Curing critical links in oscillator networks as power flow models
NASA Astrophysics Data System (ADS)
Rohden, Martin; Witthaut, Dirk; Timme, Marc; Meyer-Ortmanns, Hildegard
2017-01-01
Modern societies crucially depend on the robust supply with electric energy so that blackouts of power grids can have far reaching consequences. Typically, large scale blackouts take place after a cascade of failures: the failure of a single infrastructure component, such as a critical transmission line, results in several subsequent failures that spread across large parts of the network. Improving the robustness of a network to prevent such secondary failures is thus key for assuring a reliable power supply. In this article we analyze the nonlocal rerouting of power flows after transmission line failures for a simplified AC power grid model and compare different strategies to improve network robustness. We identify critical links in the grid and compute alternative pathways to quantify the grid’s redundant capacity and to find bottlenecks along the pathways. Different strategies are developed and tested to increase transmission capacities to restore stability with respect to transmission line failures. We show that local and nonlocal strategies typically perform alike: one can equally well cure critical links by providing backup capacities locally or by extending the capacities of bottleneck links at remote locations.
Critical assessment of Reynolds stress turbulence models using homogeneous flows
NASA Technical Reports Server (NTRS)
Shabbir, Aamir; Shih, Tsan-Hsing
1992-01-01
In modeling the rapid part of the pressure correlation term in the Reynolds stress transport equations, extensive use has been made of its exact properties which were first suggested by Rotta. These, for example, have been employed in obtaining the widely used Launder, Reece and Rodi (LRR) model. Some recent proposals have dropped one of these properties to obtain new models. We demonstrate, by computing some simple homogeneous flows, that doing so does not lead to any significant improvements over the LRR model and it is not the right direction in improving the performance of existing models. The reason for this, in our opinion, is that violation of one of the exact properties can not bring in any new physics into the model. We compute thirteen homogeneous flows using LRR (with a recalibrated rapid term constant), IP and SSG models. The flows computed include the flow through axisymmetric contraction; axisymmetric expansion; distortion by plane strain; and homogeneous shear flows with and without rotation. Results show that for most general representation for a model linear in the anisotropic tensor, performs either better or as good as the other two models of the same level.
Critical assessment of Reynolds stress turbulence models using homogeneous flows
NASA Astrophysics Data System (ADS)
Shabbir, Aamir; Shih, Tsan-Hsing
1992-12-01
In modeling the rapid part of the pressure correlation term in the Reynolds stress transport equations, extensive use has been made of its exact properties which were first suggested by Rotta. These, for example, have been employed in obtaining the widely used Launder, Reece and Rodi (LRR) model. Some recent proposals have dropped one of these properties to obtain new models. We demonstrate, by computing some simple homogeneous flows, that doing so does not lead to any significant improvements over the LRR model and it is not the right direction in improving the performance of existing models. The reason for this, in our opinion, is that violation of one of the exact properties can not bring in any new physics into the model. We compute thirteen homogeneous flows using LRR (with a recalibrated rapid term constant), IP and SSG models. The flows computed include the flow through axisymmetric contraction; axisymmetric expansion; distortion by plane strain; and homogeneous shear flows with and without rotation. Results show that for most general representation for a model linear in the anisotropic tensor, performs either better or as good as the other two models of the same level.
Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions
NASA Astrophysics Data System (ADS)
Le Corre, Jean-Marie
Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate
NASA Astrophysics Data System (ADS)
Fourrate, K.; Loulidi, M.
2006-01-01
We suggest a disordered traffic flow model that captures many features of traffic flow. It is an extension of the Nagel-Schreckenberg (NaSch) stochastic cellular automata for single line vehicular traffic model. It incorporates random acceleration and deceleration terms that may be greater than one unit. Our model leads under its intrinsic dynamics, for high values of braking probability pr, to a constant flow at intermediate densities without introducing any spatial inhomogeneities. For a system of fast drivers pr→0, the model exhibits a density wave behavior that was observed in car following models with optimal velocity. The gap of the disordered model we present exhibits, for high values of pr and random deceleration, at a critical density, a power law distribution which is a hall mark of a self organized criticality phenomena.
On the subcooled critical flow model in RELAP5/MOD3
Yeung, W.S.; Shirkov, J.
1996-04-01
An analysis of an anomaly in the subcooled critical flow model in the RELAP5/MOD3 computer code is presented. Specifically, the code produces a discontinuity in going from unchoked subcooled liquid flow (i.e., subsonic flow) to subcooled choked flow (i.e., sonic flow). The same anomaly has been reported elsewhere. The root cause for this anomaly has been analyzed, and it is found that the user-supplied junction loss coefficient and discharge coefficient play an important role in the occurrence of this anomaly. The analysis is verified by assessment against a test problem simulating single-phase liquid flow through a convergent nozzle with a fixed upstream pressure and a varying downstream pressure. A corrective measure to eliminate the discontinuity is suggested.
Study of Critical Heat Flux Mechanism in Flow Boiling Using Bubble Crowding Model
NASA Astrophysics Data System (ADS)
Kinoshita, Hidetaka; Nariai, Hideki; Inasaka, Fujio
Critical heat flux (CHF) of Subcooled Flow Boiling with water in a tube was investigated from the viewpoint of mechanistic models. The Weisman-Pei bubble crowding model was selected to predict CHF in a short tube and in a tube with an internal twisted tape under nonuniform heating conditions, Based on the results of bubble behavior observation and preliminary analysis. The original Weisman-Pei model was modified in order to explain the physical phenomena of CHF. The modified model predicted well CHF in a smooth tube including the very short tube and the tube with an internal twisted tape under uniform and nonuniform heating conditions.
A. Alsaed
2004-09-14
The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality
NASA Technical Reports Server (NTRS)
Bertsimas, Dimitris; Odoni, Amedeo
1997-01-01
This document presents a critical review of the principal existing optimization models that have been applied to Air Traffic Flow Management (TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow Management Problem (GTFMP) and the Ground Holding Problem (GHP), as well as on some of their variations. To perform this task, we have carried out an extensive literature review that has covered more than 40 references, most of them very recent. Based on the review of this emerging field our objectives were to: (i) identify the best available models; (ii) describe typical contexts for applications of the models; (iii) provide illustrative model formulations; and (iv) identify the methodologies that can be used to solve the models. We shall begin our presentation below by providing a brief context for the models that we are reviewing. In Section 3 we shall offer a taxonomy and identify four classes of models for review. In Sections 4, 5, and 6 we shall then review, respectively, models for the Single-Airport Ground Holding Problem, the Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for the definition of these problems see Section 3 below). In each section, we identify the best available models and discuss briefly their computational performance and applications, if any, to date. Section 7 summarizes our conclusions about the state of the art.
Rohrer, C A; Roesner, L A
2006-01-01
Hydrologic and hydraulic modeling in the USEPA Stormwater Management Model (SWMM) were used to examine the effectiveness of typical stormwater management practices in reducing the potential for stream erosion. Fifty-year continuous simulations were used to produce flow duration curves and stream erosion rates for a variety of critical shear stress values representative of both cohesive and non-cohesive sediments. An excess shear stress erosion potential index was used to evaluate changes in erosion between undeveloped conditions of a 10 hectare watershed and four variations of post-development stormwater control. Evaluation of flow duration curves showed that when development takes place, the duration of mid- to low-range discharges increase significantly, especially when detention practices are applied. In channels with low entrainment thresholds for bed and bank materials, e.g. sands and highly erodible clays, the significant increase of the duration of mid- to low-range discharges results in erosion potential index values greater than two regardless of the detention practices used. Overcontrol detention resulted in erosion potential index values of less than one, indicating a loss of erosion potential for bed materials such as most gravels (d(s) > 6 mm) and resistant clays that have critical shear stress values greater than four Pa.
A critical evaluation of various turbulence models as applied to internal fluid flows
NASA Technical Reports Server (NTRS)
Nallasamy, M.
1985-01-01
Models employed in the computation of turbulent flows are described and their application to internal flows is evaluated by examining the predictions of various turbulence models in selected flow configurations. The main conclusions are: (1) the k-epsilon model is used in a majority of all the two-dimensional flow calculations reported in the literature; (2) modified forms of the k-epsilon model improve the performance for flows with streamline curvature and heat transfer; (3) for flows with swirl, the k-epsilon model performs rather poorly; the algebraic stress model performs better in this case; and (4) for flows with regions of secondary flow (noncircular duct flows), the algebraic stress model performs fairly well for fully developed flow, for developing flow, the algebraic stress model performance is not good; a Reynolds stress model should be used. False diffusion and inlet boundary conditions are discussed. Countergradient transport and its implications in turbulence modeling is mentioned. Two examples of recirculating flow predictions obtained using PHOENICS code are discussed. The vortex method, large eddy simulation (modeling of subgrid scale Reynolds stresses), and direct simulation, are considered. Some recommendations for improving the model performance are made. The need for detailed experimental data in flows with strong curvature is emphasized.
Uncertainties in modelling and scaling of critical flows and pump model in TRAC-PF1/MOD1
Rohatgi, U.S.; Yu, Wen-Shi
1987-01-01
The USNRC has established a Code Scalability, Applicability and Uncertainty (CSAU) evaluation methodology to quantify the uncertainty in the prediction of safety parameters by the best estimate codes. These codes can then be applied to evaluate the Emergency Core Cooling System (ECCS). The TRAC-PF1/MOD1 version was selected as the first code to undergo the CSAU analysis for LBLOCA applications. It was established through this methodology that break flow and pump models are among the top ranked models in the code affecting the peak clad temperature (PCT) prediction for LBLOCA. The break flow model bias or discrepancy and the uncertainty were determined by modelling the test section near the break for 12 Marviken tests. It was observed that the TRAC-PF1/MOD1 code consistently underpredicts the break flow rate and that the prediction improved with increasing pipe length (larger L/D). This is true for both subcooled and two-phase critical flows. A pump model was developed from Westinghouse (1/3 scale) data. The data represent the largest available test pump relevant to Westinghouse PWRs. It was then shown through the analysis of CE and CREARE pump data that larger pumps degrade less and also that pumps degrade less at higher pressures. Since the model developed here is based on the 1/3 scale pump and on low pressure data, it is conservative and will overpredict the degradation when applied to PWRs.
Managing critical materials with a technology-specific stocks and flows model.
Busch, Jonathan; Steinberger, Julia K; Dawson, David A; Purnell, Phil; Roelich, Katy
2014-01-21
The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model's potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%.
Managing Critical Materials with a Technology-Specific Stocks and Flows Model
2013-01-01
The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model’s potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%. PMID:24328245
Numerical modeling of continuous flow microwave heating: a critical comparison of COMSOL and ANSYS.
Salvi, D; Boldor, Dorin; Ortego, J; Aita, G M; Sabliov, C M
2010-01-01
Numerical models were developed to simulate temperature profiles in Newtonian fluids during continuous flow microwave heating by one way coupling electromagnetism, fluid flow, and heat transport in ANSYS 8.0 and COMSOL Multiphysics v3.4. Comparison of the results from the COMSOL model with the results from a pre-developed and validated ANSYS model ensured accuracy of the COMSOL model. Prediction of power Loss by both models was in close agreement (5-13% variation) and the predicted temperature profiles were similar. COMSOL provided a flexible model setup whereas ANSYS required coupling incompatible elements to transfer load between electromagnetic, fluid flow, and heat transport modules. Overall, both software packages provided the ability to solve multiphysics phenomena accurately.
Critical evaluation of three hemodynamic models for the numerical simulation of intra-stent flows.
Chabi, Fatiha; Champmartin, Stéphane; Sarraf, Christophe; Noguera, Ricardo
2015-07-16
We evaluate here three hemodynamic models used for the numerical simulation of bare and stented artery flows. We focus on two flow features responsible for intra-stent restenosis: the wall shear stress and the re-circulation lengths around a stent. The studied models are the Poiseuille profile, the simplified pulsatile profile and the complete pulsatile profile based on the analysis of Womersley. The flow rate of blood in a human left coronary artery is considered to compute the velocity profiles. "Ansys Fluent 14.5" is used to solve the Navier-Stokes and continuity equations. As expected our results show that the Poiseuille profile is questionable to simulate the complex flow dynamics involved in intra-stent restenosis. Both pulsatile models give similar results close to the strut but diverge far from it. However, the computational time for the complete pulsatile model is five times that of the simplified pulsatile model. Considering the additional "cost" for the complete model, we recommend using the simplified pulsatile model for future intra-stent flow simulations.
A critical assessment of viscous models of trench topography and corner flow
NASA Technical Reports Server (NTRS)
Zhang, J.; Hager, B. H.; Raefsky, A.
1984-01-01
Stresses for Newtonian viscous flow in a simple geometry (e.g., corner flow, bending flow) are obtained in order to study the effect of imposed velocity boundary conditions. Stress for a delta function velocity boundary condition decays as 1/R(2); for a step function velocity, stress goes as 1/R; for a discontinuity in curvature, the stress singularity is logarithmic. For corner flow, which has a discontinuity of velocity at a certain point, the corresponding stress has a 1/R singularity. However, for a more realistic circular-slab model, the stress singularity becomes logarithmic. Thus the stress distribution is very sensitive to the boundary conditions, and in evaluating the applicability of viscous models of trench topography it is essential to use realistic geometries. Topography and seismicity data from northern Hoshu, Japan, were used to construct a finite element model, with flow assumed tangent to the top of the grid, for both Newtonian and non-Newtonian flow (power law 3 rheology). Normal stresses at the top of the grid are compared to the observed trench topography and gravity anomalies. There is poor agreement. Purely viscous models of subducting slables with specified velocity boundary conditions do not predict normal stress patterns compatible with observed topography and gravity. Elasticity and plasticity appear to be important for the subduction process.
Knoeri, Christof; Wäger, Patrick A; Stamp, Anna; Althaus, Hans-Joerg; Weil, Marcel
2013-09-01
Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a 'snapshot' of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Ignatieva, A. A.
2006-11-01
Critical behaviour of a fluid (binary mixture or liquid crystal), subjected to strongly anisotropic turbulent mixing, is studied by means of the field theoretic renormalization group. As a simplified model, relaxational stochastic dynamics of a non-conserved scalar order parameter, coupled to a random velocity field with prescribed statistics, is considered. The velocity is taken Gaussian, white in time, with a correlation function of the form ~δ(t - t')/|kbottom|d+ξ, where kbottom is the component of the wave vector, perpendicular to the distinguished direction ('direction of the flow')—the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda (1990 Commun. Math. Phys. 131 381) within the context of passive scalar advection. It is shown that, depending on the relation between the exponent ξ and the space dimensionality d, the system exhibits various types of large-scale self-similar behaviour, associated with different infrared attractive fixed points of the renormalization group equations. In addition to well-known asymptotic regimes (model A of equilibrium critical dynamics and a passively advected scalar with no self-interaction), the existence of a new, non-equilibrium and strongly anisotropic type of critical behaviour (universality class) is established, and the corresponding critical dimensions are calculated to the second order of the double expansion in ξ and ɛ = 4 - d (two-loop approximation). The most realistic values of the model parameters (for example, d = 3 and the Kolmogorov exponent ξ = 4/3) belong to this class. The scaling behaviour appears anisotropic in the sense that the critical dimensions related to the directions parallel and perpendicular to the flow are essentially different. The results are in qualitative agreement with the results, obtained in experiments and simulations of fluid systems subjected to various kinds of regular and chaotic anisotropic flows.
Celata, G.P.; Cumo, M.; Mariani, A.; Zummo, G.
1996-07-01
A new model is presented for the prediction of the critical heat flux (CHF) of subcooled flow boiling based on a liquid-sublayer dryout mechanism, i.e., the dryout of a thin, liquid layer beneath an intermittent vapor blanket due to the coalescence of small bubbles. The model focuses on the analysis of the CHF in subcooled flow boiling under conditions of very high mass flux and liquid subcooling, typical of fusion reactor thermal-hydraulic design, and is characterized by the absence of empirical constants always present in earlier models. Peripheral nonuniform heating and/or twisted-tape inserts are accounted for in the model, which was originally developed for uniform heating and straight flow. The simultaneous occurrence of the two events is also well predicted by the model. Although initially formulated for operating conditions typical of the thermal-hydraulic design of fusion reactor high-heat-flux components, the model is proven to be able to satisfactorily predict the CHF under more general conditions, provided local thermodynamic conditions of the bulk flow at the CHF are sufficiently far from the saturated state. 60 refs., 11 figs.
NASA Astrophysics Data System (ADS)
Dănilă, B.; Harko, T.; Mocanu, G.
2015-11-01
We investigate the transition to self-organized criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two-dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations, we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a self-organized critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one-dimensional signatures in the magnetic two-dimensional system, once the self-organized critical regime is established. The applications of the model for the study of gamma-ray bursts (GRBs) is briefly considered, and it is shown that some astrophysical parameters of the bursts, like the light curves, the maximum released energy and the number of peaks in the light curve can be reproduced and explained, at least on a qualitative level, by working in a framework in which the systems settles in a self-organized critical state via magnetic reconnection processes in the magnetized GRB fireball.
Caballero-Guzman, Alejandro; Nowack, Bernd
2016-06-01
Material flow analysis (MFA) is a useful tool to predict the flows of engineered nanomaterials (ENM) to the environment. The quantification of release factors is a crucial part of MFA modeling. In the last years an increasing amount of literature on release of ENM from materials and products has been published. The purpose of this review is to analyze the strategies implemented by MFA models to include these release data, in particular to derive transfer coefficients (TC). Our scope was focused on those articles that analyzed the release from applications readily available in the market in settings that resemble average use conditions. Current MFA studies rely to a large extent on extrapolations, authors' assumptions, expert opinions and other informal sources of data to parameterize the models. We were able to qualitatively assess the following aspects of the release literature: (i) the initial characterization of ENM provided, (ii) quantitative information on the mass of ENM released and its characterization, (iii) description of transformation reactions and (iv) assessment of the factors determining release. Although the literature on ENM release is growing, coverage of exposure scenarios is still limited; only 20% of the ENMs used industrially and 36% of the product categories involved have been investigated in release studies and only few relevant release scenarios have been described. Furthermore, the information provided is rather incomplete concerning descriptions and characterizations of ENMs and the released materials. Our results show that both the development of methods to define the TCs and of protocols to enhance assessment of ENM release from nano-applications will contribute to increase the exploitability of the data provided for MFA models. The suggestions we provide in this article will likely contribute to an improved exposure modeling by providing ENM release estimates closer to reality.
Natural gas flow through critical nozzles
NASA Technical Reports Server (NTRS)
Johnson, R. C.
1969-01-01
Empirical method for calculating both the mass flow rate and upstream volume flow rate through critical flow nozzles is determined. Method requires knowledge of the composition of natural gas, and of the upstream pressure and temperature.
J.M. Scaglione
2003-03-12
The purpose of the ''Criticality Model Report'' is to validate the MCNP (CRWMS M&O 1998h) code's ability to accurately predict the effective neutron multiplication factor (k{sub eff}) for a range of conditions spanned by various critical configurations representative of the potential configurations commercial reactor assemblies stored in a waste package may take. Results of this work are an indication of the accuracy of MCNP for calculating eigenvalues, which will be used as input for criticality analyses for spent nuclear fuel (SNF) storage at the proposed Monitored Geologic Repository. The scope of this report is to document the development and validation of the criticality model. The scope of the criticality model is only applicable to commercial pressurized water reactor fuel. Valid ranges are established as part of the validation of the criticality model. This model activity follows the description in BSC (2002a).
Flow Field Classification Using Critical Point Matching
NASA Astrophysics Data System (ADS)
Krueger, Paul S.; Williams, Sheila; Hahsler, Michael; Olinick, Eli V.
2016-11-01
Classification of flow fields according to topological similarities can help reveal features of the flow generation and evolution for bluff body flows, and characterize different swimming maneuvers in aquatic locomotion, to name a few. Rigorous classification can be challenging, however, especially when complex flows are distorted by measurement uncertainties or variable flow generating conditions. The present work uses critical points of the velocity field to characterize the global flow topology. Flow fields are compared by finding a best match of critical points in two flow fields based on topological and location characteristics of the critical points together with general point set distance measures. The similarity between the flow fields is quantified based on the matched critical points. Applying clustering algorithms to a set of flow fields with quantified similarity can then be used to group flows with similar characteristics. This approach has been applied to generic 2D flow fields constructed using potential flow results and is able to correctly identify similar flow fields even after large distortions (up to 20% of the vortex separation) have been applied to the flows. Support of NSF Grant Nos. 1115139 and 1557698, and the Lyle School of Engineering is gratefully acknowledged.
Barton, Gary J.; McDonald, Richard R.; Nelson, Jonathan M.; Dinehart, Randal L.
2005-01-01
In 1994, the Kootenai River white sturgeon (Acipenser transmontanus) was listed as an Endangered Species as a direct result of two related observations. First, biologists observed that the white sturgeon population in the Kootenai River was declining. Second, they observed a decline in recruitment of juvenile sturgeon beginning in the 1950s with an almost total absence of recruitment since 1974, following the closure of Libby Dam in 1972. This second observation was attributed to changes in spawning and (or) rearing habitat resulting from alterations in the physical habitat, including flow regime, sediment-transport regime, and bed morphology of the river. The Kootenai River White Sturgeon Recovery Team was established to find and implement ways to improve spawning and rearing habitat used by white sturgeon. They identified the need to develop and apply a multidimensional flow model to certain reaches of the river to quantify physical habitat in a spatially distributed manner. The U.S. Geological Survey has addressed these needs by developing, calibrating, and validating a multidimensional flow model used to simulate streamflow and sediment mobility in the white sturgeon critical-habitat reach of the Kootenai River. This report describes the model and limitations, presents the results of a few simple simulations, and demonstrates how the model can be used to link physical characteristics of streamflow to biological or other habitat data. This study was conducted in cooperation with the Kootenai Tribe of Idaho along a 23-kilometer reach of the Kootenai River, including the white sturgeon spawning reach near Bonners Ferry, Idaho that is about 108 to 131 kilometers below Libby Dam. U.S. Geological Survey's MultiDimensional Surface-Water Modeling System was used to construct a flow model for the critical-habitat reach of the Kootenai River white sturgeon, between river kilometers 228.4 and 245.9. Given streamflow, bed roughness, and downstream water-surface elevation
Fraser, D.W.H.; Abdelmessih, A.H.
1995-09-01
A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280{degrees}C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data.
NASA Astrophysics Data System (ADS)
Helbing, D.; Moussaid, M.
2009-06-01
Driven many-particle systems with nonlinear interactions are known to often display multi-stability, i.e. depending on the respective initial condition, there may be different outcomes. Here, we study this phenomenon for traffic models, some of which show stable and linearly unstable density regimes, but areas of metastability in between. In these areas, perturbations larger than a certain critical amplitude will cause a lasting breakdown of traffic, while smaller ones will fade away. While there are common methods to study linear instability, non-linear instability had to be studied numerically in the past. Here, we present an analytical study for the optimal velocity model with a stepwise specification of the optimal velocity function and a simple kind of perturbation. Despite various approximations, the analytical results are shown to reproduce numerical results very well.
Critical heat flux in subcooled flow boiling
NASA Astrophysics Data System (ADS)
Hall, David Douglas
The critical heat flux (CHF) phenomenon was investigated for water flow in tubes with particular emphasis on the development of methods for predicting CHF in the subcooled flow boiling regime. The Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) CHF database for water flow in a uniformly heated tube was compiled from the world literature dating back to 1949 and represents the largest CHF database ever assembled with 32,544 data points from over 100 sources. The superiority of this database was proven via a detailed examination of previous databases. The PU-BTPFL CHF database is an invaluable tool for the development of CHF correlations and mechanistic models that are superior to existing ones developed with smaller, less comprehensive CHF databases. In response to the many inaccurate and inordinately complex correlations, two nondimensional, subcooled CHF correlations were formulated, containing only five adjustable constants and whose unique functional forms were determined without using a statistical analysis but rather using the parametric trends observed in less than 10% of the subcooled CHF data. The correlation based on inlet conditions (diameter, heated length, mass velocity, pressure, inlet quality) was by far the most accurate of all known subcooled CHF correlations, having mean absolute and root-mean-square (RMS) errors of 10.3% and 14.3%, respectively. The outlet (local) conditions correlation was the most accurate correlation based on local CHF conditions (diameter, mass velocity, pressure, outlet quality) and may be used with a nonuniform axial heat flux. Both correlations proved more accurate than a recent CHF look-up table commonly employed in nuclear reactor thermal hydraulic computer codes. An interfacial lift-off, subcooled CHF model was developed from a consideration of the instability of the vapor-liquid interface and the fraction of heat required for liquid-vapor conversion as opposed to that for bulk liquid heating. Severe
Sound speed criterion for two-phase critical flow
NASA Astrophysics Data System (ADS)
Chung, M.-S.; Park, S.-B.; Lee, H.-K.
