ERIC Educational Resources Information Center
Wallace, Faith H.
2006-01-01
This critical constructivist inquiry was designed to understand controlling factors faced by classroom literacy teachers involved in a professional development program. Two guiding questions framed this critical inquiry: (1) how can I describe controlling factors faced by teachers in their respective school cultures; and (2) what is the resultant…
Classroom Environments That Foster a Disposition for Critical Thinking
ERIC Educational Resources Information Center
Mathews, Samuel R.; Lowe, Katie
2011-01-01
In this article, we examine the disposition for critical thinking (CT) from three perspectives and analyse the underlying constructs of the disposition for CT, such as one's ability, sensitivity and inclination to engage in critical, mindful thought. Environmental factors that enhance or inhibit the development of a generalisable disposition for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deb, Kousik, E-mail: kousik@civil.iitkgp.ernet.in; Dhar, Anirban, E-mail: anirban@civil.iitkgp.ernet.in; Purohit, Sandip, E-mail: sandip.purohit91@gmail.com
Landslide due to rainfall has been and continues to be one of the most important concerns of geotechnical engineering. The paper presents the variation of factor of safety of stone column-supported embankment constructed over soft soil due to change in water level for an incessant period of rainfall. A combined simulation-optimization based methodology has been proposed to predict the critical surface of failure of the embankment and to optimize the corresponding factor of safety under rainfall conditions using an evolutionary genetic algorithm NSGA-II (Non-Dominated Sorted Genetic Algorithm-II). It has been observed that the position of water table can be reliablymore » estimated with varying periods of infiltration using developed numerical method. The parametric study is presented to study the optimum factor of safety of the embankment and its corresponding critical failure surface under the steady-state infiltration condition. Results show that in case of floating stone columns, period of infiltration has no effect on factor of safety. Even critical failure surfaces for a particular floating column length remain same irrespective of rainfall duration.« less
Healthcare Disparities in Critical Illness
Soto, Graciela J.; Martin, Greg S.; Gong, Michelle Ng
2013-01-01
Objective To summarize the current literature on racial and gender disparities in critical care and the mechanisms underlying these disparities in the course of acute critical illness. Data Sources MEDLINE search on the published literature addressing racial, ethnic, or gender disparities in acute critical illness such as sepsis, acute lung injury, pneumonia, venous thromboembolism, and cardiac arrest. Study Selection Clinical studies that evaluated general critically ill patient populations in the United States as well as specific critical care conditions were reviewed with a focus on studies evaluating factors and contributors to health disparities. Data Extraction Study findings are presented according to their association with the incidence, clinical presentation, management, and outcomes in acute critical illness. Data Synthesis This review presents potential contributors for racial and gender disparities related to genetic susceptibility, comorbidities, preventive health services, socioeconomic factors, cultural differences, and access to care. The data is organized along the course of acute critical illness. Conclusions The literature to date shows that disparities in critical care are most likely multifactorial involving individual, community, and hospital-level factors at several points in the continuum of acute critical illness. The data presented identify potential targets as interventions to reduce disparities in critical care and future avenues for research. PMID:24121467
Healthcare disparities in critical illness.
Soto, Graciela J; Martin, Greg S; Gong, Michelle Ng
2013-12-01
To summarize the current literature on racial and gender disparities in critical care and the mechanisms underlying these disparities in the course of acute critical illness. MEDLINE search on the published literature addressing racial, ethnic, or gender disparities in acute critical illness, such as sepsis, acute lung injury, pneumonia, venous thromboembolism, and cardiac arrest. Clinical studies that evaluated general critically ill patient populations in the United States as well as specific critical care conditions were reviewed with a focus on studies evaluating factors and contributors to health disparities. Study findings are presented according to their association with the prevalence, clinical presentation, management, and outcomes in acute critical illness. This review presents potential contributors for racial and gender disparities related to genetic susceptibility, comorbidities, preventive health services, socioeconomic factors, cultural differences, and access to care. The data are organized along the course of acute critical illness. The literature to date shows that disparities in critical care are most likely multifactorial involving individual, community, and hospital-level factors at several points in the continuum of acute critical illness. The data presented identify potential targets as interventions to reduce disparities in critical care and future avenues for research.
Sundling, Catherine
2015-11-18
Accessibility of travel may be better understood if psychological factors underlying change in travel behavior are known. This paper examines older (65+) travelers' motives for changing their travel behavior. These changes are grounded in critical incidents earlier encountered in public-transport travel. A scientific framework is developed based on cognitive and behavioral theory. In 29 individual interviews, travelers' critical reactions (i.e., cognitive, emotional, and/or behavioral) to 77 critical incidents were examined. By applying critical incident technique (CIT), five reaction themes were identified that had generated travel-behavior change: firm restrictions, unpredictability, unfair treatment, complicated trips, and earlier adverse experiences. To improve older travelers' access to public transport, key findings were: (a) service must be designed so as to strengthen the feeling of being in control throughout the journey; (b) extended personal service would increase predictability in the travel chain and decrease travel complexity; consequently, (c) when designing new services and making effective accessibility interventions, policy makers should consider and utilize underlying psychological factors that could direct traveler behavior.
Sundling, Catherine
2015-01-01
Accessibility of travel may be better understood if psychological factors underlying change in travel behavior are known. This paper examines older (65+) travelers’ motives for changing their travel behavior. These changes are grounded in critical incidents earlier encountered in public-transport travel. A scientific framework is developed based on cognitive and behavioral theory. In 29 individual interviews, travelers’ critical reactions (i.e., cognitive, emotional, and/or behavioral) to 77 critical incidents were examined. By applying critical incident technique (CIT), five reaction themes were identified that had generated travel-behavior change: firm restrictions, unpredictability, unfair treatment, complicated trips, and earlier adverse experiences. To improve older travelers’ access to public transport, key findings were: (a) service must be designed so as to strengthen the feeling of being in control throughout the journey; (b) extended personal service would increase predictability in the travel chain and decrease travel complexity; consequently, (c) when designing new services and making effective accessibility interventions, policy makers should consider and utilize underlying psychological factors that could direct traveler behavior. PMID:26593935
Kusev, Petko; Purser, Harry; Heilman, Renata; Cooke, Alex J; Van Schaik, Paul; Baranova, Victoria; Martin, Rose; Ayton, Peter
2017-01-01
Financial risky decisions and evaluations pervade many human everyday activities. Scientific research in such decision-making typically explores the influence of socio-economic and cognitive factors on financial behavior. However, very little research has explored the holistic influence of contextual, emotional, and hormonal factors on preferences for risk in insurance and investment behaviors. Accordingly, the goal of this review article is to address the complexity of individual risky behavior and its underlying psychological factors, as well as to critically examine current regulations on financial behavior.
Kusev, Petko; Purser, Harry; Heilman, Renata; Cooke, Alex J.; Van Schaik, Paul; Baranova, Victoria; Martin, Rose; Ayton, Peter
2017-01-01
Financial risky decisions and evaluations pervade many human everyday activities. Scientific research in such decision-making typically explores the influence of socio-economic and cognitive factors on financial behavior. However, very little research has explored the holistic influence of contextual, emotional, and hormonal factors on preferences for risk in insurance and investment behaviors. Accordingly, the goal of this review article is to address the complexity of individual risky behavior and its underlying psychological factors, as well as to critically examine current regulations on financial behavior. PMID:28203215
Su, Szu-Huei; Wu, Li-Min
2018-04-01
The severity of diseases and high mortality rates that typify the intensive care unit often make it difficult for surrogate decision makers to make decisions for critically ill patients regarding whether to continue medical treatments or to accept palliative care. To explore the behavioral intentions that underlie the medical decisions of surrogate decision makers of critically ill patients and the related factors. A cross-sectional, correlation study design was used. A total of 193 surrogate decision makers from six ICUs in a medical center in southern Taiwan were enrolled as participants. Three structured questionnaires were used, including a demographic datasheet, the Family Relationship Scale, and the Behavioral Intention of Medical Decisions Scale. Significantly positive correlations were found between the behavioral intentions underlying medical decisions and the following variables: the relationship of the participant to the patient (Eta = .343, p = .020), the age of the patient (r = .295, p < .01), and whether the patient had signed a currently valid advance healthcare directive (Eta = .223, p = .002). Furthermore, a significantly negative correlation was found between these intentions and length of stay in the ICU (r = -.263, p < .01). Patient age, whether the patient had signed a currently valid advance healthcare directive, and length of stay in the ICU were all predictive factors for the behavioral intentions underlying the medical decisions of the surrogate decision makers, explaining 13.9% of the total variance. In assessing the behavioral intentions underlying the medical decisions of surrogate decision makers, health providers should consider the relationship between critical patients and their surrogate decision makers, patient age, the length of ICU stay, and whether the patient has a pre-signed advance healthcare directive in order to maximize the effectiveness of medical care provided to critically ill patients.
Ye, Ming; Fang, Zejun; Gu, Hongqian; Song, Rui; Ye, Jiangwei; Li, Hongzhang; Wu, Zhiguang; Zhou, Shenghui; Li, Peng; Cai, Xiang; Ding, Xiaokun; Yu, Songshan
2017-06-01
Hypoxia plays a critical role in the progression and metastasis of hepatocellular carcinoma by activating the key transcription factor, hypoxia-inducible factor-1. This study aims to identify the novel mechanisms underlying the dysregulation of hypoxia-inducible factor-1α in hepatocellular carcinoma. We found that histone deacetylase 5, a highly expressed histone deacetylase in hepatocellular carcinoma, strengthened the migration and invasion of hepatocellular carcinoma cells under hypoxia but not normoxia condition. Furthermore, histone deacetylase 5 induced the transcription of hypoxia-inducible factor-1α by silencing homeodomain-interacting protein kinase-2 expression, which was also dependent on hypoxia. And then knockdown of hypoxia-inducible factor-1α decreased the expressions of mesenchymal markers, N-cadherin, and Vimentin, as well as matrix metalloproteinases, MMP7 and MMP9; however, the epithelial marker, E-cadherin, increased. Phenotype experiments showed that the migration and invasion of hepatocellular carcinoma cells were impaired by knockdown of histone deacetylase 5 or hypoxia-inducible factor-1α but rescued when eliminating homeodomain-interacting protein kinase-2 in hepatocellular carcinoma cells, which suggested the critical role of histone deacetylase 5-homeodomain-interacting protein kinase-2-hypoxia-inducible factor-1α pathway in hypoxia-induced metastasis. Finally, clinical analysis confirmed the positive correlation between histone deacetylase 5 and hypoxia-inducible factor-1α in hepatocellular carcinoma specimens and a relatively poor prognosis for the patients with high levels of histone deacetylase 5 and hypoxia-inducible factor-1α. Taken together, our findings demonstrated a novel mechanism underlying the crosstalk between histone deacetylase 5 and hypoxia-inducible factor-1 in hepatocellular carcinoma.
Critical incidents and mortality reporting in pediatric anesthesia: the Australian experience.
Ragg, Philip
2011-07-01
Since 1960, the collection and analysis of mortality data for anesthesia in Australia has been of significant benefit to practising anesthetists. These figures include pediatric deaths which fortunately have been rare and often inevitable because of severe underlying disease and patient risk factors. The reporting of critical incidents and serious morbidity, on the other hand, has been far less impressive. Only one state in Australia, Victoria, currently has a committee that collects morbidity data and, as this reporting is voluntary, is likely to under-represent the true numbers of critical events. There is no specific pediatric morbidity database in Australia so much of this discussion will be regarding overall anesthesia critical event reporting which includes pediatrics as a subset. © 2011 Blackwell Publishing Ltd.
ERIC Educational Resources Information Center
Pinheiro, Romulo, Ed.; Benneworth, Paul, Ed.; Jones, Glen A., Ed.
2012-01-01
Universities are under increasing pressure to help promote socio-economic growth in their local communities. However until now, no systematic, critical attention has been paid to the factors and mechanisms that currently make this process so daunting. In Universities and Regional Development, scholars from Europe, the Americas, Africa, and Asia…
Empathy-Related Responding in Chinese Toddlers: Factorial Structure and Cognitive Contributors
ERIC Educational Resources Information Center
Huang, Heqing; Su, Yanjie; Jin, Jian
2017-01-01
The critical role of the second year of life in the development of empathy is well accepted by psychologists. However, the developmental trends of the different components of empathy and the potential factors underlying these components during this critical period remain unclear. Eighty-four Chinese toddlers in the second year of life participated…
[Factors influencing nurses' clinical decision making--focusing on critical thinking disposition].
Park, Seungmi; Kwon, In Gak
2007-10-01
The purpose of this study was to investigate the factors influencing nurses' clinical decision making focusing on critical thinking disposition. The subjects of this study consisted of 505 nurses working at one of the general hospitals located in Seoul. Data was collected by a self-administered questionnaire between December 2006 and January 2007. Data was analyzed by one way ANOVA, Pearson correlation coefficients, and stepwise multiple regression using SPSS Win 14.0. The mean scores of critical thinking disposition and clinical decision making were 99.10 and 134.32 respectively. Clinical decision making scores were significantly higher in groups under continuing education, with a master or higher degree, with clinical experience more than 5 years, or with experts. Critical thinking disposition and its subscales have a significant correlation with clinical decision making. Intellectual eagerness/curiosity, prudence, clinical experience, intellectual honesty, self-confidence, and healthy skepticism were important factors influencing clinical decision making(adjusted R(2)=33%). Results of this study suggest that various strategies such as retaining experienced nurses, encouraging them to continue with education and enhancing critical thinking disposition are warranted for development of clinical decision making.
Sentell, Tetine L; Seto, Todd B; Young, Malia M; Vawer, May; Quensell, Michelle L; Braun, Kathryn L; Taira, Deborah A
2016-07-26
Potentially preventable hospitalizations (PPH) for heart failure (HF) and diabetes mellitus (DM) cost the United States over $14 billion annually. Studies about PPH typically lack patient perspectives, especially across diverse racial/ethnic groups with known PPH health disparities. English-speaking individuals with a HF or DM-related PPH (n = 90) at the largest hospital in Hawai'i completed an in-person interview, including open-ended questions on precipitating factors to their PPH. Using the framework approach, two independent coders identified patient-reported factors and pathways to their PPH. Seventy-two percent of respondents were under 65 years, 30 % were female, 90 % had health insurance, and 66 % had previously been hospitalized for the same problem. Patients' stories identified immediate, precipitating, and underlying reasons for the admission. Underlying background factors were critical to understanding why patients had the acute problems necessitating their hospitalizations. Six, non-exclusive, underlying factors included: extreme social vulnerability (e.g., homeless, poverty, no social support, reported by 54 % of respondents); health system interaction issues (e.g., poor communication with providers, 44 %); limited health-related knowledge (42 %); behavioral health issues (e.g., substance abuse, mental illness, 36 %); denial of illness (27 %); and practical problems (e.g., too busy, 6 %). From these findings, we developed a model to understand an individual's pathways to a PPH through immediate, precipitating, and underlying factors, which could help identify potential intervention foci. We demonstrate the model's utility using five examples. In a young, predominately insured population, factors well outside the traditional purview of the hospital, or even clinical medicine, critically influenced many PPH. Patient perspectives were vital to understanding this issue. Innovative partnerships and policies should address these issues, including linkages to social services and behavioral health.
Simulation of Aircraft Sortie Generation Under an Autonomic Logistics System
2016-12-01
56 Design of Experiment...Figure 8. Pre -flight Operations ......................................................................................... 40 Figure 9. Sortie...Critical Factors and Their Associated Levels ................................................... 57 xiii Table 18. Design of Experiment
Nicholson, David A; Rutledge, Gregory C
2016-12-28
Non-equilibrium molecular dynamics is used to study crystal nucleation of n-eicosane under planar shear and, for the first time, uniaxial extension. A method of analysis based on the mean first-passage time is applied to the simulation results in order to determine the effect of the applied flow field type and strain rate on the steady-state nucleation rate and a characteristic growth rate, as well as the effects on kinetic parameters associated with nucleation: the free energy barrier, critical nucleus size, and monomer attachment pre-factor. The onset of flow-enhanced nucleation (FEN) occurs at a smaller critical strain rate in extension as compared to shear. For strain rates larger than the critical rate, a rapid increase in the nucleation rate is accompanied by decreases in the free energy barrier and critical nucleus size, as well as an increase in chain extension. These observations accord with a mechanism in which FEN is caused by an increase in the driving force for crystallization due to flow-induced entropy reduction. At high applied strain rates, the free energy barrier, critical nucleus size, and degree of stretching saturate, while the monomer attachment pre-factor and degree of orientational order increase steadily. This trend is indicative of a significant diffusive contribution to the nucleation rate under intense flows that is correlated with the degree of global orientational order in a nucleating system. Both flow fields give similar results for all kinetic quantities with respect to the reduced strain rate, which we define as the ratio of the applied strain rate to the critical rate. The characteristic growth rate increases with increasing strain rate, and shows a correspondence with the nucleation rate that does not depend on the type of flow field applied. Additionally, a structural analysis of the crystalline clusters indicates that the flow field suppresses the compaction and crystalline ordering of clusters, leading to the formation of large articulated clusters under strong flow fields, and compact well-ordered clusters under weak flow fields.
Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion
NASA Astrophysics Data System (ADS)
Yang, Yong; Li, Ying; Yang, Zailin; Zhang, Guowei; Wang, Xizhi; Liu, Jin
2018-02-01
Influences of different factors on the torsion properties of single crystal copper nanowire are studied by molecular dynamics method. The length, torsional rate, and temperature of the nanowire are discussed at the elastic-plastic critical point. According to the average potential energy curve and shear stress curve, the elastic-plastic critical angle is determined. Also, the dislocation at elastoplastic critical points is analyzed. The simulation results show that the single crystal copper nanowire can be strengthened by lengthening the model, decreasing the torsional rate, and lowering the temperature. Moreover, atoms move violently and dislocation is more likely to occur with a higher temperature. This work mainly describes the mechanical behavior of the model under different states.
Teaching Unmotivated and Under-Motivated College Students: Problems, Challenges, and Considerations
ERIC Educational Resources Information Center
McFarlane, Donovan A.
2010-01-01
This essay addresses a critical problem in today's college classroom: dealing with unmotivated and under-motivated students whose inclination toward learning stems from both academic and social factors that the faculty must effectively address to meet teaching-learning goals, meet course requirements, and his or her responsibility in contributing…
Learning prosthetic vision: a virtual-reality study.
Chen, Spencer C; Hallum, Luke E; Lovell, Nigel H; Suaning, Gregg J
2005-09-01
Acceptance of prosthetic vision will be heavily dependent on the ability of recipients to form useful information from such vision. Training strategies to accelerate learning and maximize visual comprehension would need to be designed in the light of the factors affecting human learning under prosthetic vision. Some of these potential factors were examined in a visual acuity study using the Landolt C optotype under virtual-reality simulation of prosthetic vision. Fifteen normally sighted subjects were tested for 10-20 sessions. Potential learning factors were tested at p < 0.05 with regression models. Learning was most evident across-sessions, though 17% of sessions did express significant within-session trends. Learning was highly concentrated toward a critical range of optotype sizes, and subjects were less capable in identifying the closed optotype (a Landolt C with no gap, forming a closed annulus). Training for implant recipients should target these critical sizes and the closed optotype to extend the limit of visual comprehension. Although there was no evidence that image processing affected overall learning, subjects showed varying personal preferences.
Jeison, D; van Lier, J B
2008-01-01
Several anaerobic membrane bioreactors (AnMBR) were operated, under various conditions, applying different reactor configurations. Applicable fluxes were strongly determined by the physical properties of the sludge present in the reactors. Results show that particle size is a key determining factor for the attainable fluxes. Under thermophilic conditions, small sludge particle size was observed, resulting in low critical fluxes reaching 6-7 L/m2h for the submerged configuration and acidified substrate. In contrast, under mesophilic conditions critical fluxes of 20 L/m2h were obtained. The acidification level also showed a strong effect. Under thermophilic conditions, the presence of a significant fraction of non-acidified organic matter induced the growth of suspended acidogenic biomass that seriously affected the applicable fluxes, both in submerged and side-stream configurations. Under all conditions tested cake formation showed to be the limiting factor determining the applicable fluxes. Only low levels of irreversible fouling were observed. Due to technical and economical considerations, most interesting perspectives for the application of AnMBR are expected with the treatment of high-strength particulate wastewaters, and with extreme wastewaters characterised by high temperature, salinity, etc.
Defense and avoidance of ozone under global change
Michael Tausz; Nancy E. Grulke; Gerhard Wieser
2007-01-01
The level II approach of the critical loads concept adopted by the UNECE aims at a flux based evaluation and takes into account environmental factors governing stomatal conductance. These factors will probably be affected by global change. The flux concept predicts that a decrease in stomatal conductance would protect trees from air pollution effects by decreasing...
NASA Astrophysics Data System (ADS)
Wu, Z. R.; Li, X.; Fang, L.; Song, Y. D.
2018-04-01
A new multiaxial fatigue life prediction model has been proposed in this paper. The concepts of nonlinear continuum damage mechanics and critical plane criteria were incorporated in the proposed model. The shear strain-based damage control parameter was chosen to account for multiaxial fatigue damage under constant amplitude loading. Fatigue tests were conducted on nickel-based superalloy GH4169 tubular specimens at the temperature of 400 °C under proportional and nonproportional loading. The proposed method was checked against the multiaxial fatigue test data of GH4169. Most of prediction results are within a factor of two scatter band of the test results.
ERIC Educational Resources Information Center
Puhan, Gautam
2013-01-01
The purpose of this study was to demonstrate that the choice of sample weights when defining the target population under poststratification equating can be a critical factor in determining the accuracy of the equating results under a unique equating scenario, known as "rater comparability scoring and equating." The nature of data…
Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors
Xu, Zhenzhu; Jiang, Yanling; Jia, Bingrui; Zhou, Guangsheng
2016-01-01
Stomata control the flow of gases between plants and the atmosphere. This review is centered on stomatal responses to elevated CO2 concentration and considers other key environmental factors and underlying mechanisms at multiple levels. First, an outline of general responses in stomatal conductance under elevated CO2 is presented. Second, stomatal density response, its development, and the trade-off with leaf growth under elevated CO2 conditions are depicted. Third, the molecular mechanism regulating guard cell movement at elevated CO2 is suggested. Finally, the interactive effects of elevated CO2 with other factors critical to stomatal behavior are reviewed. It may be useful to better understand how stomata respond to elevated CO2 levels while considering other key environmental factors and mechanisms, including molecular mechanism, biochemical processes, and ecophysiological regulation. This understanding may provide profound new insights into how plants cope with climate change. PMID:27242858
Dutton, Rebecca A; Khadavi, Michael J; Fredericson, Michael
2016-02-01
Patellofemoral pain is characterized by insidious onset anterior knee pain that is exaggerated under conditions of increased patellofemoral joint stress. A variety of risk factors may contribute to the development of patellofemoral pain. It is critical that the history and physical examination elucidate those risk factors specific to an individual in order to prescribe an appropriate and customized treatment plan. This article aims to review the epidemiology, risk factors, diagnosis, and management of patellofemoral pain. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Castillo, Jose M.; March, Amanda L.; Stockslager, Kevin M.; Hines, Constance V.
2016-01-01
The "Perceptions of RtI Skills Survey" is a self-report measure that assesses educators' perceptions of their data-based problem-solving skills--a critical element of many Response-to-Intervention (RtI) models. Confirmatory factor analysis (CFA) was used to evaluate the underlying factor structure of this tool. Educators from 68 (n =…
ERIC Educational Resources Information Center
Sun, Pei-Chen; Tsai, Ray J.; Finger, Glenn; Chen, Yueh-Yang; Yeh, Dowming
2008-01-01
E-Learning is emerging as the new paradigm of modern education. Worldwide, the e-Learning market has a growth rate of 35.6%, but failures exist. Little is known about why many users stop their online learning after their initial experience. Previous research done under different task environments has suggested a variety of factors affecting user…
C. Segura; G. Sun; S. McNulty; Y. Zhang
2014-01-01
Rainfall runoff erosivity (R) is one key climate factor that controls water erosion. Quantifying the effects of climate change-induced erosivity change is important for identifying critical regions prone to soil erosion under a changing environment. In this study we first evaluate the changes of R from 1970 to 2090 across the United States under nine climate conditions...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Thomas; Trail, Jessica; Gevondyan, Erna
During times of crisis, communities and regions rely heavily on critical infrastructure systems to support their emergency management response and recovery activities. Therefore, the resilience of critical infrastructure systems to crises is a pivotal factor to a community’s overall resilience. Critical infrastructure resilience can be influenced by many factors, including State policies – which are not always uniform in their structure or application across the United States – were identified by the U.S. Department of Homeland Security as an area of particular interest with respect to their the influence on the resilience of critical infrastructure systems. This study focuses onmore » developing an analytical methodology to assess links between policy and resilience, and applies that methodology to critical infrastructure in the Transportation Systems Sector. Specifically, this study seeks to identify potentially influential linkages between State transportation capital funding policies and the resilience of bridges located on roadways that are under the management of public agencies. This study yielded notable methodological outcomes, including the general capability of the analytical methodology to yield – in the case of some States – significant results connecting State policies with critical infrastructure resilience, with the suggestion that further refinement of the methodology may be beneficial.« less
Yang, Wei-Lei; Jin, Guoxiang; Li, Chien-Feng; Jeong, Yun Seong; Moten, Asad; Xu, Dazhi; Feng, Zizhen; Chen, Wei; Cai, Zhen; Darnay, Bryant; Gu, Wei; Lin, Hui-Kuan
2013-01-01
K63-linked ubiquitination of Akt is a posttranslational modification that plays a critical role in growth factor-mediated membrane recruitment and activation of Akt. Although E3 ligases involved in growth factor-induced Akt ubiquitination have been defined, the deubiquitinating enzyme (DUB) that triggers deubiquitination of Akt and the function of Akt deubiquitination remain largely unclear. Here, we showed that CYLD was a DUB for Akt and suppressed growth factor-mediated Akt ubiquitination and activation. CYLD directly removed ubiquitin moieties on Akt under serum-starved conditions. CYLD dissociated from Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. CYLD deficiency also promoted cancer cell proliferation, survival, glucose uptake and growth of prostate tumors. Our findings reveal the crucial role of cycles of ubiquitination and deubiquitination of Akt in its membrane recruitment and activation, and further identifies CYLD as a molecular switch for these processes. PMID:23300340
Evidence-Based Practice: The Psychology of EBP Implementation.
Rousseau, Denise M; Gunia, Brian C
2016-01-01
Evidence-based practice (EBP) is an approach used in numerous professions that focuses attention on evidence quality in decision making and action. We review research on EBP implementation, identifying critical underlying psychological factors facilitating and impeding its use. In describing EBP and the forms of evidence it employs, we highlight the challenges individuals face in appraising evidence quality, particularly that of their personal experience. We next describe critical EBP competencies and the challenges underlying their acquisition: foundational competencies of critical thinking and domain knowledge, and functional competencies such as question formulation, evidence search and appraisal, and outcome evaluation. We then review research on EBP implementation across diverse fields from medicine to management and organize findings around three key contributors to EBP: practitioner ability, motivation, and opportunity to practice (AMO). Throughout, important links between psychology and EBP are highlighted, along with the contributions psychological research can make to further EBP development and implementation.
Patterns of Positive Selection of the Myogenic Regulatory Factor Gene Family in Vertebrates
Zhao, Xiao; Yu, Qi; Huang, Ling; Liu, Qing-Xin
2014-01-01
The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution. PMID:24651579
NASA Technical Reports Server (NTRS)
Pyle, Barry H.; Mcfeters, Gordon A.
1992-01-01
A number of microbiological issues are of critical importance to crew health and system performance in spacecraft water systems. This presentation reviews an army of these concerns which include factors that influence water treatment and disinfection in spaceflight such as biofilm formation and the physiological responses of bacteria in clean water systems. Factors associated with spaceflight like aerosol formation under conditions of microgravity are also discussed within the context of airborne infections such as Legionellosis. Finally, a spectrum of analytical approaches is reviewed to provide an evaluation of methodological alternatives that have been suggested or used to detect microorganisms of interest in water systems. These range from classical approaches employing colony formation on specific microbiological growth media to direct (i.e. microscopic) and indirect (e.g. electrochemical) methods as well as the use of molecular approaches and gene probes. These techniques are critically evaluated for their potential utility in determining microbiological water quality through the detection of microorganisms under the influence of ambient environmental stress inherent in spaceflight water systems.
Seasonality of semi-arid and savanna-type ecosystems in an Earth system model
NASA Astrophysics Data System (ADS)
Dahlin, K.; Swenson, S. C.; Lombardozzi, D.; Kamoske, A.
2016-12-01
Recent work has identified semi-arid and savanna-type (SAST) ecosystems as a critical component of interannual variability in the Earth system (Poulter et al. 2014, Ahlström et al. 2015), yet our understanding of the spatial and temporal patterns present in these systems remains limited. There are three major factors that contribute to the complex behavior of SAST ecosystems, globally. First is leaf phenology, the timing of the appearance, presence, and senescence of plant leaves. Plants grow and drop their leaves in response to a variety of cues, including soil moisture, rainfall, day length, and relative humidity, and alternative phenological strategies might often co-exist in the same location. The second major factor in savannas is soil moisture. The complex nature of soil behavior under extremely dry, then extremely wet conditions is critical to our understanding of how savannas function. The third factor is fire. Globally, virtually all savanna-type ecosystems operate with some non-zero fire return interval. Here we compare model output from the Community Land Model (CLM5-BGC) in SAST regions to remotely sensed data on these three variables - phenology (MODIS LAI), soil moisture (SMAP), and fire (GFED4) - assessing both annual spatial patterns and intra-annual variability, which is critical in these highly variable systems. We present new SAST-specific first- and second-order benchmarks, including numbers of annual LAI peaks (often >1 in SAST systems) and correlations between soil moisture, LAI, and fire. Developing a better understanding of how plants respond to seasonal patterns is a critical first step in understanding how SAST ecosystems will respond to and influence climate under future scenarios.
NASA Technical Reports Server (NTRS)
Helmreich, Robert L.
1987-01-01
What psychological theory and research can reveal about training in Cockpit Resource Management (CRM) is summarized. A framework is provided for the critical analysis of current approaches to CRM training. Background factors and definitions critical to evaluating CRM are reviewed, followed by a discussion of issues directly related to CRM training effectiveness. Some of the things not known about the optimization of crew performance and the research needed to make these efforts as effective as possible are described.
González-Fernández, Ignacio; Sanz, Javier; Calvete-Sogo, Héctor; Elvira, Susana; Alonso, Rocío; Bermejo-Bermejo, Victoria
2017-12-01
Ozone (O 3 ) critical levels have been established under the Long-Range Transboundary Air Pollution Convention to assess the risk of O 3 effects in European vegetation. A recent review study has led to the development of O 3 critical levels for annual Mediterranean pasture species using plants growing in well-watered pots at a coastal site and under low levels of competition. However, uncertainties remain in the extrapolation of the O 3 sensitivity of these species under natural conditions. The response of two O 3 -sensitive annual Mediterranean pasture Trifolium species at the coastal site was compared with the response of the same species growing at a continental site, in natural soil and subject to water-stress and inter-specific competition, representing more closely their natural habitat. The slopes of exposure- and dose-response relationships derived for the two sites showed differences in the response to O 3 between sites attributed to differences in environmental growing conditions, growing medium and the level of inter-specific competition, but the effect of the individual factors could not be assessed separately. Dose-based O 3 indices partially explained differences due to environmental growing conditions between sites. The slopes showed that plants were more sensitive to O 3 at the continental site, but homogeneity of slopes tests revealed that results from both experimental sites may be combined. Although more experimental data considering complex inter-specific competition situations and the effect of important interactive factors such as nitrogen would be needed, these results confirm the validity of applying the current flux-based O 3 critical level under close to natural growing conditions. The AOT40-based O 3 critical level derived at the coastal site was also considered a suitable risk indicator in close to natural growing conditions in the absence of soil moisture limitations on plant growth.
Critical factors in fatal collisions of adult cyclists with automobiles.
Bíl, Michal; Bílová, Martina; Müller, Ivo
2010-11-01
This article evaluates, by means of multivariate regression, critical factors influencing the collisions of motor vehicles with adult (over 17 years) cyclists that result in fatal injury of cyclists. The analysis is based on the database of the Traffic Police of Czech Republic from the time period 1995-2007. The results suggest that the most consequential categories of factors under study are: inappropriate driving speed of automobile; the head-on crash; and night-time traffic in places without streetlights. The cyclists' faults are of most serious consequence on crossroads when cyclists deny the right of way. Males are more likely to suffer a fatal injury due to a collision with a car than females. The most vulnerable age group are cyclists above 65 years. A fatal injury of a cyclist is more often driver's fault than cyclist's (598 vs. 370). In order to reduce the fatal risk, it is recommended to separate the road traffic of motor vehicles from bicyclists in critical road-sections; or, at least, to reduce speed limits there. 2010 Elsevier Ltd. All rights reserved.
Xu, Daichao; Shan, Bing; Lee, Byung-Hoon; Zhu, Kezhou; Zhang, Tao; Sun, Huawang; Liu, Min; Shi, Linyu; Liang, Wei; Qian, Lihui; Xiao, Juan; Wang, Lili; Pan, Lifeng; Finley, Daniel; Yuan, Junying
2015-01-01
Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells. DOI: http://dx.doi.org/10.7554/eLife.10510.001 PMID:26523394
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
2010-01-01
Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents and reducing them will require a holistic integrated intervention capability. Future onboard integrated system technologies developed for preventing loss of vehicle control accidents must be able to assure safe operation under the associated off-nominal conditions. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V and V) and ultimate certification. The V and V of complex integrated systems poses major nontrivial technical challenges particularly for safety-critical operation under highly off-nominal conditions associated with aircraft loss-of-control events. This paper summarizes the V and V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft loss-of-control accidents. A summary of recent research accomplishments in this effort is also provided.
Resilience of Cyber Systems with Over- and Underregulation.
Gisladottir, Viktoria; Ganin, Alexander A; Keisler, Jeffrey M; Kepner, Jeremy; Linkov, Igor
2017-09-01
Recent cyber attacks provide evidence of increased threats to our critical systems and infrastructure. A common reaction to a new threat is to harden the system by adding new rules and regulations. As federal and state governments request new procedures to follow, each of their organizations implements their own cyber defense strategies. This unintentionally increases time and effort that employees spend on training and policy implementation and decreases the time and latitude to perform critical job functions, thus raising overall levels of stress. People's performance under stress, coupled with an overabundance of information, results in even more vulnerabilities for adversaries to exploit. In this article, we embed a simple regulatory model that accounts for cybersecurity human factors and an organization's regulatory environment in a model of a corporate cyber network under attack. The resulting model demonstrates the effect of under- and overregulation on an organization's resilience with respect to insider threats. Currently, there is a tendency to use ad-hoc approaches to account for human factors rather than to incorporate them into cyber resilience modeling. It is clear that using a systematic approach utilizing behavioral science, which already exists in cyber resilience assessment, would provide a more holistic view for decisionmakers. © 2016 Society for Risk Analysis.
Using change-point models to estimate empirical critical loads for nitrogen in mountain ecosystems.
Roth, Tobias; Kohli, Lukas; Rihm, Beat; Meier, Reto; Achermann, Beat
2017-01-01
To protect ecosystems and their services, the critical load concept has been implemented under the framework of the Convention on Long-range Transboundary Air Pollution (UNECE) to develop effects-oriented air pollution abatement strategies. Critical loads are thresholds below which damaging effects on sensitive habitats do not occur according to current knowledge. Here we use change-point models applied in a Bayesian context to overcome some of the difficulties when estimating empirical critical loads for nitrogen (N) from empirical data. We tested the method using simulated data with varying sample sizes, varying effects of confounding variables, and with varying negative effects of N deposition on species richness. The method was applied to the national-scale plant species richness data from mountain hay meadows and (sub)alpine scrubs sites in Switzerland. Seven confounding factors (elevation, inclination, precipitation, calcareous content, aspect as well as indicator values for humidity and light) were selected based on earlier studies examining numerous environmental factors to explain Swiss vascular plant diversity. The estimated critical load confirmed the existing empirical critical load of 5-15 kg N ha -1 yr -1 for (sub)alpine scrubs, while for mountain hay meadows the estimated critical load was at the lower end of the current empirical critical load range. Based on these results, we suggest to narrow down the critical load range for mountain hay meadows to 10-15 kg N ha -1 yr -1 . Copyright © 2016 Elsevier Ltd. All rights reserved.
9 CFR 381.303 - Critical factors and the application of the process schedule.
Code of Federal Regulations, 2014 CFR
2014-01-01
... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS.../air ratio; and (2) Heating medium flow rate. (Approved by the Office of Management and Budget under...
9 CFR 381.303 - Critical factors and the application of the process schedule.
Code of Federal Regulations, 2012 CFR
2012-01-01
... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS.../air ratio; and (2) Heating medium flow rate. (Approved by the Office of Management and Budget under...
9 CFR 381.303 - Critical factors and the application of the process schedule.
Code of Federal Regulations, 2011 CFR
2011-01-01
... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS.../air ratio; and (2) Heating medium flow rate. (Approved by the Office of Management and Budget under...
9 CFR 381.303 - Critical factors and the application of the process schedule.
Code of Federal Regulations, 2013 CFR
2013-01-01
... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS.../air ratio; and (2) Heating medium flow rate. (Approved by the Office of Management and Budget under...
Soil ingestion rates for children under 3 years old in Taiwan
Soil and dust ingestion rates by children are among the most critical exposure factors in determining risks to children from exposures to environmental contaminants in soil and dust. This is the first published soil ingestion study for children in Taiwan using tracer element meth...
Dependency and Self-Criticism in Treatments for Depression
Chui, Harold; Zilcha-Mano, Sigal; Dinger, Ulrike; Barrett, Marna S.; Barber, Jacques P.
2016-01-01
Dependency and self-criticism are vulnerability factors for depression. How these personality factors change with treatment for depression, and how they relate to symptom change across different types of treatment require further research. In addition, cultural differences that interact with the dependency/self-criticism-depression relation remain under-investigated. One hundred and forty-nine adults with major depression were randomly assigned to receive active medication (MED; n = 50), supportive-expressive therapy (SET; n = 49), or placebo pill (PBO; n = 50). Participants completed the Depressive Experiences Questionnaire (DEQ; Blatt, D'Afflitti, & Quinlan, 1976) before and after treatment, and were administered the Hamilton Rating Scale for Depression (Hamilton, 1967) throughout the course of treatment. Self-criticism as measured on the DEQ decreased with treatment similarly across conditions. DEQ Dependency decreased in MED but remained unchanged in SET and PBO. Higher initial dependency, but not higher initial self-criticism, predicted poor treatment response across conditions. Greater reduction in self-criticism was associated with greater reduction in depressive symptoms, but the effect was weaker for racial minorities (vs. White). Increase in connectedness, an adaptive form of dependency, was associated with symptom improvement in SET but not MED. Hence, different pathways of change seem to be implicated in the treatment of depression depending on culture and type of intervention. Implications for future research are discussed. PMID:26866638
USDA-ARS?s Scientific Manuscript database
Understanding the factors underlying the successful establishment of invasive ant species is critical for developing quarantine strategies to prevent additional invasions as well as for determining how such species overcome the selective pressures occurring in invaded areas. Although several studies...
Identification of QTL in a tepary bean RIL population under abiotic stress
USDA-ARS?s Scientific Manuscript database
High temperatures and drought are critical abiotic factors that limit the production of grain legumes, especially in tropical countries. Tepary bean (Phaseolus acutifolius A. Gray) is a species that is tolerant to high temperatures and drought. It is also closely related to common bean (Phaseolus vu...
Experience Facilitates the Emergence of Sharing Behavior among 7.5-Month-Old Infants
ERIC Educational Resources Information Center
Xu, Jing; Saether, Lucie; Sommerville, Jessica A.
2016-01-01
Given the centrality of prosociality in everyday social functioning, understanding the factors and mechanisms underlying the origins of prosocial development is of critical importance. This experiment investigated whether experience with reciprocal object exchanges can drive the developmental onset of sharing behavior. Seven-month-old infants took…
USDA-ARS?s Scientific Manuscript database
Plants are under continuous threat of infection by pathogens endowed with diverse strategies to colonize their host. Knowledge of plant susceptibility factors and the molecular processes involved in the infection process are critical for understanding plant-pathogen interactions. We used SuperSAGE t...
ERIC Educational Resources Information Center
Bridwell-Mitchell, E. N.; Sherer, David G.
2017-01-01
One critical factor in policy implementation is how teachers interpret policy. Previous research largely overlooks how the broader culture shapes teachers' interpretations. In the current research, we explore how teachers' interpretations of instructional reforms are associated with the logics of broad societal institutions. Our longitudinal…
Zhang, Keliang; Yao, Linjun; Meng, Jiasong; Tao, Jun
2018-09-01
Paeonia (Paeoniaceae), an economically important plant genus, includes many popular ornamentals and medicinal plant species used in traditional Chinese medicine. Little is known about the properties of the habitat distribution and the important eco-environmental factors shaping the suitability. Based on high-resolution environmental data for current and future climate scenarios, we modeled the present and future suitable habitat for P. delavayi and P. rockii by Maxent, evaluated the importance of environmental factors in shaping their distribution, and identified distribution shifts under climate change scenarios. The results showed that the moderate and high suitable areas for P. delavayi and P. rockii encompassed ca. 4.46×10 5 km 2 and 1.89×10 5 km 2 , respectively. Temperature seasonality and isothermality were identified as the most critical factors shaping P. delavayi distribution, and UVB-4 and annual precipitation were identified as the most critical for shaping P. rockii distribution. Under the scenario with a low concentration of greenhouse gas emissions (RCP2.6), the range of both species increased as global warming intensified; however, under the scenario with higher concentrations of emissions (RCP8.5), the suitable habitat range of P. delavayi decreased while P. rockii increased. Overall, our prediction showed that a shift in distribution of suitable habitat to higher elevations would gradually become more significant. The information gained from this study should provide a useful reference for implementing long-term conservation and management strategies for these species. Copyright © 2018. Published by Elsevier B.V.
Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun
2013-01-01
The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351
Process feasibility study in support of silicon material, task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon.
What makes staff consider leaving the health service in Malawi?
Chimwaza, Wanangwa; Chipeta, Effie; Ngwira, Andrew; Kamwendo, Francis; Taulo, Frank; Bradley, Susan; McAuliffe, Eilish
2014-03-19
Malawi faces a severe shortage of health workers, a factor that has contributed greatly to high maternal mortality in the country. Most clinical care is performed by mid-level providers (MLPs). While utilization of these cadres in providing health care is a solution to the current shortages, demotivating factors within the Malawian health system are pushing them into private, non-governmental, and other non-health related positions. This study aims to highlight these demotivating factors by exploring the critical aspects that influence MLPs' intention to leave their jobs. This descriptive qualitative study formed part of the larger Health Systems Strengthening for Equity (HSSE) study. Data presented in this paper were collected in Malawi using the Critical Incident Analysis tool. Participants were asked to narrate an incident that had happened during the past three months which had made them seriously consider leaving their job. Data were subjected to thematic analysis using NVivo 8 software. Of the 84 respondents who participated in a Critical Incident Analysis interview, 58 respondents (69%) indicated they had experienced a demotivating incident in the previous three months that had made them seriously consider leaving their job. The most commonly cited critical factors were being treated unfairly or with disrespect, lack of recognition of their efforts, delays and inconsistencies in salary payments, lack of transparent processes and criteria for upgrading or promotion, and death of patients. Staff motivation and an enabling environment are crucial factors for retaining MLPs in the Malawian health system. This study revealed key 'tipping points' that drive staff to seriously consider leaving their jobs. Many of the factors underlying these critical incidents can be addressed by improved management practices and the introduction of fair and transparent policies. Managers need to be trained and equipped with effective managerial skills and staff should have access to equal opportunities for upgrading and promotion. There is need for continuous effort to mobilize the resources needed to fill gaps in basic equipment, supplies, and medicine, as these are critical in creating an enabling environment for MLPs.
What makes staff consider leaving the health service in Malawi?
2014-01-01
Background Malawi faces a severe shortage of health workers, a factor that has contributed greatly to high maternal mortality in the country. Most clinical care is performed by mid-level providers (MLPs). While utilization of these cadres in providing health care is a solution to the current shortages, demotivating factors within the Malawian health system are pushing them into private, non-governmental, and other non-health related positions. This study aims to highlight these demotivating factors by exploring the critical aspects that influence MLPs’ intention to leave their jobs. Methods This descriptive qualitative study formed part of the larger Health Systems Strengthening for Equity (HSSE) study. Data presented in this paper were collected in Malawi using the Critical Incident Analysis tool. Participants were asked to narrate an incident that had happened during the past three months which had made them seriously consider leaving their job. Data were subjected to thematic analysis using NVivo 8 software. Results Of the 84 respondents who participated in a Critical Incident Analysis interview, 58 respondents (69%) indicated they had experienced a demotivating incident in the previous three months that had made them seriously consider leaving their job. The most commonly cited critical factors were being treated unfairly or with disrespect, lack of recognition of their efforts, delays and inconsistencies in salary payments, lack of transparent processes and criteria for upgrading or promotion, and death of patients. Conclusion Staff motivation and an enabling environment are crucial factors for retaining MLPs in the Malawian health system. This study revealed key ‘tipping points’ that drive staff to seriously consider leaving their jobs. Many of the factors underlying these critical incidents can be addressed by improved management practices and the introduction of fair and transparent policies. Managers need to be trained and equipped with effective managerial skills and staff should have access to equal opportunities for upgrading and promotion. There is need for continuous effort to mobilize the resources needed to fill gaps in basic equipment, supplies, and medicine, as these are critical in creating an enabling environment for MLPs. PMID:24641840
Developmental issues in underage drinking research.
To better understand underage drinking and how it can be prevented, research is being conducted in a wide variety of disciplines--focusing on aspects such as risk and protective factors, biological processes underlying human development, and the impact of socioenvironmental and pharmacologic influences on these mechanisms. This article examines underage drinking from a developmental perspective, which seeks to identify critical developmental periods during which interventions may be especially useful. These critical periods can provide key opportunities to redirect the course of development and alter the life course trajectory of the individual.
Azarmina, Pejman; Prestwich, Graham; Rosenquist, Joel; Singh, Debbie
2008-12-01
Governments and health service providers around the world are under pressure to improve health outcomes while containing rising healthcare costs. In response to such challenges, many regions have implemented services that have been successful in other countries-but 'importing' initiatives has many challenges. This article summarizes factors found to be critical to the success of adapting a US disease management and health promotion programme for use in Italy and the UK. Using three illustrative case studies, it describes how in each region the programme needed to adapt (i) the form and content of the disease management service, (ii) the involvement and integration with local clinicians and services and (iii) the evaluation of programme outcomes. We argue that it is important to implement evidence-based practice by learning lessons from other countries and service initiatives, but that it is equally important to take into consideration the '3Ps' that are critical for successful service implementation: payers, practitioners and patients.
Does Conspecific Fighting Yield Conditioned Taste Aversion in Rats?
ERIC Educational Resources Information Center
Nakajima, Sadahiko; Kumazawa, Gaku; Ieki, Hayato; Hashimoto, Aya
2012-01-01
Running in an activity wheel yields conditioned aversion to a taste solution consumed before the running, but its underlying physiological mechanism is unknown. According to the claim that energy expenditure or general stress caused by physical exercise is a critical factor for this taste-aversion learning, not only running but also other…
ERIC Educational Resources Information Center
Mbawuni, Joseph; Nimako, Simon Gyasi
2015-01-01
The growth in higher education industry has caused a tremendous increase in the number and type of colleges, polytechnics and universities offering similar academic programmes especially in business disciplines in Ghana. The resultant competition in the education industry makes it crucial for education managers to understand the latent factors…
Ethanol and thermotolerance in the bioconversion of xylose by yeasts
Thomas W. Jeffries; Yong-Su Jin
2000-01-01
The mechanisms underlying ethanol and heat tolerance are complex. Many different genes are involved, and the exact basis is not fully understood. The integrity of cytoplasmic and mitochondrial membranes is critical to maintain proton gradients for metabolic energy and nutrient uptake. Heat and ethanol stress adversely affect membrane integrity. These factors are...
NASA Astrophysics Data System (ADS)
Xu, Pengpeng
Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to examine the interrelationships among the identified CSFs, KPIs, and sustainable dimensions of BEER. The findings indicate that the success of sustainable BEER in hotel buildings under the EPC mechanism is mainly decided by project objectives control mechanism, available technology, organizing capacity of team leader, trust among partners, accurate M&V, and team workers' technical skills.
Sarcopenia and critical illness: a deadly combination in the elderly.
Hanna, Joseph S
2015-03-01
Sarcopenia is the age-associated loss of lean skeletal muscle mass. It is the result of multiple physiologic derangements, ultimately resulting in an insidious functional decline. Frailty, the clinical manifestation of sarcopenia and physical infirmity, is associated with significant morbidity and mortality in the elderly population. The underlying pathology results in a disruption of the individual's ability to tolerate internal and external stressors such as injury or illness. This infirmity results in a markedly increased risk of falls and subsequent morbidity and mortality from the resulting traumatic injury, as well as an inability to recover from medical insults, resulting in critical illness. The increasing prevalence of sarcopenia and critical illness in the elderly has resulted in a deadly intersection of disease processes. The lethality of this combination appears to be the result of altered muscle metabolism, decreased mitochondrial energetics needed to survive critical illness, and a chronically activated catabolic state likely mediated by tumor necrosis factor-α. Furthermore, these underlying derangements are independently associated with an increased incidence of critical illness, resulting in a progressive downward spiral. Considerable evidence has been gathered supporting the role of aggressive nutrition support and physical therapy in improving outcomes. Critical care practitioners must consider sarcopenia and the resulting frailty phenotype a comorbid condition so that the targeted interventions can be instituted and research efforts focused. © 2015 American Society for Parenteral and Enteral Nutrition.
Pereira, Jefferson Rodrigues; Sousa, Caissa Veloso E; Matos, Eliane Bragança de; Rezende, Leonardo Benedito Oliveira; Bueno, Natália Xavier; Dias, Álvaro Machado
2016-08-01
Currently, in Brazil, 1.78% of the population area blood donors, a level lower than the ideal one that, according to WHO, should be between 3% and 5% of the population. Following this scenario, the current study has a general goal of identifying and analyzing the main critical factors of the process of blood donation in the city of Belo Horizonte, MG, under the perception of donors, potential donors and non donors. A qualitative research approach was conducted, through twenty-four semi-structured interviews. The results highlight the lack of information in the various stages of the blood donation system. During the stages of donor recruitment and awareness, communication actions convey to society incomplete information about the donation process, discouraging future actions of donation. On the other hand, a lack of appreciation of the donation experience and the construction of social values associated with the donor prevent the multiplication of social behaviors for donation. The results of this study, found from theoretical framework outlined in this study, highlight the causes or critical factors that impede changes in behavior, incremental or radical, proposed by social marketing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.
2010-07-01
Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nibur, Kevin A.
2010-11-01
Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less
Mechanisms and genetic factors underlying co-use of nicotine and alcohol or other drugs of abuse.
Cross, Sarah J; Lotfipour, Shahrdad; Leslie, Frances M
2017-03-01
Concurrent use of tobacco and alcohol or psychostimulants represents a major public health concern, with use of one substance influencing consumption of the other. Co-abuse of these drugs leads to substantial negative health outcomes, reduced cessation, and high economic costs, but the underlying mechanisms are poorly understood. Epidemiological data suggest that tobacco use during adolescence plays a particularly significant role. Adolescence is a sensitive period of development marked by major neurobiological maturation of brain regions critical for reward processing, learning and memory, and executive function. Nicotine exposure during this time produces a unique and long-lasting vulnerability to subsequent substance use, likely via actions at cholinergic, dopaminergic, and serotonergic systems. In this review, we discuss recent clinical and preclinical data examining the genetic factors and mechanisms underlying co-use of nicotine and alcohol or cocaine and amphetamines. We evaluate the critical role of nicotinic acetylcholine receptors throughout, and emphasize the dearth of preclinical studies assessing concurrent drug exposure. We stress important age and sex differences in drug responses, and highlight a brief, low-dose nicotine exposure paradigm that may better model early use of tobacco products. The escalating use of e-cigarettes among youth necessitates a closer look at the consequences of early adolescent nicotine exposure on subsequent alcohol and drug abuse.
Hinson, Jeremiah S; Martinez, Diego A; Schmitz, Paulo S K; Toerper, Matthew; Radu, Danieli; Scheulen, James; Stewart de Ramirez, Sarah A; Levin, Scott
2018-01-15
Emergency department (ED) triage is performed to prioritize care for patients with critical and time-sensitive illness. Triage errors create opportunity for increased morbidity and mortality. Here, we sought to measure the frequency of under- and over-triage of patients by nurses using the Emergency Severity Index (ESI) in Brazil and to identify factors independently associated with each. This was a single-center retrospective cohort study. The accuracy of initial ESI score assignment was determined by comparison with a score entered at the close of each ED encounter by treating physicians with full knowledge of actual resource utilization, disposition, and acute outcomes. Chi-square analysis was used to validate this surrogate gold standard, via comparison of associations with disposition and clinical outcomes. Independent predictors of under- and over-triage were identified by multivariate logistic regression. Initial ESI-determined triage score was classified as inaccurate for 16,426 of 96,071 patient encounters. Under-triage was associated with a significantly higher rate of admission and critical outcome, while over-triage was associated with a lower rate of both. A number of factors identifiable at time of presentation including advanced age, bradycardia, tachycardia, hypoxia, hyperthermia, and several specific chief complaints (i.e., neurologic complaints, chest pain, shortness of breath) were identified as independent predictors of under-triage, while other chief complaints (i.e., hypertension and allergic complaints) were independent predictors of over-triage. Despite rigorous and ongoing training of ESI users, a large number of patients in this cohort were under- or over-triaged. Advanced age, vital sign derangements, and specific chief complaints-all subject to limited guidance by the ESI algorithm-were particularly under-appreciated.
Discovering Hematopoietic Mechanisms Through Genome-Wide Analysis of GATA Factor Chromatin Occupancy
Fujiwara, Tohru; O'Geen, Henriette; Keles, Sunduz; Blahnik, Kimberly; Linnemann, Amelia K.; Kang, Yoon-A; Choi, Kyunghee; Farnham, Peggy J.; Bresnick, Emery H.
2009-01-01
SUMMARY GATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction, and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for cross-regulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2 negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis. PMID:19941826
Review of critical factors for SEA implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jie, E-mail: jasmine@plan.aau.dk; Christensen, Per; Kornov, Lone
The implementation process involved in translating Strategic Environmental Assessment (SEA) intention into action is vital to an effective SEA. Many factors influence implementation and thus the effectiveness of an SEA. Empirical studies have identified and documented some factors influencing the implementation of an SEA. This research is fragmented, however, and it is still not clear what are the most critical factors of effective SEA performance, and how these relate to different stages of the implementation process or other contextual circumstances. The paper takes its point of departure in implementation theory. Firstly, we introduce implementation theory, and then use it inmore » practice to establish a more comprehensive model related to the stages in the implementation process. Secondly, we identify the critical factors in order to see how they are related to the different stages of SEA or are more general in character. Finally we map the different critical factors and how they influence the overall results of an SEA. Based on a literature review, we present a comprehensive picture of the critical factors and where they are found in the process. We conclude that most of the critical factors identified are of a more general character influencing the SEA process as such, while only one out of four of these factors relates to the specific stages of the SEA. Based on this mapping we can sketch a picture of the totality of critical factors. In this study 266 notions of critical factors were identified. Seen at the level of notions of critical factors, only 24% of these relate to specific stages while for 76% the critical factors are of a more general nature. These critical factors interact in complex ways and appear in different combinations in different stages of the implementation process so tracing the cause and effect is difficult. The pervasiveness of contextual and general factors also clearly suggests that there is no single way to put SEA into practice. The paper identifies some of the critical factors for effective SEA implementation, but further research is still needed to conclude which factors are more critical than others, just as the contingencies on which they depend are not easy to unravel. - Highlights: Black-Right-Pointing-Pointer The research on critical factors influencing SEA implementation is fragmented. Black-Right-Pointing-Pointer The critical factors are used to discuss 'hot-spots' in the implementation process. Black-Right-Pointing-Pointer Critical factors are just as broad as the concept of effectiveness. Black-Right-Pointing-Pointer Both stage and general factors are relevant in explaining the effectiveness of SEA.« less
Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.
Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E
2017-05-01
Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.
Lignin decomposition is sustained under fluctuating redox conditions in humid tropical forest soils
Steven J. Hall; Whendee L. Silver; Vitaliy I. Timokhin; Kenneth E. Hammel
2015-01-01
Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia is thought to suppress lignin decomposition, yet potential effects of oxygen (O2) variability in surface soils have not been explored. Here, we...
USDA-ARS?s Scientific Manuscript database
Minimizing atmospheric emissions of soil fumigants is critical for protecting human and environmental health. Covering the soil surface with a plastic tarp is a common approach to restrict fumigant emissions. The mass transfer of the fumigant vapors through the tarp is often the rate-limiting factor...
Gao, Xiu-Ping; Zhang, Hanmeng; Wong-Riley, Margaret
2015-11-01
The critical period of respiratory development in rats is a narrow window toward the end of the second postnatal week (P12-13), when abrupt neurochemical, electrophysiological, and ventilatory changes occur, when inhibition dominates over excitation, and when the animals' response to hypoxia is the weakest. The goal of this study was to further test our hypothesis that a major mechanism underlying the synaptic imbalance during the critical period is a reduced expression of brain-derived neurotrophic factor (BDNF) and its TrkB receptors. Our aims were to determine (1) that the inhibitory dominance observed in hypoglossal motoneurons during the critical period was also demonstrable in a key respiratory chemosensor, NTSVL; (2) if in vivo application of a TrkB agonist, 7,8-DHF, would prevent, but a TrkB antagonist, ANA-12, would accentuate the synaptic imbalance; and (3) if hypoxia would also heighten the imbalance. Our results indicate that (1) the synaptic imbalance was evident in the NTSVL during the critical period; (2) intraperitoneal injections of 7,8-DHF prevented the synaptic imbalance during the critical period, whereas ANA-12 in vivo accentuated such an imbalance; and (3) acute hypoxia induced the weakest response in both the amplitude and frequency of sEPSCs during the critical period, but it increased the frequency of sIPSCs during the critical period. Thus, our findings are consistent with and strengthen our hypothesis that BDNF and TrkB play a significant role in inducing a synaptic imbalance during the critical period of respiratory development in the rat. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Akinade, Olugbenga O; Oyedele, Lukumon O; Ajayi, Saheed O; Bilal, Muhammad; Alaka, Hafiz A; Owolabi, Hakeem A; Bello, Sururah A; Jaiyeoba, Babatunde E; Kadiri, Kabir O
2017-02-01
The aim of this paper is to identify Critical Success Factors (CSF) needed for effective material recovery through Design for Deconstruction (DfD). The research approach employed in this paper is based on a sequential exploratory mixed method strategy. After a thorough review of literature and conducting four Focus Group Discussion (FGDs), 43 DfD factors were identified and put together in a questionnaire survey. Data analyses include Cronbach's alpha reliability analysis, mean testing using significance index, and exploratory factor analysis. The result of the factor analysis reveals that an underlying factor structure of five DfD factors groups that include 'stringent legislation and policy', 'deconstruction design process and competencies', 'design for material recovery', 'design for material reuse', and 'design for building flexibility'. These groups of DfD factor groups show that the requirements for DfD goes beyond technical competencies and that non-technical factors such as stringent legislation and policy and design process and competency for deconstruction are key in designing deconstructable buildings. Paying attention to the factors identified in all of these categories will help to tackle impediments that could hinder the effectiveness of DfD. The results of this study would help design and project managers to understand areas of possible improvement in employing DfD as a strategy for diverting waste from landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.
