tablets was investigated among three genotype groups (ALDH2*1/*1, ALDH2*1/*2, and ALDH2*2/*2) in Japanese. The results by direct assessments of in vivo nitroglycerin-mediated dilation showed no apparent difference in vasodilation among all genotypes of ALDH2. Furthermore, to analyze the effect of other factors (age and flow-mediated dilation), multiple regression analysis and Pearson's correlation coefficient analysis were carried out. These analyses also indicated that the genotypes of ALDH2 were not related to the degree of vasodilation. These results suggest the existence of other predominant pathway(s) for nitroglycerin biotransformation, at least with regard to clinical nitroglycerin (e.g., a sublingual tablet) in Japanese subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation*
Kistler, Samantha; George, Samuel D.; Kuhlmann, Nora; Garvey, Leslie; Huynh, Minh; Bagni, Rachel K.; Lammers, Michael; Der, Channing J.; Campbell, Sharon L.
2017-01-01
The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity. PMID:28154176
Johnson, Mallory O.; Chesney, Margaret A.; Goldstein, Rise B.; Remien, Robert H.; Catz, Sheryl; Gore-Felton, Cheryl; Charlebois, Edwin; Morin, Stephen F.
2008-01-01
Adherence to antiretroviral (ARV) therapy for HIV infection is critical for maximum benefit from treatment and for the prevention of HIV-related complications. There is evidence that many factors determine medication adherence, including adherence self-efficacy (confidence in one's ability to adhere) and relations with health care providers. However, there are no studies that examine how these two factors relate to each other and their subsequent influence on HIV medication adherence. The goal of the current analysis was to explore a model of medication adherence in which the relationship between positive provider interactions and adherence is mediated by adherence self-efficacy. Computerized self administered and interviewer administered self reported measures of medication adherence, demographic and treatment variables, provider interactions, and adherence self-efficacy were administered to 2765 HIV infected adults on ARV. Criteria for mediation were met, supporting a model in which adherence self-efficacy is the mechanism for the relationship between positive provider interactions and adherence. The finding was consistent when the sample was stratified by gender, race, injection drug use history, and whether the participant reported receipt of HIV specialty care. Positive provider interactions may foster greater adherence self-efficacy, which is associated with better adherence to medications. Results suggest implications for improving provider interactions in clinical care, and future directions for clarifying inter-relationships among provider interactions, adherence self-efficacy, and medication adherence are supported. PMID:16623624
HIV neuropathogenesis: a tight rope walk of innate immunity.
Yao, Honghong; Bethel-Brown, Crystal; Li, Cicy Zidong; Buch, Shilpa J
2010-12-01
During the course of HIV-1 disease, virus neuroinvasion occurs as an early event, within weeks following infection. Intriguingly, subsequent central nervous system (CNS) complications manifest only decades after the initial virus exposure. Although CNS is commonly regarded as an immune-privileged site, emerging evidence indicates that innate immunity elicited by the CNS glial cells is a critical determinant for the establishment of protective immunity. Sustained expression of these protective immune responses, however, can be a double-edged sword. As protective immune mediators, cytokines have the ability to function in networks and co-operate with other host/viral mediators to tip the balance from a protective to toxic state in the CNS. Herein, we present an overview of some of the essential elements of the cerebral innate immunity in HIV neuropathogenesis including the key immune cell types of the CNS with their respective soluble immune mediators: (1) cooperative interaction of IFN-γ with the host/virus factor (platelet-derived host factor (PDGF)/viral Tat) in the induction of neurotoxic chemokine CXCL10 by macrophages, (2) response of astrocytes to viral infection, and (3) protective role of PDGF and MCP-1 in neuronal survival against HIV Tat toxicity. These components of the cerebral innate immunity do not act separately from each other but form a functional immunity network. The ultimate outcome of HIV infection in the CNS will thus be dependent on the regulation of the net balance of cell-specific protective versus detrimental responses.
Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis.
Tudor, Jennifer C; Davis, Emily J; Peixoto, Lucia; Wimmer, Mathieu E; van Tilborg, Erik; Park, Alan J; Poplawski, Shane G; Chung, Caroline W; Havekes, Robbert; Huang, Jiayan; Gatti, Evelina; Pierre, Philippe; Abel, Ted
2016-04-26
Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation. Copyright © 2016, American Association for the Advancement of Science.
Kaur, Balveen; Cork, Sarah M; Sandberg, Eric M; Devi, Narra S; Zhang, Zhaobin; Klenotic, Philip A; Febbraio, Maria; Shim, Hyunsuk; Mao, Hui; Tucker-Burden, Carol; Silverstein, Roy L; Brat, Daniel J; Olson, Jeffrey J; Van Meir, Erwin G
2008-01-01
Angiogenesis is a critical physiological process that is appropriated during tumorigenesis. Little is known about how this process is specifically regulated in the brain. Brain Angiogenesis Inhibitor-1 (BAI1) is a primarily brain specific seven-transmembrane protein that contains five anti-angiogenic thrombospondin type-1 repeats (TSR). We recently showed that BAI1 is cleaved at a conserved proteolytic cleavage site releasing a soluble, 120 kDa anti-angiogenic factor called Vasculostatin (Vstat120). Vstat120 has been shown to inhibit in vitro angiogenesis and suppress subcutaneous tumor growth. Here, we examine its effect on intracranial growth of malignant gliomas and further study the mechanism of its anti-tumor effects. First, we show that expression of Vstat120 strongly suppresses the intracranial growth of malignant gliomas, even in the presence of the strong pro-angiogenic stimulus mediated by the oncoprotein Epidermal Growth Factor Receptor variant III (EGFRvIII). This tumor suppressive effect is accompanied by a decrease in vascular density in the tumors, suggesting a potent anti-angiogenic effect in the brain. Second, and consistent with this interpretation, we find that treatment with Vstat120 reduces the migration of cultured microvascular endothelial cells in vitro and inhibits corneal angiogenesis in vivo. Third, we demonstrate that these anti-vascular effects are critically dependent on the presence of the cell surface receptor CD36 on endothelial cells in vitro and in vivo, supporting a role of the Vstat120 TSRs in mediating these effects. These results advance the understanding of brain-specific angiogenic regulation, and suggest that Vstat120 has therapeutic potential in the treatment of brain tumors and other intra-cerebral vasculopathies. PMID:19176395
Cordeira, Joshua W.; Felsted, Jennifer A.; Teillon, Sarah; Daftary, Shabrine; Panessiti, Micaella; Wirth, Jena; Sena-Esteves, Miguel
2014-01-01
Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are critical components of the neural circuitry controlling appetite and body weight. Diminished BDNF signaling in mice results in severe hyperphagia and obesity. In humans, BDNF haploinsufficiency and the functional Bdnf Val66Met polymorphism have been linked to elevated food intake and body weight. The mechanisms underlying this dysfunction are poorly defined. We demonstrate a chief role of α2δ-1, a calcium channel subunit and thrombospondin receptor, in triggering overeating in mice with central BDNF depletion. We show reduced α2δ-1 cell-surface expression in the BDNF mutant ventromedial hypothalamus (VMH), an energy balance-regulating center. This deficit contributes to the hyperphagia exhibited by BDNF mutant mice because selective inhibition of α2δ-1 by gabapentin infusion into wild-type VMH significantly increases feeding and body weight gain. Importantly, viral-mediated α2δ-1 rescue in BDNF mutant VMH significantly mitigates their hyperphagia, obesity, and liver steatosis and normalizes deficits in glucose homeostasis. Whole-cell recordings in BDNF mutant VMH neurons revealed normal calcium currents but reduced frequency of EPSCs. These results suggest calcium channel-independent effects of α2δ-1 on feeding and implicate α2δ-1–thrombospondin interactions known to facilitate excitatory synapse assembly. Our findings identify a central mechanism mediating the inhibitory effects of BDNF on feeding. They also demonstrate a novel and critical role for α2δ-1 in appetite control and suggest a mechanism underlying weight gain in humans treated with gabapentinoid drugs. PMID:24403154
Seki, Ekihiro; Tsutsui, Hiroko; Tsuji, Noriko M; Hayashi, Nobuki; Adachi, Keishi; Nakano, Hiroki; Futatsugi-Yumikura, Shizue; Takeuchi, Osamu; Hoshino, Katsuaki; Akira, Shizuo; Fujimoto, Jiro; Nakanishi, Kenji
2002-10-01
Listeria monocytogenes (LM), a facultative intracellular Gram-positive bacterium, often causes lethal infection of the host. In this study we investigated the molecular mechanism underlying LM eradication in the early phase of infection. Upon infection with LM, both IL-12 and IL-18 were produced, and then they synergistically induced IFN-gamma production, leading to normal LM clearance in the host. IFN-gamma knockout (KO) mice were highly susceptible to LM infection. IL-12/IL-18 double knockout mice were also highly susceptible. Their susceptibility was less than that of IFN-gamma KO mice, but more than that of single IL-12 or IL-18 KO mice. Mice deficient in myeloid differentiation factor 88 (MyD88), an essential adaptor molecule used by signal transduction pathways of all members of the Toll-like receptor (TLR) family, showed an inability to produce IL-12 and IFN-gamma following LM infection and were most susceptible to LM. Furthermore, MyD88-deficient, but not IFN-gamma-deficient, Kupffer cells could not produce TNF-alpha in response to LM in vitro, indicating the importance of MyD88-dependent TNF-alpha production for host defense. As TLR2 KO, but not TLR4 KO, mice showed partial impairment in their capacity to produce IL-12, IFN-gamma, and TNF-alpha, TLR2 activation partly contributed to the induction of IL-12-mediated IFN-gamma production. These results indicated a critical role for TLRs/MyD88-dependent IL-12/TNF-alpha production and for IL-12- and IL-18-mediated IFN-gamma production in early phase clearance of LM.