2004-09-01
Critical flow simulation for non-homogeneous, non-equilibrium two-phase flows is improved by applying a new sound speed model which is derived from the characteristic analysis of hyperbolic two-fluid model. The hyperbolicity of two-fluid model was based on the concept of surface tension for the interfacial pressure jump terms in the momentum equations. Real eigenvalues obtained as the closed-form solution of characteristic polynomial represent the sound speeds in the bubbly flow regime that agree well with the existing experimental data. The analytic sound speed is consistent with that obtained by the earlier study of Nguyen et al. though there is a difference between them especially in the limiting condition. The present sound speed shows more reasonable result in that condition than Nguyen et al.'s does. The present critical flow criterion derived by the present sound speed is employed in the MARS code and is assessed by treating several nozzle flow tests. The assessment results, without any adjustment made by some discharge coefficients, demonstrate more accurate predictions of critical flow rate than those of the earlier critical flow calculations in the bubbly flow regime.
Flow dichroism in critical colloidal fluids
Lenstra, T. A. J.; Dhont, J. K. G.
2001-06-01
Due to long-range correlations and slow dynamics of concentration fluctuations in the vicinity of the gas-liquid critical point, shear flow is very effective in distorting the microstructure of near-critical fluids. The anisotropic nature of the shear-field renders the microstructure highly anisotropic, leading to dichroism. Experiments on the dichroic behavior can thus be used to test theoretical predictions on microstructural order under shear flow conditions. We performed both static and dynamic dichroism and turbidity measurements on a colloid-polymer mixture, existing of silica spheres (radius 51 nm) and polydimethylsiloxane polymer (molar weight 204 kg/mol). Sufficiently far away from the critical point, in the mean-field region, the experimental data are in good agreement with theory. Very close to the critical point, beyond mean field, for which no theory exists yet, an unexpected decrease of dichroism on approach of the critical point is observed. Moreover, we do not observe critical slowing down of shear-induced dichroism, right up to the critical point, in contrast to the turbidity.
Critical Infrastructure Modeling System
2004-10-01
The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method of Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.
Critical Velocity in Open Capillary Channel Flows
NASA Technical Reports Server (NTRS)
Rosendahl, Uwe; Dreyer, Michael E.; Rath, Hans J.; Motil, Brian; Singh, Bhim S. (Technical Monitor)
2001-01-01
We investigate forced liquid flows through open capillary channels with free surfaces experimentally. The experiments were performed under low gravity conditions in the Bremen Drop Tower and on board the sounding rocket TEXUS-37. Open capillary channels (vanes) are used in surface tension tanks to transport the propellant and to provide a flow path for the bubble-free liquid supply to the thrusters. Since the free surfaces can only withstand a certain pressure differential between the liquid and ambient, the flow rate in the channel is limited. The maximum flow rate is achieved when the surfaces collapse and gas is ingested into the outlet. Since experimental and theoretical data of this flow rate limitation is lacking, the safety factors for the application of vanes in surface tension tanks must be unnecessary high. The aim of the investigation is to determine the maximum liquid flow rate and the corresponding critical flow velocity. The characteristic nondimensional parameters, OHNESORGE number, and gap ratio, cover a wide range of usual vanes. For the theoretical approach a one-dimensional momentum balance was set up. The numerical solution yields the maximum volume flux and the position of the free surface in good agreement with the experiments.
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
Characterization of non equilibrium effects on high quality critical flows
Camelo, E.; Lemonnier, H.; Ochterbeck, J.
1995-09-01
The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.
Near critical swirling flow of a viscoelastic fluid
NASA Astrophysics Data System (ADS)
Ly, Nguyen; Rusak, Zvi; Tichy, John; Wang, Shixiao
2016-11-01
The interaction between flow inertia and elasticity in high Re, axisymmetric, and near-critical swirling flows of a viscoelastic fluid in a finite-length straight circular pipe is studied. The viscous stresses are described by the Giesekus constitutive model. The application of this model to columnar streamwise vortices is first investigated. Then, a nonlinear small-disturbance analysis is developed from the governing equations of motion. It explores the complicated interactions between flow inertia, swirl, and fluid viscosity and elasticity. An effective Re that links between steady states of swirling flows of a viscoelastic fluid and those of a Newtonian fluid is revealed. The effects of the fluid viscosity, relaxation time, retardation time and mobility parameter on the flow development and on the critical swirl for the appearance of vortex breakdown are explored. Decreasing the ratio of the viscoelastic characteristic times from one increases the critical swirl for breakdown. Increasing the Weissenberg number from zero or increasing the fluid mobility parameter from zero cause a similar effect. Results may explain changes in the appearance of breakdown zones as a function of swirl level that were observed in Stokes et al. (2001) experiments, where Boger fluids were used.
Modeling of transitional flows
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1988-01-01
An effort directed at developing improved transitional models was initiated. The focus of this work was concentrated on the critical assessment of a popular existing transitional model developed by McDonald and Fish in 1972. The objective of this effort was to identify the shortcomings of the McDonald-Fish model and to use the insights gained to suggest modifications or alterations of the basic model. In order to evaluate the transitional model, a compressible boundary layer code was required. Accordingly, a two-dimensional compressible boundary layer code was developed. The program was based on a three-point fully implicit finite difference algorithm where the equations were solved in an uncoupled manner with second order extrapolation used to evaluate the non-linear coefficients. Iteration was offered as an option if the extrapolation error could not be tolerated. The differencing scheme was arranged to be second order in both spatial directions on an arbitrarily stretched mesh. A variety of boundary condition options were implemented including specification of an external pressure gradient, specification of a wall temperature distribution, and specification of an external temperature distribution. Overall the results of the initial phase of this work indicate that the McDonald-Fish model does a poor job at predicting the details of the turbulent flow structure during the transition region.
Numerical Simulation of Two-Phase Critical Flow with the Phase Change in the Nozzle Tube
NASA Astrophysics Data System (ADS)
Ishigaki, Masahiro; Watanabe, Tadashi; Nakamura, Hideo
Two-phase critical flow in the nozzle tube is analyzed numerically by the best estimate code TRACE and the CFD code FLUENT, and the performance of the mass flow rate estimation by the numerical codes is discussed. For the best estimate analysis by the TRACE code, the critical flow option is turned on. The mixture model is used with the cavitation model and the evaporation-condensation model for the numerical simulation by the FLUENT code. Two test cases of the two-phase critical flow are analyzed. One case is the critical flashing flow in a convergent-divergent nozzle (Super Moby Dick experiment), and the other case is the break nozzle flow for a steam generator tube rupture experiment of pressurized water reactors at Large Scale Test Facility of Japan Atomic Energy Agency. The calculation results of the mass flow rates by the numerical simulations show good agreements with the experimental results.
Critical Bottleneck Size for Jamless Particle Flows in Two Dimensions
NASA Astrophysics Data System (ADS)
Masuda, Takumi; Nishinari, Katsuhiro; Schadschneider, Andreas
2014-04-01
We propose a simple microscopic model for arching phenomena at bottlenecks. The dynamics of particles in front of a bottleneck is described by a one-dimensional stochastic cellular automaton on a semicircular geometry. The model reproduces oscillation phenomena due to the formation and collapsing of arches. It predicts the existence of a critical bottleneck size for continuous particle flows. The dependence of the jamming probability on the system size is approximated by the Gompertz function. The analytical results are in good agreement with simulations.
NASA Technical Reports Server (NTRS)
Kavi, K. M.
1984-01-01
There have been a number of simulation packages developed for the purpose of designing, testing and validating computer systems, digital systems and software systems. Complex analytical tools based on Markov and semi-Markov processes have been designed to estimate the reliability and performance of simulated systems. Petri nets have received wide acceptance for modeling complex and highly parallel computers. In this research data flow models for computer systems are investigated. Data flow models can be used to simulate both software and hardware in a uniform manner. Data flow simulation techniques provide the computer systems designer with a CAD environment which enables highly parallel complex systems to be defined, evaluated at all levels and finally implemented in either hardware or software. Inherent in data flow concept is the hierarchical handling of complex systems. In this paper we will describe how data flow can be used to model computer system.
NASA Technical Reports Server (NTRS)
Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John
2011-01-01
A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.
Choked flow of fluid nitrogen with emphasis on the thermodynamic critical region
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Simoneau, R. J.; Ehlers, R. C.
1972-01-01
Experimental measurements of critical flow rate and pressure ratio for nitrogen flowing through a nozzle are presented. Data for selected stagnation isotherms from 87.5 to 234 K with pressures to 9.3 MN/m2 are compared to an equilibrium model with real fluid properties and also a nonequilibrium model. Critical flow pressure ratio along an isotherm tends to peak while the flow rate indicates an inflection. The point is closely associated with the transposed critical temperature and represents a change in the fluid structure.
The choking pressure ratio of a critical flow venturi
NASA Technical Reports Server (NTRS)
Hillbrath, H. S.; Dill, W. P.; Wacker, W. A.
1973-01-01
The critical flow venturi has many important applications in the measurement and control of gas flow. In many of these applications, it is desirable to minimize the pressure loss required to maintain critical flow conditions. The performance of the venturi may be characterized by the ratio of outlet static pressure to inlet total pressure just sufficiently small to produce critical flow. This ratio is called choking pressure ratio. The optimization of diffusers for critical flow venturis is discussed and suggestions for designs practice are presented. Test results are given for six different diffuser configurations, and a comparison is made with data on 11 configurations from other investigators. It is shown that, for the small divergence angles considered, a simply defined diffuser effectiveness parameter is approximately independent of flow conditions and may be used to predict choking pressure ratio.
Critical flow and pressure ratio data for LOX flowing through nozzles
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Simoneau, R. J.; Barrows, R. F.
1975-01-01
LOX and LN2 data for two-phase critical flow through nozzles have been acquired with precision control. The principal measured parameters were inlet conditions, critical flow rate and critical flow pressure ratio. The data conclusively demonstrate that the principle of corresponding states can be applied to two-phase choked flow through nozzles. These data also demonstrate that the proper normalizing parameters have been developed and current theories can provide an adequate means for extrapolating to other fluids.
Convective heat flow in space cryogenics plugs - Critical and moderate He II heat flux densities
NASA Technical Reports Server (NTRS)
Yuan, S. W. K.; Frederking, T. H. K.
1990-01-01
Plug flow rates of entropy, heat and normal fluid in phase separators and in zero net mass flow systems are, to some extent, quite similar. A simplified analysis of critical conditions is presented in agreement with data trends. A critical temperature gradient arises on the basis of the He II two-fluid model at the stability limit constraining the thermohydrodynamics of the system. Thus, the question of critical thermodynamic fluctuations associated with nucleation versus the possibility of critical gradients in externally imposed parameters is answered in favor of the latter route toward turbulence. Furthermore, a similarity equation is presented which incorporates size dependent rates for moderate heat flow densities observed in experiments.
Two critical issues in Langevin simulation of gas flows
Zhang, Jun; Fan, Jing
2014-12-09
A stochastic algorithm based on the Langevin equation has been recently proposed to simulate rarefied gas flows. Compared with the direct simulation Monte Carlo (DSMC) method, the Langevin method is more efficient in simulating small Knudsen number flows. While it is well-known that the cell sizes and time steps should be smaller than the mean free path and the mean collision time, respectively, in DSMC simulations, the Langevin equation uses a drift term and a diffusion term to describe molecule movements, so no direct molecular collisions have to be modeled. This enables the Langevin simulation to proceed with a much larger time step than that in the DSMC method. Two critical issues in Langevin simulation are addressed in this paper. The first issue is how to reproduce the transport properties as that described by kinetic theory. Transport coefficients predicted by Langevin equation are obtained by using Green-Kubo formulae. The second issue is numerical scheme with boundary conditions. We present two schemes corresponding to small time step and large time step, respectively. For small time step, the scheme is similar to DSMC method as the update of positions and velocities are uncoupled; for large time step, we present an analytical solution of the hitting time, which is the crucial factor for accurate simulation. Velocity-Couette flow, thermal-Couette flow, Rayleigh-Bénard flow and wall-confined problem are simulated by using these two schemes. Our study shows that Langevin simulation is a promising tool to investigate small Knudsen number flows.
Critical Phenomenon Analysis of Shear-Banding Flow in Polymer-Like Micellar Solutions
NASA Astrophysics Data System (ADS)
Bautista, F.; Pérez-López, J. H.; Puig, J. E.; Manero, O.
2008-07-01
We examined the shear-banding flow phenomenon in polymer-like micellar solutions with the Bautista-Manero-Puig (BMP) model, which predicts that upon decreasing the shear banding intensity parameter of this model, which correspond to increasing temperature, concentration or varying salt-to-surfactant concentration, a non-equilibrium critical line is reached. By using non-equilibrium critical theory, which we obtain a set of symmetrical curves which are the normalized stress versus normalized shear rate flow curves, similar to gas-liquid transitions around the critical point. In addition, we derived the non-equilibrium critical exponents and found that them are no classic values.
Not Available
1981-10-01
(1) We recommend the establishment of an experimental test facility, appropriately instrumented, dedicated to research on theoretical modeling concepts. Validation of models for the various flow regimes, and establishment of the limitations or concepts used in the construction of models, are sorely needed areas of research. There exists no mechanism currently for funding of such research on a systematic basis. Such a facility would provide information fundamental to progress in the physics of turbulent multi-phase flow, which would also have impact on the understanding of coal utilization processes; (2) combustion research appears to have special institutional barriers to information exchange because it is an established, commercial ongoing effort, with heavy reliance on empirical data for proprietary configurations; (3) for both gasification and combustion reactors, current models appear to handle adequately some, perhaps even most, gross aspects of the reactors such as overall efficiency and major chemical output constituents. However, new and more stringent requirements concerning NOX, SOX and POX (small paticulate) production require greater understanding of process details and spatial inhomogenities, hence refinement of current models to include some greater detail is necessary; (4) further progress in the theory of single-phase turbulent flow would benefit our understanding of both combustors and gasifiers; and (5) another area in which theoretical development would be extremely useful is multi-phase flow.
Modelling pulmonary blood flow.
Tawhai, Merryn H; Burrowes, Kelly S
2008-11-30
Computational model analysis has been used widely to understand and interpret complexity of interactions in the pulmonary system. Pulmonary blood transport is a multi-scale phenomenon that involves scale-dependent structure and function, therefore requiring different model assumptions for the microcirculation and the arterial or venous flows. The blood transport systems interact with the surrounding lung tissue, and are dependent on hydrostatic pressure gradients, control of vasoconstriction, and the topology and material composition of the vascular trees. This review focuses on computational models that have been developed to study the different mechanisms contributing to regional perfusion of the lung. Different models for the microcirculation and the pulmonary arteries are considered, including fractal approaches and anatomically-based methods. The studies that are reviewed illustrate the different complementary approaches that can be used to address the same physiological question of flow heterogeneity.
The critical thinking curriculum model
NASA Astrophysics Data System (ADS)
Robertson, William Haviland
The Critical Thinking Curriculum Model (CTCM) utilizes a multidisciplinary approach that integrates effective learning and teaching practices with computer technology. The model is designed to be flexible within a curriculum, an example for teachers to follow, where they can plug in their own critical issue. This process engages students in collaborative research that can be shared in the classroom, across the country or around the globe. The CTCM features open-ended and collaborative activities that deal with current, real world issues which leaders are attempting to solve. As implemented in the Critical Issues Forum (CIF), an educational program administered by Los Alamos National Laboratory (LANL), the CTCM encompasses the political, social/cultural, economic, and scientific realms in the context of a current global issue. In this way, students realize the importance of their schooling by applying their efforts to an endeavor that ultimately will affect their future. This study measures student attitudes toward science and technology and the changes that result from immersion in the CTCM. It also assesses the differences in student learning in science content and problem solving for students involved in the CTCM. A sample of 24 students participated in classrooms at two separate high schools in New Mexico. The evaluation results were analyzed using SPSS in a MANOVA format in order to determine the significance of the between and within-subjects effects. A comparison ANOVA was done for each two-way MANOVA to see if the comparison groups were equal. Significant findings were validated using the Scheffe test in a Post Hoc analysis. Demographic information for the sample population was recorded and tracked, including self-assessments of computer use and availability. Overall, the results indicated that the CTCM did help to increase science content understanding and problem-solving skills for students, thereby positively effecting critical thinking. No matter if the
Nicole Lautze
2015-01-01
Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.
Study on the two-phase critical flow through a small bottom break in a pressurized horizontal pipe
NASA Astrophysics Data System (ADS)
Chung, Moon-Sun
2008-06-01
Two-phase critical flow rates through a small bottom break of a pressurized horizontal pipe are calculated by using an improved critical flow model with a well-known quality prediction model. This phenomenon has many difficulties in predicting the two-phase critical flow rate at the break points mainly due to the inaccuracies of the critical flow model as well as the quality prediction model. In this study, the critical flow model is improved as a first step that is based on a new sound speed criterion derived from the hyperbolic two-fluid model for non-equilibrium flow and this model is applied to a system analysis code. Following to a conceptual problem of the vertically upward flow with quality variation, the small bottom break of a pressurized horizontal pipe is simulated and discussed in some detail. From the test results without any adjustment like empirical discharge coefficient, the assessment results on the critical flow test through a small bottom break in a horizontal pipe show that just improving the critical flow model can remarkably reduce the relative error.
Critical dynamics of vesicle stretching transition in elongational flow.
Kantsler, Vasiliy; Segre, Enrico; Steinberg, Victor
2008-07-25
We present results on the stretching of single tubular vesicles in an elongation flow toward dumbbell shapes, and on their relaxation. A critical strain rate epsilonc exists; for strain rates epsilon
Y. Wu
2004-11-01
The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.
Entropy Flow in Near-Critical Quantum Circuits
NASA Astrophysics Data System (ADS)
Friedan, Daniel
2017-03-01
Near-critical quantum circuits close to equilibrium are ideal physical systems for asymptotically large-scale quantum computers, because their low energy collective excitations evolve reversibly, effectively isolated from microscopic environmental fluctuations by the renormalization group. Entropy flows in near-critical quantum circuits near equilibrium as a locally conserved quantum current, obeying circuit laws analogous to the electric circuit laws. These "Kirchhoff laws" for entropy flow are the fundamental design constraints for asymptotically large-scale quantum computers. A quantum circuit made from a near-critical system (of conventional type) is described by a relativistic 1+1 dimensional relativistic quantum field theory on the circuit. The quantum entropy current near equilibrium is just the energy current divided by the temperature. The universal properties of the energy-momentum tensor constrain the entropy flow characteristics of the circuit components: the entropic conductivity of the quantum wires and the entropic admittance of the quantum circuit junctions. For example, near-critical quantum wires are always resistanceless inductors for entropy. A universal formula is derived for the entropic conductivity: σ S(ω ) = iv2 S/ω T , where ω is the frequency, T the temperature, {S the equilibrium entropy density and v the velocity of "light". The thermal conductivity is Re(Tσ S(ω ))=π v2 S δ (ω ) . The thermal Drude weight is, universally, v2S . This gives a way to measure the entropy density directly.
Parametric analyses of planned flowing uranium hexafluoride critical experiments
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.
1976-01-01
Analytical investigations were conducted to determine preliminary design and operating characteristics of flowing uranium hexafluoride (UF6) gaseous nuclear reactor experiments in which a hybrid core configuration comprised of UF6 gas and a region of solid fuel will be employed. The investigations are part of a planned program to perform a series of experiments of increasing performance, culminating in an approximately 5 MW fissioning uranium plasma experiment. A preliminary design is described for an argon buffer gas confined, UF6 flow loop system for future use in flowing critical experiments. Initial calculations to estimate the operating characteristics of the gaseous fissioning UF6 in a confined flow test at a pressure of 4 atm, indicate temperature increases of approximately 100 and 1000 K in the UF6 may be obtained for total test power levels of 100 kW and 1 MW for test times of 320 and 32 sec, respectively.
Critical assessment of automated flow cytometry data analysis techniques.
Aghaeepour, Nima; Finak, Greg; Hoos, Holger; Mosmann, Tim R; Brinkman, Ryan; Gottardo, Raphael; Scheuermann, Richard H
2013-03-01
Traditional methods for flow cytometry (FCM) data processing rely on subjective manual gating. Recently, several groups have developed computational methods for identifying cell populations in multidimensional FCM data. The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of these methods on two tasks: (i) mammalian cell population identification, to determine whether automated algorithms can reproduce expert manual gating and (ii) sample classification, to determine whether analysis pipelines can identify characteristics that correlate with external variables (such as clinical outcome). This analysis presents the results of the first FlowCAP challenges. Several methods performed well as compared to manual gating or external variables using statistical performance measures, which suggests that automated methods have reached a sufficient level of maturity and accuracy for reliable use in FCM data analysis.
Nicole Lautze
2015-01-01
Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.
The secondary flow near a baroclinic planetary wave critical line
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.
1981-01-01
A critical line (CL) is the surface where the phase speed of a wave in a fluid is equal to the speed of the background flow. The considered investigation is concerned with one aspect of the simplest model of a CL in which the CL is assumed to totally absorb energy from steady, stationary, planetary waves. The aspect of interest is the secondary mean circulation near a CL in a baroclinic atmosphere. The motivation for this study is the observation of the nearly vertical CL by O'Neill and Taylor (1979) which appeared during the sudden warming of 1976/77. Even though the treatment of the CL is highly idealized in the investigation, there is evidence which indicates a very large rate of change in the zonally averaged temperature along a CL may occur. The Lagrangian-mean properties of an idealized baroclinic CL are also examined. It is found that the Lagrangian jets may provide an important transport process for exchange of stratospheric and tropospheric air.
Soil organic phosphorus flows to water via critical and non-critical hydrological source areas
NASA Astrophysics Data System (ADS)
Wang, Ying; Surridge, Ben; Haygarth, Phil
2015-04-01
Soil organic phosphorus flows to water via critical and non-critical hydrological source areas Ying Wang, Ben W.J. Surridge, Philip M. Haygarth Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK Critical source areas (CSAs) are zones in the landscape where easily connected hydrology coincides with a phosphorus (P) sources in the soil. The P export risks in CSAs are hypothesised to be higher compared with non-critical source areas (Non-CSAs) and specifically that the magnitudes of P forms in CSA areas were higher than Non-CSAs. Past research on CSAs has often neglected forms of organic P, such as DNA and phospholipids which are among the most potentially biodegradable organic P compounds. The objectives of this study were i) to quantify the magnitude of organic P compounds in agricultural soils and specifically determine whether these magnitudes differed significantly between CSAs and Non-CSAs; ii) determine the variation of P magnitude between and within individual fields; iii) identify the P delivery concentrations in soil solution after raining events in CSAs. The study focussed on soils collected from the Morland sub-catchment of the River Eden catchment in Cumbria, northern England. CSA and Non-CSA pairs were identified using the SCIMAP modelling and field assessment providing five CSA - Non-CSA pairs in total. The results showed that there are significant differences in the total P (TP) concentrations, the proportions of DNA-P, WETP (water extractable total P), WERP (water extractable reactive P) and WEUP (water extractable unreactive P) between CSA and Non-CSA. We also found that the concentrations of all the P forms showed distribution variation between fields or even within the same field. Liable organic P such as DNA-P and PLD-P was presented considerable proportions of total P in soil, especially DNA-P which had a good correlation with TP. DNA-P in the ten areas accounted for a considerable proportion of soil TP (4.9 to 16.6%). Given the
The Biomantle-Critical Zone Model
NASA Astrophysics Data System (ADS)
Johnson, D. L.; Lin, H.
2006-12-01
It is a fact that established fields, like geomorphology, soil science, and pedology, which treat near surface and surface processes, are undergoing conceptual changes. Disciplinary self examinations are rife. New practitioners are joining these fields, bringing novel and interdisciplinary ideas. Such new names as "Earth's critical zone," "near surface geophysics," and "weathering engine" are being coined for research groups. Their agendas reflect an effort to integrate and reenergize established fields and break new ground. The new discipline "hydropedology" integrates soil science with hydrologic principles, and recent biodynamic investigations have spawned "biomantle" concepts and principles. One force behind these sea shifts may be retrospectives whereby disciplines periodically re-invent themselves to meet new challenges. Such retrospectives may be manifest in the recent Science issue on "Soils, The Final Frontier" (11 June, 2004), and in recent National Research Council reports that have set challenges to science for the next three decades (Basic Research Opportunities in Earth Science, and Grand Challenges for the Environmental Sciences, both published in 2001). In keeping with such changes, we advocate the integration of biomantle and critical zone concepts into a general model of Earth's soil. (The scope of the model automatically includes the domain of hydropedology.) Our justification is that the integration makes for a more appealing holistic, and realistic, model for the domain of Earth's soil at any scale. The focus is on the biodynamics of the biomantle and water flow within the critical zone. In this general model the biomantle is the epidermis of the critical zone, which extends to the base of the aquifer. We define soil as the outer layer of landforms on planets and similar bodies altered by biological, chemical, and/or physical agents. Because Earth is the only planet with biological agents, as far as we know, it is the only one that has all
P. Dixon
2004-02-11
The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model.