The significance of Alfred Adler for the concept of narcissism.
Ansbacher, H L
1985-02-01
Alfred Adler's significance for the concept of narcissism is presented with reference to four aspects: 1) Adler's theory of masculine protest was evidently a factor influencing Freud to turn toward the phenomenon of narcissism. 2) Present-day understanding of narcissism shows remarkable similarity to Adler's views on psychodynamics and neurotic egocentricity. 3) Some contemporary criticisms of Freud's theory of narcissism are very similar to Adler's criticism. 4) Adler's theory of social interest permits subsumption of narcissism under lack of social interest rather than acceptance of it as an expression of innate socially negative tendencies.
Wei, Y-Z; Zhuo, R-X; Jiang, X-L
2016-05-20
The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns. Copyright © 2016 Elsevier B.V. All rights reserved.
Highly effective cystic fibrosis clinical research teams: critical success factors.
Retsch-Bogart, George Z; Van Dalfsen, Jill M; Marshall, Bruce C; George, Cynthia; Pilewski, Joseph M; Nelson, Eugene C; Goss, Christopher H; Ramsey, Bonnie W
2014-08-01
Bringing new therapies to patients with rare diseases depends in part on optimizing clinical trial conduct through efficient study start-up processes and rapid enrollment. Suboptimal execution of clinical trials in academic medical centers not only results in high cost to institutions and sponsors, but also delays the availability of new therapies. Addressing the factors that contribute to poor outcomes requires novel, systematic approaches tailored to the institution and disease under study. To use clinical trial performance metrics data analysis to select high-performing cystic fibrosis (CF) clinical research teams and then identify factors contributing to their success. Mixed-methods research, including semi-structured qualitative interviews of high-performing research teams. CF research teams at nine clinical centers from the CF Foundation Therapeutics Development Network. Survey of site characteristics, direct observation of team meetings and facilities, and semi-structured interviews with clinical research team members and institutional program managers and leaders in clinical research. Critical success factors noted at all nine high-performing centers were: 1) strong leadership, 2) established and effective communication within the research team and with the clinical care team, and 3) adequate staff. Other frequent characteristics included a mature culture of research, customer service orientation in interactions with study participants, shared efficient processes, continuous process improvement activities, and a businesslike approach to clinical research. Clinical research metrics allowed identification of high-performing clinical research teams. Site visits identified several critical factors leading to highly successful teams that may help other clinical research teams improve clinical trial performance.
Critical success factors in infrastructure projects
NASA Astrophysics Data System (ADS)
Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; Mohd Rahim, E. M. Roodienyanto
2017-11-01
Construction of infrastructure project is different from buildings. The main difference is term of project site where infrastructure project need to command a long stretch while building mostly confine to a limited area. As such factors that are critical to infrastructure project may not be that significant to building project and vice versa. Flood mitigation can be classified under infrastructure projects under which their developments are planned by the government with the specific objective to reduce or avoid the negative effects of flood to the environment and livelihood. One of the indicators in project success is delay. The impact of project delay in construction industry is significant that it decelerates the projects implementation, specifically the government projects. This study attempted to identify and compare the success factors between infrastructure and building projects, as such comparison rarely found in the current literature. A model of flood mitigation projects' success factors was developed by merging the experts' views and reports from the existing literature. The experts' views were obtained from the responses to open-ended questions on the required fundamentals to achieve successful completion of flood mitigation projects. An affinity analysis was applied to these responses to develop the model. The developed model was then compared to the established success factors found in building project, extracted from the previous studies to identify the similarities and differences between the two models. This study would assist the government and construction players to become more effective in constructing successful flood mitigation projects for the future practice in a flood-prone country like Malaysia.
Dunkley, L; Filer, A; Speden, D; Bax, D; Crisp, A
2008-06-01
Against changes to junior doctor career structure under MMC (Modernizing Medical Careers), and uncertainty about the future place of rheumatology, we explored critical factors in choice of rheumatology as a speciality, and asked what factors might govern choices of prospective trainees. Using these data, we developed suggestions to enhance future recruitment. A postal survey was sent to rheumatology specialist registrars (SpRs) on the Joint Committee for Higher Medical Training (JCHMT) database between December 2005 and January 2006, and concurrently by e-mail to the Rheumatologists at Training e-mail list. Seventy-three percent (165/227) of trainees responded. Of them, 89.1% had previous senior house officer (SHO) experience in rheumatology and 81.8% made a career decision in favour of rheumatology during their SHO post. The top four ranked factors influencing choice of rheumatology were SHO experience, subject matter, inspirational consultants and lifestyle aspects; 89.1% would still choose rheumatology now. Factors felt to be negatively influencing future trainees came under three key themes: poor student or postgraduate exposure, employment and service delivery issues (including concern over the future place of rheumatology in primary vs secondary care), and perceived poor profile of rheumatology. Factors positively influencing future candidates were subject matter, work/life balance and prior exposure to the speciality. Early postgraduate experience is key to choice of speciality. An overwhelming majority of trainees decide speciality during SHO experience. With ongoing changes in career structure, it is critical that rheumatology is incorporated into foundation and speciality training programmes and essential that continued measures are taken to improve the image of rheumatology.
NASA Astrophysics Data System (ADS)
Santos, J. T.; Holz, T.; Fernandes, A. J. S.; Costa, F. M.; Chu, V.; Conde, J. P.
2015-02-01
Diamond-based microelectromechanical resonators have the potential of enhanced performance due to the chemical inertness of the diamond structural layer and its high Young’s modulus, high wear resistance, low thermal expansion coefficient, and very high thermal conductivity. In this work, the resonance frequency and quality factor of MEMS resonators based on nanocrystalline diamond films are characterized under different air pressures. The dynamic behavior of 50-300 μm long linear bridges and double ended tuning forks, with resonance frequencies between 0.5 and 15 MHz and quality factors as high as 50 000 are described as a function of measurement pressure from high vacuum(~10 mTorr) up to atmospheric conditions. The resonance frequencies and quality factors in vacuum show good agreement with the theoretical models including anchor and thermoelastic dissipation (TED). The Young’s moduli for nanocrystalline diamond films extrapolated from experimental data are between 840-920 GPa. The critical pressure values, at which the quality factor starts decreasing due to dissipation in air, are dependent on the resonator length. Longer structures, with quality factors limited by TED and lower resonance frequencies, have low critical pressures, of the order of 1-10 Torr and go from an intrinsic dissipation, to a molecular dissipation regime and finally to a region of viscous dissipation. Shorter resonators, with higher resonance frequencies and quality factors limited by anchor losses, have higher critical pressures, some higher than atmospheric pressure, and enter directly into the viscous dissipation regime from the intrinsic region.
Tu, Xiang; Li, Jianjun; Feng, Rongfang; Sun, Guoping; Guo, Jun
2016-01-01
Although biotrickling filters (BTFs) applied under acidic condition to remove H2S from waste gases have been reported, the removal behavior of the acidic BTF under transient condition which was normal in most industry processes, and corresponding bacterial community have not been thoroughly studied. In the present study, two BTFs were run under neutral (BTFn) and acidic (BTFa) conditions, respectively. The results revealed that the removal performance of BTFa under transient condition was superior to that of BTFn; the maximum H2S eliminating capacities (ECs) achieved by BTFa and BTFn were 489.9 g/m3 h and 443.6 g/m3 h, respectively. High-throughput sequencing suggested that pH was the critical factor and several other factors including nutrient and the inlet loadings also had roles in shaping bacterial community structure. Acidithiobacillus was the most abundant bacterial group. The results indicated that BTF acclimation under acidic condition may facilitate generating microbial community with high H2S-degrading capability. PMID:27196300
21 CFR 113.100 - Processing and production records.
Code of Federal Regulations, 2011 CFR
2011-04-01
... critical factors specified in the scheduled process shall also be recorded. In addition, the following... preservation methods wherein critical factors such as water activity are used in conjunction with thermal... critical factors, as well as other critical factors, and results of aw determinations. (7) Other systems...
An investigation of the critical components of a land ethic: An application of Q methodology
NASA Astrophysics Data System (ADS)
Spradling, Suzanne Shaw
Scope and method of study. The purpose of this study was to reveal the underlying structure of the beliefs of a sample of environmental educators regarding the critical components of a land or environmental ethic. Participants in the study were 30 environmental educators from seven states. All had been trained in one or more of the following national environmental education programs: Project WILD, Project WET, Project Learning Tree, Leopold Education Project, or Leave No Trace. Ages of the participants ranged from 18--63 years. Q methodology directed the study. Each participant completed a Q-sort of 54 statements related to environmental ethics. The data were analyzed using a computer program PQMethod 2.06. This program performed a correlation matrix as input data for factor analysis, and a VARIMAX rotation. Participant demographic data were collected in order to provide a more complete picture of the revealed structure of beliefs. Findings and conclusions. A three-factor solution was revealed from the analysis of the data. These factors represent the groupings of the participants with like beliefs in reference to the critical components of environmental ethics. Factor one was named Nature's Advocates. These individuals believe in equal rights for all parts of the environment. Factor two was named Nature's Stewards because of the revealed belief that humans were to have dominion over the earth given to them by the creator and that natural resources should be used responsibly. Factor three was named Nature's Romantics because of their belief that nature should be preserved for its aesthetic value and because of their naive approach to conservation. The demographic data added detail to the portrait created from the Q-sort data analysis. It is important then, to take into consideration what environmental educators believe about environmental ethics in designing meaningful curriculum that seeks to foster the development of those ethics. This study reveals the beliefs of a sample of environmental educators relating to environmental ethics critical components.
Gao, Xiu-ping; Liu, Qiuli; Nair, Bindu; Wong-Riley, Margaret T.T.
2014-01-01
Previously, our electrophysiological studies revealed a transient imbalance between suppressed excitation and enhanced inhibition in hypoglossal motoneurons of rats on postnatal days (P) 12–13, a critical period when abrupt neurochemical, metabolic, ventilatory, and physiological changes occur in the respiratory system. The mechanism underlying the imbalance is poorly understood. We hypothesized that the imbalance was contributed by a reduced expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition. We also hypothesized that exogenous BDNF would partially reverse this synaptic imbalance. Immunohistochemistry/single neuron optical densitometry, real-time quantitative polymerase chain reaction, and whole-cell patch-clamp recordings were done on hypoglossal motoneurons in brain stem slices of rats during the first three postnatal weeks. Our results indicated that: 1) the levels of BDNF and its high-affinity TrkB receptor mRNAs and proteins were relatively high during the first 1-1½ postnatal weeks, but dropped precipitously at P12–13 before rising again afterwards; 2) exogenous BDNF significantly increased the normally lowered frequency of spontaneous excitatory postsynaptic currents (sEPSCs) but decreased the normally heightened amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) during the critical period; 3) exogenous BDNF also decreased the normally heightened frequency of miniature IPSCs (mIPSCs) at P12–13; and 4) the effect of exogenous BDNF was partially blocked by K252a, a TrkB receptor antagonist. Thus, our results are consistent with our hypothesis that BDNF and TrkB play an important role in the synaptic imbalance during the critical period. This may have significant implications for the mechanism underlying Sudden Infant Death Syndrome (SIDS). PMID:24666389
Environmental flow assessments in estuaries related to preference of phytoplankton
NASA Astrophysics Data System (ADS)
Yang, Z. F.; Sun, T.; Zhao, R.
2014-01-01
We developed an approach to assess environmental flows in estuaries related to preference of phytoplankton considering the complex relationship between hydrological modification and biomass in ecosystems. As a first step, a relationship was established between biomass requirements for organisms of primary and higher nutritional levels based on the principle of nutritional energy flow of ecosystem. Then, diagnostic pigments were employed to represent phytoplankton community biomass, which indicated competition between two groups of phytoplankton in the biochemistry process. Considering empirical relationships between diagnostic pigments and critical environmental factors, responses of biomass to river discharges were established based on a convection-diffusion model by simulating distributions of critical environmental factors under action of river discharges and tide currents. Consequently, environmental flows could be recommended for different requirements of fish biomass. In the case study in the Yellow River estuary, May and October were identified as critical months for fish reproduction and growth during dry years. Artificial hydrological regulation strategies should carefully consider the temporal variations of natural flow regime, especially for a high-amplitude flood pulse, which may cause negative effects on phytoplankton groups and higher organism biomass.
Figueroa, Maria Elena; Poppe, Patricia; Carrasco, Maria; Pinho, Maria Dirce; Massingue, Felisberto; Tanque, Maria; Kwizera, Amata
2016-01-01
Structural HIV prevention interventions have gained prominence as ways to address underlying social and cultural factors that fuel the HIV epidemic. Identifying theories that explain how structural interventions are expected to change such factors can substantially increase their success. The Tchova Tchova community dialogue program, a theory-based intervention implemented in 2009–2010 in the provinces of Zambezia and Sofala, Mozambique, aimed to change gender and sexual norms for HIV prevention. Through facilitated sessions, the program sparked critical thinking and open dialogue among participants. This article measures the program’s effectiveness based on a sample of 462 participants and 453 nonparticipants. The results show that the program was successful in producing changes in three of the underlying structural factors of HIV: gender attitudes, gender roles, and HIV stigma. The program was also successful in changing other factors associated with HIV infection, including HIV prevention knowledge, discussion of HIV between sex partners, and having multiple sex partners. PMID:27123984
Figueroa, Maria Elena; Poppe, Patricia; Carrasco, Maria; Pinho, Maria Dirce; Massingue, Felisberto; Tanque, Maria; Kwizera, Amata
2016-05-01
Structural HIV prevention interventions have gained prominence as ways to address underlying social and cultural factors that fuel the HIV epidemic. Identifying theories that explain how structural interventions are expected to change such factors can substantially increase their success. The Tchova Tchova community dialogue program, a theory-based intervention implemented in 2009-2010 in the provinces of Zambezia and Sofala, Mozambique, aimed to change gender and sexual norms for HIV prevention. Through facilitated sessions, the program sparked critical thinking and open dialogue among participants. This article measures the program's effectiveness based on a sample of 462 participants and 453 nonparticipants. The results show that the program was successful in producing changes in three of the underlying structural factors of HIV: gender attitudes, gender roles, and HIV stigma. The program was also successful in changing other factors associated with HIV infection, including HIV prevention knowledge, discussion of HIV between sex partners, and having multiple sex partners.
Fibroblast growth factor receptor inhibitors.
Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma
2013-01-01
Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.
Determinants of under-five mortality in rural and urban Kenya.
Ettarh, R R; Kimani, J
2012-01-01
The disparity in under-five year-old mortality rates between rural and urban areas in Kenya (also reported in other in sub-Saharan African countries), is a critical national concern. The objective of this study was to investigate the influence of geographical location and maternal factors on the likelihood of mortality among under-five children in rural and urban areas in Kenya. Data from the 2008-2009 Kenya Demographic and Health Survey were used to determine mortality among under-five children (n=16,162) in rural and urban areas in the 5 years preceding the survey. Multivariate analysis was used to compare the influence of key risk factors in rural and urban areas. Overall, the likelihood of death among under-five children in the rural areas was significantly higher than that in the urban areas (p<0.05). Household poverty was a key predictor for mortality in the rural areas, but the influence of breastfeeding was similar in the two areas. The likelihood of under-five mortality was significantly higher in the rural areas of Coast, Nyanza and Western Provinces than in Central Province. The study shows that the determinants of under-five mortality differ in rural and urban areas in Kenya. Innovative and targeted strategies are required to address rural poverty and province-specific sociocultural factors in order to improve child survival in rural Kenya.
Critical thinking skills of undergraduate nursing students: description and demographic predictors.
Hunter, Sharyn; Pitt, Victoria; Croce, Nic; Roche, Jan
2014-05-01
This study investigated the critical thinking skills among undergraduate nursing students in Australia to obtain a profile and determine demographic predictors of critical thinking. There is universal agreement that being a critical thinker is an outcome requirement for many accreditation and registering nursing bodies. Most studies provide descriptive statistical information about critical thinking skills while some have studied the changes in critical thinking after an intervention. Limited research about factors that predict critical thinking skills is available. A cross-sectional descriptive study was conducted using convenience sampling. Two hundred and sixty-nine students were recruited across three years of an undergraduate programme in 2009. Most students' age ranged from under 20 to 34 years (58%), 87% were female, 91% were Australian and 23% of first and second year students had nursing associated experience external to the university. Data about critical thinking skills were collected via the Health Science Reasoning Test (HSRT). Linear regression analysis investigated the predictors of nursing students' critical thinking skills. The students in third year had a profile of critical thinking skills comparable with HSRT norms. Year of study predicted higher critical thinking scores for all domains (p<0.001) except the subscale, analysis. Nationality predicted higher scores for total CT skill scores (p<0.001) and subscales, inductive (p=0.001) and deductive reasoning (p=0.001). Nursing associated experience predicted higher scores for the subscale, analysis (p<0.001). Age and gender were not predictive. However, these demographic predictors only accounted for a small variance obtained for the domains of CT skills. An understanding of factors that predict nursing students' CT skills is required. Despite this study finding a number of significant predictors of nursing students' CT skills, there are others yet to be understood. Future research is recommended exploring explicit CT instructional approaches and nursing students' CT skills. © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Cartelli, Antonio; Stansfield, Mark; Connolly, Thomas; Jimoyiannis, Athanassios; Magalhaes, Hugo; Maillet, Katherine
2008-01-01
This paper reports on the work of a European Commission DG Education and Culture co-financed project PBP-VC, Promoting Best Practice in Virtual Campuses, which is aimed at providing a deeper understanding of the key issues and critical success factors underlying the implementation of virtual campuses. The paper outlines a tentative model of issues…
ERIC Educational Resources Information Center
Smith, Anne; Goffman, Lisa; Sasisekaran, Jayanthi; Weber-Fox, Christine
2012-01-01
Stuttering is a disorder of speech production that typically arises in the preschool years, and many accounts of its onset and development implicate language and motor processes as critical underlying factors. There have, however, been very few studies of speech motor control processes in preschool children who stutter. Hearing novel nonwords and…
A Six‐Stage Workflow for Robust Application of Systems Pharmacology
Gadkar, K; Kirouac, DC; Mager, DE; van der Graaf, PH
2016-01-01
Quantitative and systems pharmacology (QSP) is increasingly being applied in pharmaceutical research and development. One factor critical to the ultimate success of QSP is the establishment of commonly accepted language, technical criteria, and workflows. We propose an integrated workflow that bridges conceptual objectives with underlying technical detail to support the execution, communication, and evaluation of QSP projects. PMID:27299936
Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B; Tamascelli, Dario; Montangero, Simone
2018-01-01
We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.
NASA Astrophysics Data System (ADS)
Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B.; Tamascelli, Dario; Montangero, Simone
2018-01-01
We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.
Modulation of Perineuronal Nets and Parvalbumin with Developmental Song Learning
Balmer, Timothy S.; Carels, Vanessa M.; Frisch, Jillian L.; Nick, Teresa A.
2009-01-01
Neural circuits and behavior are shaped during developmental phases of maximal plasticity known as sensitive or critical periods. Neural correlates of sensory critical periods have been identified, but their roles remain unclear. Factors that define critical periods in sensorimotor circuits and behavior are not known. Birdsong learning in the zebra finch occurs during a sensitive period similar to that for human speech. We now show that perineuronal nets, which correlate with sensory critical periods, surround parvalbumin-positive neurons in brain areas that are dedicated to singing. The percentage of both total and parvalbumin-positive neurons with perineuronal nets increased with development. In HVC (this acronym is the proper name), a song area important for sensorimotor integration, the percentage of parvalbumin neurons with perineuronal nets correlated with song maturity. Shifting the vocal critical period with tutor song deprivation decreased the percentage of neurons that were parvalbumin positive and the relative staining intensity of both parvalbumin and a component of perineuronal nets. Developmental song learning shares key characteristics with sensory critical periods, suggesting shared underlying mechanisms. PMID:19828802
Local zeta factors and geometries under Spec Z
NASA Astrophysics Data System (ADS)
Manin, Yu I.
2016-08-01
The first part of this note shows that the odd-period polynomial of each Hecke cusp eigenform for the full modular group produces via the Rodriguez-Villegas transform ([1]) a polynomial satisfying the functional equation of zeta type and having non-trivial zeros only in the middle line of its critical strip. The second part discusses the Chebyshev lambda-structure of the polynomial ring as Borger's descent data to \\mathbf{F}_1 and suggests its role in a possible relation of the Γ\\mathbf{R}-factor to 'real geometry over \\mathbf{F}_1' (cf. [2]).
2014-09-18
Erdogan , 1963). 26 Paris’s Law Under a fatigue stress regime Paris’s Law relates sub-critical crack growth to stress intensity factor. The basic...Paris and Erdogan , 1963). After takeoff, the model generates a probability distribution for the crack length in that specific sortie based on the...Law is one of the most widely used fatigue crack growth models and was used in this research effort (Paris and Erdogan , 1963). Paris’s Law Under a
Effect of retinal defocus on basketball free throw shooting performance.
Bulson, Ryan C; Ciuffreda, Kenneth J; Hayes, John; Ludlam, Diana P
2015-07-01
Vision plays a critical role in athletic performance; however, previous studies have demonstrated that a variety of simulated athletic sensorimotor tasks can be surprisingly resilient to retinal defocus (blurred vision). The purpose of the present study was to extend this work to determine the effect of retinal defocus on overall basketball free throw performance, as well as for the factors gender, refractive error and experience. Forty-four young adult participants of both genders were recruited. They had a range of refractive errors and basketball experience. Each performed 20 standard basketball free throws under five lens defocus conditions in a randomised manner: plano, +1.50 D, +3.00 D, +4.50 D and +10.00 D. Overall, free throw performance was significantly reduced under the +10.00 D lens defocus condition only. Previous experience, but neither refractive error nor gender, yielded a statistically significant difference in performance. Consistent with previous studies of complex sensorimotor tasks, basketball free throw performance was resilient to low and moderate levels of retinal defocus. Thus, for a relatively non-dynamic motor task at a fixed far distance, such as the basketball free throw, precise visual clarity was not critical. Other factors such as motor memory may be important. However, in the dynamic athletic competitive environment it is likely that visual clarity plays a more critical role in one's performance level, at least for specific task demands. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.
The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry
Pallas, Sarah L.
2017-01-01
Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways. PMID:28701910
The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry.
Pallas, Sarah L
2017-01-01
Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways.
Mapping common aphasia assessments to underlying cognitive processes and their neural substrates
Lacey, Elizabeth H.; Skipper-Kallal, LM; Xing, S; Fama, ME; Turkeltaub, PE
2017-01-01
Background Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. Objective To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Methods 25 behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high resolution MRI was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. Results The principal components analysis yielded four dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. Conclusions An extensive clinical aphasia assessment identifies four independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual’s specific pattern of deficits and preserved abilities. PMID:28135902
NASA Astrophysics Data System (ADS)
Mansor, N. N.; Daud, R.; Basaruddin, K. S.; Mat, F.; Bajuri, Y.; Ariffin, A. K.
2017-09-01
Inmultiscale Haversian system of cortical bone fracture, a homogenous bone modeling consideration is limited to only one Young modulus was significant for each cortex without having any constituents in that bone. A two dimension model of human femur cortical bone is presented by considering the anatomical positions of four cortices, e.g anterior, posterior, medial and lateral. The Haversian system is modeled under tensile loading by considering the interstitial matrix, osteon and cement line mechanical properties. The interaction between single microcrack and single osteon is evaluated using linear elastic fracture mechanics theory, and was determined using of stress intensity factor, strain energy release rate, and the critical stress intensity factor and critical strain energy release rate parameter. The results indicate that the medial cortex has the highest SIFs while the lowest was posterior cortex. The Young modulus of material was greatly influence the fracture parameters. More stiff the material, the SIF was reduced.
Numerical Stress Analysis during Cooldown and Compressive Loading in an Imperfect Nb 3Sn Wire
DOE Office of Scientific and Technical Information (OSTI.GOV)
d’Hauthuille, Luc; Zhai, Yuhu
In this paper, high field superconductors are critical to the success of next step magnetic fusion confinement devices such as ITER and DEMO. The low-temperature superconducting material that is currently favored for these applications, Nb 3Sn, is susceptible to performance due to its brittleness and high strain-sensitivity. Under extreme loads, an irreversible degradation in the maximum critical current density has been shown to occur and believed to be strongly influenced by two factors: plasticity and cracked filaments. Cracks in filaments are induced when sufficiently high stress concentrations occur in the wire. In this paper, we explore using finite element analysismore » the impact that voids have on the stress distributions and peak stresses under two loading conditions: transverse compressive loading in a 2D model, and a full cool down phase in a 3D model.« less
Numerical Stress Analysis during Cooldown and Compressive Loading in an Imperfect Nb 3Sn Wire
d’Hauthuille, Luc; Zhai, Yuhu
2017-07-11
In this paper, high field superconductors are critical to the success of next step magnetic fusion confinement devices such as ITER and DEMO. The low-temperature superconducting material that is currently favored for these applications, Nb 3Sn, is susceptible to performance due to its brittleness and high strain-sensitivity. Under extreme loads, an irreversible degradation in the maximum critical current density has been shown to occur and believed to be strongly influenced by two factors: plasticity and cracked filaments. Cracks in filaments are induced when sufficiently high stress concentrations occur in the wire. In this paper, we explore using finite element analysismore » the impact that voids have on the stress distributions and peak stresses under two loading conditions: transverse compressive loading in a 2D model, and a full cool down phase in a 3D model.« less
Randolph, Matthew E.; Phillips, Brittany L.; Choo, Hyo-Jung; Vest, Katherine E.; Vera, Yandery; Pavlath, Grace K.
2015-01-01
The pharyngeal muscles of the nasal, oral, and laryngeal pharynxes are required for swallowing. Pharyngeal muscles are preferentially affected in some muscular dystrophies yet spared in others. Muscle stem cells, called satellite cells, may be critical factors in the development of pharyngeal muscle disorders; however, very little is known about pharyngeal satellite cells (PSC) and their role in pharyngeal muscles. We show that PSC are distinct from the commonly studied hindlimb satellite cells both transcriptionally and biologically. Under basal conditions PSC proliferate, progress through myogenesis, and fuse with pharyngeal myofibers. Furthermore, PSC exhibit biologic differences dependent on anatomic location in the pharynx. Importantly, PSC are required to maintain myofiber size and myonuclear number in pharyngeal myofibers. Together, these results demonstrate that PSC are critical for pharyngeal muscle maintenance and suggest that satellite cell impairment could contribute to pharyngeal muscle pathology associated with various muscular dystrophies and aging. PMID:26178867
Environmental Factors Can Influence Mitochondrial Inheritance in the Saccharomyces Yeast Hybrids.
Hsu, Yu-Yi; Chou, Jui-Yu
2017-01-01
Mitochondria play a critical role in the generation of metabolic energy and are crucial for eukaryotic cell survival and proliferation. In most sexual eukaryotes, mitochondrial DNA (mtDNA) is inherited from only one parent in non-Mendelian inheritance in contrast to the inheritance of nuclear DNA. The model organism Saccharomyces cerevisiae is commonly used to study mitochondrial biology. It has two mating types: MATa and MATα. Previous studies have suggested that the mtDNA inheritance patterns in hybrid diploid cells depend on the genetic background of parental strains. However, the underlying mechanisms remain unclear. To elucidate the mechanisms, we examined the effects of environmental factors on the mtDNA inheritance patterns in hybrids obtained by crossing S. cerevisiae with its close relative S. paradoxus. The results demonstrated that environmental factors can influence mtDNA transmission in hybrid diploids, and that the inheritance patterns are strain dependent. The fitness competition assay results showed that the fitness differences can explain the mtDNA inheritance patterns under specific conditions. However, in this study, we found that fitness differences cannot fully be explained by mitochondrial activity in hybrids under stress conditions.
Perceptual load in different regions of the visual scene and its relevance for driving.
Marciano, Hadas; Yeshurun, Yaffa
2015-06-01
The aim of this study was to better understand the role played by perceptual load, at both central and peripheral regions of the visual scene, in driving safety. Attention is a crucial factor in driving safety, and previous laboratory studies suggest that perceptual load is an important factor determining the efficiency of attentional selectivity. Yet, the effects of perceptual load on driving were never studied systematically. Using a driving simulator, we orthogonally manipulated the load levels at the road (central load) and its sides (peripheral load), while occasionally introducing critical events at one of these regions. Perceptual load affected driving performance at both regions of the visual scene. Critically, the effect was different for central versus peripheral load: Whereas load levels on the road mainly affected driving speed, load levels on its sides mainly affected the ability to detect critical events initiating from the roadsides. Moreover, higher levels of peripheral load impaired performance but mainly with low levels of central load, replicating findings with simple letter stimuli. Perceptual load has a considerable effect on driving, but the nature of this effect depends on the region of the visual scene at which the load is introduced. Given the observed importance of perceptual load, authors of future studies of driving safety should take it into account. Specifically, these findings suggest that our understanding of factors that may be relevant for driving safety would benefit from studying these factors under different levels of load at different regions of the visual scene. © 2014, Human Factors and Ergonomics Society.
Therapeutic Angiogenesis by Gene Therapy for Critical Limb Ischemia: Choice of Biological Agent.
Sanada, Fumihiro; Taniyama, Yoshiaki; Azuma, Junya; Yuka, Ikeda-Iwabe; Kanbara, Yasuhiro; Iwabayashi, Masaaki; Rakugi, Hiromi; Morishita, Ryuichi
2014-04-01
Peripheral artery disease (PAD) is caused by atherosclerosis, hardening and narrowing arteries over time due to buildup of fatty deposit in vascular bed called plaque. Severe blockage of an artery of the lower extremity markedly reduce blood flow, resulting in critical limb ischemia (CLI) manifested by a variety of clinical syndromes including rest pain in the feet or toes, ulcer and gangrene with infection. Despite significant advances in clinical care and interventions for revascularization, patients with CLI remain at high risk for amputation and cardiovascular death. To overcome this unmet need, therapeutic angiogenesis using angiogenic growth factors has evolved in an attempt to increase blood flow in ischemic limb. Initial animal studies and phase I clinical trials with vascular endothelial growth factor (VEGF) or fibroblast growth factor (FGF) demonstrated promising results, inspiring scientists to progress forward. However, more rigorous phase II and III clinical trials have failed to demonstrate beneficial effects of these angiogenic growth factors to date. Recently, two multicenter, double-blind, placebo-controlled clinical trials in Japan (phase III) and US (phase II) demonstrated that hepatocyte growth factor (HGF) gene therapy for CLI significant improved primary end points and tissue oxygenation up to two years in comparison to placebo. These clinical results implicate a distinct action of HGF on cellular processes involved in vascular remodeling under pathological condition. This review presents data from phase I-III clinical trials of therapeutic angiogenesis by gene therapy in patients with PAD. Further, we discuss the potential explanation for the success or failure of clinical trials in the context of the biological mechanisms underlying angiogenesis and vascular remodeling, including cellular senescence, inflammation, and tissue fibrosis.
Muscle segment homeobox genes direct embryonic diapause by limiting inflammation in the uterus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Jeeyeon; Burnum-Johnson, Kristin E.; Bartos, Amanda
Embryonic diapause (delayed implantation) is a reproductive strategy widespread in the animal kingdom. Under this condition, embryos at the blastocyst stage become dormant simultaneously with uterine quiescence until environmental or physiological conditions are favorable for the survival of the mother and newborn. Under favorable conditions, activation of the blastocyst and uterus ensues with implantation and progression of pregnancy. Although endocrine factors are known to participate in this process, the underlying molecular mechanism coordinating this phenomenon is not clearly understood. We recently found that uterine muscle segment homeobox (Msx) transcription factors are critical for the initiation and maintenance of delayed implantationmore » in mice. To better understand why Msx genes are critical for delayed implantation, we compared uterine proteomics profiles between littermate floxed (Msx1/Msx2f/f) mice and mice with uterine deletion of Msx genes (Msx1/Msx2d/d) under delayed conditions. In Msx1/Msx2d/d uteri, pathways including protein translation, ubiquitin-proteasome system, inflammation, chaperone-mediated protein folding, and endoplasmic reticulum (ER) stress were enriched, and computational modeling showed intersection of these pathways on inflammatory responses. Indeed, increases in the ubiquitin-proteasome system and inflammation conformed to proteotoxic and ER stress in Msx1/Msx2d/d uteri under delayed conditions. Interestingly, treatment with a proteasome inhibitor bortezomib further exacerbated ER stress in Msx1/Msx2d/d uteri with aggravated inflammatory response, deteriorating rate of blastocyst recovery and failure to sustain delayed implantation. This study highlights a previously unrecognized role for Msx in preventing proteotoxic stress and inflammatory responses to coordinate embryo dormancy and uterine quiescence during embryonic diapause.« less
[Analysis on risk factors of endotracheal cuff under inflation in mechanically ventilated patients].
Fu, You; Xi, Xiuming
2014-12-01
To investigate the prevalent condition of endotracheal cuff pressure and risk factors for under inflation. A prospective cohort study was conducted. Patients admitted to the Department of Critical Care Medicine of Fuxing Hospital Affiliated to Capital Medical University, who were intubated with a high-volume low-pressure endotracheal tube, and had undergone mechanical ventilation for at least 48 hours, were enrolled. The endotracheal cuff pressure was determined every 8 hours by a manual manometer connected to the distal edge of the valve cuff at 07 : 00, 15 : 00, and 23 : 00. Measurement of the endotracheal cuff pressure was continued until the extubation of endotracheal or tracheostomy tube, or death of the patient. According to the incidence of under inflation of endotracheal cuff, patients were divided into the incidence of under inflation lower than 25% group (lower low cuff pressure group) and higher than 25% group (higher low cuff pressure group). The possible influencing factors were evaluated in the two groups, including body mass index (BMI), size of endotracheal tube, duration of intubation, use of sedative or analgesic, number of leaving from intensive care unit (ICU), the number of turning over the patients, and aspiration of sputum. Logistic regression analysis was used to determine risk factors for under-inflation of the endotracheal cuff. During the study period, 53 patients were enrolled. There were 812 measurements, and 46.3% of them was abnormal, and 204 times (25.1%) of under inflation of endotracheal cuff were found. There were 24 patients (45.3%) in whom the incidence of under inflation rate was higher than 25%. The average of under inflation was 7 (4, 10) times. Compared with the group with lower rate of low cuff pressure, a longer time for intubation was found in group with higher rate of low cuff pressure [hours: 162 (113, 225) vs. 118 (97, 168), Z=-2.034, P=0.042]. There were no differences between the two groups in other factors, including size of endotracheal tube, the time from intubation to first measurement of endotracheal cuff pressure, number of leaving from ICU during admission, use of sedative agent or analgesic, and the number of body turning and aspiration (all P>0.05). No risk factor was found resulting from under inflation of the endotracheal cuff by logistic regression analysis. No significant difference was found in the incidence of ventilator associated pneumonia, duration of mechanical ventilation, successful rate of weaning on 28th day, or 28-day mortality after weaning from mechanical ventilation, and ICU mortality between the two groups. However, patients in the group of higher rate of low cuff pressure had a longer ICU stay compared with that in the group of lower rate of low cuff pressure group [days: 13 (8, 21) vs. 10 (6, 18), Z=-2.120, P=0.034]. Abnormal endotracheal cuff pressure is common in critically ill patients with intratracheal intubation. Duration of intubation is associated with under inflation of the cuff, and it calls for strengthening monitoring and management.
Kotronoulas, Grigorios; Wengstrom, Yvonne; Kearney, Nora
2013-01-01
Sleep is increasingly recognized as an area of functioning that may be greatly affected in persons who are practically and emotionally involved in the care of patients with cancer. Clinician awareness is required to ensure that effective care for informal caregivers with sleep problems is provided. A 2-fold critical review of the published literature was conducted, which aimed at summarizing and critically analyzing evidence regarding sleep patterns of informal caregivers of adults with cancer and contributing factors to sleep-wake disturbances. Using a wide range of key terms and synonyms, 3 electronic databases (MEDLINE, CINAHL, EMBASE) were systematically searched for the period between January 1990 and July 2011. Based on prespecified selection criteria, 44 articles were pooled to provide evidence on sleep-impairing factors in the context of informal caregiving, 17 of which specifically addressed sleep patterns of caregivers of people with cancer. At least 4 of 10 caregivers may report at least 1 sleep problem. Short sleep duration, nocturnal awakenings, wakefulness after sleep onset, and daytime dysfunction seem to be the areas most affected irrespective of stage or type of disease, yet circadian activity remains understudied. In addition, despite a wide spectrum of potential sleep-impairing factors, underlying causal pathways are yet to be explored. More longitudinal, mixed-methods, and comparison studies are warranted to explore caregiver sleep disorders in relation to the gravity of the caregiving situation in the context of diverse types of cancer and disease severity.
Predicting shifting sustainability trade-offs in marine finfish aquaculture under climate change.
Sarà, Gianluca; Gouhier, Tarik C; Brigolin, Daniele; Porporato, Erika M D; Mangano, Maria Cristina; Mirto, Simone; Mazzola, Antonio; Pastres, Roberto
2018-05-03
Defining sustainability goals is a crucial but difficult task because it often involves the quantification of multiple interrelated and sometimes conflicting components. This complexity may be exacerbated by climate change, which will increase environmental vulnerability in aquaculture and potentially compromise the ability to meet the needs of a growing human population. Here, we developed an approach to inform sustainable aquaculture by quantifying spatio-temporal shifts in critical trade-offs between environmental costs and benefits using the time to reach the commercial size as a possible proxy of economic implications of aquaculture under climate change. Our results indicate that optimizing aquaculture practices by minimizing impact (this study considers as impact a benthic carbon deposition ≥ 1 g C m -2 day -1 ) will become increasingly difficult under climate change. Moreover, an increasing temperature will produce a poleward shift in sustainability trade-offs. These findings suggest that future sustainable management strategies and plans will need to account for the effects of climate change across scales. Overall, our results highlight the importance of integrating environmental factors in order to sustainably manage critical natural resources under shifting climatic conditions. © 2018 John Wiley & Sons Ltd.
Phase Behavior of Patchy Spheroidal Fluids.
NASA Astrophysics Data System (ADS)
Carpency, Thienbao
We employ Gibbs-ensemble Monte Carlo computer simulation to assess the impact of shape anisotropy and particle interaction anisotropy on the phase behavior of a colloidal (or, by extension, protein) fluid comprising patchy ellipsoidal particles, with an emphasis on critical behavior. More specifically, we obtain the fluid-fluid equilibrium phase diagram of hard prolate ellipsoids having Kern-Frenkel surface patches under a variety of conditions and study the critical behavior of these fluids as a function of particle shape parameters. It is found that the dependence of the critical temperature on aspect ratio for particles having the same volume can be described approximately in terms of patch solid angles. In addition, ordering in the fluid that is associated with particle elongation is also found to be an important factor in dictating phase behavior. The G. Harold & Leila Y. Mathers Foundation.
Different Signatures of the Total Filling Factor 1 State
NASA Astrophysics Data System (ADS)
Tiemann, Lars; Yoon, Youngsoo; Schmult, Stefan; Hauser, Maik; Dietsche, Werner; von Klitzing, Klaus
2009-03-01
Bringing two 2-dimensional electron systems in close proximity can yield a correlated state as the electrons will experience the presence of the neighboring system. At the individual filling factors of 1/2 this leads to a new double-layer ground state as positive and negative charges from opposite layers couple to excitons. Many remarkable properties were found such as vanishing Hall and longitudinal resistances in the counterflow configuration [1], a resonantly enhanced zero bias tunneling peak [2], and more recently, a critical DC tunneling current and vanishingly small interlayer resistances in DC measurements [3]. We will show how it is possible to combine the results of these three different measurements into a consistent picture. Under certain conditions it is possible to exceed the critical currents but still observe a minimum at total filling factor 1 in the counterflow configuration.[1] M. Kellogg et al. PRL 93, 036801 (2004); E. Tutuc et al. PRL 93, 036802 (2004)[2] I.B. Spielman et al., PRL 87, 036803 (2001)[3] L. Tiemann et al., New Journal of Physics 10, 045018 (2008)
Li, Ruopu; Merchant, James W
2013-03-01
Modeling groundwater vulnerability to pollution is critical for implementing programs to protect groundwater quality. Most groundwater vulnerability modeling has been based on current hydrogeology and land use conditions. However, groundwater vulnerability is strongly dependent on factors such as depth-to-water, recharge and land use conditions that may change in response to future changes in climate and/or socio-economic conditions. In this research, a modeling framework, which employs three sets of models linked within a geographic information system (GIS) environment, was used to evaluate groundwater pollution risks under future climate and land use changes in North Dakota. The results showed that areas with high vulnerability will expand northward and/or northwestward in Eastern North Dakota under different scenarios. GIS-based models that account for future changes in climate and land use can help decision-makers identify potential future threats to groundwater quality and take early steps to protect this critical resource. Copyright © 2013 Elsevier B.V. All rights reserved.
The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill
Friedrich, O.; Reid, M. B.; Van den Berghe, G.; Vanhorebeek, I.; Hermans, G.; Rich, M. M.; Larsson, L.
2015-01-01
Critical illness polyneuropathies (CIP) and myopathies (CIM) are common complications of critical illness. Several weakness syndromes are summarized under the term intensive care unit-acquired weakness (ICUAW). We propose a classification of different ICUAW forms (CIM, CIP, sepsis-induced, steroid-denervation myopathy) and pathophysiological mechanisms from clinical and animal model data. Triggers include sepsis, mechanical ventilation, muscle unloading, steroid treatment, or denervation. Some ICUAW forms require stringent diagnostic features; CIM is marked by membrane hypoexcitability, severe atrophy, preferential myosin loss, ultrastructural alterations, and inadequate autophagy activation while myopathies in pure sepsis do not reproduce marked myosin loss. Reduced membrane excitability results from depolarization and ion channel dysfunction. Mitochondrial dysfunction contributes to energy-dependent processes. Ubiquitin proteasome and calpain activation trigger muscle proteolysis and atrophy while protein synthesis is impaired. Myosin loss is more pronounced than actin loss in CIM. Protein quality control is altered by inadequate autophagy. Ca2+ dysregulation is present through altered Ca2+ homeostasis. We highlight clinical hallmarks, trigger factors, and potential mechanisms from human studies and animal models that allow separation of risk factors that may trigger distinct mechanisms contributing to weakness. During critical illness, altered inflammatory (cytokines) and metabolic pathways deteriorate muscle function. ICUAW prevention/treatment is limited, e.g., tight glycemic control, delaying nutrition, and early mobilization. Future challenges include identification of primary/secondary events during the time course of critical illness, the interplay between membrane excitability, bioenergetic failure and differential proteolysis, and finding new therapeutic targets by help of tailored animal models. PMID:26133937
Factors associated with clinical inertia: an integrative review
Aujoulat, Isabelle; Jacquemin, Patricia; Rietzschel, Ernst; Scheen, André; Tréfois, Patrick; Wens, Johan; Darras, Elisabeth; Hermans, Michel P
2014-01-01
Failure to initiate or intensify therapy according to evidence-based guidelines is increasingly being acknowledged as a phenomenon that contributes to inadequate management of chronic conditions, and is referred to as clinical inertia. However, the number and complexity of factors associated with the clinical reasoning that underlies the decision-making processes in medicine calls for a critical examination of the consistency of the concept. Indeed, in the absence of information on and justification of treatment decisions that were made, clinical inertia may be only apparent, and actually reflect good clinical practice. This integrative review seeks to address the factors generally associated with clinical inaction, in order to better delineate the concept of true clinical inertia. PMID:24868181
Poinapen, Danny; Brown, Daniel C W; Beeharry, Girish K
2013-09-15
Different factors (e.g., light, humidity, and temperature) including exposure to static magnetic fields (SMFs), referred here as critical factors, can significantly affect horticultural seed performance. However, the link between magnetic field parameters and other interdependent factors affecting seed viability is unclear. The importance of these critical factors affecting tomato (Solanum lycopersicum L.) var. MST/32 seed performance was assessed after performing several treatments based on a L9 (3(4)) (four factors at three levels) orthogonal array (OA) design. The variable factors in the design were magnetic flux density (R1=332.1±37.8mT; R2=108.7±26.9mT; and R3=50.6±10.5mT), exposure time (1, 2, and 24h), seed orientation (North polarity, South polarity, and control - no magnetic field), and relative humidity (RH) (7.0, 25.5, and 75.5%). After seed moisture content stabilisation at the different chosen RH, seeds were exposed in dark under laboratory conditions to several treatments based on the OA design before performance evaluation. Treatments not employing magnetic field exposure were used as controls. Results indicate that electrolyte leakage rate was reduced by a factor of 1.62 times during seed imbibition when non-uniform SMFs were employed. Higher germination (∼11.0%) was observed in magnetically-exposed seeds than in non-exposed ones, although seedlings emerging from SMF treatments did not show a consistent increase in biomass accumulation. The respective influence of the four critical factors tested on seed performance was ranked (in decreasing order) as seed orientation to external magnetic fields, magnetic field strength, RH, and exposure time. This study suggests a significant effect of non-uniform SMFs on seed performance with respect to RH, and more pronounced effects are observed during seed imbibition rather than during later developmental stages. Copyright © 2013 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui
2014-02-01
Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.
Resonant UPS topologies for the emerging hybrid fiber-coaxial networks
NASA Astrophysics Data System (ADS)
Pinheiro, Humberto
Uninterruptible power supply (UPS) systems have been extensively applied to feed critical loads in many areas. Typical examples of critical loads include life-support equipment, computers and telecommunication systems. Although all UPS systems have a common purpose to provide continuous power-to critical loads, the emerging hybrid fiber-coaxial networks have created the need for specific types of UPS topologies. For example, galvanic isolation for the load and the battery, small size, high input power factor, and trapezoidal output voltage waveforms are among the required features of UPS topologies for hybrid fiber-coaxial networks. None of the conventional UPS topologies meet all these requirements. Consequently. this thesis is directed towards the design and analysis of UPS topologies for this new application. Novel UPS topologies are proposed and control techniques are developed to allow operation at high switching frequencies without penalizing the converter efficiency. By the use of resonant converters in the proposed UPS topologies. a high input power factor is achieved without requiring a dedicated power factor correction stage. In addition, a self-sustained oscillation control method is proposed to ensure soft switching under all operating conditions. A detailed analytical treatment of the resonant converters in the proposed UPS topologies is presented and design procedures illustrated. Simulation and experimental results are presented to validate the analyses and to demonstrate the feasibility of the proposed schemes.
[Karl Marx and the Malthusian theory of population].
Jaggi, S
1985-06-01
An analysis of the works of Karl Marx is presented in order to demonstrate the importance of the population factor. The author contends that population growth is a critical factor in Marx's theory of the progressive impoverishment of the working class. However, because of his reluctance to acknowledge the value of the Malthusian contribution, Marx focused his analysis of the labor force under capitalism on the demand for workers and neglected the supply side, which is determined by the growth of population. The author concludes that Marxist theory would have benefited from greater consideration of Malthusian theory.
Dudley, Andrew C.
2012-01-01
The vascular endothelium is a dynamic cellular “organ” that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies. PMID:22393533
Ergonomics and sitting at work.
Corlett, E N
2009-01-01
Many factors influence the performance at the workplace. The immediate interface between the user and the equipment is, perhaps, the most important. Hence, the arrangements of the seat and work point are critical.Factors which cause discomfort and injury to seated workers are described and, from the behaviour of the spine under load, a better seat design is presented. Its use by a wide variety of workers makes it necessary to introduce increased adjustability, beyond that normally part of conventional seat design. The application of the new design in two cases in industry, as well as its introduction in schools, is briefly covered.
Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension
Chen, S. H.; Yue, T. M.; Tsui, C. P.; Chan, K. C.
2016-01-01
Inheriting amorphous atomic structures without crystalline lattices, bulk metallic glasses (BMGs) are known to have superior mechanical properties, such as high strength approaching the ideal value, but are susceptible to catastrophic failures. Understanding the plastic-flow dynamics of BMGs is important for achieving stable plastic flow in order to avoid catastrophic failures, especially under tension, where almost all BMGs demonstrate limited plastic flow with catastrophic failure. Previous findings have shown that the plastic flow of BMGs displays critical dynamics under compression tests, however, the plastic-flow dynamics under tension are still unknown. Here we report that power-law critical dynamics can also be achieved in the plastic flow of tensile BMGs by introducing flaws. Differing from the plastic flow under compression, the flaw-induced plastic flow under tension shows an upward trend in the amplitudes of the load drops with time, resulting in a stable plastic-flow stage with a power-law distribution of the load drop. We found that the flaw-induced plastic flow resulted from the stress gradients around the notch roots, and the stable plastic-flow stage increased with the increase of the stress concentration factor ahead of the notch root. The findings are potentially useful for predicting and avoiding the catastrophic failures in tensile BMGs by tailoring the complex stress fields in practical structural-applications. PMID:27779221
Stocker, Elena; Toschkoff, Gregor; Sacher, Stephan; Khinast, Johannes G
2014-11-20
The purpose of this study is to evaluate the use of computer simulations for generating quantitative knowledge as a basis for risk ranking and mechanistic process understanding, as required by ICH Q9 on quality risk management systems. In this specific publication, the main focus is the demonstration of a risk assessment workflow, including a computer simulation for the generation of mechanistic understanding of active tablet coating in a pan coater. Process parameter screening studies are statistically planned under consideration of impacts on a potentially critical quality attribute, i.e., coating mass uniformity. Based on computer simulation data the process failure mode and effects analysis of the risk factors is performed. This results in a quantitative criticality assessment of process parameters and the risk priority evaluation of failure modes. The factor for a quantitative reassessment of the criticality and risk priority is the coefficient of variation, which represents the coating mass uniformity. The major conclusion drawn from this work is a successful demonstration of the integration of computer simulation in the risk management workflow leading to an objective and quantitative risk assessment. Copyright © 2014. Published by Elsevier B.V.
[Gut barrier in the critically ill patient: facts and trends].
Velasco, Nicolás
2006-08-01
The disturbances of gut barrier in critically ill patients may influence their outcome and prognosis. Experiments in animals show that fasting and stress collaborate to produce intestinal atrophy and translocation of microorganisms and toxins. This fact is one of the main arguments to promote the use of early enteral feeding in critically ill patients. However, the intestinal barrier behaves differently in humans than in animals. The human enteral cells have a good tolerance to fasting and stress, mucosal atrophy is mild and it is not always associated with changes in intestinal permeability. Moreover, the relationship between intestinal permeability with sepsis and bacterial translocation is controversial. This last phenomenon also happens in normal subjects and may be a mechanism to build immunological memory. One of the most important factors that influence bacterial translocation is the microorganism, that under stress conditions can adhere to the intestinal cell and penetrate the intestinal barrier. Splanchnic ischemia and reperfusion is one of the main pathogenic factors in the failure of intestinal barrier. Finally, the fact that the small bowel is an inflammatory target of extra intestinal injuries, explains several clinical situations. The pathophysiology of the intestinal barrier definitely requires more research.
Energy Neutral Wireless Bolt for Safety Critical Fastening
Seyoum, Biruk B.
2017-01-01
Thermoelectric generators (TEGs) are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius) temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace. PMID:28954432
Energy Neutral Wireless Bolt for Safety Critical Fastening.
Seyoum, Biruk B; Rossi, Maurizio; Brunelli, Davide
2017-09-26
Thermoelectric generators (TEGs) are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius) temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace.
Potential Mechanisms of Cancer Prevention by Weight Control
NASA Astrophysics Data System (ADS)
Jiang, Yu; Wang, Weiqun
Weight control via dietary caloric restriction and/or physical activity has been demonstrated in animal models for cancer prevention. However, the underlying mechanisms are not fully understood. Body weight loss due to negative energy balance significantly reduces some metabolic growth factors and endocrinal hormones such as IGF-1, leptin, and adiponectin, but enhances glucocorticoids, that may be associated with anti-cancer mechanisms. In this review, we summarized the recent studies related to weight control and growth factors. The potential molecular targets focused on those growth factors- and hormones-dependent cellular signaling pathways are further discussed. It appears that multiple factors and multiple signaling cascades, especially for Ras-MAPK-proliferation and PI3K-Akt-anti-apoptosis, could be involved in response to weight change by dietary calorie restriction and/or exercise training. Considering prevalence of obesity or overweight that becomes apparent over the world, understanding the underlying mechanisms among weight control, endocrine change and cancer risk is critically important. Future studies using "-omics" technologies will be warrant for a broader and deeper mechanistic information regarding cancer prevention by weight control.
Stent implantation influence wall shear stress evolution
NASA Astrophysics Data System (ADS)
Bernad, S. I.; Totorean, A. F.; Bosioc, A. I.; Petre, I.; Bernad, E. S.
2016-06-01
Local hemodynamic factors are known affect the natural history of the restenosis critically after coronary stenting of atherosclerosis. Stent-induced flows disturbance magnitude dependent directly on the strut design. The impact of flow alterations around struts vary as the strut geometrical parameters change. Our results provide data regarding the hemodynamic parameters for the blood flow in both stenosed and stented coronary artery under physiological conditions, namely wall shear stress and pressure drop.
Effect of Loss on Multiplexed Single-Photon Sources (Open Access Publisher’s Version)
2015-04-28
lossy components on near- and long-term experimental goals, we simulate themultiplexed sources when used formany- photon state generation under various...efficient integer factorization and digital quantum simulation [7, 8], which relies critically on the development of a high-performance, on-demand photon ...SPDC) or spontaneous four-wave mixing: parametric processes which use a pump laser in a nonlinearmaterial to spontaneously generate photon pairs
Wang, Xi-Shu; Tang, Hua-Ping; Li, Xu-Dong; Hua, Xin
2009-01-01
This review covers recent advances and work on the microstructure features, mechanical properties and cracking processes of conducting polymer film/coating- substrate structures under different testing conditions. An attempt is made to characterize and quantify the relationships between mechanical properties and microstructure features. In addition, the film cracking mechanism on the micro scale and some influencing factors that play a significant role in the service of the film-substrate structure are presented. These investigations cover the conducting polymer film/coating nucleation process, microstructure-fracture characterization, translation of brittle-ductile fractures, and cracking processes near the largest inherent macromolecule defects under thermal-mechanical loadings, and were carried out using in situ scanning electron microscopy (SEM) observations, as a novel method for evaluation of interface strength and critical failure stress. PMID:20054470
Perspective—Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankel, G. S.; Li, Tianshu; Scully, J. R.
2017-02-24
A debate about the critical step in localized corrosion has raged for decades. Some researchers focus on the composition and structure of the passive film associated with the initial breakdown of the film, whereas others consider that the susceptibility to pitting is controlled by the pit growth kinetics and the stabilization of pit growth. The basis for a unified theory of pitting is presented here in which pit stability considerations are controlling under aggressive conditions (harsh electrolytes and extreme environments and/or susceptible microstructures) and the passive film properties and protectiveness are the critical factors in less extreme environments and/or formore » less susceptible alloys.« less
NASA Technical Reports Server (NTRS)
1991-01-01
Systems Technology, Inc., Hawthorne, CA, developed an electronic Critical Tracking Task (CTT) system that analyzes and rates a subject's visual/motor responses for Ames Research Center. Originally applied to measuring the effects of long term confinement in the mid 1960's, the CTT system is now marketed as FACTOR 1000 by Performance Factors, Inc. Alameda, CA, under a licensing agreement with Systems Technology. The system is a non-invasive, self-administered test that takes less than a minute and detects impairment from a broad range of causes, including stress, fatigue, illness, drugs, or alcohol. It is used daily by Old Town Trolley Tours, San Diego, CA, to assess each driver's physical coordination skills prior to the start of each shift. FACTOR 1000 reduces liabilities and costs related to accidents, and costs less than one dollar per day per employee. Performance Factors is now BioFactors, Inc.
Slow sedimentary processes on-a-chip: experiments on porous flow effects on granular bed creep
NASA Astrophysics Data System (ADS)
Houssais, M.; Maldarelli, C.; Shattuck, M.; Morris, J. F.
2017-12-01
Steep soils dynamics is hard to catch. they exhibit very slow granular creep most of the time, and sometimes, mostly under or after rain, turn into a landslide, a very fast avalanche flow.The conditions of transition from soil creep to avalanching remains a lot non-understood, and Safe Factor law (empirical criteria, function of rain intensity and duration). On another side, in marine fast deposition environments, compaction drives vertical porous flow, which makes bed shear resistance change, and form over time bed size patterns (pipes, dishes) or mechanical heterogeneities.Capturing how the slow creep dynamics depends on the porous flow would allow for much more accurate landscape evolution modeling.We present here preliminary results of an experimental investigation of one the major triggering condition for soils destabilization: rain infiltration, and more generally porous flow through a tilted granular bed. In a quasi-2D microfluidics channel, a flat sediment bed made of spherical particles is prepared, in fully submerged condition. It is thereafter tilted (at slope under critical slope of avalanching) and simultaneously put under vertical weak porous flow (well under the critical flow of liquefaction regarding positive pressure gradients). The two control parameters are varied, and local particles concentration and motion are measured. Interestingly, although staying in the sub-critical creeping regime, we observe an acceleration of the bed deformation downward, as the porous flow and the bed slope are increased, until the criteria for avalanching is reached. Those results appear to present similitudes with the case of tilted dry sediment bed under controlled vibrations. Consequently it opens the discussion about a potential universal model of landslides triggering due to frequent seismological and rainstorm events.