Hsiao, C-Y
2014-06-01
Down syndrome (DS) affects not only children but also their families. Much remains to be learned about factors that influence how families of children with DS function, especially families in non-Western populations. The purpose of this cross-sectional, correlational study was to examine how family demographics, family demands and social support relate to family functioning as well as the potential mediating effect of social support on the relationship between family demands and family functioning in Taiwanese families of children with DS. One hundred and fifty-five parents (80 mothers and 75 fathers) from 83 families independently completed mailed questionnaires. Data were analysed using a principal component analysis and mixed linear modelling. Families having older children with DS, greater parental education, higher family income, fewer family demands and greater social support contributed to healthier family functioning. Social support partially mediated the effects of family demands on family functioning. Family demographics, family demands and social support appear to be important factors that may play a critical role in how Taiwanese families respond to the birth of a child with DS. Care of children with DS and their families is likely to be more effective if professionals working with these families are aware of factors that contribute to healthy family functioning. © 2013 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Huang, Chih-Yang; Kuo, Chia-Hua; Pai, Pei-Ying; Ho, Tsung-Jung; Lin, Yueh-Min; Chen, Ray-Jade; Tsai, Fuu-Jen; Vijaya Padma, V; Kuo, Wei-Wen; Huang, Chih-Yang
2018-04-15
Cardiac hypertrophy is a major characteristic of early-stage hypertension-related heart failure. We have found that the insulin-like growth factor receptor II (IGF-IIR) signaling was critical for hypertensive angiotensin II-induced cardiomyocyte hypertrophy and apoptosis. Moreover, this IGF-IIR signaling was elegantly modulated by the heat shock transcription factors (HSFs) during heart failure. However, the detailed mechanism by which HSFs regulates IGF-IIR during hypertension-induced cardiac hypertrophy remains elusive. In this study, we found that heat shock transcription factor 2 (HSF2) activated IGF-IIR to induce cardiac hypertrophy for hypertension-induced heart failure. The transcriptional activity of HSF2 appeared to be primarily mediated by SUMOylation via conjugation with small ubiquitin-like modifier-1 (SUMO-1). The SUMOylation of HSF2 was severely attenuated by MEL18 (also known as polycomb group ring finger 2 or PCGF2) in the heart of spontaneously hypertensive rats (SHR). Inhibition of HSF2 SUMOylation severely induced cardiac hypertrophy via IGF-IIR-mediated signaling in hypertensive rats. Angiotensin II receptor type I blocker (ARB) treatment in spontaneously hypertensive rats restored HSF2 SUMOylation and alleviated the cardiac defects. Thus, our study uncovered a novel MEL18-SUMO-1-HSF2-IGF-IIR pathway in the heart that profoundly influences cardiac hypertrophy for hypertension-induced heart failure. Copyright © 2017 Elsevier B.V. All rights reserved.
Dexras1 links glucocorticoids to insulin-like growth factor-1 signaling in adipogenesis
Kim, Hyo Jung; Cha, Jiyoung Y.; Seok, Jo Woon; Choi, Yoonjeong; Yoon, Bo Kyung; Choi, Hyeonjin; Yu, Jung Hwan; Song, Su Jin; Kim, Ara; Lee, Hyemin; Kim, Daeun; Han, Ji Yoon; Kim, Jae-woo
2016-01-01
Glucocorticoids are associated with obesity, but the underlying mechanism by which they function remains poorly understood. Previously, we showed that small G protein Dexras1 is expressed by glucocorticoids and leads to adipocyte differentiation. In this study, we explored the mechanism by which Dexras1 mediates adipogenesis and show a link to the insulin-like growth factor-1 (IGF-1) signaling pathway. Without Dexras1, the activation of MAPK and subsequent phosphorylation of CCAAT/enhancer binding protein β (C/EBPβ) is abolished, thereby inhibiting mitotic clonal expansion and further adipocyte differentiation. Dexras1 translocates to the plasma membrane upon insulin or IGF-1 treatment, for which the unique C-terminal domain (amino acids 223–276) is essential. Dexras1-dependent MAPK activation is selectively involved in the IGF-1 signaling, because another Ras protein, H-ras localized to the plasma membrane independently of insulin treatment. Moreover, neither epidermal growth factor nor other cell types shows Dexras1-dependent MAPK activation, indicating the importance of Dexras1 in IGF-1 signaling in adipogenesis. Dexras1 interacts with Shc and Raf, indicating that Dexras1-induced activation of MAPK is largely dependent on the Shc-Grb2-Raf complex. These results suggest that Dexras1 is a critical mediator of the IGF-1 signal to activate MAPK, linking glucocorticoid signaling to IGF-1 signaling in adipogenesis. PMID:27345868
The human factors of workstation telepresence
NASA Technical Reports Server (NTRS)
Smith, Thomas J.; Smith, Karl U.
1990-01-01
The term workstation telepresence has been introduced to describe human-telerobot compliance, which enables the human operator to effectively project his/her body image and behavioral skills to control of the telerobot itself. Major human-factors considerations for establishing high fidelity workstation telepresence during human-telerobot operation are discussed. Telerobot workstation telepresence is defined by the proficiency and skill with which the operator is able to control sensory feedback from direct interaction with the workstation itself, and from workstation-mediated interaction with the telerobot. Numerous conditions influencing such control have been identified. This raises the question as to what specific factors most critically influence the realization of high fidelity workstation telepresence. The thesis advanced here is that perturbations in sensory feedback represent a major source of variability in human performance during interactive telerobot operation. Perturbed sensory feedback research over the past three decades has established that spatial transformations or temporal delays in sensory feedback engender substantial decrements in interactive task performance, which training does not completely overcome. A recently developed social cybernetic model of human-computer interaction can be used to guide this approach, based on computer-mediated tracking and control of sensory feedback. How the social cybernetic model can be employed for evaluating the various modes, patterns, and integrations of interpersonal, team, and human-computer interactions which play a central role is workstation telepresence are discussed.
Anderson, Hope D I; Wang, Feng; Gardner, David G
2004-03-05
The epidermal growth factor receptor (EGFR) and ectoshedding of heparin-binding epidermal growth factor (HBEGF), an EGFR ligand, have been linked to the development of cardiac myocyte hypertrophy. However, the precise role that the liganded EGFR plays in the transcriptional activation of the gene program that accompanies hypertrophy remains undefined. Utilizing the human (h) BNP gene as a model of hypertrophy-dependent gene activation, we show that activation of the EGFR plays an important role in mediating mechanical strain-dependent stimulation of the hBNP promoter. Strain promotes endothelin (ET) generation through NAD(P)H oxidase-dependent production of reactive oxygen species. ET in turn induces metalloproteinase-mediated cleavage of pro-HBEGF and ectoshedding of HBEGF, which activates the EGFR and stimulates hBNP promoter activity. HBEGF also stimulates other phenotypic markers of hypertrophy including protein synthesis and sarcomeric assembly. The antioxidant N-acetylcysteine or the NAD(P)H oxidase inhibitor, apocynin, inhibited strain-dependent activation of the ET-1 promoter, HBEGF shedding, and hBNP promoter activation. The metalloproteinase inhibitor, GM-6001, prevented the induction of HBEGF ectoshedding and the hBNP promoter response to strain, suggesting a critical role for the metalloproteinase-dependent cleavage event in signaling the strain response. These findings suggest that metalloproteinase activity as an essential step in this pathway may prove to be a relevant therapeutic target in the management of cardiac hypertrophy.
Social phobia: etiology, neurobiology, and treatment.
Coupland, N J
2001-01-01
Social phobia is a common and often disabling condition, with an etiology that is not established. There is evidence at several levels for an interplay of biological and psychological processes in social phobia. Genetic studies show that both genetic and environmental factors are important, with evidence pointing to associations with 2 genetic conditions, autism and fragile X syndrome. Behavioral inhibition has emerged as an important precursor to social phobia and possibly to other anxiety disorders. Epidemiologic and clinical studies have suggested that factors within the family environment, such as overprotection, overcontrol, modeling of anxiety, criticism, and in some cases abuse, can play a role in the development of social phobia. During childhood, complex interactions between brain system disturbances that mediate responses to negative social cues and factors in the social setting may lead to the development of a distorted set of internal "blueprints" for social behavior. The impact of severe social anxiety on brain systems that mediate behavioral change may prevent patients from learning better "blueprints." These can be taught through cognitive-behavioral therapies. The effective control of social anxiety with medications enables patients to recover; whether recovery can last after discontinuation of medications may depend on whether a new "blueprint" has been developed and whether stable changes in affected brain systems have occurred. Neuroimaging techniques are at the early stage of identifying abnormalities at the neurotransmitter and systems levels.
Baggott, Rhiannon R; Alfranca, Arantzazu; López-Maderuelo, Dolores; Mohamed, Tamer M A; Escolano, Amelia; Oller, Jorge; Ornes, Beatriz C; Kurusamy, Sathishkumar; Rowther, Farjana B; Brown, James E; Oceandy, Delvac; Cartwright, Elizabeth J; Wang, Weiguang; Gómez-del Arco, Pablo; Martínez-Martínez, Sara; Neyses, Ludwig; Redondo, Juan Miguel; Armesilla, Angel Luis
2014-10-01
Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis. © 2014 American Heart Association, Inc.