Critical phenomenon of granular flow on a conveyor belt.
De-Song, Bao; Xun-Sheng, Zhang; Guang-Lei, Xu; Zheng-Quan, Pan; Xiao-Wei, Tang; Kun-Quan, Lu
2003-06-01
The relationship between the granular wafer movement on a two-dimensional conveyor belt and the size of the exit together with the velocity of the conveyor belt has been studied in the experiment. The result shows that there is a critical speed v(c) for the granular flow when the exit width d is fixed (where d=R/D, D being the diameter of a granular wafers). When v
CRITICAL ASSESSMENT OF AUTOMATED FLOW CYTOMETRY DATA ANALYSIS TECHNIQUES
Aghaeepour, Nima; Finak, Greg; Hoos, Holger; Mosmann, Tim R.; Gottardo, Raphael; Brinkman, Ryan; Scheuermann, Richard H.
2013-01-01
Traditional methods for flow cytometry (FCM) data processing rely on subjective manual gating. Recently, several groups have developed computational methods for identifying cell populations in multidimensional FCM data. The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of these methods on two tasks – mammalian cell population identification to determine if automated algorithms can reproduce expert manual gating, and sample classification to determine if analysis pipelines can identify characteristics that correlate with external variables (e.g., clinical outcome). This analysis presents the results of the first of these challenges. Several methods performed well compared to manual gating or external variables using statistical performance measures, suggesting that automated methods have reached a sufficient level of maturity and accuracy for reliable use in FCM data analysis. PMID:23396282
Entropy Flow Through Near-Critical Quantum Junctions
NASA Astrophysics Data System (ADS)
Friedan, Daniel
2017-03-01
This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.
NUMERICAL COMPUTATIONS OF CO-EXISTING SUPER-CRITICAL AND SUB-CRITICAL FLOWS BASED UPON CRD SCHEMES
NASA Astrophysics Data System (ADS)
Horie, Katsuya; Okamura, Seiji; Kobayashi, Yusuke; Hyodo, Makoto; Hida, Yoshihisa; Nishimoto, Naoshi; Mori, Akio
Stream flows in steep gradient bed form complicating flow configurations, where co-exist super-critical and sub-critical flows. Computing numerically such flows are the key to successful river management. This study applied CRD schemes to 1D and 2D stream flow computations and proposed genuine ways to eliminate expansion shock waves. Through various cases of computing stream flows conducted, CRD schemes showed that i) conservativeness of discharge and accuracy of four significant figures are ensured, ii) artificial viscosity is not explicitly used for computational stabilization, and thus iii) 1D and 2D computations based upon CRD schemes are applicable to evaluating complicating stream flows for river management.
Modeling of Turbulent Swirling Flows
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.
1997-01-01
Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.
Critical ignition in rapidly expanding self-similar flows
NASA Astrophysics Data System (ADS)
Radulescu, Matei I.; McN. Maxwell, Brian
2010-11-01
The generic problem of ignition of a particle undergoing an expansion given by a power law rate of decay behind a decaying shock is addressed in the present study. It is demonstrated, using a one-step Arrhenius irreversible reaction, that a sufficiently strong expansion wave can quench the reaction. The critical conditions for extinction are obtained in closed form in terms of the time scale for the expansion process and the thermo-chemical properties of the gas, yielding a critical Damkohler number, i.e. the ratio of the expansion time scale to the homogeneous ignition time scale, given by (γ-1)Ea/RT-1/n, where n is the power law exponent of the self-similar expansion ρ˜t^-n. The critical ignition criteria, which is valid in the asymptotic limit n(γ-1)(Ea/RT)=O(1), was found in excellent agreement with numerical results. The applicability of the results obtained are discussed for ignition in rapidly expanding flows which occur behind decaying shock waves, as encountered in problems of detonation initiation by a Taylor-Sedov blast wave, and reacting jet start-up, and for reactions in steady hypersonic flows around projectiles.
3D critical layers in fully-developed turbulent flows
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; McKeon, Beverley
2016-11-01
Recent work has shown that 3D critical layers drive self-sustaining behavior of exact coherent solutions of the Navier-Stokes equations (Wang et al. 2007; Hall and Sherwin 2010; Park and Graham 2015). This study investigates the role of 3D critical layers in fully-developed turbulent flows. 3D critical layer effects are identified in instantaneous snapshots of turbulent boundary layers in both experimental and DNS data (Wu et al. 2014). Additionally, a 3D critical layer effect is demonstrated to appear using only a few resolvent response modes from the resolvent analysis of McKeon and Sharma 2010, with phase relationships appropriately chosen. Connections are sought to the thin shear layers observed in turbulent boundary layers (Klewicki and Hirschi 2004; Eisma et al. 2015) and to amplitude modulation observations (Mathis et al. 2009; Duvvuri and McKeon 2014). This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060. The support of the Center for Turbulence Research (CTR) summer program at Stanford is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Jiménez, Juan; Smits, Alexander
2003-11-01
Experimental investigation over a DARPA SUBOFF submarine model (SUBOFF Model) was performed using flow visualization and Digital Particle Image Velocimetry (DPIV). The model has an axisymmetric body with sail and fins, and it was supported by a streamlined strut that was formed by the extension of the sail appendage. The range of flow conditions studied correspond to a Reynolds numbers based on model length, Re_L, of about 10^5. Velocity vector fields, turbulence intensities, vorticity fields, and flow visualization in the vicinity of the junction flows are presented. In the vicinity of the control surface and sail hull junctions, the presence of streamwise vortices in the form of horseshoe or necklace vortices locally dominates the flow. The effects of unsteady motions about an axis passing through the sail are also investigated to understand the evolution of the unsteady wake.
Turbulence modeling for separated flow
NASA Technical Reports Server (NTRS)
Durbin, Paul A.
1994-01-01
Two projects are described in this report. The first involves assessing turbulence models in separated flow. The second addresses the anomalous behavior of certain turbulence models in stagnation point flow. The primary motivation for developing turbulent transport models is to provide tools for computing non-equilibrium, or complex, turbulent flows. Simple flows can be analyzed using data correlations or algebraic eddy viscosities, but in more complicated flows such as a massively separated boundary layer, a more elaborate level of modeling is required. It is widely believed that at least a two-equation transport model is required in such cases. The transport equations determine the evolution of suitable velocity and time-scales of the turbulence. The present study included assessment of second-moment closures in several separated flows, including sharp edge separation; smooth wall, pressure driven separation; and unsteady vortex shedding. Flows with mean swirl are of interest for their role in enhancing mixing both by turbulent and mean motion. The swirl can have a stabilizing effect on the turbulence. An axi-symmetric extension to the INS-2D computer program was written adding the capability of computing swirling flow. High swirl can produce vortex breakdown on the centerline of the jet and it occurs in various combustors.
Flow Boiling Critical Heat Flux in Reduced Gravity
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.
2004-01-01
This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met
Modeling Size Polydisperse Granular Flows
NASA Astrophysics Data System (ADS)
Lueptow, Richard M.; Schlick, Conor P.; Isner, Austin B.; Umbanhowar, Paul B.; Ottino, Julio M.
2014-11-01
Modeling size segregation of granular materials has important applications in many industrial processes and geophysical phenomena. We have developed a continuum model for granular multi- and polydisperse size segregation based on flow kinematics, which we obtain from discrete element method (DEM) simulations. The segregation depends on dimensionless control parameters that are functions of flow rate, particle sizes, collisional diffusion coefficient, shear rate, and flowing layer depth. To test the theoretical approach, we model segregation in tri-disperse quasi-2D heap flow and log-normally distributed polydisperse quasi-2D chute flow. In both cases, the segregated particle size distributions match results from full-scale DEM simulations and experiments. While the theory was applied to size segregation in steady quasi-2D flows here, the approach can be readily generalized to include additional drivers of segregation such as density and shape as well as other geometries where the flow field can be characterized including rotating tumbler flow and three-dimensional bounded heap flow. Funded by The Dow Chemical Company and NSF Grant CMMI-1000469.
HYDROGEN ELECTROLYZER FLOW DISTRIBUTOR MODEL
Shadday, M
2006-09-28
The hybrid sulfur process (HyS) hydrogen electrolyzer consists of a proton exchange membrane (PEM) sandwiched between two porous graphite layers. An aqueous solution of sulfuric acid with dissolved SO{sub 2} gas flows parallel to the PEM through the porous graphite layer on the anode side of the electrolyzer. A flow distributor, consisting of a number of parallel channels acting as headers, promotes uniform flow of the anolyte fluid through the porous graphite layer. A numerical model of the hydraulic behavior of the flow distributor is herein described. This model was developed to be a tool to aid the design of flow distributors. The primary design objective is to minimize spatial variations in the flow through the porous graphite layer. The hydraulic data from electrolyzer tests consists of overall flowrate and pressure drop. Internal pressure and flow distributions are not measured, but these details are provided by the model. The model has been benchmarked against data from tests of the current electrolyzer. The model reasonably predicts the viscosity effect of changing the fluid from water to an aqueous solution of 30 % sulfuric acid. The permeability of the graphite layer was the independent variable used to fit the model to the test data, and the required permeability for a good fit is within the range literature values for carbon paper. The model predicts that reducing the number of parallel channels by 50 % will substantially improve the uniformity of the flow in the porous graphite layer, while maintaining an acceptable pressure drop across the electrolyzer. When the size of the electrolyzer is doubled from 2.75 inches square to 5.5 inches square, the same number of channels as in the current design will be adequate, but it is advisable to increase the channel cross-sectional flow area. This is due to the increased length of the channels.
Groundwater flow and transport modeling
Konikow, L.F.; Mercer, J.W.
1988-01-01
Deterministic, distributed-parameter, numerical simulation models for analyzing groundwater flow and transport problems have come to be used almost routinely during the past decade. A review of the theoretical basis and practical use of groundwater flow and solute transport models is used to illustrate the state-of-the-art. Because of errors and uncertainty in defining model parameters, models must be calibrated to obtain a best estimate of the parameters. For flow modeling, data generally are sufficient to allow calibration. For solute-transport modeling, lack of data not only limits calibration, but also causes uncertainty in process description. Where data are available, model reliability should be assessed on the basis of sensitivity tests and measures of goodness-of-fit. Some of these concepts are demonstrated by using two case histories. ?? 1988.
Phenomenology of a flow around a circular cylinder at sub-critical and critical Reynolds numbers
NASA Astrophysics Data System (ADS)
Capone, Alessandro; Klein, Christian; Di Felice, Fabio; Miozzi, Massimo
2016-07-01
In this work, the flow around a circular cylinder is investigated at Reynolds numbers ranging from 79 000 up to 238 000 by means of a combined acquisition system based on Temperature Sensitive Paint (TSP) and particle velocimetry. The proposed setup allows simultaneous and time-resolved measurement of absolute temperature and relative skin friction fields onto the cylinder surface and near-wake velocity field. Combination of time-resolved surface measurements and planar near-field velocity data allows the investigation of the profound modifications undergone by the wall shear stress topology and its connections to the near-field structure as the flow regime travels from the sub-critical to the critical regime. Laminar boundary-layer separation, transition, and re-attachment are analyzed in the light of temperature, relative skin friction maps, and Reynolds stress fields bringing about a new perspective on the relationship between boundary layer development and shear layer evolution. The fast-responding TSP employed allows high acquisition frequency and calculation of power spectral density from surface data. Correlation maps of surface and near-wake data provide insight into the relationship between boundary-layer evolution and vortex shedding. We find that as the Reynolds number approaches the critical state, the separation line oscillations feature an increasingly weaker spectrum peak compared to the near-wake velocity spectrum. In the critical regime, separation line oscillations are strongly reduced and the correlation to the local vorticity undergoes an overall decrease giving evidence of modifications in the vortex shedding mechanism.
Nonlocal modeling of granular flows down inclines.
Kamrin, Ken; Henann, David L
2015-01-07
Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.
Turbulence modeling for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, J. G.; Coakley, T. J.
1989-01-01
Turbulence modeling for high speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary layer flows, shock wave boundary layer interactions and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1994-01-01
Various approaches to the modeling of jets in cross flow are reviewed. These are grouped into four classes, namely: empirical models, integral models, perturbation models, and numerical models. Empirical models depend largely on the correlation of experimental data and are mostly useful for first-order estimates of global properties such as jet trajectory and velocity and temperature decay rates. Integral models are based on some ordinary-differential form of the conservation laws, but require substantial empirical calibration. They allow more details of the flow field to be obtained; simpler versions have to assume similarity of velocity and temperature profiles, but more sophisticated ones can actually calculate these profiles. Perturbation models require little empirical input, but the need for small parameters to ensure convergent expansions limits their application to either the near-field or the far-field. Therefore, they are mostly useful for the study of flow physics. Numerical models are based on conservation laws in partial-differential form. They require little empirical input and have the widest range of applicability. They also require the most computational resources. Although many qualitative and quantitative features of jets in cross flow have been predicted with numerical models, many issues affecting accuracy such as grid resolution and turbulence model are not completely resolved.
Modeling multiphase flow using fluctuating hydrodynamics.
Chaudhri, Anuj; Bell, John B; Garcia, Alejandro L; Donev, Aleksandar
2014-09-01
Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.
Model flocks in a steady vortical flow
NASA Astrophysics Data System (ADS)
Baggaley, A. W.
2015-05-01
We modify the standard Vicsek model to clearly distinguish between intrinsic noise due to imperfect alignment between organisms and extrinsic noise due to fluid motion. We then consider the effect of a steady vortical flow, the Taylor-Green vortex, on the dynamics of the flock, for various flow speeds, with a fixed intrinsic particle speed. We pay particular attention to the morphology of the flow, and quantify its filamentarity. Strikingly, above a critical flow speed there is a pronounced increase in the filamentarity of the flock, when compared to the zero-flow case. This is due to the fact that particles appear confined to areas of low vorticity; a familiar phenomena, commonly seen in the clustering of inertial particles in vortical flows. Hence, the cooperative motion of the particles gives them an effective inertia, which is seen to have a profound effect on the morphology of the flock, in the presence of external fluid motion. Finally, we investigate the angle between the flow and the particles direction of movement and find it follows a power-law distribution.
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui
2014-02-01
Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.
Modeling Combustion in Supersonic Flows
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.
2007-01-01
This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.
Logic models used to enhance critical thinking.
Ellermann, Caroline R; Kataoka-Yahiro, Merle R; Wong, Lorrie C
2006-06-01
Over time, various methods have been used to stimulate critical thinking in undergraduate nursing students, and although many have been successful in helping students integrate the essential knowledge, experiences, and clinical reasoning that support practice, it is also useful to explore new methods. Faculty at the University of Hawaii at Manoa, School of Nursing and Dental Hygiene have taken an innovative approach of using logic models to further enhance critical thinking. This article presents an application of varying experiences and methods of using logic models to support the development of critical thinking and reasoning skills in nursing students. The processes in which logic models are used in the curriculum are described. The models are used to connect concepts from concrete to abstract levels in diverse and often nonlinear diagrams, guided discourse, and written assignments. The specific instructional methods used include concept mapping, concept papers, conceptual linking, and substruction.
Unsaturated Zone Flow Model Expert Elicitation Project
Coppersmith, K. J.
1997-05-30
This report presents results of the Unsaturated Zone Flow Model Expert Elicitation (UZFMEE) project at Yucca Mountain, Nevada. This project was sponsored by the US Department of Energy (DOE) and managed by Geomatrix Consultants, Inc. (Geomatrix), for TRW Environmental Safety Systems, Inc. The objective of this project was to identify and assess the uncertainties associated with certain key components of the unsaturated zone flow system at Yucca Mountain. This assessment reviewed the data inputs, modeling approaches, and results of the unsaturated zone flow model (termed the ''UZ site-scale model'') being developed by Lawrence Berkeley National Laboratory (LBNL) and the US Geological Survey (USGS). In addition to data input and modeling issues, the assessment focused on percolation flux (volumetric flow rate per unit cross-sectional area) at the potential repository horizon. An understanding of unsaturated zone processes is critical to evaluating the performance of the potential high-level nuclear waste repository at Yucca Mountain. A major goal of the project was to capture the uncertainties involved in assessing the unsaturated flow processes, including uncertainty in both the models used to represent physical controls on unsaturated zone flow and the parameter values used in the models. To ensure that the analysis included a wide range of perspectives, multiple individual judgments were elicited from members of an expert panel. The panel members, who were experts from within and outside the Yucca Mountain project, represented a range of experience and expertise. A deliberate process was followed in facilitating interactions among the experts, in training them to express their uncertainties, and in eliciting their interpretations. The resulting assessments and probability distributions, therefore, provide a reasonable aggregate representation of the knowledge and uncertainties about key issues regarding the unsaturated zone at the Yucca Mountain site.
Preserving Flow Variability in Watershed Model Calibrations
Background/Question/Methods Although watershed modeling flow calibration techniques often emphasize a specific flow mode, ecological conditions that depend on flow-ecology relationships often emphasize a range of flow conditions. We used informal likelihood methods to investig...
PHYSICAL MODELING OF CONTRACTED FLOW.
Lee, Jonathan K.
1987-01-01
Experiments on steady flow over uniform grass roughness through centered single-opening contractions were conducted in the Flood Plain Simulation Facility at the U. S. Geological Survey's Gulf Coast Hydroscience Center near Bay St. Louis, Miss. The experimental series was designed to provide data for calibrating and verifying two-dimensional, vertically averaged surface-water flow models used to simulate flow through openings in highway embankments across inundated flood plains. Water-surface elevations, point velocities, and vertical velocity profiles were obtained at selected locations for design discharges ranging from 50 to 210 cfs. Examples of observed water-surface elevations and velocity magnitudes at basin cross-sections are presented.
2011-07-31
18]) General Charles Campbell noted that , although…. “the Army has a system for organizing, staffing, equipping, training, deploying, sustaining...Harrell, Charles , Ghosh, Biman K., & Bowden Jr.,Royce O. 2004. Simulation Using ProModel. Second edition. McGraw Hill, New York. [22] Klimas, J...RUNS: A Senior Leader Reference Handbook. U.S. Army War College, Carlisle, PA. [24] McNeill , Dan K. 2005 (August). Army Force Generation
Quasi-steady turbulence modeling of unsteady flows
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.; Mobark, Amin
1991-01-01
This article describes the results of numerical simulations of oscillating wall-bounded developing flows. The full phase-averaged Navier-Stokes equations are solved. The application of quasi-steady turbulence modeling to unsteady flows is demonstrated using an unsteady version of the k-epsilon model. The effects of unsteadiness on the mean flow and turbulence are studied. Critical evaluation of the applicability of the quasi-steady approach to turbulence modeling is presented. Suggestions are given for the future efforts in turbulence modeling of unsteady flows.
Potts-model critical manifolds revisited
NASA Astrophysics Data System (ADS)
Scullard, Christian R.; Lykke Jacobsen, Jesper
2016-03-01
We compute critical polynomials for the q-state Potts model on the Archimedean lattices, using a parallel implementation of the algorithm of Jacobsen (2014 J. Phys. A: Math. Theor 47 135001) that gives us access to larger sizes than previously possible. The exact polynomials are computed for bases of size 6 × 6 unit cells, and the root in the temperature variable v={{{e}}}K-1 is determined numerically at q = 1 for bases of size 8 × 8. This leads to improved results for bond percolation thresholds, and for the Potts-model critical manifolds in the real (q, v) plane. In the two most favourable cases, we find now the kagome-lattice threshold to eleven digits and that of the (3,{12}2) lattice to thirteen. Our critical manifolds reveal many interesting features in the antiferromagnetic region of the Potts model, and determine accurately the extent of the Berker-Kadanoff phase for the lattices studied.
Zero-range model of traffic flow.
Kaupuzs, J; Mahnke, R; Harris, R J
2005-11-01
A multicluster model of traffic flow is studied, in which the motion of cars is described by a stochastic master equation. Assuming that the escape rate from a cluster depends only on the cluster size, the dynamics of the model is directly mapped to the mathematically well-studied zero-range process. Knowledge of the asymptotic behavior of the transition rates for large clusters allows us to apply an established criterion for phase separation in one-dimensional driven systems. The distribution over cluster sizes in our zero-range model is given by a one-step master equation in one dimension. It provides an approximate mean-field dynamics, which, however, leads to the exact stationary state. Based on this equation, we have calculated the critical density at which phase separation takes place. We have shown that within a certain range of densities above the critical value a metastable homogeneous state exists before coarsening sets in. Within this approach we have estimated the critical cluster size and the mean nucleation time for a condensate in a large system. The metastablity in the zero-range process is reflected in a metastable branch of the fundamental flux-density diagram of traffic flow. Our work thus provides a possible analytical description of traffic jam formation as well as important insight into condensation in the zero-range process.
Debris Flow Distributed Propagation Model
NASA Astrophysics Data System (ADS)
Gregoretti, C.
The debris flow distributed propagation model is a DEM-based model. The fan is dis- cretized by square cells and each cell is assigned an altitude on the sea level. The cells of the catchment are distinguished in two categories: the source cells and the stripe cells. The source cells receive the input hydograph: the cells close to the torrent which are flooded by the debris flow overflowing the torrent embankment are source cells. The stripes cells are the cells flooded by debris flow coming from the surrounding cells. At the first time step only the source cells are flooded by debris flow coming from the torrent. At the second time step a certain number of cells are flooded by de- bris flow coming from the source cells. These cells constitute a stripe of cells and are assigned order two. At the third time step another group of cells are flooded by the debris flow coming from the cells whose order is two. These cells constitute another stripe and are assigned order three. The cell order of a stripe is the time step number corresponding to the transition from dry to flooded state. The mass transfer or mo- mentum exchange between cells is governed by two different mechanisms. The mass transfer is allowed only by a positive or equal to zero flow level difference between the drained cell and the receiving cell. The mass transfer is limited by a not negative final flow level difference between the drained cell and the receiving cells. This limitation excludes the case of possible oscillations in the mass transfer. Another limitation is that the mass drained by a cell should be less than the available mass in that cell. This last condition provides the respect of mass conservation. The first mechanism of mass transfer is the gravity. The mass in a cell is transferred to the neighbouring cells with lower altitude and flow level according to an uniform flow law: The second mecha- nism of mass transfer is the broad crested weir. The mass in a cell is transferred to the
Modeling axisymmetric flow and transport
Langevin, C.D.
2008-01-01
Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.
Modeling axisymmetric flow and transport.
Langevin, Christian D
2008-01-01
Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.
Modeling groundwater flow on MPPs
Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Tompson, A.F.B.
1993-10-01
The numerical simulation of groundwater flow in three-dimensional heterogeneous porous media is examined. To enable detailed modeling of large contaminated sites, preconditioned iterative methods and massively parallel computing power are combined in a simulator called PARFLOW. After describing this portable and modular code, some numerical results are given, including one that demonstrates the code`s scalability.
The Critical Infrastructure Portfolio Selection Model
2008-06-13
Gregory Ehlers ties together two concepts that are fundamental to enabling a thorough understanding of the Critical Infrastructure Portfolio Selection...work of world-renowned economists, Paul Collier and Anke Hoeffler, and the econometric models that these scholars have developed in an effort to...
Turbulence modeling for compressible flows
NASA Technical Reports Server (NTRS)
Marvin, J. G.
1977-01-01
Material prepared for a course on Applications and Fundamentals of Turbulence given at the University of Tennessee Space Institute, January 10 and 11, 1977, is presented. A complete concept of turbulence modeling is described, and examples of progess for its use in computational aerodynimics are given. Modeling concepts, experiments, and computations using the concepts are reviewed in a manner that provides an up-to-date statement on the status of this problem for compressible flows.
Flows In Model Human Femoral Arteries
NASA Technical Reports Server (NTRS)
Back, Lloyd H.; Kwack, Eug Y.; Crawford, Donald W.
1990-01-01
Flow is visualized with dye traces, and pressure measurements made. Report describes experimental study of flow in models of human femoral artery. Conducted to examine effect of slight curvature of artery on flow paths and distribution of pressure.