Richardson, Annette; Barrow, Isabel
2015-11-01
Critically ill patients are at high risk of developing pressure ulcers resulting in serious untoward patient and health care system outcomes. Pressure ulcer prevention is therefore an important patient safety priority and establishing a structured approach to pressure ulcer risk assessment to identify patients at risk is a critical first step. The literature was searched using three electronic databases from 2000 to 2011 to identify papers reporting on pressure ulcer risk factors and assessment in adult critical care. The review and appraisal of papers were conducted by two critical care nurses. Papers underwent detailed review if they met inclusion criteria where they identified pressure ulcer assessment scores, scales or risk factors and related to adult critical care patients Seven papers were reviewed. No single assessment tool was sufficiently validated for critically ill patients and seven key critical care risk factors were identified. These risk factors were: mechanical ventilation, impaired circulation, dialysis, long surgery, low protein and too unstable to turn. The tool Critical Care Pressure Ulcer Assessment Tool made Easy (CALCULATE) was developed utilizing the risk factors from the literature and expert critical care nursing consensus decision-making. In the absence of current consensus, valid assessment scales and limited evidence for the most appropriate pressure ulcer assessment for critically ill patients, this assessment tool offers an easy, appropriate alternative for critically ill patients than existing tools primarily validated for acute care wards. 'CALCULATE' offers an important contribution towards the advancement and development of critical care pressure ulcer risk assessment. Future research is needed to further enhance and inform pressure ulcer risk assessment of the critically ill patients. The identification of critical care risk factors may be an indicative method of assessing pressure ulcer risk in the critically ill patients. © 2015 British Association of Critical Care Nurses.
Critical factors for EIA implementation: literature review and research options.
Zhang, Jie; Kørnøv, Lone; Christensen, Per
2013-01-15
After decades of development, the gap between expectations of Environment Impact Assessments (EIA) and their practical performance remains significant. Research has been done to identify the critical factors for an effective implementation of EIA. However, this research, to a large extent, has not been cumulated and analysed comprehensively according to the stages of the EIA process. This paper contributes to the critical review of the literature on EIA implementation and effectiveness by cumulating mainly empirical findings in an implementation theoretical perspective. It focuses on the links between different critical factors and how they relate to different stages in the EIA and thus influence the decision making process. After reviewing 33 refereed journal articles published between 1999 and 2011, we identified 203 notions of critical factors. Of these, 102 related to different stages defined in our comprehensive EIA implementation model, and 101 were identified as general factors related to the whole EIA system. The number of notions of stage factors and general factors is thus about equal. An overlap between stage factors and general factors was found, which demonstrates that critical factors function differently in different cases. The function of the critical factors is complex and it is difficult to determine contingencies and causations. In the sources we examined, there is evidently an imbalance between in-depth empirical research and general knowledge, and the paper offers some suggestions for future research. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Phelan, Thomas J.; Abriola, Linda M.; Gibson, Jenny L.; Smits, Kathleen M.; Christ, John A.
2015-12-01
In-situ bioremediation, a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs), has proven economical and reasonably efficient for long-term management of contaminated sites. Successful application of this remedial technology, however, requires an understanding of the complex interaction of transport, mass transfer, and biotransformation processes. The bioenhancement factor, which represents the ratio of DNAPL mass transfer under microbially active conditions to that which would occur under abiotic conditions, is commonly used to quantify the effectiveness of a particular bioremediation remedy. To date, little research has been directed towards the development and validation of methods to predict bioenhancement factors under conditions representative of real sites. This work extends an existing, first-order, bioenhancement factor expression to systems with zero-order and Monod kinetics, representative of many source-zone scenarios. The utility of this model for predicting the bioenhancement factor for previously published laboratory and field experiments is evaluated. This evaluation demonstrates the applicability of these simple bioenhancement factors for preliminary experimental design and analysis, and for assessment of dissolution enhancement in ganglia-contaminated source zones. For ease of application, a set of nomographs is presented that graphically depicts the dependence of bioenhancement factor on physicochemical properties. Application of these nomographs is illustrated using data from a well-documented field site. Results suggest that this approach can successfully capture field-scale, as well as column-scale, behavior. Sensitivity analyses reveal that bioenhanced dissolution will critically depend on in-situ biomass concentrations.
Regassa, Wakigari; Lemma, Seblewengel
2016-11-01
Diarrheal disease is the commonchildhood illness and a leading killer of children aged under 5 years, especially in developing countries like Ethiopia. The aim of this study was to assess the prevalence of diarrheal disease and associated risk factors among children of 6-59 months old at Adama district rural kebeles, Eastern Ethiopia. Community based cross sectional study design was conducted in January/2015. Descriptive method was used to describe study variables quantitatively and explanatory method to identify the effect of determinant factors on diarrheal disease occurrence. A single population proportion sample size formula was applied. Random sampling procedure was used by lottery method to select five kebeles and 442 house-holds. Data was collected by using pretested, structured questionnaires through interview and observational checklist by trained data collectors. Double entry was made to epi-info 3.5.3 and & transferred to SPSS20 for analysis. The two weeks' period prevalence of diarrheal disease in children aged 6 to59 months was 14.7%; 95%CI [11.5-18.1]. mother/caregiver who did not practice hand washing during the critical time was the only factor identified to be significantly associated with AOR=2.2; 95%CI [1.0-4.7] for the child hood diarrheal disease occurrence at Adama distict rural kebeles. Diarrheal disease prevalence is changed by child's caregiver hand washing practice during critical time. Health education for child's caregiver on hand washing practice during critical time is an important intervention for the prevention of diarrheal disease prevalence among children.
Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity.
Li, Harbin; McNulty, Steven G
2007-10-01
Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL estimates to the national scale could be developed. Specifically, we wanted to quantify CAL uncertainty under natural variability in 17 model parameters, and determine their relative contributions in predicting CAL. Results indicated that uncertainty in CAL came primarily from components of base cation weathering (BC(w); 49%) and acid neutralizing capacity (46%), whereas the most critical parameters were BC(w) base rate (62%), soil depth (20%), and soil temperature (11%). Thus, improvements in estimates of these factors are crucial to reducing uncertainty and successfully scaling up SMBE for national assessments of CAL.
Robustness and fragility in coupled oscillator networks under targeted attacks.
Yuan, Tianyu; Aihara, Kazuyuki; Tanaka, Gouhei
2017-01-01
The dynamical tolerance of coupled oscillator networks against local failures is studied. As the fraction of failed oscillator nodes gradually increases, the mean oscillation amplitude in the entire network decreases and then suddenly vanishes at a critical fraction as a phase transition. This critical fraction, widely used as a measure of the network robustness, was analytically derived for random failures but not for targeted attacks so far. Here we derive the general formula for the critical fraction, which can be applied to both random failures and targeted attacks. We consider the effects of targeting oscillator nodes based on their degrees. First we deal with coupled identical oscillators with homogeneous edge weights. Then our theory is applied to networks with heterogeneous edge weights and to those with nonidentical oscillators. The analytical results are validated by numerical experiments. Our results reveal the key factors governing the robustness and fragility of oscillator networks.
Quantum Critical Point revisited by the Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei
Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.
Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.
Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan
2013-03-14
Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as 'redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.
Redox homeostasis: the linchpin in stem cell self-renewal and differentiation
Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan
2013-01-01
Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as ‘redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology. PMID:23492768
NASA Astrophysics Data System (ADS)
Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.
2018-05-01
In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.
Environmental Factors Can Influence Mitochondrial Inheritance in the Saccharomyces Yeast Hybrids
Hsu, Yu-Yi; Chou, Jui-Yu
2017-01-01
Mitochondria play a critical role in the generation of metabolic energy and are crucial for eukaryotic cell survival and proliferation. In most sexual eukaryotes, mitochondrial DNA (mtDNA) is inherited from only one parent in non-Mendelian inheritance in contrast to the inheritance of nuclear DNA. The model organism Saccharomyces cerevisiae is commonly used to study mitochondrial biology. It has two mating types: MATa and MATα. Previous studies have suggested that the mtDNA inheritance patterns in hybrid diploid cells depend on the genetic background of parental strains. However, the underlying mechanisms remain unclear. To elucidate the mechanisms, we examined the effects of environmental factors on the mtDNA inheritance patterns in hybrids obtained by crossing S. cerevisiae with its close relative S. paradoxus. The results demonstrated that environmental factors can influence mtDNA transmission in hybrid diploids, and that the inheritance patterns are strain dependent. The fitness competition assay results showed that the fitness differences can explain the mtDNA inheritance patterns under specific conditions. However, in this study, we found that fitness differences cannot fully be explained by mitochondrial activity in hybrids under stress conditions. PMID:28081193
NASA Astrophysics Data System (ADS)
Sanchez-Campos, Teodoro
The hypothesis of this work is that there are social, financial, technical, managerial institutional and political key factors that may either support or prevent the success of small stand alone energy systems in rural areas. This research work aims at contributing to the identification of such factors and study their relevance to the performance and sustainability of stand alone energy systems in rural areas; to meet its purpose, a wide range of literature was reviewed including rural electrification programmes and projects, research and development projects on access to electricity in rural areas, impact studies and others, and a field research survey was done the Andes and Upper Jungle regions in Peru. Nineteen possible critical factors were identified, thirteen with relevance at the local context (the community or village), and six with relevance at the national (or wider) context. From literature review it was found that the possible local critical factors were relevant only to four categories of factors instead of the six considered initially (i.e. social, financial, technological and managerial): the other two categories, political and institutional were found to be more relevant to the national context, therefore those were included in the group of possible critical factors of wider context. A series of questionnaires were designed to collect field data information, which was later used to analyse and establish the relation of each identified factor with the success of the systems studied. The survey research was implemented in 14 villages, 7 with small diesel sets and 7 with small hydropower schemes, all spread in the Andes and Upper Jungle of Peru, which were carefully selected to be representative of regions with isolated stand alone systems and with different socioeconomic background. Out of the 13 possible critical factors of local context, it was found that only 3 are really critical, the others are important but not critical; one of them (technical assistance) was found to be closely linked to national capacity, therefore for practical reasons both are considered as one critical factor or wider context. Although more research study is needed to establish a more clearer result on the factors of wider context (national context), it was found that out of the 6 factors of wider context only one appears to be critical, the other 5 are important but not critical. Therefore the summary of critical factors is as follows: a) Critical Factors of Local Context o Management o Local capacity b) Critical Factors of National Context o Technical Support/national capacity On the local factors, management appears to be the most critical of all factors, because with good management, most of the other factors can be overcome. It was also found that "The small enterprise model" tested by Practical Action on small scale hydropower schemes is proving to be successful and other organisations are starting to use it in different contexts. Therefore future research is recommended on this particular management model in order to be useful for rural electrification programmes based on decentralised energy generation systems.
Developmental trajectories of brain maturation and behavior: Relevance to major mental illnesses.
Lockhart, Sedona; Sawa, Akira; Niwa, Minae
2018-05-01
Adverse events in childhood and adolescence, such as social neglect or drug abuse, are known to lead to behavioral changes in young adulthood. This is particularly true for the subset of people who are intrinsically more vulnerable to stressful conditions. Yet the underlying mechanisms for such developmental trajectory from early life insult to aberrant adult behavior remains elusive. Adolescence is a period of dynamic physiological, psychological, and behavioral changes, encompassing a distinct neurodevelopmental stage called the 'critical period'. During adolescence, the brain is uniquely susceptible to stress. Stress mediators may lead to disturbances to biological processes that can cause permanent alterations in the adult stage, even as severe as the onset of mental illness when paired with genetic risk and environmental factors. Understanding the molecular factors governing the critical period and how stress can disturb the maturation processes will allow for better treatment and prevention of late adolescent/young adult onset psychiatric disorders. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Exact finite volume expectation values of local operators in excited states
NASA Astrophysics Data System (ADS)
Pozsgay, B.; Szécsényi, I. M.; Takács, G.
2015-04-01
We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.
Critical issues in ALS case-control studies: the case of the Euro-MOTOR study.
D'Ovidio, Fabrizio; Rooney, James P K; Visser, Anne E; Vermeulen, Roel C H; Veldink, Jan H; Van Den Berg, Leonard H; Hardiman, Orla; Logroscino, Giancarlo; Chiò, Adriano; Beghi, Ettore
2017-08-01
Backround: Political and sociocultural differences between countries can affect the outcome of clinical and epidemiological studies in ALS. Cross-national studies represent the ideal process by which risk factors can be assessed using the same methodology in different geographical areas. A survey of three European countries (The Netherlands, Ireland and Italy) has been conducted in which incident ALS patients and matched controls were recruited in a population-based study based on age, gender and area of residency, under the Euro-MOTOR systems biology programme of research. We have identified strengths and limitations during the trajectory of the Euro-MOTOR study, from the research design to data analysis. We have analysed the implications of factors including cross-national differences in healthcare systems, sample size, types of matching, the definition of exposures and statistical analysis. Addressing critical methodological aspects of the design of the Euro-MOTOR project minimises bias and will facilitate scientific assessment of the independent role of well-defined exposures.
A critical literature review of health economic evaluations of rotavirus vaccination
Aballéa, Samuel; Millier, Aurélie; Quilici, Sibilia; Caroll, Stuart; Petrou, Stavros; Toumi, Mondher
2013-01-01
Two licensed vaccines are available to prevent RVGE in infants. A worldwide critical review of economic evaluations of these vaccines was conducted. The objective was to describe differences in methodologies, assumptions and inputs and determine the key factors driving differences in conclusions. 68 economic evaluations were reviewed. RV vaccination was found to be cost-effective in developing countries, while conclusions varied between studies in developed countries. Many studies found that vaccination was likely to be cost-effective under some scenarios, such as lower prices scenarios, inclusion of herd protection, and/or adoption of a societal perspective. Other reasons for variability included uncertainty around healthcare visits incidence and lack of consensus on quality of life (QoL) valuation for infants and caregivers. New evidence on the vaccination effectiveness in real-world, new ways of modeling herd protection and assessments of QoL in children could help more precisely define the conditions under which RV vaccination would be cost-effective in developed countries. PMID:23571226
Greene, Nicholas D.E.; Copp, Andrew J.
2015-01-01
Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496
Leitão, Ana Lúcia; Enguita, Francisco J
2016-02-01
The genus Penicillium is one of the most versatile "mycofactories", comprising some species able to produce gibberellins, bioactive compounds that can modulate plant growth and development. Although plants have the ability to synthesize gibberellins, their levels are lower when plants are under salinity stress. It has been recognized that detrimental abiotic conditions, such as saline stress, have negative effects on plants, being the availability of bioactive gibberellins a critical factor for their growth under this conditions. This review summarizes the interplay existing between endophytic Penicillium strains and plant host interactions, with focus on bioactive gibberellins production as a fungal response that allows plants to overcome salinity stress. Copyright © 2015 Elsevier GmbH. All rights reserved.
Quantitative Analysis of Critical Factors for the Climate Impact of Landfill Mining.
Laner, David; Cencic, Oliver; Svensson, Niclas; Krook, Joakim
2016-07-05
Landfill mining has been proposed as an innovative strategy to mitigate environmental risks associated with landfills, to recover secondary raw materials and energy from the deposited waste, and to enable high-valued land uses at the site. The present study quantitatively assesses the importance of specific factors and conditions for the net contribution of landfill mining to global warming using a novel, set-based modeling approach and provides policy recommendations for facilitating the development of projects contributing to global warming mitigation. Building on life-cycle assessment, scenario modeling and sensitivity analysis methods are used to identify critical factors for the climate impact of landfill mining. The net contributions to global warming of the scenarios range from -1550 (saving) to 640 (burden) kg CO2e per Mg of excavated waste. Nearly 90% of the results' total variation can be explained by changes in four factors, namely the landfill gas management in the reference case (i.e., alternative to mining the landfill), the background energy system, the composition of the excavated waste, and the applied waste-to-energy technology. Based on the analyses, circumstances under which landfill mining should be prioritized or not are identified and sensitive parameters for the climate impact assessment of landfill mining are highlighted.
BRUMMELTE, S.; GLANAGHY, E. MC; BONNIN, A.; OBERLANDER, T. F.
2017-01-01
The neurotransmitter serotonin (5-HT) plays a central role in brain development, regulation of mood, stress reactivity and risk of psychiatric disorders, and thus alterations in 5-HT signaling early in life have critical implications for behavior and mental health across the life span. Drawing on preclinical and emerging human evidence this narrative review paper will examine three key aspects when considering the consequences of early life changes in 5-HT: (1) developmental origins of variations of 5-HT signaling; (2) influence of genetic and epigenetic factors; and (3) preclinical and clinical consequences of 5-HT-related changes associated with antidepressant exposure (SSRIs). The developmental consequences of altered prenatal 5-HT signaling varies greatly and outcomes depend on an ongoing interplay between biological (genetic/epigenetic variations) and environmental factors, both pre and postnatally. Emerging evidence suggests that variations in 5-HT signaling may increase sensitivity to risky home environments, but may also amplify a positive response to a nurturing environment. In this sense, factors that change central 5-HT levels may act as ‘plasticity’ rather than ‘risk’ factors associated with developmental vulnerability. Understanding the impact of early changes in 5-HT levels offers critical insights that might explain the variations in early typical brain development that underlies behavioral risk. PMID:26905950
21 CFR 113.100 - Processing and production records.
Code of Federal Regulations, 2014 CFR
2014-04-01
... products, maximum fill-in or drained weight, or other critical factors specified in the scheduled process... end of the holding period; nature of container. (6) Food preservation methods wherein critical factors... scheduled processes used, including the thermal process, its associated critical factors, as well as other...
21 CFR 113.100 - Processing and production records.
Code of Federal Regulations, 2012 CFR
2012-04-01
... products, maximum fill-in or drained weight, or other critical factors specified in the scheduled process... end of the holding period; nature of container. (6) Food preservation methods wherein critical factors... scheduled processes used, including the thermal process, its associated critical factors, as well as other...
21 CFR 113.100 - Processing and production records.
Code of Federal Regulations, 2013 CFR
2013-04-01
... products, maximum fill-in or drained weight, or other critical factors specified in the scheduled process... end of the holding period; nature of container. (6) Food preservation methods wherein critical factors... scheduled processes used, including the thermal process, its associated critical factors, as well as other...
Religion and Resistance: Examining the Role of Religion in Irregular Warfare
2009-03-01
merely in-passing or as a secondary factor within a broader appreciation of the cultural context of the operating environment. The superficial treatment...there is an overall lack of recognition of, and appreciation for, the ways in which religion underlies social, cultural , political, and economic...so merely in-passing or as part of a broader appreciation of the cultural context of the operating environment. In response to these critics, David
Ke, Fang; Zhang, Lingyun; Liu, Zhaoyuan; Yan, Sha; Xu, Zhenyao; Bai, Jing; Zhu, Huiyuan; Lou, Fangzhou; Cai, Wei; Sun, Yang; Gao, Yuanyuan; Wang, Hong
2016-01-01
T helper 17 (Th17) cells play an important role in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Th17 cell differentiation from naïve T cells can be induced in vitro by the cytokines transforming growth factor β1 and interleukin-6. However, it remains unclear whether other regulatory factors control the differentiation of Th17 cells. Mesenchymal stem cells (MSCs) have emerged as a promising candidate for inhibiting Th17 cell differentiation and autoimmune diseases. Despite the fact that several molecules have been linked to the immunomodulatory function of MSCs, many other key MSC-secreted regulators that are involved in inhibiting Th17 cell polarization are ill-defined. In this study, we demonstrated that the intraperitoneal administration of skin-derived MSCs (S-MSCs) substantially ameliorated the development of EAE in mice. We found that the proinflammatory cytokine tumor necrosis factor (TNF)-α, a key mediator in the pathophysiology of MS and EAE, was capable of promoting Th17 cell differentiation. Moreover, under inflammatory conditions, we demonstrated that S-MSCs produced high amounts of soluble TNF receptor 1 (sTNFR1), which binds TNF-α and antagonizes its function. Knockdown of sTNFR1 in S-MSCs decreased their inhibitory effect on Th17 cell differentiation ex vivo and in vivo. Thus, our data identified sTNFR1 and its target TNF-α as critical regulators for Th17 cell differentiation, suggesting a previously unrecognized mechanism for MSC therapy in Th17-mediated autoimmune diseases. Significance This study showed that administration of skin-derived mesenchymal stem cells (S-MSCs) was able to alleviate the clinical score of experimental autoimmune encephalomyelitis by inhibiting the differentiation of T helper 17 (Th17) cells. Tumor necrosis factor (TNF)-α is a critical cytokine for promoting Th17 cell differentiation. It was discovered that activated S-MSCs produced high amount of soluble TNF receptor 1 (sTNFR1), which neutralized TNF-α and inhibited Th17 cell polarization. The data identified S-MSC-secreted sTNFR1 and its target TNF-α as essential regulators for Th17 cell differentiation and revealed a novel mechanism underlying MSC-mediated immunomodulatory function in autoimmunity. PMID:26819253
Critical Factors Influencing Decision to Adopt Human Resource Information System (HRIS) in Hospitals
Alam, Md Golam Rabiul; Masum, Abdul Kadar Muhammad; Beh, Loo-See; Hong, Choong Seon
2016-01-01
The aim of this research is to explore factors influencing the management decisions to adopt human resource information system (HRIS) in the hospital industry of Bangladesh—an emerging developing country. To understand this issue, this paper integrates two prominent adoption theories—Human-Organization-Technology fit (HOT-fit) model and Technology-Organization-Environment (TOE) framework. Thirteen factors under four dimensions were investigated to explore their influence on HRIS adoption decisions in hospitals. Employing non-probability sampling method, a total of 550 copies of structured questionnaires were distributed among HR executives of 92 private hospitals in Bangladesh. Among the respondents, usable questionnaires were 383 that suggesting a valid response rate of 69.63%. We classify the sample into 3 core groups based on the HRIS initial implementation, namely adopters, prospectors, and laggards. The obtained results specify 5 most critical factors i.e. IT infrastructure, top management support, IT capabilities of staff, perceived cost, and competitive pressure. Moreover, the most significant dimension is technological dimension followed by organisational, human, and environmental among the proposed 4 dimensions. Lastly, the study found existence of significant differences in all factors across different adopting groups. The study results also expose constructive proposals to researchers, hospitals, and the government to enhance the likelihood of adopting HRIS. The present study has important implications in understanding HRIS implementation in developing countries. PMID:27494334
Alam, Md Golam Rabiul; Masum, Abdul Kadar Muhammad; Beh, Loo-See; Hong, Choong Seon
2016-01-01
The aim of this research is to explore factors influencing the management decisions to adopt human resource information system (HRIS) in the hospital industry of Bangladesh-an emerging developing country. To understand this issue, this paper integrates two prominent adoption theories-Human-Organization-Technology fit (HOT-fit) model and Technology-Organization-Environment (TOE) framework. Thirteen factors under four dimensions were investigated to explore their influence on HRIS adoption decisions in hospitals. Employing non-probability sampling method, a total of 550 copies of structured questionnaires were distributed among HR executives of 92 private hospitals in Bangladesh. Among the respondents, usable questionnaires were 383 that suggesting a valid response rate of 69.63%. We classify the sample into 3 core groups based on the HRIS initial implementation, namely adopters, prospectors, and laggards. The obtained results specify 5 most critical factors i.e. IT infrastructure, top management support, IT capabilities of staff, perceived cost, and competitive pressure. Moreover, the most significant dimension is technological dimension followed by organisational, human, and environmental among the proposed 4 dimensions. Lastly, the study found existence of significant differences in all factors across different adopting groups. The study results also expose constructive proposals to researchers, hospitals, and the government to enhance the likelihood of adopting HRIS. The present study has important implications in understanding HRIS implementation in developing countries.
In-phase and out-of-phase axial-torsional fatigue behavior of Haynes 188 at 760 C
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Bonacuse, Peter J.
1991-01-01
Isothermal, in-phase and out-of-phase axial-torsional fatigue experiments have been conducted at 760 C on uniform gage section, thin-walled tubular specimens of a wrought cobalt-base superalloy, Haynes 188. Test-control and data acquisition were accomplished with a minicomputer. Fatigue lives of the in- and out-of-phase axial-torsional fatigue tests have been estimated with four different multiaxial fatigue life prediction models that were developed primarly for predicting axial-torsional fatigue lives at room temperature. The models investigated were: (1) the von Mises equivalent strain range; (2) the Modified Multiaxiality Factor Approach; (3) the Modified Smith-Watson-Topper Parameter; and (4) the critical shear plane method of Fatemi, Socie, and Kurath. In general, life predictions by the von Mises equivalent strain range model were within a factor of 2 for a majority of the tests and the predictions by the Modified Multiaxiality Factor Approach were within a factor of 2, while predictions of the Modified Smith-Watson-Topper Parameter and of the critical shear plane method of Fatemi, Socie, and Kurath were unconservative and conservative, respectively, by up to factors of 4. In some of the specimens tested under combined axial-torsional loading conditions, fatigue cracks initiated near extensometer indentations. Two design modifications have been proposed to the thin-walled tubular specimen to overcome this problem.
Male infertility and its genetic causes.
Miyamoto, Toshinobu; Minase, Gaku; Okabe, Kimika; Ueda, Hiroto; Sengoku, Kazuo
2015-10-01
Infertility is a serious social problem in advanced nations, with male factor infertility accounting for approximately half of all cases of infertility. Here, we aim to discuss our laboratory results in the context of recent literature on critical genes residing on the Y chromosome or autosomes that play important roles in human spermatogenesis. The PubMed database was systematically searched using the following keywords: 'genetics of male factor infertility'; 'male infertility genes', 'genetics of spermatogenesis' to retrieve information for this review. Striking progress has recently been made in the elucidation of mechanisms of spermatogenesis using knockout mouse models. This information has, in many cases, not been directly translatable to humans. Nevertheless, mutations in several critical genes have been shown to cause male infertility. We discuss here the contribution to male factor infertility of a number of genes identified in the azoospermia factor (AZF) region on the Y chromosome, as well as the autosomally located genes: SYKP3, KLHL10, AURKC and SPATA16. Non-obstructive azoospermia is the most severe form of azoospermia. However, the presence of spermatozoa can only be confirmed through procedures, which may prove to be unnecessary. Elucidation of the genes underlying male factor infertility, and thereby a better understanding of the mechanisms that cause it, will result in more tailored, evidence-based decisions in treatment of patients. © 2015 Japan Society of Obstetrics and Gynecology.
Interpersonal Factors in Understanding and Treating Posttraumatic Stress Disorder
Markowitz, John C.; Milrod, Barbara; Bleiberg, Kathryn; Marshall, Randall D.
2010-01-01
Exposure to reminders of trauma underlies the theory and practice of most treatments for posttraumatic stress disorder (PTSD), yet exposure may not be the sole important treatment mechanism. Interpersonal features of PTSD influence its onset, chronicity, and possibly its treatment. The authors review interpersonal factors in PTSD, including the critical but underrecognized role of social support as both protective posttrauma and as a mechanism of recovery. They discuss interpersonal psychotherapy (IPT) as an alternative treatment for PTSD and present encouraging findings from two initial studies. Highlighting the potential importance of attachment and interpersonal relationships, the authors propose a mechanism to explain why improving relationships may ameliorate PTSD symptoms. PMID:19339847
Geometry and starvation effects in hydrodynamic lubrication
NASA Technical Reports Server (NTRS)
Brewe, D.; Hamrock, B. J.
1982-01-01
Numerical methods were used to detemine the effects of lubricant starvation on the minimum film thickness under conditions of a hydrodynamic point contact. Starvation was effected by varying the fluid inlet level. The Reynolds boundary conditions were applied at the cavitation boundary and zero pressure was stipulated at the meniscus or inlet boundary. A minimum film thickness equation as a function of both the ratio of dimensionless load to dimensionless speed and inlet supply level was determined. By comparing the film generated under the starved inlet condition with the film generated from the fully flooded inlet, an expression for the film reduction factor was obtained. Based on this factor a starvation threshold was defined as well as a critically starved inlet. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three dimensional isometric plots and also in the form of contour plots.
Restrictive vs. non-restrictive composition: a magnetoencephalography study
Leffel, Timothy; Lauter, Miriam; Westerlund, Masha; Pylkkänen, Liina
2014-01-01
Recent research on the brain mechanisms underlying language processing has implicated the left anterior temporal lobe (LATL) as a central region for the composition of simple phrases. Because these studies typically present their critical stimuli without contextual information, the sensitivity of LATL responses to contextual factors is unknown. In this magnetoencephalography (MEG) study, we employed a simple question-answer paradigm to manipulate whether a prenominal adjective or determiner is interpreted restrictively, i.e., as limiting the set of entities under discussion. Our results show that the LATL is sensitive to restriction, with restrictive composition eliciting higher responses than non-restrictive composition. However, this effect was only observed when the restricting element was a determiner, adjectival stimuli showing the opposite pattern, which we hypothesise to be driven by the special pragmatic properties of non-restrictive adjectives. Overall, our results demonstrate a robust sensitivity of the LATL to high level contextual and potentially also pragmatic factors. PMID:25379512
Taylor, Nicky J; Hills, Paul N; van Staden, Johannes
2007-12-01
Endogenous embryo factors, which act mainly in the radicle, prevent germination in Tagetes minuta at high temperatures. These factors act to prevent cell elongation, which is critical for radicle protrusion under optimal conditions. Once the radicle has emerged both cell elongation and cell division are required for post-germination growth. Germination can be induced at high temperatures by fusicoccin, which rapidly stimulates cell elongation. In addition, priming seeds at 25 degrees C on polyethylene glycol (PEG) 6000 and mannitol could also induce germination on water at 36 degrees C, indicating that priming prevents radicle protrusion at a point subsequent to the point of control in thermoinhibited achenes. Flow cytometry studies revealed that DNA synthesis occurs during thermoinhibition and the inhibition of DNA synthesis during this process inhibits subsequent germination on water under optimal conditions, suggesting a protective role for DNA synthesis in thermoinhibited achenes of T. minuta.
Analysis of starvation effects on hydrodynamic lubrication in nonconforming contacts
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Hamrock, B. J.
1981-01-01
Numerical methods were used to determine the effects of lubricant starvation on the minimum film thickness under conditions of a hydrodynamic point contact. Starvation was effected by varying the fluid inlet level. The Reynolds boundary conditions were applied at the cavitation boundary and zero pressure was stipulated at the meniscus or inlet boundary. A minimum-fill-thickness equation as a function of both the ratio of dimensionless load to dimensionless speed and inlet supply level was determined. By comparing the film generated under the starved inlet condition with the film generated from the fully flooded inlet, an expression for the film reduction factor was obtained. Based on this factor a starvation threshold was defined as well as a critically starved inlet. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three dimensional isometric plots and also in the form of contour plots.
Geometry and starvation effects in hydrodynamic lubrication
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Hamrock, B. J.
1982-01-01
Numerical methods were used to determine the effects of lubricant starvation on the minimum film thickness under conditions of a hydrodynamic point contact. Starvation was effected by varying the fluid inlet level. The Reynolds boundary conditions were applied at the cavitation boundary and zero pressure was stipulated at the meniscus or inlet boundary. A minimum-film-thickness equation as a function of both the ratio of dimensionless load to dimensionless speed and inlet supply level was determined. By comparing the film generated under the starved inlet condition with the film generated from the fully flooded inlet, an expression for the film reduction factor was obtained. Based on this factor a starvation threshold was defined as well as a critically starved inlet. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three dimensional isometric plots and also in the form of contour plots.
Damani, Zaheed; MacKean, Gail; Bohm, Eric; Noseworthy, Tom; Wang, Jenney Meng Han; DeMone, Brie; Wright, Brock; Marshall, Deborah A
2018-02-01
Single-entry models (SEMs) in healthcare allow patients to see the next-available provider and have been shown to improve waiting times, access and patient flow for preference-sensitive, scheduled services. The Winnipeg Central Intake Service (WCIS) for hip and knee replacement surgery was implemented to improve access in the Winnipeg Regional Health Authority. This paper describes the system's design/implementation; successes, challenges, and unanticipated consequences. On two occasions, during and following implementation, we interviewed all members of the WCIS project team, including processing engineers, waiting list coordinators, administrators and policy-makers regarding their experiences. We used semi-structured telephone interviews to collect data and qualitative thematic analysis to analyze and interpret the findings. Respondents indicated that the overarching objectives of the WCIS were being met. Benefits included streamlined processes, greater patient access, improved measurement and monitoring of outcomes. Challenges included low awareness, change readiness, and initial participation among stakeholders. Unanticipated consequences included workload increases, confusion around stakeholder expectations and under-reporting of data by surgeons' offices. Critical success factors for implementation included a requirement for clear communication, robust data collection, physician leadership and patience by all, especially implementation teams. Although successfully implemented, key lessons and critical success factors were learned related to change management, which if considered and applied, can reduce unanticipated consequences, improve uptake and benefit new models of care. Copyright © 2017 Elsevier B.V. All rights reserved.
Mussel byssus attachment weakened by ocean acidification
NASA Astrophysics Data System (ADS)
O'Donnell, Michael J.; George, Matthew N.; Carrington, Emily
2013-06-01
Biomaterials connect organisms to their environments. Their function depends on biological, chemical and environmental factors, both at the time of creation and throughout the life of the material. Shifts in the chemistry of the oceans driven by anthropogenic CO2 (termed ocean acidification) have profound implications for the function of critical materials formed under these altered conditions. Most ocean acidification studies have focused on one biomaterial (secreted calcium carbonate), frequently using a single assay (net rate of calcification) to quantify whether reductions in environmental pH alter how organisms create biomaterials. Here, we examine biological structures critical for the success of ecologically and economically important bivalve molluscs. One non-calcified material, the proteinaceous byssal threads that anchor mytilid mussels to hard substrates, exhibited reduced mechanical performance when secreted under elevated pCO2 conditions, whereas shell and tissue growth were unaffected. Threads made under high pCO2 (>1,200μatm) were weaker and less extensible owing to compromised attachment to the substratum. According to a mathematical model, this reduced byssal fibre performance, decreasing individual tenacity by 40%. In the face of ocean acidification, weakened attachment presents a potential challenge for suspension-culture mussel farms and for intertidal communities anchored by mussel beds.
Hydrogen Embrittlement Susceptibility and Safety Control of Reheated CGHAZ in X80 Welded Pipeline
NASA Astrophysics Data System (ADS)
Deng, Qiushi; Zhao, Weimin; Jiang, Wei; Zhang, Timing; Li, Tingting; Zhao, Yujiao
2018-03-01
Coarse-grained heat-affected zone (CGHAZ) exhibits the highest hydrogen embrittlement (HE) susceptibility, which changes under the influence of thermal cycle. In this study, slow strain rate tension (SSRT) tests were conducted to investigate the HE susceptibility of reheated CGHAZs and the critical hydrogen pressure for fracture failure. Results show that intercritically reheated CGHAZ (ICCGHAZ) possesses the lowest HE resistance. Analyses of HE index and fracture indicate that the critical hydrogen pressure is 3.5 MPa. Microstructure analysis reveals that HE susceptibility is associated with multiple factors, such as phase composition, grain coarsening, HAB density, and MA constituent. Blocky necklace-like MA constituent along prior austenite boundaries plays a predominant role in intensifying the HE susceptibility of ICCGHAZ.
Surbatovic, Maja; Grujic, Krasimirka; Cikota, Bojana; Jevtic, Miodrag; Filipovic, Nikola; Romic, Predrag; Strelic, Natasa; Magic, Zvonko
2010-09-01
The aim of the study was to determine whether distributions of tumor necrosis factor (TNF)-α(308), interleukin (IL)-10(1082), CD14(159), and IL-1ra gene intron 2 genotypes in critically ill patients are associated with outcome, underlying cause of sepsis, and type of microorganism. Blood samples from 106 critically ill white patients were genotyped by method based on polymerase chain reaction for TNF-α(308), IL-10(1082), CD14(159), and IL-1ra gene intron 2. All patients with TNF-α(308)AA genotype survived; relative risk (RR) of death in patients with AG was 3.250 and with GG, 1.923 (P < .01). In patients with Gram-positive sepsis, IL-10(1082)AA and then AG genotypes were the most frequent ones (odds ratio [OR], 18.67 and 7.20, respectively; P < .01). When comparing IL-10(1082)AA with AG, RR of pancreatitis was 1.80 and OR was 3.40. When AA and GG were compared, RR was 7.33 and OR was 20.00. In patients with GG, RR of peritonitis was 4.07 and OR was 5.88 (P < .01). In patients with Gram-positive sepsis, CD14(159)CT was the most frequent one with OR of 5.25. Distribution of 6 IL-1ra gene intron 2 genotypes showed no significant association. Distribution of TNF-α(308) genotypes is associated with outcome, IL-10(1082) with type of microorganism and underlying cause of sepsis, and CD14(159) with type of microorganism. Copyright © 2010. Published by Elsevier Inc.
Coronary Collateral Growth—Back to the Future
Chilian, William M.; Penn, Marc S.; Pung, Yuh Fen; Dong, Feng; Mayorga, Maritza; Ohanyan, Vahagn; Logan, Suzanna; Yin, Liya
2012-01-01
The coronary collateral circulation is critically important as an adaptation of the heart to prevent the damage from ischemic insults. In their native state, collaterals in the heart would be classified as part of the microcirculation, existing as arterial-arterial anastomotic connections in the range of 30 to 100 μM in diameter. However, these vessels also show a propensity to remodel into components of the macrocirculation and can become arteries larger than a 1000 μM in diameter. This process of outward remodelling is critically important in the adaptation of the heart to ischemia because the resistance to blood flow is inversely related to the fourth power of the diameter of the vessel. Thus, an expansion of a vessel from 100 to 1000 μM would reduce resistance (in this part of the circuit) to a negligible amount and enable delivery of flow to the region at risk. Our goal in this review is to highlight the voids in understanding this adaptation to ischemia—the growth of the coronary collateral circulation. In doing so we discuss the controversies and unknown aspects of the causal factors that stimulate growth of the collateral circulation, the role of genetics, and the role of endogenous stem and progenitor cells in the context of the normal, physiological situation and under more pathological conditions of ischemic heart disease or with some of the underlying risk factors, e.g., diabetes. The major conclusion of this review is that there are many gaps in our knowledge of coronary collateral growth and this knowledge is critical before the potential of stimulating collateralization in the hearts of patients can be realized. PMID:22210280
Krivokrysenko, Vadim I.; Shakhov, Alexander N.; Singh, Vijay K.; Bone, Frederick; Kononov, Yevgeniy; Shyshynova, Inna; Cheney, Alec; Maitra, Ratan K.; Purmal, Andrei; Whitnall, Mark H.; Feinstein, Elena
2012-01-01
Given an ever-increasing risk of nuclear and radiological emergencies, there is a critical need for development of medical radiation countermeasures (MRCs) that are safe, easily administered, and effective in preventing and/or mitigating the potentially lethal tissue damage caused by acute high-dose radiation exposure. Because the efficacy of MRCs for this indication cannot be ethically tested in humans, development of such drugs is guided by the Food and Drug Administration's Animal Efficacy Rule. According to this rule, human efficacious doses can be projected from experimentally established animal efficacious doses based on the equivalence of the drug's effects on efficacy biomarkers in the respective species. Therefore, identification of efficacy biomarkers is critically important for drug development under the Animal Efficacy Rule. CBLB502 is a truncated derivative of the Salmonella flagellin protein that acts by triggering Toll-like receptor 5 (TLR5) signaling and is currently under development as a MRC. Here, we report identification of two cytokines, granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6), as candidate biomarkers of CBLB502's radioprotective/mitigative efficacy. Induction of both G-CSF and IL-6 by CBLB502 1) is strictly TLR5-dependent, 2) occurs in a CBLB502 dose-dependent manner within its efficacious dose range in both nonirradiated and irradiated mammals, including nonhuman primates, and 3) is critically important for the ability of CBLB502 to rescue irradiated animals from death. After evaluation of CBLB502 effects on G-CSF and IL-6 levels in humans, these biomarkers will be useful for accurate prediction of human efficacious CBLB502 doses, a key step in the development of this prospective radiation countermeasure. PMID:22837010
Huang, Chi-Hung; Yang, Wen-Hao; Chang, Shyue-Yih; Tai, Shyh-Kuan; Tzeng, Cheng-Hwei; Kao, Jung-Yie; Wu, Kou-Juey; Yang, Muh-Hwa
2009-01-01
The hypoxic tumor environment has been shown to be critical to cancer metastasis through the promotion of angiogenesis, induction of epithelial-mesenchymal transition (EMT), and acquisition of invasive potential. However, the impact of hypoxia on the expression profile of the proteolytic enzymes involved in invasiveness is relatively unknown. Membrane-type 4 matrix metalloproteinase (MT4-MMP) is a glycosyl-phosphatidyl inositol-anchored protease that has been shown to be overexpressed in human cancers. However, detailed mechanisms regarding the regulation and function of MT4-MMP expression in tumor cells remain unknown. Here, we demonstrate that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α) induced MT4-MMP expression in human cancer cells. Activation of SLUG, a transcriptional factor regulating the EMT process of human cancers, by HIF-1α was critical for the induction of MT4-MMP under hypoxia. SLUG regulated the transcription of MT4-MMP through direct binding to the E-box located in its proximal promoter. Short-interference RNA-mediated knockdown of MT4-MMP attenuated in vitro invasiveness and in vivo pulmonary colonization of tumor cells without affecting cell migratory ability. MT4-MMP promoted invasiveness and pulmonary colonization through modulation of the expression profile of MMPs and angiogenic factors. Finally, coexpression of HIF-1α and MT4-MMP in human head and neck cancer was predictive of a worse clinical outcome. These findings establish a novel signaling pathway for hypoxia-mediated metastasis and elucidate the underlying regulatory mechanism and functional significance of MT4-MMP in cancer metastasis. PMID:20019845
Hydrological modelling improvements required in basins in the Hindukush-Karakoram-Himalayas region
NASA Astrophysics Data System (ADS)
Khan, Asif; Richards, Keith S.; McRobie, Allan; Booij, Martijn
2016-04-01
Millions of people rely on river water originating from basins in the Hindukush-Karakoram-Himalayas (HKH), where snow- and ice-melt are significant flow components. One such basin is the Upper Indus Basin (UIB), where snow- and ice-melt can contribute more than 80% of total flow. Containing some of the world's largest alpine glaciers, this basin may be highly susceptible to global warming and climate change, and reliable predictions of future water availability are vital for resource planning for downstream food and energy needs in a changing climate, but depend on significantly improved hydrological modelling. However, a critical assessment of available hydro-climatic data and hydrological modelling in the HKH region has identified five major failings in many published hydro-climatic studies, even those appearing in reputable international journals. The main weaknesses of these studies are: i) incorrect basin areas; ii) under-estimated precipitation; iii) incorrectly-defined glacier boundaries; iv) under-estimated snow-cover data; and v) use of biased melt factors for snow and ice during the summer months. This paper illustrates these limitations, which have either resulted in modelled flows being under-estimates of measured flows, leading to an implied severe water scarcity; or have led to the use of unrealistically high degree-day factors and over-estimates of glacier melt contributions, implying unrealistic melt rates. These effects vary amongst sub-basins. Forecasts obtained from these models cannot be used reliably in policy making or water resource development, and need revision. Detailed critical analysis and improvement of existing hydrological modelling may be equally necessary in other mountain regions across the world.
Buckling analysis of planar compression micro-springs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jing; Sui, Li; Shi, Gengchen
2015-04-15
Large compression deformation causes micro-springs buckling and loss of load capacity. We analyzed the impact of structural parameters and boundary conditions for planar micro-springs, and obtained the change rules for the two factors that affect buckling. A formula for critical buckling deformation of micro-springs under compressive load was derived based on elastic thin plate theory. Results from this formula were compared with finite element analysis results but these did not always correlate. Therefore, finite element analysis is necessary for micro-spring buckling analysis. We studied the variation of micro-spring critical buckling deformation caused by four structural parameters using ANSYS software undermore » two constraint conditions. The simulation results show that when an x-direction constraint is added, the critical buckling deformation increases by 32.3-297.9%. The critical buckling deformation decreases with increase in micro-spring arc radius or section width and increases with increase in micro-spring thickness or straight beam width. We conducted experiments to confirm the simulation results, and the experimental and simulation trends were found to agree. Buckling analysis of the micro-spring establishes a theoretical foundation for optimizing micro-spring structural parameters and constraint conditions to maximize the critical buckling load.« less
Faraday instability in a near-critical fluid under weightlessness.
Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D
2014-01-01
Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions.
A Synthesis and Survey of Critical Success Factors for Computer Technology Projects
ERIC Educational Resources Information Center
Baker, Ross A.
2012-01-01
The author investigated the existence of critical success factors for computer technology projects. Current research literature and a survey of experienced project managers indicate that there are 23 critical success factors (CSFs) that correlate with project success. The survey gathered an assessment of project success and the degree to which…
NASA Astrophysics Data System (ADS)
Wang, Shuliang; Zhang, Jianhua; Zhao, Mingwei; Min, Xu
2017-05-01
This paper takes central China power grid (CCPG) as an example, and analyzes the vulnerability of the power systems under terrorist attacks. To simulate the intelligence of terrorist attacks, a method of critical attack area identification according to community structures is introduced. Meanwhile, three types of vulnerability models and the corresponding vulnerability metrics are given for comparative analysis. On this basis, influence of terrorist attacks on different critical areas is studied. Identifying the vulnerability of different critical areas will be conducted. At the same time, vulnerabilities of critical areas under different tolerance parameters and different vulnerability models are acquired and compared. Results show that only a few number of vertex disruptions may cause some critical areas collapse completely, they can generate great performance losses the whole systems. Further more, the variation of vulnerability values under different scenarios is very large. Critical areas which can cause greater damage under terrorist attacks should be given priority of protection to reduce vulnerability. The proposed method can be applied to analyze the vulnerability of other infrastructure systems, they can help decision makers search mitigation action and optimum protection strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Banasri; Bandyopadhyay, Pratul; Majumdar, Priyadarshi
We have studied quantum phase transition induced by a quench in different one-dimensional spin systems. Our analysis is based on the dynamical mechanism which envisages nonadiabaticity in the vicinity of the critical point. This causes spin fluctuation which leads to the random fluctuation of the Berry phase factor acquired by a spin state when the ground state of the system evolves in a closed path. The two-point correlation of this phase factor is associated with the probability of the formation of defects. In this framework, we have estimated the density of defects produced in several one-dimensional spin chains. At themore » critical region, the entanglement entropy of a block of L spins with the rest of the system is also estimated which is found to increase logarithmically with L. The dependence on the quench time puts a constraint on the block size L. It is also pointed out that the Lipkin-Meshkov-Glick model in point-splitting regularized form appears as a combination of the XXX model and Ising model with magnetic field in the negative z axis. This unveils the underlying conformal symmetry at criticality which is lost in the sharp point limit. Our analysis shows that the density of defects as well as the scaling behavior of the entanglement entropy follows a universal behavior in all these systems.« less
Scheidegger, D
2005-03-01
In medicine real severe mishaps are rare. On the other hand critical incidents are frequent. Anonymous critical incident reporting systems allow us to learn from these mishaps. This learning process will make our daily clinical work safer Unfortunately, before these systems can be used efficiently our professional culture has to be changed. Everyone in medicine has to admit that errors do occur to see the need for an open discussion. If we really want to learn from errors, we cannot punish the individual, who reported his or her mistake. The interest is primarily in what has happened and why it has happened and not who has committed this mistake. The cause for critical incidents in medicine is in over 80% the human factor Poor communication, work under enormous stress, conflicts and hierarchies are the main cause. This has been known for many years, therefore have already 15 years ago high-tech industries, like e.g. aviation, started to invest in special courses on team training. Medicine is a typical profession were until now only the individual performance decided about the professional career Communication, conflict management, stress management, decision making, risk management, team and team resource management were subjects that have never been taught during our preor postgraduate education. These points are the most important ones for an optimal teamwork. A multimodular course designed together with Swissair (Human Aspect Development medical, HADmedical) helps to cover, as in aviation, the soft factor and behavioural education in medicine and to prepare professionals in health care to work as a real team.
Nerve growth factor preserves a critical motor period in rat striatum.
Wolansky, M J; Paratcha, G C; Ibarra, G R; Azcurra, J M
1999-01-01
We previously found the occurrence of a critical motor period during rat postnatal development where circling training starting the 7-day schedule at 30 days-but not before or after-induces a lifetime drop in the binding to cholinergic muscarinic receptors (mAChRs) in striatum. Here, we studied whether nerve growth factor (NGF) participates in this restricted period of muscarinic sensitivity. For this purpose, we administered mouse salival gland 2.5S NGF (1.4 or 0.4 microg/day, infused by means of ALZA minipumps) by intrastriatal unilateral route between days 25 and 39, and then trained rats starting at 40 days. Under these conditions, NGF induced a long-term reduction in the striatal [3H] quinuclidilbenzylate (QNB) binding sites despite the fact that motor training was carried out beyond the natural critical period. Thus, at day 70, measurement of specific QNB binding in infused striata of trained rats showed decreases of 42% (p < .0004) and 33% (p < .02) after administration of the higher and lower NGF doses, respectively, with respect to trained rats treated with cytochrome C, for control. Noncannulated striata of the NGF-treated rats also showed a decrease in QNB binding sites (44%; p < .0001) only at the higher infusion rate. This effect was not found in the respective control groups. Our observations show that NGF modulates the critical period in which activity-dependent mAChR setting takes place during rat striatal maturation.
Redesigning a General Education Science Course to Promote Critical Thinking.
Rowe, Matthew P; Gillespie, B Marcus; Harris, Kevin R; Koether, Steven D; Shannon, Li-Jen Y; Rose, Lori A
2015-01-01
Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. © 2015 M. P. Rowe, B. M. Gillespie, et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Antiwear Additive Mechanisms in Sliding Contacts
NASA Technical Reports Server (NTRS)
Baldwin, B. A.
1984-01-01
The possible mechanisms associated with wear in a sliding contact and how an oil and antiwear additive can mitigate wear or prevent catastropic seizure of the contacting parts was examined. The various load and temperature regimes are examined and the mechanisms which are predominant under these conditions are determined. The critical mechanism(s) depend on the test parameters, particularly load and temperature, although sliding speed is also a factor. Different ways to improve the efficiency of antiwear additives are suggested.
Nagpal, Neha; Ahmad, Hafiz M; Chameettachal, Shibu; Sundar, Durai; Ghosh, Sourabh; Kulshreshtha, Ritu
2015-04-13
The molecular mechanisms of hypoxia induced breast cell migration remain incompletely understood. Our results show that hypoxia through hypoxia-inducible factor (HIF) brings about a time-dependent increase in the level of an oncogenic microRNA, miR-191 in various breast cancer cell lines. miR-191 enhances breast cancer aggressiveness by promoting cell proliferation, migration and survival under hypoxia. We further established that miR-191 is a critical regulator of transforming growth factor beta (TGFβ)-signaling and promotes cell migration by inducing TGFβ2 expression under hypoxia through direct binding and indirectly by regulating levels of a RNA binding protein, human antigen R (HuR). The levels of several TGFβ pathway genes (like VEGFA, SMAD3, CTGF and BMP4) were found to be higher in miR-191 overexpressing cells. Lastly, anti-miR-191 treatment given to breast tumor spheroids led to drastic reduction in spheroid tumor volume. This stands as a first report of identification of a microRNA mediator that links hypoxia and the TGFβ signaling pathways, both of which are involved in regulation of breast cancer metastasis. Together, our results show a critical role of miR-191 in hypoxia-induced cancer progression and suggest that miR-191 inhibition may offer a novel therapy for hypoxic breast tumors.
Gautam, Avneesh Kumar; Panse, Yogesh; Ghosh, Payel; Reza, Malik Johid; Mullick, Jayati; Sahu, Arvind
2015-01-01
The complement system has evolved to annul pathogens, but its improper regulation is linked with diseases. Efficient regulation of the system is primarily provided by a family of proteins termed regulators of complement activation (RCA). The knowledge of precise structural determinants of RCA proteins critical for imparting the regulatory activities and the molecular events underlying the regulatory processes, nonetheless, is still limited. Here, we have dissected the structural requirements of RCA proteins that are crucial for one of their two regulatory activities, the cofactor activity (CFA), by using the Kaposi’s sarcoma-associated herpesvirus RCA homolog Kaposica as a model protein. We have scanned the entire Kaposica molecule by sequential mutagenesis using swapping and site-directed mutagenesis, which identified residues critical for its interaction with C3b and factor I. Mapping of these residues onto the modeled structure of C3b–Kaposica–factor I complex supported the mutagenesis data. Furthermore, the model suggested that the C3b-interacting residues bridge the CUB (complement C1r-C1s, Uegf, Bmp1) and MG2 (macroglobulin-2) domains of C3b. Thus, it seems that stabilization of the CUB domain with respect to the core of the C3b molecule is central for its CFA. Identification of CFA-critical regions in Kaposica guided experiments in which the equivalent regions of membrane cofactor protein were swapped into decay-accelerating factor. This strategy allowed CFA to be introduced into decay-accelerating factor, suggesting that viral and human regulators use a common mechanism for CFA. PMID:26420870
Exploring nursing staffs communication in stressful and non-stressful situations.
André, Beate; Frigstad, Sigrun A; Nøst, Torunn H; Sjøvold, Endre
2016-03-01
To explore the factors that characterise the work environment, focusing on communication among nurses in stressful and non-stressful situations. Nursing is often described as a stressful occupation. Implementation of change may be an additional stress factor. Nurses and assistant nurses completed a questionnaire from two different perspectives, 'communication in non-stressful situations' and 'communication under stress'. The Systematising Person-Group Relations method was used to gather and analyse the data. When the two perspectives, 'communication in non-stressful situations' and 'communication under stress', were compared, there were significant differences in 8 of the 12 factors. The stressful situations were characterised by low values in task orientation, caring, criticism, loyalty, acceptance, engagement and empathy; only the factor creativity had higher scores. The stressful situations were characterised by creative and spontaneous behaviour, not by task orientation and engagement, indicating a potential patient safety risk. There is a need to help health-care workers develop more mature analytical and task-oriented behaviours related to both independent work and collaboration in stressful situations. Nursing leadership and organisation must focus on healthy work environments to promote engaged communication in stressful situations, ultimately increasing patient safety. © 2015 The Authors. Journal of Nursing Management Published by John Wiley & Sons Ltd.
Gandhapudi, Siva K.; Murapa, Patience; Threlkeld, Zachary D.; Ward, Martin; Sarge, Kevin D.; Snow, Charles; Woodward, Jerold G.
2013-01-01
Heat Shock Transcription Factor 1 (HSF1) is a major transcriptional regulator of the heat shock response in eukaryotic cells. HSF1 is also evoked in response to a variety of cellular stressors including elevated temperatures, oxidative stress, and other proteotoxic stressors. Previously, we demonstrated that HSF1 is activated in naive T cells at fever range temperatures (39.5°C) and is critical for in vitro T cell proliferation at fever temperatures. In this study, we demonstrated thatmurine HSF1 became activated to the DNA-binding form and trans-activated a large number of genes in lymphoid cells strictly as a consequence of receptor activation in the absence of apparent cellular stress. Microarray analysis comparing HSF1+/+ and HSF1−/− gene expression in T cells activated at 37°C revealed a diverse set of 323 genes significantly regulated by HSF1 in non-stressed T cells. In vivo proliferation studies revealed a significant impairment of HSF1−/− T cell expansion under conditions mimicking a robust immune response (staphylococcal enterotoxin B induced T cell activation). This proliferation defect due to loss of HSF1 is observed even under non-febrile temperatures. HSF1−/− T cells activated at fever temperatures show a dramatic reduction in cyclin E and cyclin A proteins during the cell cycle, although the transcription of these genes was not affected. Finally, B cell, and hematopoietic stem cell proliferation from HSF1−/− mice, but not HSF1+/+ mice were also attenuated under stressful conditions, indicating that HSF1 is critical for the cell cycle progression of lymphoid cells activated under stressful conditions. PMID:24043900
Critical Success Factors for the North Carolina Community College System, 1999. Tenth Annual Report.
ERIC Educational Resources Information Center
North Carolina Community Coll. System, Raleigh.
This report is one of several North Carolina Community College System accountability measures designed to report on critical success factors. Critical success factors are those issues that are instrumental for an institution to prosper and accomplish its goals. The data presented in this report are indicators of the "health" of the…
Happiness & Health: The Biological Factors- Systematic Review Article
DFARHUD, Dariush; MALMIR, Maryam; KHANAHMADI, Mohammad
2014-01-01
Abstract Happiness underlying factors are considerable from two dimensions: endogenic factors (biological, cognitive, personality and ethical sub-factors) and exogenic factors (behavioral, socialcultural, economical, geographical, life events and aesthetics sub-factors). Among all endogenic factors, biological sub-factors are the significant predictors of happiness. Existence of significant differences in temperament and happiness of infants is an indicator of biological influences. Therefore, this study aimed to consider biological factors that underlie happiness. At the first, all of the biological factors in relation with happiness were searched from following websites: PubMed, Wiley& Sons, Science direct (1990–2014). Then, the articles divided into five sub-groups (genetic, brain and neurotransmitters, endocrinology and hormones, physical health, morphology and physical attractiveness). Finally, a systematic review performed based on existing information. Results of studies on genetic factors indicated an average effectiveness of genetic about 35 -50 percent on happiness. In spite of difficulties in finding special genes, several genes distributed to emotion and mood. Neuroscience studies showed that some part of brain (e.g. amygdala, hipocamp and limbic system) and neurotransmitters (e.g. dopamine, serotonin, norepinefrine and endorphin) play a role in control of happiness. A few studies pointed to the role of cortisol and adrenaline (adrenal gland) and oxitocin (pituitary gland) in controlling happiness. Physical health and typology also concluded in most related studies to have a significant role in happiness. Therefore, according to previous research, it can be said that biological and health factors are critical in underlying happiness and its role in happiness is undeniable. PMID:26060713
Yen, Y-F.; Rodwell, T. C.; Yen, M-Y.; Shih, H-C.; Hu, B-S.; Li, L-H.; Shie, Y-H.; Chuang, P.; Garfein, R. S.
2012-01-01
OBJECTIVE To determine whether patients receiving directly observed treatment (DOT) had lower all-cause mortality than those treated with self-administered treatment (SAT) and to identify factors associated with mortality among tuberculosis (TB) patients. DESIGN All TB patients in Taipei, Taiwan, diagnosed between 2006 and 2008 were included in a retrospective cohort study. RESULTS Among 3624 TB patients, 45.5% received DOT, which was disproptionately offered to older patients and those with more underlying illness and severe TB disease. After controlling for patient sociodemographic factors, clinical findings and underlying comorbidities, the odds of death was 40% lower (aOR 0.60, 95%CI 0.5–0.8) among patients treated with DOT than those on SAT. After adjusting for DOT, independent predictors of death included non-Taiwan birth, increasing age, male, unemployment, end-stage renal disease requiring dialysis, malignancy, acid-fast bacilli smear positivity and pleural effusion. CONCLUSION DOT was associated with lower all-cause mortality after controlling for confounding factors. DOT should be expanded in Taiwan to improve critical treatment outcomes among TB patients. PMID:22236917
Neural Correlates of Social Influence Among Cannabis Users.