Jayasuriya, Rohan; Jayasinghe, Upali W; Wang, Qian
2014-07-01
Health worker (HW) performance is a critical issue facing many low- and middle-income countries (LMICs). The aim of this study was to test the effects of factors in the work environment, such as organizational culture and climate, on HW non-task performance in rural health work settings in a LMIC. The data for the study is from a sample of 963 HWs from rural health centres (HCs) in 16 of the 20 provinces in Papua New Guinea. The reliability and validity of measures for organizational citizenship behaviour (OCB), counterproductive work behaviour (CWB) and work climate (WC) were tested. Multilevel linear regression models were used to test the relationship of individual and HC level factors with non-task performance. The survey found that 62 per cent of HCs practised OCB "often to always" and 5 percent practised CWB "often to always". Multilevel analysis revealed that WC had a positive effect on organizational citizenship behaviour (OCB) and a negative effect on CWB. The mediation analyses provided evidence that the relationship between WC and OCB was mediated through CWB. Human resource policies that improve WC in rural health settings would increase positive non-task behaviour and improve the motivation and performance of HWs in rural settings in LMICs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Seki, Ekihiro; Tsutsui, Hiroko; Iimuro, Yuji; Naka, Tetsuji; Son, Gakuhei; Akira, Shizuo; Kishimoto, Tadamitsu; Nakanishi, Kenji; Fujimoto, Jiro
2005-03-01
Toll-like receptors (TLRs) act as innate immune signal sensors and play central roles in host defense. Myeloid differentiation factor (MyD) 88 is a common adaptor molecule required for signaling mediated by TLRs. When the receptors are activated, cells bearing TLRs produce various proinflammatory cytokines in a MyD88-dependent manner. Liver regeneration following partial hepatectomy (PH) requires innate immune responses, particularly interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) production by Kupffer cells, although the recognition and activation processes are still unknown. We investigated whether TLR/MyD88 signaling is critical for induction of innate immune responses after PH. In Myd88(-/-) mice after PH, induction of expression of immediate early genes involved in hepatocyte replication and phosphorylation of STAT3 in the liver, and production of TNF-alpha/IL-6 by and activation of NF-kappaB in the Kupffer cells were grossly subnormal and were associated with impaired liver regeneration. However, TLR2, 4 and 9, which recognize gram-negative and -positive bacterial products, are not essential for NF-kappaB activation and IL-6 production after PH, which excludes a possible contribution of TLR2/TLR4 or TLR9 to MyD88-mediated pathways. In conclusion, the TLR/MyD88 pathway is essential for incidental liver restoration, particularly its early phase.
Is Critical Thinking a Mediator Variable of Student Performance in School?
ERIC Educational Resources Information Center
Walter, Christel; Walter, Paul
2018-01-01
The study explores the influences of critical thinking and interests on students' performance at school. The tested students attended German grammar schools ("Gymnasien"). Separate regression analyses showed the expected moderate positive influences of critical thinking and interests on school performance. But analyzed simultaneously,…
Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu
The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as amore » plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.« less
Yoon, Susan; Kobulsky, Julia M; Voith, Laura A; Steigerwald, Stacey; Holmes, Megan R
2015-12-01
The main objectives of this study were to investigate (1) the relationship between mild, moderate, and severe violence exposure in the home and behavior problems in adolescents; (2) the caregiver-child relationship as a potential mediator in this relationship; and (3) gender differences. A series of path analyses were conducted using a sample drawn from the National Survey of Child and Adolescent Well-Being (NCSAW-I) of 848 adolescents (ages 11-15) who had been reported to Child Protective Services for maltreatment and who remained in their homes. Exposure to violence and the caregiver-child relationship were reported by adolescents. Both caregiver ratings and adolescent self-reports were used to assess adolescents' behavior problems. Path analysis indicated that exposure to mild and severe violence was directly associated with higher levels of child-reported behavior problems. However, exposure to violence was not directly associated with caregiver ratings of adolescent behavior problems. The caregiver-child relationship mediated the relationship between mild and moderate violence on both caregiver and child-reported adolescent behavior problems. Gender differences also emerged; for girls, the caregiver-child relationship mediated the effects of mild and moderate violence, whereas for boys, it mediated the effects of severe violence on behavior problems. Study findings suggest caregiver-child relationships as a critical underlying mechanism in the association between violence exposure and adolescent behavior problems, highlighting the importance of adding the caregiver-child relationship factor to intervention efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ahmad, Pamela J.; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y.; Giachelli, Cecilia M.; Bendeck, Michelle P.
2009-01-01
Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1−/−;Ldlr−/− and Ddr1+/+;Ldlr−/− mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor α staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1+/+ smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1−/− smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification. PMID:19893047
Ahmad, Pamela J; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y; Giachelli, Cecilia M; Bendeck, Michelle P
2009-12-01
Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1(-/-);Ldlr(-/-) and Ddr1(+/+);Ldlr(-/-) mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor alpha staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1(+/+) smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1(-/-) smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification.
Guo, Xiaolin; Lv, Bo; Zhou, Huan; Liu, Chunhui; Liu, Juan; Jiang, Kexin; Luo, Liang
2018-01-01
The impact of social economic status (SES) on children's academic outcomes has been well documented. However, the mechanisms underlying this relationship remain poorly understood. Furthermore, the process by which SES relates to academic achievement needs to be studied separately for boys and girls. Using a sample of 598 Chinese children (299 boys, 299 girls) in grades 4 to 6 and their parents, this study examined the process of how family SES, specifically family income and parental education, indirectly relates to children's reading achievement through parental expectation and parental involvement and whether this process differs between boys and girls. The results revealed that parental expectation and specific parental involvement behaviors played critical mediating roles between family SES and reading achievement. Moreover, the exact nature of these links differed by the gender of children. For boys, both the effect of parental education and the effect of family income were partially mediated by parental expectation and parent-child communication orderly. For girls, the effect of parental education was partially mediated by three separate pathways: (1) home monitoring; (2) parent-child communication; and (3) parental expectation followed by parent-child communication, while the effect of family income was fully mediated by parent-child communication. These findings suggest a process through which SES factors are related to children's academic development and identify a context under which these associations may differ. The practical implications of these findings are discussed, along with possible future research directions.
Prevalence, Risk Factors, and Outcomes of Financial Stress in Survivors of Critical Illness.
Khandelwal, Nita; Hough, Catherine L; Downey, Lois; Engelberg, Ruth A; Carson, Shannon S; White, Douglas B; Kahn, Jeremy M; Jones, Derek M; Key, Mary D; Reagan, Wen; Porter, Laura S; Curtis, J Randall; Cox, Christopher E
2018-06-01
Little is known about the experience of financial stress for patients who survive critical illness or their families. Our objective was to describe the prevalence of financial stress among critically ill patients and their families, identify clinical and demographic characteristics associated with this stress, and explore associations between financial stress and psychologic distress. Secondary analysis of a randomized trial comparing a coping skills training program and an education program for patients surviving acute respiratory failure and their families. Five geographically diverse hospitals. Patients (n = 175) and their family members (n = 85) completed surveys within 2 weeks of arrival home and 3 and 6 months after randomization. We used regression analyses to assess associations between patient and family characteristics at baseline and financial stress at 3 and 6 months. We used path models and mediation analyses to explore relationships between financial stress, symptoms of anxiety and depression, and global mental health. Serious financial stress was high at both time points and was highest at 6 months (42.5%) among patients and at 3 months (48.5%) among family members. Factors associated with financial stress included female sex, young children at home, and baseline financial discomfort. Experiencing financial stress had direct effects on symptoms of anxiety (β = 0.260; p < 0.001) and depression (β = 0.048; p = 0.048). Financial stress after critical illness is common and associated with symptoms of anxiety and depression. Our findings provide direction for potential interventions to reduce this stress and improve psychologic outcomes for patients and their families.
USDA-ARS?s Scientific Manuscript database
Ecdysteroids play a critical role in coordinating insect growth, development, and reproduction. A suite of cytochrome P450 monooxygenases coded by what are collectively termed Halloween genes mediate ecdysteroid biosynthesis. In this study, we describe cloning and RNAi-mediated knockdown of the CYP3...
Yang, Yun-Hsiang; Hsieh, Ting-Lieh; Ji, Andrea Tung-Qian; Hsu, Wei-Tse; Liu, Chia-Yu; Lee, Oscar Kuang-Sheng; Ho, Jennifer Hui-Chun
2016-10-01
The healing of a corneal epithelial defect is essential for preventing infectious corneal ulcers and subsequent blindness. We previously demonstrated that mesenchymal stem cells (MSCs) in the corneal stroma, through a paracrine mechanism, yield a more favorable therapeutic benefit for corneal wound re-epithelialization than do MSCs in the corneal epithelium. In this study, MSCs were grown on a matrix with the rigidity of the physiological human vitreous (1 kPa), corneal epithelium (8 kPa), or corneal stroma (25 kPa) for investigating the role of corneal tissue rigidity in MSC functions regarding re-epithelialization promotion. MSC growth on a 25-kPa dish significantly promoted the wound healing of human corneal epithelial (HCE-T) cells. Among growth factors contributing to corneal epithelial wound healing, corneal stromal rigidity selectively enhanced transforming growth factor-beta (TGF-β) secretion from MSCs. Inhibitors of TGF-β pan receptor, TGF-β receptor 1, and Smad2 dose dependently abrogated MSC-mediated HCE-T wound healing. Furthermore, MSCs growth on a matrix with corneal stromal rigidity enhanced the ability of themselves to promote corneal re-epithelialization by activating matrix metalloproteinase (MMP) expression and integrin β1 production in HCE-T cells through TGF-β signaling pathway activation. Smad2 activation resulted in the upregulation of MMP-2 and -13 expression in HCE-T cells, whereas integrin β1 production favored a Smad2-independent TGF-β pathway. Altogether, we conclude that corneal stromal rigidity is a critical factor for MSC-induced promotion of corneal re-epithelialization. The activation of the TGF-β signaling pathway, which maintains the balance between integrin and MMP expression, in HCE-T cells is the major pathway responsible for MSC-mediated wound healing. Stem Cells 2016;34:2525-2535. © 2016 AlphaMed Press.