A holographic model for quantum critical responses
NASA Astrophysics Data System (ADS)
Myers, Robert C.; Sierens, Todd; Witczak-Krempa, William
2016-05-01
We analyze the dynamical response functions of strongly interacting quantum critical states described by conformal field theories (CFTs). We construct a self-consistent holographic model that incorporates the relevant scalar operator driving the quantum critical phase transition. Focusing on the finite temperature dynamical conductivity σ( ω, T ), we study its dependence on our model parameters, notably the scaling dimension of the relevant operator. It is found that the conductivity is well-approximated by a simple ansatz proposed in [1] for a wide range of parameters. We further dissect the conductivity at large frequencies ω ≫ T using the operator product expansion, and show how it reveals the spectrum of our model CFT. Our results provide a physically-constrained framework to study the analytic continuation of quantum Monte Carlo data, as we illustrate using the O(2) Wilson-Fisher CFT. Finally, we comment on the variation of the conductivity as we tune away from the quantum critical point, setting the stage for a comprehensive analysis of the phase diagram near the transition.
Turbulence models in pulsating flows
NASA Astrophysics Data System (ADS)
Scotti, Alberto; Piomelli, Ugo
2001-11-01
We compare the performance of four low-Reynolds-number models for the unsteady Reynolds-averaged Navier-Stokes equations applied to the flow in a channel driven by a pressure gradient oscillating around a non-zero mean. The models considered are the one-equation Spalart-Allmaras model, the k-\\varepsilon model with the wall functions of Lam and Bremhorst, the k-ω^2 model of Saffman and Wilcox, and the k-\\varepsilon-v^2 model of Durbin. The results are compared with experiments, direct simulations and large-eddy simulations. The models give similar and reasonably accurate results as far as predicting the velocity profile in the channel as a function of the phase, and reproduce the observed behavior during part of the cycle. However, large differences exist between the models themselves, as well as with respect to the LES, at the level of the Reynolds shear stress, turbulent kinetic energy and dissipation rate. The k-\\varepsilon-v^2 model is overall superior to the other models considered.
Stochastic models for turbulent reacting flows
Kerstein, A.
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Model-free simulations of turbulent reactive flows
NASA Technical Reports Server (NTRS)
Givi, Peyman
1989-01-01
The current computational methods for solving transport equations of turbulent reacting single-phase flows are critically reviewed, with primary attention given to those methods that lead to model-free simulations. In particular, consideration is given to direct numerical simulations using spectral (Galerkin) and pseudospectral (collocation) methods, spectral element methods, and Lagrangian methods. The discussion also covers large eddy simulations and turbulence modeling.
Modeling of turbulent separated flows for aerodynamic applications
NASA Technical Reports Server (NTRS)
Marvin, J. G.
1983-01-01
Steady, high speed, compressible separated flows modeled through numerical simulations resulting from solutions of the mass-averaged Navier-Stokes equations are reviewed. Emphasis is placed on benchmark flows that represent simplified (but realistic) aerodynamic phenomena. These include impinging shock waves, compression corners, glancing shock waves, trailing edge regions, and supersonic high angle of attack flows. A critical assessment of modeling capabilities is provided by comparing the numerical simulations with experiment. The importance of combining experiment, numerical algorithm, grid, and turbulence model to effectively develop this potentially powerful simulation technique is stressed.
A Geophysical Flow Experiment in a Compressible Critical Fluid
NASA Technical Reports Server (NTRS)
Hegseth, John; Garcia, Laudelino
1996-01-01
The first objective of this experiment is to build an experimental system in which, in analogy to a geophysical system, a compressible fluid in a spherical annulus becomes radially stratified in density through an A.C. electric field. When this density gradient is demonstrated, the system will be augmented so that the fluid can be driven by heating and rotation and tested in preparation for a microgravity experiment. This apparatus consists of a spherical capacitor filled with critical fluid in a temperature controlled environment. To make the fluid critical, the apparatus will be operated near the critical pressure, critical density, and critical temperature of the fluid. This will result in a highly compressible fluid because of the properties of the fluid near its critical point. A high voltage A.C. source applied across the capacitor will create a spherically symmetric central force because of the dielectric properties of the fluid in an electric field gradient. This central force will induce a spherically symmetric density gradient that is analogous to a geophysical fluid system. To generate such a density gradient the system must be small (approx. 1 inch diameter). This small cell will also be capable of driving the critical fluid by heating and rotation. Since a spherically symmetric density gradient can only be made in microgravity, another small cell, of the same geometry, will be built that uses incompressible fluid. The driving of the fluid by rotation and heating in these small cells will be developed. The resulting instabilities from the driving in these two systems will then be studied. The second objective is to study the pattern forming instabilities (bifurcations) resulting from the well controlled experimental conditions in the critical fluid cell. This experiment will come close to producing conditions that are geophysically similar and will be studied as the driving parameters are changed.
Particle and flow field holography: A critical survey
NASA Technical Reports Server (NTRS)
Trolinger, James D.
1987-01-01
A brief background is provided for the fields of particle and flow visualization holography. A summary of methods currently in use is given, followed by a discussion of more recent and unique applications. The problem of data reduction is discussed. A state of the art summary is then provided with a prognosis of the future of the field. Particle and flow visualization holography are characterized as powerful tools currently in wide use and with significant untapped potential.
Ma, Rui; Zheng, Chunmiao; Tonkin, Matthew J.; Zachara, John M.
2011-04-01
Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5 m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions.
Ma, Rui; Zheng, Chunmiao; Tonkin, Matt; Zachara, John M
2011-04-01
Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions.
Mathematical Models Of Turbulence In Hypersonic Flow
NASA Technical Reports Server (NTRS)
Marvin, J. G.; Coakley, T. J.
1991-01-01
Report discusses mathematical models of turbulence used in numerical simulations of complicated viscous, hypersonic flows. Includes survey of essential features of models and their statuses in applications.
Superhydrophobic drag reduction in laminar flows: a critical review
NASA Astrophysics Data System (ADS)
Lee, Choongyeop; Choi, Chang-Hwan; Kim, Chang-Jin
2016-12-01
A gas in between micro- or nanostructures on a submerged superhydrophobic (SHPo) surface allows the liquid on the structures to flow with an effective slip. If large enough, this slippage may entail a drag reduction appreciable for many flow systems. However, the large discrepancies among the slippage levels reported in the literature have led to a widespread misunderstanding on the drag-reducing ability of SHPo surfaces. Today we know that the amount of slip, generally quantified with a slip length, is mainly determined by the structural features of SHPo surfaces, such as the pitch, solid fraction, and pattern type, and further affected by secondary factors, such as the state of the liquid-gas interface. Reviewing the experimental data of laminar flows in the literature comprehensively and comparing them with the theoretical predictions, we provide a global picture of the liquid slip on structured surfaces to assist in rational design of SHPo surfaces for drag reduction. Because the trapped gas, called plastron, vanishes along with its slippage effect in most application conditions, lastly we discuss the recent efforts to prevent its loss. This review is limited to laminar flows, for which the SHPo drag reduction is reasonably well understood.
Mathematical Models Of Turbulence In Transonic Flow
NASA Technical Reports Server (NTRS)
Rubesin, Morris W.; Viegas, John R.
1989-01-01
Predictions of several models compared with measurements of well-documented flow. Report reviews performances of variety of mathematical models of turbulence in transonic flow. Predictions of models compared with measurements of flow in wind tunnel along outside of cylinder having axisymmetric bump of circular-arc cross section in meridional plane. Review part of continuing effort to calibrate and verify computer codes for prediction of transonic flows about airfoils. Johnson-and-King model proved superior in predicting transonic flow over bumpy cylinder.
East Maui Groundwater Flow Model
Nicole Lautze
2015-01-01
Groundwater flow model for East Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.
Hawaii Island Groundwater Flow Model
Nicole Lautze
2015-01-01
Groundwater flow model for Hawaii Island. Data is from the following sources: Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume II – Island of Hawaii Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008; and Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.
West Maui Groundwater Flow Model
Nicole Lautze
2015-01-01
Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.
Preconditioning Method Applied to Near-Critical Carbon-Dioxide Flows in Micro-Channel
NASA Astrophysics Data System (ADS)
Yamamoto, Satoru; Toratani, Masayuki; Sasao, Yasuhiro
A numerical method for simulating near-critical carbon-dioxide flows in a micro-channel is presented. This method is based on the preconditioning method applied to the compressible Navier-Stokes equations. The Peng-Robinson equation of state is introduced to evaluate the properties of near-critical fluids. As numerical examples, Near-critical carbon-dioxide flows in a square cavity and in a micro-channel are calculated and the calculated results are compared with the experimental data and the theoretical results. Finally, we demonstrate that the compressibility dominates the near-critical carbon-dioxide flows in a micro-channel even if the flow is very slow and the Reynolds number is very low.
Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle
Hosni, Mohammad H.
2014-03-30
Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development
Critical and supercritical flows in two unstable, mountain rivers, Toutle river system, Washington
Simon, Andrew; Hardison, J. H.
1994-01-01
Critical and supercritical flows are generally considered to be rare occurrences in natural river channels. This paper presents data and results pertaining to the existence of measured critical and supercritical flows at gaging stations on the North Fork Toutle River (NFT) and Toutle River main stem (TR). The data set includes 930 discharge measurements made by the staff of the U.S. Geological Survey, Cascades Volcano Observatory, between 1980 and 1989.
A toy terrestrial carbon flow model
NASA Technical Reports Server (NTRS)
Parton, William J.; Running, Steven W.; Walker, Brian
1992-01-01
A generalized carbon flow model for the major terrestrial ecosystems of the world is reported. The model is a simplification of the Century model and the Forest-Biogeochemical model. Topics covered include plant production, decomposition and nutrient cycling, biomes, the utility of the carbon flow model for predicting carbon dynamics under global change, and possible applications to state-and-transition models and environmentally driven global vegetation models.
Modeling of the double leakage and leakage spillage flows in axial flow compressors
NASA Astrophysics Data System (ADS)
Du, Hui; Yu, Xianjun; Liu, Baojie
2014-04-01
A model to predict the double leakage and tip leakage leading edge spillage flows was developed. This model was combined by a TLV trajectory model and a TLV diameter model and formed as a function of compressor one-dimensional design parameters, i.e. the compressor massflow coefficient, ϕ and compressor loading coefficient, Ψ, and some critical blade geometrical parameters, i.e. blade solidity, σ, stagger angle, β S , blade chord length, C, and blade pitch length, S. By using this model, the double leakage and tip leakage leading edge spillage flow could be predicted even at the compressor preliminary design process. Considering the leading edge spillage flow usually indicates the inception of spike-type stall, i.e. the compressor is a tip critical design, this model could also be used as a tool to choose the critical design parameters for designers. At last, some experimental data from literature was used to validate the model and the results proved that the model was reliable.
Critical conceptualism in environmental modeling and prediction.
Christakos, G
2003-10-15
Many important problems in environmental science and engineering are of a conceptual nature. Research and development, however, often becomes so preoccupied with technical issues, which are themselves fascinating, that it neglects essential methodological elements of conceptual reasoning and theoretical inquiry. This work suggests that valuable insight into environmental modeling can be gained by means of critical conceptualism which focuses on the software of human reason and, in practical terms, leads to a powerful methodological framework of space-time modeling and prediction. A knowledge synthesis system develops the rational means for the epistemic integration of various physical knowledge bases relevant to the natural system of interest in order to obtain a realistic representation of the system, provide a rigorous assessment of the uncertainty sources, generate meaningful predictions of environmental processes in space-time, and produce science-based decisions. No restriction is imposed on the shape of the distribution model or the form of the predictor (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated). The scientific reasoning structure underlying knowledge synthesis involves teleologic criteria and stochastic logic principles which have important advantages over the reasoning method of conventional space-time techniques. Insight is gained in terms of real world applications, including the following: the study of global ozone patterns in the atmosphere using data sets generated by instruments on board the Nimbus 7 satellite and secondary information in terms of total ozone-tropopause pressure models; the mapping of arsenic concentrations in the Bangladesh drinking water by assimilating hard and soft data from an extensive network of monitoring wells; and the dynamic imaging of probability distributions of pollutants across the Kalamazoo river.
Observing and modeling Earths energy flows
Stevens B.; Schwartz S.
2012-05-11
contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.
Observing and Modeling Earth's Energy Flows
NASA Astrophysics Data System (ADS)
Stevens, Bjorn; Schwartz, Stephen E.
2012-07-01
importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.
VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.
Chen, Cheng-lung
1986-01-01
This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.
Generalization of data on critical heat fluxes for flow swirled using a tape
NASA Astrophysics Data System (ADS)
Krug, A. F.; Kuzma-Kichta, Yu. A.; Komendantov, A. S.
2010-03-01
The available data on critical heat fluxes for boiling of subcooled and saturated liquid in tubes with twisted tape inserts are considered. Experimental data obtained by different researchers are generalized, and an equation for calculating critical heat fluxes for both smooth tubes and tubes with flow swirling by means of a tape is proposed.
ERIC Educational Resources Information Center
Subramaniam, Maithreyi; Hanafi, Jaffri; Putih, Abu Talib
2016-01-01
This study adopted 30 first year graphic design students' artwork, with critical analysis using Feldman's model of art criticism. Data were analyzed quantitatively; descriptive statistical techniques were employed. The scores were viewed in the form of mean score and frequencies to determine students' performances in their critical ability.…
Catchment organisation, free energy dynamics and network control on critical zone water flows
NASA Astrophysics Data System (ADS)
Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.
2012-04-01
as that these flow structures organize and dominate flows of water, dissolved matter and sediments during rainfall driven conditions at various scales: - Surface connected vertical flow structures of anecic worm burrows or soil cracks organize and dominated vertical flows at the plot scale - this is usually referred to as preferential flow; - Rill networks at the soil surface organise and dominate hillslope scale overland flow response and sediment yields; - Subsurface pipe networks at the bedrock interface organize and dominate hillslope scale lateral subsurface water and tracer flows; - The river net organizes and dominates flows of water, dissolved matter and sediments to the catchment outlet and finally across continental gradients to the sea. Fundamental progress with respect to the parameterization of hydrological models, subscale flow networks and to understand the adaptation of hydro-geo ecosystems to change could be achieved by discovering principles that govern the organization of catchments flow networks in particular at least during steady state conditions. This insight has inspired various scientists to suggest principles for organization of ecosystems, landscapes and flow networks; as Bejans constructural law, Minimum Energy Expenditure , Maximum Entropy Production. In line with these studies we suggest that a thermodynamic/energetic treatment of the catchment is might be a key for understanding the underlying principles that govern organisation of flow and transport. Our approach is to employ a) physically based hydrological model that address at least all the relevant hydrological processes in the critical zone in a coupled way, behavioural representations of the observed organisation of flow structures and textural elements, that are consistent with observations in two well investigated research catchments and have been tested against distributed observations of soil moisture and catchment scale discharge; to simulate the full concert of hydrological
Investigation of Body Force Effects on Flow Boiling Critical Heat Flux
NASA Technical Reports Server (NTRS)
Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.
2002-01-01
The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid
Goh, Segun; Lee, Keumsook; Choi, Moo Young; Fortin, Jean-Yves
2014-01-01
Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) "block stop" and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow.
A Comparison of Critical Regimes in Collapsible Tube, Pipe, Open Channel and Gas-Dynamic Flows
NASA Astrophysics Data System (ADS)
Arun, C. P.
2003-11-01
Though of considerable interest to clinical scientists, collapsible tubes are only recently receiving due interest by fluid physicists. The subject of critical phenomena in collapsible tube flow appears not to have been examined critically. For example, it has been proposed in the past that shock waves in physiological tubes are abnormal. We propose a classification of flow through collapsible tubes recognising that compressibility in gas-dynamic and pipe flow (cf.waterhammer) corresponds to distensibility in collapsible tube flow. Thus, opening and closing waves of collapsible tube flow (predistension regime) is subcritical flow and the post-distension regime, supercritical. Physiological tubes are often hyperelastic and contractile and often, when distension is very significant, a hypercritical regime corresponding to hypersonic gas-dynamic flow is admissible. Such a hypercritical regime would allow storage of energy and muscle contraction in the wall of the tube and hence continuance of propulsion in the essentially intermittent flow that is seen in collapsible tubes. Such a mechanism appears to be in operation in the human aorta, bowel and urethra. The present work offers a comparison of critical regimes in various fluid flow situations including collapsible tubes, that is in harmony with known phenomena seen in nature.
The nodal inhibitor Coco is a critical target of leftward flow in Xenopus.
Schweickert, Axel; Vick, Philipp; Getwan, Maike; Weber, Thomas; Schneider, Isabelle; Eberhardt, Melanie; Beyer, Tina; Pachur, Anke; Blum, Martin
2010-04-27
Vertebrate laterality, which is manifested by asymmetrically placed organs [1], depends on asymmetric activation of the Nodal signaling cascade in the left lateral plate mesoderm [2]. In fish, amphibians, and mammals, a cilia-driven leftward flow of extracellular fluid acts upstream of the Nodal cascade [3-6]. The direct target of flow has remained elusive. In Xenopus, flow occurs at the gastrocoel roof plate (GRP) in the dorsal midline of the embryo [4, 7]. The GRP is bordered by a second, bilaterally symmetrical Nodal expression domain [8]. Here we identify the Nodal inhibitor Coco as a critical target of flow. Coco and Xenopus Nodal-related 1 (Xnr1) are coexpressed in the lateralmost ciliated GRP cells. Coco becomes downregulated on the left side of the GRP as a direct readout of flow. Ablation of flow prevented Coco repression, whereas Xnr1 expression was independent of flow. Loss of flow-induced laterality defects were rescued by knockdown of Coco on the left side. Parallel knockdown of Coco and Xnr1 in GRP cells restored laterality defects in flow-impaired embryos, demonstrating that Coco acted through GRP-expressed Xnr1. Coco thus acts as a critical target of flow, suggesting that symmetry is broken by flow-mediated left-asymmetric release of Nodal repression at the midline.
Deconfined Quantum Criticality, Scaling Violations, and Classical Loop Models
NASA Astrophysics Data System (ADS)
Nahum, Adam; Chalker, J. T.; Serna, P.; Ortuño, M.; Somoza, A. M.
2015-10-01
Numerical studies of the transition between Néel and valence bond solid phases in two-dimensional quantum antiferromagnets give strong evidence for the remarkable scenario of deconfined criticality, but display strong violations of finite-size scaling that are not yet understood. We show how to realize the universal physics of the Néel-valence-bond-solid (VBS) transition in a three-dimensional classical loop model (this model includes the subtle interference effect that suppresses hedgehog defects in the Néel order parameter). We use the loop model for simulations of unprecedentedly large systems (up to linear size L =512 ). Our results are compatible with a continuous transition at which both Néel and VBS order parameters are critical, and we do not see conventional signs of first-order behavior. However, we show that the scaling violations are stronger than previously realized and are incompatible with conventional finite-size scaling, even if allowance is made for a weakly or marginally irrelevant scaling variable. In particular, different approaches to determining the anomalous dimensions ηVBS and ηN é el yield very different results. The assumption of conventional finite-size scaling leads to estimates that drift to negative values at large sizes, in violation of the unitarity bounds. In contrast, the decay with distance of critical correlators on scales much smaller than system size is consistent with large positive anomalous dimensions. Barring an unexpected reversal in behavior at still larger sizes, this implies that the transition, if continuous, must show unconventional finite-size scaling, for example, from an additional dangerously irrelevant scaling variable. Another possibility is an anomalously weak first-order transition. By analyzing the renormalization group flows for the noncompact CP n -1 field theory (the n -component Abelian Higgs model) between two and four dimensions, we give the simplest scenario by which an anomalously weak first
Numerical Study on Characteristics of Real Gas Flow Through a Critical Nozzle
NASA Astrophysics Data System (ADS)
Nagao, Junji; Matsuo, Shigeru; Mohammad, Mamun; Setoguchi, Toshiaki; Kim, Heuy Dong
2012-03-01
A critical nozzle is used to measure the mass flow rate of gas. It is well known that the coefficient of discharge of the flow in a critical nozzle is a single function of the Reynolds number. The purpose of the present study is to investigate the real gas effect on discharge coefficient and thermodynamics properties through a critical nozzle by using H
Critical thinking in clinical nurse education: application of Paul's model of critical thinking.
Andrea Sullivan, E
2012-11-01
Nurse educators recognize that many nursing students have difficulty in making decisions in clinical practice. The ability to make effective, informed decisions in clinical practice requires that nursing students know and apply the processes of critical thinking. Critical thinking is a skill that develops over time and requires the conscious application of this process. There are a number of models in the nursing literature to assist students in the critical thinking process; however, these models tend to focus solely on decision making in hospital settings and are often complex to actualize. In this paper, Paul's Model of Critical Thinking is examined for its application to nursing education. I will demonstrate how the model can be used by clinical nurse educators to assist students to develop critical thinking skills in all health care settings in a way that makes critical thinking skills accessible to students.
A model for humanization in critical care.
Facioli, Adriano Machado; Amorim, Fábio Ferreira; de Almeida, Karlo Jozefo Quadros
2012-01-01
We present a case in which narrative medicine was used to assist a patient with amyotrophic lateral sclerosis who was dependent on mechanical ventilation and prolonged hospitalization. Implementing narrative medicine led to the development of more effective communication that strengthened the therapeutic relationship, enhanced humane care practices, and resulted in greater physical and psychological comfort for the patient. Narrative medicine is a discipline that has been progressively incorporated into medical training to restore a humane and individual physician-patient relationship. The patient is viewed, not merely as a case to diagnose, but as a person with a story that evokes emotions in those who assist him or her. In fact, narrative medicine can be understood as a model of medical practice based on narrative competence, ie, the ability to acknowledge, to absorb, to interpret, and to respond to a person's story. It strengthens empathy, rescues patient individuality, and facilitates solutions to conflicts in complex settings, such as critical care units, where clinicians are constantly exposed to existential issues, both moral and ethical.
Critical behavior of the Widom--Rowlinson lattice model
Dickman, R.; Stell, G.
1995-06-01
We report extensive Monte Carlo simulations of the Widom--Rowlinson lattice model in two and three dimensions. Our results yield precise values for the critical activities and densities, and clearly place the critical behavior in the Ising universality class.
Models, measurement, and strategies in developing critical-thinking skills.
Brunt, Barbara A
2005-01-01
Health care professionals must use critical-thinking skills to solve increasingly complex problems. Educators need to help nurses develop their critical-thinking skills to maintain and enhance their competence. This article reviews various models of critical thinking, as well as methods used to evaluate critical thinking. Specific educational strategies to develop nurses' critical-thinking skills are discussed. Additional research studies are needed to determine how the process of nursing practice can nurture and develop critical-thinking skills, and which strategies are most effective in developing and evaluating critical thinking.
Critical Thinking: Frameworks and Models for Teaching
ERIC Educational Resources Information Center
Fahim, Mansoor; Eslamdoost, Samaneh
2014-01-01
Developing critical thinking since the educational revolution gave rise to flourishing movements toward embedding critical thinking (CT henceforth) stimulating classroom activities in educational settings. Nevertheless the process faced with complications such as teachability potentiality, lack of practical frameworks concerning actualization of…
Modeling of the Bosphorus exchange flow dynamics
NASA Astrophysics Data System (ADS)
Sözer, Adil; Özsoy, Emin
2017-01-01
The fundamental hydrodynamic behavior of the Bosphorus Strait is investigated through a numerical modeling study using alternative configurations of idealized or realistic geometry. Strait geometry and basin stratification conditions allow for hydraulic controls and are ideally suited to support the maximal-exchange regime, which determines the rate of exchange of waters originating from the adjacent Black and Mediterranean Seas for a given net transport. Steady-state hydraulic controls are demonstrated by densimetric Froude number calculations under layered flow approximations when corrections are applied to account for high velocity shears typically observed in the Bosphorus. Analyses of the model results reveal many observed features of the strait, including critical transitions at hydraulic controls and dissipation by turbulence and hydraulic jumps. It is found that the solution depends on initialization, especially with respect to the basin initial conditions. Significant differences between the controlled maximal-exchange and drowned solutions suggest that a detailed modeling implementation involving coupling with adjacent basins needs to take full account of the Bosphorus Strait in terms of the physical processes to be resolved.
Integrated Surface/subsurface flow modeling in PFLOTRAN
Painter, Scott L
2016-10-01
Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.
Identification of critical zones in the flow through prosthetic heart valves
NASA Astrophysics Data System (ADS)
Lopez, A.; Ledesma, R.; Zenit, R.; Pulos, G.