Gilman, Jodi M
2017-06-01
Although peer influence is an important factor in the initiation and maintenance of cannabis use, few studies have investigated the neural correlates of peer influence among cannabis users. The current review summarizes research on the neuroscience of social influence in cannabis users, with the goal of highlighting gaps in the literature and the need for future research. Brain regions underlying peer influence may function differently in cannabis users. Compared to non-using controls, regions of the brain underlying reward, such as the striatum, show greater connectivity with frontal regions, and also show hyperactivity when participants are presented with peer information. Other subcortical regions, such as the insula, show hypoactivation during social exclusion in cannabis users, indicating that neural responses to peer interactions may be altered in cannabis users. Although neuroscience is increasingly being used to study social behavior, few studies have specifically focused on cannabis use, and therefore it is difficult to draw conclusions about social mechanisms that may differentiate cannabis users and controls. This area of research may be a promising avenue in which to explore a critical factor underlying cannabis use and addiction.
Monsters under the Bed: Critically Investigating Early Years Writing
ERIC Educational Resources Information Center
Melrose, Andrew
2012-01-01
"Monsters Under the Bed" is an essential text focussing on critical and contemporary issues surrounding writing for "early years" children. Containing a critically creative and a creatively critical investigation of the cult and culture of the child and childhood in fiction and non-fictional writing, it also contains a wealth of ideas and critical…
Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Recknagle, K.
Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause amore » criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.« less
ERIC Educational Resources Information Center
North Carolina Community College System (NJ1), 2010
2010-01-01
First mandated by the North Carolina General Assembly in 1989 (S.L. 1989; C. 752; S. 80), the Critical Success Factors report has evolved into the major accountability document for the North Carolina Community College System. This twenty first annual report on the critical success factors is the result of a process undertaken to streamline and…
Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1.
Ruthenborg, Robin J; Ban, Jae-Jun; Wazir, Anum; Takeda, Norihiko; Kim, Jung-Whan
2014-09-01
Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.
Dong, Jingmei; Zhang, Su; Xia, Li; Yu, Yi; Hu, Shuangshuang; Sun, Jingyu; Zhou, Ping; Chen, Peijie
2018-01-23
It is an extremely urgent problem that physical fitness promotion must face not only the increasing air pollution but also the decline of physical activity level of children and adolescents worldwide at present, which is the major reason that forms an inactive lifestyle and does harm to adolescents' health. Thus, it is necessary to focus on the exposure factor in environmental health risk assessment (EHRA) which conducts supervision of environmental pollution and survey of adolescents' activity patterns according to the harmful characteristics of air pollutant and relationship between dose and response. Some countries, such as USA, Canada and Australia, regard both respiratory rate and physical activity pattern as main exposure factors for adolescents in both air pollution health risk assessment and exercise risk assessment to forecast a safe exposing condition of pollutant for adolescents while they are doing exercise outdoors. In addition, it suggests that the testing indexes and testing methods of these two exposure factors, such as investigating the time of daily physical activity, strength, and characteristic of frequency, help to set up the quantitative relationship between environmental pollution index and the time, strength, frequency of daily activities, and formulate children's and adolescents' activity instructions under different levels of environmental pollutions. As smog becomes increasingly serious at present, it is meaningful to take physical activity as a critical composition of exposure factor and establish physical activity guideline, so as to reduce the risk of air pollution, and promote physical health of children and adolescents effectively.
Variations of a global constraint factor in cracked bodies under tension and bending loads
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.
1994-01-01
Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.
Kozaki, Masato; Kobayashi, Shin-Ichiro; Goda, Yukihiro; Okuda, Haruhiro; Sakai-Kato, Kumiko
2017-01-01
We applied the Quality by Design (QbD) approach to the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulations encapsulating triamcinolone acetonide, and the critical process parameters (CPPs) were identified to clarify the correlations between critical quality attributes and CPPs. Quality risk management was performed by using an Ishikawa diagram and experiments with a fractional factorial design (ANOVA). The CPPs for particle size were PLGA concentration and rotation speed, and the CPP for relative drug loading efficiency was the poor solvent to good solvent volume ratio. By assessing the mutually related factors in the form of ratios, many factors could be efficiently considered in the risk assessment. We found a two-factor interaction between rotation speed and rate of addition of good solvent by using a fractional factorial design with resolution V. The system was then extended by using a central composite design, and the results obtained were visualized by using the response surface method to construct a design space. Our research represents a case study of the application of the QbD approach to pharmaceutical development, including formulation screening, by taking actual production factors into consideration. Our findings support the feasibility of using a similar approach to nanoparticle formulations under development. We could establish an efficient method of analyzing the CPPs of PLGA nanoparticles by using a QbD approach.
Angels and demons: neurotrophic factors and epilepsy.
Simonato, Michele; Tongiorgi, Enrico; Kokaia, Merab
2006-12-01
Several lines of evidence indicate that neurotrophic factors (NTFs) could be key causal mediators in the development of acquired epileptic syndromes. Yet the trophic properties of NTFs indicate that they might be used to treat epilepsy-associated damage. Accordingly, different NTFs, or even the same NTF, could produce functionally contrasting effects in the context of epilepsy. Recent experimental evidence begins to shed light on the mechanisms underlying these contrasting effects. Understanding these mechanisms will be instrumental for the development of effective therapies, which must be based on a careful consideration of the biological properties of NTFs. Here, we critically evaluate new information emerging in this area and discuss its implications for clinical treatment.
Matrix Remodeling in Pulmonary Fibrosis and Emphysema
O’Reilly, Philip; Antony, Veena B.; Gaggar, Amit
2016-01-01
Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema. PMID:26741177
Inhibiting the Epidermal Growth Factor Receptor | Center for Cancer Research
The Epidermal Growth Factor Receptor (EGFR) is a widely distributed cell surface receptor that responds to several extracellular signaling molecules through an intracellular tyrosine kinase, which phosphorylates target enzymes to trigger a downstream molecular cascade. Since the discovery that EGFR mutations and amplifications are critical in a number of cancers, efforts have been under way to develop and use targeted EGFR inhibitors. These efforts have met with some spectacular successes, but many patients have not responded as expected, have subsequently developed drug-resistant tumors, or have suffered serious side effects from the therapies to date. CCR Investigators are studying EGFR from multiple vantage points with the goal of developing even better strategies to defeat EGFR-related cancers.
Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, Steve A.; Hazen, Samuel; Mullet, John
Critical to the development of renewable energy sources from biofuels is the improvement of biomass from energy feedstocks, such as sorghum and maize. The specific goals of this project include 1) characterize the growth and gene expression patterns under diurnal and circadian conditions, 2) select transcription factors associated with growth and build a cis-regulatory network in yeast, and 3) perturb these transcription factors in planta using transgenic Brachypodium and sorghum, and characterize the phenotypic outcomes as they relate to biomass accumulation. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to futuremore » strategies to optimize energy crop biomass yield.« less
Modeling the initial mechanical response and yielding behavior of gelled crude oil
NASA Astrophysics Data System (ADS)
Lei, Chen; Gang, Liu; Xingguo, Lu; Minghai, Xu; Yuannan, Tang
2018-05-01
The initial mechanical response and yielding behavior of gelled crude oil under constant shear rate conditions were investigated. By putting the Maxwell mechanical analog and a special dashpot in parallel, a quasi-Jeffreys model was obtained. The kinetic equation of the structural parameter in the Houska model was simplified reasonably so that a simplified constitutive equation of the special dashpot was expressed. By introducing a damage factor into the constitutive equation of the special dashpot and the Maxwell mechanical analog, we established a constitutive equation of the quasi-Jeffreys model. Rheological tests of gelled crude oil were conducted by imposing constant shear rates and the relationship between the shear stress and shear strain under different shear rates was plotted. It is found that the constitutive equation can fit the experimental data well under a wide range of shear rates. Based on the fitted parameters in the quasi-Jeffreys model, the shear stress changing rules of the Maxwell mechanical analog and the special dashpot were calculated and analyzed. It is found that the critical yield strain and the corresponding shear strain where shear stress of the Maxwell analog is the maximum change slightly under different shear rates. And then a critical damage softening strain which is irrelevant to the shearing conditions was put forward to describe the yielding behavior of gelled crude oil.
Business aspects and sustainability for healthgrids - an expert survey.
Scholz, Stefan; Semler, Sebastian C; Breitner, Michael H
2009-01-01
Grid computing initiatives in medicine and life sciences are under pressure to prove their sustainability. While some first business model frameworks were outlined, few practical experiences were considered. This gap has been narrowed by an international survey of 33 grid computing experts with biomedical and non-biomedical background on business aspects. The experts surveyed were cautiously optimistic about a sustainable implementation of grid computing within a mid term timeline. They identified marketable application areas, stated the underlying value proposition, outlined trends and specify critical success factors. From a general perspective of their answers, they provided a stable basis for a road map of sustainable grid computing solutions for medicine and life sciences.
Modeling of porous concrete elements under load
NASA Astrophysics Data System (ADS)
Demchyna, B. H.; Famuliak, Yu. Ye.; Demchyna, Kh. B.
2017-12-01
It is known that cell concretes are almost immediately destroyed under load, having reached certain critical stresses. Such kind of destruction is called a "catastrophic failure". Process of crack formation is one of the main factors, influencing process of concrete destruction. Modern theory of crack formation is mainly based on the Griffith theory of destruction. However, the mentioned theory does not completely correspond to the structure of cell concrete with its cell structure, because the theory is intended for a solid body. The article presents one of the possible variants of modelling of the structure of cell concrete and gives some assumptions concerning the process of crack formation in such hollow, not solid environment.
NASA Astrophysics Data System (ADS)
Zhao, Xiang-Feng; Shang, De-Guang; Sun, Yu-Juan; Song, Ming-Liang; Wang, Xiao-Wei
2018-01-01
The maximum shear strain and the normal strain excursion on the critical plane are regarded as the primary parameters of the crack driving force to establish a new short crack model in this paper. An equivalent strain-based intensity factor is proposed to correlate the short crack growth rate under multiaxial loading. According to the short crack model, a new method is proposed for multiaxial fatigue life prediction based on crack growth analysis. It is demonstrated that the method can be used under proportional and non-proportional loadings. The predicted results showed a good agreement with experimental lives in both high-cycle and low-cycle regions.
Doubling of the Critical Current Density of 2G-YBCO Coated Conductors through proton irradiation
NASA Astrophysics Data System (ADS)
Welp, Ulrich; Jia, Ying; Kwok, Wai-Kwong; Rupich, Marty; Fleshler, Steven; Kayani, Asfghar
2013-03-01
We report on magnetization and transport measurements of the critical current density of commercial 2G YBCO coated conductors before and after proton irradiation. The samples were irradiated along the c-axis with 4 MeV protons to a fluence of 1.5x1016 p/cm2. We find that at temperatures below 50 K, proton irradiation increases Jc by a factor of 2 in low fields and increases up to 2.5 in fields of 7 T. At 77 K, proton irradiation is less effective in enhancing the critical current. Doubling of Jc in fields of several Tesla and at temperatures below 50 K will be highly beneficial for applications of coated conductors in rotating machinery, generators and magnet coils. - Work supported by the US DoE-BES funded Energy Frontier Research Center (YJ), and by Department of Energy, Office of Science, Office of Basic Energy Sciences (UW, WKK), under Contract No. DE-AC02-06CH11357.
Frazzoli, Chiara; Petrini, Carlo; Mantovani, Alberto
2009-01-01
Development is defined sustainable when it meets the needs of the present without compromising the ability of future generations to meet their own needs. Pivoting on social, environmental and economic aspects of food chain sustainability, this paper presents the concept of sustainable food safety based on the prevention of risks and burden of poor health for generations to come. Under this respect, the assessment of long-term, transgenerational risks is still hampered by serious scientific uncertainties. Critical issues to the development of a sustainable food safety framework may include: endocrine disrupters as emerging contaminants that specifically target developing organisms; toxicological risks assessment in Countries at the turning point of development; translating knowledge into toxicity indexes to support risk management approaches, such as hazard analysis and critical control points (HACCP); the interplay between chemical hazards and social determinants. Efforts towards the comprehensive knowledge and management of key factors of sustainable food safety appear critical to the effectiveness of the overall sustainability policies.
Flexible aircraft dynamic modeling for dynamic analysis and control synthesis
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1989-01-01
The linearization and simplification of a nonlinear, literal model for flexible aircraft is highlighted. Areas of model fidelity that are critical if the model is to be used for control system synthesis are developed and several simplification techniques that can deliver the necessary model fidelity are discussed. These techniques include both numerical and analytical approaches. An analytical approach, based on first-order sensitivity theory is shown to lead not only to excellent numerical results, but also to closed-form analytical expressions for key system dynamic properties such as the pole/zero factors of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle mass properties, vibrational characteristics, and rigid-body and aeroelastic stability derivatives, thus leading to the underlying causes for critical dynamic characteristics.
NASA Technical Reports Server (NTRS)
Goebel, Kai; Vachtsevanos, George; Orchard, Marcos E.
2013-01-01
Knowledge discovery, statistical learning, and more specifically an understanding of the system evolution in time when it undergoes undesirable fault conditions, are critical for an adequate implementation of successful prognostic systems. Prognosis may be understood as the generation of long-term predictions describing the evolution in time of a particular signal of interest or fault indicator, with the purpose of estimating the remaining useful life (RUL) of a failing component/subsystem. Predictions are made using a thorough understanding of the underlying processes and factor in the anticipated future usage.
Hou, Wen-Hsuan; Kang, Chun-Mei; Ho, Mu-Hsing; Kuo, Jessie Ming-Chuan; Chen, Hsiao-Lien; Chang, Wen-Yin
2017-03-01
To evaluate the accuracy of the inpatient fall risk screening tool and to identify the most critical fall risk factors in inpatients. Variations exist in several screening tools applied in acute care hospitals for examining risk factors for falls and identifying high-risk inpatients. Secondary data analysis. A subset of inpatient data for the period from June 2011-June 2014 was extracted from the nursing information system and adverse event reporting system of an 818-bed teaching medical centre in Taipei. Data were analysed using descriptive statistics, receiver operating characteristic curve analysis and logistic regression analysis. During the study period, 205 fallers and 37,232 nonfallers were identified. The results revealed that the inpatient fall risk screening tool (cut-off point of ≥3) had a low sensitivity level (60%), satisfactory specificity (87%), a positive predictive value of 2·0% and a negative predictive value of 99%. The receiver operating characteristic curve analysis revealed an area under the curve of 0·805 (sensitivity, 71·8%; specificity, 78%). To increase the sensitivity values, the Youden index suggests at least 1·5 points to be the most suitable cut-off point for the inpatient fall risk screening tool. Multivariate logistic regression analysis revealed a considerably increased fall risk in patients with impaired balance and impaired elimination. The fall risk factor was also significantly associated with days of hospital stay and with admission to surgical wards. The findings can raise awareness about the two most critical risk factors for falls among future clinical nurses and other healthcare professionals and thus facilitate the development of fall prevention interventions. This study highlights the needs for redefining the cut-off points of the inpatient fall risk screening tool to effectively identify inpatients at a high risk of falls. Furthermore, inpatients with impaired balance and impaired elimination should be closely monitored by nurses to prevent falling during hospitalisations. © 2016 John Wiley & Sons Ltd.
Pizarro-Cerdá, Javier; Sousa, Sandra; Cossart, Pascale
2004-02-01
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection is a key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor C1q (gC1q-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans (including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells, including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis.
Pizarro-Cerdá, Javier; Sousa, Sandra; Cossart, Pascale
2004-06-01
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection isa key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor Clq (gClq-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans(including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells,including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis.
Iacoviello, Brian M; Grant, David A; Alloy, Lauren B; Abramson, Lyn Y
2009-01-01
Prospective tests of the impact of sociotropy and autonomy on the course of depression are lacking. In a sample of 97 cognitive high-risk and 62 cognitive low-risk undergraduates who experienced at least one prospective depressive episode, the interactions of sociotropy and interpersonal life events and autonomy and achievement-related life events were examined as predictors of four indicators of the course of depression. Initial analyses failed to support the hypothesis that global scores for sociotropy and autonomy interact with domain-congruent life events to predict the course indicators. The autonomy-achievement events interaction predicted less severe episodes, contrary to hypothesis. Then, factors hypothesized to underlie Sociotropy (Fear of Criticism and Rejection; Preference for Affiliation) and Autonomy were also analyzed. The puzzling autonomy-achievement life event interaction was explained by the underlying Independent Goal Attainment factor. Interactions between Fear of Criticism and Rejection and achievement events, and between Sensitivity to Others' Control and interpersonal events, significantly predicted chronicity, number and severity of episodes. The findings are discussed in terms of the event-congruency hypothesis.
Bhalla, Nishank; Sun, Chengqun; Lam, L. K. Metthew; Gardner, Christina L.; Ryman, Kate D.; Klimstra, William B.
2016-01-01
Most previous studies of interferon-alpha/beta (IFN-α/β) response antagonism by alphaviruses have focused upon interruption of IFN-α/β induction and/or receptor signaling cascades. Infection of mice with Venezuelan equine encephalitis alphavirus (VEEV) or Sindbis virus (SINV) induces serum IFN-α/β, that elicits a systemic antiviral state in uninfected cells successfully controlling SINV but not VEEV replication. Furthermore, VEEV replication is more resistant than that of SINV to a pre-existing antiviral state in vitro. While host macromolecular shutoff is proposed as a major antagonist of IFN-α/β induction, the underlying mechanisms of alphavirus resistance to a pre-existing antiviral state are not fully defined, nor is the mechanism for the greater resistance of VEEV. Here, we have separated viral transcription and translation shutoff with multiple alphaviruses, identified the viral proteins that induce each activity, and demonstrated that VEEV nonstructural protein 2-induced translation shutoff is likely a critical factor in enhanced antiviral state resistance of this alphavirus. PMID:27318152
Xian, Yu; Wang, Meie; Chen, Weiping
2015-11-01
Soil enzyme activities are greatly influenced by soil properties and could be significant indicators of heavy metal toxicity in soil for bioavailability assessment. Two groups of experiments were conducted to determine the joint effects of heavy metals and soil properties on soil enzyme activities. Results showed that arylsulfatase was the most sensitive soil enzyme and could be used as an indicator to study the enzymatic toxicity of heavy metals under various soil properties. Soil organic matter (SOM) was the dominant factor affecting the activity of arylsulfatase in soil. A quantitative model was derived to predict the changes of arylsulfatase activity with SOM content. When the soil organic matter content was less than the critical point A (1.05% in our study), the arylsulfatase activity dropped rapidly. When the soil organic matter content was greater than the critical point A, the arylsulfatase activity gradually rose to higher levels showing that instead of harm the soil microbial activities were enhanced. The SOM content needs to be over the critical point B (2.42% in our study) to protect its microbial community from harm due to the severe Pb pollution (500mgkg(-1) in our study). The quantitative model revealed the pattern of variation of enzymatic toxicity due to heavy metals under various SOM contents. The applicability of the model under wider soil properties need to be tested. The model however may provide a methodological basis for ecological risk assessment of heavy metals in soil. Copyright © 2014 Elsevier Ltd. All rights reserved.
Translational control of auditory imprinting and structural plasticity by eIF2α.
Batista, Gervasio; Johnson, Jennifer Leigh; Dominguez, Elena; Costa-Mattioli, Mauro; Pena, Jose L
2016-12-23
The formation of imprinted memories during a critical period is crucial for vital behaviors, including filial attachment. Yet, little is known about the underlying molecular mechanisms. Using a combination of behavior, pharmacology, in vivo surface sensing of translation (SUnSET) and DiOlistic labeling we found that, translational control by the eukaryotic translation initiation factor 2 alpha (eIF2α) bidirectionally regulates auditory but not visual imprinting and related changes in structural plasticity in chickens. Increasing phosphorylation of eIF2α (p-eIF2α) reduces translation rates and spine plasticity, and selectively impairs auditory imprinting. By contrast, inhibition of an eIF2α kinase or blocking the translational program controlled by p-eIF2α enhances auditory imprinting. Importantly, these manipulations are able to reopen the critical period. Thus, we have identified a translational control mechanism that selectively underlies auditory imprinting. Restoring translational control of eIF2α holds the promise to rejuvenate adult brain plasticity and restore learning and memory in a variety of cognitive disorders.
Stringent Mitigation Policy Implied By Temperature Impacts on Economic Growth
NASA Astrophysics Data System (ADS)
Moore, F.; Turner, D.
2014-12-01
Integrated assessment models (IAMs) compare the costs of greenhouse gas mitigation with damages from climate change in order to evaluate the social welfare implications of climate policy proposals and inform optimal emissions reduction trajectories. However, these models have been criticized for lacking a strong empirical basis for their damage functions, which do little to alter assumptions of sustained GDP growth, even under extreme temperature scenarios. We implement empirical estimates of temperature effects on GDP growth-rates in the Dynamic Integrated Climate and Economy (DICE) model via two pathways, total factor productivity (TFP) growth and capital depreciation. Even under optimistic adaptation assumptions, this damage specification implies that optimal climate policy involves the elimination of emissions in the near future, the stabilization of global temperature change below 2°C, and a social cost of carbon (SCC) an order of magnitude larger than previous estimates. A sensitivity analysis shows that the magnitude of growth effects, the rate of adaptation, and the dynamic interaction between damages from warming and GDP are three critical uncertainties and an important focus for future research.
Validation and Verification (V&V) of Safety-Critical Systems Operating Under Off-Nominal Conditions
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
2012-01-01
Loss of control (LOC) remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft LOC accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or more often in combination. Hence, there is no single intervention strategy to prevent these accidents. Research is underway at the National Aeronautics and Space Administration (NASA) in the development of advanced onboard system technologies for preventing or recovering from loss of vehicle control and for assuring safe operation under off-nominal conditions associated with aircraft LOC accidents. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V&V) and ultimate certification. The V&V of complex integrated systems poses highly significant technical challenges and is the subject of a parallel research effort at NASA. This chapter summarizes the V&V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft LOC accidents. A summary of recent research accomplishments in this effort is referenced.
Xu, Zhenzhu; Jiang, Yanling; Zhou, Guangsheng
2015-01-01
It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development. PMID:26442017
Analysis of a Multi-Machine Database on Divertor Heat Fluxes
NASA Astrophysics Data System (ADS)
Makowski, M. A.
2011-10-01
A coordinated effort to measure divertor heat flux characteristics in fully attached, similarly shaped H-mode plasmas on C-Mod, DIII-D and NSTX was carried out in 2010 in order to construct a predictive scaling relation applicable to next step devices including ITER, FNSF, and DEMO. Few published scaling laws are available and those that have been published were obtained under widely varying conditions and divertor geometries, leading to conflicting predictions for this critically important quantity. This study was designed to overcome these deficiencies. Corresponding plasma parameters were systematically varied in each tokamak, resulting in a combined data set in which Ip varies by a factor 3, Bt varies by a factor of 14.5, and major radius varies by a factor of 2.6. The derived scaling relation consistently predicts narrower heat flux widths than relations currently in use. Analysis of the combined data set reveals that the primary dependence of the parallel heat flux width is robustly inverse with Ip. All three tokamaks independently demonstrate this dependence. The midplane SOL profiles in DIII-D are also found to steepen with higher Ip, similar to the divertor heat flux profiles. Weaker dependencies on the toroidal field and normalized Greenwald density, fGW, are also found, but vary across devices and with the measure of the heat flux width used, either FWHM or integral width. In the combined data set, the strongest size scaling is with minor radius resulting in an approximately linear dependence on a /Ip . This suggests a scaling correlated with the inverse of the poloidal field, as would be expected for critical gradient or drift-based transport. Supported by the US DOE under DE-AC52-07NA27344 and DE-FC02-04ER54698.
Cordeira, Joshua W.; Felsted, Jennifer A.; Teillon, Sarah; Daftary, Shabrine; Panessiti, Micaella; Wirth, Jena; Sena-Esteves, Miguel
2014-01-01
Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are critical components of the neural circuitry controlling appetite and body weight. Diminished BDNF signaling in mice results in severe hyperphagia and obesity. In humans, BDNF haploinsufficiency and the functional Bdnf Val66Met polymorphism have been linked to elevated food intake and body weight. The mechanisms underlying this dysfunction are poorly defined. We demonstrate a chief role of α2δ-1, a calcium channel subunit and thrombospondin receptor, in triggering overeating in mice with central BDNF depletion. We show reduced α2δ-1 cell-surface expression in the BDNF mutant ventromedial hypothalamus (VMH), an energy balance-regulating center. This deficit contributes to the hyperphagia exhibited by BDNF mutant mice because selective inhibition of α2δ-1 by gabapentin infusion into wild-type VMH significantly increases feeding and body weight gain. Importantly, viral-mediated α2δ-1 rescue in BDNF mutant VMH significantly mitigates their hyperphagia, obesity, and liver steatosis and normalizes deficits in glucose homeostasis. Whole-cell recordings in BDNF mutant VMH neurons revealed normal calcium currents but reduced frequency of EPSCs. These results suggest calcium channel-independent effects of α2δ-1 on feeding and implicate α2δ-1–thrombospondin interactions known to facilitate excitatory synapse assembly. Our findings identify a central mechanism mediating the inhibitory effects of BDNF on feeding. They also demonstrate a novel and critical role for α2δ-1 in appetite control and suggest a mechanism underlying weight gain in humans treated with gabapentinoid drugs. PMID:24403154
Yamasaki, Yuji; Gao, Feng; Jordan, Mark C; Ayele, Belay T
2017-09-16
Maturation forms one of the critical seed developmental phases and it is characterized mainly by programmed cell death, dormancy and desiccation, however, the transcriptional programs and regulatory networks underlying acquisition of dormancy and deposition of storage reserves during the maturation phase of seed development are poorly understood in wheat. The present study performed comparative spatiotemporal transcriptomic analysis of seed maturation in two wheat genotypes with contrasting seed weight/size and dormancy phenotype. The embryo and endosperm tissues of maturing seeds appeared to exhibit genotype-specific temporal shifts in gene expression profile that might contribute to the seed phenotypic variations. Functional annotations of gene clusters suggest that the two tissues exhibit distinct but genotypically overlapping molecular functions. Motif enrichment predicts genotypically distinct abscisic acid (ABA) and gibberellin (GA) regulated transcriptional networks contribute to the contrasting seed weight/size and dormancy phenotypes between the two genotypes. While other ABA responsive element (ABRE) motifs are enriched in both genotypes, the prevalence of G-box-like motif specifically in tissues of the dormant genotype suggests distinct ABA mediated transcriptional mechanisms control the establishment of dormancy during seed maturation. In agreement with this, the bZIP transcription factors that co-express with ABRE enriched embryonic genes differ with genotype. The enrichment of SITEIIATCYTC motif specifically in embryo clusters of maturing seeds irrespective of genotype predicts a tissue specific role for the respective TCP transcription factors with no or minimal contribution to the variations in seed dormancy. The results of this study advance our understanding of the seed maturation associated molecular mechanisms underlying variation in dormancy and weight/size in wheat seeds, which is a critical step towards the designing of molecular strategies for enhancing seed yield and quality.
Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.
Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying
2017-06-01
Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RP<0.01 were defined as critical pathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RP<0.01, and the top 10 pathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing diagnosis and therapy of neonatal sepsis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson
2015-01-01
We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444
Su, Zhenghui; Zhang, Yanqi; Liao, Baojian; Zhong, Xiaofen; Chen, Xin; Wang, Haitao; Guo, Yiping; Shan, Yongli; Wang, Lihui; Pan, Guangjin
2018-03-23
During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3β (GSK3β) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Guerra, Ana María; Dávalos Pérez, Diana María; Castillo Martínez, Alejandro
Depression is the main cause of years lossed due to disability in the world, and it affects 50% more women 50% than men. Perinatal depression has been linked with more anxiety, a chronic course, and disability than depression in other life stages. In spite of its high prevalence and serious health effects on both mother and foetus, it is frequently under-diagnosed. This study was performed on all high risk obstetric patients admitted to a critical care obstetric unit in Cali, Colombia, from January to June, 2014. Depressive symptoms and psychosocial risk factors were screened by means of a survey and the Edinburgh Prenatal Depression Scale (EPDS). A total of 695 women were included, of whom 30.2% had depressive symptoms on the EPDS, and 3.6% reported having self-injury thoughts in the last 7 days. Our findings are consistent with previous reports on a history of child abuse and family depression as risk factors. It was also suggested that lower socio-economic status is associated with more vulnerability. Early screening is needed to ensure timely detection and treatment. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
A Cross-Industry Review of B2B Critical Success Factors.
ERIC Educational Resources Information Center
Eid, Riyad; Trueman, Myfanwy; Ahmed, Abdel Moneim
2002-01-01
Presents a comprehensive review of B2B (business-to- business) international Internet marketing and identifies 21 critical success factors in five categories: marketing strategy, including management support, strategic goals, and collaboration; Web site factors, including Web site design; global factors, including multilanguage sites and cultural…
Analysis of the Survival of Children Under Five in Indonesia and Associated Factors
NASA Astrophysics Data System (ADS)
Nur Islami Warrohmah, Annisa; Maniar Berliana, Sarni; Nursalam, Nursalam; Efendi, Ferry; Haryanto, Joni; Has, Eka Misbahatul M.; Ulfiana, Elida; Dwi Wahyuni, Sylvia
2018-02-01
The under-five mortality rate (U5MR) remains a challenge for developing nations, including Indonesia. This study aims to assess the key factors associated with mortality of Indonesian infants using survival analysis. Data taken from 14,727 live-born infants (2007-2012) was examined from the nationally representative Indonesian Demographic Health Survey. The Weibull hazard model was performed to analyse the socioeconomic status and related determinants of infant mortality. The findings indicated that mother factors (education, working status, autonomy, economic status, maternal age at birth, birth interval, type of births, complications, history of previous mortality, breastfeeding, antenatal care and place of delivery); infant factors (birth size); residence; and environmental conditions were associated with the childhood mortality. Rural or urban residence was an important determining factor of infant mortality. For example, considering the factor of a mother’s education, rural educated mothers had a significant association with the survival of their infants. In contrast, there was no significant association between urban educated mothers and their infants’ mortality. The results showed obvious contextual differences which determine the childhood mortality. Socio-demographic and economic factors remain critical in determining the death of infants. This study provides evidence for designing targeted interventions, as well as suggesting specific needs based on the population’s place of residence, in the issue of U5MR. Further interventions should also consider other identified variables while developing programmes to address infant’s needs.
Human Factors in Financial Trading: An Analysis of Trading Incidents.
Leaver, Meghan; Reader, Tom W
2016-09-01
This study tests the reliability of a system (FINANS) to collect and analyze incident reports in the financial trading domain and is guided by a human factors taxonomy used to describe error in the trading domain. Research indicates the utility of applying human factors theory to understand error in finance, yet empirical research is lacking. We report on the development of the first system for capturing and analyzing human factors-related issues in operational trading incidents. In the first study, 20 incidents are analyzed by an expert user group against a referent standard to establish the reliability of FINANS. In the second study, 750 incidents are analyzed using distribution, mean, pathway, and associative analysis to describe the data. Kappa scores indicate that categories within FINANS can be reliably used to identify and extract data on human factors-related problems underlying trading incidents. Approximately 1% of trades (n = 750) lead to an incident. Slip/lapse (61%), situation awareness (51%), and teamwork (40%) were found to be the most common problems underlying incidents. For the most serious incidents, problems in situation awareness and teamwork were most common. We show that (a) experts in the trading domain can reliably and accurately code human factors in incidents, (b) 1% of trades incur error, and (c) poor teamwork skills and situation awareness underpin the most critical incidents. This research provides data crucial for ameliorating risk within financial trading organizations, with implications for regulation and policy. © 2016, Human Factors and Ergonomics Society.
2014-09-01
peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a system during...photovoltaic arrays during islanding, and power factor correction, the implementation of the ESS by itself is likely to prove cost prohibitive. The DOD...These functions include peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a
Controlled growth factor release from synthetic extracellular matrices
NASA Astrophysics Data System (ADS)
Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.
2000-12-01
Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.
Crack growth induced by thermal-mechanical loading
NASA Astrophysics Data System (ADS)
John, R.; Hartman, G. A.; Gallagher, J. P.
1992-06-01
Advanced aerospace structures are often subjected to combined thermal and mechanical loads. The fracture-mechanics behavior of the structures may be altered by the thermal state existing around the crack. Hence, design of critical structural elements requires the knowledge of stress-intensity factors under both thermal and mechanical loads. This paper describes the development of an experimental technique to verify the thermal-stress-intensity factor generated by a temperature gradient around the crack. Thin plate specimens of a model material (AISI-SAE 1095 steel) were used for the heat transfer and thermal-mechanical fracture tests. Rapid thermal loading was achieved using high-intensity focused infrared spot heaters. These heaters were also used to generate controlled temperature rates for heat-transfer verification tests. The experimental results indicate that thermal loads can generate stress-intensity factors large enough to induce crack growth. The proposed thermal-stress-intensity factors appear to have the same effect as the conventional mechanical-stress-intensity factors with respect to fracture.
Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan
2015-09-01
Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. © 2015 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial Licence, which permits use, distribution and reproduction in any medium, provided the Contribution is properly cited and is not used for commercial purpose.
Liu, Dong; Chen, Yong; Li, An; Xie, Jingjing; Xiong, Jian; Bai, Jianxin; Chen, Xiaochun; Niu, Huanqing; Zhou, Tao; Ying, Hanjie
2012-06-01
A whole-cell biocatalytic process for uridine 5'-monophosphate (UMP) production from orotic acid by Saccharomyces cerevisiae was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical factors in the process. NaH(2)PO(4), MgCl(2) and pH were found to be the important factors affecting UMP production significantly. The levels of these three factors required for the maximum production of UMP were determined: NaH(2)PO(4) 22.1 g/L; MgCl(2) 2.55 g/L; pH 8.15. An enhancement of UMP production from 6.12 to 8.13 g/L was achieved. A significant redistribution of metabolic fluxes was observed and the underlying mechanism was discussed.
Sharma, Teenu; Khurana, Rajneet Kaur; Jain, Atul; Katare, O P; Singh, Bhupinder
2018-05-01
The current research work envisages an analytical quality by design-enabled development of a simple, rapid, sensitive, specific, robust and cost-effective stability-indicating reversed-phase high-performance liquid chromatographic method for determining stress-induced forced-degradation products of sorafenib tosylate (SFN). An Ishikawa fishbone diagram was constructed to embark upon analytical target profile and critical analytical attributes, i.e. peak area, theoretical plates, retention time and peak tailing. Factor screening using Taguchi orthogonal arrays and quality risk assessment studies carried out using failure mode effect analysis aided the selection of critical method parameters, i.e. mobile phase ratio and flow rate potentially affecting the chosen critical analytical attributes. Systematic optimization using response surface methodology of the chosen critical method parameters was carried out employing a two-factor-three-level-13-run, face-centered cubic design. A method operable design region was earmarked providing optimum method performance using numerical and graphical optimization. The optimum method employed a mobile phase composition consisting of acetonitrile and water (containing orthophosphoric acid, pH 4.1) at 65:35 v/v at a flow rate of 0.8 mL/min with UV detection at 265 nm using a C 18 column. Response surface methodology validation studies confirmed good efficiency and sensitivity of the developed method for analysis of SFN in mobile phase as well as in human plasma matrix. The forced degradation studies were conducted under different recommended stress conditions as per ICH Q1A (R2). Mass spectroscopy studies showed that SFN degrades in strongly acidic, alkaline and oxidative hydrolytic conditions at elevated temperature, while the drug was per se found to be photostable. Oxidative hydrolysis using 30% H 2 O 2 showed maximum degradation with products at retention times of 3.35, 3.65, 4.20 and 5.67 min. The absence of any significant change in the retention time of SFN and degradation products, formed under different stress conditions, ratified selectivity and specificity of the systematically developed method. Copyright © 2017 John Wiley & Sons, Ltd.
Nucleation and Grain Refinement of 7A04 Aluminum Alloy Under a Low-Power Electromagnetic Pulse
NASA Astrophysics Data System (ADS)
Bai, Qingwei; Ma, Yonglin; Xing, Shuqing; Bao, Xinyu; Feng, Yanfei; Kang, Xiaolan
2018-02-01
The effects of a low-power electromagnetic pulse on the grain size and cooling curve of high-strength aluminum alloy 7A04 were investigated for various pulse duty cycles. This electromagnetic pulse treatment was found to effectively produce fine grains with globular crystals and a uniform microstructure for pulse duty cycles between 20 and 40%. The key factors that affected grain refinement under the electromagnetic pulse included the electromagnetic energy and the conversion frequency between \\varvec{B} and \\varvec{E} . The nucleation rate increased as the nucleation period was extended. A new kinetic condition of magnetic nucleation was explored by decreasing the critical Gibbs free energy in the electromagnetic pulse, which was more sensitive under low undercooling. In addition, the crystal orientation was controlled in such a solidification environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAdams, Brian J.; Pearson, Raymond A.
With the continuing trend of decreasing feature sizes in flip-chip assemblies, the reliability tolerance to interfacial flaws is also decreasing. Small-scale disbonds will become more of a concern, pointing to the need for a better understanding of the initiation stage of interfacial delamination. With most accepted adhesion metric methodologies tailored to predict failure under the prior existence of a disbond, the study of the initiation phenomenon is open to development and standardization of new testing procedures. Traditional fracture mechanics approaches are not suitable, as the mathematics assume failure to originate at a disbond or crack tip. Disbond initiation is believedmore » to first occur at free edges and corners, which act as high stress concentration sites and exhibit singular stresses similar to a crack tip, though less severe in intensity. As such, a 'fracture mechanics-like' approach may be employed which defines a material parameter--a critical stress intensity factor (K{sub c})--that can be used to predict when initiation of a disbond at an interface will occur. The factors affecting the adhesion of underfill/polyimide interfaces relevant to flip-chip assemblies were investigated in this study. The study consisted of two distinct parts: a comparison of the initiation and propagation phenomena and a comparison of the relationship between sub-critical and critical initiation of interfacial failure. The initiation of underfill interfacial failure was studied by characterizing failure at a free-edge with a critical stress intensity factor. In comparison with the interfacial fracture toughness testing, it was shown that a good correlation exists between the initiation and propagation of interfacial failures. Such a correlation justifies the continuing use of fracture mechanics to predict the reliability of flip-chip packages. The second aspect of the research involved fatigue testing of tensile butt joint specimens to determine lifetimes at sub-critical load levels. The results display an interfacial strength ranking similar to that observed during monotonic testing. The fatigue results indicate that monotonic fracture mechanics testing may be an adequate screening tool to help predict cyclic underfill failure; however lifetime data is required to predict reliability.« less
Ocloo, Josephine E; Fulop, Naomi J
2012-12-01
There has been considerable momentum within the NHS over the last 10 years to develop greater patient and public involvement (PPI). This commitment has been reflected in numerous policy initiatives. In patient safety, the drive to increase involvement has increasingly been seen as an important way of building a safety culture. Evidence suggests, however, that progress has been slow and even more variable than in health care generally. Given this context, the paper analyses some of the key underlying drivers for involvement in the wider context of health and social care and makes some suggestions on what lessons can be learned for developing the PPI agenda in patient safety. To develop PPI further, it is argued that a greater understanding is needed of the contested nature of involvement in patient safety and how this has similarities to the emergence of user involvement in other parts of the public services. This understanding has led to the development of a range of critical theories to guide involvement that also make more explicit the underlying factors that support and hinder involvement processes, often related to power inequities and control. Achieving greater PPI in patient safety is therefore seen to require a more critical framework for understanding processes of involvement that can also help guide and evaluate involvement practices. © 2011 Blackwell Publishing Ltd.
Song, Ji-Yoon; Marszalek, Jaroslaw; Craig, Elizabeth Anne
2012-06-26
Fe-S clusters are critical prosthetic groups for proteins involved in various critical biological processes. Before being transferred to recipient apo-proteins, Fe-S clusters are assembled on the highly conserved scaffold protein Isu, the abundance of which is regulated posttranslationally on disruption of the cluster biogenesis system. Here we report that Isu is degraded by the Lon-type AAA+ ATPase protease of the mitochondrial matrix, Pim1. Nfs1, the cysteine desulfurase responsible for providing sulfur for cluster formation, is required for the increased Isu stability occurring after disruption of cluster formation on or transfer from Isu. Physical interaction between the Isu and Nfs1 proteins, not the enzymatic activity of Nfs1, is the important factor in increased stability. Analysis of several conditions revealed that high Isu levels can be advantageous or disadvantageous, depending on the physiological condition. During the stationary phase, elevated Isu levels were advantageous, resulting in prolonged chronological lifespan. On the other hand, under iron-limiting conditions, high Isu levels were deleterious. Compared with cells expressing normal levels of Isu, such cells grew poorly and exhibited reduced activity of the heme-containing enzyme ferric reductase. Our results suggest that modulation of the degradation of Isu by the Pim1 protease is a regulatory mechanism serving to rapidly help balance the cell's need for critical iron-requiring processes under changing environmental conditions.
Yan, Jing; Charles, Julia F
2018-04-01
Microbiota and their hosts have coevolved for millions of years. Microbiota are not only critical for optimal development of the host under normal physiological growth, but also important to ensure proper host development during nutrient scarcity or disease conditions. A large body of research has begun to detail the mechanism(s) of how microbiota cooperate with the host to maintain optimal health status. One crucial host pathway recently demonstrated to be modulated by microbiota is that of the growth factor insulin like growth factor 1 (IGF-1). Gut microbiota are capable of dynamically modulating circulating IGF-1 in the host, with the majority of data suggesting that microbiota induce host IGF-1 synthesis to influence growth. Microbiota-derived metabolites such as short chain fatty acids are sufficient to induce IGF-1. Whether microbiota induction of IGF-1 is mediated by the difference in growth hormone expression or the host sensitivity to growth hormone is still under investigation. This review summarizes the current data detailing the interaction between gut microbiota, IGF-1 and host development.
Mechanisms underlying astringency: introduction to an oral tribology approach
NASA Astrophysics Data System (ADS)
Upadhyay, Rutuja; Brossard, Natalia; Chen, Jianshe
2016-03-01
Astringency is one of the predominant factors in the sensory experience of many foods and beverages ranging from wine to nuts. The scientific community is discussing mechanisms that explain this complex phenomenon, since there are no conclusive results which correlate well with sensory astringency. Therefore, the mechanisms and perceptual characteristics of astringency warrant further discussion and investigation. This paper gives a brief introduction of the fundamentals of oral tribology forming a basis of the astringency mechanism. It discusses the current state of the literature on mechanisms underlying astringency describing the existing astringency models. The review discusses the crucial role of saliva and its physiology which contributes significantly in astringency perception in the mouth. It also provides an overview of research concerned with the physiological and psychophysical factors that mediate the perception of this sensation, establishing the ground for future research. Thus, the overall aim of the review is to establish the critical roles of oral friction (thin-film lubrication) in the sensation of astringency and possibly of some other specific sensory features.
Uptake and Accumulation of Pharmaceuticals in Overhead- and Surface-Irrigated Greenhouse Lettuce.
Bhalsod, Gemini D; Chuang, Ya-Hui; Jeon, Sangho; Gui, Wenjun; Li, Hui; Ryser, Elliot T; Guber, Andrey K; Zhang, Wei
2018-01-31
Understanding the uptake and accumulation of pharmaceuticals in vegetables under typical irrigation practices is critical to risk assessment of crop irrigation with reclaimed water. This study investigated the pharmaceutical residues in greenhouse lettuce under overhead and soil-surface irrigations using pharmaceutical-contaminated water. Compared to soil-surface irrigation, overhead irrigation substantially increased the pharmaceutical residues in lettuce shoots. The increased residue levels persisted even after washing for trimethoprim, monensin sodium, and tylosin, indicating their strong sorption to the shoots. The postwashing concentrations in fresh shoots varied from 0.05 ± 0.04 μg/kg for sulfadiazine to 345 ± 139 μg/kg for carbamazepine. Root concentration factors ranged from 0.04 ± 0.14 for tylosin to 19.2 ± 15.7 for sulfamethoxazole. Translocation factors in surface-irrigated lettuce were low for sulfamethoxalzole, trimethoprim, monensin sodium, and tylosin (0.07-0.15), but high for caffeine (4.28 ± 3.01) and carbamazepine (8.15 ± 2.87). Carbamazepine was persistent in soil and hyperaccumulated in shoots.
NASA Astrophysics Data System (ADS)
Minati, Ludovico; de Candia, Antonio; Scarpetta, Silvia
2016-07-01
Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-order one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.
Using the critical incident survey to assess hospital service quality.
Longo, B; Connor, G; Barnhart, T
1993-01-01
This survey was designed to determine "standards of excellence" in hospital services as defined by (a) former patients, (b) physicians, (c) hospital employees, and (d) corporate insurance subscribers. One hundred forty-seven (147) patients, 188 employees, and 20 corporate subscribers were interviewed by telephone, and 52 physicians were interviewed in their offices. The interview consisted of a single question: "Can you think of a time when, as a patient/employee/employer/physician, you had a particularly satisfying or dissatisfying experience with a local hospital?" Reported incidents were reviewed, and 239 "critical incidents" were identified. These incidents were classified into 12 descriptive categories relating to the underlying factors in the incident reports. Six focus groups were later held with participants segregated by the population pool they represented. These groups were asked to develop definitions of "excellence" in hospital service quality and standards for service which would "exceed expectations." The focus groups created 122 standards of excellence, which were classified into 43 categories. Overall, the largest percentages of corporate, physician, and employee critical incidents were classified as "Administrative Policy" issues. Patients most often reported "Nurturing" incidents as critical to their perceptions of hospital service quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: ludovico.minati@ifj.edu; Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków; Candia, Antonio de
2016-07-15
Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-ordermore » one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.« less
NASA Astrophysics Data System (ADS)
Ochiai, Shojiro; Oki, Yuichiro; Sekino, Fumiaki; Ohno, Hiroaki; Hojo, Masaki; Moriai, Hidezumi; Sakai, Shuji; Koganeya, Masanobu; Hayashi, Kazuhiko; Yamada, Yuichi; Ayai, Naoki; Watanabe, Kazuo
2000-04-01
The influences of fatigue damage introduced at room temperature on critical current at 4.2 K and residual strength at room temperature of Ti-Nb superconducting composite wire with a low copper ratio (1.04) were studied. The experimental results were compared with those of Nb3 Al composite. The following differences between the composites were found: the fracture surface of the Ti-Nb filaments in the composite varies from a ductile pattern under static loading to a brittle one under cyclic loading, while the Nb3 Al compound always shows a brittle pattern under both loadings; the fracture strength of the Ti-Nb composite is given by the net stress criterion but that of Nb3 Al by the stress intensity factor criterion; in the Ti-Nb composite the critical current Ic decreases with increasing number of stress cycles simultaneously with the residual strength icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> c ,r , while in the Nb3 Al composite Ic decreases later than icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> c ,r . On the other hand, both composites have the following similarities: the filaments are fractured due to the propagation of the fatigue crack nucleated in the copper; with increasing number of stress cycles, the damage progresses in the order of stage I (formation of cracks in the clad copper), stage II (stable propagation of the fatigue crack into the inner core) and stage III (overall fracture), among which stage II occurs in the late stage beyond 85 to 90% of the fatigue life; at intermediate maximum stress, many large cracks grow into the core portion at different cross sections but not at high and low maximum stresses; accordingly, the critical current and residual strength of the portion apart from the main crack are low for the intermediate maximum stress but not for low and high maximum stresses.
Heat transfer of ascending cryomagma on Europa
NASA Astrophysics Data System (ADS)
Quick, Lynnae C.; Marsh, Bruce D.
2016-06-01
Jupiter's moon Europa has a relatively young surface (60-90 Myr on average), which may be due in part to cryovolcanic processes. Current models for both effusive and explosive cryovolcanism on Europa may be expanded and enhanced by linking the potential for cryovolcanism at the surface to subsurface cryomagmatism. The success of cryomagma transport through Europa's crust depends critically on the rate of ascent relative to the rate of solidification. The final transport distance of cryomagma is thus governed by initial melt volume, ascent rate, overall ascent distance, transport mechanism (i.e., diapirism, diking, or ascent in cylindrical conduits), and melt temperature and composition. The last two factors are especially critical in determining the budget of expendable energy before complete solidification. Here we use these factors as constraints to explore conditions under which cryomagma may arrive at Europa's surface to facilitate cryovolcanism. We find that 1-5 km radius warm ice diapirs ascending from the base of a 10 km thick stagnant lid can reach the shallow subsurface in a partially molten state. Cryomagma transport may be further facilitated if diapirs travel along pre-heated ascent paths. Under certain conditions, cryolava transported from 10 km depths in tabular dikes or pipe-like conduits may reach the surface at temperatures exceeding 250 K. Ascent rates for these geometries may be high enough that isothermal transport is approached. Cryomagmas containing significant amounts of low eutectic impurities can also be delivered to Europa's surface by propagating dikes or pipe-like conduits.
ERIC Educational Resources Information Center
Wang, Victor C. X.
2010-01-01
Developing curriculum(s) requires instructors to take into several factors. These factors can be viewed as critical components of curriculum development for career and technical education (CTE) instructors. Without adequately addressing critical components such as curriculum history, curriculum theory, curriculum philosophies, curriculum…
Critical Success Factors for E-Learning Acceptance: Confirmatory Factor Models
ERIC Educational Resources Information Center
Selim, Hassan M.
2007-01-01
E-learning, one of the tools emerged from information technology, has been integrated in many university programs. There are several factors that need to be considered while developing or implementing university curriculums that offer e-learning based courses. This paper is intended to specify e-learning critical success factors (CSFs) as…
Critical thinking competence and disposition of clinical nurses in a medical center.
Feng, Rung-Chuang; Chen, Mei-Jung; Chen, Mei-Chuan; Pai, Yu-Chu
2010-06-01
Critical thinking is essential in nursing practice. Promoting critical thinking competence in clinical nurses is an important way to improve problem solving and decision-making competence to further improve the quality of patient care. However, using an adequate tool to test nurses' critical thinking competence and disposition may provide the reference criteria for clinical nurse characterization, training planning, and resource allocation for human resource management. The purpose of this study was to measure the critical thinking competence and critical thinking disposition of clinical nurses as well as to explore the related factors of critical thinking competence. Clinical nurses from four different clinical ladders selected from one medical center were stratified randomly. All qualified subjects who submitted valid questionnaires were included in the study. A Taiwan version of the modified Watson-Glaser Critical Thinking Appraisal and Critical Thinking Disposition Inventory was developed to measure the critical thinking competence and critical thinking disposition of clinical nurses. Validity was evaluated using the professional content test (content validity index = .93). Reliability was assessed with a Cronbach's alpha coefficient of .85. Data were analyzed using the SPSS for Windows (Version 12.0; SPSS Inc., Chicago, IL). Results showed that competence of interpretation was the highest critical thinking competence factor. Inference was the lowest, and reflective thinking as a critical thinking disposition was more positive. In addition, age, years of nursing experience, and experiences in other hospitals significantly influenced critical thinking competence (p < .05). Factors of age, years of experience, and nurses clinical ladder were shown to affect critical thinking disposition scores. Clinical ladder N4 nurses had the highest scores in both competence and disposition. A significant relationship was found between critical thinking competence and disposition scores, with 29.3% of the variance in critical thinking competence potentially explained by total years of nurse hospital experience. Clinical ladder and age were predictive factors for critical thinking disposition. Commonality was 27.9%. Nursing experience and clinical ladders positively affect critical thinking competence and disposition. Issues of critical thinking competence increasingly need to be measured. Therefore, appropriate tools for nursing professions should be further developed and explored for specific areas of practice.
Pressure Injuries in Critical Care: A Survey of Critical Care Nurses.
Cox, Jill; Schallom, Marilyn
2017-10-01
Critical care nurses must be able to skillfully balance the prevention of adverse events such as pressure injuries in an environment with multiple competing and lifesaving technologies that often take precedent. Despite strategies to prevent them, pressure injuries do occur in intensive care unit patients, and consensus is building that some pressure injuries are unavoidable. To determine critical care nurses' attitudes toward prevention of pressure injury and the perceptions of frontline critical care nurses of specific risk factors associated with unavoidable pressure injuries. A descriptive cross-sectional survey design was used. An online survey was posted on the newsletter website of the American Association of Critical-Care Nurses in January 2016. An invitation to participate in the study was emailed to more than 3000 members of the association; 333 nurses responded, for a response rate of approximately 11%. Among the responders, 73% were employed as bedside critical care nurses. More than half (67%) thought that pressure injuries are avoidable, and 66% disagreed that pressure injury prevention was of less interest than other aspects of critical care. The top 2 risk factors for unavoidable pressure injuries were impaired tissue perfusion and impaired tissue oxygenation. Critical care nurses are steadfast stewards of safe patient care and think that pressure injury prevention is a crucial aspect of the care they deliver every day. The findings on risk factors for unavoidable pressure injuries mirrored those of experts and provide a layer of support for these factors. ©2017 American Association of Critical-Care Nurses.
The influence of color on emotional perception of natural scenes.
Codispoti, Maurizio; De Cesarei, Andrea; Ferrari, Vera
2012-01-01
Is color a critical factor when processing the emotional content of natural scenes? Under challenging perceptual conditions, such as when pictures are briefly presented, color might facilitate scene segmentation and/or function as a semantic cue via association with scene-relevant concepts (e.g., red and blood/injury). To clarify the influence of color on affective picture perception, we compared the late positive potentials (LPP) to color versus grayscale pictures, presented for very brief (24 ms) and longer (6 s) exposure durations. Results indicated that removing color information had no effect on the affective modulation of the LPP, regardless of exposure duration. These findings imply that the recognition of the emotional content of scenes, even when presented very briefly, does not critically rely on color information. Copyright © 2011 Society for Psychophysiological Research.
Wakefield, Douglas S; Ward, Marcia M; Loes, Jean L; O'Brien, John
2010-01-01
We report how seven independent critical access hospitals collaborated with a rural referral hospital to standardize workflow policies and procedures while jointly implementing the same health information technologies (HITs) to enhance medication care processes. The study hospitals implemented the same electronic health record, computerized provider order entry, pharmacy information systems, automated dispensing cabinets (ADC), and barcode medication administration systems. We conducted interviews and examined project documents to explore factors underlying the successful implementation of ADC and barcode medication administration across the network hospitals. These included a shared culture of collaboration; strategic sequencing of HIT component implementation; interface among HIT components; strategic placement of ADCs; disciplined use and sharing of workflow analyses linked with HIT applications; planning for workflow efficiencies; acquisition of adequate supply of HIT-related devices; and establishing metrics to monitor HIT use and outcomes.
Two-actor conflict with time delay: A dynamical model
NASA Astrophysics Data System (ADS)
Qubbaj, Murad R.; Muneepeerakul, Rachata
2012-11-01
Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.
Dynamic subcellular localization of a respiratory complex controls bacterial respiration
Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel
2015-01-01
Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria. DOI: http://dx.doi.org/10.7554/eLife.05357.001 PMID:26077726
The group discussion effect: integrative processes and suggestions for implementation.
Meleady, Rose; Hopthrow, Tim; Crisp, Richard J
2013-02-01
One of the most consistent findings in experimental social dilemmas research is the positive effect group discussion has on cooperative behavior. At a time when cooperation and consensus is critical to tackle global problems, ranging from debt to deforestation, understanding the dynamics of group discussion is a pressing need. Unfortunately, research investigating the underlying processes and implementation of the effect has been inconclusive. The authors present a critical review of existing explanations and integrate these perspectives into a single process model of group discussion, providing a more complete theoretical picture of how interrelated factors combine to facilitate discussion-induced cooperation. On the basis of this theoretical analysis, they consider complimentary approaches to the indirect and feasible implementation of group discussion. They argue that such strategies may overcome the barriers to direct discussion observed across a range of groups and organizations.
Yusof, Maryati Mohd
2015-07-01
Clinical information systems have long been used in intensive care units but reports on their adoption and benefits are limited. This study evaluated a Critical Care Information System implementation. A case study summative evaluation was conducted, employing observation, interview, and document analysis in operating theatres and 16-bed adult intensive care units in a 400-bed Malaysian tertiary referral centre from the perspectives of users (nurses and physicians), management, and information technology staff. System implementation, factors influencing adoption, fit between these factors, and the impact of the Critical Care Information System were evaluated after eight months of operation. Positive influences on system adoption were associated with technical factors, including system ease of use, usefulness, and information relevancy; human factors, particularly user attitude; and organisational factors, namely clinical process-technology alignment and champions. Organisational factors such as planning, project management, training, technology support, turnover rate, clinical workload, and communication were barriers to system implementation and use. Recommendations to improve the current system problems were discussed. Most nursing staff positively perceived the system's reduction of documentation and data access time, giving them more time with patients. System acceptance varied among doctors. System use also had positive impacts on timesaving, data quality, and clinical workflow. Critical Care Information Systems is crucial and has great potentials in enhancing and delivering critical care. However, the case study findings showed that the system faced complex challenges and was underutilised despite its potential. The role of socio-technical factors and their fit in realizing the potential of Critical Care Information Systems requires continuous, in-depth evaluation and stakeholder understanding and acknowledgement. The comprehensive and specific evaluation measures of the Human-Organisation-Technology Fit framework can flexibly evaluate Critical Care Information Systems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Detecting Tie2, an endothelial growth factor receptor, by using immunohistochemistry in mouse lungs.
Guha, Prajna P; David, Sascha A; Ghosh, Chandra C
2014-01-01
Immunohistochemical (IHC) staining is an invaluable, sensitive, and effective method to detect the presence and localization of proteins in the cellular compartment in tissues. The basic concept of IHC is detecting the antigen in tissues by means of specific antibody binding, which is then demonstrated with a colored histochemical reaction that can be observed under a light microscope. The most challenging aspect of IHC techniques is optimizing the precise experimental conditions that are required to get a specific and a strong signal. The critical steps of IHC are specimen acquisition, fixation, permeabilization, detection system, and selection of the antigen specific antibody and its optimization. Here, we elaborate the technique using the endothelial growth factor binding receptor Tie2 in mouse lungs.
[Clinical study on sepsis in 2 pediatric intensive care units in Beijing].