Role of human oocyte-enriched factors in somatic cell reprograming.
El-Gammal, Zaynab; AlOkda, Abdelrahman; El-Badri, Nagwa
2018-06-08
Cellular reprograming paves the way for creating functional patient-specific tissues to eliminate immune rejection responses by applying the same genetic profile. However, the epigenetic memory of a cell remains a challenge facing the current reprograming methods and does not allow transcription factors to bind properly. Because somatic cells can be reprogramed by transferring their nuclear contents into oocytes, introducing specific oocyte factors into differentiated cells is considered a promising approach for mimicking the reprograming process that occurs during fertilization. Mammalian metaphase II oocyte possesses a superior capacity to epigenetically reprogram somatic cell nuclei towards an embryonic stem cell-like state than the current factor-based reprograming approaches. This may be due to the presence of specific factors that are lacking in the current factor-based reprograming approaches. In this review, we focus on studies identifying human oocyte-enriched factors aiming to understand the molecular mechanisms mediating cellular reprograming. We describe the role of oocyte-enriched factors in metabolic switch, chromatin remodelling, and global epigenetic transformation. This is critical for improving the quality of resulting reprogramed cells, which is crucial for therapeutic applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Dusaban, Stephanie S.; Kunkel, Maya T.; Smrcka, Alan V.; Brown, Joan Heller
2015-01-01
Phospholipase C-epsilon (PLCϵ) plays a critical role in G-protein-coupled receptor-mediated inflammation. In addition to its ability to generate the second messengers inositol 1,4,5-trisphosphate and diacylglycerol, PLCϵ, unlike the other phospholipase C family members, is activated in a sustained manner. We hypothesized that the ability of PLCϵ to function as a guanine nucleotide exchange factor (GEF) for Rap1 supports sustained downstream signaling via feedback of Rap1 to the enzyme Ras-associating (RA2) domain. Using gene deletion and adenoviral rescue, we demonstrate that both the GEF (CDC25 homology domain) and RA2 domains of PLCϵ are required for long term protein kinase D (PKD) activation and subsequent induction of inflammatory genes. PLCϵ localization is largely intracellular and its compartmentalization could contribute to its sustained activation. Here we show that localization of PLCϵ to the Golgi is required for activation of PKD in this compartment as well as for subsequent induction of inflammatory genes. These data provide a molecular mechanism by which PLCϵ mediates sustained signaling and by which astrocytes mediate pathophysiological inflammatory responses. PMID:26350460
Zeng, Danyun; Shen, Qingliang; Cho, Jae-Hyun
2017-02-26
Biological functions of intrinsically disordered proteins (IDPs), and proteins containing intrinsically disordered regions (IDRs) are often mediated by short linear motifs, like proline-rich motifs (PRMs). Upon binding to their target proteins, IDPs undergo a disorder-to-order transition which is accompanied by a large conformational entropy penalty. Hence, the molecular mechanisms underlying control of conformational entropy are critical for understanding the binding affinity and selectivity of IDPs-mediated protein-protein interactions (PPIs). Here, we investigated the backbone conformational entropy change accompanied by binding of the N-terminal SH3 domain (nSH3) of CrkII and PRM derived from guanine nucleotide exchange factor 1 (C3G). In particular, we focused on the estimation of conformational entropy change of disordered PRM upon binding to the nSH3 domain. Quantitative characterization of conformational dynamics of disordered peptides like PRMs is limited. Hence, we combined various methods, including NMR model-free analysis, δ2D, DynaMine, and structure-based calculation of entropy loss. This study demonstrates that the contribution of backbone conformational entropy change is significant in the PPIs mediated by IDPs/IDRs. Copyright © 2017 Elsevier Inc. All rights reserved.
Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease.
Kajiya, Mikihito; Giro, Gabriela; Taubman, Martin A; Han, Xiaozhe; Mayer, Marcia P A; Kawai, Toshihisa
2010-11-08
Accumulated lines of evidence suggest that hyperimmune responses to periodontal bacteria result in the destruction of periodontal connective tissue and alveolar bone. The etiological roles of periodontal bacteria in the onset and progression of periodontal disease (PD) are well documented. However, the mechanism underlying the engagement of periodontal bacteria in RANKL-mediated alveolar bone resorption remains unclear. Therefore, this review article addresses three critical subjects. First, we discuss earlier studies of immune intervention, ultimately leading to the identification of bacteria-reactive lymphocytes as the cellular source of osteoclast-induction factor lymphokine (now called RANKL) in the context of periodontal bone resorption. Next, we consider (1) the effects of periodontal bacteria on RANKL production from a variety of adaptive immune effector cells, as well as fibroblasts, in inflamed periodontal tissue and (2) the bifunctional roles (upregulation vs. downregulation) of LPS produced from periodontal bacteria in a RANKL-induced osteoclast-signal pathway. Future studies in these two areas could lead to new therapeutic approaches for the management of PD by down-modulating RANKL production and/or RANKL-mediated osteoclastogenesis in the context of host immune responses against periodontal pathogenic bacteria.
ATF3 represses PPARγ expression and inhibits adipocyte differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr
Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3more » in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated inhibition of PPARγ expression may contribute to inhibition of adipocyte differentiation during cellular stress including ER stress.« less
Ahmad, Ikhlas; Soenens, Bart
2010-12-01
This study investigated the intergenerational similarity of personality vulnerability to depression as conceptualized by Blatt (1974) in a sample of Arab Jordanian mothers and their adolescents. Perceived maternal parenting was examined as a mediator of the intergenerational similarity of two personality vulnerabilities; that is, dependency and self-criticism. Both mothers and adolescents (N = 298 families) completed the Depressive Experiences Questionnaire (DEQ) to tap into personality vulnerability and adolescents additionally provided ratings of maternal parenting (support and psychological control) and depressive symptoms. Findings showed significant and specific associations between mothers' and adolescents' dependency and self-criticism. Perceived maternal parenting was found to mediate this intergenerational similarity at least partially. This study is among the first to test developmental hypotheses derived from Blatt's theory in a non-Western sample. Findings show striking similarity with data obtained in the West and, as such, contribute to the cross-cultural generalization of the theory.
Eating psychopathology amongst athletes: links to current attachment styles.
Shanmugam, Vaithehy; Jowett, Sophia; Meyer, Caroline
2012-01-01
The aims of the study were two-fold; first to determine the associations between current attachment styles, and eating psychopathology amongst athletes, and second to simultaneously assess the mediating effects of self-esteem, perfectionism, and depression in this association. Four hundred and eleven British athletes completed self-report instruments pertaining to eating psychopathology, attachment styles, self-esteem, depression, and perfectionism. Athletes who scored highly on both avoidant and anxious attachment styles, reported elevated eating psychopathology scores. However, such associations were indirect and mediated via athletes' levels of self-esteem, self-critical perfectionism, and depression, with self-esteem and depression identified as more salient mediators than self-critical perfectionism. The current findings provide evidence to suggest that insecure attachment styles influence athletes' eating psychopathology via their impact on self-esteem, depression, and self-critical perfectionism. Moreover, self-esteem and depression may play more significant role in transferring the impact of insecure attachment styles on elevated eating psychopathology. Copyright © 2011 Elsevier Ltd. All rights reserved.
Emerging roles and regulation of MiT/TFE transcriptional factors.
Yang, Min; Liu, En; Tang, Li; Lei, Yuanyuan; Sun, Xuemei; Hu, Jiaxi; Dong, Hui; Yang, Shi-Ming; Gao, Mingfa; Tang, Bo
2018-06-15
The MiT/TFE transcription factors play a pivotal role in the regulation of autophagy and lysosomal biogenesis. The subcellular localization and activity of MiT/TFE proteins are primarily regulated through phosphorylation. And the phosphorylated protein is retained in the cytoplasm and subsequently translocates to the nucleus upon dephosphorylation, where it stimulates the expression of hundreds of genes, leading to lysosomal biogenesis and autophagy induction. The transcription factor-mediated lysosome-to-nucleus signaling can be directly controlled by several signaling molecules involved in the mTORC1, PKC, and AKT pathways. MiT/TFE family members have attracted much attention owing to their intracellular clearance of pathogenic factors in numerous diseases. Recently, multiple studies have also revealed the MiT/TFE proteins as master regulators of cellular metabolic reprogramming, converging on autophagic and lysosomal function and playing a critical role in cancer, suggesting that novel therapeutic strategies could be based on the modulation of MiT/TFE family member activity. Here, we present an overview of the latest research on MiT/TFE transcriptional factors and their potential mechanisms in cancer.
HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity.