2008-11-01
The hemodynamic properties of prosthetic heart valves can cause blood damage and platelet activation due to the non- physiological flow patterns. Blood recirculation and elevated shear stresses are believed to be responsible for these complications. The objective of this study is to identify and quantify the conditions for which recirculation and high stress zones appear. We have performed a comparative study between a mechanical monoleaflet and biological valve. In order to generate the flow conditions to test the prosthesis, we have built a hydraulic circuit which reproduces the human systemic circulation, on the basis of the Windkessel model. This model is based on an electrical analogy which consists of an arterial resistance and compliance. Using PIV 3D- Stereo measurements, taken downstream from the prosthetic heart valves, we have reconstructed the full phase-averaged tridimensional velocity field. Preliminary results show that critical zones are more prominent in mechanical prosthesis, indicating that valves made with bio-materials are less likely to produce blood trauma. This is in accordance with what is generally found in the literature.
RANS turbulence model form uncertainty quantification for wind engineering flows
NASA Astrophysics Data System (ADS)
Gorle, Catherine; Zeoli, Stephanie; Bricteux, Laurent
2016-11-01
Reynolds-averaged Navier-Stokes simulations with linear eddy-viscosity turbulence models are commonly used for modeling wind engineering flows, but the use of the results for critical design decisions is hindered by the limited capability of the models to correctly predict bluff body flows. A turbulence model form uncertainty quantification (UQ) method to define confidence intervals for the results could remove this limitation, and promising results were obtained in a previous study of the flow in downtown Oklahoma City. The objective of the present study is to further investigate the validity of these results by considering the simplified test case of the flow around a wall-mounted cube. DNS data is used to determine: 1. whether the marker, which identifies regions that deviate from parallel shear flow, is a good indicator for the regions where the turbulence model fails, and 2. which Reynolds stress perturbations, in terms of the tensor magnitude and the eigenvalues and eigenvectors of the normalized anisotropy tensor, can capture the uncertainty in the flow field. A comparison of confidence intervals obtained with the UQ method and the DNS solution indicates that the uncertainty in the velocity field can be captured correctly in a large portion of the flow field.
Modeling of Cavitating Flow through Waterjet Propulsors
2015-02-18
OCT-11 -31-DEC-14 To) 4. TITLE AND SUBTITLE Modeling of Cavitating Flow through Waterjet Propulsors 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-12...239-18 Modeling of Cavitating Flow through Waterjet Propulsors Jules W. Lindau The Pennsylvania State University, Applied Research Laboratory, State...flow nature, waterjets are expected to maintain resistance to cavitation , are amenable to ad- vanced concepts such as thrust vectoring, should
Finite element modeling of nonisothermal polymer flows
NASA Technical Reports Server (NTRS)
Roylance, D.
1981-01-01
A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.
Average-passage flow model development
NASA Technical Reports Server (NTRS)
Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Kirtley, Kevin; Barnett, Mark
1989-01-01
A 3-D model was developed for simulating multistage turbomachinery flows using supercomputers. This average passage flow model described the time averaged flow field within a typical passage of a bladed wheel within a multistage configuration. To date, a number of inviscid simulations were executed to assess the resolution capabilities of the model. Recently, the viscous terms associated with the average passage model were incorporated into the inviscid computer code along with an algebraic turbulence model. A simulation of a stage-and-one-half, low speed turbine was executed. The results of this simulation, including a comparison with experimental data, is discussed.
NASA Astrophysics Data System (ADS)
Scotto di Santolo, A.
2009-04-01
This paper reports the results of a theoretical analysis carried out designed to evaluate meteoric events that can be defined as critical since they are capable of triggering landslides in partially saturated pyroclastic soils. The study refers to analyses of the pyroclastic covers in the area of Campania, Italy, which is often affected by complex phenomena that begin as rotational or translational slide or fall and evolve into rapid landslides as earth-flows (debris or mud as function of grain size distributions). The prediction of triggering factors is of extreme importance for the implementation of civic protection schemes, given the dynamic features that characterize these phenomena during their evolution. The study highlights the fact that it is impossible to define the criticality of a meteoric event by means of empiric laws that correlate the mean intensity of rainfall and the "mean" duration of the event. However, it is possible to identify the criticality of a meteoric event in partially saturated soils, by means of a more complex approach which is physically conditioned. The rainfall is critical if it is capable of causing the rainwater to filter into the subsoil into "weak" layers where there is an increase in the specific volume with a significant reduction of the suction and resistance to the shear of the terrain (Fredlund et al., 78). This study focuses exclusively on seepage, regardless of the resistance of the soil, by analyzing, among various aspects, the phenomenon using a simplified subsoil model. For this study, it is assumed that the rainfall is critical when it is capable of saturating the soil cover for a predefined summit thickness Zc. For the purposes of this study, value Zc could be given an arbitrary value. This has been assumed to be 1m, considering that the experimental evidence has shown that rapid flows, at least when triggered, prove to be superficial. The other hypotheses are: • 1D infiltration, • Rigid solid skeleton;
Renormalization flow of the hierarchical Anderson model at weak disorder
NASA Astrophysics Data System (ADS)
Metz, F. L.; Leuzzi, L.; Parisi, G.
2014-02-01
We study the flow of the renormalized model parameters obtained from a sequence of simple transformations of the 1D Anderson model with long-range hierarchical hopping. Combining numerical results with a perturbative approach for the flow equations, we identify three qualitatively different regimes at weak disorder. For a sufficiently fast decay of the hopping energy, the Cauchy distribution is the only stable fixed point of the flow equations, whereas for sufficiently slowly decaying hopping energy the renormalized parameters flow to a δ-peak fixed-point distribution. In an intermediate range of the hopping decay, both fixed-point distributions are stable and the stationary solution is determined by the initial configuration of the random parameters. We present results for the critical decay of the hopping energy separating the different regimes.
Approximate Model for Turbulent Stagnation Point Flow.
Dechant, Lawrence
2016-01-01
Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.
Kinetic model for dilute traffic flow
NASA Astrophysics Data System (ADS)
Balouchi, Ashkan; Browne, Dana A.
The flow of traffic represents a many-particle non-equilibrium problem with important practical consequences. Traffic behavior has been studied using a variety of approaches, including fluid dynamics models, Boltzmann equation, and recently cellular automata (CA). The CA model for traffic flow that Nagel and Schreckenberg (NS) introduced can successfully mimic many of the known features of the traffic flow. We show that in the dilute limit of the NS model, where vehicles exhibit free flow, cars show significant nearest neighbor correlation primarily via a short-range repulsion. introduce an approximate analytic model to describe this dilute limit. We show that the distribution of the distance between consecutive vehicles obeys a drift-diffusion equation. We compared this model with direct simulations. The steady state solution and relaxation of this model agrees well with direct simulations. We explore how this model breaks down as the transition to jams occurs.
A turbulent two-phase flow model for nebula flows
NASA Technical Reports Server (NTRS)
Champney, Joelle M.; Cuzzi, Jeffrey N.
1990-01-01
A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles.
Modeling of Time Varying Slag Flow in Coal Gasifiers
Pilli, Siva Prasad; Johnson, Kenneth I.; Williford, Ralph E.; Sundaram, S. K.; Korolev, Vladimir N.; Crum, Jarrod V.
2008-08-30
There is considerable interest within government agencies and the energy industries across the globe to further advance the clean and economical conversion of coal into liquid fuels to reduce our dependency on imported oil. To date, advances in these areas have been largely based on experimental work. Although there are some detailed systems level performance models, little work has been done on numerical modeling of the component level processes. If accurate models are developed, then significant R&D time might be saved, new insights into the process might be gained, and some good predictions of process or performance can be made. One such area is the characterization of slag deposition and flow on the gasifier walls. Understanding slag rheology and slag-refractory interactions is critical to design and operation of gasifiers with extended refractory lifetimes and also to better control of operating parameters so that the overall gasifier performance with extended service life can be optimized. In the present work, the literature on slag flow modeling was reviewed and a model similar to Seggiani’s was developed to simulate the time varying slag accumulation and flow on the walls of a Prenflo coal gasifier. This model was further extended and modified to simulate a refractory wall gasifier including heat transfer through the refractory wall with flowing slag in contact with the refractory. The model was used to simulate temperature dependent slag flow using rheology data from our experimental slag testing program. These modeling results as well as experimental validation are presented.
Lattice Boltzmann model for traffic flow.
Meng, Jianping; Qian, Yuehong; Li, Xingli; Dai, Shiqiang
2008-03-01
Mesoscopic models for traffic flows are usually difficult to be employed because of the appearance of integro-differential terms in the models. In this work, a lattice Boltzmann model for traffic flow is introduced on the basis of the existing kinetics models by using the Bhatnagar-Gross-Krook-type approximation interaction term in the Boltzmann equation and discretizing it in time and phase space. The so-obtained model is simple while the relevant parameters are physically meaningful. Together with its discrete feature, the model can be easily used to investigate numerically the behavior of traffic flows. In consequence, the macroscopic dynamics of the model is derived using the Taylor and Chapman-Enskog expansions. For validating the model, numerical simulations are conducted under the periodic boundary conditions. It is found that the model could reasonably reproduce the fundamental diagram. Moreover, certain interesting physical phenomena can be captured by the model, such as the metastability and stop-and-go phenomena.
A turbulence model for pulsatile arterial flows.
Younis, B A; Berger, S A
2004-10-01
Difficulties in predicting the behavior of some high Reynolds number flows in the circulatory system stem in part from the severe requirements placed on the turbulence model chosen to close the time-averaged equations of fluid motion. In particular, the successful turbulence model is required to (a) correctly capture the "nonequilibrium" effects wrought by the interactions of the organized mean-flow unsteadiness with the random turbulence, (b) correctly reproduce the effects of the laminar-turbulent transitional behavior that occurs at various phases of the cardiac cycle, and (c) yield good predictions of the near-wall flow behavior in conditions where the universal logarithmic law of the wall is known to be not valid. These requirements are not immediately met by standard models of turbulence that have been developed largely with reference to data from steady, fully turbulent flows in approximate local equilibrium. The purpose of this paper is to report on the development of a turbulence model suited for use in arterial flows. The model is of the two-equation eddy-viscosity variety with dependent variables that are zero-valued at a solid wall and vary linearly with distance from it. The effects of transition are introduced by coupling this model to the local value of the intermittency and obtaining the latter from the solution of a modeled transport equation. Comparisons with measurements obtained in oscillatory transitional flows in circular tubes show that the model produces substantial improvements over existing closures. Further pulsatile-flow predictions, driven by a mean-flow wave form obtained in a diseased human carotid artery, indicate that the intermittency-modified model yields much reduced levels of wall shear stress compared to the original, unmodified model. This result, which is attributed to the rapid growth in the thickness of the viscous sublayer arising from the severe acceleration of systole, argues in favor of the use of the model for the
SRMAFTE facility checkout model flow field analysis
NASA Technical Reports Server (NTRS)
Dill, Richard A.; Whitesides, Harold R.
1992-01-01
The Solid Rocket Motor Air Flow Equipment (SRMAFTE) facility was constructed for the purpose of evaluating the internal propellant, insulation, and nozzle configurations of solid propellant rocket motor designs. This makes the characterization of the facility internal flow field very important in assuring that no facility induced flow field features exist which would corrupt the model related measurements. In order to verify the design and operation of the facility, a three-dimensional computational flow field analysis was performed on the facility checkout model setup. The checkout model measurement data, one-dimensional and three-dimensional estimates were compared, and the design and proper operation of the facility was verified. The proper operation of the metering nozzles, adapter chamber transition, model nozzle, and diffuser were verified. The one-dimensional and three-dimensional flow field estimates along with the available measurement data are compared.
NASA Astrophysics Data System (ADS)
Sengupta, Tapan K.; Gullapalli, Atchyut
2016-11-01
Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].
Estimation of Critical Flow Velocity for Collapse of Gas Test Loop Booster Fuel Assembly
Guillen; Mark J. Russell
2006-07-01
This paper presents calculations performed to determine the critical flow velocity for plate collapse due to static instability for the Gas Test Loop booster fuel assembly. Long, slender plates arranged in a parallel configuration can experience static divergence and collapse at sufficiently high coolant flow rates. Such collapse was exhibited by the Oak Ridge High Flux Reactor in the 1940s and the Engineering Test Reactor at the Idaho National Laboratory in the 1950s. Theoretical formulas outlined by Miller, based upon wide-beam theory and Bernoulli’s equation, were used for the analysis. Calculations based upon Miller’s theory show that the actual coolant flow velocity is only 6% of the predicted critical flow velocity. Since there is a considerable margin between the theoretically predicted plate collapse velocity and the design velocity, the phenomena of plate collapse due to static instability is unlikely.
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
Seshasayanan, Kannabiran; Alexakis, Alexandros
2016-01-01
We investigate the critical transition from an inverse cascade of energy to a forward energy cascade in a two-dimensional magnetohydrodynamic flow as the ratio of magnetic to mechanical forcing amplitude is varied. It is found that the critical transition is the result of two competing processes. The first process is due to hydrodynamic interactions and cascades the energy to the large scales. The second process couples small-scale magnetic fields to large-scale flows, transferring the energy back to the small scales via a nonlocal mechanism. At marginality the two cascades are both present and cancel each other. The phase space diagram of the transition is sketched.
Dynamic modelling of packaging material flow systems.
Tsiliyannis, Christos A
2005-04-01
A dynamic model has been developed for reused and recycled packaging material flows. It allows a rigorous description of the flows and stocks during the transition to new targets imposed by legislation, product demand variations or even by variations in consumer discard behaviour. Given the annual reuse and recycle frequency and packaging lifetime, the model determines all packaging flows (e.g., consumption and reuse) and variables through which environmental policy is formulated, such as recycling, waste and reuse rates and it identifies the minimum number of variables to be surveyed for complete packaging flow monitoring. Simulation of the transition to the new flow conditions is given for flows of packaging materials in Greece, based on 1995--1998 field inventory and statistical data.
Relevance of Deconfined-Criticality Action in the Light of the J-Q Spin Model
NASA Astrophysics Data System (ADS)
Huang, Yuan; Chen, Kun; Deng, Youjin; Kuklov, Anatoly; Prokofev, Nikolay; Svistunov, Boris
2013-03-01
We perform large scale Monte Carlo simulations to study critical flows of 2D spin-1/2 J-Q model and 3D SU(2) symmetric discrete NCCP1 model, a.k.a. deconfined-critical-point (DCP) action. The flows of the J-Q model and the DCP action collapse in a significantly large region of system sizes (up to L ~ 60 - 80), implying that the DCP theory (in general) and the discrete NCCP1 model (in particular) correctly capture mesoscopic physics of the competition between the antiferromagnetic and valence-bond orders in quantum spin systems. At larger sizes we observe significant deviations between the two flows which both demonstrate strong violations of scale invariance. Furthermore, while the Neel state is perfectly space-time symmetric, the competing phase shows significant deviations from this symmetry. Possible scenarios are outlined. NSF PHY-1005543
Critical behavior of the Ising model on random fractals.
Monceau, Pascal
2011-11-01
We study the critical behavior of the Ising model in the case of quenched disorder constrained by fractality on random Sierpinski fractals with a Hausdorff dimension d(f) is approximately equal to 1.8928. This is a first attempt to study a situation between the borderline cases of deterministic self-similarity and quenched randomness. Intensive Monte Carlo simulations were carried out. Scaling corrections are much weaker than in the deterministic cases, so that our results enable us to ensure that finite-size scaling holds, and that the critical behavior is described by a new universality class. The hyperscaling relation is compatible with an effective dimension equal to the Hausdorff one; moreover the two eigenvalues exponents of the renormalization flows are shown to be different from the ones calculated from ε expansions, and from the ones obtained for fourfold symmetric deterministic fractals. Although the space dimensionality is not integer, lack of self-averaging properties exhibits some features very close to the ones of a random fixed point associated with a relevant disorder.
Modelling Canopy Flows over Complex Terrain
NASA Astrophysics Data System (ADS)
Grant, Eleanor R.; Ross, Andrew N.; Gardiner, Barry A.
2016-12-01
Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO_2 and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required.
Effect of thermodynamic disequilibrium on critical liquid-vapor flow conditions
Bilicki, Z.; Kestin, J.
1989-01-01
In this lecture we characterize the effect of absence of unconstrained thermodynamic equilibrium and onset of a metastable state on the adiabatic flow of a mixture of liquid and its vapor through a convergent-divergent nozzle. We study steady-state flows and emphasize the relations that are present when the flow is choked. In such cases, there exists a cross-section in which the flow is critical and in which the adiabatic wave of small amplitude is stationary. More precisely, the relaxation process which results from the lack of equilibrium causes the system to be dispersive. In such circumstances, the critical velocity is equal to the frozen speed of sound, a/sub f/ corresponding to /omega/ /yields/ /infinity/. The relaxation process displaces the critical cross-section quite far downstream from the throat and places it in the divergent portion of the channel. We present the topological portrait of solutions in a suitably defined state-velocity space and discuss the potential appearance of normal and dispersed shock waves. In extreme cases, the singular point (usually a saddle) which enables the flow to become supercritical is displaced so far that it is located outside the exit. Then, the flow velocity is everywhere subcritical (w < a/sub f/) even though it may exceed the equilibrium speed of sound (w /approx gt/ a/sub e/) beyond a certain cross-section, and in spite of the presence of a throat. 10 refs., 4 figs.
Setting up the critical rainfall line for debris flows via support vector machines
NASA Astrophysics Data System (ADS)
Tsai, Y. F.; Chan, C. H.; Chang, C. H.
2015-10-01
The Chi-Chi earthquake in 1999 caused tremendous landslides which triggered many debris flows and resulted in significant loss of public lives and property. To prevent the disaster of debris flow, setting a critical rainfall line for each debris-flow stream is necessary. Firstly, 8 predisposing factors of debris flow were used to cluster 377 streams which have similar rainfall lines into 7 groups via the genetic algorithm. Then, support vector machines (SVM) were applied to setup the critical rainfall line for debris flows. SVM is a machine learning approach proposed based on statistical learning theory and has been widely used on pattern recognition and regression. This theory raises the generalized ability of learning mechanisms according to the minimum structural risk. Therefore, the advantage of using SVM can obtain results of minimized error rates without many training samples. Finally, the experimental results confirm that SVM method performs well in setting a critical rainfall line for each group of debris-flow streams.
Transition region modeling for compressible flow
NASA Technical Reports Server (NTRS)
Chang, C.-L.; Singer, B. A.; Dinavahi, S. P. G.; El-Hady, N. M.; Pruett, C. D.; Harris, J. E.; Streett, C. L.; Zang, T. A.; Wilcox, D. C.
1992-01-01
The ongoing effort at NASA Langley Research Center aimed at developing transitional zone models for Reynolds-averaged Navier-Stokes calculations is described. Results from three models that we have examined - two zero-equation models and a two-equation model of the k-omega type - are presented for high-speed flows. The use of analytical and computational tools to provide guidance and to provide the transitional flow-field data bases necessary to develop such models is discussed. Some results from validation of these tools are given; qualitative comparisons between modeled and theoretical/computational representations of the transitional zone are provided.
Analysis of Cortical Flow Models In Vivo
Benink, Hélène A.; Mandato, Craig A.; Bement, William M.
2000-01-01
Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453
Modeling information flow in biological networks.
Kim, Yoo-Ah; Przytycki, Jozef H; Wuchty, Stefan; Przytycka, Teresa M
2011-06-01
Large-scale molecular interaction networks are being increasingly used to provide a system level view of cellular processes. Modeling communications between nodes in such huge networks as information flows is useful for dissecting dynamical dependences between individual network components. In the information flow model, individual nodes are assumed to communicate with each other by propagating the signals through intermediate nodes in the network. In this paper, we first provide an overview of the state of the art of research in the network analysis based on information flow models. In the second part, we describe our computational method underlying our recent work on discovering dysregulated pathways in glioma. Motivated by applications to inferring information flow from genotype to phenotype in a very large human interaction network, we generalized previous approaches to compute information flows for a large number of instances and also provided a formal proof for the method.
Critical thinking and analysis: a model for written assignments.
Edwards, S L
The purpose of this article is to propose a model for critical analysis which can be incorporated into nurse education to enhance nurses' understanding of the concepts and to assist students in undertaking academic assignments. It provides a definition and conceptualization of critical thinking and critical analysis, and highlights the differences, similarities and interrelationships between them. The model suggests that there are 10 components of critical analysis. This provides the first step for developing further research on the content of the model, i.e. certain components are accepted and those which are unsuitable are rejected. The model assists the development of educational strategies to promote critical analysis skills, which are an essential element of the autonomous, critical thinking nurse practitioner.
Modeling Rotating Turbulent Flows with the Body Force Potential Model.
NASA Astrophysics Data System (ADS)
Bhattacharya, Amitabh; Perot, Blair
2000-11-01
Like a Reynolds Stress Transport equation model, the turbulent potential model has an explicit Coriolis acceleration term that appears in the model that accounts for rotation effects. In this work the additional secondary effects that system rotation has on the dissipation rate, return-to-isotropy, and fast pressure strain terms are also included in the model. The resulting model is tested in the context of rotating isotropic turbulence, rotating homogeneous shear flow, rotating channel flow, and swirling pipe flow. Many of the model changes are applicable to Reynolds stress transport equation models. All model modifications are frame indifferent.
NASA Astrophysics Data System (ADS)
Afanasyev, A.
2011-12-01
Multiphase flows in porous media with a transition between sub- and supercritical thermodynamic conditions occur in many natural and technological processes (e.g. in deep regions of geothermal reservoirs where temperature reaches critical point of water or in gas-condensate fields where subject to critical conditions retrograde condensation occurs and even in underground carbon dioxide sequestration processes at high formation pressure). Simulation of these processes is complicated due to degeneration of conservation laws under critical conditions and requires non-classical mathematical models and methods. A new mathematical model is proposed for efficient simulation of binary mixture flows in a wide range of pressures and temperatures that includes critical conditions. The distinctive feature of the model lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. Such approach allows determination not only single-phase states and two-phase states of liquid-gas type as in classical models but also two-phase states of liquid-liquid type and three-phase states. The proposed mixture model was implemented in MUFITS (Multiphase Filtration Transport Simulator) code for hydrodynamic simulations. As opposed to classical approaches pressure, enthalpy and composition variables together with fully implicit method and cascade procedure are used. The code is capable of unstructured grids, heterogeneous porous media, relative permeability and capillary pressure dependence on temperature and pressure, multiphase diffusion, optional number of sink and sources, etc. There is an additional module for mixture properties specification. The starting point for the simulation is a cubic equation of state that is
Modelling boundary layer flow over barnacle-fouled surfaces
NASA Astrophysics Data System (ADS)
Sadique, Jasim; Yang, Xiang; Meneveau, Charles; Mittal, Rajat
2014-11-01
Macro-biofouling is a critical concern for the marine industry. However, there is little data on flow and drag over such surfaces. Accurate modelling of such multi-scale flows remains a big challenge. Such simulations are vital in providing insights into the fundamental flow physics, and they can be used to estimate the timing, need and effectiveness of measures used to counteract bio-fouling. This talk focuses on the use of a sharp-interface immersed boundary method coupled with a wall model and large-eddy simulations to carry out accurate simulations of a turbulent boundary layer flow over macro-fouled surfaces. For the current study, high resolution scans of barnacles were used to create simple geometrical representations. Simulations were then carried out to test how well these simpler geometric models mimic the flow over actual barnacles. Simulations of array of modeled barnacles, with different barnacle densities have also been carried out and we present results on the effect distribution density on the flow physics and drag on the surfaces. This work is funded by ONR Grant N00014-12-1-0582.
Turbulent motion of mass flows. Mathematical modeling
NASA Astrophysics Data System (ADS)
Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana
2016-04-01
New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362
A Critical Information Literacy Model: Library Leadership within the Curriculum
ERIC Educational Resources Information Center
Swanson, Troy
2011-01-01
It is a time for a new model for teaching students to find, evaluate, and use information by drawing on critical pedagogy theory in the education literature. This critical information literacy model views the information world as a dynamic place where authors create knowledge for many reasons; it seeks to understand students as information users,…
The role of hand calculations in ground water flow modeling.
Haitjema, Henk
2006-01-01
Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.
Mathematical Models of Continuous Flow Electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.; Snyder, R. S.
1985-01-01
Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.
CFD Modeling for Active Flow Control
NASA Technical Reports Server (NTRS)
Buning, Pieter G.
2001-01-01
This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.