2012-03-01
To investigate the incidence, mortality, causes and risk factors of sepsis in children in pediatric intensive care units (PICU) in Beijing through large sample prospective clinical research. From 1st November 2008 to 31st December 2009, all patients aged from 29 days to 18 years admitted to PICU of the two children's hospitals in Beijing were surveyed. Patients who met the conditions of Chinese pediatric critical illness score (PCIS) < 90 or American guidelines for PICU admission were defined as critically ill cases. According to the definitions of sepsis of 2005 international pediatric sepsis consensus conference and 2006 Chinese Medical Association meeting, sepsis, sever sepsis, and septic shock cases were selected from these critically ill patients. The qualified subjects were surveyed by questionnaire until discharge or death the data were analyzed by SPSS. A total of 1531 of PICU admissions were enrolled within a 14-month period, of whom 1250 met the criteria of critically ill case; 486 developed sepsis, of whom 55 died. The morbidity of sepsis for all in critically ill patients in PICU was 38.9% (486/1250) and the mortality was 11.3% (55/486). The morbidity of sepsis, severe sepsis and septic shock in these PICU was 25.5% (319/1250), 10.3% (129/1250), 3.0% (38/1250) and the mortality was 2.2% (7/319), 23.3% (30/129), and 47.4% (18/38), respectively. The proportion of less than 3 years old was 75.5% (367/486). Respiratory system diseases (71.8%), such as pneumonia (63.6%), were the underlying primary infectious diseases of sepsis. Bacterial etiology accounted for 64.1% of the cases with sepsis with definite etiological test results. The proportion of gram-positive bacteria and gram-negative bacteria were 46.1% and 53.9%, respectively. PCIS and disease severity were negatively correlated (r = -0.583, P < 0.01). Multiple stepwise logistic regression analysis showed that depressed PCIS and use of mechanical ventilation were the risk factors for death. Average medical costs per patient in PICU with severe sepsis and septic shock were 2.3 times and 1.3 times higher than those of critically ill patients. Sepsis with the characteristics of high morbidity, mortality and cost was one of the critical illnesses in PICU in two pediatric hospitals in Beijing. Patients younger than 3 years were more susceptible to develop sepsis. Main infectious cause was pneumonia and bacteria was the main pathogen bacterial pneumonia. Risk factors for death were depressed PCIS and use of mechanical ventilation.
Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan
2014-10-01
The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxtail millet (Setaria italica). The transcript level of SiARDP increased not only after drought, high salt, and low temperature stresses, but also after an ABA treatment in foxtail millet seedlings. Two ABA-responsive elements (ABRE1: ACGTGTC; ABRE2: ACGTGGC) exist in the promoter of SiARDP. Further analyses showed that two ABA-responsive element binding (AREB)-type transcription factors, SiAREB1 and SiAREB2, could physically bind to the ABRE core element in vitro and in vivo. The constitutive expression of SiARDP in Arabidopsis thaliana enhanced drought and salt tolerance during seed germination and seedling development, and overexpression of SiARDP in foxtail millet improved drought tolerance. The expression levels of target genes of SiARDP were upregulated in transgenic Arabidopsis and foxtail millet. These results reveal that SiARDP, one of the target genes of SiAREB, is involved in ABA-dependent signal pathways and plays a critical role in the abiotic stress response in plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Approaches to rationing antiretroviral treatment: ethical and equity implications.
Bennett, Sara; Chanfreau, Catherine
2005-01-01
Despite a growing global commitment to the provision of antiretroviral therapy (ART), its availability is still likely to be less than the need. This imbalance raises ethical dilemmas about who should be granted access to publicly-subsidized ART programmes. This paper reviews the eligibility and targeting criteria used in four case-study countries at different points in the scale-up of ART, with the aim of drawing lessons regarding ethical approaches to rationing. Mexico, Senegal, Thailand and Uganda have each made an explicit policy commitment to provide antiretrovirals to all those in need, but are achieving this goal in steps--beginning with explicit rationing of access to care. Drawing upon the case-studies and experiences elsewhere, categories of explicit rationing criteria have been identified. These include biomedical factors, adherence to treatment, prevention-driven factors, social and economic benefits, financial factors and factors driven by ethical arguments. The initial criteria for determining eligibility are typically clinical criteria and assessment of adherence prospects, followed by a number of other factors. Rationing mechanisms reflect several underlying ethical theories and the ethical underpinnings of explicit rationing criteria should reflect societal values. In order to ensure this alignment, widespread consultation with a variety of stakeholders, and not only policy-makers or physicians, is critical. Without such explicit debate, more rationing will occur implicitly and this may be more inequitable. The effects of rationing mechanisms upon equity are critically dependent upon the implementation processes. As antiretroviral programmes are implemented it is crucial to monitor who gains access to these programmes. PMID:16175829
Zhang, Su; Xia, Li; Yu, Yi; Hu, Shuangshuang; Sun, Jingyu; Zhou, Ping; Chen, Peijie
2018-01-01
It is an extremely urgent problem that physical fitness promotion must face not only the increasing air pollution but also the decline of physical activity level of children and adolescents worldwide at present, which is the major reason that forms an inactive lifestyle and does harm to adolescents’ health. Thus, it is necessary to focus on the exposure factor in environmental health risk assessment (EHRA) which conducts supervision of environmental pollution and survey of adolescents’ activity patterns according to the harmful characteristics of air pollutant and relationship between dose and response. Some countries, such as USA, Canada and Australia, regard both respiratory rate and physical activity pattern as main exposure factors for adolescents in both air pollution health risk assessment and exercise risk assessment to forecast a safe exposing condition of pollutant for adolescents while they are doing exercise outdoors. In addition, it suggests that the testing indexes and testing methods of these two exposure factors, such as investigating the time of daily physical activity, strength, and characteristic of frequency, help to set up the quantitative relationship between environmental pollution index and the time, strength, frequency of daily activities, and formulate children’s and adolescents’ activity instructions under different levels of environmental pollutions. As smog becomes increasingly serious at present, it is meaningful to take physical activity as a critical composition of exposure factor and establish physical activity guideline, so as to reduce the risk of air pollution, and promote physical health of children and adolescents effectively. PMID:29360730
Zhong, Jia; Agha, Golareh; Baccarelli, Andrea A
2016-01-08
Epidemiological studies have demonstrated that genetic, environmental, behavioral, and clinical factors contribute to cardiovascular disease development. How these risk factors interact at the cellular level to cause cardiovascular disease is not well known. Epigenetic epidemiology enables researchers to explore critical links between genomic coding, modifiable exposures, and manifestation of disease phenotype. One epigenetic link, DNA methylation, is potentially an important mechanism underlying these associations. In the past decade, there has been a significant increase in the number of epidemiological studies investigating cardiovascular risk factors and outcomes in relation to DNA methylation, but many gaps remain in our understanding of the underlying cause and biological implications. In this review, we provide a brief overview of the biology and mechanisms of DNA methylation and its role in cardiovascular disease. In addition, we summarize the current evidence base in epigenetic epidemiology studies relevant to cardiovascular health and disease and discuss the limitations, challenges, and future directions of the field. Finally, we provide guidelines for well-designed epigenetic epidemiology studies, with particular focus on methodological aspects, study design, and analytical challenges. © 2016 American Heart Association, Inc.
Rising youth suicide and the changing cultural context in South Korea.
Park, B C Ben; Soo Im, Jeong; Strother Ratcliff, Kathryn
2014-01-01
South Korean society faces a serious challenge in the increasing rates of youth suicidal behavior. There is a need both to gain a better understanding of the causes of this behavior and to develop strategies for responding to this critical public health issue. This article analyzes how psychological, sociopsychological, and subcultural factors influence suicidal proneness among Korean youth as well as makes suggestions for developing social policies that could reduce Korean youth suicidal behaviors. Correlation and multivariate regression analyses on suicide proneness and depression were employed using a sample of 172 South Korean youths (aged 18-24) selected from the 2009 General Social Survey collected through face-to-face interviews. Young people's suicidal proneness is associated with depression, a tolerant attitude toward suicide, strained family relations, living in rural areas, being female, and being closely related to survivors of suicide or potential suicides. The findings from this study reveal the significance of social and cultural factors as influences on recent youth suicidal behavior in Korea. The analysis suggests that the underlying risk factors of suicidal behavior are embedded in the changing social and cultural context of Korean society. Thus, suicide prevention efforts should involve more than merely treating any underlying psychiatric disorders.
Gikas, Spyros; Tsopelas, Fotios; Giaginis, Costas; Dimitrakopoulos, John; Livadara, Theodora; Archontaki, Helen; Tsantili-Kakoulidou, Anna
2008-11-04
The chromatographic behavior of enalapril was investigated under different stationary and mobile phase conditions in an effort to unravel interferences in the underlying retention mechanism, which would affect its relation to octanol-water partitioning. Extrapolated retention factors, logk(w), were used as relevant chromatographic indices. The retention/pH profile was established and the peak split phenomenon, associated with cis/trans interconversion, was also monitored as a function of pH. The pH at maximum retention and minimum peak split occurrence was chosen for further investigation, so that the presence of zwitterionic structure was guaranteed and any effect of cis/trans interconversion could be ignored. Retention of zwitterionic enalapril was found to be very sensitive to mobile phase conditions in regard to organic modifier as well to the aqueous component. The use of morpholine-propanesulfonic acid (MOPS) as buffer and the presence of n-octanol as mobile phase additive proved critical factors for maximum suppression of secondary interactions. Nevertheless, the corresponding extrapolated retention factor was considerably larger than octanol-water logD value at the isoelectric point. However, logk(w) could be successfully converted to logD by means of a calibration equation established for ionized acidic compounds.
Yu, Hwa-Lung; Lin, Yuan-Chien; Kuo, Yi-Ming
2015-09-01
Understanding the temporal dynamics and interactions of particulate matter (PM) concentration and composition is important for air quality control. This paper applied a dynamic factor analysis method (DFA) to reveal the underlying mechanisms of nonstationary variations in twelve ambient concentrations of aerosols and gaseous pollutants, and the associations with meteorological factors. This approach can consider the uncertainties and temporal dependences of time series data. The common trends of the yearlong and three selected diurnal variations were obtained to characterize the dominant processes occurring in general and specific scenarios in Taipei during 2009 (i.e., during Asian dust storm (ADS) events, rainfall, and under normal conditions). The results revealed the two distinct yearlong NOx transformation processes, and demonstrated that traffic emissions and photochemical reactions both critically influence diurnal variation, depending upon meteorological conditions. During an ADS event, transboundary transport and distinct weather conditions both influenced the temporal pattern of identified common trends. This study shows the DFA method can effectively extract meaningful latent processes of time series data and provide insights of the dominant associations and interactions in the complex air pollution processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Neural Correlates of Social Influence Among Cannabis Users
Gilman, Jodi M.
2017-01-01
Purpose of review Although peer influence is an important factor in the initiation and maintenance of cannabis use, few studies have investigated the neural correlates of peer influence among cannabis users. The current review summarizes research on the neuroscience of social influence in cannabis users, with the goal of highlighting gaps in the literature and the need for future research. Recent findings Brain regions underlying peer influence may function differently in cannabis users. Compared to non-using controls, regions of the brain underlying reward, such as the striatum, show greater connectivity with frontal regions, and also show hyperactivity when participants are presented with peer information. Other subcortical regions, such as the insula, show hypoactivation during social exclusion in cannabis users, indicating that neural responses to peer interactions may be altered in cannabis users. Summary Although neuroscience is increasingly being used to study social behavior, few studies have specifically focused on cannabis use, and therefore it is difficult to draw conclusions about social mechanisms that may differentiate cannabis users and controls. This area of research may be a promising avenue in which to explore a critical factor underlying cannabis use and addiction. PMID:29057199
Bubble generation during transformer overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1990-03-01
Bubble generation in transformers has been demonstrated under certain overload conditions. The release of large quantities of bubbles would pose a dielectric breakdown hazard. A bubble prediction model developed under EPRI Project 1289-4 attempts to predict the bubble evolution temperature under different overload conditions. This report details a verification study undertaken to confirm the validity of the above model using coil structures subjected to overload conditions. The test variables included moisture in paper insulation, gas content in oil, and the type of oil preservation system. Two aged coils were also tested. The results indicated that the observed bubble temperatures weremore » close to the predicted temperatures for models with low initial gas content in the oil. The predicted temperatures were significantly lower than the observed temperatures for models with high gas content. Some explanations are provided for the anomalous behavior at high gas levels in oil. It is suggested that the dissolved gas content is not a significant factor in bubble evolution. The dominant factor in bubble evolution appears to be the water vapor pressure which must reach critical levels before bubbles can be released. Further study is needed to make a meaningful revision of the bubble prediction model. 8 refs., 13 figs., 11 tabs.« less
Wu, Defang; Luo, Yang; Liao, Xinyu
2017-02-01
There is universal agreement on the essential role of critical thinking in nursing practice. Most studies into this topic have provided descriptive statistical information and insights on related external factors such as educational environment and teaching strategies. However, there has been limited research into the psychological factors that may predict the disposition of students toward critical thinking. This study explored the relationship between the disposition of nursing students toward critical thinking and their mental self-supporting ability to obtain a profile and determine the psychological predictors of critical thinking. A cross-sectional descriptive study was conducted in 2013 using a convenience sample from four nursing schools. Four hundred six Chinese nursing undergraduates completed two questionnaires including (a) the California Critical Thinking Disposition Inventory (Chinese version) and (b) the Mental Self-Supporting Questionnaire for University Students. Pearson's correlation and linear regression analysis were used to investigate the relationship between these two variables and the predicted positive psychological qualities for the critical thinking disposition of participants. Average participant scores for critical thinking disposition and mental self-supporting were 280.91 ± 28.43 and 76.40 ± 8.47, respectively. Positive correlations were observed between these two variables (r = .583, p < .01) and participants' self-decision, self-cognition, self-confidence, and self-responsibility, which suggest that these factors play a significant role in critical thinking disposition (R = .435, p < .01). The participants earned midlevel scores for both disposition toward critical thinking and mental self-supporting abilities.The four factors that had a major influence on critical thinking disposition included self-decision, self-cognition, self-confidence, and self-responsibility. Nursing educators should focus on improving the critical thinking ability of their students in these four aspects.
Reconstructing geomorphic patterns and forcing factors from Alpine Lake Sediment
NASA Astrophysics Data System (ADS)
Arnaud, Fabien; Poulenard, Jérôme; Giguet-Covex, Charline; Wilhelm, Bruno; Révillon, Sidonie; Jenny, Jean-Philippe; Revel, Marie; Enters, Dirk; Bajard, Manon; Fouinat, Laurent; Doyen, Elise; Simonneau, Anaëlle; Pignol, Cécile; Chapron, Emmanuel; Vannière, Boris; Sabatier, Pierre
2017-04-01
In this paper we review the scientific efforts that were led over the last decades to reconstruct geomorphic patterns from continuous alpine lake sediment records. Whereas our results point a growing importance of humans as erosion forcing factors, we will focus here on climate-related processes. Our main dataset is made of a regional approach which was led without any a priori regarding erosion forcing factors. We hence integrated a set of sediment sequences from various environment along an altitudinal gradient from 200 up to 2400m asl in Northern French Alps. Altogether our data point climate change as one of the main factor of erosion variability. In particular, the last two cold spells that occurred during the early middle age (Dark Age) and between the 14th and the 20th century AD (Little Ice Age) appear to be outstanding compared to any other periods of enhanced erosion along the Holocene. The climatic forcing of those erosion phases is supported by an increase in the contribution of glacier-eroded material at a regional scale. At local scales, our data also point the growing importance, since at least the mid Bronze Age (ca. 3500 cal. BP) of human activities as a major erosion factor. This influence peaked during the late Iron Age and Antiquity periods (200 BC - 400 AD) when we record a regional generalised period of enhanced erosion in response to the development of pasturing activities. Thanks to provenance and weathering markers, we evidenced a strong relationship between the changes in ecosystems, soil development and erosion patterns. We hence showed the vegetal colonisation of bared soil led to a period of intense weathering while new soils were under formation between 11,000 and 8,000 cal. BP. Soils then knew an optimum until the onset of the Neoglacial at ca. 4,500 cal. BP prior to decline under both climate and human pressures. Altogether our data point the complexity of processes that affected the Earth critical zone along the Holocene. However, we highlight the interest of leading spatialized paleo-investigation in order to reconstruct those dynamics through and thus better understand the processes in play in critical zone dynamics over long time periods.
Sensory shelf-life limiting factor of high hydrostatic pressure processed avocado paste.
Jacobo-Velázquez, D A; Hernández-Brenes, C
2011-08-01
High hydrostatic pressure (HHP) processing pasteurizes avocado paste without a significant impact on flavor. Although HHP-treated avocado paste stored under refrigeration is safe for human consumption for months, sensory changes taking place during storage cause the rejection of the product by consumers within days. Although it is known that the shelf life of the product ends before its microbial counts are high, its sensory shelf life limiting factor remains unknown. The present study focused on the use of a trained panel and a consumer panel to determine the sensory shelf life limiting factor of HHP-treated avocado paste. The trained panel identified sour and rancid flavors as the main sensory descriptors (critical descriptors) that differentiated stored from freshly processed samples. Further data obtained from consumers identified sour flavor as the main cause for a significant decrease in the acceptability (shelf life limiting factor) of refrigerated HHP-treated avocado paste. The study allowed the elucidation of a proposed deterioration mechanism for HHP-treated avocado paste during its refrigerated shelf life. The information through this work enhances scientific knowledge of the product and proposes the sour flavor development during storage as a relevant sensory attribute that needs to be improved in order to enhance the product shelf life. At present, HHP is the most effective commercial nonthermal technology to process avocado paste when compared to thermal and chemical alternatives. HHP-treated avocado paste is a microbiologically stable food for a period of at least 45 d stored under refrigeration. However, previous published work indicated that consumers rejected the product after approximately 19 d of storage due to sensory changes. This manuscript presents a sensory study that permitted the identification of the critical sensory descriptor that is acting as the sensory shelf life limiting factor of the product. The data presented herein along with previous reported data allows a better understanding of the deterioration mechanism that occurs during the storage of HHP-treated avocado paste. This information is relevant and useful for the elucidation of possible alternatives to enhance the shelf life of HHP-treated avocado paste. © 2011 Institute of Food Technologists®
Li, Yu; Zheng, Ji; Li, Fei; Jin, Xueting; Xu, Chen
2017-01-01
Municipal infrastructure is a fundamental facility for the normal operation and development of an urban city and is of significance for the stable progress of sustainable urbanization around the world, especially in developing countries. Based on the municipal infrastructure data of the prefecture-level cities in China, municipal infrastructure development is assessed comprehensively using a FA (factor analysis) model, and then the stochastic model STIRPAT (stochastic impacts by regression on population, affluence and technology) is examined to investigate key factors that influence municipal infrastructure of cities in various stages of urbanization and economy. This study indicates that the municipal infrastructure development in urban China demonstrates typical characteristics of regional differentiation, in line with the economic development pattern. Municipal infrastructure development in cities is primarily influenced by income, industrialization and investment. For China and similar developing countries under transformation, national public investment remains the primary driving force of economy as well as the key influencing factor of municipal infrastructure. Contribution from urbanization and the relative consumption level, and the tertiary industry is still scanty, which is a crux issue for many developing countries under transformation. With economic growth and the transformation requirements, the influence of the conventional factors such as public investment and industrialization on municipal infrastructure development would be expected to decline, meanwhile, other factors like the consumption and tertiary industry driven model and the innovation society can become key contributors to municipal infrastructure sustainability.
Li, Yu; Zheng, Ji; Li, Fei; Jin, Xueting; Xu, Chen
2017-01-01
Municipal infrastructure is a fundamental facility for the normal operation and development of an urban city and is of significance for the stable progress of sustainable urbanization around the world, especially in developing countries. Based on the municipal infrastructure data of the prefecture-level cities in China, municipal infrastructure development is assessed comprehensively using a FA (factor analysis) model, and then the stochastic model STIRPAT (stochastic impacts by regression on population, affluence and technology) is examined to investigate key factors that influence municipal infrastructure of cities in various stages of urbanization and economy. This study indicates that the municipal infrastructure development in urban China demonstrates typical characteristics of regional differentiation, in line with the economic development pattern. Municipal infrastructure development in cities is primarily influenced by income, industrialization and investment. For China and similar developing countries under transformation, national public investment remains the primary driving force of economy as well as the key influencing factor of municipal infrastructure. Contribution from urbanization and the relative consumption level, and the tertiary industry is still scanty, which is a crux issue for many developing countries under transformation. With economic growth and the transformation requirements, the influence of the conventional factors such as public investment and industrialization on municipal infrastructure development would be expected to decline, meanwhile, other factors like the consumption and tertiary industry driven model and the innovation society can become key contributors to municipal infrastructure sustainability. PMID:28787031
Implications of High Temperature and Elevated CO2 on Flowering Time in Plants
Jagadish, S. V. Krishna; Bahuguna, Rajeev N.; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P. V. Vara; Craufurd, Peter Q.
2016-01-01
Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation. PMID:27446143
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jian Cang; Li, Rui; Zeng, Bo; Cheng, Jie; Zheng, Lei; Yu, Bin Xiong; Wu, Xiao Long; Zhang, Xi Bo; Pan, Ya Feng
2015-04-01
The critical pulse width (τc) is a pulse width at which the surface flashover threshold (Ef) is equal to the bulk breakdown threshold (EBD) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854-857]. In this paper, the mechanism of τc is interpreted in perspective of the threshold and the time delay (td) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse width decreases which are responsible for the existence of τc: (1) EBD is lower than Ef; (2) td of bulk breakdown is shorter than td of surface flashover. In addition, factors which have influences on τc are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τc is expected to increase: (1) factors causing EBD to decrease, such as increasing the pulse number or employing a dielectric of lower EBD; (2) factors causing Ef to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing EBD and Ef to increase together, but Ef increases faster than EBD, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τc for solid insulation design is presented and the significance of τc on solid insulation design and on solid demolition are discussed.
Renk, Hanna; Stoll, Lenja; Neunhoeffer, Felix; Hölzl, Florian; Kumpf, Matthias; Hofbeck, Michael; Hartl, Dominik
2017-02-21
Multidrug-resistant (MDR) infections are a serious concern for children admitted to the Paediatric Intensive Care Unit (PICU). Tracheal colonization with MDR Enterobacteriaceae predisposes to respiratory infection, but underlying risk factors are poorly understood. This study aims to determine the incidence of children with suspected infection during mechanical ventilation and analyses risk factors for the finding of MDR Enterobacteriaceae in tracheal aspirates. A retrospective single-centre analysis of Enterobacteriaceae isolates from the lower respiratory tract of ventilated PICU patients from 2005 to 2014 was performed. Resistance status was determined and clinical records were reviewed for potential risk factors. A classification and regression tree (CRT) to predict risk factors for infection with MDR Enterobacteriaceae was employed. The model was validated by simple and multivariable logistic regression. One hundred sixty-seven Enterobacteriaceae isolates in 123 children were identified. The most frequent isolates were Enterobacter spp., Klebsiella spp. and E.coli. Among these, 116 (69%) isolates were susceptible and 51 (31%) were MDR. In the CRT analysis, antibiotic exposure for ≥ 7 days and presence of gastrointestinal comorbidity were the most relevant predictors for an MDR isolate. Antibiotic exposure for ≥ 7 days was confirmed as a significant risk factor for infection with MDR Enterobacteriaceae by a multivariable logistic regression model. This study shows that critically-ill children with tracheal Enterobacteriaceae infection are at risk of carrying MDR isolates. Prior use of antibiotics for ≥ 7 days significantly increased the risk of finding MDR organisms in ventilated PICU patients with suspected infection. Our results imply that early identification of patients at risk, rapid microbiological diagnostics and tailored antibiotic therapy are essential to improve management of critically ill children infected with Enterobacteriaceae.
Older people, assistive technologies, and the barriers to adoption: A systematic review.
Yusif, Salifu; Soar, Jeffrey; Hafeez-Baig, Abdul
2016-10-01
Older people generally prefer to continue living in their own homes rather than move into residential age care institutions. Assistive technologies and sensors in the home environment and/or bodily worn systems that monitor people's movement might contribute to an increased sense of safety and security at home. However, their use can raise ethical anxieties as little is known about how older persons perceive assistive and monitoring technologies. To review the main barriers to the adoption of assistive technologies (ATs) by older adults in order to uncover issues of concern from empirical studies and to arrange these issues from the most critical to the least critical. A 4-step systematic review was conducted using empirical studies: locating and identifying relevant articles; screening of located articles; examination of full text articles for inclusion/exclusion; and detail examination of the 44 articles included. Privacy is a top critical concern to older adults, registering a 34% of the total articles examined. Two other equally potent barriers to the adoption of ATs were trust and functionality/added value representing 27 and 25 per cent each respectively of the total studies examined. Also of serious concerns are cost of ATs and ease of use and suitability for daily use (23%) each respectively, perception of "no need" (20%), stigma (18%), and fear of dependence and lack of training (16%) each respectively. These underlying factors are generation/cohort effects and physical decline relating to aging, and negative attitudes toward technologies such as the so-called "gerontechnologies" specifically targeting older adults. However, more and more older adults adopt different kinds of ATs in order to fit in with the society. The identified underlying factors are generation/cohort effects and physical decline relating to aging, and negative attitudes toward technologies. The negative attitudes that are most frequently associated with technologies such as the so-called "gerontechnologies" specifically targeting older adults contain stigmatizing symbolism that might prevent them from adopting them. Copyright © 2016. Published by Elsevier Ireland Ltd.
Towards resiliency with micro-grids: Portfolio optimization and investment under uncertainty
NASA Astrophysics Data System (ADS)
Gharieh, Kaveh
Energy security and sustained supply of power are critical for community welfare and economic growth. In the face of the increased frequency and intensity of extreme weather conditions which can result in power grid outage, the value of micro-grids to improve the communities' power reliability and resiliency is becoming more important. Micro-grids capability to operate in islanded mode in stressed-out conditions, dramatically decreases the economic loss of critical infrastructure in power shortage occasions. More wide-spread participation of micro-grids in the wholesale energy market in near future, makes the development of new investment models necessary. However, market and price risks in short term and long term along with risk factors' impacts shall be taken into consideration in development of new investment models. This work proposes a set of models and tools to address different problems associated with micro-grid assets including optimal portfolio selection, investment and financing in both community and a sample critical infrastructure (i.e. wastewater treatment plant) levels. The models account for short-term operational volatilities and long-term market uncertainties. A number of analytical methodologies and financial concepts have been adopted to develop the aforementioned models as follows. (1) Capital budgeting planning and portfolio optimization models with Monte Carlo stochastic scenario generation are applied to derive the optimal investment decision for a portfolio of micro-grid assets considering risk factors and multiple sources of uncertainties. (2) Real Option theory, Monte Carlo simulation and stochastic optimization techniques are applied to obtain optimal modularized investment decisions for hydrogen tri-generation systems in wastewater treatment facilities, considering multiple sources of uncertainty. (3) Public Private Partnership (PPP) financing concept coupled with investment horizon approach are applied to estimate public and private parties' revenue shares from a community-level micro-grid project over the course of assets' lifetime considering their optimal operation under uncertainty.
1982-02-01
ntsitycrOtained Alumina in 50 % Relative Humidity . 123 (1) the material constants under a certain environment, A, B, and n in eq. (2-14) and eq. (2-15), evalu... Fatigue Crack Growth," Int. Jour. Fract., 17 (1981) 235-247. 3. S.M. Wiederhorn, " Effects of Environment on the Fracture of Glass," Environment-Sensitive...Distribution of Alumina 4 1 34 2-11 Schematic Drawing of Variation in Effective Critical Stress Intensity Factor, KC ff with Crack Length Relative to Grain
A Study on Aircraft Structure and Jet Engine
NASA Astrophysics Data System (ADS)
Park, Gil Moon; Park, Hwan Kyu; Kim, Jong Il; Kim, Jin Won; Kim, Jin Heung; Lee, Moo Seok; Chung, Nak Kyu
1985-12-01
The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operation temperature. The purpose of this study is to provide the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition.
Radiation induced detwinning in nanotwinned Cu
Chen, Youxing; Wang, Haiyan; Kirk, Mark A.; ...
2016-11-15
Superior radiation tolerance has been experimentally examined in nanotwinned metals. The stability of nanotwinned structure under radiation is the key factor for advancing the application of nanotwinned metals for nuclear reactors. We thus performed in situ radiation tests for nanotwinned Cu with various twin thicknesses inside a transmission electron microscope. We found that there is a critical twin thickness (10 nm), below which, radiation induced detwinning is primarily accomplished through migration of incoherent twin boundaries. Lastly, detwinning is faster for thinner twins in this range, while thicker twins are more stable.
Higher Education: A Critical Business.
ERIC Educational Resources Information Center
Barnett, Ronald
Current concepts of critical thinking need to be reconstrued into the much broader concept of "critical being" and applied to higher education. Under this construct, critical persons (students) become more than just critical thinkers; they engage critically with the world and with themselves; they not only reflect critically on…
Training Select-in Interviewers for Astronaut Selection: A Program Evaluation
NASA Technical Reports Server (NTRS)
Hysong, S.; Galarza, L.; Holland, A.; Billica, Roger (Technical Monitor)
2000-01-01
Psychological factors critical to the success of short and long-duration missions have been identified in previous research; however, evaluation for such critical factors in astronaut applicants leaves much room for human interpretation. Thus, an evaluator training session was designed to standardize the interpretation of critical factors, as well as the structure of the select-in interview across evaluators. The purpose of this evaluative study was to determine the effectiveness of the evaluator training sessions and their potential impact on evaluator ratings.
Fazio, Elena N; Young, Claire C; Toma, Jelena; Levy, Michael; Berger, Kurt R; Johnson, Charis L; Mehmood, Rashid; Swan, Patrick; Chu, Alphonse; Cregan, Sean P; Dilworth, F Jeffrey; Howlett, Christopher J; Pin, Christopher L
2017-09-01
Pancreatitis is a debilitating disease of the exocrine pancreas that, under chronic conditions, is a major susceptibility factor for pancreatic ductal adenocarcinoma (PDAC). Although down-regulation of genes that promote the mature acinar cell fate is required to reduce injury associated with pancreatitis, the factors that promote this repression are unknown. Activating transcription factor 3 (ATF3) is a key mediator of the unfolded protein response, a pathway rapidly activated during pancreatic insult. Using chromatin immunoprecipitation followed by next-generation sequencing, we show that ATF3 is bound to the transcriptional regulatory regions of >30% of differentially expressed genes during the initiation of pancreatitis. Of importance, ATF3-dependent regulation of these genes was observed only upon induction of pancreatitis, with pathways involved in inflammation, acinar cell differentiation, and cell junctions being specifically targeted. Characterizing expression of transcription factors that affect acinar cell differentiation suggested that acinar cells lacking ATF3 maintain a mature cell phenotype during pancreatitis, a finding supported by maintenance of junctional proteins and polarity markers. As a result, Atf3 -/- pancreatic tissue displayed increased tissue damage and inflammatory cell infiltration at early time points during injury but, at later time points, showed reduced acinar-to-duct cell metaplasia. Thus our results reveal a critical role for ATF3 as a key regulator of the acinar cell transcriptional response during injury and may provide a link between chronic pancreatitis and PDAC. © 2017 Fazio et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Transport physics and biorheology in the setting of hemostasis and thrombosis.
Brass, L F; Diamond, S L
2016-05-01
The biophysics of blood flow can dictate the function of molecules and cells in the vasculature with consequent effects on hemostasis, thrombosis, embolism, and fibrinolysis. Flow and transport dynamics are distinct for (i) hemostasis vs. thrombosis and (ii) venous vs. arterial episodes. Intraclot transport changes dramatically the moment hemostasis is achieved or the moment a thrombus becomes fully occlusive. With platelet concentrations that are 50- to 200-fold greater than platelet-rich plasma, clots formed under flow have a different composition and structure compared with blood clotted statically in a tube. The platelet-rich, core/shell architecture is a prominent feature of self-limiting hemostatic clots formed under flow. Importantly, a critical threshold concentration of surface tissue factor is required for fibrin generation under flow. Once initiated by wall-derived tissue factor, thrombin generation and its spatial propagation within a clot can be modulated by γ'-fibrinogen incorporated into fibrin, engageability of activated factor (FIXa)/activated FVIIIa tenase within the clot, platelet-derived polyphosphate, transclot permeation, and reduction of porosity via platelet retraction. Fibrin imparts tremendous strength to a thrombus to resist embolism up to wall shear stresses of 2400 dyne cm(-2) . Extreme flows, as found in severe vessel stenosis or in mechanical assist devices, can cause von Willebrand factor self-association into massive fibers along with shear-induced platelet activation. Pathological von Willebrand factor fibers are A Disintegrin And Metalloprotease with ThromboSpondin-1 domain 13 resistant but are a substrate for fibrin generation due to FXIIa capture. Recently, microfluidic technologies have enhanced the ability to interrogate blood in the context of stenotic flows, acquired von Willebrand disease, hemophilia, traumatic bleeding, and drug action. © 2016 International Society on Thrombosis and Haemostasis.
When politics froze fashion: the effect of the Cultural Revolution on naming in Beijing.
Obukhova, Elena; Zuckerman, Ezra W; Zhang, Jiayin
2014-09-01
The authors examine the popularity of boys' given names in Beijing before and after the onset of the Cultural Revolution to clarify how exogenous and endogenous factors interact to shape fashion. Whereas recent work in the sociology of culture emphasizes the importance of endogenous processes in explaining fashion, their analysis demonstrates two ways in which politics shaped cultural expression during the Cultural Revolution: by promoting forms of expression reflecting prevailing political ideology and by limiting individuals' willingness to act differently. As argued by Lieberson and developed further in this article, the second condition is important because endogenous fashion cycles require a critical mass of individuals who seek to differentiate themselves from common practice. Exogenous factors can influence the operation of the endogenous factors. The authors discuss the implications of their study for understanding the nature of conformity under authoritarian regimes and social conditions supporting individual expression.
ERIC Educational Resources Information Center
Quitadamo, Ian J.; Kurtz, Martha J.; Cornell, Caitlyn Nicole; Griffith, Lindsay; Hancock, Julie; Egbert, Brandi
2011-01-01
Chemistry students appear to bring significantly higher critical-thinking skill to their nonmajors course than do biology students. Knowing student preconceptions and thinking ability is essential to learning growth and effective teaching. Of the factors investigated, ethnicity and high school physics had the largest impact on critical-thinking…
NASA Astrophysics Data System (ADS)
Liu, Jia; Li, Jing; Zhang, Zhong-ping
2013-04-01
In this article, a fatigue damage parameter is proposed to assess the multiaxial fatigue lives of ductile metals based on the critical plane concept: Fatigue crack initiation is controlled by the maximum shear strain, and the other important effect in the fatigue damage process is the normal strain and stress. This fatigue damage parameter introduces a stress-correlated factor, which describes the degree of the non-proportional cyclic hardening. Besides, a three-parameter multiaxial fatigue criterion is used to correlate the fatigue lifetime of metallic materials with the proposed damage parameter. Under the uniaxial loading, this three-parameter model reduces to the recently developed Zhang's model for predicting the uniaxial fatigue crack initiation life. The accuracy and reliability of this three-parameter model are checked against the experimental data found in literature through testing six different ductile metals under various strain paths with zero/non-zero mean stress.
Protein energy malnutrition in India: the plight of our under five children.
Bhutia, Dechenla Tshering
2014-01-01
Protein energy malnutrition (PEM) is a major public health problem in India. This affects the child at the most crucial period of time of development, which can lead to permanent impairment in later life. PEM is measured in terms of underweight (low weight for age), stunting (low height for age) and wasting (low weight for height). The prevalence of stunting among under five is 48% and wasting is 19.8% and with an underweight prevalence of 42.5%, it is the highest in the world. Undernutrition predisposes the child to infection and complements its effect in contributing to child mortality. Lalonde model (1974) is used to look into the various determinants of PEM in under five children and its interrelation in causation of PEM. The determinants of PEM are broadly classified under four distinct categories: Environmental factors including the physical and social environment, behavioral factors, health-care service related and biological factors. The socio-cultural factors play an important role wherein, it affects the attitude of the care giver in feeding and care practices. Faulty feeding practice in addition to poor nutritional status of the mother further worsens the situation. The vicious cycle of poor nutritional status of the mother leading to low birth weight child further exposes the child to susceptibility to infections which aggravates the situation. However, it is seen that percapita income of the family did not have much bearing on the poor nutritional status of the child rather lack of proper health-care services adversely contributed to poor nutritional status of the child. PEM is a critical problem with many determinants playing a role in causing this vicious cycle of undernutrition. With almost half of under five children undernourished in India, the Millennium Development Goal (MDG) of halving the prevalence of underweight by 2015 seems a distant dream.
Wang, Yu; Cai, Shuyu; Yin, Lingling; Shi, Kai; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Zhou, Jie
2015-01-01
Autophagy plays critical roles in plant responses to stress. In contrast to the wealth of information concerning the core process of plant autophagosome assembly, our understanding of the regulation of autophagy is limited. In this study, we demonstrated that transcription factor HsfA1a played a critical role in tomato tolerance to drought stress, in part through its positive role in induction of autophagy under drought stress. HsfA1a expression was induced by drought stress. Virus-induced HsfA1a gene silencing reduced while its overexpression increased plant drought tolerance based on both symptoms and membrane integrity. HsfA1a-silenced plants were more sensitive to endogenous ABA-mediated stomatal closure, while its overexpression lines were resistant under drought stress, indicating that phytohormone ABA did not play a major role in HsfA1a-induced drought tolerance. On the other hand, HsfA1a-silenced plants increased while its overexpression decreased the levels of insoluble proteins which were highly ubiquitinated under drought stress. Furthermore, drought stress induced numerous ATGs expression and autophagosome formation in wild-type plants. The expression of ATG10 and ATG18f, and the formation of autophagosomes were compromised in HsfA1a-silenced plants but were enhanced in HsfA1a-overexpressing plants. Both electrophoretic mobility shift assay and chromatin immunoprecipitation coupled with qPCR analysis revealed that HsfA1a bound to ATG10 and ATG18f gene promoters. Silencing of ATG10 and ATG18f reduced HsfA1a-induced drought tolerance and autophagosome formation in plants overexpressing HsfA1a. These results demonstrate that HsfA1a induces drought tolerance by activating ATG genes and inducing autophagy, which may promote plant survival by degrading ubiquitinated protein aggregates under drought stress. PMID:26649940
Single-molecule live-cell imaging of bacterial DNA repair and damage tolerance.
Ghodke, Harshad; Ho, Han; van Oijen, Antoine M
2018-02-19
Genomic DNA is constantly under threat from intracellular and environmental factors that damage its chemical structure. Uncorrected DNA damage may impede cellular propagation or even result in cell death, making it critical to restore genomic integrity. Decades of research have revealed a wide range of mechanisms through which repair factors recognize damage and co-ordinate repair processes. In recent years, single-molecule live-cell imaging methods have further enriched our understanding of how repair factors operate in the crowded intracellular environment. The ability to follow individual biochemical events, as they occur in live cells, makes single-molecule techniques tremendously powerful to uncover the spatial organization and temporal regulation of repair factors during DNA-repair reactions. In this review, we will cover practical aspects of single-molecule live-cell imaging and highlight recent advances accomplished by the application of these experimental approaches to the study of DNA-repair processes in prokaryotes. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Ball, Brita; Wilcock, Anne; Aung, May
2009-06-01
Small and medium sized food businesses have been slow to adopt food safety management systems (FSMSs) such as good manufacturing practices and Hazard Analysis Critical Control Point (HACCP). This study identifies factors influencing workers in their implementation of food safety practices in small and medium meat processing establishments in Ontario, Canada. A qualitative approach was used to explore in-plant factors that influence the implementation of FSMSs. Thirteen in-depth interviews in five meat plants and two focus group interviews were conducted. These generated 219 pages of verbatim transcripts which were analysed using NVivo 7 software. Main themes identified in the data related to production systems, organisational characteristics and employee characteristics. A socio-psychological model based on the theory of planned behaviour is proposed to describe how these themes and underlying sub-themes relate to FSMS implementation. Addressing the various factors that influence production workers is expected to enhance FSMS implementation and increase food safety.
NASA Astrophysics Data System (ADS)
Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon
2014-08-01
It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.
Dryland ecohydrology and climate change: critical issues and technical advances
NASA Astrophysics Data System (ADS)
Wang, L.; D'Odorico, P.; Evans, J. P.; Eldridge, D.; McCabe, M. F.; Caylor, K. K.; King, E. G.
2012-04-01
Drylands cover about 40% of the terrestrial land surface and account for approximately 40% of global net primary productivity. Water is fundamental to the biophysical processes that sustain ecosystem function and food production, particularly in drylands, where a tight coupling exists between water resource availability and ecosystem productivity, surface energy balance, and biogeochemical cycles. Currently, drylands support at least 2 billion people and comprise both natural and managed ecosystems. In this synthesis, we identify some current critical issues in the understanding of dryland systems and discuss how arid and semiarid environments are responding to the changes in climate and land use. Specifically, we focus on dryland agriculture and food security, dryland population growth, desertification, shrub encroachment and dryland development issues as factors of change requiring increased understanding and management. We also review recent technical advances in the quantitative assessment of human versus climate change related drivers of desertification, evapotranspiration partitioning using field deployable stable water isotope systems and the remote sensing of key ecohydrological processes. These technological advances provide new tools that assist in addressing major critical issues in dryland ecohydrology under climate change
NASA Astrophysics Data System (ADS)
Holland, C.; Candy, J.; Howard, N. T.
2017-10-01
Developing accurate predictive transport models of burning plasma conditions is essential for confident prediction and optimization of next step experiments such as ITER and DEMO. Core transport in these plasmas is expected to be very small in gyroBohm-normalized units, such that the plasma should lie close to the critical gradients for onset of microturbulence instabilities. We present recent results investigating the scaling of linear critical gradients of ITG, TEM, and ETG modes as a function of parameters such as safety factor, magnetic shear, and collisionality for nominal conditions and geometry expected in ITER H-mode plasmas. A subset of these results is then compared against predictions from nonlinear gyrokinetic simulations, to quantify differences between linear and nonlinear thresholds. As part of this study, linear and nonlinear results from both GYRO and CGYRO codes will be compared against each other, as well as to predictions from the quasilinear TGLF model. Challenges arising from near-marginal turbulence dynamics are addressed. This work was supported by the US Department of Energy under US DE-SC0006957.
Global Genetic Response in a Cancer Cell: Self-Organized Coherent Expression Dynamics
Tsuchiya, Masa; Hashimoto, Midori; Takenaka, Yoshiko; Motoike, Ikuko N.; Yoshikawa, Kenichi
2014-01-01
Understanding the basic mechanism of the spatio-temporal self-control of genome-wide gene expression engaged with the complex epigenetic molecular assembly is one of major challenges in current biological science. In this study, the genome-wide dynamical profile of gene expression was analyzed for MCF-7 breast cancer cells induced by two distinct ErbB receptor ligands: epidermal growth factor (EGF) and heregulin (HRG), which drive cell proliferation and differentiation, respectively. We focused our attention to elucidate how global genetic responses emerge and to decipher what is an underlying principle for dynamic self-control of genome-wide gene expression. The whole mRNA expression was classified into about a hundred groups according to the root mean square fluctuation (rmsf). These expression groups showed characteristic time-dependent correlations, indicating the existence of collective behaviors on the ensemble of genes with respect to mRNA expression and also to temporal changes in expression. All-or-none responses were observed for HRG and EGF (biphasic statistics) at around 10–20 min. The emergence of time-dependent collective behaviors of expression occurred through bifurcation of a coherent expression state (CES). In the ensemble of mRNA expression, the self-organized CESs reveals distinct characteristic expression domains for biphasic statistics, which exhibits notably the presence of criticality in the expression profile as a route for genomic transition. In time-dependent changes in the expression domains, the dynamics of CES reveals that the temporal development of the characteristic domains is characterized as autonomous bistable switch, which exhibits dynamic criticality (the temporal development of criticality) in the genome-wide coherent expression dynamics. It is expected that elucidation of the biophysical origin for such critical behavior sheds light on the underlying mechanism of the control of whole genome. PMID:24831017
Critical habitat for threatened and endangered species: how should the economic costs be evaluated?
Plantinga, Andrew J; Helvoigt, Ted L; Walker, Kirsten
2014-02-15
The designation of critical habitat is a feature of endangered species protection laws in many countries. Under the U.S. Endangered Species Act, economics cannot enter into decisions to list species as threatened or endangered, but can be considered when critical habitat is designated. Areas can be excluded from proposed critical habitat if the economic cost of including them is determined to exceed the benefits of inclusion, and exclusion would not result in extinction of the species. The economic analysis done to support critical habitat exclusions has been controversial, and the focus of much litigation. We evaluate a sample of these analyses, and discuss the exclusions that were made in each case. We discuss how the methodology used to measure economic costs of critical habitat has changed over time and provide a critique of these alternative methods. We find that the approach currently in use is sound from an economic perspective. Nevertheless, quantification of the costs of critical habitat faces numerous challenges, including great uncertainty about future events, questions about the appropriate scale for the analysis, and the need to account for complex market feedbacks and values of non-market goods. For the studies we reviewed, there was no evidence that the results of the economic analyses provided information that was useful for making decisions about exemptions from critical habitat designations. If economics is to play a meaningful role in determining endangered species protections, an alternative would be to allow listing decisions to be based on economic as well as biological factors, as is typical for species conservation laws in other countries. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pinho, P.; Theobald, M. R.; Dias, T.; Tang, Y. S.; Cruz, C.; Martins-Loução, M. A.; Máguas, C.; Sutton, M.; Branquinho, C.
2011-11-01
Nitrogen (N) has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds have been established, such as critical loads (deposition fluxes) and levels (concentrations). For Mediterranean ecosystems, few studies have been carried out to assess these parameters. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for Mediterranean evergreen woodlands. For that we have considered changes in epiphytic lichen communities, which have been shown to be one of the most sensitive to excessive N. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done under Mediterranean climate, in evergreen cork-oak woodlands, by sampling lichen functional diversity and annual atmospheric ammonia concentrations and modelling N deposition downwind from a reduced N source (a cattle barn). By modelling the highly significant relationship between lichen functional groups and N deposition, the critical load was estimated to be below 26 kg (N) ha-1 yr-1, which is within the upper range established for other semi-natural ecosystems. By modelling the highly significant relationship of lichen functional groups with annual atmospheric ammonia concentration, the critical level was estimated to be below 1.9 μg m-3, in agreement with recent studies for other ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should be taken into account in policies that aim at protecting Mediterranean woodlands from the initial effects of excessive N.
49 CFR 1520.15 - SSI disclosed by TSA or the Coast Guard.
Code of Federal Regulations, 2013 CFR
2013-10-01
... under the Freedom of Information Act. (h) Disclosure of Critical Infrastructure Information. Disclosure of information that is both SSI and has been designated as critical infrastructure information under...
49 CFR 1520.15 - SSI disclosed by TSA or the Coast Guard.
Code of Federal Regulations, 2011 CFR
2011-10-01
... under the Freedom of Information Act. (h) Disclosure of Critical Infrastructure Information. Disclosure of information that is both SSI and has been designated as critical infrastructure information under...
49 CFR 1520.15 - SSI disclosed by TSA or the Coast Guard.
Code of Federal Regulations, 2012 CFR
2012-10-01
... under the Freedom of Information Act. (h) Disclosure of Critical Infrastructure Information. Disclosure of information that is both SSI and has been designated as critical infrastructure information under...
49 CFR 1520.15 - SSI disclosed by TSA or the Coast Guard.
Code of Federal Regulations, 2014 CFR
2014-10-01
... under the Freedom of Information Act. (h) Disclosure of Critical Infrastructure Information. Disclosure of information that is both SSI and has been designated as critical infrastructure information under...
An HDAC3-PROX1 corepressor module acts on HNF4α to control hepatic triglycerides.
Armour, Sean M; Remsberg, Jarrett R; Damle, Manashree; Sidoli, Simone; Ho, Wesley Y; Li, Zhenghui; Garcia, Benjamin A; Lazar, Mitchell A
2017-09-15
The histone deacetylase HDAC3 is a critical mediator of hepatic lipid metabolism, and liver-specific deletion of HDAC3 leads to fatty liver. To elucidate the underlying mechanism, here we report a method of cross-linking followed by mass spectrometry to define a high-confidence HDAC3 interactome in vivo that includes the canonical NCoR-HDAC3 complex as well as Prospero-related homeobox 1 protein (PROX1). HDAC3 and PROX1 co-localize extensively on the mouse liver genome, and are co-recruited by hepatocyte nuclear factor 4α (HNF4α). The HDAC3-PROX1 module controls the expression of a gene program regulating lipid homeostasis, and hepatic-specific ablation of either component increases triglyceride content in liver. These findings underscore the importance of specific combinations of transcription factors and coregulators in the fine tuning of organismal metabolism.HDAC3 is a critical mediator of hepatic lipid metabolism and its loss leads to fatty liver. Here, the authors characterize the liver HDAC3 interactome in vivo, provide evidence that HDAC3 interacts with PROX1, and show that HDAC3 and PROX1 control expression of genes regulating lipid homeostasis.
SRF phosphorylation by glycogen synthase kinase-3 promotes axon growth in hippocampal neurons.
Li, Cong L; Sathyamurthy, Aruna; Oldenborg, Anna; Tank, Dharmesh; Ramanan, Narendrakumar
2014-03-12
The growth of axons is an intricately regulated process involving intracellular signaling cascades and gene transcription. We had previously shown that the stimulus-dependent transcription factor, serum response factor (SRF), plays a critical role in regulating axon growth in the mammalian brain. However, the molecular mechanisms underlying SRF-dependent axon growth remains unknown. Here we report that SRF is phosphorylated and activated by GSK-3 to promote axon outgrowth in mouse hippocampal neurons. GSK-3 binds to and directly phosphorylates SRF on a highly conserved serine residue. This serine phosphorylation is necessary for SRF activity and for its interaction with MKL-family cofactors, MKL1 and MKL2, but not with TCF-family cofactor, ELK-1. Axonal growth deficits caused by GSK-3 inhibition could be rescued by expression of a constitutively active SRF. The SRF target gene and actin-binding protein, vinculin, is sufficient to overcome the axonal growth deficits of SRF-deficient and GSK-3-inhibited neurons. Furthermore, short hairpin RNA-mediated knockdown of vinculin also attenuated axonal growth. Thus, our findings reveal a novel phosphorylation and activation of SRF by GSK-3 that is critical for SRF-dependent axon growth in mammalian central neurons.
Meng, Fanyan; Speyer, Cecilia L.; Zhang, Bin; Zhao, Yongzhong; Chen, Wei; Gorski, David H.; Miller, Fred R.; Wu, Guojun
2015-01-01
Many epithelial—mesenchymal transition (EMT)-promoting transcription factors have been implicated in tumorigenesis and metastasis as well as chemoresistance of cancer. However, the underlying mechanisms mediating these processes are unclear. Here, we report that Foxq1, a forkhead box-containing transcription factor and EMT-inducing gene, promotes stemness traits and chemoresistance in mammary epithelial cells. Using an expression profiling assay, we identified Twist1, Zeb2, and PDGFRα and β as Foxq1 downstream targets. We further show that PDGFRα and β can be directly regulated by Foxq1 or indirectly regulated through the Foxq1/Twist1 axis. Knockdown of both PDGFRα and β results in more significant effects on reversing Foxq1-promoted oncogenesis in vitro and in vivo than knockdown of either PDGFRα or β alone. In addition, PDGFRβ is a more potent mediator of Foxq1-promoted stemness traits than PDGFRα. Finally, pharmacologic inhibition or gene silencing of PDGFRs sensitizes mammary epithelial cells to chemotherapeutic agents in vitro and in vivo. These findings collectively implicate PDGFRs as critical mediators of breast cancer oncogenesis and chemoresistance driven by Foxq1, with potential implications for developing novel therapeutic combinations to treat breast cancer. PMID:25502837
Biological basis and pathological relevance of microvascular thrombosis.
Pfeiler, Susanne; Massberg, Steffen; Engelmann, Bernd
2014-05-01
Microvascular thrombosis indicates a pathological occlusion of microvessels by fibrin- and/or platelet-rich thrombi. It is observed during systemic infections, cancer, myocardial infarction, stroke, neurodegenerative diseases and in thrombotic microangiopathies. Microvessel thrombosis can cause greatly differing symptoms that range from limited changes in plasma coagulation markers to severe multi-organ failure. Because microvessel thrombi are difficult to detect and often occur only transiently, their importance for disease development and host biology is likely markedly under-appreciated. Recently, clear indications for a biological basis of microvascular thrombosis have been obtained. During systemic infections microvessel thrombosis can mediate an intravascular innate immune response (immunothrombosis). This biological form of thrombosis is based on the generation of fibrin inside blood vessels and is critically triggered by neutrophils and their interactions with platelets which result in the release of neutrophil extracellular traps (extracellular nucleosomes). Immunothrombosis is critically supported by neutrophil elastase and the activator molecules of blood coagulation tissue factor and factor XII. Identification of the biological driving forces of microvascular thrombosis should help to elucidate the mechanisms promoting pathological vessel occlusions in both microvessels and large vessels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Functional Consequences of Sarcopenia and Dynapenia in the Elderly
Clark, Brian C.; Manini, Todd M.
2010-01-01
Purpose of review The economic burden due to the sequela of sarcopenia (muscle wasting in the elderly) are staggering and rank similarly to the costs associated with osteoporotic fractures. In this article we discuss the societal burden and determinants of the loss of physical function with advancing age, the physiologic mechanisms underlying dynapenia (muscle weakness in the elderly), and provide perspectives on related critical issues to be addressed. Recent findings Recent epidemiological findings from longitudinal aging studies suggest that dynapenia is highly associated with both mortality and physical disability even when adjusting for sarcopenia, indicating that sarcopenia may be secondary to the effects of dynapenia. These findings are consistent with the physiologic underpinnings of muscle strength, as recent evidence demonstrates that alterations in muscle quantity, contractile quality and neural activation all collectively contribute to dynapenia. Summary While muscle mass is essential for regulation of whole body metabolic balance, overall neuromuscular function seems to be a critical factor for maintaining muscle strength and physical independence in the elderly. The relative contribution of physiologic factors contributing to muscle weakness are not fully understood, and further research is needed to better elucidate these mechanisms between muscle groups and across populations. PMID:20154609
Functional consequences of sarcopenia and dynapenia in the elderly.
Clark, Brian C; Manini, Todd M
2010-05-01
The economic burden due to the sequela of sarcopenia (muscle wasting in the elderly) are staggering and rank similarly to the costs associated with osteoporotic fractures. In this article, we discuss the societal burden and determinants of the loss of physical function with advancing age, the physiologic mechanisms underlying dynapenia (muscle weakness in the elderly), and provide perspectives on related critical issues to be addressed. Recent epidemiological findings from longitudinal aging studies suggest that dynapenia is highly associated with both mortality and physical disability even when adjusting for sarcopenia indicating that sarcopenia may be secondary to the effects of dynapenia. These findings are consistent with the physiologic underpinnings of muscle strength, as recent evidence demonstrates that alterations in muscle quantity, contractile quality and neural activation all collectively contribute to dynapenia. Although muscle mass is essential for regulation of whole body metabolic balance, overall neuromuscular function seems to be a critical factor for maintaining muscle strength and physical independence in the elderly. The relative contribution of physiologic factors contributing to muscle weakness are not fully understood and further research is needed to better elucidate these mechanisms between muscle groups and across populations.
Establishment and Validation of GV-SAPS II Scoring System for Non-Diabetic Critically Ill Patients.
Liu, Wen-Yue; Lin, Shi-Gang; Zhu, Gui-Qi; Poucke, Sven Van; Braddock, Martin; Zhang, Zhongheng; Mao, Zhi; Shen, Fei-Xia; Zheng, Ming-Hua
2016-01-01
Recently, glucose variability (GV) has been reported as an independent risk factor for mortality in non-diabetic critically ill patients. However, GV is not incorporated in any severity scoring system for critically ill patients currently. The aim of this study was to establish and validate a modified Simplified Acute Physiology Score II scoring system (SAPS II), integrated with GV parameters and named GV-SAPS II, specifically for non-diabetic critically ill patients to predict short-term and long-term mortality. Training and validation cohorts were exacted from the Multiparameter Intelligent Monitoring in Intensive Care database III version 1.3 (MIMIC-III v1.3). The GV-SAPS II score was constructed by Cox proportional hazard regression analysis and compared with the original SAPS II, Sepsis-related Organ Failure Assessment Score (SOFA) and Elixhauser scoring systems using area under the curve of the receiver operator characteristic (auROC) curve. 4,895 and 5,048 eligible individuals were included in the training and validation cohorts, respectively. The GV-SAPS II score was established with four independent risk factors, including hyperglycemia, hypoglycemia, standard deviation of blood glucose levels (GluSD), and SAPS II score. In the validation cohort, the auROC values of the new scoring system were 0.824 (95% CI: 0.813-0.834, P< 0.001) and 0.738 (95% CI: 0.725-0.750, P< 0.001), respectively for 30 days and 9 months, which were significantly higher than other models used in our study (all P < 0.001). Moreover, Kaplan-Meier plots demonstrated significantly worse outcomes in higher GV-SAPS II score groups both for 30-day and 9-month mortality endpoints (all P< 0.001). We established and validated a modified prognostic scoring system that integrated glucose variability for non-diabetic critically ill patients, named GV-SAPS II. It demonstrated a superior prognostic capability and may be an optimal scoring system for prognostic evaluation in this patient group.