Trusolino, L; Cavassa, S; Angelini, P; Andó, M; Bertotti, A; Comoglio, P M; Boccaccio, C
2000-08-01
Hepatocyte growth factor/scatter factor (HGF/SF) controls a genetic program known as 'invasive growth', which involves as critical steps cell adhesion, migration, and trespassing of basement membranes. We show here that in MDA-MB-231 carcinoma cells, these steps are elicited by HGF/SF but not by epidermal growth factor (EGF). Neither factor substantially alters the production or activity of extracellular matrix proteases. HGF/SF, but not EGF, selectively promotes cell adhesion on laminins 1 and 5, fibronectin, and vitronectin through a PI3-K-dependent mechanism. Increased adhesion is followed by enhanced invasiveness through isolated matrix proteins as well as through reconstituted basement membranes. Inhibition assays using function-blocking antibodies show that this phenomenon is mediated by multiple integrins including beta1, beta3, beta4, and beta5. HGF/SF triggers clustering of all these integrins at actin-rich adhesive sites and lamellipodia but does not quantitatively modify their membrane expression. These data suggest that HGF/SF promotes cell adhesion and invasiveness by increasing the avidity of integrins for their specific ligands.
Ka, Minhan; Kim, Woo-Yang
2015-01-01
Dendritic arborization and axon outgrowth are critical steps in the establishment of neural connectivity in the developing brain. Changes in the connectivity underlie cognitive dysfunction in neurodevelopmental disorders. However, molecules and associated mechanisms that play important roles in dendritic and axon outgrowth in the brain are only partially understood. Here, we show that Microtubule-Actin Crosslinking Factor 1 (MACF1) regulates dendritic arborization and axon outgrowth of developing pyramidal neurons by arranging cytoskeleton components and mediating GSK-3 signaling. MACF1 deletion using conditional mutant mice and in utero gene transfer in the developing brain markedly decreased dendritic branching of cortical and hippocampal pyramidal neurons. MACF1-deficient neurons showed reduced density and aberrant morphology of dendritic spines. Also, loss of MACF1 impaired the elongation of callosal axons in the brain. Actin and microtubule arrangement appeared abnormal in MACF1-deficient neurites. Finally, we found that GSK-3 is associated with MACF1-controlled dendritic differentiation. Our findings demonstrate a novel role for MACF1 in neurite differentiation that is critical to the creation of neuronal connectivity in the developing brain. PMID:26526844
Sex Differences in Brain-Derived Neurotrophic Factor Signaling and Functions
Chan, Chi Bun; Ye, Keqiang
2016-01-01
Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family that plays a critical role in numerous neuronal activities. Recent studies report that some functions or action mechanisms of BDNF vary in a sex-dependent manner. In particular, BDNF content in some brain parts and the tendency of developing BDNF-deficient-related diseases like depression is higher in female animals. With the support of other relevant studies, it is suggested that sex hormones or steroids can modulate the activities of BDNF, which may account for its functional discrepancy in different sexes. Indeed, the cross-talk between BDNF and sex steroids has been detected for decades and some sex steroids like estrogen have a positive regulatory effect to BDNF expression and signaling. Thus, the sex of animal models used is critical when studying the functions of BDNF in vivo. In this review, we will summarize our current findings on the difference in expression, signaling, and functions of BDNF between sexes. We will also discuss the potential mechanisms in mediating these differential responses with a specific emphasis on sex steroids. By presenting and discussing these findings, we encourage taking sex influences into consideration when designing experiments, interpreting results and drawing conclusions. PMID:27870419
SRF phosphorylation by glycogen synthase kinase-3 promotes axon growth in hippocampal neurons.
Li, Cong L; Sathyamurthy, Aruna; Oldenborg, Anna; Tank, Dharmesh; Ramanan, Narendrakumar
2014-03-12
The growth of axons is an intricately regulated process involving intracellular signaling cascades and gene transcription. We had previously shown that the stimulus-dependent transcription factor, serum response factor (SRF), plays a critical role in regulating axon growth in the mammalian brain. However, the molecular mechanisms underlying SRF-dependent axon growth remains unknown. Here we report that SRF is phosphorylated and activated by GSK-3 to promote axon outgrowth in mouse hippocampal neurons. GSK-3 binds to and directly phosphorylates SRF on a highly conserved serine residue. This serine phosphorylation is necessary for SRF activity and for its interaction with MKL-family cofactors, MKL1 and MKL2, but not with TCF-family cofactor, ELK-1. Axonal growth deficits caused by GSK-3 inhibition could be rescued by expression of a constitutively active SRF. The SRF target gene and actin-binding protein, vinculin, is sufficient to overcome the axonal growth deficits of SRF-deficient and GSK-3-inhibited neurons. Furthermore, short hairpin RNA-mediated knockdown of vinculin also attenuated axonal growth. Thus, our findings reveal a novel phosphorylation and activation of SRF by GSK-3 that is critical for SRF-dependent axon growth in mammalian central neurons.
Silberman, Yuval; Winder, Danny G
2013-01-01
Stress and anxiety play an important role in the development and maintenance of drug and alcohol addiction. The bed nucleus of the stria terminalis (BNST), a brain region involved in the production of long-term stress-related behaviors, plays an important role in animal models of relapse, such as reinstatement to previously extinguished drug-seeking behaviors. While a number of neurotransmitter systems have been suggested to play a role in these behaviors, recent evidence points to the neuropeptide corticotropin releasing factor (CRF) as being critically important in BNST-mediated reinstatement behaviors. Although numerous studies indicate that the BNST is a complex brain region with multiple afferent and efferent systems and a variety of cell types, there has only been limited work to determine how CRF modulates this complex neuronal system at the circuit level. Recent work from our lab and others have begun to unravel these BNST neurocircuits and explore their roles in CRF-related reinstatement behaviors. This review will examine the role of CRF signaling in drug addiction and reinstatement with an emphasis on critical neurocircuitry within the BNST that may offer new insights into treatments for addiction.
Biological basis and pathological relevance of microvascular thrombosis.
Pfeiler, Susanne; Massberg, Steffen; Engelmann, Bernd
2014-05-01
Microvascular thrombosis indicates a pathological occlusion of microvessels by fibrin- and/or platelet-rich thrombi. It is observed during systemic infections, cancer, myocardial infarction, stroke, neurodegenerative diseases and in thrombotic microangiopathies. Microvessel thrombosis can cause greatly differing symptoms that range from limited changes in plasma coagulation markers to severe multi-organ failure. Because microvessel thrombi are difficult to detect and often occur only transiently, their importance for disease development and host biology is likely markedly under-appreciated. Recently, clear indications for a biological basis of microvascular thrombosis have been obtained. During systemic infections microvessel thrombosis can mediate an intravascular innate immune response (immunothrombosis). This biological form of thrombosis is based on the generation of fibrin inside blood vessels and is critically triggered by neutrophils and their interactions with platelets which result in the release of neutrophil extracellular traps (extracellular nucleosomes). Immunothrombosis is critically supported by neutrophil elastase and the activator molecules of blood coagulation tissue factor and factor XII. Identification of the biological driving forces of microvascular thrombosis should help to elucidate the mechanisms promoting pathological vessel occlusions in both microvessels and large vessels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Roles of Estrogen Receptor-α and the Coactivator MED1 During Human Endometrial Decidualization
Kaya Okur, Hatice S.; Das, Amrita; Taylor, Robert N.; Bagchi, Indrani C.
2016-01-01
The steroid hormones 17β-estradiol and progesterone are critical regulators of endometrial stromal cell differentiation, known as decidualization, which is a prerequisite for successful establishment of pregnancy. The present study using primary human endometrial stromal cells (HESCs) addressed the role of estrogen receptor-α (ESR1) in decidualization. Knockdown of ESR1 transcripts by RNA interference led to a marked reduction in decidualization of HESCs. Gene expression profiling at an early stage of decidualization indicated that ESR1 negatively regulates several cell cycle regulatory factors, thereby suppressing the proliferation of HESCs as these cells enter the differentiation program. ESR1 also controls the expression of WNT4, FOXO1, and progesterone receptor (PGR), well-known mediators of decidualization. Whereas ESR1 knockdown strongly inhibited the expression of FOXO1 and WNT4 transcripts within 24 hours of the initiation of decidualization, PGR expression remained unaffected at this early time point. Our study also revealed a major role of cAMP signaling in influencing the function of ESR1 during decidualization. Using a proteomic approach, we discovered that the cAMP-dependent protein kinase A (PKA) phosphorylates Mediator 1 (MED1), a subunit of the mediator coactivator complex, during HESC differentiation. Using immunoprecipitation, we demonstrated that PKA-phosphorylated MED1 interacts with ESR1. The PKA-dependent phosphorylation of MED1 was also correlated with its enhanced recruitment to estrogen-responsive elements in the WNT4 gene. Knockdown of MED1 transcripts impaired the expression of ESR1-induced WNT4 and FOXO1 transcripts and blocked decidualization. Based on these findings, we conclude that modulation of ESR1-MED1 interactions by cAMP signaling plays a critical role in human decidualization. PMID:26849466
Vasculogenic Mimicry of HT1080 Tumour Cells In Vivo: Critical Role of HIF-1α-Neuropilin-1 Axis
Misra, Roli M.; Bajaj, Manmohan S.; Kale, Vaijayanti P.