Mathematical Modeling of Flow Through Vegetated Regions
2013-08-01
including stem population density and flow Reynolds number. These results are compared to well-respected experimental results. We model real- life beds of...We model real- life beds of Spartina alterniflora grass with represen- tative beds of flexible beams and perform similar comparisons. x 13 Table of...and pressure contours ( right ) for instanta- neous snapshots of flows of various Reynolds numbers in 2D porous media domain with circle diameter 0.25 m
Modeling Flow through a Lock Manifold Port
2013-01-01
computational model is to provide reliable loss coefficients. Energy losses for flow issuing from a port occur primarily in the submerged jet . The...computational flow model to determine the velocity and pressure distribution in a single-port manifold for a range of port-to-culvert discharge ...Engineers 2006). Navigation lock manifolds can be evaluated using analytical methods when the hydraulic characteristics associated with the manifold’s
Modeling of thermotopographic flows in forested terrain
NASA Astrophysics Data System (ADS)
Froelich, Norma Jeanne
Thermotopographic flows are winds that develop from the interaction of local thermal gradients and sloping terrain. Strong heating or cooling of the air near the surface alters local temperature, density, and pressure gradients. During nighttime hours, the air near the surface cools more rapidly than that aloft due to radiative loss at the surface, and near-surface downslope winds may develop. During the day, surface heating by solar radiation may drive flow upslope. Recently, there has been an increased interest in thermotopographic flows in forested areas, largely because these flows may affect the accuracy of measurements of ecosystem-atmosphere exchange of carbon dioxide. In some forests, under some conditions, the diel pattern of thermotopographic flows differs from expected: at night, strong radiative cooling in the canopy layer may drive upslope sub-canopy flows, and daytime downslope flows may occur below the canopy due to heating of the canopy. There is still uncertainty as to whether thermotopographic flows will occur in a given forest, what diel pattern they will exhibit, what drivers (e.g., terrain or canopy characteristics, ambient winds) influence the flow, and what effects these flows have on measurements of forest-atmosphere exchange. As observational studies are limited, numerical modeling provides an attractive option for studying thermotopographic flows in forests. The aim of this research was to develop a numerical model which may be used to study thermotopographic flows in hilly forested terrain. The model is based on existing large-eddy simulation software (Advanced Regional Prediction System, ARPS) which is used to model flow in hilly terrain. Adaptations were made to the ARPS model to simulate the dynamic, radiative, and thermal influences of canopy elements (leaves, branches, and boles). Major contributions of this research are methodological advances and several outcomes from the results of the model application. Methodological
General single phase wellbore flow model
Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.
1997-02-05
A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.
Holistic Flow Model of Spiritual Wellness
ERIC Educational Resources Information Center
Purdy, Melanie; Dupey, Peggy
2005-01-01
The Holistic Flow Model of Spiritual Wellness is a conceptualization of spiritual health and well-being that has implications for clinical practice and research. The model is unique in its placement of the spirit at the center of Life and in its fluid vision of the spirit. The authors present the model after a discussion of spirituality and the…
A compendium of fracture flow models, 1994
Diodato, D.M.
1994-11-01
The report is designed to be used as a decision-making aid for individuals who need to simulate fluid flow in fractured porous media. Fracture flow codes of varying capability in the public and private domain were identified in a survey of government, academia, and industry. The selection and use of an appropriate code requires conceptualization of the geology, physics, and chemistry (for transport) of the fracture flow problem to be solved. Conceptual models that have been invoked to describe fluid flow in fractured porous media include explicit discrete fracture, dual continuum (porosity and/or permeability), discrete fracture network, multiple interacting continua, multipermeability/multiporosity, and single equivalent continuum. The explicit discrete-fracture model is a ``near-field`` representation, the single equivalent continuum model is a ``far-field`` representation, and the dual-continuum model is intermediate to those end members. Of these, the dual-continuum model is the most widely employed. The concept of multiple interacting continua has been applied in a limited number of examples. Multipermeability/multiporosity provides a unified conceptual model. The ability to accurately describe fracture flow phenomena will continue to improve as a result of advances in fracture flow research and computing technology. This improvement will result in enhanced capability to protect the public environment, safety, and health.
Modeling groundwater flow and quality
Konikow, Leonard F.; Glynn, Pierre D.; Selinus, Olle
2013-01-01
In most areas, rocks in the subsurface are saturated with water at relatively shallow depths. The top of the saturated zone—the water table—typically occurs anywhere from just below land surface to hundreds of feet below the land surface. Groundwater generally fills all pore spaces below the water table and is part of a continuous dynamic flow system, in which the fluid is moving at velocities ranging from feet per millennia to feet per day (Fig. 33.1). While the water is in close contact with the surfaces of various minerals in the rock material, geochemical interactions between the water and the rock can affect the chemical quality of the water, including pH, dissolved solids composition, and trace-elements content. Thus, flowing groundwater is a major mechanism for the transport of chemicals from buried rocks to the accessible environment, as well as a major pathway from rocks to human exposure and consumption. Because the mineral composition of rocks is highly variable, as is the solubility of various minerals, the human-health effects of groundwater consumption will be highly variable.
Critical review of glass performance modeling
Bourcier, W.L.
1994-07-01
Borosilicate glass is to be used for permanent disposal of high-level nuclear waste in a geologic repository. Mechanistic chemical models are used to predict the rate at which radionuclides will be released from the glass under repository conditions. The most successful and useful of these models link reaction path geochemical modeling programs with a glass dissolution rate law that is consistent with transition state theory. These models have been used to simulate several types of short-term laboratory tests of glass dissolution and to predict the long-term performance of the glass in a repository. Although mechanistically based, the current models are limited by a lack of unambiguous experimental support for some of their assumptions. The most severe problem of this type is the lack of an existing validated mechanism that controls long-term glass dissolution rates. Current models can be improved by performing carefully designed experiments and using the experimental results to validate the rate-controlling mechanisms implicit in the models. These models should be supported with long-term experiments to be used for model validation. The mechanistic basis of the models should be explored by using modern molecular simulations such as molecular orbital and molecular dynamics to investigate both the glass structure and its dissolution process.
A model for insect tracheolar flow
NASA Astrophysics Data System (ADS)
Staples, Anne; Chatterjee, Krishnashis
2015-11-01
Tracheoles are the terminal ends of the microscale tracheal channels present in most insect respiratory systems that transport air directly to the tissue. From a fluid dynamics perspective, tracheolar flow is notable because it lies at the intersection of several specialized fluid flow regimes. The flow through tracheoles is creeping, microscale gas flow in the rarefied regime. Here, we use lubrication theory to model the flow through a single microscale tracheole and take into account fluid-structure interactions through an imposed periodic wall deformation corresponding to the rhythmic abdominal compression found in insects, and rarefaction effects using slip boundary conditions. We compare the pressure, axial pressure gradient, and axial and radial velocities in the channel, and the volumetric flow rate through the channel for no-slip, low slip, and high slip conditions under two different channel deformation regimes. We find that the presence of slip tends to reduce the flow rate through the model tracheole and hypothesize that one of the mechanical functions of tracheoles is to act as a diffuser to decelerate the flow, enhance mixing, and increase the residency time of freshly oxygenated air at the surface of the tissue. This work was funded by the NSF under grant no. 1437387.
Modeling flow and sedimention of slurries
NASA Astrophysics Data System (ADS)
Mondy, L.; Rao, R.; Altobelli, S.; Ingber, M.; Graham, A.
2002-12-01
Many natural processes involve flows of sediments at high particle concentrations. The equations describing such two-phase flows are highly nonlinear. We will give an overview of the performance of a continuum constitutive model of suspensions of particles in liquid for low Reynolds number flows. The diffusive flux model (Leighton and Acrivos, J. Fluid Mech., 1987, and Phillips et al., Phys. Fluids A, 1992) is implemented in a general purpose finite element computational program. This constitutive description couples a Newtonian stress/shear-rate relationship (where the local viscosity of the suspension is dependent on the local volume fraction of solids) with a shear-induced migration model of the suspended particles. The momentum transport, continuity, and diffusive flux equations are solved simultaneously. The formulation is fully three-dimensional and can be run on a parallel computer platform. Recent work introducing a flow-aligned tensor correction to this model has had success in representing the anisotropic force that is seen in curvilinear flows. Gravity effects are added in an approach similar to that of Zhang and Acrivos (Int. J. Multiphase Flow, 1994). The model results are compared with laboratory data obtained with Nuclear Magnetic Resonance (NMR) of evolving particle concentration profiles in complex flows, as well as in batch sedimentation. Interesting secondary flows appear both in the experiment and model. Overall, good agreement is found between the experiments and the simulations. This work was supported by the United States Department of Energy under Contract DE-AC04- 94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. The authors would like to acknowledge support for this work by the U.S. Department of Energy, Division of Engineering and Geosciences, Office of Basic Energy Sciences.
Scaled Experimental Modeling of VHTR Plenum Flows
ICONE 15
2007-04-01
Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.
Flow Studies in Basilar Tip Aneurysm Models
NASA Astrophysics Data System (ADS)
Cole, Russell; Selby, Kathy; Saloner, David; Savas, Omer
2001-11-01
Particle image velocimetry and flow visualization are performed on two models of basilar tip bifurcation aneurysms. The models are intended to correspond to an aneurysm at two stages during its growth. The models are subject to steady flow conditions covering the physiological range of Reynold’s numbers while being subject to both symmetric and asymmetric outflow conditions. A brief investigation is also made using pulsatile input flow with a physiologically representative waveform. Experiment showed a general pattern of increasing unsteadiness in the aneurysm head with increasing Reynold’s number. Only for a case of a small-headed model and asymmetric outflow could a quasi-stable flow pattern be established. For the same model with symmetric outflow conditions, instability in the aneurysm head occurs at the low end of physiological Reynold’s numbers. A larger-headed aneurysm model displayed a similar onset of instability for both symmetric and asymmetric outflow conditions, with flow within the aneurysm head being less pronounced than the small-headed model.
Modeling of Turbulent Free Shear Flows
NASA Technical Reports Server (NTRS)
Yoder, Dennis A.; DeBonis, James R.; Georgiadis, Nicolas J.
2013-01-01
The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation.
A Model for Critical Games Literacy
ERIC Educational Resources Information Center
Apperley, Tom; Beavis, Catherine
2013-01-01
This article outlines a model for teaching both computer games and videogames in the classroom for teachers. The model illustrates the connections between in-game actions and youth gaming culture. The article explains how the out-of-school knowledge building, creation and collaboration that occurs in gaming and gaming culture has an impact on…
Assessment of chemistry models for compressible reacting flows
NASA Astrophysics Data System (ADS)
Lapointe, Simon; Blanquart, Guillaume
2014-11-01
Recent technological advances in propulsion and power devices and renewed interest in the development of next generation supersonic and hypersonic vehicles have increased the need for detailed understanding of turbulence-combustion interactions in compressible reacting flows. In numerical simulations of such flows, accurate modeling of the fuel chemistry is a critical component of capturing the relevant physics. Various chemical models are currently being used in reacting flow simulations. However, the differences between these models and their impacts on the fluid dynamics in the context of compressible flows are not well understood. In the present work, a numerical code is developed to solve the fully coupled compressible conservation equations for reacting flows. The finite volume code is based on the theoretical and numerical framework developed by Oefelein (Prog. Aero. Sci. 42 (2006) 2-37) and employs an all-Mach-number formulation with dual time-stepping and preconditioning. The numerical approach is tested on turbulent premixed flames at high Karlovitz numbers. Different chemical models of varying complexity and computational cost are used and their effects are compared.
Geometric critical exponent inequalities for general random cluster models
NASA Astrophysics Data System (ADS)
Tasaki, Hal
1987-11-01
A set of new critical exponent inequalities, d(1 -1 / δ)≥2 - η, dv(1 - 1/ δ)≥ γ, and dμ> 1, is proved for a general class of random cluster models, which includes (independent or dependent) percolations, lattice animals (with any interactions), and various stochastic cluster growth models. The inequalities imply that the critical phenomena in the models are inevitably not mean-field-like in the dimensions one, two, and three.
GENERALIZED VISCOPLASTIC MODELING OF DEBRIS FLOW.
Chen, Cheng-lung
1988-01-01
The earliest model developed by R. A. Bagnold was based on the concept of the 'dispersive' pressure generated by grain collisions. Some efforts have recently been made by theoreticians in non-Newtonian fluid mechanics to modify or improve Bagnold's concept or model. A viable rheological model should consist both of a rate-independent part and a rate-dependent part. A generalized viscoplastic fluid (GVF) model that has both parts as well as two major rheological properties (i. e. , the normal stress effect and soil yield criterion) is shown to be sufficiently accurate, yet practical for general use in debris-flow modeling. In fact, Bagnold's model is found to be only a particular case of the GVF model. analytical solutions for (steady) uniform debris flows in wide channels are obtained from the GVF model based on Bagnold's simplified assumption of constant grain concentration.
Software reliability models for critical applications
Pham, H.; Pham, M.
1991-12-01
This report presents the results of the first phase of the ongoing EG&G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place. 407 refs., 4 figs., 2 tabs.
Software reliability models for critical applications
Pham, H.; Pham, M.
1991-12-01
This report presents the results of the first phase of the ongoing EG G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place. 407 refs., 4 figs., 2 tabs.
Modelling the emplacement of compound lava flows
NASA Astrophysics Data System (ADS)
Blake, S.; Bruno, B. C.
2000-12-01
The physical variables controlling crust-dominated lava flow have been investigated using laboratory experiments in which molten polyglycol wax was extruded from a point source on to a horizontal plane under cold water. The wax initially spread axisymmetrically and a crust of solid wax grew. Eventually wax broke out from the flow's periphery, sending out a flow lobe which in turn cooled and produced another breakout. The process repeated itself many times, building a 'compound lava'. The time for the first breakout to form correlates well with the theoretically predicted time ( tc) required for cooling to form a crust thick enough for its strength to limit the flow's spreading rate. This time is proportional to the product of effusion rate ( Q) and initial magma viscosity ( μ) and inversely proportional to the square of the crust strength at the flow front. The number of flow units and the apparent fractal dimension of the flow perimeter increase with time normalised by tc. Our model illuminates the physical basis for the observation by Walker [G.P.L. Walker, Bull. Volcanol. 35 (1972) 579-590] that compound lava flows form by slow effusion of low viscosity magma, whereas faster effusion and higher viscosity favour lavas with fewer flow units. Because compound flows require t≫ tc, and given that tc∝ Qμ and the relationship between volume and effusion rate is V= Qt, simple and compound lava flows are predicted to fall in separate fields on a graph of μ against V/ Q2, all else being equal. Compound flows plot at small values of μ and large values of V/ Q2, with the position of the simple/compound boundary defined by field data implying a crust strength of order 10 4 Pa for basaltic to intermediate lavas. Whether a flow remains as a simple flow or matures into a compound flow field depends on the combined effect of viscosity, eruption rate and eruption duration (and hence volume) and these parameters need to be taken in to account when using morphology to infer
On The Stability Of Model Flows For Chemical Vapour Deposition
NASA Astrophysics Data System (ADS)
Miller, Robert
2016-11-01
The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.
Critical exponents of the quark-gluon bags model with a critical endpoint
NASA Astrophysics Data System (ADS)
Ivanytskyi, A. I.; Bugaev, K. A.; Sorin, A. S.; Zinovjev, G. M.
2012-12-01
The critical indices α', β, γ', and δ of the Quark Gluon Bags with Surface Tension Model that has a critical endpoint are calculated and compared with the exponents of other models. These indices are expressed in terms of the most general parameters of the model. Despite the usual expectations the found critical indices do not depend on the Fisher exponent τ and on the parameter ϰ which relates the mean bag surface to its volume. The scaling relations for the obtained critical exponents are verified, and it is demonstrated that for the standard definition of the index α' the Fisher and the Griffiths scaling inequalities are not fulfilled in general case, whereas the Liberman scaling inequality is always obeyed. This is not surprising for the phase diagram with the asymmetric properties of pure phases, but the present model also provides us with the first and explicit example that the specially defined index αs' does not recover the scaling relations as well. Therefore, here we suggest the physically motivated definition of the index α'=αc' and demonstrate that such a definition recovers the Fisher scaling inequality, while it is shown that the Griffiths inequality should be generalized for the phase diagram with the asymmetric properties. The critical exponents of several systems that belong to different universality classes are successfully described by the parameters of the present model, and hence its equation of state can be used for a variety of practical applications.
Review and selection of unsaturated flow models
Reeves, M.; Baker, N.A.; Duguid, J.O.
1994-04-04
Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.
Stochastic Modelling of Shallow Water Flows
NASA Astrophysics Data System (ADS)
Horritt, M. S.
2002-05-01
The application of computational fluid dynamics approaches to modelling shallow water flows in the environment is hindered by the uncertainty inherent to natural landforms, vegetation and processes. A stochastic approach to modelling is therefore required, but this has previously only been attempted through computationally intensive Monte Carlo methods. An efficient second order perturbation method is outlined in this presentation, whereby the governing equations are first discretised to form a non-linear system mapping model parameters to predictions. This system is then approximated using Taylor expansions to derive tractable expressions for the model prediction statistics. The approach is tested on a simple 1-D model of shallow water flow over uncertain topography, verified against ensembles of Monte Carlo simulations and approximate solutions derived by Fourier methods. Criteria for the applicability of increasing orders of Taylor expansions are derived as a function of flow depth and topographic variability. The results show that non-linear effects are important for even small topographic perturbations, and the second order perturbation method is required to derive model prediction statistics. This approximation holds well even as the flow depth tends towards the topographic roughness. The model predicted statistics are also well described by a Gaussian approximation, so only first and second moments need be calculated, even if these are significantly different to values predicted by a linear approximation. The implications for more sophisticated (2-D, advective etc.) models are discussed.
Mesoscopic Rhelogical Model for Polymeric Media Flows
NASA Astrophysics Data System (ADS)
Koshelev, K.; Kuznetcov, A.; Merzlikina, D.; Pyshnograi, G.; Pyshnograi, I.; Tolstykh, M. Y.
2017-01-01
The paper compares hydrodynamic properties of three-dimensional flows of polymer melts. A modified Vinogradov and Pokrovskii rheological model is used for the mathematical description of nonlinear viscoelastic fluid flows in a planeparallel channel with a sudden convergence. Discrete analogs for partial differential equations were obtained via the control volume method separating physical processes. The numerical implementation is carried out using the GPU-based parallel computing technology. Velocity and pressure fields have been calculated for two samples of polyethylene melts and the circulating flow at the entrance of the slit channel is noticeable. It is shown that the size of the vortex zone depends significantly on melt rheology.
A model for transonic plasma flow
Guazzotto, Luca; Hameiri, Eliezer
2014-02-15
A linear, two-dimensional model of a transonic plasma flow in equilibrium is constructed and given an explicit solution in the form of a complex Laplace integral. The solution indicates that the transonic state can be solved as an elliptic boundary value problem, as is done in the numerical code FLOW [Guazzotto et al., Phys. Plasmas 11, 604 (2004)]. Moreover, the presence of a hyperbolic region does not necessarily imply the presence of a discontinuity or any other singularity of the solution.
Turbulence Modeling in Stratified Flows over Topography
2007-09-30
Details of the basic LES model can be found in Armenio and Sarkar [1]. To avoid the need to resolve the very small turbulent motions near the lower... Armenio and S. Sarkar. An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech., 459:1–42, 2002. [2...276, 1994. [12] J. Taylor, S. Sarkar, and V. Armenio . An investigation of stably stratified turbulent channel flow using large-eddy simulation. Phys
A critical analysis of the hydrino model
NASA Astrophysics Data System (ADS)
Rathke, A.
2005-05-01
Recently, spectroscopic and calorimetric observations of hydrogen plasmas and chemical reactions with them have been interpreted as evidence for the existence of electronic states of the hydrogen atom with a binding energy of more than 13.6 eV. The theoretical basis for such states, which have been dubbed hydrinos, is investigated. We discuss both the novel deterministic model of the hydrogen atom, in which the existence of hydrinos was predicted, and standard quantum mechanics. Severe inconsistencies in the deterministic model are pointed out and the incompatibility of hydrino states with quantum mechanics is reviewed.
Analytic Model of Reactive Flow
Souers, P C; Vitello, P
2004-08-02
A simple analytic model allows prediction of rate constants and size effect behavior before a hydrocode run if size effect data exists. At infinite radius, it defines not only detonation velocity but also average detonation rate, pressure and energy. This allows the derivation of a generalized radius, which becomes larger as the explosive becomes more non-ideal. The model is applied to near-ideal PBX 9404, in-between ANFO and most non-ideal AN. The power of the pressure declines from 2.3, 1.5 to 0.8 across this set. The power of the burn fraction, F, is 0.8, 0 and 0, so that an F-term is important only for the ideal explosives. The size effect shapes change from concave-down to nearly straight to concave-up. Failure is associated with ideal explosives when the calculated detonation velocity turns in a double-valued way. The effect of the power of the pressure may be simulated by including a pressure cutoff in the detonation rate. The models allows comparison of a wide spectrum of explosives providing that a single detonation rate is feasible.
Analytic Model of Reactive Flow
Souers, P C; Vitello, P
2004-11-15
A simple analytic model allows prediction of rate constants and size effect behavior before a hydrocode run if size effect data exists. At infinite radius, it defines not only detonation velocity but also average detonation rate, pressure and energy. This allows the derivation of a generalized radius, which becomes larger as the explosive becomes more non-ideal. The model is applied to near-ideal PBX 9404, in-between ANFO and most non-ideal AN. The power of the pressure declines from 2.3, 1.5 to 0.8 across this set. The power of the burn fraction, F, is 0.8, 0 and 0, so that an F-term is important only for the ideal explosives. The size effect shapes change from concave-down to nearly straight to concave-up. Failure is associated with ideal explosives when the calculated detonation velocity turns in a double-valued way. The effect of the power of the pressure may be simulated by including a pressure cutoff in the detonation rate. The models allows comparison of a wide spectrum of explosives providing that a single detonation rate is feasible.
Causal Measurement Models: Can Criticism Stimulate Clarification?
ERIC Educational Resources Information Center
Markus, Keith A.
2016-01-01
In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…
Model calibration criteria for estimating ecological flow characteristics
Vis, Marc; Knight, Rodney; Poole, Sandra; Wolfe, William J.; Seibert, Jan; Breuer, Lutz; Kraft, Philipp
2016-01-01
Quantification of streamflow characteristics in ungauged catchments remains a challenge. Hydrological modeling is often used to derive flow time series and to calculate streamflow characteristics for subsequent applications that may differ from those envisioned by the modelers. While the estimation of model parameters for ungauged catchments is a challenging research task in itself, it is important to evaluate whether simulated time series preserve critical aspects of the streamflow hydrograph. To address this question, seven calibration objective functions were evaluated for their ability to preserve ecologically relevant streamflow characteristics of the average annual hydrograph using a runoff model, HBV-light, at 27 catchments in the southeastern United States. Calibration trials were repeated 100 times to reduce parameter uncertainty effects on the results, and 12 ecological flow characteristics were computed for comparison. Our results showed that the most suitable calibration strategy varied according to streamflow characteristic. Combined objective functions generally gave the best results, though a clear underprediction bias was observed. The occurrence of low prediction errors for certain combinations of objective function and flow characteristic suggests that (1) incorporating multiple ecological flow characteristics into a single objective function would increase model accuracy, potentially benefitting decision-making processes; and (2) there may be a need to have different objective functions available to address specific applications of the predicted time series.
Theory and Low-Order Modeling of Unsteady Airfoil Flows
NASA Astrophysics Data System (ADS)
Ramesh, Kiran
is hypothesized, and verified with experimental and computational data, that LEV formation always occurs at the same critical value of LESP irrespective of motion kinematics. Further, the applicability of the LESP criterion in influencing the occurrence of LEV formation is demonstrated. To model the growth and convection of leading-edge vortices, the unsteady thin-airfoil theory is augmented with discrete-vortex shedding from the leading edge. The LESP criterion is used to predict and modulate the shedding of leading-edge vorticity. Comparisons with experiments and CFD for test-cases with different airfoils, Reynolds numbers and motion kinematics, show that the method performs remarkably well in predicting force coefficients and flowfields for unsteady flows. The use of a single empirical parameter - the critical LESP value, allows the determination of onset, growth and termination of leading-edge vortex shedding. In the final part of the research, the discrete-vortex model is extended to flows where the freestream velocity is varying or small in comparison with motion velocity. With this extension, the method is made applicable to a larger set of 2D flows such as perching and hovering maneuvers, gusts, and sinusoidally varying freestream. Abstractions of perching and hovering are designed as test cases and used to validate the low-order model's performance in highly-unsteady, vortex-dominated flows. Alongside development of the low-order methodology, several features of unsteady flows are studied and analyzed with the aid of CFD and experiments. While remaining computationally inexpensive and retaining the essential flow-physics, the method is seen to be successful in prediction of both force coefficients and flow histories.
Rarefied-flow Shuttle aerodynamics model
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.