Meinke, Martina C; Müller, Robert; Bechtel, Anne; Haag, Stefan F; Darvin, Maxim E; Lohan, Silke B; Ismaeel, Fakher; Lademann, Jürgen
2015-03-01
UV irradiation is one of the most harmful exogenous factors for the human skin. In addition to the development of erythema, free radicals, that is reactive oxygen species (ROS), are induced under its influence and promote the development of oxidative stress in the skin. Several techniques are available for determining the effect of UV irradiation. Resonance Raman spectroscopy (RRS) measures the reduction of the carotenoid concentration, while electron paramagnetic resonance (EPR) spectroscopy enables the analysis of the production of free radicals. Depending on the method, the skin parameters are analysed in vivo or ex vivo. This study provides a critical comparison between in vivo and ex vivo investigations on the ROS formation and carotenoid depletion caused by UV irradiation in human skin. The oxygen content of tissue was also determined. It was shown that the antioxidant status measured in the skin samples in vivo and ex vivo was different. The depletion in the carotenoid concentration in vivo exceeded the value determined ex vivo by a factor of about 1.5, and the radical formation after UV irradiation was significantly greater in vivo by a factor of 3.5 than that measured in excised human skin, which can be explained by the lack of oxygen ex vivo. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Translational control of auditory imprinting and structural plasticity by eIF2α
Batista, Gervasio; Johnson, Jennifer Leigh; Dominguez, Elena; Costa-Mattioli, Mauro; Pena, Jose L
2016-01-01
The formation of imprinted memories during a critical period is crucial for vital behaviors, including filial attachment. Yet, little is known about the underlying molecular mechanisms. Using a combination of behavior, pharmacology, in vivo surface sensing of translation (SUnSET) and DiOlistic labeling we found that, translational control by the eukaryotic translation initiation factor 2 alpha (eIF2α) bidirectionally regulates auditory but not visual imprinting and related changes in structural plasticity in chickens. Increasing phosphorylation of eIF2α (p-eIF2α) reduces translation rates and spine plasticity, and selectively impairs auditory imprinting. By contrast, inhibition of an eIF2α kinase or blocking the translational program controlled by p-eIF2α enhances auditory imprinting. Importantly, these manipulations are able to reopen the critical period. Thus, we have identified a translational control mechanism that selectively underlies auditory imprinting. Restoring translational control of eIF2α holds the promise to rejuvenate adult brain plasticity and restore learning and memory in a variety of cognitive disorders. DOI: http://dx.doi.org/10.7554/eLife.17197.001 PMID:28009255
CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis
Oh, Kyoung-Jin; Han, Hye-Sook; Kim, Min-Jung; Koo, Seung-Hoi
2013-01-01
Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme genes in the gluconeogenesis such as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 phosphatase catalytic subunit (G6Pase). Conversely, gluconeogenic transcription is repressed by pancreatic insulin under feeding conditions, which effectively inhibits transcriptional activator complexes by either promoting post-translational modifications or activating transcriptional inhibitors in the liver, resulting in the reduction of hepatic glucose output. The transcriptional regulatory machineries have been highlighted as targets for type 2 diabetes drugs to control glycemia, so understanding of the complex regulatory mechanisms for transcription circuits for hepatic gluconeogenesis is critical in the potential development of therapeutic tools for the treatment of this disease. In this review, the current understanding regarding the roles of two key transcriptional activators, CREB and FoxO1, in the regulation of hepatic gluconeogenic program is discussed. [BMB Reports 2013; 46(12): 567-574] PMID:24238363
Maji, Debashis; Das, Soumen
2018-03-01
Crack free electrically continuous metal thin films over soft elastomeric substrates play an integral part in realization of modern day flexible bioelectronics and biosensors. Under nonoptimized deposition conditions, delamination, and/or cracking of the top film as well as the underlying soft substrate hinders optimal performance of these devices. Hence it is very important to understand and control not only the various deposition factors like power, time, or deposition pressure but also investigate the various interfacial physics playing a critical role in assuring thin film adhesion and substrate compliancy. In the present study, various nanomechanical information of the underlying substrate, namely, crack profile, average roughness, Young's modulus, and adhesion force were studied for uncracked and cracked polydimethylsiloxane (PDMS) surfaces along with pristine and conventional plasma treated PDMS samples as control. Quantification of the above parameters were done using three-dimensional surface profiler, scanning electron microscopy, nanoindentation, and atomic force microscopy techniques to elucidate the modulus range, average roughness, and adhesion force. Comparative analysis with control revealed remarkable similarity between increased modulus values, increased surface roughness, and reduced adhesion force accounting for reduced substrate compliancy and resulting in film cracking or buckling which are critical for development of various bioflexible devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 725-737, 2018. © 2017 Wiley Periodicals, Inc.
Stability Study on Steel Structural Columns with Initial Blast Damage under High Temperatures
NASA Astrophysics Data System (ADS)
Baoxin, Qi; Yan, Shi; Li, Peng
2018-03-01
Blast may bring light-weight steel columns with initial damages, resulting in lowering its critical fire-resistance temperature whose reduced amplitude is relevant to the form and degree of the damages. Finite element analysis software ANSYS was used in the paper to analyze the issue of the fire-resistance temperature of the column with the blast damages, and the coupling method for heat and structure was applied during the simulation. The emphasis was laid on parametric factors of axial compression ratio, the form and the degree of the initial damages, as well as the confined condition at the ends of the columns. The numerical results showed that the fire-resistance temperature will lower as increasing of the axial compression ratio, the form and the degree of the initial damages and it will be also affected by the restraint conditions at the ends of the columns. The critical stress formula with initial bending damage under elevated temperature was set up under flexural small deformation condition, then the stability coefficient was determined and the method for evaluating the limit temperature of the column was put forward. The theoretical result was also compared with that of the finite element method (FEM). The results both showed that the stability capacity for the damaged columns was dramatically reduced as increasing the temperature and the initial damage level.
ERIC Educational Resources Information Center
Nelis, Sharon M.; Rae, Gordon; Liddell, Christine
2006-01-01
The factor structure of the Family Emotional Involvement and Criticism Scale (FEICS) is tested in a sample of Irish adolescents. Participants were 661 adolescents with a mean age of 15.9 years (SD = 1.26). Interpretation of both the exploratory and confirmatory factor analysis of the FEICS show support for the two-factor structure of the FEICS…
Study of the inhomogeneity of critical current under in-situ tensile stress for YBCO tape
NASA Astrophysics Data System (ADS)
Zhu, Y. P.; Chen, W.; Zhang, H. Y.; Liu, L. Y.; Pan, X. F.; Yang, X. S.; Zhao, Y.
2018-07-01
A Hall sensor system was used to measure the local critical current of YBCO tape with high spatial resolution under in-situ tensile stress. The hot spot generation and minimum quench energy of YBCO tape, which depended on the local critical current, was calculated through the thermoelectric coupling model. With the increase in tensile stress, the cracks which have different dimensions and critical current degradation arose more frequently and lowered the thermal stability of the YBCO tape.
Critical Factors Explaining the Leadership Performance of High-Performing Principals
ERIC Educational Resources Information Center
Hutton, Disraeli M.
2018-01-01
The study explored critical factors that explain leadership performance of high-performing principals and examined the relationship between these factors based on the ratings of school constituents in the public school system. The principal component analysis with the use of Varimax Rotation revealed that four components explain 51.1% of the…
A Stochastic Simulator of a Blood Product Donation Environment with Demand Spikes and Supply Shocks
An, Ming-Wen; Reich, Nicholas G.; Crawford, Stephen O.; Brookmeyer, Ron; Louis, Thomas A.; Nelson, Kenrad E.
2011-01-01
The availability of an adequate blood supply is a critical public health need. An influenza epidemic or another crisis affecting population mobility could create a critical donor shortage, which could profoundly impact blood availability. We developed a simulation model for the blood supply environment in the United States to assess the likely impact on blood availability of factors such as an epidemic. We developed a simulator of a multi-state model with transitions among states. Weekly numbers of blood units donated and needed were generated by negative binomial stochastic processes. The simulator allows exploration of the blood system under certain conditions of supply and demand rates, and can be used for planning purposes to prepare for sudden changes in the public's health. The simulator incorporates three donor groups (first-time, sporadic, and regular), immigration and emigration, deferral period, and adjustment factors for recruitment. We illustrate possible uses of the simulator by specifying input values for an -week flu epidemic, resulting in a moderate supply shock and demand spike (for example, from postponed elective surgeries), and different recruitment strategies. The input values are based in part on data from a regional blood center of the American Red Cross during –. Our results from these scenarios suggest that the key to alleviating deficit effects of a system shock may be appropriate timing and duration of recruitment efforts, in turn depending critically on anticipating shocks and rapidly implementing recruitment efforts. PMID:21814550
A stochastic simulator of a blood product donation environment with demand spikes and supply shocks.
An, Ming-Wen; Reich, Nicholas G; Crawford, Stephen O; Brookmeyer, Ron; Louis, Thomas A; Nelson, Kenrad E
2011-01-01
The availability of an adequate blood supply is a critical public health need. An influenza epidemic or another crisis affecting population mobility could create a critical donor shortage, which could profoundly impact blood availability. We developed a simulation model for the blood supply environment in the United States to assess the likely impact on blood availability of factors such as an epidemic. We developed a simulator of a multi-state model with transitions among states. Weekly numbers of blood units donated and needed were generated by negative binomial stochastic processes. The simulator allows exploration of the blood system under certain conditions of supply and demand rates, and can be used for planning purposes to prepare for sudden changes in the public's health. The simulator incorporates three donor groups (first-time, sporadic, and regular), immigration and emigration, deferral period, and adjustment factors for recruitment. We illustrate possible uses of the simulator by specifying input values for an 8-week flu epidemic, resulting in a moderate supply shock and demand spike (for example, from postponed elective surgeries), and different recruitment strategies. The input values are based in part on data from a regional blood center of the American Red Cross during 1996-2005. Our results from these scenarios suggest that the key to alleviating deficit effects of a system shock may be appropriate timing and duration of recruitment efforts, in turn depending critically on anticipating shocks and rapidly implementing recruitment efforts.
Kim, Jiyeon; Jung, Minsoo
2017-09-11
Although vaccinations are critical for preventing emerging infectious diseases, scant research has been conducted on risk communication. With socio-economic characteristics, health behavior, and underlying diseases under control, we investigated associations between media use, health information-seeking behavior, health information type, and vaccination in the population. This study relied on a national survey of Korean adults (n = 1367). Participants were adult males and females age 20 and older. Web and face-to-face surveys were conducted throughout July 2014. The main outcome was vaccination (categorized as yes or no). Independent variables were time spent on media, frequency of health information-seeking behavior, and types of health information sought. Controlling for co-variates, logistic regression analysis was conducted to identify factors that influence Korean adults being vaccinated. Results revealed that accessible information about emerging infectious diseases, listening to the radio, and reading the newspaper were associated with increased odds of being vaccinated. Active seeking health information as well as being female and of higher socio-economic status were positively correlated with Korean adults being vaccinated. It is critical to promote health information-seeking behavior and use diverse media channels to increase acceptance and awareness of emerging infectious diseases and vaccinations. Because there are differences in vaccination awareness depending on social class, it is critical to reduce communication inequality, strengthen accessibility to vaccinations, and devise appropriate risk communication strategies that ensure Korean adults receive vaccinations.
Critical parameters for sterilization of oil palm fruit by microwave irradiation
NASA Astrophysics Data System (ADS)
Sarah, Maya; Taib, M. R.
2017-08-01
Study to evaluate critical parameters for microwave irradiation to sterilize oil palm fruit was carried out at power density of 560 to 1120 W/kg. Critical parameters are important to ensure moisture loss during sterilization exceed the critical moisture (Mc) but less than maximum moisture (Mmax). Critical moisture in this study was determined according to dielectric loss factor of heated oil palm fruits at 2450 MHz. It was obtained from slope characterization of dielectric loss factor-vs-moisture loss curve. The Mc was used to indicate critical temperature (Tc) and critical time (tc) for microwave sterilization. To ensure moisture loss above critical value but not exceed maximum value, the combinations of time-temperature for sterilization of oil palm fruits by microwave irradiation were 6 min and 75°C to 17 min and 82°C respectively.
Critical diversity: Divided or united states of social coordination
Kelso, J. A. Scott; Tognoli, Emmanuelle
2018-01-01
Much of our knowledge of coordination comes from studies of simple, dyadic systems or systems containing large numbers of components. The huge gap ‘in between’ is seldom addressed, empirically or theoretically. We introduce a new paradigm to study the coordination dynamics of such intermediate-sized ensembles with the goal of identifying key mechanisms of interaction. Rhythmic coordination was studied in ensembles of eight people, with differences in movement frequency (‘diversity’) manipulated within the ensemble. Quantitative change in diversity led to qualitative changes in coordination, a critical value separating régimes of integration and segregation between groups. Metastable and multifrequency coordination between participants enabled communication across segregated groups within the ensemble, without destroying overall order. These novel findings reveal key factors underlying coordination in ensemble sizes previously considered too complicated or 'messy' for systematic study and supply future theoretical/computational models with new empirical checkpoints. PMID:29617371
Climate stories: Why do climate scientists and sceptical voices participate in the climate debate?
Sharman, Amelia; Howarth, Candice
2017-10-01
Public perceptions of the climate debate predominantly frame the key actors as climate scientists versus sceptical voices; however, it is unclear why climate scientists and sceptical voices choose to participate in this antagonistic and polarised public battle. A narrative interview approach is used to better understand the underlying rationales behind 22 climate scientists' and sceptical voices' engagement in the climate debate, potential commonalities, as well as each actor's ability to be critically self-reflexive. Several overlapping rationales are identified including a sense of duty to publicly engage, agreement that complete certainty about the complex assemblage of climate change is unattainable and that political factors are central to the climate debate. We argue that a focus on potential overlaps in perceptions and rationales as well as the ability to be critically self-reflexive may encourage constructive discussion among actors previously engaged in purposefully antagonistic exchange on climate change.
Strömberg, A; Broström, A; Dahlström, U; Fridlund, B
1999-01-01
The aim of this study was to identify factors influencing compliance with prescribed treatment in patients with chronic heart failure. A qualitative design with a critical incident technique was used. Incidents were collected through interviews with 25 patients with heart failure strategically selected from a primary health care clinic, a medical ward, and a specialist clinic. Two hundred sixty critical incidents were identified in the interviews and 2 main areas emerged in the analysis: inward factors and outward factors. The inward factors described how compliance was influenced by the personality of the patient, the disease, and the treatment. The outward factors described how compliance was influenced by social activities, social relationships, and health care professionals. By identifying the inward and outward factors influencing patients with chronic heart failure, health care professionals can assess whether intervention is needed to increase compliance.
Karanja, Bernard Kinuthia; Fan, Lianxue; Xu, Liang; Wang, Yan; Zhu, Xianwen; Tang, Mingjia; Wang, Ronghua; Zhang, Fei; Muleke, Everlyne M'mbone; Liu, Liwang
2017-11-01
The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.
Hoff, Paula; Maschmeyer, Patrick; Gaber, Timo; Schütze, Tabea; Raue, Tobias; Schmidt-Bleek, Katharina; Dziurla, René; Schellmann, Saskia; Lohanatha, Ferenz Leonard; Röhner, Eric; Ode, Andrea; Burmester, Gerd-Rüdiger; Duda, Georg N; Perka, Carsten; Buttgereit, Frank
2013-01-01
The initial inflammatory phase of bone fracture healing represents a critical step for the outcome of the healing process. However, both the mechanisms initiating this inflammatory phase and the function of immune cells present at the fracture site are poorly understood. In order to study the early events within a fracture hematoma, we established an in vitro fracture hematoma model: we cultured hematomas forming during an osteotomy (artificial bone fracture) of the femur during total hip arthroplasty (THA) in vitro under bioenergetically controlled conditions. This model allowed us to monitor immune cell populations, cell survival and cytokine expression during the early phase following a fracture. Moreover, this model enabled us to change the bioenergetical conditions in order to mimic the in vivo situation, which is assumed to be characterized by hypoxia and restricted amounts of nutrients. Using this model, we found that immune cells adapt to hypoxia via the expression of angiogenic factors, chemoattractants and pro-inflammatory molecules. In addition, combined restriction of oxygen and nutrient supply enhanced the selective survival of lymphocytes in comparison with that of myeloid derived cells (i.e., neutrophils). Of note, non-restricted bioenergetical conditions did not show any similar effects regarding cytokine expression and/or different survival rates of immune cell subsets. In conclusion, we found that the bioenergetical conditions are among the crucial factors inducing the initial inflammatory phase of fracture healing and are thus a critical step for influencing survival and function of immune cells in the early fracture hematoma. PMID:23396474
Crack Turning Mechanics of Composite Wing Skin Panels
NASA Technical Reports Server (NTRS)
Yuan, F. G.; Reeder, James R. (Technical Monitor)
2001-01-01
The safety of future composite wing skin integral stiffener panels requires a full understanding of failure mechanisms of these damage tolerance critical structures under both in-plane and bending loads. Of primary interest is to derive mathematical models using fracture mechanics in anisotropic cracked plate structures, to assess the crack turning mechanisms, and thereby to enhance the residual strength in the integral stiffener composite structures. The use of fracture mechanics to assess the failure behavior in a cracked structure requires the identification of critical fracture parameters which govern the severity of stress and deformation field ahead of the flaw, and which can be evaluated using information obtained from the flaw tip. In the three-year grant, the crack-tip fields under plane deformation, crack-tip fields for anisotropic plates and anisotropic shells have been obtained. In addition, methods for determining the stress intensity factors, energy release rate, and the T-stresses have been proposed and verified. The research accomplishments can be summarized as follows: (1) Under plane deformation in anisotropic solids, the asymptotic crack-tip fields have been obtained using Stroh formalism; (2) The T-stress and the coefficient of the second term for sigma(sub y), g(sub 32), have been obtained using path-independent integral, the J-integral and Betti's reciprocal theorem together with auxiliary fields; (3) With experimental data performed by NASA, analyses indicated that the mode-I critical stress intensity factor K(sub Q) provides a satisfactory characterization of fracture initiation for a given laminate thickness, provided the failure is fiber-dominated and crack extends in a self-similar manner; (4) The high constraint specimens, especially for CT specimens, due to large T-stress and large magnitude of negative g(sub 32) term may be expected to inhibit the crack extension in the same plane and promote crack turning; (5) Crack turning out of crack plane in generally anisotropic solids under plane deformation has been studied; (6) The role of T-stress and the higher-order term of sigma(sub y) on the crack turning and stability of the kinked crack has been quantified; (7) Asymptotic crack-tip fields including the effect of transverse shear deformation (Reissner plate theory) in an anisotropic plate under bending, twisting moments, and transverse shear loads has been presented; (8) The expression of the path-independent J-integral in terms of the generalized stress and strain has been derived; (9) Asymptotic crack-tip fields including the effect of transverse shear deformation (Reissner shallow shell theory) in a general anisotropic shell has been developed; (10) The Stroh formalism was used to characterize the crack tip fields in shells up to the second term and the energy release rate was expressed in a very compact form.
Some Challenges in the Design of Human-Automation Interaction for Safety-Critical Systems
NASA Technical Reports Server (NTRS)
Feary, Michael S.; Roth, Emilie
2014-01-01
Increasing amounts of automation are being introduced to safety-critical domains. While the introduction of automation has led to an overall increase in reliability and improved safety, it has also introduced a class of failure modes, and new challenges in risk assessment for the new systems, particularly in the assessment of rare events resulting from complex inter-related factors. Designing successful human-automation systems is challenging, and the challenges go beyond good interface development (e.g., Roth, Malin, & Schreckenghost 1997; Christoffersen & Woods, 2002). Human-automation design is particularly challenging when the underlying automation technology generates behavior that is difficult for the user to anticipate or understand. These challenges have been recognized in several safety-critical domains, and have resulted in increased efforts to develop training, procedures, regulations and guidance material (CAST, 2008, IAEA, 2001, FAA, 2013, ICAO, 2012). This paper points to the continuing need for new methods to describe and characterize the operational environment within which new automation concepts are being presented. We will describe challenges to the successful development and evaluation of human-automation systems in safety-critical domains, and describe some approaches that could be used to address these challenges. We will draw from experience with the aviation, spaceflight and nuclear power domains.
Crack Nucleation in β Titanium Alloys under High Cycle Fatigue Conditions - A Review
NASA Astrophysics Data System (ADS)
Benjamin, Rohit; Nageswara Rao, M.
2017-05-01
Beta titanium (β-Ti) alloys have emerged over the last 3 to 4 decades as an important class of titanium alloys. Many of the applications that they found, particularly in aerospace sector, are such that their high cycle fatigue (HCF) behavior becomes critical. In HCF regime, crack nucleation accounts for major part of the life. Consequently it becomes important to understand the mechanisms underlying the nucleation of cracks under HCF type loading conditions. The purpose of this review is to document the best understanding we have on date on crack nucleation in β-Ti alloys under HCF conditions. Role of various microstructural features encountered in β-Ti alloys in influencing the crack nucleation under HCF conditions has been reviewed. It has been brought out that changes in processing can result in changes in microstructure which in turn influence the time for crack nucleation/fatigue life and fatigue limit. While majority of fatigue failures originate at the surface, subsurface cracking is not uncommon with β-Ti alloys and the factors leading to subsurface cracking have been discussed in this review.
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Li, Qi; Hu, Jun; Zhang, Bo; He, Jinliang
2018-04-01
Electrical degradation of insulating polymers at electrode interfaces is an essential factor in determining long-term reliability. A critical challenge is that the exact mechanism of degradation is not fully understood, either experimentally or theoretically, due to the inherent complex processes. Consequently, in this study, we investigate electroluminescence (EL) at the interface of an electrode and insulator, and determine the relationship between EL and electrical degradation. Using a tip-plate electrode structure, the unique features of EL under a highly divergent field are investigated. The voltage type (alternating or direct current), the polymer matrix, and the time of pressing are also investigated separately. A study of EL from insulators under a divergent field is provided, and the relationship between EL spectra and degradation is discussed. It is shown that EL spectra under a divergent field have unique characteristics compared with EL spectra from polymer films under a uniform field and the most obvious one is the UV emission. The results obtained in the current investigation bring us a step closer to understanding the process of electrical degradation and provide a potential way to diagnose insulator defects.
The crack and wedging problem for an orthotropic strip
NASA Technical Reports Server (NTRS)
Cinar, A.; Erdogan, F.
1982-01-01
The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length.
Understanding epigenetic architecture of suicide neurobiology: A critical perspective
Roy, Bhaskar; Dwivedi, Yogesh
2016-01-01
Current understanding of environmental cross-talk with genetic makeup is found to be mediated through an epigenetic interface which is associated with prominent reversible and heritable changes at gene expression level. Recent emergence of epigenetic modulation in shaping the genetic information has become a key regulatory factor in answering the underlying complexities associated with several mental disorders. A comprehensive understanding of the pertinent changes in the epigenetic makeup of suicide phenotype exhibits a characteristic signature with the possibility of using it as a biomarker to help predict the risk factors associated with suicide. Within the scope of this current review, the most sought after epigenetic changes of DNA methylation and histone modification are thoroughly scrutinized to understand their close functional association with the broad spectrum of suicide phenotype. PMID:27836463
Exercise Dose in Clinical Practice
Wasfy, Meagan; Baggish, Aaron L.
2016-01-01
There is wide variability in the physical activity patterns of the patients in contemporary clinical cardiovascular practice. This review is designed to address the impact of exercise dose on key cardiovascular risk factors and on mortality. We begin by examining the body of literature that supports a dose-response relationship between exercise and cardiovascular disease risk factors including plasma lipids, hypertension, diabetes mellitus, and obesity. We next explore the relationship between exercise dose and mortality by reviewing the relevant epidemiological literature underlying current physical activity guideline recommendations. We then expand this discussion to critically examine recent data pertaining to the impact of exercise dose at the lowest and highest ends of the spectrum. Finally, we provide a framework for how the key concepts of exercise dose can be integrated into clinical practice. PMID:27267537
Exercise Dose in Clinical Practice.
Wasfy, Meagan M; Baggish, Aaron L
2016-06-07
There is wide variability in the physical activity patterns of the patients in contemporary clinical cardiovascular practice. This review is designed to address the impact of exercise dose on key cardiovascular risk factors and on mortality. We begin by examining the body of literature that supports a dose-response relationship between exercise and cardiovascular disease risk factors, including plasma lipids, hypertension, diabetes mellitus, and obesity. We next explore the relationship between exercise dose and mortality by reviewing the relevant epidemiological literature underlying current physical activity guideline recommendations. We then expand this discussion to critically examine recent data pertaining to the impact of exercise dose at the lowest and highest ends of the spectrum. Finally, we provide a framework for how the key concepts of exercise dose can be integrated into clinical practice. © 2016 American Heart Association, Inc.
Lithium Ion Batteries in Electric Drive Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad A.
2016-05-16
This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: long calendar life (greater than 10 years); sufficient cycle life; reliable operation under hot and cold temperatures; safe performance under extreme conditions; end-of-life recycling. To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordabilitymore » factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.« less
NASA Technical Reports Server (NTRS)
1997-01-01
Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.
Cigarette Smoke and Inflammation: Role in Cerebral Aneurysm Formation and Rupture
Chalouhi, Nohra; Ali, Muhammad S.; Starke, Robert M.; Jabbour, Pascal M.; Tjoumakaris, Stavropoula I.; Gonzalez, L. Fernando; Rosenwasser, Robert H.; Koch, Walter J.; Dumont, Aaron S.
2012-01-01
Smoking is an established risk factor for subarachnoid hemorrhage yet the underlying mechanisms are largely unknown. Recent data has implicated a role of inflammation in the development of cerebral aneurysms. Inflammation accompanying cigarette smoke exposure may thus be a critical pathway underlying the development, progression, and rupture of cerebral aneurysms. Various constituents of the inflammatory response appear to be involved including adhesion molecules, cytokines, reactive oxygen species, leukocytes, matrix metalloproteinases, and vascular smooth muscle cells. Characterization of the molecular basis of the inflammatory response accompanying cigarette smoke exposure will provide a rational approach for future targeted therapy. In this paper, we review the current body of knowledge implicating cigarette smoke-induced inflammation in cerebral aneurysm formation/rupture and attempt to highlight important avenues for future investigation. PMID:23316103
Critical management practices influencing on-site waste minimization in construction projects.
Ajayi, Saheed O; Oyedele, Lukumon O; Bilal, Muhammad; Akinade, Olugbenga O; Alaka, Hafiz A; Owolabi, Hakeem A
2017-01-01
As a result of increasing recognition of effective site management as the strategic approach for achieving the required performance in construction projects, this study seeks to identify the key site management practices that are requisite for construction waste minimization. A mixed methods approach, involving field study and survey research were used as means of data collection. After confirmation of construct validity and reliability of scale, data analysis was carried out through a combination of Kruskal-Wallis test, descriptive statistics and exploratory factor analysis. The study suggests that site management functions could significantly reduce waste generation through strict adherence to project drawings, and by ensuring fewer or no design changes during construction process. Provision of waste skips for specific materials and maximisation of on-site reuse of materials are also found to be among the key factors for engendering waste minimization. The result of factor analysis suggests four factors underlying on-site waste management practices with 96.093% of total variance. These measures include contractual provisions for waste minimization, waste segregation, maximisation of materials reuse and effective logistic management. Strategies through which each of the underlying measures could be achieved are further discussed in the paper. Findings of this study would assist construction site managers and other site operatives in reducing waste generated by construction activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ibeagha-Awemu, Eveline M.; Kgwatalala, Patrick; Ibeagha, Aloysius E.
2008-01-01
Genetic variations through their effects on gene expression and protein function underlie disease susceptibility in farm animal species. The variations are in the form of single nucleotide polymorphisms, deletions/insertions of nucleotides or whole genes, gene or whole chromosomal rearrangements, gene duplications, and copy number polymorphisms or variants. They exert varying degrees of effects on gene action, such as substitution of an amino acid for another, shift in reading frame and premature termination of translation, and complete deletion of entire exon(s) or gene(s) in diseased individuals. These factors influence gene function by affecting mRNA splicing pattern or by altering/eliminating protein function. Elucidating the genetic bases of diseases under the control of many genes is very challenging, and it is compounded by several factors, including host × pathogen × environment interactions. In this review, the genetic variations that underlie several diseases of livestock (under monogenic and polygenic control) are analyzed. Also, factors hampering research efforts toward identification of genetic influences on animal disease identification and control are highlighted. A better understanding of the factors analyzed could be better harnessed to effectively identify and control, genetically, livestock diseases. Finally, genetic control of animal diseases can reduce the costs associated with diseases, improve animal welfare, and provide healthy animal products to consumers, and should be given more attention. PMID:18350334
Allocation trade-off under climate warming in experimental amphibian populations
Gao, Xu; Jin, Changnan; Camargo, Arley
2015-01-01
Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming. PMID:26500832
Probiotic use in the critically ill.
Singhi, Sunit C; Baranwal, A
2008-06-01
Probiotics are "live microbes which when administered in adequate amounts confer a health benefit to the host" (FAO/WHO joint group). Their potential role in bio-ecological modification of pathological internal milieu of the critically ill is under evaluation. Probiotics are available as single microbial strain (e.g., Bacillus clausii, Lactobacillus) or as a mix of multiple strains of Lactobacillus (acidophilus, sporogenes, lactis, reuteri RC-14, GG, and L. plantarum 299v), Bifidobacterium (bifidum, longum, infantis), Streptococcus (thermophillus, lactis, fecalis), Saccharomyces boulardii etc. Lactobacilli and Bifidobacteria are gram-positive, anaerobic, lactic acid bacteria. These are normal inhabitant of human gut and colonize the colon better than others. Critical illness and its treatment create hostile environment in the gut and alters the micro flora favoring growth of pathogens. Therapy with probiotics is an effort to reduce or eliminate potential pathogens and toxins, to release nutrients, antioxidants, growth factors and coagulation factors, to stimulate gut motility and to modulate innate and adaptive immune defense mechanisms via the normalization of altered gut flora. Scientific evidence shows that use of probiotics is effective in prevention and therapy of antibiotic associated diarrhea. However, available probiotics strains in currently used doses do not provide much needed early benefits, and need long-term administration to have clinically beneficial effects (viz, a reduction in rate of infection, severe sepsis, ICU stay, ventilation days and mortality) in critically ill surgical and trauma patients. Possibly, available strains do not adhere to intestinal mucosa early, or may require higher dose than what is used. Gap exists in our knowledge regarding mechanisms of action of different probiotics, most effective strains--single or multiple, cost effectiveness, risk-benefit potential, optimum dose, frequency and duration of treatment etc. More information is needed on safety profile of probiotics in immunocompromised state of the critically ill in view of rare reports of fungemia and sepsis and a trend toward possible increase in nosocomial infection. At present, despite theoretical potential benefits, available evidence is not conclusive to recommend probiotics for routine use in the critically ill.
Chen, Fenghua; Ardalan, Maryam; Elfving, Betina; Wegener, Gregers; Madsen, Torsten M; Nyengaard, Jens R
2018-03-01
Electroconvulsive therapy is a fast-acting and efficient treatment of depression used in the clinic. The underlying mechanism of its therapeutic effect is still unclear. However, recovery of synaptic connections and synaptic remodeling is thought to play a critical role for the clinical efficacy obtained from a rapid antidepressant response. Here, we investigated the relationship between synaptic changes and concomitant nonneuronal changes in microvasculature and mitochondria and its relationship to brain-derived neurotrophic factor level changes after repeated electroconvulsive seizures, an animal model of electroconvulsive therapy. Electroconvulsive seizures or sham treatment was given daily for 10 days to rats displaying a genetically driven phenotype modelling clinical depression: the Flinders Sensitive and Resistant Line rats. Stereological principles were employed to quantify numbers of synapses and mitochondria, and the length of microvessels in the hippocampus. The brain-derived neurotrophic factor protein levels were quantified with immunohistochemistry. In untreated controls, a lower number of synapses and mitochondria was accompanied by shorter microvessels of the hippocampus in "depressive" phenotype (Flinders Sensitive Line) compared with the "nondepressed" phenotype (Flinders Resistant Line). Electroconvulsive seizure administration significantly increased the number of synapses and mitochondria, and length of microvessels both in Flinders Sensitive Line-electroconvulsive seizures and Flinders Resistant Line-electroconvulsive seizures rats. In addition, the amount of brain-derived neurotrophic factor protein was significantly increased in Flinders Sensitive Line and Flinders Resistant Line rats after electroconvulsive seizures. Furthermore, there was a significant positive correlation between brain-derived neurotrophic factor level and mitochondria/synapses. Our results indicate that rapid and efficient therapeutic effect of electroconvulsive seizures may be related to synaptic plasticity, accompanied by brain-derived neurotrophic factor protein level elevation and mitochondrial and vascular support. © The Author(s) 2017. Published by Oxford University Press on behalf of CINP.
From equity to power: Critical Success Factors for Twinning between midwives, a Delphi study.
Cadée, Franka; Nieuwenhuijze, Marianne J; Lagro-Janssen, Antoine L M; de Vries, Raymond
2018-02-28
To gain consensus for Critical Success Factors associated with Twinning in Midwifery. International publications identify midwifery as important for improving maternity care worldwide. Midwifery is a team effort where midwives play a key role. Yet their power to take on this role is often lacking. Twinning has garnered potential to develop power in professionals, however, its success varies because implementation is not always optimal. Critical Success Factors have demonstrated positive results in the managerial context and can be helpful to build effective Twinning relationships. We approached 56 midwife Twinning experts from 19 countries to participate in three Delphi rounds between 2016 - 2017. In round 1, experts gave input through an open ended questionnaire and this was analysed to formulate Critical Success Factors statements that were scored on a 1-7 Likert scale aiming to gain consensus in rounds 2 and 3. These statements were operationalized for practical use such as a check list in planning, monitoring and evaluation in the field. Thirty-three experts from 14 countries took part in all three Delphi rounds, producing 58 initial statements. This resulted in 25 Critical Success Factors covering issues of management, communication, commitment and values, most focus on equity. The Critical Success Factors formulated represent the necessary ingredients for successful Twinning by providing a practical implementation framework and promote further research into the effect of Twinning. Findings show that making equity explicit in Twinning may contribute towards the power of midwives to take on their identified key role. © 2018 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.
[Intermittent left bundle branch block - reversal to normal conduction during general anesthesia].
Silva, Ana Maria Oliveira Correia da; Silva, Emília Alexandra Gaspar Lima da
Transient changes in intraoperative cardiac conduction are uncommon. Rare cases of the development or remission of complete left bundle branch block under general and locoregional anesthesia associated with myocardial ischemia, hypertension, tachycardia, and drugs have been reported. Complete left bundle branch block is an important clinical manifestation in some chronic hypertensive patients, which may also be a sign of coronary artery disease, aortic valve disease, or underlying cardiomyopathy. Although usually permanent, it can occur intermittently depending on heart rate (when heart rate exceeds a certain critical value). This is a case of complete left bundle branch block recorded in the preoperative period of urgent surgery that reverted to normal intraoperative conduction under general anesthesia after a decrease in heart rate. It resurfaced, intermittently and in a heart-rate-dependent manner, in the early postoperative period, eventually reverting to normal conduction in a sustained manner during semi-intensive unit monitoring. The test to identify markers of cardiac muscle necrosis was negative. Pain due to the emergency surgical condition and in the early postoperative period may have been the cause of the increase in heart rate up to the critical value, causing blockage. Although the development or remission of this blockade under anesthesia is uncommon, the anesthesiologist should be alert to the possibility of its occurrence. It may be benign; however, the correct diagnosis is very important. The electrocardiographic manifestations may mask or be confused with myocardial ischemia, factors that are especially important in a patient under general anesthesia unable to report the characteristic symptoms of ischemia. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Dalotto, Cecilia E S; Sühs, Rafael B; Dechoum, Michele S; Pugnaire, Francisco I; Peroni, Nivaldo; Castellani, Tânia T
2018-01-01
Abstract Positive interactions in plant communities are under-reported in subtropical systems most likely because they are not identified as stressful environments. However, environmental factors or disturbance can limit plant growth in any system and lead to stressful conditions. For instance, salinity and low nutrient and water availability generate a gradient of stressful conditions in coastal systems depending on distance to shore. In a tropical coastal system in SE Brazil, we aimed to assess whether Guapira opposita, a shrub common in restinga environments, acted as nurse involved in ecological succession and which factors influenced its facilitation process. We sampled perennial species above 10 cm in height under the canopy of 35 G. opposita individuals and in neighbouring open areas. Shrub height, canopy area and distance to freshwater bodies were measured in the field, and distance to the ocean was obtained from aerial images. In addition, we measured the distance to the closest forest patch as a potential source of seeds. Plant abundance and species richness were higher under the canopy of G. opposita than in open areas. Facilitation by G. opposita was mainly determined by shrub height, which had a positive relationship with woody and bromeliads abundance and species richness while there was no relationship with the other factors. Overall, our data evidence that tropical environments may be highly stressful for plants and that nurse species play a key role in the regeneration of restinga environments, where their presence is critical to maintain ecosystem diversity and function. PMID:29644027
Dalotto, Cecilia E S; Sühs, Rafael B; Dechoum, Michele S; Pugnaire, Francisco I; Peroni, Nivaldo; Castellani, Tânia T
2018-04-01
Positive interactions in plant communities are under-reported in subtropical systems most likely because they are not identified as stressful environments. However, environmental factors or disturbance can limit plant growth in any system and lead to stressful conditions. For instance, salinity and low nutrient and water availability generate a gradient of stressful conditions in coastal systems depending on distance to shore. In a tropical coastal system in SE Brazil, we aimed to assess whether Guapira opposita , a shrub common in restinga environments, acted as nurse involved in ecological succession and which factors influenced its facilitation process. We sampled perennial species above 10 cm in height under the canopy of 35 G. opposita individuals and in neighbouring open areas. Shrub height, canopy area and distance to freshwater bodies were measured in the field, and distance to the ocean was obtained from aerial images. In addition, we measured the distance to the closest forest patch as a potential source of seeds. Plant abundance and species richness were higher under the canopy of G. opposita than in open areas. Facilitation by G. opposita was mainly determined by shrub height, which had a positive relationship with woody and bromeliads abundance and species richness while there was no relationship with the other factors. Overall, our data evidence that tropical environments may be highly stressful for plants and that nurse species play a key role in the regeneration of restinga environments, where their presence is critical to maintain ecosystem diversity and function.
Alam, Tahmina; Ahmed, Tahmeed; Sarmin, Monira; Shahrin, Lubaba; Afroze, Farzana; Sharifuzzaman; Akhter, Shamima; Shahunja, K. M.; Shahid, Abu Sadat Mohammad Sayeem Bin; Bardhan, Pradip Kumar; Chisti, Mohammod Jobayer
2017-01-01
Children with diarrhea hospitalized for respiratory distress often have fatal outcome in resource-limited settings, although data are lacking on risk factors for death in such children. We sought to evaluate clinical predictors for death in such children. In this prospective cohort study, we enrolled under-5 children with diarrhea admitted with severe respiratory distress to the intensive care unit of Dhaka Hospital of International Centre for Diarhoeal Disease Research, Bangladesh, from September 2014 through September 2015. We compared clinical and laboratory characteristics between study children those who died (n = 29) and those who survived (n = 62). In logistic regression analysis, after adjusting for potential confounders, the independent predictors for death in children hospitalized for diarrhea and severe respiratory distress were severe sepsis and hypoglycemia (P < .05 for all). Thus, recognition of these simple parameters may help clinicians identify children with diarrhea at risk of deaths in order to initiate prompt management for the better outcome, especially in resource-poor settings. PMID:28491923
Alam, Tahmina; Ahmed, Tahmeed; Sarmin, Monira; Shahrin, Lubaba; Afroze, Farzana; Sharifuzzaman; Akhter, Shamima; Shahunja, K M; Shahid, Abu Sadat Mohammad Sayeem Bin; Bardhan, Pradip Kumar; Chisti, Mohammod Jobayer
2017-01-01
Children with diarrhea hospitalized for respiratory distress often have fatal outcome in resource-limited settings, although data are lacking on risk factors for death in such children. We sought to evaluate clinical predictors for death in such children. In this prospective cohort study, we enrolled under-5 children with diarrhea admitted with severe respiratory distress to the intensive care unit of Dhaka Hospital of International Centre for Diarhoeal Disease Research, Bangladesh, from September 2014 through September 2015. We compared clinical and laboratory characteristics between study children those who died (n = 29) and those who survived (n = 62). In logistic regression analysis, after adjusting for potential confounders, the independent predictors for death in children hospitalized for diarrhea and severe respiratory distress were severe sepsis and hypoglycemia ( P < .05 for all). Thus, recognition of these simple parameters may help clinicians identify children with diarrhea at risk of deaths in order to initiate prompt management for the better outcome, especially in resource-poor settings.
NASA Astrophysics Data System (ADS)
Xi, Wen; Song, Xiaoqing; Hu, Shi; Chen, Zheng
2017-11-01
In this work, the phase field crystal (PFC) method is used to study the localized solid-state amorphization (SSA) and its dynamic transformation process in polycrystalline materials under the uniaxial tensile deformation with different factors. The impacts of these factors, including strain rates, temperatures and grain sizes, are analyzed. Kinetically, the ultra-high strain rate causes the lattice to be seriously distorted and the grain to gradually collapse, so the dislocation density rises remarkably. Therefore, localized SSA occurs. Thermodynamically, as high temperature increases the activation energy, the atoms are active and prefer to leave the original position, which induce atom rearrangement. Furthermore, small grain size increases the percentage of grain boundary and the interface free energy of the system. As a result, Helmholtz free energy increases. The dislocations and Helmholtz free energy act as the seed and driving force for the process of the localized SSA. Also, the critical diffusion-time step and the percentage of amorphous region areas are calculated. Through this work, the PFC method is proved to be an effective means to study localized SSA under uniaxial tensile deformation.
Xi, Wen; Song, Xiaoqing; Hu, Shi; Chen, Zheng
2017-11-29
In this work, the phase field crystal (PFC) method is used to study the localized solid-state amorphization (SSA) and its dynamic transformation process in polycrystalline materials under the uniaxial tensile deformation with different factors. The impacts of these factors, including strain rates, temperatures and grain sizes, are analyzed. Kinetically, the ultra-high strain rate causes the lattice to be seriously distorted and the grain to gradually collapse, so the dislocation density rises remarkably. Therefore, localized SSA occurs. Thermodynamically, as high temperature increases the activation energy, the atoms are active and prefer to leave the original position, which induce atom rearrangement. Furthermore, small grain size increases the percentage of grain boundary and the interface free energy of the system. As a result, Helmholtz free energy increases. The dislocations and Helmholtz free energy act as the seed and driving force for the process of the localized SSA. Also, the critical diffusion-time step and the percentage of amorphous region areas are calculated. Through this work, the PFC method is proved to be an effective means to study localized SSA under uniaxial tensile deformation.
Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice
Pineton de Chambrun, G; Body-Malapel, M; Frey-Wagner, I; Djouina, M; Deknuydt, F; Atrott, K; Esquerre, N; Altare, F; Neut, C; Arrieta, M C; Kanneganti, T-D; Rogler, G; Colombel, J-F; Cortot, A; Desreumaux, P; Vignal, C
2014-01-01
The increasing incidence of inflammatory bowel diseases (IBDs) in developing countries has highlighted the critical role of environmental pollutants as causative factors in their pathophysiology. Despite its ubiquity and immune toxicity, the impact of aluminum in the gut is not known. This study aimed to evaluate the effects of environmentally relevant intoxication with aluminum in murine models of colitis and to explore the underlying mechanisms. Oral administration of aluminum worsened intestinal inflammation in mice with 2,4,6-trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis and chronic colitis in interleukin 10-negative (IL10−/−) mice. Aluminum increased the intensity and duration of macroscopic and histologic inflammation, colonic myeloperoxidase activity, inflammatory cytokines expression, and decreased the epithelial cell renewal compared with control animals. Under basal conditions, aluminum impaired intestinal barrier function. In vitro, aluminum induced granuloma formation and synergized with lipopolysaccharide to stimulate inflammatory cytokines expression by epithelial cells. Deleterious effects of aluminum on intestinal inflammation and mucosal repair strongly suggest that aluminum might be an environmental IBD risk factor. PMID:24129165
Porter, Susann; Lexén, Annika; Johansson, Suzanne; Bejerholm, Ulrika
2018-05-22
Depression is among the major causes of disability with a negative impact on both daily life and work performance. Whilst depression is the primary cause of sick-leave and unemployment in today's workplace there is a lack of knowledge of the needs of individuals with depression regarding their return-to-work (RTW) process. To explore which factors are of critical importance for people suffering from depression and who also are unemployed in their RTW-process and to explore the impact of two vocational approaches on the service users' experiences. The study included participants in two vocational rehabilitation approaches; Individual Enabling and Support (IES) and Traditional Vocational Rehabilitation (TVR). Qualitative methods were applied to explore critical factors in the RTW-process. Individuals with affective disorders including depression and bipolar disorder were included.RESULTSThree themes emerged as critical factors; Experiencing hope and power, Professionals' positive attitudes, beliefs and behaviours, and Employing a holistic perspective and integrating health and vocational service.CONCLUSIONThis study has demonstrated critical factors for the return-to-work process as experienced by persons with depression. To experience hope and power, to meet professionals that believe "you can work", who use a person-centred and holistic service approach, are such factors necessary for gaining a real job. In particular, professionals in TVR need to embrace this understanding since their services were not experienced as including these elements.
Akterian, S G; Fernandez, P S; Hendrickx, M E; Tobback, P P; Periago, P M; Martinez, A
1999-03-01
A risk analysis was applied to experimental heat resistance data. This analysis is an approach for processing experimental thermobacteriological data in order to study the variability of D and z values of target microorganisms depending on the deviations range of environmental factors, to determine the critical factors and to specify their critical tolerance. This analysis is based on sets of sensitivity functions applied to a specific case of experimental data related to the thermoresistance of Clostridium sporogenes and Bacillus stearothermophilus spores. The effect of the following factors was analyzed: the type of target microorganism; nature of the heating substrate; pH, temperature; type of acid employed and NaCl concentration. The type of target microorganism to be inactivated, the nature of the substrate (reference or real food) and the heating temperature were identified as critical factors, determining about 90% of the alteration of the microbiological risk. The effect of the type of acid used for the acidification of products and the concentration of NaCl can be assumed to be negligible factors for the purposes of engineering calculations. The critical non-uniformity in temperature during thermobacteriological studies was set as 0.5% and the critical tolerances of pH value and NaCl concentration were 5%. These results are related to a specific case study, for that reason their direct generalization is not correct.
Critical Care Organizations in Academic Medical Centers in North America: A Descriptive Report.
Pastores, Stephen M; Halpern, Neil A; Oropello, John M; Kostelecky, Natalie; Kvetan, Vladimir
2015-10-01
With the exception of a few single-center descriptive reports, data on critical care organizations are relatively sparse. The objectives of our study were to determine the structure, governance, and experience to date of established critical care organizations in North American academic medical centers. A 46-item survey questionnaire was electronically distributed using Survey Monkey to the leadership of 27 identified critical care organizations in the United States and Canada between September 2014 and February 2015. A critical care organization had to be headed by a physician and have primary governance over the majority, if not all, of the ICUs in the medical center. We received 24 responses (89%). The majority of the critical care organizations (83%) were called departments, centers, systems, or operations committees. Approximately two thirds of respondents were from larger (> 500 beds) urban institutions, and nearly 80% were primary university medical centers. On average, there were six ICUs per academic medical center with a mean of four ICUs under critical care organization governance. In these ICUs, intensivists were present in-house 24/7 in 49%; advanced practice providers in 63%; hospitalists in 21%; and telemedicine coverage in 14%. Nearly 60% of respondents indicated that they had a separate hospital budget to support data management and reporting, oversight of their ICUs, and rapid response teams. The transition from the traditional model of ICUs within departmentally controlled services or divisions to a critical care organization was described as gradual in 50% and complete in only 25%. Nearly 90% indicated that their critical care organization governance structure was either moderately or highly effective; a similar number suggested that their critical care organizations were evolving with increasing domain and financial control of the ICUs at their respective institutions. Our survey of the very few critical care organizations in North American academic medical centers showed that the governance models of critical care organizations vary and continue to evolve. Additional studies are warranted to improve our understanding of the factors that can foster the growth of critical care organizations and how they can be effective.
2010-07-01
using the FVII coagulant activity (FVII:C) assay, a one- stage assay using thromboplastin tissue factor , which quantifies FVII clotting activity in...and the resultant production of dysfunctional factors II, VII, and X. This study focused on PT specifically because this measure examines the TF...ORIGINAL ARTICLE Prolonged Prothrombin Time After Recombinant Activated Factor VII Therapy in Critically Bleeding Trauma Patients Is Associated With
Alagador, Diogo; Cerdeira, Jorge Orestes
2018-03-01
The effectiveness of conservation plans depends on environmental, ecological, and socioeconomic factors. Global change makes conservation decisions even more challenging. Among others, the components of most concern in modern-day conservation assessments are as follows: the magnitude of climate and land-use changes; species dispersal abilities; competition with harmful socioeconomic activities for land use; the number of threatened species to consider; and, relatedly, the available budget to act. Here, we provide a unified framework that quantifies the relative effects of those factors on conservation. We conducted an area-scheduling work plan in order to identify sets of areas along time in which the persistence expectancies of species are optimized. The approach was illustrated using data of potential distribution of ten nonvolant mammal species in Iberia Peninsula from current time up to 2080. Analyses were conducted considering possible setups among the factors that are likely to critically impact conservation success: three climate/land-use scenarios; four species' dispersal kernel curves; six land-use layer types; and two planning designs, in which assessments were made independently for each species, or joining all species in a single plan. We identified areas for an array of investments levels capable to circumvent the spatial conflicts with socioeconomic activities. The effect of each factor on the estimated species persistence scores was assessed using linear mixed models. Our results evidence that conservation success is highly reliant on the resources available to abate land-use conflicts. Nonetheless, under the same investment levels, planning design and climate change were the factors that most shaped species persistence scores. The persistence of five species was especially affected by the sole effect of planning design and consequently, larger conservation investments may retard climatic debts. For three species, the negative effects of a changing climate and of multiple-species planning designs added up, making these species especially at risk. Integrated assessments of the factors most likely to limit species persistence are pivotal to achieve effectiveness.
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei
2016-12-01
Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and provide a scientific support for the diffuse pollution control and management in China.
Koo, Ki-Tae; Susin, Cristiano; Wikesjö, Ulf M E; Choi, Seong-Ho; Kim, Chong-Kwan
2007-04-01
In a previous study, recombinant human transforming growth factor-beta1 (rhTGF-β 1 ) in a calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for guided tissue regeneration (GTR) to study whether rhTGF-β 1 would enhance or accelerate periodontal regeneration. The results showed minimal benefits of rhTGF-β 1 , and a clear account for this could not be offered. One potential cause may be that the rhTGF-β 1 formulation was biologically inactive. Several growth or differentiation factors have been suggested to accelerate degradation of biomaterials used as carriers. The objective of this study was to evaluate possible activity of rhTGF-β 1 on biodegradation of the calcium carbonate carrier. rhTGF-β 1 in a putty-formulated particulate calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for GTR in five beagle dogs. Contralateral defects received the calcium carbonate carrier combined with GTR without rhTGF-β 1 (control). The animals were euthanized at week 4 post-surgery and block biopsies of the defect sites were collected for histologic and histometric analysis. Radiographs were obtained at defect creation and weeks 2 and 4 after defect creation. No statistically significant differences were observed in new bone formation (bone height and area) among the treatments. However, total residual carrier was significantly reduced in sites receiving rhTGF-β 1 compared to control (P = 0.04). Similarly, carrier density was considerably reduced in sites receiving rhTGF-β 1 compared to control; the difference was borderline statistically significant (P = 0.06). Within the limitations of the study, it may be concluded that rhTGF-β 1 accelerates biodegradation of a particulate calcium carbonate biomaterial, indicating a biologic activity of the rhTGF-β 1 formulation apparently not encompassing enhanced or accelerated periodontal regeneration. © 2007 American Academy of Periodontology.
Koo, Ki-Tae; Susin, Cristiano; Wikesjö, Ulf M E; Choi, Seong-Ho; Kim, Chong-Kwan
2007-04-01
In a previous study, recombinant human transforming growth factor-beta1 (rhTGF-beta(1)) in a calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for guided tissue regeneration (GTR) to study whether rhTGF-beta(1) would enhance or accelerate periodontal regeneration. The results showed minimal benefits of rhTGF-beta(1), and a clear account for this could not be offered. One potential cause may be that the rhTGF-beta(1) formulation was biologically inactive. Several growth or differentiation factors have been suggested to accelerate degradation of biomaterials used as carriers. The objective of this study was to evaluate possible activity of rhTGF-beta(1) on biodegradation of the calcium carbonate carrier. rhTGF-beta(1) in a putty-formulated particulate calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for GTR in five beagle dogs. Contralateral defects received the calcium carbonate carrier combined with GTR without rhTGF-beta(1) (control). The animals were euthanized at week 4 post-surgery and block biopsies of the defect sites were collected for histologic and histometric analysis. Radiographs were obtained at defect creation and weeks 2 and 4 after defect creation. No statistically significant differences were observed in new bone formation (bone height and area) among the treatments. However, total residual carrier was significantly reduced in sites receiving rhTGF-beta(1) compared to control (P = 0.04). Similarly, carrier density was considerably reduced in sites receiving rhTGF-beta(1) compared to control; the difference was borderline statistically significant (P = 0.06). Within the limitations of the study, it may be concluded that rhTGF-beta(1) accelerates biodegradation of a particulate calcium carbonate biomaterial, indicating a biologic activity of the rhTGF-beta(1) formulation apparently not encompassing enhanced or accelerated periodontal regeneration.
2014-01-01
Background Plant secondary metabolites are critical to various biological processes. However, the regulations of these metabolites are complex because of regulatory rewiring or crosstalk. To unveil how regulatory behaviors on secondary metabolism reshape biological processes, we constructed and analyzed a dynamic regulatory network of secondary metabolic pathways in Arabidopsis. Results The dynamic regulatory network was constructed through integrating co-expressed gene pairs and regulatory interactions. Regulatory interactions were either predicted by conserved transcription factor binding sites (TFBSs) or proved by experiments. We found that integrating two data (co-expression and predicted regulatory interactions) enhanced the number of highly confident regulatory interactions by over 10% compared with using single data. The dynamic changes of regulatory network systematically manifested regulatory rewiring to explain the mechanism of regulation, such as in terpenoids metabolism, the regulatory crosstalk of RAV1 (AT1G13260) and ATHB1 (AT3G01470) on HMG1 (hydroxymethylglutaryl-CoA reductase, AT1G76490); and regulation of RAV1 on epoxysqualene biosynthesis and sterol biosynthesis. Besides, we investigated regulatory rewiring with expression, network topology and upstream signaling pathways. Regulatory rewiring was revealed by the variability of genes’ expression: pathway genes and transcription factors (TFs) were significantly differentially expressed under different conditions (such as terpenoids biosynthetic genes in tissue experiments and E2F/DP family members in genotype experiments). Both network topology and signaling pathways supported regulatory rewiring. For example, we discovered correlation among the numbers of pathway genes, TFs and network topology: one-gene pathways (such as δ-carotene biosynthesis) were regulated by a fewer TFs, and were not critical to metabolic network because of their low degrees in topology. Upstream signaling pathways of 50 TFs were identified to comprehend the underlying mechanism of TFs’ regulatory rewiring. Conclusion Overall, this dynamic regulatory network largely improves the understanding of perplexed regulatory rewiring in secondary metabolism in Arabidopsis. PMID:24993737
Water properties in seeds from wild species native to Spain
USDA-ARS?s Scientific Manuscript database
Temperature, water content and relative humidity are critical factors contributing to seed longevity during storage. Water sorption isotherms describe the interrelationships between these critical factors. Understanding these relationships can lead to predictions about how best to process seeds for...
Godfrey, Erin B.; Wolf, Sharon
2015-01-01
Objectives Economic inequality is a growing concern in the United States and globally. The current study uses qualitative techniques to (1) explore the attributions low-income racial/ethnic minority and immigrant women make for poverty and wealth in the U.S., and (2) clarify important links between attributions, critical consciousness development and system justification theory. Methods In-depth interview transcripts from 19 low-income immigrant Dominican and Mexican and native African-American mothers in a large Northeastern city were analyzed using open coding techniques. Interview topics included perceptions of current economic inequality and mobility and experiences of daily economic hardships. Results Almost all respondents attributed economic inequality to individual factors (character flaws, lack of hard work). Structural explanations for poverty and wealth were expressed by less than half the sample and almost always paired with individual explanations. Moreover, individual attributions included system-justifying beliefs such as the belief in meritocracy and equality of opportunity and structural attributions represented varying levels of critical consciousness. Conclusions Our analysis sheds new light on how and why individuals simultaneously hold individual and structural attributions and highlights key links between system justification and critical consciousness. It shows that critical consciousness and system justification do not represent opposite stances along a single underlying continuum, but are distinct belief systems and motivations. It also suggests that the motive to justify the system is a key psychological process impeding the development of critical consciousness. Implications for scholarship and intervention are discussed. PMID:25915116
Godfrey, Erin B; Wolf, Sharon
2016-01-01
Economic inequality is a growing concern in the United States and globally. The current study uses qualitative techniques to (a) explore the attributions low-income racial/ethnic minority and immigrant women make for poverty and wealth in the U.S., and (b) clarify important links between attributions, critical consciousness development, and system justification theory. In-depth interview transcripts from 19 low-income immigrant Dominican and Mexican and native African American mothers in a large Northeastern city were analyzed using open coding techniques. Interview topics included perceptions of current economic inequality and mobility and experiences of daily economic hardships. Almost all respondents attributed economic inequality to individual factors (character flaws, lack of hard work). Structural explanations for poverty and wealth were expressed by fewer than half the sample and almost always paired with individual explanations. Moreover, individual attributions included system-justifying beliefs such as the belief in meritocracy and equality of opportunity and structural attributions represented varying levels of critical consciousness. Our analysis sheds new light on how and why individuals simultaneously hold individual and structural attributions and highlights key links between system justification and critical consciousness. It shows that critical consciousness and system justification do not represent opposite stances along a single underlying continuum, but are distinct belief systems and motivations. It also suggests that the motive to justify the system is a key psychological process impeding the development of critical consciousness. Implications for scholarship and intervention are discussed. (c) 2016 APA, all rights reserved).
Hypoxia and fetal heart development.
Patterson, A J; Zhang, L
2010-10-01
Fetal hearts show a remarkable ability to develop under hypoxic conditions. The metabolic flexibility of fetal hearts allows sustained development under low oxygen conditions. In fact, hypoxia is critical for proper myocardial formation. Particularly, hypoxia inducible factor 1 (HIF-1) and vascular endothelial growth factor play central roles in hypoxia-dependent signaling in fetal heart formation, impacting embryonic outflow track remodeling and coronary vessel growth. Although HIF is not the only gene involved in adaptation to hypoxia, its role places it as a central figure in orchestrating events needed for adaptation to hypoxic stress. Although "normal" hypoxia (lower oxygen tension in the fetus as compared with the adult) is essential in heart formation, further abnormal hypoxia in utero adversely affects cardiogenesis. Prenatal hypoxia alters myocardial structure and causes a decline in cardiac performance. Not only are the effects of hypoxia apparent during the perinatal period, but prolonged hypoxia in utero also causes fetal programming of abnormality in the heart's development. The altered expression pattern of cardioprotective genes such as protein kinase c epsilon, heat shock protein 70, and endothelial nitric oxide synthase, likely predispose the developing heart to increased vulnerability to ischemia and reperfusion injury later in life. The events underlying the long-term changes in gene expression are not clear, but likely involve variation in epigenetic regulation.
Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading
2012-01-01
Introduction Critically ill ICU patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decreased quality of life for survivors. Critical illness myopathy (CIM) is a frequently observed neuromuscular disorder in ICU patients. Sepsis, systemic corticosteroid hormone treatment and post-synaptic neuromuscular blockade have been forwarded as the dominating triggering factors. Recent experimental results from our group using a unique experimental rat ICU model show that the mechanical silencing associated with CIM is the primary triggering factor. This study aims to unravel the mechanisms underlying CIM, and to evaluate the effects of a specific intervention aiming at reducing mechanical silencing in sedated and mechanically ventilated ICU patients. Methods Muscle gene/protein expression, post-translational modifications (PTMs), muscle membrane excitability, muscle mass measurements, and contractile properties at the single muscle fiber level were explored in seven deeply sedated and mechanically ventilated ICU patients (not exposed to systemic corticosteroid hormone treatment, post-synaptic neuromuscular blockade or sepsis) subjected to unilateral passive mechanical loading for 10 hours per day (2.5 hours, four times) for 9 ± 1 days. Results These patients developed a phenotype considered pathognomonic of CIM; that is, severe muscle wasting and a preferential myosin loss (P < 0.001). In addition, myosin PTMs specific to the ICU condition were observed in parallel with an increased sarcolemmal expression and cytoplasmic translocation of neuronal nitric oxide synthase. Passive mechanical loading for 9 ± 1 days resulted in a 35% higher specific force (P < 0.001) compared with the unloaded leg, although it was not sufficient to prevent the loss of muscle mass. Conclusion Mechanical silencing is suggested to be a primary mechanism underlying CIM; that is, triggering the myosin loss, muscle wasting and myosin PTMs. The higher neuronal nitric oxide synthase expression found in the ICU patients and its cytoplasmic translocation are forwarded as a probable mechanism underlying these modifications. The positive effect of passive loading on muscle fiber function strongly supports the importance of early physical therapy and mobilization in deeply sedated and mechanically ventilated ICU patients. PMID:23098317
NASA Astrophysics Data System (ADS)
Hojo, M.; Osawa, K.; Adachi, T.; Inoue, Y.; Osamura, K.; Ochiai, S.; Ayai, N.; Hayashi, K.
2010-11-01
Tensile strain tolerance of the critical current in (Bi,Pb)2Sr2Ca2Cu3Ox (Bi2223) composite superconductor is dramatically improved when the tape is laminated with stainless steel. For practical applications, it is important to understand whether this reinforcement by lamination is effective under fatigue loading. In the present study, we carried out fatigue tests in LN2 and measured the critical current at the specific fatigue cycles to clarify the strain tolerance of the critical current in stainless steel-laminated drastically innovative Bi2223 (DI-BSCCO®) tapes. The fatigue tests were carried out using a computer-controlled 10 kN servo-hydraulic fatigue testing machine with a load cell capacity of 2.5 kN. Tests under static loading showed that the irreversible stress at which the critical current is reduced by 1% from the original value (tensile stress at Ic/Ic0 = 0.99) was 315 MPa when measured at unloading state. The present fatigue tests results indicated that the critical current was maintained at over 98% of the original value at unloading state after stress cycles of 106 when the static irreversible stress was selected as the maximum stress under fatigue loading. Thus, laminated DI-BSCCO tapes showed excellent mechanical properties even under fatigue loading.
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.;
2011-01-01
Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.
Pharmacogenetics of drugs withdrawn from the market.
Zhang, Wei; Roederer, Mary W; Chen, Wang-Qing; Fan, Lan; Zhou, Hong-Hao
2012-01-01
The safety and efficacy of candidate compounds are critical factors during the development of drugs, and most drugs have been withdrawn from the market owing to severe adverse reactions. Individuals/populations with different genetic backgrounds may show significant differences in drug metabolism and efficacy, which can sometimes manifest as severe adverse drug reactions. With an emphasis on the mechanisms underlying abnormal drug effects caused by genetic mutations, pharmacogenetic studies may enhance the safety and effectiveness of drug use, provide more comprehensive delineations of the scope of usage, and change the fates of drugs withdrawn from the market.
Physiopathology of the cochlear microcirculation.
Shi, Xiaorui
2011-12-01
Normal blood supply to the cochlea is critically important for establishing the endocochlear potential and sustaining production of endolymph. Abnormal cochlear microcirculation has long been considered an etiologic factor in noise-induced hearing loss, age-related hearing loss (presbycusis), sudden hearing loss or vestibular function, and Meniere's disease. Knowledge of the mechanisms underlying the pathophysiology of cochlear microcirculation is of fundamental clinical importance. A better understanding of cochlear blood flow (CoBF) will enable more effective management of hearing disorders resulting from aberrant blood flow. This review focuses on recent discoveries and findings related to the physiopathology of the cochlear microvasculature. Published by Elsevier B.V.
Physiopathology of the Cochlear Microcirculation
Shi, Xiaorui
2011-01-01
Normal blood supply to the cochlea is critically important for establishing the endocochlear potential and sustaining production of endolymph. Abnormal cochlear microcirculation has long been considered an etiologic factor in noise-induced hearing loss, age-related hearing loss (presbycusis), sudden hearing loss or vestibular function, and Meniere's disease. Knowledge of the mechanisms underlying the pathophysiology of cochlear microcirculation is of fundamental clinical importance. A better understanding of cochlear blood flow (CoBF) will enable more effective management of hearing disorders resulting from aberrant blood flow. This review focuses on recent discoveries and findings related to the physiopathology of the cochlear microvasculature. PMID:21875658
Under the shadow of Tuskegee: African Americans and health care.
Gamble, V N
1997-11-01
The Tuskegee Syphilis Study continues to cast its long shadow on the contemporary relationship between African Americans and the biomedical community. Numerous reports have argued that the Tuskegee Syphilis Study is the most important reason why many African Americans distrust the institutions of medicine and public health. Such an interpretation neglects a critical historical point: the mistrust predated public revelations about the Tuskegee study. This paper places the syphilis study within a broader historical and social context to demonstrate that several factors have influenced--and continue to influence--African American's attitudes toward the biomedical community.
Basu, Sonali; Pollack, Murray M
2017-05-05
Pediatric critical care medicine abstracts presented at North American national academic meetings have not been followed up to determine their publication outcomes. Our objective was to determine the following: 1) the proportion of these presentations that are published in peer-reviewed journals within 5 years; 2) the impact of trainee status on time to and success of publication; and 3) the quality of the research as reflected in the publishing journal's impact factor. Four years of abstracts (2007-2011) were reviewed from the American Academy of Pediatrics, Pediatric Academic Societies, and Society of Critical Care Medicine national meetings. Pediatric critical care medicine abstracts were delineated by the meeting or identified by keyword search. Data included mode of presentation, trainee status of first author, publication status within 5 years based on a PubMed search, trainee position in the journal of publication authorship list, and the impact factor of journal of publication. We evaluated 267 pediatric critical care medicine abstracts, 85-94 from each meeting. Overall, 41% were published, with the highest rate in Pediatric Academic Societies abstracts (54% Pediatric Academic Societies, 38% Society of Critical Care Medicine, and 33% American Academy of Pediatrics; p = 0.011). Mean time to publication was 22 (± 3) months and did not differ by conference or presentation mode. Journal first authorship was retained in 84%. Journal impact factor was highest in Society of Critical Care Medicine abstracts (3.38 Society of Critical Care Medicine, 2.64 Pediatric Academic Societies, and 1.92 American Academy of Pediatrics; p = 0.006). First author trainee status was not associated with publication rate, time to publication, and impact factor. A total of 100% of trainees but only 79% of nontrainees who published retained first authorship. Less than half of pediatric critical care medicine research abstracts presented at North American national academic meetings culminate in articles. Pediatric Academic Societies had the highest publication success rate, and Society of Critical Care Medicine abstracts were published in journals with the highest impact factors. All trainees who were first authors retained that status in the journal publications.
ERIC Educational Resources Information Center
Bhuasiri, Wannasiri; Xaymoungkhoun, Oudone; Zo, Hangjung; Rho, Jae Jeung; Ciganek, Andrew P.
2012-01-01
This study identifies the critical success factors that influence the acceptance of e-learning systems in developing countries. E-learning is a popular mode of delivering educational materials in higher education by universities throughout the world. This study identifies multiple factors that influence the success of e-learning systems from the…
ERIC Educational Resources Information Center
Johnson, Ian M.
2005-01-01
This paper identifies factors that contribute to the successful initiation of international collaborative projects intended to support the development of education for librarianship and information sciences. It discusses the widespread failure to analyse the Critical Success Factors in international collaborative projects and proposes a case study…
Mechanical annealing under low-amplitude cyclic loading in micropillars
NASA Astrophysics Data System (ADS)
Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo
2016-04-01
Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.
e-Healthcare in India: critical success factors for sustainable health systems.
Taneja, Udita; Sushil
2007-01-01
As healthcare enterprises seek to move towards an integrated, sustainable healthcare delivery model an IT-enabled or e-Healthcare strategy is being increasingly adopted. In this study we identified the critical success factors influencing the effectiveness of an e-Healthcare strategy in India. The performance assessment criteria used to measure effectiveness were increasing reach and reducing cost of healthcare delivery. A survey of healthcare providers was conducted. Analytic Hierarchy Process (AHP) and Interpretive Structural Modeling (ISM) were the analytical tools used to determine the relative importance of the critical success factors in influencing effectiveness of e-Healthcare and their interplay with each other. To succeed in e-Healthcare initiatives the critical success factors that need to be in place are appropriate government policies, literacy levels, and telecommunications and power infrastructure in the country. The focus should not be on the IT tools and biomedical engineering technologies as is most often the case. Instead the nontechnology factors such as healthcare provider and consumer mindsets should be addressed to increase acceptance of, and enhance the effectiveness of, sustainable e-Healthcare services.
NASA Astrophysics Data System (ADS)
Sturm, A. B.
2016-12-01
The wildlife conservation organization, Defenders of Wildlife, petitioned NMFS to list the smooth hammerhead shark, Sphryna zygaena, as endangered or threatened throughout its range under the ESA. The petition was critically evaluated to determine if the petitioners presented substantial scientific or commercial information indicating that the smooth hammerhead shark may warrant listing under the ESA. The petition and the cited scientific literature (as well as scientific literature readily available in NMFS files) were evaluated to determine if the smooth hammerhead shark may be threatened or endangered because of any one or a combination of the following five ESA section 4(a)(1) factors: (1) present or threatened destruction, modification, or curtailment of its habitat or range; (2) over utilization for commercial, recreational, scientific, or educational purposes; (3) disease or predation; (4) inadequacy of existing regulatory mechanisms; (5) or other natural or manmade factors affecting its continued existence. The available scientific literature indicates that the smooth hammerhead shark populations have declined in multiple regions. Smooth hammerhead sharks may warrant listing due to ongoing threats of over utilization for commercial purposes by global fisheries that target and retain incidental catch of these species to obtain their high-value fins, possible inadequacies in global regulatory mechanisms to control this level of exploitation, and natural factors (such as inherent biological vulnerabilities) that may be exacerbating these threats. Based on these findings, the smooth hammerhead shark may warrant listing as a threatened or endangered species under the ESA and a status review of the species is currently being conducted.
NASA Astrophysics Data System (ADS)
Sturm, A. B.
2016-02-01
The wildlife conservation organization, Defenders of Wildlife, petitioned NMFS to list the smooth hammerhead shark, Sphryna zygaena, as endangered or threatened throughout its range under the ESA. The petition was critically evaluated to determine if the petitioners presented substantial scientific or commercial information indicating that the smooth hammerhead shark may warrant listing under the ESA. The petition and the cited scientific literature (as well as scientific literature readily available in NMFS files) were evaluated to determine if the smooth hammerhead shark may be threatened or endangered because of any one or a combination of the following five ESA section 4(a)(1) factors: (1) present or threatened destruction, modification, or curtailment of its habitat or range; (2) over utilization for commercial, recreational, scientific, or educational purposes; (3) disease or predation; (4) inadequacy of existing regulatory mechanisms; (5) or other natural or manmade factors affecting its continued existence. The available scientific literature indicates that the smooth hammerhead shark populations have declined in multiple regions. Smooth hammerhead sharks may warrant listing due to ongoing threats of over utilization for commercial purposes by global fisheries that target and retain incidental catch of these species to obtain their high-value fins, possible inadequacies in global regulatory mechanisms to control this level of exploitation, and natural factors (such as inherent biological vulnerabilities) that may be exacerbating these threats. Based on these findings, the smooth hammerhead shark may warrant listing as a threatened or endangered species under the ESA and a status review of the species is currently being conducted.
DOT National Transportation Integrated Search
1976-03-01
This report discusses critical factors which should be considered in the preparation of medical standards for locomotive engineers or other individuals who operate moving equipment. In many instances, a guideline is not proposed because case by case ...
Critical excitation spectrum of a quantum chain with a local three-spin coupling.
McCabe, John F; Wydro, Tomasz
2011-09-01
Using the phenomenological renormalization group (PRG), we evaluate the low-energy excitation spectrum along the critical line of a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields, i.e., a Turban model. The low-energy excitation spectrum found with the PRG agrees with the spectrum predicted for the (D(4),A(4)) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the two-dimensional three-state Potts model are in the same universality class.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
...We, the U.S. Fish and Wildlife Service, propose to designate critical habitat for the Gunnison sage-grouse (Centrocercus minimus) under the Endangered Species Act of 1973, as amended (Act). If we finalize this rule as proposed, it would extend the Act's protections to this species' critical habitat. The effect of this regulation is to designate critical habitat for the Gunnison sage-grouse under the Act. In total, approximately 689,675 hectares (ha) (1,704,227 acres (ac)) are being proposed for designation as critical habitat in Chaffee, Delta, Dolores, Gunnison, Hinsdale, Mesa, Montrose, Ouray, Saguache, and San Miguel Counties in Colorado, and in Grand and San Juan Counties in Utah.
Oral intake evaluation in patients following critical illness: an ICU cohort study.
Jarden, Rebecca J; Sutton-Smith, Lynsey; Boulton, Catherine
2018-04-16
Timely and adequate nutrition improves health outcomes for the critically ill patient. Despite clinical guidelines recommending early oral nutrition, survivors of critical illness experience significant nutritional deficits. This cohort study evaluates the oral nutrition intake in intensive care unit (ICU) patients who have experienced recent critical illness. The oral nutrition intake of a convenience sample of ICU patients post-critical illness was observed during a 1-month period. Data pertaining to both the amount of oral nutrition intake and factors impacting optimal oral nutrition intake were collected and analysed. Inadequate oral intake was identified in 62% of the 79 patients assessed (n = 49). This was noted early in the ICU stay, around day 1-2, for most of the patients. A significant proportion (25%) of patients remained in the hospital with poor oral intake that persisted beyond ICU day 5. Unsurprisingly, these were the patients who had longer ICU stays. Critical illness weakness was a factor in the assessment of poor oral intake. To conclude, patients who have experienced critical illness also experience suboptimal oral nutrition. The three key factors that were identified as impacting optimal oral nutrition were early removal of nasogastric tubes, critical illness weakness and poor appetite post-critical illness. Seven key recommendations are made based on this cohort study. These recommendations are related to patient assessment, monitoring, documentation and future guidelines. Future research opportunities are highlighted, including the investigation of strategies to improve the transition of patients' post-critical illness to oral nutrition. © 2018 British Association of Critical Care Nurses.
A missing ethical competency? A review of critical reflection in health promotion.
Tretheway, Rebecca; Taylor, Jane; O'Hara, Lily; Percival, Nikki
2015-12-01
There is increasing emphasis in the health promotion literature on the ethical imperative for the profession to move towards critical practice. A key challenge for health promotion is that critical practice appears both under-developed and under-practiced. This is evident in the omission of critical reflection from Australian and international competencies for health promotion practitioners. A narrative literature review was undertaken to explore the current use of critical reflection in health promotion. Critical reflection models relevant to health promotion were identified and critiqued. There was a dearth of literature on critical reflection within health promotion, despite recognition of its potential to support critical practice. The discipline of critical social work provided literature on the use, effect and outcome of critical reflection in practice. The interdisciplinary critical reflection model was identified as the model most applicable to health promotion. Underpinned by critical theory, this model emphasises both critical and ethical practice. Critical reflection is a core competency for health promotion practitioners to address the ethical imperative to move towards critical practice. There is a need to explore the application of a critical reflection model in health promotion to determine how it may support critical and ethical practice. So what? If health promotion is to meet its ethical responsibilities, then critical reflection needs to be articulated as a core health promotion competency and a model for its application in health promotion developed.
21 CFR 113.100 - Processing and production records.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-in or drained weight, or other critical factors specified in the scheduled process shall also be... container position; speed of the container conveyor chain; and, when the scheduled process specifies... of container. (6) Food preservation methods wherein critical factors such as water activity are used...
ERIC Educational Resources Information Center
Nevo, Dorit; McClean, Ron; Nevo, Saggi
2010-01-01
This paper discusses the relative advantage offered by online Students' Evaluations of Teaching (SET) and describes a study conducted at a Canadian university to identify critical success factors of online evaluations from students' point of view. Factors identified as important by the students include anonymity, ease of use (of both SET survey…
Risk factors for invasive fungal disease in critically ill adult patients: a systematic review.
Muskett, Hannah; Shahin, Jason; Eyres, Gavin; Harvey, Sheila; Rowan, Kathy; Harrison, David
2011-01-01
Over 5,000 cases of invasive Candida species infections occur in the United Kingdom each year, and around 40% of these cases occur in critical care units. Invasive fungal disease (IFD) in critically ill patients is associated with increased morbidity and mortality at a cost to both the individual and the National Health Service. In this paper, we report the results of a systematic review performed to identify and summarise the important risk factors derived from published multivariable analyses, risk prediction models and clinical decision rules for IFD in critically ill adult patients to inform the primary data collection for the Fungal Infection Risk Evaluation Study. An internet search was performed to identify articles which investigated risk factors, risk prediction models or clinical decisions rules for IFD in critically ill adult patients. Eligible articles were identified in a staged process and were assessed by two investigators independently. The methodological quality of the reporting of the eligible articles was assessed using a set of questions addressing both general and statistical methodologies. Thirteen articles met the inclusion criteria, of which eight articles examined risk factors, four developed a risk prediction model or clinical decision rule and one evaluated a clinical decision rule. Studies varied in terms of objectives, risk factors, definitions and outcomes. The following risk factors were found in multiple studies to be significantly associated with IFD: surgery, total parenteral nutrition, fungal colonisation, renal replacement therapy, infection and/or sepsis, mechanical ventilation, diabetes, and Acute Physiology and Chronic Health Evaluation II (APACHE II) or APACHE III score. Several other risk factors were also found to be statistically significant in single studies only. Risk factor selection process and modelling strategy also varied across studies, and sample sizes were inadequate for obtaining reliable estimates. This review shows a number of risk factors to be significantly associated with the development of IFD in critically ill adults. Methodological limitations were identified in the design and conduct of studies in this area, and caution should be used in their interpretation.
Risk factors for invasive fungal disease in critically ill adult patients: a systematic review
2011-01-01
Introduction Over 5,000 cases of invasive Candida species infections occur in the United Kingdom each year, and around 40% of these cases occur in critical care units. Invasive fungal disease (IFD) in critically ill patients is associated with increased morbidity and mortality at a cost to both the individual and the National Health Service. In this paper, we report the results of a systematic review performed to identify and summarise the important risk factors derived from published multivariable analyses, risk prediction models and clinical decision rules for IFD in critically ill adult patients to inform the primary data collection for the Fungal Infection Risk Evaluation Study. Methods An internet search was performed to identify articles which investigated risk factors, risk prediction models or clinical decisions rules for IFD in critically ill adult patients. Eligible articles were identified in a staged process and were assessed by two investigators independently. The methodological quality of the reporting of the eligible articles was assessed using a set of questions addressing both general and statistical methodologies. Results Thirteen articles met the inclusion criteria, of which eight articles examined risk factors, four developed a risk prediction model or clinical decision rule and one evaluated a clinical decision rule. Studies varied in terms of objectives, risk factors, definitions and outcomes. The following risk factors were found in multiple studies to be significantly associated with IFD: surgery, total parenteral nutrition, fungal colonisation, renal replacement therapy, infection and/or sepsis, mechanical ventilation, diabetes, and Acute Physiology and Chronic Health Evaluation II (APACHE II) or APACHE III score. Several other risk factors were also found to be statistically significant in single studies only. Risk factor selection process and modelling strategy also varied across studies, and sample sizes were inadequate for obtaining reliable estimates. Conclusions This review shows a number of risk factors to be significantly associated with the development of IFD in critically ill adults. Methodological limitations were identified in the design and conduct of studies in this area, and caution should be used in their interpretation. PMID:22126425
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
...We, the U.S. Fish and Wildlife Service (Service), designate critical habitat for two Texas plants, Leavenworthia texana (Texas golden gladecress) and Hibiscus dasycalyx (Neches River rose-mallow), under the Endangered Species Act of 1973. Critical habitat for the Texas golden gladecress is located in Sabine and San Augustine Counties, Texas, and for the Neches River rose-mallow in Nacogdoches, Houston, Trinity, Cherokee, and Harrison Counties, Texas. The effect of this regulation is to designate critical habitat for these two East Texas plants under the Endangered Species Act.
Prioritization of factors impacting on performance of power looms using AHP
NASA Astrophysics Data System (ADS)
Dulange, S. R.; Pundir, A. K.; Ganapathy, L.
2014-08-01
The purpose of this paper is to identify the critical success factors influencing the performance of power loom textiles, to evaluate their impact on the organizational performance and to find out the effect of these factors on the organizational performance of small and medium-sized enterprises (SMEs) in the Solapur (Maharashtra) industrial sector using AHP. In the methodology adopted, factors are identified through the literature survey and finalization of these factors is done by taking the opinion of experts in the Indian context. By cognitive map, the relation between these factors (direct and indirect effect) is determined and cause and effect diagram is prepared. Then these factors are arranged hierarchically and tree diagram is prepared. A questionnaire was designed and distributed among the experts; data is collected. Using expert choice software data is filled to quantify by pair-wise comparison of these factors and are prioritized. The weights demonstrate several key findings: local and global priority reveals that there is a substantial effect of the human resource, product style, and volume on the organizational performance. The skills and technology upgradation impact on organizational performance. Maintenance plays an important role in improving the organizational performances of the SMEs. Overall, the results showed the central role of the operational factors are important. The research is subject to the normal limitations of AHP. The study is using perceptual data provided by Experts which may not provide clear measures of impact factors. However, this can be overcome using more experts to collect data in future studies. Interestingly, the findings here may be generalisable outside Solapur like Ichalkarnji, Malegaon, and Bhiwadi (Maharashtra). Solapur power loom SMEs should consider AHP as an innovative tool for quantification of factors impacting on performance and improving operational and organizational performance in today's dynamic manufacturing environment. The finding suggests the notion that these critical success factors (CSFs) are to be studied carefully and improvement strategy should be developed. Moreover, the study emphasizes the need to link priority of factors to organizational performance and improvement. The study integrates the CSFs of performance and its quantification using AHP and its effect on performance of power loom textiles. The indirect impacts of underlying and fundamental factors are considered. Very few studies have been performed to investigate and understand this issue. Therefore, the research can make a useful contribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogi, Shunji; Teraguchi, Masayuki; Ikemoto, Yumiko
1996-09-15
A 1-day-old male infant with critical aortic valvular stenosis underwent balloon aortic valvuloplasty (BAV) under echocardiographic guidance during cardiopulmonary bypass. Left ventricular function dramatically improved after BAV. This technique combined with a surgical approach was safe and efficient.
SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells.
Rybak, Adrian P; Tang, Damu
2013-12-01
SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013.
Plant, Jennifer; Li, Su-Ting T; Blankenburg, Rebecca; Bogetz, Alyssa L; Long, Michele; Butani, Lavjay
2017-11-01
To explore when and in what form pediatric faculty and residents practice reflection. From February to June 2015, the authors conducted focus groups of pediatric faculty and residents at the University of California, Davis; Stanford University; and the University of California, San Francisco, until thematic saturation occurred. Transcripts were analyzed based on Mezirow's and Schon's models of reflection, using the constant comparative method associated with grounded theory. Two investigators independently coded transcripts and reconciled codes to develop themes. All investigators reviewed the codes and developed a final list of themes through consensus. Through iterative discussions, investigators developed a conceptual model of reflection in the clinical setting. Seventeen faculty and 20 residents from three institutions participated in six focus groups. Five themes emerged: triggers of reflection, intrinsic factors, extrinsic factors, timing, and outcome of reflection. Various triggers led to reflection; whether a specific trigger led to reflection depended on intrinsic and extrinsic factors. When reflection occurred, it happened in action or on action. Under optimal conditions, this reflection was goal and action directed and became critical reflection. In other instances, this process resulted in unproductive rumination or acted as an emotional release or supportive therapy. Participants reflected in clinical settings, but did not always explicitly identify it as reflection or reflect in growth-promoting ways. Strategies to enhance critical reflection include developing knowledge and skills in reflection, providing performance data to inform reflection, creating time and space for safe reflection, and providing mentorship to guide the process.
Mechanobiology of the Meniscus
McNulty, Amy L.; Guilak, Farshid
2015-01-01
The meniscus plays a critical biomechanical role in the knee, providing load support, joint stability, and congruity. Importantly, growing evidence indicates that the mechanobiologic response of meniscal cells plays a critical role in the physiologic, pathologic, and repair responses of the meniscus. Here we review experimental and theoretical studies that have begun to directly measure the biomechanical effects of joint loading on the meniscus under physiologic and pathologic conditions, showing that the menisci are exposed to high contact stresses, resulting in a complex and nonuniform stress-strain environment within the tissue. By combining microscale measurements of the mechanical properties of meniscal cells and their pericellular and extracellular matrix regions, theoretical and experimental models indicate that the cells in the meniscus are exposed to a complex and inhomogeneous environment of stress, strain, fluid pressure, fluid flow, and a variety of physicochemical factors. Studies across a range of culture systems from isolated cells to tissues have revealed that the biological response of meniscal cells is directly influenced by physical factors, such as tension, compression, and hydrostatic pressure. In addition, these studies have provided new insights into the mechanotransduction mechanisms by which physical signals are converted into metabolic or pro/anti-inflammatory responses. Taken together, these in vivo and in vitro studies show that mechanical factors play an important role in the health, degeneration, and regeneration of the meniscus. A more thorough understanding of the mechanobiologic responses of the meniscus will hopefully lead to therapeutic approaches to prevent degeneration and enhance repair of the meniscus. PMID:25731738
Animal models to improve our understanding and treatment of suicidal behavior.
Gould, T D; Georgiou, P; Brenner, L A; Brundin, L; Can, A; Courtet, P; Donaldson, Z R; Dwivedi, Y; Guillaume, S; Gottesman, I I; Kanekar, S; Lowry, C A; Renshaw, P F; Rujescu, D; Smith, E G; Turecki, G; Zanos, P; Zarate, C A; Zunszain, P A; Postolache, T T
2017-04-11
Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic-pituitary-adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio.
The crack and wedging problem for an orthotropic strip
NASA Technical Reports Server (NTRS)
Cinar, A.; Erdogan, F.
1983-01-01
The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length. Previously announced in STAR as N82-26707
What matters most: quantifying an epidemiology of consequence
Keyes, Katherine; Galea, Sandro
2015-01-01
Risk factor epidemiology has contributed to substantial public health success. In this essay, we argue, however, that the focus on risk factor epidemiology has led epidemiology to ever increasing focus on the estimation of precise causal effects of exposures on an outcome at the expense of engagement with the broader causal architecture that produces population health. To conduct an epidemiology of consequence, a systematic effort is needed to engage our science in a critical reflection both about how well and under what conditions or assumptions we can assess causal effects and also on what will truly matter most for changing population health. Such an approach changes the priorities and values of the discipline and requires reorientation of how we structure the questions we ask and the methods we use, as well as how we teach epidemiology to our emerging scholars. PMID:25749559
Confidence in critical care nursing.
Evans, Jeanne; Bell, Jennifer L; Sweeney, Annemarie E; Morgan, Jennifer I; Kelly, Helen M
2010-10-01
The purpose of the study was to gain an understanding of the nursing phenomenon, confidence, from the experience of nurses in the nursing subculture of critical care. Leininger's theory of cultural care diversity and universality guided this qualitative descriptive study. Questions derived from the sunrise model were used to elicit nurses' perspectives about cultural and social structures that exist within the critical care nursing subculture and the influence that these factors have on confidence. Twenty-eight critical care nurses from a large Canadian healthcare organization participated in semistructured interviews about confidence. Five themes arose from the descriptions provided by the participants. The three themes, tenuously navigating initiation rituals, deliberately developing holistic supportive relationships, and assimilating clinical decision-making rules were identified as social and cultural factors related to confidence. The remaining two themes, preserving a sense of security despite barriers and accommodating to diverse challenges, were identified as environmental factors related to confidence. Practice and research implications within the culture of critical care nursing are discussed in relation to each of the themes.
Quasi-Brittle Fracture of Compact Specimens with Sharp Notches and U-Shaped Cuts
NASA Astrophysics Data System (ADS)
Kornev, V. M.; Demeshkin, A. G.
2018-01-01
A two-parameter (coupled) discrete-integral criterion of fracture is proposed. It can be used to construct fracture diagrams for compact specimens with sharp cracks. Curves separating the stress-crack length plane into three domains are plotted. These domains correspond to the absence of fracture, damage accumulation in the pre-fracture region under repeated loading, and specimen fragmentation under monotonic loading. Constants used for the analytical description of fracture diagrams for quasi-brittle materials with cracks are selected with the use of approximation of the classical stress-strain diagrams for the initial material and the critical stress intensity factor. Predictions of the proposed theory are compared with experimental results on fracture of compact specimens with different radii made of polymethylmethacrylate (PMMA) and solid rubber with crack-type effects in the form of U-shaped cuts.
Hypertensive Medications in Competitive Athletes.
Pelto, Henry
Hypertension is the most common cardiovascular disease in athletes. It is an important cause of long-term morbidity and mortality, even in a fit, athletic population. Management options to reduce these long-term risks exist that have minimal impact on athletic performance. Identification and management of underlying lifestyle factors and diseases that may lead to secondary hypertension is critical. These include substance abuse, medications, and underlying medical conditions. After evaluation and management of these issues, medications can be used to reduce blood pressure. In the athletic population, first-line medication treatment should include ACE inhibitors, angiotensin II receptor blockers (ARB), and calcium channel blockers (CCB). The response to treatment should be followed closely to ensure adequate blood pressure control. Athletic participation in sports with high dynamic load should be limited in individuals with stage 2 hypertension or stage 1 hypertension with evidence of end organ damage.
Dynamic models to analyse the influence of the seat belt in a frontal collision
NASA Astrophysics Data System (ADS)
Oana, Oţăt; Nicolae, Dumitru; Ilie, Dumitru
2017-10-01
Traffic accidents are influenced by various factors, yet, the highest impacting ones are related to vehicle impact speed and collision type. Also, passive vehicle safety systems play a significant role upon the injuries suffered by vehicle occupants. Under the circumstances, a particularly important aspect to consider when using such systems is the position of the vehicle’s driver and its occupants. In what follows we embark upon an in-depth analysis in order to investigate the contact effects between the seat belt and the driver, under a dynamic regime. We set out to identify the variation of the kinematic and dynamic parameters for both the driver and the seat belt via comparative analyses between the normal position of the driver and some other out of position instances, considered as critical.
Beliefs underlying Women's intentions to consume alcohol.
Haydon, Helen M; Obst, Patricia L; Lewis, Ioni
2016-07-13
Changing trends demonstrate that women, in a number of economically-developed countries, are drinking at higher levels than ever before. Exploring key targets for intervention, this study examined the extent to which underlying beliefs in relation to alcohol consumption predicted intentions to drink in three different ways (i.e. low risk drinking, frequent drinking and binge drinking). Utilizing a prospective design survey, women (N = 1069), aged 18-87 years, completed a questionnaire measuring their beliefs and intentions regarding alcohol consumption. Then, two weeks later, 845 of the original sample, completed a follow-up questionnaire reporting their engagement in the drinking behaviors. A mixed design ANOVA was conducted to examine potential differences between women of different age groups (18-24, 25-34, 35-44, 45-54, 55 years and above) and their intentions to engage in the three different drinking behaviors. Based upon The Theory of Planned Behavior, critical beliefs analyses were carried out to identify key determinants underlying intentions to engage in the three different drinking behaviors. Significant effects of age were found in relation to frequent and binge drinking. The critical beliefs analyses revealed that a number of behavioral, control and normative beliefs were significant predictors of intentions. These beliefs varied according to age group and drinking behavior. Previously unidentified key factors that influence women's decisions to drink in certain ways have been established. Overall, future interventions and public policy may be better tailored so as to address specific age groups and drinking behaviors.
Herbivore responses to plants grown in enriched carbon dioxide atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, D.E.
1990-05-01
Our initial study of sagebrush and grasshopper responses to elevated and historical carbon dioxide atmospheres is complete and has been accepted for publication. The study on Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide has completed and the manuscript has been submitted for publication. We have completed the study of plant growth under two nutrient and carbon dioxide regimes and grasshopper feeding responses. The study of a specialist feeding caterpillar, the cabbage butterfly, and a mustard hostplant has recently been completed. We were able to identify the principal allelochemicals of the mustard plants, butenyl andmore » pentenyl isothiocyanates, by combined gas chromatography and mass spectrometry. Measurement of these chemicals has been a critical component of this study since these compounds contain nitrogen and sulphur and act as a feeding stimulant to the caterpillar. This insect responds to elevated carbon dioxide by consuming more leaves and we can now say that this is not due to a change in the feeding stimulants. Reduced leaf protein content is a critical factor for even specialist feeding insect herbivores under elevated carbon dioxide conditions. The study on Grasshopper Population Responses to Enriched Carbon Dioxide Concentration is currently in progress at the Duke University Phytotron. We have changed hostplant species in order to complement the investigations of carbon dioxide effects on tallgrass prairie. Specifically, we are using big bluestem, Andropogon geradii, as the host plant to feed to the grasshoppers. This experiment will be completed in July 1990.« less
Laws, Mary J; Taylor, Robert N; Sidell, Neil; DeMayo, Francesco J; Lydon, John P; Gutstein, David E; Bagchi, Milan K; Bagchi, Indrani C
2008-08-01
In the uterus, the formation of new maternal blood vessels in the stromal compartment at the time of embryonic implantation is critical for the establishment and maintenance of pregnancy. Although uterine angiogenesis is known to be influenced by the steroid hormones estrogen (E) and progesterone (P), the underlying molecular pathways remain poorly understood. Here, we report that the expression of connexin 43 (Cx43), a major gap junction protein, is markedly enhanced in response to E in uterine stromal cells surrounding the implanted embryo during the early phases of pregnancy. Conditional deletion of the Cx43 gene in these stromal cells and the consequent disruption of their gap junctions led to a striking impairment in the development of new blood vessels within the stromal compartment, resulting in the arrest of embryo growth and early pregnancy loss. Further analysis of this phenotypical defect revealed that loss of Cx43 expression resulted in aberrant differentiation of uterine stromal cells and impaired production of several key angiogenic factors, including the vascular endothelial growth factor (Vegf). Ablation of CX43 expression in human endometrial stromal cells in vitro led to similar findings. Collectively, these results uncovered a unique link between steroid hormone-regulated cell-cell communication within the pregnant uterus and the development of an elaborate vascular network that supports embryonic growth. Our study presents the first evidence that Cx43-type gap junctions play a critical and conserved role in modulating stromal differentiation, and regulate the consequent production of crucial paracrine signals that control uterine neovascularization during implantation.
Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S.
2016-01-01
The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca2+] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca2+-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca2+ entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca2+-dependent up-regulation of AQP5. These important findings reveal that the Ca2+-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. PMID:26903518
[Critical infusion incident caused by incorrect use of a patient-controlled analgesia pump].
Steffen, M; von Hintzenstern, U; Obermayer, A
2002-01-01
We report on the case of a 17-year-old male patient who received a PCA pump after nephrectomy for postoperative analgesia. The syringe of the PCA pump was filled with 50 mg morphine and positioned about 25 cm above the heart. Since the piston of the syringe was not bolted while the pump was switched off, an unnoticed accidental evacuation of the whole content of the syringe into the intravenous line of the patient occurred because of gravity. This problem exists not only with PCA pumps, but can happen with syringe pumps in general. The incident, which can only be explained by strongly reduced venous pressure, was detected by chance. No harm resulted for the patient, but under different conditions it could have been lethal. This critical incident was caused by various factors: incorrect application in combination with insufficient experience or training, stress, inadequate handing-over of the patient and a lack of arrangements and instructions for procedures in routine situations. Suggestions for preventing such dangerous critical incidents are made and discussed. In particular, an algorithm for the correct procedure when inserting or changing the syringe of a syringe pump is presented.
Soundscape elaboration from anthrophonic adaptation of community noise
NASA Astrophysics Data System (ADS)
Teddy Badai Samodra, FX
2018-03-01
Under the situation of an urban environment, noise has been a critical issue in affecting the indoor environment. A reliable approach is required for evaluation of the community noise as one factor of anthrophonic in the urban environment. This research investigates the level of noise exposure from different community noise sources and elaborates the advantage of the noise disadvantages for soundscape innovation. Integrated building element design as a protector for noise control and speech intelligibility compliance using field experiment and MATLAB programming and modeling are also carried out. Meanwhile, for simulation analysis and building acoustic optimization, Sound Reduction-Speech Intelligibility and Reverberation Time are the main parameters for identifying tropical building model as case study object. The results show that the noise control should consider its integration with the other critical issue, thermal control, in an urban environment. The 1.1 second of reverberation time for speech activities and noise reduction more than 28.66 dBA for critical frequency (20 Hz), the speech intelligibility index could be reached more than fair assessment, 0.45. Furthermore, the environmental psychology adaptation result “Close The Opening” as the best method in high noise condition and personal adjustment as the easiest and the most adaptable way.
Computing Critical Properties with Yang-Yang Anomalies
NASA Astrophysics Data System (ADS)
Orkoulas, Gerassimos; Cerdeirina, Claudio; Fisher, Michael
2017-01-01
Computation of the thermodynamics of fluids in the critical region is a challenging task owing to divergence of the correlation length and lack of particle-hole symmetries found in Ising or lattice-gas models. In addition, analysis of experiments and simulations reveals a Yang-Yang (YY) anomaly which entails sharing of the specific heat singularity between the pressure and the chemical potential. The size of the YY anomaly is measured by the YY ratio Rμ =C μ /CV of the amplitudes of C μ = - T d2 μ /dT2 and of the total specific heat CV. A ``complete scaling'' theory, in which the pressure mixes into the scaling fields, accounts for the YY anomaly. In Phys. Rev. Lett. 116, 040601 (2016), compressible cell gas (CCG) models which exhibit YY and singular diameter anomalies, have been advanced for near-critical fluids. In such models, the individual cell volumes are allowed to fluctuate. The thermodynamics of CCGs can be computed through mapping onto the Ising model via the seldom-used great grand canonical ensemble. The computations indicate that local free volume fluctuations are the origins of the YY effects. Furthermore, local energy-volume coupling (to model water) is another crucial factor underlying the phenomena.
Disciplining virtue: investigating the discourses of opioid addiction in nursing.
Kunyk, Diane; Milner, Margaret; Overend, Alissa
2016-12-01
Two nurses diagnosed with opioid addiction launched legal action after being found guilty of unprofessional conduct due to addiction-related behaviors. When covered by the media, their cases sparked both public and legal controversies. We are curious about the broader discursive framings that led to these strong reactions, and analyze the underlying structures of knowledge and power that shape the issue of opioid addiction in the profession of nursing through a critical discourse analysis of popular media, legal blogs and hearing tribunals. We argue that addiction in nursing is framed as personal choice, as a failure in the moral character of the nurses, as decontextualized from addiction as disease arguments, and as an individualized issue devoid of contextual factors leading to addiction. Our investigation offers a critical case study of a nursing regulatory body that upheld popular assumptions of addiction as an autonomous, rational choice replete with individual-based consequences - a framing that is inconsistent with evidence-based practice in health-care. We put forth this critical interrogation to open up possibilities for counterdiscourses that may promote more nuanced and effective responses to the issue of addiction in nursing. © 2016 John Wiley & Sons Ltd.
Environmental insults: critical triggers for amyotrophic lateral sclerosis.
Yu, Bing; Pamphlett, Roger
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by a rapid loss of lower and upper motor neurons. As a complex disease, the ageing process and complicated gene-environment interactions are involved in the majority of cases. Significant advances have been made in unravelling the genetic susceptibility to ALS with massively parallel sequencing technologies, while environmental insults remain a suspected but largely unexplored source of risk. Several studies applying the strategy of Mendelian randomisation have strengthened the link between environmental insults and ALS, but none so far has proved conclusive. We propose a new ALS model which links the current knowledge of genetic factors, ageing and environmental insults. This model provides a mechanism as to how ALS is initiated, with environmental insults playing a critical role. The available evidence has suggested that inherited defect(s) could cause mitochondrial dysfunction, which would establish the primary susceptibility to ALS. Further study of the underlying mechanism may shed light on ALS pathogenesis. Environmental insults are a critical trigger for ALS, particularly in the aged individuals with other toxicant susceptible genes. The identification of ALS triggers could lead to preventive strategies for those individuals at risk.
Culture and Psychiatric Diagnosis
Lewis-Fernández, Roberto; Aggarwal, Neil Krishan
2015-01-01
Since the publication of DSM-IV in 1994, a number of components related to psychiatric diagnosis have come under criticism for their inaccuracies and inadequacies. Neurobiologists and anthropologists have particularly criticized the rigidity of DSM-IV diagnostic criteria that appear to exclude whole classes of alternate illness presentations as well as the lack of attention in contemporary psychiatric nosology to the role of contextual factors in the emergence and characteristics of psychopathology. Experts in culture and mental health have responded to these criticisms by revising the very process of diagnosis for DSM-5. Specifically, the DSM-5 Cultural Issues Subgroup has recommended that concepts of culture be included more prominently in several areas: an introductory chapter on Cultural Aspects of Psychiatric Diagnosis –composed of a conceptual introduction, a revised Outline for Cultural Formulation, a Cultural Formulation Interview that operationalizes this Outline, and a glossary on cultural concepts of distress—as well as material directly related to culture that is incorporated into the description of each disorder. This chapter surveys these recommendations to demonstrate how culture and context interact with psychiatric diagnosis at multiple levels. A greater appreciation of the interplay between culture, context, and biology can help clinicians improve diagnostic and treatment planning. PMID:23816860
Song, Jiangxin; Lin, Jintian; Tang, Jialei; Liao, Yang; He, Fei; Wang, Zhaohui; Qiao, Lingling; Sugioka, Koji; Cheng, Ya
2014-06-16
We report on fabrication of a microtoroid resonator of a high-quality factor (i.e., Q-factor of ~3.24 × 10(6) measured under the critical coupling condition) integrated in a microfluidic channel using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21 × 10(5) as measured in air, which should still be sufficient for many sensing applications. We test the functionality of the integrated optofluidic sensor by performing bulk refractive index sensing of purified water doped with tiny amount of salt. It is shown that a detection limit of ~1.2 × 10(-4) refractive index unit can be achieved. Our result showcases the capability of integration of high-Q microresonators with complex microfluidic systems using femtosecond laser 3D micromachining.
Blood coagulation reactions on nanoscale membrane surfaces
NASA Astrophysics Data System (ADS)
Pureza, Vincent S.
Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.
Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T cell differentiation
Ding, Xilai; Chepelev, Iouri; Zhou, Xikun; Zhao, Wei; Wei, Gang; Cui, Jun; Zhao, Keji; Wang, Helen Y.; Wang, Rong-Fu
2014-01-01
Epigenetic factors have been implicated in the regulation of CD4+ T cell differentiation. Jmjd3 plays a role in many biological processes, but its in vivo function in T cell differentiation remains unknown. Here, we report that Jmjd3 ablation promotes CD4+ T cell differentiation into Th2 and Th17 cells in the small intestine and colon, and inhibits T cell differentiation into Th1 cells under different cytokine-polarizing conditions and in a Th1-dependent colitis model. Jmjd3 deficiency also restrains the plasticity of the conversion of Th2, Th17 or Treg cells to Th1 cells. The skewing of T cell differentiation is concomitant with changes in the expression of key transcription factors and cytokines. H3K27me3 and H3K4me3 levels in Jmjd3-deficient cells are correlated with altered gene expression through interactions with specific transcription factors. Our results identify Jmjd3 as an epigenetic factor in T cell differentiation via changes in histone methylation and target gene expression. PMID:25531312
A critical examination of factors that might encourage secrecy
NASA Astrophysics Data System (ADS)
Tough, Allen
1987-10-01
Seven factors that may encourage a government to keep secret a signal from extraterrestrial intelligence are critically examined. These factors are: (1) belief that people may panic; (2) fear of a negative impact on religion, science, and culture; (3) embarrassment; (4) individual and national competitive urges; (5) avoiding a harmful premature reply; (6) a national trade or military advantage; and (7) fear of a Trojan horse. Steps that can be taken to alleviate the most significant of these factors are considered.
FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin
Kode, Aruna; Mosialou, Ioanna; Silva, Barbara C.; Rached, Marie-Therese; Zhou, Bin; Wang, Ji; Townes, Tim M.; Hen, Rene; DePinho, Ronald A.; Guo, X. Edward; Kousteni, Stavroula
2012-01-01
Serotonin is a critical regulator of bone mass, fulfilling different functions depending on its site of synthesis. Brain-derived serotonin promotes osteoblast proliferation, whereas duodenal-derived serotonin suppresses it. To understand the molecular mechanisms of duodenal-derived serotonin action on osteoblasts, we explored its transcriptional mediation in mice. We found that the transcription factor FOXO1 is a crucial determinant of the effects of duodenum-derived serotonin on bone formation We identified two key FOXO1 complexes in osteoblasts, one with the transcription factor cAMP-responsive element–binding protein 1 (CREB) and another with activating transcription factor 4 (ATF4). Under normal levels of circulating serotonin, the proliferative activity of FOXO1 was promoted by a balance between its interaction with CREB and ATF4. However, high circulating serotonin levels prevented the association of FOXO1 with CREB, resulting in suppressed osteoblast proliferation. These observations identify FOXO1 as the molecular node of an intricate transcriptional machinery that confers the signal of duodenal-derived serotonin to inhibit bone formation. PMID:22945629
NASA Astrophysics Data System (ADS)
Shen, Lin; Xie, Liangxu; Yang, Mingjun
2017-04-01
Conformational sampling under rugged energy landscape is always a challenge in computer simulations. The recently developed integrated tempering sampling, together with its selective variant (SITS), emerges to be a powerful tool in exploring the free energy landscape or functional motions of various systems. The estimation of weighting factors constitutes a critical step in these methods and requires accurate calculation of partition function ratio between different thermodynamic states. In this work, we propose a new adaptive update algorithm to compute the weighting factors based on the weighted histogram analysis method (WHAM). The adaptive-WHAM algorithm with SITS is then applied to study the thermodynamic properties of several representative peptide systems solvated in an explicit water box. The performance of the new algorithm is validated in simulations of these solvated peptide systems. We anticipate more applications of this coupled optimisation and production algorithm to other complicated systems such as the biochemical reactions in solution.
CHIN, Kazuo
2017-01-01
Recent advances in basic and clinical medicine have resulted in major improvements in human health. Currently sleep has been considered an essential factor in maintaining and promoting a healthy life expectancy. Sleep disorders include more than 60 diseases. Sleep disordered breathings (SDB) have 17 disorders, including sleep apnea. SDB usually induces hypoxemia and hypercapnia, which would have significant effects on cells, organs, and the whole body. We have investigated SDB for nearly 35 years. We found that SDB has significant associations with humoral factors, including coagulation systems, the body’s protective factors against diseases, and metabolic and organ diseases. Currently we have been giving attention to the associations among SDB, short sleep duration, and obesity. In addition, SDB is important not only in the home but under critical care such as in the perioperative stage. In this review, I would like to describe several aspects of SDB in relation to systemic diseases and overall health based mainly on our published reports. PMID:29021511
Impact of Leishmania metalloprotease GP63 on macrophage signaling
Isnard, Amandine; Shio, Marina T.; Olivier, Martin
2012-01-01
The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions. PMID:22919663
Impact of Leishmania metalloprotease GP63 on macrophage signaling.
Isnard, Amandine; Shio, Marina T; Olivier, Martin
2012-01-01
The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions.
NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
Hawkins, Kate E.; Joy, Shona; Delhove, Juliette M.K.M.; Kotiadis, Vassilios N.; Fernandez, Emilio; Fitzpatrick, Lorna M.; Whiteford, James R.; King, Peter J.; Bolanos, Juan P.; Duchen, Michael R.; Waddington, Simon N.; McKay, Tristan R.
2016-01-01
Summary The potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα) activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation. PMID:26904936
Avraham, Karen B.
2016-01-01
The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. In contrast to non-mammalian vertebrates, adult mammals lack the ability to regenerate inner ear mechano-sensory hair cells. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict sensory hair cell regeneration. PMID:27836639
Decision-Making Under Risk: Integrating Perspectives From Biology, Economics, and Psychology.
Mishra, Sandeep
2014-08-01
Decision-making under risk has been variably characterized and examined in many different disciplines. However, interdisciplinary integration has not been forthcoming. Classic theories of decision-making have not been amply revised in light of greater empirical data on actual patterns of decision-making behavior. Furthermore, the meta-theoretical framework of evolution by natural selection has been largely ignored in theories of decision-making under risk in the human behavioral sciences. In this review, I critically examine four of the most influential theories of decision-making from economics, psychology, and biology: expected utility theory, prospect theory, risk-sensitivity theory, and heuristic approaches. I focus especially on risk-sensitivity theory, which offers a framework for understanding decision-making under risk that explicitly involves evolutionary considerations. I also review robust empirical evidence for individual differences and environmental/situational factors that predict actual risky decision-making that any general theory must account for. Finally, I offer steps toward integrating various theoretical perspectives and empirical findings on risky decision-making. © 2014 by the Society for Personality and Social Psychology, Inc.
Putting Herzberg's Two Factor Theory of Motivation in Perspective.
ERIC Educational Resources Information Center
May, Charles R.; Decker, Robert H.
1988-01-01
Explores challenges to Frederick Herzberg's Two Factor Theory of Motivation--a required concept in many administrator preparation programs. Herzberg used modified critical incident (or self-reporting) techniques to illustrate that job satisfaction and dissatisfaction occupied different continua and were not opposed to each other. Criticisms, study…
2011 Critical Success Factors Report
ERIC Educational Resources Information Center
North Carolina Community College System (NJ1), 2011
2011-01-01
The Critical Success Factors Report is the North Carolina Community College System's major accountability document. This annual performance report serves to inform colleges and the public on the performance of North Carolina's 58 community colleges. In 1993, the State Board of Community Colleges began monitoring performance data on specific…
Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state
Verfaillie, Annelien; Imrichova, Hana; Atak, Zeynep Kalender; Dewaele, Michael; Rambow, Florian; Hulselmans, Gert; Christiaens, Valerie; Svetlichnyy, Dmitry; Luciani, Flavie; Van den Mooter, Laura; Claerhout, Sofie; Fiers, Mark; Journe, Fabrice; Ghanem, Ghanem-Elias; Herrmann, Carl; Halder, Georg; Marine, Jean-Christophe; Aerts, Stein
2015-01-01
Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance. PMID:25865119
Epigenomics and human adaptation to high altitude.
Julian, Colleen G
2017-11-01
Over the past decade, major technological and analytical advancements have propelled efforts toward identifying the molecular mechanisms that govern human adaptation to high altitude. Despite remarkable progress with respect to the identification of adaptive genomic signals that are strongly associated with the "hypoxia-tolerant" physiological characteristics of high-altitude populations, many questions regarding the fundamental biological processes underlying human adaptation remain unanswered. Vital to address these enduring questions will be determining the role of epigenetic processes, or non-sequence-based features of the genome, that are not only critical for the regulation of transcriptional responses to hypoxia but heritable across generations. This review proposes that epigenomic processes are involved in shaping patterns of adaptation to high altitude by influencing adaptive potential and phenotypic variability under conditions of limited oxygen supply. Improved understanding of the interaction between genetic, epigenetic, and environmental factors holds great promise to provide deeper insight into the mechanisms underlying human adaptive potential, and clarify its implications for biomedical research. Copyright © 2017 the American Physiological Society.
Peterson, Cheryl L.; Kaufmann, Gregory S.; Vandello, Christopher; Richardson, Matthew L.
2013-01-01
Species previously unknown to science are continually discovered and some of these species already face extinction at the time of their discovery. Conserving new and rare species in these cases becomes a trial-and-error process and conservationists will attempt to manage them by using knowledge of closely related species, or those that fill the same ecological niche, and then adapting the management program as needed. Savannas Mint (Dicerandra immaculata Lakela var. savannarum Huck) is a perennial plant that was discovered in Florida scrub habitat at two locations in 1995, but is nearly extinct at these locations. We tested whether shade, leaf litter, propagation method, parent genotype, parent collection site, planting date, and absorbent granules influenced survival, reproduction, and recruitment of Savannas Mint in a population of 1,614 plants that we introduced between June 2006 and July 2009 into a state protected site. Survival and reproduction of introduced plants, and recruitment of new plants, was higher in microhabitats in full sun and no leaf litter and lower in partially shaded habitats. The two sites from which parent plants were collected differentially influenced survival and reproduction of introduced plants. These differences in survival and reproduction are likely due to underlying genetic differences. Differential survival of progeny from different parent genotypes further supports the idea that underlying genetics is an important consideration when restoring plant populations. The most successful progeny of parent genotypes had survival rates nearly 12 times higher than the least successful progeny. We speculate that many of these environmental and genetic factors are likely to influence allopatric congeners and other critically endangered gap specialists that grow in Florida scrub and our results can be used to guide their conservation. PMID:23593479
Perceived stigma is a critical factor for interictal aggression in people with epilepsy.
Seo, Jong-Geun; Kim, Jeong-Min; Park, Sung-Pa
2015-03-01
Aggression in people with epilepsy (PWE) is not well understood. We investigated interictal aggression in PWE and clarified predictors and the interrelationships among them. This was a case-control study. Eligible subjects who consecutively visited the epilepsy clinic completed several questionnaires including the Aggression Questionnaire (AQ), the Revised Stigma Scale (RSS), the Korean version of the Neurological Disorders Depression Inventory for Epilepsy (K-NDDI-E), and the Generalized Anxiety Disorder-7 (GAD-7). PWEs had higher overall AQ scores and anger and hostility subscale scores than controls. Patients with uncontrolled epilepsy also had higher physical and verbal aggression subscale scores than controls. Univariate analyses revealed associations between the overall AQ score and job, household income, marriage, antiepileptic drug (AED) load, seizure control, co-administration of psychiatric drugs, the RSS score, the K-NDDI-E score, and the GAD-7 score. Multivariate analyses indicated that the strongest predictor for the overall AQ score was the RSS score (β=0.346, p<0.001), followed by the GAD-7 score (β=0.244, p=0.003), and the K-NDDI-E score (β=0.172, p=0.047). The RSS score exerted a direct effect on the overall AQ score under the influences of the GAD-7 score and the K-NDDI-E score. The GAD-7 score also exerted a direct effect on the overall AQ score, but the K-NDDI-E score only had an indirect effect on the overall AQ score through the RSS score. The degree of interictal aggression is higher in PWE than controls. Perceived stigma is a critical factor for aggression under the influence of depression and anxiety. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Ureña, Enric; Chafino, Silvia; Manjón, Cristina; Franch-Marro, Xavier; Martín, David
2016-01-01
Complete metamorphosis (Holometaboly) is a key innovation that underlies the spectacular success of holometabolous insects. Phylogenetic analyses indicate that Holometabola form a monophyletic group that evolved from ancestors exhibiting hemimetabolous development (Hemimetaboly). However, the nature of the changes underlying this crucial transition, including the occurrence of the holometabolan-specific pupal stage, is poorly understood. Using the holometabolous beetle Tribolium castaneum as a model insect, here we show that the transient up-regulation of the anti-metamorphic Krüppel-homolog 1 (TcKr-h1) gene at the end of the last larval instar is critical in the formation of the pupa. We find that depletion of this specific TcKr-h1 peak leads to the precocious up-regulation of the adult-specifier factor TcE93 and, hence, to a direct transformation of the larva into the adult form, bypassing the pupal stage. Moreover, we also find that the TcKr-h1-dependent repression of TcE93 is critical to allow the strong up-regulation of Broad-complex (TcBr-C), a key transcription factor that regulates the correct formation of the pupa in holometabolous insects. Notably, we show that the genetic interaction between Kr-h1 and E93 is also present in the penultimate nymphal instar of the hemimetabolous insect Blattella germanica, suggesting that the evolution of the pupa has been facilitated by the co-option of regulatory mechanisms present in hemimetabolan metamorphosis. Our findings, therefore, contribute to the molecular understanding of insect metamorphosis, and indicate the evolutionary conservation of the genetic circuitry that controls hemimetabolan and holometabolan metamorphosis, thereby shedding light on the evolution of complete metamorphosis. PMID:27135810
Kompisch, Kai Michael; Lange, Claudia; Steinemann, Doris; Skawran, Britta; Schlegelberger, Brigitte; Müller, Reinhard; Schumacher, Udo
2010-11-01
Adipose-derived stem cells (ASCs) are reported to display multilineage differentiation potential, including neuroectodermal pathways. The aim of the present study was to critically re-evaluate the potential neurogenic (trans-)differentiation capacity of ASCs using a neurogenic induction protocol based on the combination of isobutylmethylxanthine (IBMX), indomethacin and insulin. ASCs isolated from lipo-aspirate samples of five healthy female donors were characterized and potential neurogenic (trans-)differentiation was assessed by means of immunohistochemistry and gene expression analyses. Cell proliferation and cell cycle alterations were studied, and the expression of CREB/ATF transcription factors was analyzed. ASCs expressed CD59, CD90 and CD105, and were tested negative for CD34 and CD45. Under neurogenic induction, ASCs adopted a characteristic morphology comparable to neur(on)al progenitors and expressed musashi1, β-III-tubulin and nestin. Gene expression analyses revealed an increased expression of β-III-tubulin, GFAP, vimentin and BDNF, as well as SOX4 in induced ASCs. Cell proliferation was significantly reduced under neurogenic induction; cell cycle analyses showed a G2-cell cycle arrest accompanied by differential expression of key regulators of cell cycle progression. Differential expression of CREB/ATF transcription factors could be observed on neurogenic induction, pointing to a decisive role of the cAMP-CREB/ATF system. Our findings may point to a potential neurogenic (trans-)differentiation of ASCs into early neur(on)al progenitors, but do not present definite evidence for it. Especially, the adoption of a neural progenitor cell-like morphology must not automatically be misinterpreted as a specific characteristic of a respective (trans-)differentiation process, as this may as well be caused by alterations of cell cycle progression.