2012-01-01
HT1080 - a human fibrosarcoma-derived cell line – forms aggressive angiogenic tumours in immuno-compromised mice. In spite of its extensive use as a model of tumour angiogenesis, the molecular event(s) initiating the angiogenic program in these cells are not known. Since hypoxia stimulates tumour angiogenesis, we examined the hypoxia-induced events evoked in these cells. In contrast to cells grown under normoxic conditions, hypoxia-primed (1% O2) HT1080 cells formed robust tubules on growth factor-reduced matrigel and formed significantly larger tumours in xenograft models in a chetomin-sensitive manner, indicating the role of HIF-1α-mediated transcription in these processes. Immuno-histochemical analyses of tumours formed by GFP-expressing HT1080 cells clearly showed that the tumour cells themselves expressed various angiogenic markers including Neuropilin-1 (NRP-1) and formed functional vessels containing red blood cells, thereby unambiguously demonstrating the vasculogenic mimicry of HT1080 cells in vivo. Experiments performed with the HT1080 cells stably transfected with plasmid constructs expressing shNRP-1 or full-length NRP-1 clearly established that the HIF1α-mediated up-regulation of NRP-1 played a deterministic role in the process. Hypoxia-exposure resulted in an up-regulation of c-Myc and OCT3/4 and a down-regulation of KLF4 mRNAs, suggesting their involvement in the tumour formation and angiogenesis. However, silencing of NRP-1 alone, though not affecting proliferation in culture, was sufficient to abrogate the tumour formation completely; clearly establishing that the hypoxia-mediated HIF-1α-dependent up-regulation of NRP-1 is a critical molecular event involved in the vasculogenic mimicry and tumor formation by HT1080 cells in vivo. PMID:23185562
Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy.
Garg, Himanshu; Viard, Mathias; Jacobs, Amy; Blumenthal, Robert
2011-12-01
HIV gp41 is a metastable protein whose native conformation is maintained in the form of a heterodimer with gp120. The non-covalently associated gp41/gp120 complex forms a trimer on the virus surface. As gp120 engages with HIV's receptor, CD4, and coreceptor, CXCR4 or CCR5, gp41 undergoes several conformational changes resulting in fusion between the viral and cellular membranes. Several lipophilic and amphiphilic domains have been shown to be critical in that process. While the obvious function of gp41 in viral entry is well-established its role in cellular membrane fusion and the link with pathogenesis are only now beginning to appear. Recent targeting of gp41 via fusion inhibitors has revealed an important role of this protein not only in viral entry but also in bystander apoptosis and HIV pathogenesis. Studies by our group and others have shown that the phenomenon of gp41-mediated hemifusion initiates apoptosis in bystander cells and correlates with virus pathogenesis. More interestingly, recent clinical evidence suggests that gp41 mutants arising after Enfuvirtide therapy are associated with CD4 cell increase and immunological benefits. This has in turn been correlated to a decrease in bystander apoptosis in our in vitro as well as in vivo assays. Although a great deal of work has been done to unravel HIV-1 gp41-mediated fusion mechanisms, the factors that regulate gp41-mediated fusion versus hemifusion and the mechanism by which hemifusion initiates bystander apoptosis are not fully understood. Further insight into these issues will open new avenues for drug development making gp41 a critical anti-HIV target both for neutralization and virus attenuation.
Cristofanon, S; Abhari, B A; Krueger, M; Tchoghandjian, A; Momma, S; Calaminus, C; Vucic, D; Pichler, B J; Fulda, S
2015-04-16
This study aims at evaluating the combination of the tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL)-receptor 2 (TRAIL-R2)-specific antibody Drozitumab and the Smac mimetic BV6 in preclinical glioblastoma models. To this end, the effect of BV6 and/or Drozitumab on apoptosis induction and signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures and glioblastoma stem-like cells. Here, we report that BV6 and Drozitumab synergistically induce apoptosis and reduce colony formation in several glioblastoma cell lines (combination index<0.1). Also, BV6 profoundly enhances Drozitumab-induced apoptosis in primary glioblastoma cultures and glioblastoma stem-like cells. Importantly, BV6 cooperates with Drozitumab to suppress tumor growth in two glioblastoma in vivo models including an orthotopic, intracranial mouse model, underlining the clinical relevance of these findings. Mechanistic studies reveal that BV6 and Drozitumab act in concert to trigger the formation of a cytosolic receptor-interacting protein (RIP) 1/Fas-associated via death domain (FADD)/caspase-8-containing complex and subsequent activation of caspase-8 and -3. BV6- and Drozitumab-induced apoptosis is blocked by the caspase inhibitor zVAD.fmk, pointing to caspase-dependent apoptosis. RNA interference-mediated silencing of RIP1 almost completely abolishes the BV6-conferred sensitization to Drozitumab-induced apoptosis, indicating that the synergism critically depends on RIP1 expression. In contrast, both necrostatin-1, a RIP1 kinase inhibitor, and Enbrel, a TNFα-blocking antibody, do not interfere with BV6/Drozitumab-induced apoptosis, demonstrating that apoptosis occurs independently of RIP1 kinase activity or an autocrine TNFα loop. In conclusion, the rational combination of BV6 and Drozitumab presents a promising approach to trigger apoptosis in glioblastoma, which warrants further investigation.
Zhang, Pinghu; Zheng, Zuguo; Ling, Li; Yang, Xiaohui; Zhang, Ni; Wang, Xue; Hu, Maozhi; Xia, Yu; Ma, Yiwen; Yang, Haoran; Wang, Yunyi; Liu, Hongqi
2017-07-03
The EGFR (epidermal growth factor receptor) signaling pathway is frequently deregulated in many malignancies. Therefore, targeting the EGFR pathway is regarded as a promising strategy for anticancer drug discovery. Herein, we identified a 2-amino-nicotinonitrile compound (w09) as a novel autophagy enhancer, which potently induced macroautophagy/autophagy and consequent apoptosis in gastric cancer cells. Mechanistic studies revealed that EGFR-mediated activation of the RAS-RAF1-MAP2K-MAPK1/3 signaling pathway played a critical role in w09-induced autophagy and apoptosis of gastric cancer cells. Inhibition of the MAPK1/3 pathway with U0126 or blockade of autophagy by specific chemical inhibitors markedly attenuated the effect of w09-mediated growth inhibition and caspase-dependent apoptosis. Furthermore, these conclusions were supported by knockdown of ATG5 or knockout of ATG5 and/or ATG7. Notably, w09 increased the expression of SQSTM1 by transcription, and knockout of SQSTM1 or deleting the LC3-interaction region domain of SQSTM1, significantly inhibited w09-induced PARP1 cleavage, suggesting the central role played by SQSTM1 in w09-induced apoptosis. In addition, in vivo administration of w09 effectively inhibited tumor growth of SGC-7901 xenografts. Hence, our findings not only suggested that activation of the EGFR-RAS-RAF1-MAP2K-MAPK1/3 signaling pathway may play a critical role in w09-induced autophagy and apoptosis, but also imply that induction of autophagic cancer cell death through activation of the EGFR pathway may be a potential therapeutic strategy for EGFR-disregulated gastric tumors.
Kersigo, Jennifer; D’Angelo, Alex; Gray, Brian; Soukup, Garrett A.; Fritzsch, Bernd
2011-01-01
Cranial development is critically influenced by the relative growth of distinct elements. Previous studies have shown the transcription factor Foxg1 to be expressed is essential for development of telencephalon, olfactory epithelium, parts of the eye and the ear. Here we investigate the effects of a Foxg1-cre mediated conditional deletion of Dicer1 and microRNA (miRNA) on mouse embryos. We report the rapid and complete loss of the telencephalon and cerebellum as well as severe reduction in the ears and loss of the anterior half of the eyes. These losses result in unexpectedly limited malformations of anterodorsal aspects of the skull. We investigated the progressive disappearance of these initially developing structures and found a specific miRNA of nervous tissue, miR-124, to disappear prior to reduction in growth of the specific neurosensory areas. Correlated with the absence of miR-124, these areas showed numerous apoptotic cells that stained positive for anti-cleaved caspase 3 and the phosphatidylserine stain PSVue prior to the near or complete loss of those brain and sensory areas (forebrain, cerebellum, anterior retina, ear). We conclude that Foxg1-cre mediated conditional deletion of Dicer1 leads to absence of functional miRNA followed by complete or nearly complete loss of neurons. Embryonic neurosensory development therefore depends critically on miRNA. Our data suggest that loss of a given neuronal compartment can be triggered using early deletion of Dicer1 and thus provides a novel means to genetically remove specific neurosensory areas to investigate loss of their function on morphology (this study) or signal processing within the brain. PMID:21225654
HD domain of SAMHD1 influences Vpx-induced degradation at a post-interaction step
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Jian; Hou, Jingwei; Zhao, Ke
Primate SAMHD1 proteins are potent inhibitors of viruses, including retroviruses such as HIV-1, HIV-2, and SIV. Vpx, a distinctive viral protein expressed by HIV-2 and some SIVs, induces SAMHD1 degradation by forming a Vpx-DCAF1-based ubiquitin ligase complex. Either the N- or the C-terminus of SAMHD1 is critical for Vpx-induced degradation, depending on the types of SAMHD1 and Vpx proteins. However, it was not fully understood whether other regions of SAMHD1 also contribute to its depletion by Vpx. In the present study, we report that SAMHD1 from chicken (SAMHD1{sub GG}) was not degraded by SIVmac Vpx, in contrast with results formore » human SAMHD1 (SAMHD1{sub HS}). Results regarding to SAMHD1{sub HS} and SAMHD1{sub GG} fusion proteins supported previous findings that the C-terminus of SAMHD1{sub HS} is essential for Vpx-induced degradation. Internal domain substitution, however, revealed that the HD domain also contributes to Vpx-mediated SAMHD1 degradation. Interestingly, the HD domain influenced Vpx-mediated SAMHD1 degradation without affecting Vpx-SAMHD1 interaction. Therefore, our findings revealed that factors in addition to Vpx-SAMHD1 binding influence the efficiency of Vpx-mediated SAMHD1 degradation. - Highlights: • SAMHD1{sub GG} from chicken could not be depleted by SIVmac Vpx. • The C-terminus of human SAMHD1{sub HS} is critical for its degradation by Vpx. • The HD domain is essential for Vpx-induced degradation of SAMHD1{sub HS}. • Altering the HD domain does not affect Vpx-SAMHD1 interaction.« less
Crampton, Alexandra
2013-01-01
Mediation is a process through which a third party facilitates discussion among disputing parties to help them identify interests and ideally reach an amicable solution. Elder mediation is a growing subspecialty to address conflicts involving older adults, primarily involving caregiving or finances. Mediation is theorized to empower participants but critics argue that it can exacerbate power imbalances among parties and coerce consensus. These contested claims are examined through study of a national caregiver mediation demonstration project. Study implications underscore the importance of gerontological social work expertise to ensure the empowerment of vulnerable older adults in mediation sessions.