1993-01-01
A rarefied-flow shuttle aerodynamic model spanning the hypersonic continuum to the free molecule-flow regime was formulated. The model development has evolved from the High Resolution Accelerometer Package (HiRAP) experiment conducted on the Orbiter since 1983. The complete model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as functions of angle-of-attack, body flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle-of-attack are presented, along with flight derived rarefied-flow transition bridging formulae. Comparisons are made with data from the Operational Aerodynamic Design Data Book (OADDB), applicable wind-tunnel data, and recent flight data from STS-35 and STS-40. The flight-derived model aerodynamic force coefficient ratio is in good agreement with the wind-tunnel data and predicts the flight measured force coefficient ratios on STS-35 and STS-40. The model is not, however, in good agreement with the OADDB. But, the current OADDB does not predict the flight data force coefficient ratios of either STS-35 or STS-40 as accurately as the flight-derived model. Also, the OADDB differs with the wind-tunnel force coefficient ratio data.
Preliminary Saturated-Zone Flow Model
1997-06-10
This milestone consists of an updated fully 3D model of ground-water flow within the saturated zone at Yucca Mountain, Nevada. All electronic files pertaining to this deliverable have been transferred via ftp transmission to Steve Bodnar (M and O) and the technical data base. The model was developed using a flow and transport simulator, FEHMN, developed at Los Alamos National Laboratory, and represents a collaborative effort between staff from the US Geological Survey and Los Alamos National Laboratory. The model contained in this deliverable is minimally calibrated and represents work in progress. The flow model developed for this milestone is designed to feed subsequent transport modeling studies at Los Alamos which also use the FEHMN software. In addition, a general-application parameter estimation routine, PEST, was used in conjunction with FEHMN to reduce the difference between observed and simulated values of hydraulic head through the adjustment of model variables. This deliverable in large part consists of the electronic files for Yucca Mountain Site saturated-zone flow model as it existed as of 6/6/97, including the executable version of FEHMN (accession no. MOL.19970610.0204) used to run the code on a Sun Ultrasparc I workstation. It is expected that users of the contents of this deliverable be knowledgeable about the oration of FEHMN.
Reliable Communication Models in Interdependent Critical Infrastructure Networks
Lee, Sangkeun; Chinthavali, Supriya; Shankar, Mallikarjun
2016-01-01
Modern critical infrastructure networks are becoming increasingly interdependent where the failures in one network may cascade to other dependent networks, causing severe widespread national-scale failures. A number of previous efforts have been made to analyze the resiliency and robustness of interdependent networks based on different models. However, communication network, which plays an important role in today's infrastructures to detect and handle failures, has attracted little attention in the interdependency studies, and no previous models have captured enough practical features in the critical infrastructure networks. In this paper, we study the interdependencies between communication network and other kinds of critical infrastructure networks with an aim to identify vulnerable components and design resilient communication networks. We propose several interdependency models that systematically capture various features and dynamics of failures spreading in critical infrastructure networks. We also discuss several research challenges in building reliable communication solutions to handle failures in these models.
A critical appraisal of Markov state models
NASA Astrophysics Data System (ADS)
Schütte, Ch.; Sarich, M.
2015-09-01
Markov State Modelling as a concept for a coarse grained description of the essential kinetics of a molecular system in equilibrium has gained a lot of attention recently. The last 10 years have seen an ever increasing publication activity on how to construct Markov State Models (MSMs) for very different molecular systems ranging from peptides to proteins, from RNA to DNA, and via molecular sensors to molecular aggregation. Simultaneously the accompanying theory behind MSM building and approximation quality has been developed well beyond the concepts and ideas used in practical applications. This article reviews the main theoretical results, provides links to crucial new developments, outlines the full power of MSM building today, and discusses the essential limitations still to overcome.
Reliability Modeling of Critical Electronic Devices.
1983-05-01
Functional Degradation Failure ........ 84 Mechanisms 7.1.3 Semiconductor Laser Reliability Prediction 87.*>* Procedures 7.1.4 Model Limitations...vidicons, helium-cadmium lasers, semiconductor laser,,, circuit breakers, * I.G. sockets and surface acoustic wave devices. - 22 40 *oŔ Several of the...failure mechanism . To insure . adequate discharge of the photoconductive surface in a single scan, the total *capacitance of the target should be
Models for the formation of a critical layer in water wave propagation.
Johnson, R S
2012-04-13
A theory is presented which provides a model for the appearance of critical layers within the flow below a water wave. The wave propagates over constant depth, with constant (non-zero) vorticity. The mechanism described here involves adjusting the surface-pressure boundary condition; two models are discussed. In the first, the pressure at the surface is controlled (mimicking the movement of a low-pressure region associated with a storm) so that the speed and development of the pressure region ensure the appearance of a critical layer. In the second, the pressure boundary condition is allowed to accommodate the reduction of pressure with altitude, although the effects have to be greatly enhanced for this mechanism to produce a critical layer. These two problems are analysed using formal parameter asymptotics. In the second problem, this leads to a Korteweg-de Vries equation for the surface wave, and then the evolution of appropriate solutions of this equation gives rise to the appearance of a critical layer near the bottom; the corresponding problem at the surface can be formulated but not completely resolved. The appearance of a stagnation point and then a critical layer, either at the surface or the bottom, are discussed; the nature of the flow, and the corresponding streamlines are obtained and some typical flow fields are depicted.
Low Mach Number Modeling of Stratified Flows
NASA Astrophysics Data System (ADS)
Almgren, A. S.; Bell, J. B.; Nonaka, A.; Zingale, M.
2015-06-01
Low Mach number equation sets approximate the equations of motion of a compressible fluid by filtering out the sound waves, which allows the system to evolve on the advective rather than the acoustic time scale. Depending on the degree of approximation, low Mach number models retain some sub set of possible compressible effects. In this paper we give an overview of low Mach number methods for modeling stratified flows arising in astrophysics and atmospheric science as well as low Mach number reacting flows. We discuss how elements from the different fields are combined to form MAESTRO, a code for modeling low Mach number stratified flows with general equations of state, reactions and time-varying stratification.
Competition-Induced Criticality in a Model of Meme Popularity
NASA Astrophysics Data System (ADS)
Gleeson, James P.; Ward, Jonathan A.; O'Sullivan, Kevin P.; Lee, William T.
2014-01-01
Heavy-tailed distributions of meme popularity occur naturally in a model of meme diffusion on social networks. Competition between multiple memes for the limited resource of user attention is identified as the mechanism that poises the system at criticality. The popularity growth of each meme is described by a critical branching process, and asymptotic analysis predicts power-law distributions of popularity with very heavy tails (exponent α <2, unlike preferential-attachment models), similar to those seen in empirical data.
Fractal dimension of critical clusters in the Φ44 model
NASA Astrophysics Data System (ADS)
Jansen, K.; Lang, C. B.
1991-06-01
We study the d=4 O(4) symmetric nonlinear sigma model at the pseudocritical points for 84-284 lattices. The Fortuin-Kasteleyn-Coniglio-Klein clusters are shown to have fractal dimension df~=3-in accordance with the conjectured scaling relation involving the odd critical exponent δ. For the one cluster algorithm introduced recently by Wolff the dynamical critical exponent z comes out to be compatible with zero in this model.
Critical behaviors near the (tri-)critical end point of QCD within the NJL model
NASA Astrophysics Data System (ADS)
Lu, Ya; Du, Yi-Lun; Cui, Zhu-Fang; Zong, Hong-Shi
2015-10-01
We investigate the dynamical chiral symmetry breaking and its restoration at finite density and temperature within the two-flavor Nambu-Jona-Lasinio model, and mainly focus on the critical behaviors near the critical end point (CEP) and tricritical point (TCP) of quantum chromodynamics. The multi-solution region of the Nambu and Wigner ones is determined in the phase diagram for the massive and massless current quark, respectively. We use the various susceptibilities to locate the CEP/TCP and then extract the critical exponents near them. Our calculations reveal that the various susceptibilities share the same critical behaviors for the physical current quark mass, while they show different features in the chiral limit.
Critical Comments on the General Model of Instructional Communication
ERIC Educational Resources Information Center
Walton, Justin D.
2014-01-01
This essay presents a critical commentary on McCroskey et al.'s (2004) general model of instructional communication. In particular, five points are examined which make explicit and problematize the meta-theoretical assumptions of the model. Comments call attention to the limitations of the model and argue for a broader approach to…
A Substance Flow Model for Global Phosphorus
NASA Astrophysics Data System (ADS)
Vaccari, D. A.
2015-12-01
A system-based substance flow model (SFM) for phosphorus is developed based on the global phosphorus substance flow analysis (SFA) of Cordell et al (2009). The model is based strictly on mass balance considerations. It predicts the sensitivity of phosphorus consumption to various interventions intended to conserve reserves, as well as interactions among these efforts, allowing a comparison of their impacts on phosphorus demand. The interventions include control of phosphorus losses from soil erosion, food production and food waste, or phosphorus recycling such as from animal manure or human waste.
Paten, Jeffrey A; Siadat, Seyed Mohammad; Susilo, Monica E; Ismail, Ebraheim N; Stoner, Jayson L; Rothstein, Jonathan P; Ruberti, Jeffrey W
2016-05-24
The type I collagen monomer is one of nature's most exquisite and prevalent structural tools. Its 300 nm triple-helical motifs assemble into tough extracellular fibers that transition seamlessly across tissue boundaries and exceed cell dimensions by up to 4 orders of magnitude. In spite of extensive investigation, no existing model satisfactorily explains how such continuous structures are generated and grown precisely where they are needed (aligned in the path of force) by discrete, microscale cells using materials with nanoscale dimensions. We present a simple fiber drawing experiment, which demonstrates that slightly concentrated type I collagen monomers can be "flow-crystallized" to form highly oriented, continuous, hierarchical fibers at cell-achievable strain rates (<1 s(-1)) and physiologically relevant concentrations (∼50 μM). We also show that application of tension following the drawing process maintains the structural integrity of the fibers. While mechanical tension has been shown to be a critical factor driving collagen fibril formation during tissue morphogenesis in developing animals, the precise role of force in the process of building tissue is not well understood. Our data directly couple mechanical tension, specifically the extensional strain rate, to collagen fibril assembly. We further derive a "growth equation" which predicts that application of extensional strains, either globally by developing muscles or locally by fibroblasts, can rapidly drive the fusion of already formed short fibrils to produce long-range, continuous fibers. The results provide a pathway to scalable connective tissue manufacturing and support a mechano-biological model of collagen fibril deposition and growth in vivo.
Model Reduction for Flow Analysis and Control
NASA Astrophysics Data System (ADS)
Rowley, Clarence W.; Dawson, Scott T. M.
2017-01-01
Advances in experimental techniques and the ever-increasing fidelity of numerical simulations have led to an abundance of data describing fluid flows. This review discusses a range of techniques for analyzing such data, with the aim of extracting simplified models that capture the essential features of these flows, in order to gain insight into the flow physics, and potentially identify mechanisms for controlling these flows. We review well-developed techniques, such as proper orthogonal decomposition and Galerkin projection, and discuss more recent techniques developed for linear systems, such as balanced truncation and dynamic mode decomposition (DMD). We then discuss some of the methods available for nonlinear systems, with particular attention to the Koopman operator, an infinite-dimensional linear operator that completely characterizes the dynamics of a nonlinear system and provides an extension of DMD to nonlinear systems.
Multiple critical velocities in oscillatory flow of superfluid 4He due to quartz tuning forks
NASA Astrophysics Data System (ADS)
Schmoranzer, D.; Jackson, M. J.; Tsepelin, V.; Poole, M.; Woods, A. J.; Človečko, M.; Skrbek, L.
2016-12-01
We report recent investigations into the transition to turbulence in superfluid 4He, realized experimentally by measuring the drag forces acting on two custom-made quartz tuning forks with fundamental resonances at 6.5 kHz and 55.5 kHz, in the temperature range 10 mK to 2.17 K. In pure superfluid in the zero temperature limit, three distinct critical velocities were observed with both tuning forks. We discuss the significance of all critical velocities and associate the third critical velocity reported here with the development of large vortical structures in the flow, which thus starts to mimic turbulence in classical fluids. The interpretation of our results is directly linked to previous experimental work with oscillators such as tuning forks, grids, and vibrating wires, focusing on the behavior of purely superfluid 4He at very low temperatures.
Modeling of Multi-Scale Channeling Phenomena in Porous Flow
NASA Astrophysics Data System (ADS)
Räss, Ludovic; Omlin, Samuel; Yarushina, Viktoriya; Simon, Nina; Podladchikov, Yuri
2015-04-01
Predictive modeling of fluid percolation through tight porous rocks is critical to evaluate environmental risks associated with waste storage and reservoir operations. To understand the evolution of two-phase mixtures of fluid and solid it is insufficient to only combine single-phase fluid flow methods and solid mechanics. A proper coupling of these two different multi-scales physical processes is required to describe the complex evolution of permeability and porosity in space and in time. We conduct numerical modeling experiments in geometrically simple but physically complex systems of stressed rocks containing self-focusing porous flow. Our model is physically and thermodynamically consistent and describes the formation and evolution of fluid pathways. The model consists of a system of coupled equations describing poro-elasto-viscous deformation and flow. Nonlinearity of the solid rheology is also taken into account. We have developed a numerical application based on an iterative finite difference scheme that runs on mutli-GPUs cluster in parallel. In order to validate these models, we consider the largest CO2 sequestration project in operation at the Sleipner field in the Norwegian North Sea. Attempts to match the observations at Sleipner using conventional reservoir simulations fail to capture first order observations, such as the seemingly effortless vertical flow of CO2 through low permeability shale layers and the formation of focused flow channels or chimneys. Conducted high-resolution three-dimensional numerical simulations predict the formation of dynamically evolving high porosity and permeability pathways as a natural outcome of porous flow nonlinearly coupled with rock deformation, which may trigger leakage through low permeability barriers.
A compressible model of soap film flow
NASA Astrophysics Data System (ADS)
Fast, Petri
2004-11-01
We consider flowing soap films, and present a new theoretical model that resembles the compressible two dimensional Navier-Stokes equations. In experiments, the thickness of a gravity driven soap film can undergo significant variations. The thickness of the soap film plays the role of a density field in a 2D model: Hence significant thickness variations give rise to 2D compressibility effects that have been observed in experiments. We present a systematic derivation of a new compressible model of soap film flow using thin film asymptotics. We discuss the properties of the model, and present criteria for using the incompressible or compressible limiting equations. The properties of the model are illustrated with computational experiments.
Thermodynamically consistent description of criticality in models of correlated electrons
NASA Astrophysics Data System (ADS)
Janiš, Václav; Kauch, Anna; Pokorný, Vladislav
2017-01-01
Criticality in models of correlated electrons emerges in proximity of a low-temperature singularity in a two-particle Green function. Such singularities are generally related to a symmetry breaking of the one-particle self-energy. A consistent description demands that the symmetry breaking in the self-energy emerges at the critical point of the respective two-particle function. This cannot easily be achieved in models of correlated electrons, since there are two ways connecting one- and two-electron functions that cannot be made fully equivalent in approximations. We present a general construction of diagrammatic two-particle approximations consistent with the one-particle functions so that both produce qualitatively the same quantum critical behavior in thermodynamically equivalent descriptions. The general scheme is applied on the single-impurity Anderson model to derive qualitatively the same Kondo critical scale from the spectral function and the magnetic susceptibility.
Critical heat flux of subcooled flow boiling with water for high heat flux application
NASA Astrophysics Data System (ADS)
Inasaka, Fujio; Nariai, Hideki
1993-11-01
Subcooled flow boiling in water is thought to be advantageous in removing high heat load of more than 10 MW/m2. Characteristics of the critical heat flux (CHF), which determines the upper limit of heat removal, are very important for the design of cooling systems. In this paper, studies on subcooled flow boiling CHF, which have been conducted by the authors, are reported. Experiments were conducted using direct current heating of stainless steel tube. For uniform heating conditions, CHF increment in small diameter tubes (1 - 3 mm inside diameter) and the CHF characteristics in tubes with internal twisted tapes were investigated, and also the existing CHF correlations for ordinary tubes (more than 3 mm inside diameter) were evaluated. For peripherally non-uniform heating conditions using the tube, whose wall thickness was partly reduced, the CHF for swirl flow was higher than the CHF under uniform heating conditions with an increase of the non-uniformity factor.
Discharge coefficient correlations for circular-arc venturi flowmeters at critical /sonic/ flow
NASA Technical Reports Server (NTRS)
Arnberg, B. T.; Britton, C. L.; Seidl, W. F.
1973-01-01
Experimental data are analyzed to support theoretical predictions for discharge coefficients in circular-arc venturi flow meters operating in the critical sonic flow regime at throat Reynolds numbers above 150 thousand. The data tend to verify the predicted 0.25% decrease in the discharge coefficient during transition from a laminar to turbulent boundary layer. Four different test gases and three flow measurement facilities were used in the experiments with 17 venturis with throat sizes from 0.15 to 1.37 in. and Beta ratios ranging from 0.014 to 0.25. Recommendations are given as to how the effectiveness of future studies in the field could be improved.
Kollet, S J; Maxwell, R M
2005-04-08
Interactions between surface and ground water are a key component of the hydrologic budget on the watershed scale. Models that honor these interactions are commonly based on the conductance concept that presumes a distinct interface at the land surface, separating the surface from the subsurface domain. These types of models link the subsurface and surface domains via an exchange flux that depends upon the magnitude and direction of the hydraulic gradient across the interface and a proportionality constant (a measure of the hydraulic connectivity). Because experimental evidence of such a distinct interface is often lacking in field systems, there is a need for a more general coupled modeling approach. A more general coupled model is presented that incorporates a new two-dimensional overland flow simulator into the parallel three-dimensional variable saturated subsurface flow code ParFlow. In ParFlow, the overland flow simulator takes the form of an upper boundary condition and is, thus, fully integrated without relying on the conductance concept. Another important advantage of this approach is the efficient parallelism incorporated into ParFlow, which is efficiently exploited by the overland flow simulator. Several verification and simulation examples are presented that focus on the two main processes of runoff production: excess infiltration and saturation. The model is shown to reproduce an analytical solution for overland flow and compares favorably to other commonly used hydrologic models. The influence of heterogeneity of the shallow subsurface on overland flow is also examined. The results show the uncertainty in overland flow predictions due to subsurface heterogeneity and demonstrate the usefulness of our approach. Both the overland flow component and the coupled model are evaluated in a parallel scaling study and show to be efficient.
Modeling Stromatolite Growth Under Oscillatory Flows
NASA Astrophysics Data System (ADS)
Patel, H. J.; Gong, J.; Tice, M. M.
2014-12-01
Stromatolite growth models based on diffusion limited aggregation (DLA) has been fairly successful at producing features commonly recognized in stromatolitic structures in the rock record. These models generally require slow mixing of solutes at time scales comparable to the growth of organisms and largely ignore fluid erosions. Recent research on microbial mats suggests that fluid flow might have a dominant control on the formation, deformation and erosion of surface microbial structures, raising the possibility that different styles of fluid flow may influence the morphology of stromatolites. Many stromatolites formed in relatively high energy, shallow water environments under oscillatory currents driven by wind-induced waves. In order to investigate the potential role of oscillatory flows in shaping stromatolites, we are constructing a numerical model of stromatolite growth parameterized by flume experiments with cyanobacterial biofilms. The model explicitly incorporates reaction-diffusion processes, surface deformation and erosion, biomass growth, sedimentation and mineral precipitation. A Lattice-Boltzmann numerical scheme was applied to the reaction-diffusion equations in order to boost computational efficiency. A basic finite element method was employed to compute surface deformation and erosion. Growth of biomass, sedimentation and carbonate precipitation was based on a modified discrete cellular automata scheme. This model will be used to test an alternative hypothesis for the formation of stromatolites in higher energy, shallow and oscillatory flow environments.
Mathematical modeling of flow field in ceramic candle filter
NASA Astrophysics Data System (ADS)
Seo, Taewon; Kim, Heuy-Dong; Choi, Joo-Hong; Chung, Jae Hwa
1998-06-01
Integrated gasification combined cycle (IGCC) is one of the candidates to achieve stringent environmental regulation among the clean coal technologies. Advancing the technology of the hot gas cleanup systems is the most critical component in the development of the IGCC. Thus the aim of this study is to understand the flow field in the ceramic filter and the influence of ceramic filter in removal of the particles contained in the hot gas flow. The numerical model based on the Reynolds stress turbulence model with the Darcy’s law in the porous region is adopted. It is found that the effect of the porosity in the flowfield is negligibly small while the effect of the filter length is significant. It is also found as the permeability decreases, the reattachment point due to the flow separation moves upstream. This is because the fluid is sucked into the filter region due to the pressure drop before the flow separation occurs. The particle follows well with the fluid stream and the particle is directly sucked into the filter due to the pressure drop even in the flow separation region.
Slurry fired heater cold-flow modelling
Moujaes, S.F.
1983-07-01
This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.
NASA Astrophysics Data System (ADS)
Olsen, Thomas; Hou, Yu; Kowalski, Adam; Wiener, Richard
2006-05-01
The Reaction-Diffusion model predicted a period doubling cascade to chaos in a situation analagous Taylor- Couette flow with hourglass geometry. This cascade to chaos was discovered in the actual fluid flow experiments. We model Taylor-Couette flow in a cylindrical geometry with multiple waists of super-critical flow connected by regions of barely super-critical flow by corresponding Reaction-Diffusion models. We compare our results to the findings of an ongoing experimental program. H. Riecke and H.-G. Paap, Europhys. Lett. 14, 1235 (1991). Richard J. Wiener et al, Phys. Rev. E 55, 5489 (1997).
Multi-Scale Modeling of Hypersonic Gas Flow
NASA Astrophysics Data System (ADS)
Boyd, Iain D.
On March 27, 2004, NASA successfully flew the X-43A hypersonic test flight vehicle at a velocity of 5000 mph to break the aeronautics speed record that had stood for over 35 years. The final flight of the X-43A on November 16, 2004 further increased the speed record to 6,600 mph which is almost ten times the speed of sound. The very high speed attainable by hypersonic airplanes could revolutionize air travel by dramatically reducing inter-continental flight times. For example, a hypersonic flight from New York to Sydney, Australia, a distance of 10,000 miles, would take less than 2 h. Reusable hypersonic vehicles are also being researched to significantly reduce the cost of access to space. Computer modeling of the gas flows around hypersonic vehicles will play a critical part in their development. This article discusses the conditions that can prevail in certain hypersonic gas flows that require a multi-scale modeling approach.
Improved modeling techniques for turbomachinery flow fields
Lakshminarayana, B.; Fagan, J.R. Jr.
1995-10-01
This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.
Mathematical Modeling of Electrochemical Flow Capacitors
Hoyt, NC; Wainright, JS; Savinell, RF
2015-01-13
Electrochemical flow capacitors (EFCs) for grid-scale energy storage are a new technology that is beginning to receive interest. Prediction of the expected performance of such systems is important as modeling can be a useful avenue in the search for design improvements. Models based off of circuit analogues exist to predict EFC performance, but these suffer from deficiencies (e.g. a multitude of fitting constants that are required and the ability to analyze only one spatial direction at a time). In this paper mathematical models based off of three-dimensional macroscopic balances (similar to models for porous electrodes) are reported. Unlike existing three-dimensional porous electrode-based approaches for modeling slurry electrodes, advection (i.e., transport associated with bulk fluid motion) of the overpotential is included in order to account for the surface charge at the interface between flowing particles and the electrolyte. Doing so leads to the presence of overpotential boundary layers that control the performance of EFCs. These models were used to predict the charging behavior of an EFC under both flowing and non-flowing conditions. Agreement with experimental data was good, including proper prediction of the steady-state current that is achieved during charging of a flowing EFC. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.
Turbulence and modeling in transonic flow
NASA Technical Reports Server (NTRS)
Rubesin, Morris W.; Viegas, John R.
1989-01-01
A review is made of the performance of a variety of turbulence models in the evaluation of a particular well documented transonic flow. This is done to supplement a previous attempt to calibrate and verify transonic airfoil codes by including many more turbulence models than used in the earlier work and applying the calculations to an experiment that did not suffer from uncertainties in angle of attack and was free of wind tunnel interference. It is found from this work, as well as in the earlier study, that the Johnson-King turbulence model is superior for transonic flows over simple aerodynamic surfaces, including moderate separation. It is also shown that some field equation models with wall function boundary conditions can be competitive with it.
A model for critical thinking measurement of dental student performance.