Global patterns of drought recovery
Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.; ...
2017-08-09
Drought has major impacts on natural and human systems, and is especially important for land carbon sink variability due to its influence on terrestrial biosphere climate regulation. While 20th Century trends in drought regimes have been varied, “more extreme extremes”, including more frequent and severe droughts, are expected in the 21st Century. Recovery time, the length of time an ecosystem requires to revert to its pre-drought functional state, is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns are largely unknown. Here we use three independent global data products of gross primary productivitymore » to show that, across diverse terrestrial ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO 2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: (1) Across the globe, recovery is longest in the tropics and high northern latitudes—critical tipping elements in Earth’s climate system. (2) Drought impacts, the area of ecosystems under active recovery and recovery times, have increased over the 20th century. If future droughts become more frequent, time between droughts may become shorter than drought recovery time, leading to chronically impacted ecosystems.« less
Global patterns of drought recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.
Drought has major impacts on natural and human systems, and is especially important for land carbon sink variability due to its influence on terrestrial biosphere climate regulation. While 20th Century trends in drought regimes have been varied, “more extreme extremes”, including more frequent and severe droughts, are expected in the 21st Century. Recovery time, the length of time an ecosystem requires to revert to its pre-drought functional state, is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns are largely unknown. Here we use three independent global data products of gross primary productivitymore » to show that, across diverse terrestrial ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO 2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: (1) Across the globe, recovery is longest in the tropics and high northern latitudes—critical tipping elements in Earth’s climate system. (2) Drought impacts, the area of ecosystems under active recovery and recovery times, have increased over the 20th century. If future droughts become more frequent, time between droughts may become shorter than drought recovery time, leading to chronically impacted ecosystems.« less
He, Jing; Guo, Jianglong; Jiang, Bo; Yao, Ruijuan; Wu, Yao
2017-01-01
Abstract While both induction culture media and matrix have been reported to regulate the stem cell fate, little is known about which factor plays a more decisive role in directing the MSC differentiation lineage as well as the underlying mechanisms. To this aim, we seeded MSCs on HA-collagen and HA-synthetic hydrogel matrixes, which had demonstrated highly different potentials toward osteoblastic and chondrocytic differentiation lineages, respectively, and cultured them with osteogenic, chondrogenic and normal culture media, respectively. A systematic comparison has been carried out on the effects of induction media and matrix on MSC adhesion, cytoskeleton organization, proliferation, and in particular differentiation into the osteoblastic and chondrocytic lineages. The results demonstrated that the matrix selection had a much more profound effect on directing the differentiation lineage than the induction media did. The strong modulation effect on the transcription activities might be the critical factor contributing to the above observations in our study, where canonical Wnt-β-Catenin signal pathway was directly involved in the matrix-driven osteoblastic differentiation. Such findings not only provide a critical insight on natural cellular events leading to the osteoblastic and chondrocytic differentiations, but also have important implications in biomaterial design for tissue engineering applications. PMID:29026640
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenn, Mark E.; Driscoll, Charles; Zhou, Qingtao
2015-01-01
Empirical and dynamic biogeochemical modelling are complementary approaches for determining the critical load (CL) of atmospheric nitrogen (N) or other constituent deposition that an ecosystem can tolerate without causing ecological harm. The greatest benefits are obtained when these approaches are used in combination. Confounding environmental factors can complicate the determination of empirical CLs across depositional gradients, while the experimental application of N amendments for estimating the CL does not realistically mimic the effects of chronic atmospheric N deposition. Biogeochemical and vegetation simulation models can provide CL estimates and valuable ecosystem response information, allowing for past and future scenario testing withmore » various combinations of environmental factors, pollutants, pollutant control options, land management, and ecosystem response parameters. Even so, models are fundamentally gross simplifications of the real ecosystems they attempt to simulate. Empirical approaches are vital as a check on simulations and CL estimates, to parameterize models, and to elucidate mechanisms and responses under real world conditions. In this chapter, we provide examples of empirical and modelled N CL approaches in ecosystems from three regions of the United States: mixed conifer forest, desert scrub and pinyon- juniper woodland in California; alpine catchments in the Rocky Mountains; and lakes in the Adirondack region of New York state.« less
Gomersall, Judith Streak; Canuto, Karla; Aromataris, Edoardo; Braunack-Mayer, Annette; Brown, Alex
2016-02-01
To describe the main characteristics of systematic reviews addressing questions of chronic disease and related risk factors for Indigenous Australians. We searched databases for systematic reviews meeting inclusion criteria. Two reviewers assessed quality and extracted characteristics using pre-defined tools. We identified 14 systematic reviews. Seven synthesised evidence about health intervention effectiveness; four addressed chronic disease or risk factor prevalence; and six conducted critical appraisal as per current best practice. Only three reported steps to align the review with standards for ethical research with Indigenous Australians and/or capture Indigenous-specific knowledge. Most called for more high-quality research. Systematic review is an under-utilised method for gathering evidence to inform chronic disease prevention and management for Indigenous Australians. Relevance of future systematic reviews could be improved by: 1) aligning questions with community priorities as well as decision maker needs; 2) involvement of, and leadership by, Indigenous researchers with relevant cultural and contextual knowledge; iii) use of critical appraisal tools that include traditional risk of bias assessment criteria and criteria that reflect Indigenous standards of appropriate research. Systematic review method guidance, tools and reporting standards are required to ensure alignment with ethical obligations and promote rigor and relevance. © 2015 Public Health Association of Australia.
Egodawatta, Prasanna; Goonetilleke, Ashantha
2008-01-01
Pollutant wash-off is one of the key pollutant processes that detailed knowledge is required in order to develop successful treatment design strategies for urban stormwater. Unfortunately, current knowledge relating to pollutant wash-off is limited. This paper presents the outcomes of a detailed investigation into pollutant wash-off on residential road surfaces. The investigations consisted of research methodologies formulated to overcome the physical constraints due to the heterogeneity of urban paved surfaces and the dependency on naturally occurring rainfall. This entailed the use of small road surface plots and artificially simulated rainfall. Road surfaces were selected due to its critical importance as an urban stormwater pollutant source. The study results showed that the influence of initially available pollutants on the wash-off process was limited. Furthermore, pollutant wash-off from road surfaces can be replicated using an exponential equation. However, the typical version of the exponential wash-off equation needs to be modified by introducing a non dimensional factor referred to as 'capacity factor' CF. Three rainfall intensity ranges were identified where the variation of CF can be defined. Furthermore, it was found that particulate density rather than size is the critical parameter that influences the process of pollutant wash-off. (c) IWA Publishing 2008.
Virus infection, antiviral immunity, and autoimmunity
Getts, Daniel R.; Chastain, Emily M. L.; Terry, Rachael L.; Miller, Stephen D.
2014-01-01
Summary As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity. PMID:23947356
Wang, Feifei; Tidei, Joseph J; Polich, Eric D; Gao, Yu; Zhao, Huashan; Perrone-Bizzozero, Nora I; Guo, Weixiang; Zhao, Xinyu
2015-09-08
The mammalian embryonic lethal abnormal vision (ELAV)-like protein HuD is a neuronal RNA-binding protein implicated in neuronal development, plasticity, and diseases. Although HuD has long been associated with neuronal development, the functions of HuD in neural stem cell differentiation and the underlying mechanisms have gone largely unexplored. Here we show that HuD promotes neuronal differentiation of neural stem/progenitor cells (NSCs) in the adult subventricular zone by stabilizing the mRNA of special adenine-thymine (AT)-rich DNA-binding protein 1 (SATB1), a critical transcriptional regulator in neurodevelopment. We find that SATB1 deficiency impairs the neuronal differentiation of NSCs, whereas SATB1 overexpression rescues the neuronal differentiation phenotypes resulting from HuD deficiency. Interestingly, we also discover that SATB1 is a transcriptional activator of HuD during NSC neuronal differentiation. In addition, we demonstrate that NeuroD1, a neuronal master regulator, is a direct downstream target of SATB1. Therefore, HuD and SATB1 form a positive regulatory loop that enhances NeuroD1 transcription and subsequent neuronal differentiation. Our results here reveal a novel positive feedback network between an RNA-binding protein and a transcription factor that plays critical regulatory roles in neurogenesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... treatment and Critical Energy Infrastructure Information (CEII) treatment for documents submitted to the... treatment and Critical Energy Infrastructure Information (CEII) treatment for documents submitted to the... of exemption from disclosure under FOIA, including critical energy infrastructure information (CEII...
Code of Federal Regulations, 2014 CFR
2014-04-01
... treatment and Critical Energy Infrastructure Information (CEII) treatment for documents submitted to the... treatment and Critical Energy Infrastructure Information (CEII) treatment for documents submitted to the... of exemption from disclosure under FOIA, including critical energy infrastructure information (CEII...
Jauho, Mikko
2017-09-01
This study addresses two issues currently under critical discussion in the epidemiology of cardiovascular diseases (CVD), the relative neglect of women and the individualised nature of key risk factors. It focuses on the North Karelia project (NKP), a community programme aimed at coronary heart disease (CHD) prevention in a predominantly rural Finnish region in the early 1970s, that is, during a period when the epidemiological understanding of CVD still was relatively new and actively promoted. Adopting the notions of lay epidemiology and coronary candidacy, culturally mediated explanatory models lay people use to assess who is likely to develop heart disease and why, the study shows that locals targeted by the project critically engaged with both of these bias. Based on the rich materials resulting from project activities the study shows, first, how many locals subsumed the individualised and lifestyle-based approach to CHD prevention promoted by NKP under a more general framework emphasising the health effects of ongoing structural changes in the area, and second, how women constructed themselves as viable coronary candidates. The case supports the position in the current discussions on lay expertise that wants to integrate lay experiences more firmly into epidemiological studies and public health. © 2017 Foundation for the Sociology of Health & Illness.
Developing New TCOs for Renewable Applications
NASA Astrophysics Data System (ADS)
Ginley, David
2013-03-01
Transparent conducting oxides are enabling for a broad range of optoelectronic technologies. Not only are conductivity and transparency critical but many other factors are critical including: carrier type, processing conditions, work function, chemical stability, and interface properties. The historical set of materials cannot meet all these needs. This has driven a renaissance in new materials development and approaches to transparent contacts. We will discuss these new developments in general and in the context of photovoltaics specifically. We will present results on new materials and also the development bilayer structrues that enable charge selective contacts. Materials set includes amorphous materials for hybrid solar cells like InZnO and ZnSnO, it includes Nb and Ta doped TiO2 as a high refractive index TCO and it includes the use of thin n- and p-type oxides as electron and hole selective contacts such as has been demonstrated for organic photovotaics. This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC36-08GO28308 to NREL as a part of the DOE Energy Frontier Research Center ``Center for Inverse Design'' and through the US Department of Energy under Contract no. DOE-AC36-08GO28308 through the National Center for Photovoltaics.
Temperature impacts on economic growth warrant stringent mitigation policy
NASA Astrophysics Data System (ADS)
Moore, Frances C.; Diaz, Delavane B.
2015-02-01
Integrated assessment models compare the costs of greenhouse gas mitigation with damages from climate change to evaluate the social welfare implications of climate policy proposals and inform optimal emissions reduction trajectories. However, these models have been criticized for lacking a strong empirical basis for their damage functions, which do little to alter assumptions of sustained gross domestic product (GDP) growth, even under extreme temperature scenarios. We implement empirical estimates of temperature effects on GDP growth rates in the DICE model through two pathways, total factor productivity growth and capital depreciation. This damage specification, even under optimistic adaptation assumptions, substantially slows GDP growth in poor regions but has more modest effects in rich countries. Optimal climate policy in this model stabilizes global temperature change below 2 °C by eliminating emissions in the near future and implies a social cost of carbon several times larger than previous estimates. A sensitivity analysis shows that the magnitude of climate change impacts on economic growth, the rate of adaptation, and the dynamic interaction between damages and GDP are three critical uncertainties requiring further research. In particular, optimal mitigation rates are much lower if countries become less sensitive to climate change impacts as they develop, making this a major source of uncertainty and an important subject for future research.
On the kinetics of dendritic sidebranching: A three dimensional phase field study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, Shan; Guo, Zhipeng; Han, Zhiqiang, E-mail: zqhan@tsinghua.edu.cn
2016-04-28
The underlying mechanism for dendritic sidebranching was studied using 3-D phase field modeling. Results showed that in 3-D the requirement of applying the random thermal noise to induce dendritic sidebranching (i.e., normally the case for 2-D phase field simulations) was fully relaxed. The stretching of the secondary or higher order arms occurred spontaneously and symmetrically as the growth of the dendrite. With periodic external perturbation and if the stimulating frequency was lower than a critical value, both tip velocity and sidebranching would get completely synchronized with the perturbation. Whereas if the perturbation frequency was higher than the critical value, rathermore » than increasing, the sidebranching frequency would become stable and maintain at the same magnitude as that of the natural sidebranching, i.e., when no external perturbation was applied. It was shown that the underlying mechanism for sidebranching was deterministic rather than stochastic, and anisotropy tendency and curvature effect were shown to be the most important influence factors. Moreover, the difference of the anisotropy tendency would lead to an uneven distribution of curvature on the solid/liquid interface, i.e., formation of concave and convex geometries. The growth of these geometries would subsequently break the initial spherical structure of solid seed and lead to further sidebranching.« less
Environmental novelty and illumination modify ethanol-induced open-field behavioral effects in mice.
Fukushiro, Daniela F; Benetti, Liliane F; Josino, Fabiana S; Oliveira, Gabriela P; Fernandes, Maiara deM; Saito, Luis P; Uehara, Regina A; Wuo-Silva, Raphael; Oliveira, Camila S; Frussa-Filho, Roberto
2010-03-01
Both spontaneous and drug-induced animal behaviors can be modified by exposure to novel stimuli or different levels of environmental illumination. However, research into how these factors specifically impact ethanol (ETH)-induced behavioral effects is currently lacking. We aimed to investigate the effects of these two factors, considered separately or in conjunction, on ETH-induced acute hyperlocomotor effect and its sensitization in adult male Swiss mice. Mice were placed in a novel or familiar open-field under normal light (200 lx) or low light (9 lx) immediately after receiving an ip injection of either 1.8 g/kg ETH or saline (SAL). After 7 days, all animals received an ip challenge injection of 1.8 g/kg ETH, and were placed in the open-field under the same light conditions described above. Novelty increased central locomotion and decreased grooming, while low light increased grooming. Acute ETH administration increased both total and peripheral locomotion and these effects were potentiated by low light. Both low light and novelty were able to facilitate ETH-induced locomotor sensitization, which was detected by the central locomotion parameter. However, there was no synergism between the effects of these two modulating factors on ETH-induced behavioral sensitization. We conclude that both the acute behavioral effects of ETH and behavioral sensitization induced by previous administration of this drug can be critically modified by environmental factors. In addition, our study stresses the importance of using different behavioral parameters to evaluate the interaction between environmental factors and ETH effects. (c) 2009 Elsevier Inc. All rights reserved.
Capturing the Value: Earth Applications of Space Human Factors Research
NASA Technical Reports Server (NTRS)
Connors, Mary M.; Shafto, Michael G. (Technical Monitor)
1995-01-01
This paper details how the Space Human Factors/Life Sciences program at Ames Research Center (ARC) has provided, and continues to provide, a variety of Earth-based benefits. These benefits will be considered under five categories: aeronautics, space-like environments, general applications, human/automation interaction, and methodology. The human factors work at ARC includes a range of activities whose products serve the aerospace community. Some areas of research focus specifically on aeronautical requirements; others are driven by space needs. However, the symbiosis between these two domains allows a sharing of resources, and the insights and experimental results gathered in one domain can often be applied in the other. Aeronautics is an industry whose survival is generally viewed as critical to American competitiveness, and where benefits can result in a very high payoff. The ability to apply space-initiated research to aeronautical requirements represents one example of bringing space benefits down to Earth. The second-order value of space human factors research goes well beyond the aerospace community. Spaceflight shares with a number of other activities certain environmental characteristics that drive human factors engineering design and procedural specification. Spaceflight is an isolated activity, conducted under severely confined conditions, with a high level of risk, and where provisions are restricted and opportunities for outside help are limited. A number of Earth-based activities including submarines and other naval vessels, oil rigs, remote weather stations, and scientific and polar expeditions, share many of these characteristics. These activities serve as testbeds for space-related research and, in turn, space-related research provides beneficial insight to the conduct of these activities.
Sleep Disturbance after Hospitalization and Critical Illness: A Systematic Review.
Altman, Marcus T; Knauert, Melissa P; Pisani, Margaret A
2017-09-01
Sleep disturbance during intensive care unit (ICU) admission is common and severe. Sleep disturbance has been observed in survivors of critical illness even after transfer out of the ICU. Not only is sleep important to overall health and well being, but patients after critical illness are also in a physiologically vulnerable state. Understanding how sleep disturbance impacts recovery from critical illness after hospital discharge is therefore clinically meaningful. This Systematic Review aimed to summarize studies that identify the prevalence of and risk factors for sleep disturbance after hospital discharge for critical illness survivors. PubMed (January 4, 2017), MEDLINE (January 4, 2017), and EMBASE (February 1, 2017). Databases were searched for studies of critically ill adult patients after hospital discharge, with sleep disturbance measured as a primary outcome by standardized questionnaire or objective measurement tools. From each relevant study, we extracted prevalence and severity of sleep disturbance at each time point, objective sleep parameters (such as total sleep time, sleep efficiency, and arousal index), and risk factors for sleep disturbance. A total of 22 studies were identified, with assessment tools including subjective questionnaires, polysomnography, and actigraphy. Subjective questionnaire studies reveal a 50-66.7% (within 1 mo), 34-64.3% (>1-3 mo), 22-57% (>3-6 mo), and 10-61% (>6 mo) prevalence of abnormal sleep after hospital discharge after critical illness. Of the studies assessing multiple time points, four of five questionnaire studies and five of five polysomnography studies show improved aspects of sleep over time. Risk factors for poor sleep varied, but prehospital factors (chronic comorbidity, pre-existing sleep abnormality) and in-hospital factors (severity of acute illness, in-hospital sleep disturbance, pain medication use, and ICU acute stress symptoms) may play a role. Sleep disturbance was frequently associated with postdischarge psychological comorbidities and impaired quality of life. Sleep disturbance is common in critically ill patients up to 12 months after hospital discharge. Both subjective and objective studies, however, suggest that sleep disturbance improves over time. More research is needed to understand and optimize sleep in recovery from critical illness.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
...We, the U.S. Fish and Wildlife Service, propose to designate revised critical habitat for the contiguous U.S. distinct population segment (DPS) of the Canada lynx under the Endangered Species Act of 1973, as amended, and to revise the boundary of the Canada lynx DPS. These proposed revisions fulfill our obligations under two settlement agreements. The revised critical habitat proposed rule also addresses issues raised by two courts in 2010. If we finalize this rule as proposed, it would extend the Endangered Species Act's protections to the Canada lynx wherever it occurs in the contiguous United States, including New Mexico, and it would revise this species' critical habitat. The effect of this regulation is to conserve the Canada lynx and its habitats in the contiguous United States under the Endangered Species Act.
Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function.
Poulose, Shibu M; Miller, Marshall G; Scott, Tammy; Shukitt-Hale, Barbara
2017-11-01
Adult neurogenesis, a complex process by which stem cells in the hippocampal brain region differentiate and proliferate into new neurons and other resident brain cells, is known to be affected by many intrinsic and extrinsic factors, including diet. Neurogenesis plays a critical role in neural plasticity, brain homeostasis, and maintenance in the central nervous system and is a crucial factor in preserving the cognitive function and repair of damaged brain cells affected by aging and brain disorders. Intrinsic factors such as aging, neuroinflammation, oxidative stress, and brain injury, as well as lifestyle factors such as high-fat and high-sugar diets and alcohol and opioid addiction, negatively affect adult neurogenesis. Conversely, many dietary components such as curcumin, resveratrol, blueberry polyphenols, sulforaphane, salvionic acid, polyunsaturated fatty acids (PUFAs), and diets enriched with polyphenols and PUFAs, as well as caloric restriction, physical exercise, and learning, have been shown to induce neurogenesis in adult brains. Although many of the underlying mechanisms by which nutrients and dietary factors affect adult neurogenesis have yet to be determined, nutritional approaches provide promising prospects to stimulate adult neurogenesis and combat neurodegenerative diseases and cognitive decline. In this review, we summarize the evidence supporting the role of nutritional factors in modifying adult neurogenesis and their potential to preserve cognitive function during aging. © 2017 American Society for Nutrition.
Role of the testis interstitial compartment in spermatogonial stem cell function
Potter, Sarah J.; DeFalco, Tony
2017-01-01
Male fertility is maintained through intricate cellular and molecular interactions that ensure spermatogonial stem cells (SSCs) proceed in a step-wise differentiation process through spermatogenesis and spermiogenesis to produce sperm. SSCs lie within the seminiferous tubule compartment, which provides a nurturing environment for the development of sperm. Cells outside of the tubules, such as interstitial and peritubular cells, also help direct SSC activity. This review focuses on interstitial (interstitial macrophages, Leydig cells, and vasculature) and peritubular (peritubular macrophages, peritubular myoid cells) cells and their role in regulating SSC self-renewal and differentiation in mammals. Leydig cells, the major steroidogenic cells in the testis, influence SSCs through secreted factors, such as insulin growth factor 1 (IGF1) and colony stimulating factor 1 (CSF1). Macrophages interact with SSCs through various potential mechanisms, such as CSF1 and retinoic acid (RA), to induce proliferation or differentiation of SSCs, respectively. Vasculature influences SSC dynamics through CSF1, vascular endothelial growth factor (VEGF), and regulating oxygen levels. Lastly, peritubular myoid cells produce one of the most well-known factors that is required for SSC self-renewal, glial cell line derived neurotrophic factor (GDNF), as well as CSF1. Overall, SSC interactions with interstitial and peritubular cells are critical for SSC function and are an important underlying factor promoting male fertility. PMID:28115580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Liang, E-mail: zhaoliang@ninit.ac.cn; Li, Rui; Zheng, Lei
2015-04-15
The critical pulse width (τ{sub c}) is a pulse width at which the surface flashover threshold (E{sub f}) is equal to the bulk breakdown threshold (E{sub BD}) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854–857]. In this paper, the mechanism of τ{sub c} is interpreted in perspective of the threshold and the time delay (t{sub d}) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse widthmore » decreases which are responsible for the existence of τ{sub c}: (1) E{sub BD} is lower than E{sub f}; (2) t{sub d} of bulk breakdown is shorter than t{sub d} of surface flashover. In addition, factors which have influences on τ{sub c} are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τ{sub c} is expected to increase: (1) factors causing E{sub BD} to decrease, such as increasing the pulse number or employing a dielectric of lower E{sub BD}; (2) factors causing E{sub f} to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing E{sub BD} and E{sub f} to increase together, but E{sub f} increases faster than E{sub BD}, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τ{sub c} for solid insulation design is presented and the significance of τ{sub c} on solid insulation design and on solid demolition are discussed.« less
Human Factors in Financial Trading
Leaver, Meghan; Reader, Tom W.
2016-01-01
Objective This study tests the reliability of a system (FINANS) to collect and analyze incident reports in the financial trading domain and is guided by a human factors taxonomy used to describe error in the trading domain. Background Research indicates the utility of applying human factors theory to understand error in finance, yet empirical research is lacking. We report on the development of the first system for capturing and analyzing human factors–related issues in operational trading incidents. Method In the first study, 20 incidents are analyzed by an expert user group against a referent standard to establish the reliability of FINANS. In the second study, 750 incidents are analyzed using distribution, mean, pathway, and associative analysis to describe the data. Results Kappa scores indicate that categories within FINANS can be reliably used to identify and extract data on human factors–related problems underlying trading incidents. Approximately 1% of trades (n = 750) lead to an incident. Slip/lapse (61%), situation awareness (51%), and teamwork (40%) were found to be the most common problems underlying incidents. For the most serious incidents, problems in situation awareness and teamwork were most common. Conclusion We show that (a) experts in the trading domain can reliably and accurately code human factors in incidents, (b) 1% of trades incur error, and (c) poor teamwork skills and situation awareness underpin the most critical incidents. Application This research provides data crucial for ameliorating risk within financial trading organizations, with implications for regulation and policy. PMID:27142394
Underlying mechanisms leading to El Niño-to-La Niña transition are unchanged under global warming
NASA Astrophysics Data System (ADS)
Yun, Kyung-Sook; Yeh, Sang-Wook; Ha, Kyung-Ja
2018-05-01
El Niño's transitions play critical roles in modulating severe weather and climate events. Therefore, understanding the dynamic factors leading to El Niño's transitions and its future projection is a great challenge in predicting the diverse socioeconomic influences of El Niño over the globe. This study focuses on two dynamic factors controlling the El Niño-to-La Niña transition from the present climate and to future climate, using the observation, the historical and the RCP8.5 simulations of Coupled Model Intercomparison phase 5 climate models. The first is the inter-basin coupling between the Indian Ocean and the western North Pacific through the subtropical high variability. The second is the enhanced sensitivity between sea surface temperature and a deep tropical convection in the central tropical Pacific during the El Niño's developing phase. We show that the dynamic factors leading to El Niño-to-La Niña transition in the present climate are unchanged in spite of the increase of greenhouse gas concentrations. We argue that the two dynamic factors are strongly constrained by the climatological precipitation distribution over the central tropical Pacific and western North Pacific as little changed from the present climate to future climate. This implies that two dynamical processes leading to El Niño-to-La Niña transitions in the present climate will also play a robust role in global warming.
Differences in Risk Factors for Rotator Cuff Tears between Elderly Patients and Young Patients.
Watanabe, Akihisa; Ono, Qana; Nishigami, Tomohiko; Hirooka, Takahiko; Machida, Hirohisa
2018-02-01
It has been unclear whether the risk factors for rotator cuff tears are the same at all ages or differ between young and older populations. In this study, we examined the risk factors for rotator cuff tears using classification and regression tree analysis as methods of nonlinear regression analysis. There were 65 patients in the rotator cuff tears group and 45 patients in the intact rotator cuff group. Classification and regression tree analysis was performed to predict rotator cuff tears. The target factor was rotator cuff tears; explanatory variables were age, sex, trauma, and critical shoulder angle≥35°. In the results of classification and regression tree analysis, the tree was divided at age 64. For patients aged≥64, the tree was divided at trauma. For patients aged<64, the tree was divided at critical shoulder angle≥35°. The odds ratio for critical shoulder angle≥35° was significant for all ages (5.89), and for patients aged<64 (10.3) while trauma was only a significant factor for patients aged≥64 (5.13). Age, trauma, and critical shoulder angle≥35° were related to rotator cuff tears in this study. However, these risk factors showed different trends according to age group, not a linear relationship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, D.T.; Davis, J.R.
This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concludedmore » that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions.« less
NASA Astrophysics Data System (ADS)
Baharuddin, Mohd Nurfaisal; Bahardin, Nur Fadhilah; Zaidi, Mohd Azian; Lokman, Ikhwan; Nawi, Mohd Nasrun Mohd
2016-08-01
The goals of this paper is to analysed the critical factors of driving or hindering the used of Industrialised Building System (IBS) formwork system in the Malaysian construction industry. Based on the reviews of a previous research and related literature, this paper was identified four (4) critical factor that classified as a difficulties to the success of IBS formwork system application; The issues related to the lack of knowledge and awareness, high cost and financial barriers, lack of incentive and promotion and lack of enforcement for government policy were highlight as a key dimension for the uses of IBS formwork system to success. The objective of this paper is to determine the importance factors in implementing IBS formwork in Malaysia. A preliminary survey which qualitative research approach has been adopted for this study as to validate the factors which found in the literature study. Based on the result analysis, it can be confirmed that the entire factors in literature review are strongly related with challenges in construction industry.
The Impact of Cultural Dimensions on Online Learning
ERIC Educational Resources Information Center
Gómez-Rey, Pilar; Barbera, Elena; Fernández-Navarro, Francisco
2016-01-01
Due to the increasingly multicultural nature of e-learning environments, it is critical that instructors and instructional designers be aware of the importance of cultural factors in education and that they deliver culturally adaptive instruction. The main challenge of this paper is identifying the critical success factors for multicultural online…
African-Canadian Educators' Perspectives: Critical Factors for Success
ERIC Educational Resources Information Center
Finlayson, Maureen
2011-01-01
This study investigates the perspectives of African-Canadian educators on critical factors for success in their educational careers. Interviews were conducted and life histories were constructed to analyze the complex and multifaceted nature of the experiences of ten African-Canadian educators. These data indicate that family and community…
Creating a High-Performance School System.
ERIC Educational Resources Information Center
Thompson, Scott
2003-01-01
Describes several critical factors of a high-performing school system such as the system holds itself accountable for the success of all its schools. Provides school district examples of critical success factors in action. Includes districts in Colorado, Washington, Texas, California, New Jersey. Discusses the role of strategic and authentic…
2012 Critical Success Factors Report
ERIC Educational Resources Information Center
North Carolina Community College System (NJ1), 2012
2012-01-01
The Critical Success Factors Report is the North Carolina Community College System's major accountability document. This annual performance report is based on data compiled from the previous year and serves to inform colleges and the public on the performance of North Carolina's 58 community colleges. In 1993, the State Board of Community Colleges…
Critical Factors for Improving Social Sustainability of Urban Renewal Projects
ERIC Educational Resources Information Center
Chan, Edwin; Lee, Grace K. L.
2008-01-01
This study reviews the sustainable urban design concept and identifies critical factors for enhancing social sustainability of urban renewal projects. Through a questionnaire survey carried out in Hong Kong, the opinions of architects, planners, property development managers, and local citizens were sought and evaluated. The results derived from…
Critical Factors in Data Governance for Learning Analytics
ERIC Educational Resources Information Center
Elouazizi, Noureddine
2014-01-01
This paper identifies some of the main challenges of data governance modelling in the context of learning analytics for higher education institutions, and discusses the critical factors for designing data governance models for learning analytics. It identifies three fundamental common challenges that cut across any learning analytics data…
Critical Multicultural Citizenship Education among Black Immigrant Youth: Factors and Challenges
ERIC Educational Resources Information Center
Kumi-Yeboah, Alex; Smith, Patriann
2016-01-01
This study uses qualitative interviews with 18 participants across five states to examine the factors that promote enhancement of critical multicultural education for Black immigrant youth. Findings suggest that class discussion, influence of social media and technology, non-educational practices, and cultural and language differences are the…
Critical Success Factors in a High School Healthcare Education Program
ERIC Educational Resources Information Center
Thessin, Rebecca A.; Scully-Russ, Ellen; Lieberman, Daina S.
2017-01-01
Research has demonstrated career and technical education (CTE) programs have a strong positive influence on secondary students' behavior, attendance, academic achievement, and college persistence. Critical success factors common to career academies, small schools, and CTE programs include socio-emotional support and community, along with a culture…
9 CFR 381.303 - Critical factors and the application of the process schedule.
Code of Federal Regulations, 2010 CFR
2010-01-01
... PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Critical factors and the application of the process schedule. 381.303 Section 381.303 Animals and Animal Products FOOD SAFETY AND...
Gastrointestinal Factors in Autistic Disorder: A Critical Review
ERIC Educational Resources Information Center
Erickson, Craig A.; Stigler, Kimberly A.; Corkins, Mark R.; Posey, David J.; Fitzgerald, Joseph F.; McDougle, Christopher J.
2005-01-01
Interest in the gastrointestinal (GI) factors of autistic disorder (autism) has developed from descriptions of symptoms such as constipation and diarrhea in autistic children and advanced towards more detailed studies of GI histopathology and treatment modalities. This review attempts to critically and comprehensively analyze the literature as it…
Critical Success Factors in Online Language Learning
ERIC Educational Resources Information Center
Alberth
2011-01-01
With the proliferation of online courses nowadays, it is necessary to ask what defines the success of teaching and learning in these new learning environments exactly. This paper identifies and critically discusses a number of factors for successful implementation of online delivery, particularly as far as online language learning is concerned.…
“Ins” and “Outs” of mesenchymal stem cell osteogenesis in regenerative medicine
Yamaguchi, Dean T
2014-01-01
Repair and regeneration of bone requires mesenchymal stem cells that by self-renewal, are able to generate a critical mass of cells with the ability to differentiate into osteoblasts that can produce bone protein matrix (osteoid) and enable its mineralization. The number of human mesenchymal stem cells (hMSCs) diminishes with age and ex vivo replication of hMSCs has limited potential. While propagating hMSCs under hypoxic conditions may maintain their ability to self-renew, the strategy of using human telomerase reverse transcriptase (hTERT) to allow for hMSCs to prolong their replicative lifespan is an attractive means of ensuring a critical mass of cells with the potential to differentiate into various mesodermal structural tissues including bone. However, this strategy must be tempered by the oncogenic potential of TERT-transformed cells, or their ability to enhance already established cancers, the unknown differentiating potential of high population doubling hMSCs and the source of hMSCs (e.g., bone marrow, adipose-derived, muscle-derived, umbilical cord blood, etc.) that may provide peculiarities to self-renewal, differentiation, and physiologic function that may differ from non-transformed native cells. Tissue engineering approaches to use hMSCs to repair bone defects utilize the growth of hMSCs on three-dimensional scaffolds that can either be a base on which hMSCs can attach and grow or as a means of sequestering growth factors to assist in the chemoattraction and differentiation of native hMSCs. The use of whole native extracellular matrix (ECM) produced by hMSCs, rather than individual ECM components, appear to be advantageous in not only being utilized as a three-dimensional attachment base but also in appropriate orientation of cells and their differentiation through the growth factors that native ECM harbor or in simulating growth factor motifs. The origin of native ECM, whether from hMSCs from young or old individuals is a critical factor in “rejuvenating” hMSCs from older individuals grown on ECM from younger individuals. PMID:24772237
Three Factors Are Critical in Order to Synthesize Intelligible Noise-Vocoded Japanese Speech
Kishida, Takuya; Nakajima, Yoshitaka; Ueda, Kazuo; Remijn, Gerard B.
2016-01-01
Factor analysis (principal component analysis followed by varimax rotation) had shown that 3 common factors appear across 20 critical-band power fluctuations derived from spoken sentences of eight different languages [Ueda et al. (2010). Fechner Day 2010, Padua]. The present study investigated the contributions of such power-fluctuation factors to speech intelligibility. The method of factor analysis was modified to obtain factors suitable for resynthesizing speech sounds as 20-critical-band noise-vocoded speech. The resynthesized speech sounds were used for an intelligibility test. The modification of factor analysis ensured that the resynthesized speech sounds were not accompanied by a steady background noise caused by the data reduction procedure. Spoken sentences of British English, Japanese, and Mandarin Chinese were subjected to this modified analysis. Confirming the earlier analysis, indeed 3–4 factors were common to these languages. The number of power-fluctuation factors needed to make noise-vocoded speech intelligible was then examined. Critical-band power fluctuations of the Japanese spoken sentences were resynthesized from the obtained factors, resulting in noise-vocoded-speech stimuli, and the intelligibility of these speech stimuli was tested by 12 native Japanese speakers. Japanese mora (syllable-like phonological unit) identification performances were measured when the number of factors was 1–9. Statistically significant improvement in intelligibility was observed when the number of factors was increased stepwise up to 6. The 12 listeners identified 92.1% of the morae correctly on average in the 6-factor condition. The intelligibility improved sharply when the number of factors changed from 2 to 3. In this step, the cumulative contribution ratio of factors improved only by 10.6%, from 37.3 to 47.9%, but the average mora identification leaped from 6.9 to 69.2%. The results indicated that, if the number of factors is 3 or more, elementary linguistic information is preserved in such noise-vocoded speech. PMID:27199790
Yang, Tongren; Yao, Sufei; Hao, Lin; Zhao, Yuanyuan; Lu, Wenjing; Xiao, Kai
2016-11-01
Wheat bHLH family gene TabHLH1 is responsive to drought and salt stresses, and it acts as one crucial regulator in mediating tolerance to aforementioned stresses largely through an ABA-associated pathway. Osmotic stresses are adverse factors for plant growth and crop productivity. In this study, we characterized TabHLH1, a gene encoding wheat bHLH-type transcription factor (TF) protein, in mediating plant adaptation to osmotic stresses. TabHLH1 protein contains a conserved basic-helix-loop-helix (bHLH) domain shared by its plant counterparts. Upon PEG-simulated drought stress, salt stress, and exogenous abscisic acid (ABA), the TabHLH1 transcripts in roots and leaves were induced. Under PEG-simulated drought stress and salt stress treatments, the tobacco seedlings with TabHLH1 overexpression exhibited improved growth and osmotic stress-associated traits, showing increased biomass and reduced leaf water loss rate (WLR) relative to wild type (WT). The transgenic lines also possessed promoted stomata closure under drought stress, salt stress, and exogenous ABA and increased proline and soluble sugar contents and reduced hydrogen peroxide (H 2 O 2 ) amount under osmotic stress conditions, indicating that TabHLH1-mediated osmolyte accumulation and cellular ROS homeostasis contributed to the drought stress and salt stress tolerance. NtPYL12 and NtSAPK2;1, the genes encoding ABA receptor and SnRK2 family kinase, respectively, showed up-regulated expression in lines overexpressing TabHLH1 under osmotic stress and exogenous ABA conditions; overexpression of them conferred plants modified stomata movement, leaf WLR, and growth feature under drought and high salinity, suggesting that these ABA-signaling genes are mediated by wheat TabHLH1 gene and involved in regulating plant responses to simulated drought and salt stresses. Our investigation indicates that the TabHLH1 gene plays critical roles in plant tolerance to osmotic stresses largely through an ABA-dependent pathway.
Eight critical factors in creating and implementing a successful simulation program.
Lazzara, Elizabeth H; Benishek, Lauren E; Dietz, Aaron S; Salas, Eduardo; Adriansen, David J
2014-01-01
Recognizing the need to minimize human error and adverse events, clinicians, researchers, administrators, and educators have strived to enhance clinicians' knowledge, skills, and attitudes through training. Given the risks inherent in learning new skills or advancing underdeveloped skills on actual patients, simulation-based training (SBT) has become an invaluable tool across the medical education spectrum. The large simulation, training, and learning literature was used to provide a synthesized yet innovative and "memorable" heuristic of the important facets of simulation program creation and implementation, as represented by eight critical "S" factors-science, staff, supplies, space, support, systems, success, and sustainability. These critical factors advance earlier work that primarily focused on the science of SBT success, to also include more practical, perhaps even seemingly obvious but significantly challenging components of SBT, such as resources, space, and supplies. SYSTEMS: One of the eight critical factors-systems-refers to the need to match fidelity requirements to training needs and ensure that technological infrastructure is in place. The type of learning objectives that the training is intended to address should determine these requirements. For example, some simulators emphasize physical fidelity to enable clinicians to practice technical and nontechnical skills in a safe environment that mirrors real-world conditions. Such simulators are most appropriate when trainees are learning how to use specific equipment or conduct specific procedures. The eight factors-science, staff, supplies, space, support, systems, success, and sustainability-represent a synthesis of the most critical elements necessary for successful simulation programs. The order of the factors does not represent a deliberate prioritization or sequence, and the factors' relative importance may change as the program evolves.
Kim, Young-Jae; Lee, Chanam; Lu, Wenhua; Mendoza, Jason A.
2017-01-01
As a critical social cognitive construct, self-efficacy plays a determinant role in children’s walking to school (WTS). However, little is known about factors that are underlying children’s and parents’ self-efficacy in WTS. The purpose of this study is to examine behavioral, attitudinal, and environmental correlates of child self-efficacy and parent self-efficacy in WTS, and to assess differences in the correlates of child versus parent self-efficacy. Data were collected from students (N = 1224) and parents (N = 1205) from 81 elementary schools across Texas in 2009–2012. Binary logistic regressions were conducted to identify significant factors that are associated with children’s self-efficacy and parents’ self-efficacy. Results from this study showed that the parent self-efficacy was more likely to be related to their own behaviors or attitudes, rather than the environmental factors or their child’s input. The child self-efficacy, however, was influenced not only by their own and parental behaviors or attitudes, but also by environmental factors. This study suggests that both parental and child self-efficacy are important factors to be considered when making decisions about school transportation. PMID:29258210
Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling
Phillips, Cristy; Baktir, Mehmet Akif; Srivatsan, Malathi; Salehi, Ahmad
2014-01-01
While the relationship between increased physical activity and cognitive ability has been conjectured for centuries, only recently have the mechanisms underlying this relationship began to emerge. Convergent evidence suggests that physical activity offers an affordable and effective method to improve cognitive function in all ages, particularly the elderly who are most vulnerable to neurodegenerative disorders. In addition to improving cardiac and immune function, physical activity alters trophic factor signaling and, in turn, neuronal function and structure in areas critical for cognition. Sustained exercise plays a role in modulating anti-inflammatory effects and may play a role in preserving cognitive function in aging and neuropathological conditions. Moreover, recent evidence suggests that myokines released by exercising muscles affect the expression of brain-derived neurotrophic factor synthesis in the dentate gyrus of the hippocampus, a finding that could lead to the identification of new and therapeutically important mediating factors. Given the growing number of individuals with cognitive impairments worldwide, a better understanding of how these factors contribute to cognition is imperative, and constitutes an important first step toward developing non-pharmacological therapeutic strategies to improve cognition in vulnerable populations. PMID:24999318
Phillips, Cristy; Baktir, Mehmet Akif; Srivatsan, Malathi; Salehi, Ahmad
2014-01-01
While the relationship between increased physical activity and cognitive ability has been conjectured for centuries, only recently have the mechanisms underlying this relationship began to emerge. Convergent evidence suggests that physical activity offers an affordable and effective method to improve cognitive function in all ages, particularly the elderly who are most vulnerable to neurodegenerative disorders. In addition to improving cardiac and immune function, physical activity alters trophic factor signaling and, in turn, neuronal function and structure in areas critical for cognition. Sustained exercise plays a role in modulating anti-inflammatory effects and may play a role in preserving cognitive function in aging and neuropathological conditions. Moreover, recent evidence suggests that myokines released by exercising muscles affect the expression of brain-derived neurotrophic factor synthesis in the dentate gyrus of the hippocampus, a finding that could lead to the identification of new and therapeutically important mediating factors. Given the growing number of individuals with cognitive impairments worldwide, a better understanding of how these factors contribute to cognition is imperative, and constitutes an important first step toward developing non-pharmacological therapeutic strategies to improve cognition in vulnerable populations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
..., Under the Endangered Species Act; Public Hearing AGENCY: National Marine Fisheries Service (NMFS... for the Loggerhead Sea Turtle, Caretta caretta, under the Endangered Species Act (ESA). DATES: The...-17204/endangered-and-threatened-species-designation-of-critical-habitat-for-the-northwest-atlantic-ocean...
Climate change, marine environments, and the US Endangered species act.
Seney, Erin E; Rowland, Melanie J; Lowery, Ruth Ann; Griffis, Roger B; McClure, Michelle M
2013-12-01
Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate-related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and "distinct population segments" may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case-by-case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species' continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA-listed species' survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long-term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro. © 2013 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Legan, M. A.; Blinov, V. A.; Larichkin, A. Yu; Novoselov, A. N.
2017-10-01
Experimental study of hydraulic fracturing of thick-walled cylinders with a central circular hole was carried out using the machine that creates a high oil pressure. Experiments on the compression fracture of the solid cylinders by diameter and rectangular parallelepipeds perpendicular to the ends were carried out with a multipurpose test machine Zwick / Roell Z100. Samples were made of GF-177 material based on cement. Ultimate stresses in the material under study were determined for three types of stress state: under compression, with a pure shear on the surface of the hole under frecking conditions and under a compound stress state under conditions of diametral compression of a solid cylinder. The value of the critical stress intensity factor of GF-177 material was obtained. The modeling of the fracturing process taking into account the inhomogeneity of the stress state near the hole was carried out using the boundary elements method (in the variant of the fictitious load method) and the gradient fracture criterion. Calculation results of the ultimate pressure were compared with values obtained analytically on the basis of the Lame solution and with experimental data.
Design flow factors for sewerage systems in small arid communities.
Imam, Emad H; Elnakar, Haitham Y
2014-09-01
Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.
Design flow factors for sewerage systems in small arid communities
Imam, Emad H.; Elnakar, Haitham Y.
2013-01-01
Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows. PMID:25685521
Prediction model of critical weight loss in cancer patients during particle therapy.
Zhang, Zhihong; Zhu, Yu; Zhang, Lijuan; Wang, Ziying; Wan, Hongwei
2018-01-01
The objective of this study is to investigate the predictors of critical weight loss in cancer patients receiving particle therapy, and build a prediction model based on its predictive factors. Patients receiving particle therapy were enroled between June 2015 and June 2016. Body weight was measured at the start and end of particle therapy. Association between critical weight loss (defined as >5%) during particle therapy and patients' demographic, clinical characteristic, pre-therapeutic nutrition risk screening (NRS 2002) and BMI were evaluated by logistic regression and decision tree analysis. Finally, 375 cancer patients receiving particle therapy were included. Mean weight loss was 0.55 kg, and 11.5% of patients experienced critical weight loss during particle therapy. The main predictors of critical weight loss during particle therapy were head and neck tumour location, total radiation dose ≥70 Gy on the primary tumour, and without post-surgery, as indicated by both logistic regression and decision tree analysis. Prediction model that includes tumour locations, total radiation dose and post-surgery had a good predictive ability, with the area under receiver operating characteristic curve 0.79 (95% CI: 0.71-0.88) and 0.78 (95% CI: 0.69-0.86) for decision tree and logistic regression model, respectively. Cancer patients with head and neck tumour location, total radiation dose ≥70 Gy and without post-surgery were at higher risk of critical weight loss during particle therapy, and early intensive nutrition counselling or intervention should be target at this population. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Punishment in public goods games leads to meta-stable phase transitions and hysteresis
NASA Astrophysics Data System (ADS)
Hintze, Arend; Adami, Christoph
2015-07-01
The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly and difficult to maintain. On the other hand, cooperation emerges naturally in the public goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can ‘tunnel’ into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can ‘nucleate’ such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point.
Gao, Mengmeng; Liu, Yaping; Ma, Xiao; Shuai, Qin; Gai, Junyi; Li, Yan
2017-01-01
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used to analyze the relative gene expression level, however, the accuracy of qRT-PCR is greatly affected by the stability of reference genes, which is tissue- and environment- dependent. Therefore, choosing the most stable reference gene in a specific tissue and environment is critical to interpret gene expression patterns. Aluminum (Al), cadmium (Cd), and heat stresses are three important abiotic factors limiting soybean (Glycine max) production in southern China. To identify the suitable reference genes for normalizing the expression levels of target genes by qRT-PCR in soybean response to Al, Cd and heat stresses, we studied the expression stability of ten commonly used housekeeping genes in soybean roots and leaves under these three abiotic stresses, using five approaches, BestKeeper, Delta Ct, geNorm, NormFinder and RefFinder. We found TUA4 is the most stable reference gene in soybean root tips under Al stress. Under Cd stress, Fbox and UKN2 are the most stable reference genes in roots and leaves, respectively, while 60S is the most suitable reference gene when analyzing both roots and leaves together. For heat stress, TUA4 and UKN2 are the most stable housekeeping genes in roots and leaves, respectively, and UKN2 is the best reference gene for analysis of roots and leaves together. To validate the reference genes, we quantified the relative expression levels of six target genes that were involved in soybean response to Al, Cd or heat stresses, respectively. The expression patterns of these target genes differed between using the most and least stable reference genes, suggesting the selection of a suitable reference gene is critical for gene expression studies.
Translational control of aberrant stress responses as a hallmark of cancer.
El-Naggar, Amal M; Sorensen, Poul H
2018-04-01
Altered mRNA translational control is emerging as a critical factor in cancer development and progression. Targeting specific elements of the translational machinery, such as mTORC1 or eIF4E, is emerging as a new strategy for innovative cancer therapy. While translation of most mRNAs takes place through cap-dependent mechanisms, a sub-population of cellular mRNA species, particularly stress-inducible mRNAs with highly structured 5'-UTR regions, are primarily translated through cap-independent mechanisms. Intriguingly, many of these mRNAs encode proteins that are involved in tumour cell adaptation to microenvironmental stress, and thus linked to aggressive behaviour including tumour invasion and metastasis. This necessitates a rigorous search for links between microenvironmental stress and aggressive tumour phenotypes. Under stress, cells block global protein synthesis to preserve energy while maintaining selective synthesis of proteins that support cell survival. One highly conserved mechanism to regulate protein synthesis under cell stress is to sequester mRNAs into cytosolic aggregates called stress granules (SGs), where their translation is silenced. SGs confer survival advantages and chemotherapeutic resistance to tumour cells under stress. Recently, it has been shown that genetically blocking SG formation dramatically reduces tumour invasive and metastatic capacity in vivo. Therefore, targeting SG formation might represent a potential treatment strategy to block cancer metastasis. Here, we present the critical link between selective mRNA translation, stress adaptation, SGs, and tumour progression. Further, we also explain how deciphering mechanisms of selective mRNA translation occurs under cell stress holds great promise for the identification of new targets in the treatment of cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
In-ovo green light photostimulation during different embryonic stages affect somatotropic axis.
Dishon, L; Avital-Cohen, N; Zaguri, S; Bartman, J; Heiblum, R; Druyan, S; Porter, T E; Gumulka, M; Rozenboim, I
2018-06-01
Previous studies demonstrated that in-ovo photostimulation with monochromatic green light increased the somatotropic axis expression in broilers embryos. The objective of the current study was to detect the critical period for in-ovo GL photostimulation, in order to find the optimal targeted photostimulation period during the incubation process. Three hundred thirty-six fertile broiler eggs were divided into 4 groups. The first group was incubated under dark conditions as a negative control. The second incubated under intermittent monochromatic green light using light-emitting diode (LED) lamps with an intensity of 0.1 W\\m2 at shell level from d 0 of the incubation as a positive control. The third group incubated under intermittent monochromatic green light from d 10 of the incubation. The last group incubated under intermittent monochromatic green light from d 15 of the incubation. In-ovo green light photostimulation from embryonic d 0 (ED0) increased plasma growth hormone (GH), as well as hypothalamic growth hormone releasing hormone (GHRH) and liver growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF-1) mRNA levels. In-ovo green light photostimulation from ED10 increased the GH plasma levels compared to the negative control group, without affecting somatotropic axis mRNA genes expressions of GHRH, GHR, and IGF-1. In-ovo green light photostimulation from ED15 caused an increase in both the plasma GH levels and the somatotropic axis mRNA genes expressions of GHRH, GHR, and IGF-1, compared to the negative control group. These results suggest that the critical period of somatotropic axis acceleration by GL photostimulation start at 15 d of incubation.
Critical Analysis of Compositions and Protective Efficacies of Oral Killed Cholera Vaccines
2014-01-01
Two cholera vaccines, sold as Shanchol and Dukoral, are currently available. This review presents a critical analysis of the protective efficacies of these vaccines. Children under 5 years of age are very vulnerable to cholera and account for the highest incidence of cholera cases and more than half of the resulting deaths. Both Shanchol and Dukoral are two-spaced-dose oral vaccines comprising large numbers of killed cholera bacteria. The former contains Vibrio cholerae O1 and O139 cells, and the latter contains V. cholerae O1 cells with the recombinant B subunit of cholera toxin. In a field trial in Kolkata (India), Shanchol, the preferred vaccine, protected 45% of the test subjects in all of the age groups and only 17% of the children under 5 years of age during the first year of surveillance. In a field trial in Peru, two spaced doses of Dukoral offered negative protection in children under 5 years of age and little protection (15%) in vaccinees over 6 years of age during the first year of surveillance. Little is known about Dukoral's long-term protective efficacy. Both of these vaccines have questionable compositions, using V. cholerae O1 strains isolated in 1947 that have been inactivated by heat and formalin treatments that may denature protein. Immunological studies revealed Dukoral's reduced and short-lived efficacy, as measured by several immunological endpoints. Various factors, such as the necessity for multiple doses, poor protection of children under 5 years of age, the requirement of a cold supply chain, production costs, and complex logistics of vaccine delivery, greatly reduce the suitability of either of these vaccines for endemic or epidemic cholera control in resource-poor settings. PMID:25056361
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-28
...We, the U.S. Fish and Wildlife Service, designate critical habitat for the southern Selkirk Mountains population of woodland caribou (Rangifer tarandus caribou) under the Endangered Species Act. In total, approximately 30,010 acres (12,145 hectares) is being designated as critical habitat. The critical habitat is located in Boundary County, Idaho, and Pend Oreille County, Washington. We are finalizing this action in compliance with our obligation under the Act and in compliance with a court-approved settlement agreement. The effect of this regulation is to conserve the habitat essential to the southern Selkirk Mountains population of woodland caribou.
Establishment and Validation of GV-SAPS II Scoring System for Non-Diabetic Critically Ill Patients
Liu, Wen-Yue; Lin, Shi-Gang; Zhu, Gui-Qi; Poucke, Sven Van; Braddock, Martin; Zhang, Zhongheng; Mao, Zhi; Shen, Fei-Xia
2016-01-01
Background and Aims Recently, glucose variability (GV) has been reported as an independent risk factor for mortality in non-diabetic critically ill patients. However, GV is not incorporated in any severity scoring system for critically ill patients currently. The aim of this study was to establish and validate a modified Simplified Acute Physiology Score II scoring system (SAPS II), integrated with GV parameters and named GV-SAPS II, specifically for non-diabetic critically ill patients to predict short-term and long-term mortality. Methods Training and validation cohorts were exacted from the Multiparameter Intelligent Monitoring in Intensive Care database III version 1.3 (MIMIC-III v1.3). The GV-SAPS II score was constructed by Cox proportional hazard regression analysis and compared with the original SAPS II, Sepsis-related Organ Failure Assessment Score (SOFA) and Elixhauser scoring systems using area under the curve of the receiver operator characteristic (auROC) curve. Results 4,895 and 5,048 eligible individuals were included in the training and validation cohorts, respectively. The GV-SAPS II score was established with four independent risk factors, including hyperglycemia, hypoglycemia, standard deviation of blood glucose levels (GluSD), and SAPS II score. In the validation cohort, the auROC values of the new scoring system were 0.824 (95% CI: 0.813–0.834, P< 0.001) and 0.738 (95% CI: 0.725–0.750, P< 0.001), respectively for 30 days and 9 months, which were significantly higher than other models used in our study (all P < 0.001). Moreover, Kaplan-Meier plots demonstrated significantly worse outcomes in higher GV-SAPS II score groups both for 30-day and 9-month mortality endpoints (all P< 0.001). Conclusions We established and validated a modified prognostic scoring system that integrated glucose variability for non-diabetic critically ill patients, named GV-SAPS II. It demonstrated a superior prognostic capability and may be an optimal scoring system for prognostic evaluation in this patient group. PMID:27824941
Critical illness in children with influenza A/pH1N1 2009 infection in Canada.
Jouvet, Philippe; Hutchison, Jamie; Pinto, Ruxandra; Menon, Kusum; Rodin, Rachel; Choong, Karen; Kesselman, Murray; Veroukis, Stasa; André Dugas, Marc; Santschi, Miriam; Guerguerian, Anne-Marie; Withington, Davinia; Alsaati, Basem; Joffe, Ari R; Drews, Tanya; Skippen, Peter; Rolland, Elizabeth; Kumar, Anand; Fowler, Robert
2010-09-01
To describe characteristics, treatment, and outcomes of critically ill children with influenza A/pandemic influenza A virus (pH1N1) infection in Canada. An observational study of critically ill children with influenza A/pH1N1 infection in pediatric intensive care units (PICUs). Nine Canadian PICUs. A total of 57 patients admitted to PICUs between April 16, 2009 and August 15, 2009. None. Characteristics of critically ill children with influenza A/pH1N1 infection were recorded. Confirmed intensive care unit cases were compared with a national surveillance database containing all hospitalized pediatric patients with influenza A/pH1N1 infection. Risk factors were assessed with a Cox proportional hazard model. The PICU cohort and national surveillance data were compared, using chi-square tests. Fifty-seven children were admitted to the PICU for community-acquired influenza A/pH1N1 infection. One or more chronic comorbid illnesses were observed in 70.2% of patients, and 24.6% of patients were aboriginal. Mechanical ventilation was used in 68% of children, 20 children (35.1%) had acute lung injury on the first day of admission, and the median duration of ventilation was 6 days (range, 0-67 days). The PICU mortality rate was 7% (4 of 57 patients). When compared with nonintensive care unit hospitalized children, PICU children were more likely to have a chronic medical condition (relative risk, 1.73); aboriginal ethnicity was not a risk factor of intensive care unit admission. During the first outbreak of influenza A/pH1N1 infection, when the population was naïve to this novel virus, severe illness was common among children with underlying chronic conditions and aboriginal children. Influenza A/pH1N1-related critical illness in children was associated with severe hypoxemic respiratory failure and prolonged mechanical ventilation. However, this higher rate and severity of respiratory illness did not result in an increased mortality when compared with seasonal influenza.
Refeeding in the ICU: an adult and pediatric problem.
Byrnes, Matthew C; Stangenes, Jessica
2011-03-01
To describe the etiology and complications of the refeeding syndrome. Complications of the refeeding syndrome can include electrolyte abnormalities, heart failure, respiratory failure, and death. This syndrome is of particular importance to critically ill patients, who can be moved from the starved state to the fed state rapidly via enteral or parenteral nutrition. There are a variety of risk factors for the development of the refeeding syndrome. All of these risk factors are tied together by starvation physiology. Case reports and case series continue to be reported, suggesting that this entity continues to exist in critically ill patients. Initiation of enteral nutrition to patients with starvation physiology should be gradual and careful monitoring of electrolytes and organ function is critical during the early stages of refeeding. The refeeding syndrome remains a significant issue in critically ill patients. Knowledge of the risk factors and the clinical signs of the refeeding syndrome is important to optimize outcomes.
Can we protect the gut in critical illness? The role of growth factors and other novel approaches.
Dominguez, Jessica A; Coopersmith, Craig M
2010-07-01
The intestine plays a central role in the pathophysiology of critical illness and is frequently called the "motor" of the systemic inflammatory response. Perturbations to the intestinal barrier can lead to distant organ damage and multiple organ failure. Therefore, identifying ways to preserve intestinal integrity may be of paramount importance. Growth factors and other peptides have emerged as potential tools for modulation of intestinal inflammation and repair due to their roles in cellular proliferation, differentiation, migration, and survival. This review examines the involvement of growth factors and other peptides in intestinal epithelial repair during critical illness and their potential use as therapeutic targets. Copyright 2010 Elsevier Inc. All rights reserved.