Crampton, Alexandra
2014-01-01
Mediation is a process through which a third party facilitates discussion among disputing parties to help them identify interests and ideally reach an amicable solution. Elder mediation is a growing subspecialty to address conflicts involving older adults, primarily involving caregiving or finances. Mediation is theorized to empower participants but critics argue that it can exacerbate power imbalances among parties and coerce consensus. These contested claims are examined through study of a national caregiver mediation demonstration project. Study implications underscore the importance of gerontological social work expertise to ensure the empowerment of vulnerable older adults in mediation sessions. PMID:23767767
Riboregulators: Fine-Tuning Virulence in Shigella.
Fris, Megan E; Murphy, Erin R
2016-01-01
Within the past several years, RNA-mediated regulation (ribo-regulation) has become increasingly recognized for its importance in controlling critical bacterial processes. Regulatory RNA molecules, or riboregulators, are perpetually responsive to changes within the micro-environment of a bacterium. Notably, several characterized riboregulators control virulence in pathogenic bacteria, as is the case for each riboregulator characterized to date in Shigella. The timing of virulence gene expression and the ability of the pathogen to adapt to rapidly changing environmental conditions is critical to the establishment and progression of infection by Shigella species; ribo-regulators mediate each of these important processes. This mini review will present the current state of knowledge regarding RNA-mediated regulation in Shigella by detailing the characterization and function of each identified riboregulator in these pathogens.
Adam, Liana; Black, Peter C; Kassouf, Wassim; Eve, Beryl; McConkey, David; Munsell, Mark F; Benedict, William F; Dinney, Colin P N
2007-05-01
Intravesical adenovirus mediated interferon-alpha gene transfer has a potent therapeutic effect against superficial human bladder carcinoma xenografts growing in the bladder of athymic nude mice. We determined whether the inhibition of angiogenesis might contribute to the antitumor effect. We treated several human urothelial carcinoma cells with adenovirus mediated interferon-alpha 2b and monitored its effects on the production of angiogenic factors using real-time reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemical analysis and a gel shift based transcription factor array. To assess the role of adenovirus mediated interferon 2b in angiogenic activity we used in vitro invasion assays and evaluated the anti-angiogenic effects of adenovirus mediated interferon gene therapy in an orthotopic murine model of human superficial bladder cancer. In adenovirus mediated interferon-alpha infected 253J B-V cells vascular endothelial growth factor was decreased and anti-angiogenic interferon-gamma inducible protein 10 was up-regulated. In contrast, the addition of as much as 100,000 IU recombinant interferon had no apparent effect on vascular endothelial growth factor production. Conditioned medium derived from adenovirus mediated interferon 2b infected 253J B-V cells greatly decreased the invasive potential of human endothelial cells and down-regulated their matrix metalloproteinase 2 expression compared to controls. Furthermore, adenovirus mediated interferon 2b blocked pro-angiogenic nuclear signals, such as the transcription factors activating protein-1 and 2, stimulating protein-1, nuclear factor kappaB and c-myb. In vivo experiments revealed significant vascular endothelial growth factor down-regulation and decreased tumor vessel density in the adenovirus mediated interferon 2b treated group compared to controls. Treatment with adenovirus mediated interferon 2b increases the angiostatic activity of the bladder cancer microenvironment. This inhibition may prove beneficial for treating superficial bladder cancer with adenovirus mediated interferon-alpha and hopefully contribute to a decreased recurrence rate of this neoplasm.
DiGiacomo, Vincent; Marivin, Arthur; Garcia-Marcos, Mikel
2018-01-23
Heterotrimeric G proteins are signal-transducing switches conserved across eukaryotes. In humans, they work as critical mediators of intercellular communication in the context of virtually any physiological process. While G protein regulation by G protein-coupled receptors (GPCRs) is well-established and has received much attention, it has become recently evident that heterotrimeric G proteins can also be activated by cytoplasmic proteins. However, this alternative mechanism of G protein regulation remains far less studied than GPCR-mediated signaling. This Viewpoint focuses on recent advances in the characterization of a group of nonreceptor proteins that contain a sequence dubbed the "Gα-binding and -activating (GBA) motif". So far, four proteins present in mammals [GIV (also known as Girdin), DAPLE, CALNUC, and NUCB2] and one protein in Caenorhabditis elegans (GBAS-1) have been described as possessing a functional GBA motif. The GBA motif confers guanine nucleotide exchange factor activity on Gαi subunits in vitro and activates G protein signaling in cells. The importance of this mechanism of signal transduction is highlighted by the fact that its dysregulation underlies human diseases, such as cancer, which has made the proteins attractive new candidates for therapeutic intervention. Here we discuss recent discoveries on the structural basis of GBA-mediated activation of G proteins and its evolutionary conservation and compare them with the better-studied mechanism mediated by GPCRs.
Salami, Alireza; Eriksson, Johan; Nilsson, Lars-Göran; Nyberg, Lars
2012-03-01
Aging is associated with declining cognitive performance as well as structural changes in brain gray and white matter (WM). The WM deterioration contributes to a disconnection among distributed brain networks and may thus mediate age-related cognitive decline. The present diffusion tensor imaging (DTI) study investigated age-related differences in WM microstructure and their relation to cognition (episodic memory, visuospatial processing, fluency, and speed) in a large group of healthy subjects (n=287) covering 6 decades of the human life span. Age related decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were observed across the entire WM skeleton as well as in specific WM tracts, supporting the WM degeneration hypothesis. The anterior section of the corpus callosum was more susceptible to aging compared to the posterior section, lending support to the anterior-posterior gradient of WM integrity in the corpus callosum. Finally, and of critical interest, WM integrity differences were found to mediate age-related reductions in processing speed but no significant mediation was found for episodic memory, visuospatial ability, or fluency. These findings suggest that compromised WM integrity is not a major contributing factor to declining cognitive performance in normal aging. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease. Copyright © 2011 Elsevier B.V. All rights reserved.
Gupta, Vishal; Agarwal, Upasna A; Khatri, Naresh
2016-11-01
This study examines the factors that mediate and moderate the relationships of perceived organizational support with work engagement and organization citizenship behaviour. Specifically, affective commitment is posited to mediate and psychological contract breach to moderate the above relationships. Nurses play a critical role in delivering exemplary health care. For nurses to perform at their best, they need to experience high engagement, which can be achieved by providing them necessary organizational support and proper working environment. Data were collected via a self-reported survey instrument. A questionnaire was administered to a random sample of 750 nurses in nine large hospitals in India during 2013-2014. Four hundred and seventy-five nurses (63%) responded to the survey. Hierarchical multiple regression was used for statistical analysis of the moderated-mediation model. Affective commitment was found to mediate the positive relationships between perceived organizational support and work outcomes (work engagement, organizational citizenship behaviour). The perception of unfulfilled expectations (psychological contract breach) was found to moderate the perceived organizational support-work outcome relationships adversely. The results of this study indicate that perceived organizational support exerts its influence on work-related outcomes and highlight the importance of taking organizational context, such as perceptions of psychological contract breach, into consideration when making sense of the influence of perceived organizational support on affective commitment, work engagement and citizenship behaviours of nurses. © 2016 John Wiley & Sons Ltd.
Ray, Lara A.; MacKillop, James; Monti, Peter M.
2015-01-01
Individual differences in subjective responses to alcohol consumption represent genetically-mediated biobehavioral mechanisms of alcoholism risk (i.e., endophenotype). The objective of this review is three-fold: (1) to provide a critical review the literature on subjective response to alcohol and to discuss the rationale for its conceptualization as an endophenotype for alcoholism; (2) to examine the literature on the neurobiological substrates and associated genetic factors subserving individual differences in subjective response to alcohol; and (3) to discuss the treatment implications of this approach and to propose a framework for conceptualizing, and systematically integrating, endophenotypes into alcoholism treatment. PMID:20590398
Critical factors to achieve low voltage- and capacitance-based organic field-effect transistors.
Jang, Mi; Park, Ji Hoon; Im, Seongil; Kim, Se Hyun; Yang, Hoichang
2014-01-15
Hydrophobic organo-compatible but low-capacitance dielectrics (10.5 nFcm(-2) ), polystyrene-grafted SiO2 could induce surface-mediated large crystal grains of face-to-face stacked triethylsilylethynyl anthradithiophene (TES-ADT), producing more efficient charge-carrier transport, in comparison to μm-sized pentacene crystals containing a face-to-edge packing. Low-voltage operating TES-ADT OFETs showed good device performance (μFET ≈ 1.3 cm(2) V(-1) s(-1) , Vth ≈ 0.5 V, SS ≈ 0.2 V), as well as excellent device reliability. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Drakesmith, Mark; Dutt, Anirban; Fonville, Leon; Zammit, Stanley; Reichenberg, Abraham; Evans, C John; Lewis, Glyn; Jones, Derek K; David, Anthony S
2016-04-01
White matter (WM) abnormalities have been identified in schizophrenia at the earliest stages of the disorder. Individuals in the general population with psychotic experiences (PEs) may show similar changes, suggesting dysfunction due to aberrant neurodevelopment. Studying such people is a powerful means of understanding the nature of neurodevelopmental problems without the confound of clinical management and allows other potential risk factors associated with the schizophrenia spectrum to be taken into account. To compare WM microstructure and myelination in young adults with and without PEs identified from a population-based cohort using diffusion and relaxometry magnetic resonance imaging and to quantify potential mediating effects of WM on several known risk factors for psychosis. In this case-control study, participants were drawn from the UK Avon Longitudinal Study of Parents and Children. Psychotic experiences were assessed using a semistructured interview. Magnetic resonance imaging was carried out at age 20 years in 123 participants who had PEs and 124 individuals serving as controls. Participants with PEs were subdivided into those with operationally defined suspected PEs, definite PEs, and psychotic disorder. Diffusion tensor magnetic resonance imaging and relaxometry-derived myelin water fractions were used to measure WM microstructure and myelination, respectively. Differences in quantitative WM indices were assessed using tract-based spatial statistics. A binary model and a continuum-like ordinal model of PEs were tested. Among the 123 participants who had PEs (mean [SE] age, 20.01 [0.004] years), 37 were male and 86 were female. Among the 124 controls (mean [SE] age, 20.11 [0.004] years), 49 were male and 76 were female. Fractional anisotropy in left frontomedial WM was significantly reduced in individuals with PEs (Montreal Neurological Institute [MNI] coordinates, -18, 37, -2; P = .0046). The ordinal model identified a similar but more widespread effect, with a corresponding increase in radial diffusivity (MNI coordinates, -15, 29, 21; P = .0042). Low birth weight (ρ = -0.155; P = .015) and childhood IQ (ρ = -0.188; P = .003) were associated with the presence of PEs. Results of mediation analysis were consistent with the association between birth weight (21.1% mediation effect; P = 6.20 × 10-3) and childhood IQ (7.9% mediation effect; P = .041) and by PEs being mediated by fractional anisotropy changes in these regions. The results of the study imply the presence of abnormal WM microstructure in young adults with PEs. The results are consistent with the hypothesis that neurodevelopmental factors cause alterations in the cellular composition of WM circuits critical to higher cognitive function. Such alterations may first manifest in childhood as reduced IQ and later contribute to PEs in early adulthood.
Dynamical mechanisms for skeletal pattern formation in the vertebrate limb.
Hentschel, H. G. E.; Glimm, Tilmann; Glazier, James A.; Newman, Stuart A.
2004-01-01
We describe a 'reactor-diffusion' mechanism for precartilage condensation based on recent experiments on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mesenchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-betas). One class of differentiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We show that this 'reactor-diffusion' mechanism leads naturally to patterning consistent with skeletal form, and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-beta and inhibitor concentrations in the developing limb bud. PMID:15306292
New and emerging therapies for inflammatory bowel diseases.
Grimm, Michael C
2009-10-01
The inflammatory bowel diseases have undergone an explosion of discovery in the last 10 years. The overwhelming focus of this has been in genetics and immune mechanisms of disease. While the former has provided critical information on predisposing factors, the latter has resulted in a panoply of novel immune-based therapies and technologies. These range from an improved approach to the use of conventional immunomodulators, such as azathioprine and 6-mercaptopurine, to commonplace availability of anti-tumor necrosis factor agents such as infliximab and adalimumab, through to small molecule inhibition of immune mediators. Unusual treatments, such as helminth infestation, stem cell transplantation, and leucocytapheresis, all derive from the burgeoning understanding of pathogenesis. Most important to our successful use of these therapies will be a fundamental understanding of the patient phenotypes and genotypes that will dictate particular treatment approaches in the future.
“Nox4 and diabetic nephropathy: With a friend like this who needs enemies”
Gorin, Yves; Block, Karen
2013-01-01
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related the understanding of the role of Nox catalytic and regulatory subunits in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-ß. The role of the Nox isoform, Nox4, in the redox processes that alter renal biology in diabetes will be highlighted. PMID:23528476
Implications of High Temperature and Elevated CO2 on Flowering Time in Plants
Jagadish, S. V. Krishna; Bahuguna, Rajeev N.; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P. V. Vara; Craufurd, Peter Q.
2016-01-01
Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation. PMID:27446143
ERIC Educational Resources Information Center
Gaynor, Scott T.; Harris, Amanda
2008-01-01
Determining the means by which effective psychotherapy works is critical. A generally recommended strategy for identifying the potential causal variables is to conduct group-level statistical tests of treatment mediators. Herein the case is made for also assessing mediators of treatment outcome at the level of the individual participant.…
Yildirim, Bariş O; Derksen, Jan J L
2013-08-01
Since its theoretical inception, psychopathy has been considered by philosophers, clinicians, theorists, and empirical researchers to be substantially and critically explained by genetic factors. In this systematic review and structural analysis, new hypotheses will be introduced regarding gene-gene and gene-environment interactions in the etiology of psychopathy and sociopathy. Theory and research from neurobiological and behavioral sciences will be integrated in order to place this work in a broader conceptual framework and promote synergy across fields. First, a between groups comparison between psychopathy and sociopathy is made based on their specific dysfunctions in emotional processing, behavioral profiles, etiological pathways, HPA-axis functioning, and serotonergic profiles. Next, it is examined how various polymorphisms in serotonergic genes (e.g., TPH, 5HTT, HTR1A, HTR2A, HTR2C, and HTR3) might contribute either individually or interactively to the development of these disorders and through which specific biological and behavioral endophenotypes this effect could be mediated. A short introduction is made into mediating variables such as GABAergic functioning and testosterone which could potentially alter the decisive effect of serotonergic genotypes on behavior and physiology. Finally, critical commentary is presented on how to interpret the hypotheses put forward in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.
Social capital and health in China: exploring the mediating role of lifestyle.
Xue, Xindong; Cheng, Mingmei
2017-11-06
Although social capital as a key determinant of health has been well established in various studies, little is known about how lifestyle factors mediate this relationship. Understanding the cross-relationships between social capital, health, and lifestyle factors is important if health promotion policies are to be effective. The purpose of this study is to explore whether different dimensions of social capital and lifestyle factors are related, and whether lifestyle factors mediate the association between social capital and self-rated health (SRH) and psychological well-being (PWB) in China. This study used nationally representative data from the 2014 China Family Panel Studies (n = 28,916). The data reported on three dimensions of individual-level social capital: social trust, social relationship and Chinese Communist Party (CCP) membership. Health was assessed using SRH and PWB. Five lifestyle indicators were recorded: healthy diet, physical activity, smoking, sleeping, and non-overweight status. Logistic regression was used to examine the associations between social capital and lifestyle factors, and whether there was a mediating role of lifestyle. Odds ratios relating health status to social capital were reported before and after adjustment for lifestyle factors. Mediation analysis was then used to calculate the total, direct and indirect effects of social capital on SRH and PWB. The results show that social trust was significantly associated with all five lifestyle factors. Social relationship was significantly associated with four of the five: healthy diet, physical activity, sleeping and non-overweight. CCP membership was only significantly associated with two lifestyle factors: physical activity and non-overweight. Social trust and social relationship were significantly related to both SRH and PWB. CCP membership was only significantly related to SRH. Mediation analysis found modest evidence that lifestyle factors influenced the relationship between all three types of social capital and SRH. In contrast, only social trust and social relationship, but not CCP membership, were mediated by lifestyle factors with respect to PWB. This study is the first to explore the mediating role of lifestyle factors in the relationship between social capital and health in China. The overall findings suggest that lifestyle factors modestly mediate the association between social capital and health. The degree of mediating effect varies across different dimensions of social capital. Social capital-based health promotion policies would benefit from taking lifestyle factors into account.
Austin, Erica Weintraub; Pinkleton, Bruce E; Radanielina-Hita, Marie Louise; Ran, Weina
2015-01-01
A convenience survey completed online by 137 4-H parents in Washington state explored their orientation toward critical thinking regarding media sources and content and its implications for family dietary behaviors. Parents' critical thinking toward media sources predicted their information efficacy about content. Critical thinking toward media content predicted information efficacy about sources, expectancies for parental mediation, and expectancies for family receptiveness to lower-fat dietary changes. Expectancies for receptiveness to dietary changes and expectancies for parental mediation predicted efficacy for implementing healthy dietary practices; this strongly predicted healthy dietary practices. Media-related critical thinking, therefore, indirectly but consistently affected self-reported family dietary behaviors through its effects on efficacy for managing media and expectancies for the family's receptiveness to healthy dietary changes. The results suggest parents' media literacy skills affect their family's dietary behavior. Health campaigns that help parents interpret and manage the media environment may benefit all family members.