Johnsen, David C; Finkelstein, Michael W; Marshall, Teresa A; Chalkley, Yvonne M
2009-02-01
The educational application of critical thinking has increased in the last twenty years with programs like problem-based learning. Performance measurement related to the dental student's capacity for critical thinking remains elusive, however. This article offers a model now in use to measure critical thinking applied to patient assessment and treatment planning across the four years of the dental school curriculum and across clinical disciplines. Two elements of the model are described: 1) a critical thinking measurement "cell," and 2) a list of minimally essential steps in critical thinking for patient assessment and treatment planning. Issues pertaining to this model are discussed: adaptations on the path from novice to expert, the role of subjective measurement, variations supportive of the model, and the correlation of individual and institutional assessment. The critical thinking measurement cell consists of interacting performance tasks and measures. The student identifies the step in the process (for example, chief complaint) with objective measurement; the student then applies the step to a patient or case with subjective measurement; the faculty member then combines the objective and subjective measurements into an evaluation on progress toward competence. The activities in the cell are then repeated until all the steps in the process have been addressed. A next task is to determine consistency across the four years and across clinical disciplines.
Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space.
Nakayama, Yu
2016-04-08
Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.
Addressing Learning Style Criticism: The Unified Learning Style Model Revisited
NASA Astrophysics Data System (ADS)
Popescu, Elvira
Learning style is one of the individual differences that play an important but controversial role in the learning process. This paper aims at providing a critical analysis regarding learning styles and their use in technology enhanced learning. The identified criticism issues are addressed by reappraising the so called Unified Learning Style Model (ULSM). A detailed description of the ULSM components is provided, together with their rationale. The practical applicability of the model in adaptive web-based educational systems and its advantages versus traditional learning style models are also outlined.
A New Coupled Earth's Critical Zone Model: AgroIBIS - MODFLOW (AIM)
NASA Astrophysics Data System (ADS)
Evren Soylu, M.; Zipper, Samuel C.; Loheide, Steven P., II; Kucharik, Christopher J.
2016-04-01
Shallow groundwater may influence land surface energy, water, carbon balances and terrestrial ecosystems by altering the root zone soil moisture dynamics in 22 - 32% of the Earth's land area. However, our current understanding of the impacts of shallow groundwater on ecosystem dynamics and land surface processes is hampered by both a lack of observations and current capabilities of the state-of-the-art ecosystem models to simulate shallow groundwater as a working part of the groundwater-soil-vegetation-atmosphere (critical zone) transfer scheme. Existing models are able to simulate water and energy fluxes with highly accurate process-based approaches in a single compartment (e.g., vadose zone - HYDRUS, or groundwater - MODFLOW) or multiple compartments (e.g., groundwater & vadose zone MODFLOW-VSF, vadose zone & vegetation- Agro-IBIS) of the critical zone by oversimplifying or ignoring the other compartments. In this study, we present a newly developed critical zone model, AgroIBIS-MODFLOW (AIM). AIM is capable of simulating ecohydrological processes across the complete critical zone. AIM is a fully coupled agroecosystem/dynamic vegetation model (AgroIBIS), variably saturated flow model (HYDRUS-1D), and groundwater flow model (MODFLOW). We analyze the performance of AIM by comparing the model with saturated and unsaturated flow experiments as well as results from other models. Moreover, to demonstrate AIM's potential for simulating ecohydrological processes and feedbacks, we present a hypothetical watershed scale case where the indirect impacts of land use change on agricultural productivity due to altered groundwater recharge and water table depth.
The Effect of Modeling Based Science Education on Critical Thinking
ERIC Educational Resources Information Center
Bati, Kaan; Kaptan, Fitnat
2015-01-01
In this study to what degree the modeling based science education can influence the development of the critical thinking skills of the students was investigated. The research was based on pre-test-post-test quasi-experimental design with control group. The Modeling Based Science Education Program which was prepared with the purpose of exploring…
NASA Astrophysics Data System (ADS)
Ganeshan, Sriram; Kechedzhi, K.; Das Sarma, S.
2014-07-01
One-dimensional tight binding models such as the Aubry-André-Harper (AAH) model (with an on-site cosine potential) and the integrable Maryland model (with an on-site tangent potential) have been the subject of extensive theoretical research in localization studies. AAH can be directly mapped onto the two-dimensional (2D) Hofstadter model which manifests the integer quantum Hall topology on a lattice. However, such a connection needs to be made for the Maryland model (MM). Here we describe a generalized model that contains AAH and MM as the limiting cases with the MM lying precisely at a topological quantum phase transition (TQPT) point. A remarkable feature of this critical point is that the one-dimensional MM retains well defined energy gaps whereas the equivalent 2D model becomes gapless, signifying the 2D nature of the TQPT.
Nutrient stimulation of mesenteric blood flow - implications for older critically ill patients
Nguyen, Thu AN; Abdelhamid, Yasmine Ali; Phillips, Liza K; Chapple, Leeanne S; Horowitz, Michael; Jones, Karen L; Deane, Adam M
2017-01-01
Nutrient ingestion induces a substantial increase in mesenteric blood flow. In older persons (aged ≥ 65 years), particularly those with chronic medical conditions, the cardiovascular compensatory response may be inadequate to maintain systemic blood pressure during mesenteric blood pooling, leading to postprandial hypotension. In older ambulatory persons, postprandial hypotension is an important pathophysiological condition associated with an increased propensity for syncope, falls, coronary vascular events, stroke and death. In older critically ill patients, the administration of enteral nutrition acutely increases mesenteric blood flow, but whether this pathophysiological response is protective, or precipitates mesenteric ischaemia, is unknown. There are an increasing number of older patients surviving admission to intensive care units, who are likely to be at increased risk of postprandial hypotension, both during, and after, their stay in hospital. In this review, we describe the prevalence, impact and mechanisms of postprandial hypotension in older people and provide an overview of the impact of postprandial hypotension on feeding prescriptions in older critically ill patients. Finally, we provide evidence that postprandial hypotension is likely to be an unrecognised problem in older survivors of critical illness and discuss potential options for management. PMID:28224105
Flow stress model in metal cutting
NASA Technical Reports Server (NTRS)
Black, J. T.
1978-01-01
A model for the plastic deformation that occurs in metal cutting, based on dislocation mechanics, is presented. The model explains the fundamental deformation structure that develops during machining and is based on the well known Cottrell-Stokes Law, wherein the flow stress is partitioned into two parts; an athermal part which occurs in the shear fronts (or shear bands); and a thermal part which occurs in the lamella regions. The deformation envokes the presence of a cellular dislocation distribution which always exists in the material ahead of the shear process. This 'alien' dislocation distribution either exists in the metal prior to cutting or is produced by the compressive stress field which operates in front of the shear process. The magnitude of the flow stress and direction of the shear are shown to be correlated to the stacking fault energy of the metal being cut. The model is tested with respect to energy consumption rates and found to be consistent with observed values.
Continuum modeling of cooperative traffic flow dynamics
NASA Astrophysics Data System (ADS)
Ngoduy, D.; Hoogendoorn, S. P.; Liu, R.
2009-07-01
This paper presents a continuum approach to model the dynamics of cooperative traffic flow. The cooperation is defined in our model in a way that the equipped vehicle can issue and receive a warning massage when there is downstream congestion. Upon receiving the warning massage, the (up-stream) equipped vehicle will adapt the current desired speed to the speed at the congested area in order to avoid sharp deceleration when approaching the congestion. To model the dynamics of such cooperative systems, a multi-class gas-kinetic theory is extended to capture the adaptation of the desired speed of the equipped vehicle to the speed at the downstream congested traffic. Numerical simulations are carried out to show the influence of the penetration rate of the equipped vehicles on traffic flow stability and capacity in a freeway.
Experimental evaluations of the microchannel flow model
NASA Astrophysics Data System (ADS)
Parker, K. J.
2015-06-01
Recent advances have enabled a new wave of biomechanics measurements, and have renewed interest in selecting appropriate rheological models for soft tissues such as the liver, thyroid, and prostate. The microchannel flow model was recently introduced to describe the linear response of tissue to stimuli such as stress relaxation or shear wave propagation. This model postulates a power law relaxation spectrum that results from a branching distribution of vessels and channels in normal soft tissue such as liver. In this work, the derivation is extended to determine the explicit link between the distribution of vessels and the relaxation spectrum. In addition, liver tissue is modified by temperature or salinity, and the resulting changes in tissue responses (by factors of 1.5 or greater) are reasonably predicted from the microchannel flow model, simply by considering the changes in fluid flow through the modified samples. The 2 and 4 parameter versions of the model are considered, and it is shown that in some cases the maximum time constant (corresponding to the minimum vessel diameters), could be altered in a way that has major impact on the observed tissue response. This could explain why an inflamed region is palpated as a harder bump compared to surrounding normal tissue.
Experimental evaluations of the microchannel flow model.
Parker, K J
2015-06-07
Recent advances have enabled a new wave of biomechanics measurements, and have renewed interest in selecting appropriate rheological models for soft tissues such as the liver, thyroid, and prostate. The microchannel flow model was recently introduced to describe the linear response of tissue to stimuli such as stress relaxation or shear wave propagation. This model postulates a power law relaxation spectrum that results from a branching distribution of vessels and channels in normal soft tissue such as liver. In this work, the derivation is extended to determine the explicit link between the distribution of vessels and the relaxation spectrum. In addition, liver tissue is modified by temperature or salinity, and the resulting changes in tissue responses (by factors of 1.5 or greater) are reasonably predicted from the microchannel flow model, simply by considering the changes in fluid flow through the modified samples. The 2 and 4 parameter versions of the model are considered, and it is shown that in some cases the maximum time constant (corresponding to the minimum vessel diameters), could be altered in a way that has major impact on the observed tissue response. This could explain why an inflamed region is palpated as a harder bump compared to surrounding normal tissue.
Symposium on unsaturated flow and transport modeling
Arnold, E.M.; Gee, G.W.; Nelson, R.W.
1982-09-01
This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.
Dynamical Model of Flow in Martian Valleys
NASA Astrophysics Data System (ADS)
Czechowski, Leszek; Witek, Piotr; Misiura, Katarzyna
On the surface of Mars, under current conditions, liquid water could exist only occasionally in lowest regions of the planet. This water contains probably some components that decrease its freezing point and raised its boiling point. However billions years ago more dense atmosphere on the Mars allows for the presence of large volume of liquid water. There are a number of structures apparently resulting from flowing liquid water in the past. They are of two types: outflow channels and valley networks. We investigate here the possible flow in some chosen valley networks. The numerical model is used. We try to determine the basic properties of the flow, its erosion as well as the transport efficiencies of the material. The comparison with the terrestrial rivers indicates some important differences. Acknowledgments This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653).
Modeling groundwater flow on massively parallel computers
Ashby, S.F.; Falgout, R.D.; Fogwell, T.W.; Tompson, A.F.B.
1994-12-31
The authors will explore the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. An interdisciplinary team of mathematicians, computer scientists, hydrologists, and environmental engineers is developing a sophisticated simulation code for use on workstation clusters and MPPs. To date, they have concentrated on modeling flow in the saturated zone (single phase), which requires the solution of a large linear system. they will discuss their implementation of preconditioned conjugate gradient solvers. The preconditioners under consideration include simple diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial preconditioning, and multigrid. They will present some preliminary numerical results, including simulations of groundwater flow at the LLNL site. They also will demonstrate the code`s scalability.
Mutiscale Modeling of Segregation in Granular Flows
Sun, Jin
2007-01-01
Modeling and simulation of segregation phenomena in granular flows are investigated. Computational models at different scales ranging from particle level (microscale) to continuum level (macroscale) are employed in order to determine the important microscale physics relevant to macroscale modeling. The capability of a multi-fluid model to capture segregation caused by density difference is demonstrated by simulating grain-chaff biomass flows in a laboratory-scale air column and in a combine harvester. The multi-fluid model treats gas and solid phases as interpenetrating continua in an Eulerian frame. This model is further improved by incorporating particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model is implemented without changing the current kinetic theory framework by introducing an effective coefficient of restitution to account for additional energy dissipation due to frictional collisions. The accuracy of predicting segregation rate in a gas-fluidized bed is improved by the implementation. This result indicates that particle rotation is important microscopic physics to be incorporated into the hydrodynamic model. Segregation of a large particle in a dense granular bed of small particles under vertical. vibration is studied using molecular dynamics simulations. Wall friction is identified as a necessary condition for the segregation. Large-scale force networks bearing larger-than-average forces are found with the presence of wall friction. The role of force networks in assisting rising of the large particle is analyzed. Single-point force distribution and two-point spatial force correlation are computed. The results show the heterogeneity of forces and a short-range correlation. The short correlation length implies that even dense granular flows may admit local constitutive relations. A modified minimum spanning tree (MST) algorithm is developed to asymptotically recover the force statistics in the
NASA Astrophysics Data System (ADS)
Kollet, Stefan J.; Maxwell, Reed M.
2006-07-01
Interactions between surface and groundwater are a key component of the hydrologic budget on the watershed scale. Models that honor these interactions are commonly based on the conductance concept that presumes a distinct interface at the land surface, separating the surface from the subsurface domain. These types of models link the subsurface and surface domains via an exchange flux that depends upon the magnitude and direction of the hydraulic gradient across the interface and a proportionality constant (a measure of the hydraulic connectivity). Because experimental evidence of such a distinct interface is often lacking in field systems, there is a need for a more general coupled modeling approach. A more general coupled model is presented that incorporates a new two-dimensional overland flow simulator into the parallel three-dimensional variably saturated subsurface flow code ParFlow [Ashby SF, Falgout RD. A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl Sci Eng 1996;124(1):145-59; Jones JE, Woodward CS. Newton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv Water Resour 2001;24:763-774]. This new overland flow simulator takes the form of an upper boundary condition and is, thus, fully integrated without relying on the conductance concept. Another important advantage of this approach is the efficient parallelism incorporated into ParFlow, which is exploited by the overland flow simulator. Several verification and simulation examples are presented that focus on the two main processes of runoff production: excess infiltration and saturation. The model is shown to reproduce an analytical solution for overland flow, replicates a laboratory experiment for surface-subsurface flow and compares favorably to other commonly used hydrologic models. The influence of heterogeneity of the shallow subsurface on overland flow is also examined. The results show the
Hydrological signatures of Critical Zone Processes: Developing targets for Critical Zone modeling.
NASA Astrophysics Data System (ADS)
Thompson, S. E.; Karst, N.; Dralle, D.
2015-12-01
Water fluxes through the Critical Zone (CZ) are ubiquitous, and their behavior has the potential to reveal information about the structure and dynamics of the CZ. Models describing these fluxes implicitly propose hypotheses about the CZ which are encoded in the structure of the models. However, the certainty with which such hypotheses can be tested with observed hydrologic data is challenged by the well-known problem of equifinality - the tendency of multiple models, with very different model structures, to produce equally good representations of observed hydrologic dynamics. The project of modeling the CZ is thus challenged by the need to identify hydrologic signatures that are closely tied to the CZ structure and which could provide a stronger basis for hypothesis testing in model frameworks. Here I present one potential signature based on streamflow recession dynamics and the structure of their variability. Firstly, I present a technique to remove a mathematical artifact that is inherent in power-law representations of streamflow recessions. Secondly, I show that having removed this artifact, intriguing relationships emerge in the recession variability in the rivers near the Eel River Critical Zone Observatory. This relationship is interpreted in terms of how water is partitioned within the CZ. The close relationship between CZ processes and this part of the hydrologic response suggests that co-variation in recession parameters could provide a process-oriented hydrologic signature that CZ models should attempt to emulate.
A note on the critical flow to initiate closure of pivoting disc mitral valve prostheses.
Reif, T H; Huffstutler, M C
1985-01-01
Newton's second law of motion for rotating bodies and potential flow theory is used to mathematically model the closing process of a pivoting disc prosthetic heart valve in mitral position. The model predicts closure to be dependent upon disc curvature, eccentricity, mass, diameter, density, opening angle and fluid properties. Experiments using two commercially available prostheses are shown to give good correlation with the theory for large opening angles. Divergence between theory and experiment occur at small opening angles because of the limitation of the potential flow assumption.
NASA Astrophysics Data System (ADS)
Hillesheim, Jon
2015-11-01
High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
A superstatistical model of vehicular traffic flow
NASA Astrophysics Data System (ADS)
Kosun, Caglar; Ozdemir, Serhan
2016-02-01
In the analysis of vehicular traffic flow, a myriad of techniques have been implemented. In this study, superstatistics is used in modeling the traffic flow on a highway segment. Traffic variables such as vehicular speeds, volume, and headway were collected for three days. For the superstatistical approach, at least two distinct time scales must exist, so that a superposition of nonequilibrium systems assumption could hold. When the slow dynamics of the vehicle speeds exhibit a Gaussian distribution in between the fluctuations of the system at large, one speaks of a relaxation to a local equilibrium. These Gaussian distributions are found with corresponding standard deviations 1 /√{ β }. This translates into a series of fluctuating beta values, hence the statistics of statistics, superstatistics. The traffic flow model has generated an inverse temperature parameter (beta) distribution as well as the speed distribution. This beta distribution has shown that the fluctuations in beta are distributed with respect to a chi-square distribution. It must be mentioned that two distinct Tsallis q values are specified: one is time-dependent and the other is independent. A ramification of these q values is that the highway segment and the traffic flow generate separate characteristics. This highway segment in question is not only nonadditive in nature, but a nonequilibrium driven system, with frequent relaxations to a Gaussian.
Rarefield-Flow Shuttle Aerodynamics Flight Model
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.
1994-01-01
A model of the Shuttle Orbiter rarefied-flow aerodynamic force coefficients has been derived from the ratio of flight acceleration measurements. The in-situ, low-frequency (less than 1Hz), low-level (approximately 1 x 10(exp -6) g) acceleration measurements are made during atmospheric re-entry. The experiment equipment designed and used for this task is the High Resolution Accelerometer Package (HiRAP), one of the sensor packages in the Orbiter Experiments Program. To date, 12 HiRAP re-entry mission data sets spanning a period of about 10 years have been processed. The HiRAP-derived aerodynamics model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as function of angle of attack, body-flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle of attack are also presented, along with flight-derived rarefied-flow transition bridging formulae. Comparisons are made between the aerodynamics model, data from the latest Orbiter Operational Aerodynamic Design Data Book, applicable computer simulations, and wind-tunnel data.
Flow interaction experiment. Volume 1: Aerothermal modeling, phase 2
NASA Technical Reports Server (NTRS)
Nikjooy, M.; Mongia, H. C.; Sullivan, J. P.; Murthy, S. N. B.
1993-01-01
An experimental and computational study is reported for the flow of a turbulent jet discharging into a rectangular enclosure. The experimental configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets are investigated to provide a better understanding of the flow field in an annular combustor. A laser Doppler velocimeter is used to measure mean velocity and Reynolds stress components. Major features of the flow field include recirculation, primary and annular jet interaction, and high turbulence. A significant result from this study is the effect the primary jets have on the flow field. The primary jets are seen to create statistically larger recirculation zones and higher turbulence levels. In addition, a technique called marker nephelometry is used to provide mean concentration values in the model combustor. Computations are performed using three levels of turbulence closures, namely k-epsilon model, algebraic second moment (ASM), and differential second moment (DSM) closure. Two different numerical schemes are applied. One is the lower-order power-law differencing scheme (PLDS) and the other is the higher-order flux-spline differencing scheme (FSDS). A comparison is made of the performance of these schemes. The numerical results are compared with experimental data. For the cases considered in this study, the FSDS is more accurate than the PLDS. For a prescribed accuracy, the flux-spline scheme requires a far fewer number of grid points. Thus, it has the potential for providing a numerical error-free solution, especially for three-dimensional flows, without requiring an excessively fine grid. Although qualitatively good comparison with data was obtained, the deficiencies regarding the modeled dissipation rate (epsilon) equation, pressure-strain correlation model, and the inlet epsilon profile and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to
Flow interaction experiment. Volume 2: Aerothermal modeling, phase 2
NASA Technical Reports Server (NTRS)
Nikjooy, M.; Mongia, H. C.; Sullivan, J. P.; Murthy, S. N. B.
1993-01-01
An experimental and computational study is reported for the flow of a turbulent jet discharging into a rectangular enclosure. The experimental configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets are investigated to provide a better understanding of the flow field in an annular combustor. A laser Doppler velocimeter is used to measure mean velocity and Reynolds stress components. Major features of the flow field include recirculation, primary and annular jet interaction, and high turbulence. A significant result from this study is the effect the primary jets have on the flow field. The primary jets are seen to create statistically larger recirculation zones and higher turbulence levels. In addition, a technique called marker nephelometry is used to provide mean concentration values in the model combustor. Computations are performed using three levels of turbulence closures, namely k-epsilon model, algebraic second moment (ASM), and differential second moment (DSM) closure. Two different numerical schemes are applied. One is the lower-order power-law differencing scheme (PLDS) and the other is the higher-order flux-spline differencing scheme (FSDS). A comparison is made of the performance of these schemes. The numerical results are compared with experimental data. For the cases considered in this study, the FSDS is more accurate than the PLDS. For a prescribed accuracy, the flux-spline scheme requires a far fewer number of grid points. Thus, it has the potential for providing a numerical error-free solution, especially for three-dimensional flows, without requiring an excessively fine grid. Although qualitatively good comparison with data was obtained, the deficiencies regarding the modeled dissipation rate (epsilon) equation, pressure-strain correlation model, and the inlet epsilon profile and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to
Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity
NASA Technical Reports Server (NTRS)
Hasan, Mohammad M.; Mudawar, Issam
2005-01-01
Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.
Self-organized criticality of a catalytic reaction network under flow.
Awazu, Akinori; Kaneko, Kunihiko
2009-07-01
Self-organized critical behavior in a catalytic reaction network system induced by smallness in the molecule number is reported. The system under a flow of chemicals is shown to undergo a transition from a stationary to an intermittent reaction phase when the flow rate is decreased. In the intermittent reaction phase, two temporal regimes with active and halted reactions alternate. The number frequency of reaction events at each active regime and its duration time are shown to obey a universal power law with the exponents 4/3 and 3/2, respectively, independently of the parameters and network structure. These power laws are explained by a one-dimensional random-walk representation of the number of catalytically active chemicals. Possible relevance of the result to reaction dynamics in artificial and biological cells is briefly discussed.
Health care policy development: a critical analysis model.
Logan, Jean E; Pauling, Carolyn D; Franzen, Debra B
2011-01-01
This article describes a phased approach for teaching baccalaureate nursing students critical analysis of health care policy, including refinement of existing policy or the foundation to create new policy. Central to this approach is the application of an innovative framework, the Grand View Critical Analysis Model, which was designed to provide a conceptual base for the authentic learning experience. Students come to know the interconnectedness and the importance of the model, which includes issue selection and four phases: policy focus, colleagueship analysis, evidence-based practice analysis, and policy analysis and development.
Stability of model flocks in a vortical flow
NASA Astrophysics Data System (ADS)
Baggaley, A. W.
2016-06-01
We investigate the stability of self-propelled particle flocks in the Taylor-Green vortex, a steady vortical flow. We consider a model in which particles align themselves to a combination of the orientation and the acceleration of particles within a critical radius. We identify two distinct regimes: If alignment with orientation is dominant, the particles tend to be expelled from regions of high vorticity. In contrast, if anticipation is dominant, the particles accumulate in areas of large vorticity. In both regimes, the relative order of the flock is reduced. However, we show that there can be a critical balance of the two effects that stabilizes the flock in the presence of external fluid forcing. This strategy could provide a mechanism for animal flocks to remain globally ordered in the presence of fluid forcing, and it may also have applications in the design of flocking autonomous drones and artificial microswimmers.
Critical flow and dissipation in a quasi–one-dimensional superfluid
Duc, Pierre-François; Savard, Michel; Petrescu, Matei; Rosenow, Bernd; Del Maestro, Adrian; Gervais, Guillaume
2015-01-01
In one of the most celebrated examples of the theory of universal critical phenomena, the phase transition to the superfluid state of 4He belongs to the same three-dimensional (3D) O(2) universality class as the onset of ferromagnetism in a lattice of classical spins with XY symmetry. Below the transition, the superfluid density ρs and superfluid velocity vs increase as a power law of temperature described by a universal critical exponent that is constrained to be identical by scale invariance. As the dimensionality is reduced toward 1D, it is expected that enhanced thermal and quantum fluctuations preclude long-range order, thereby inhibiting superfluidity. We have measured the flow rate of liquid helium and deduced its superfluid velocity in a capillary flow experiment occurring in single 30-nm-long nanopores with radii ranging down from 20 to 3 nm. As the pore size is reduced toward the 1D limit, we observe the following: (i) a suppression of the pressure dependence of the superfluid velocity; (ii) a temperature dependence of vs that surprisingly can be well-fitted by a power law with a single exponent over a broad range of temperatures; and (iii) decreasing critical velocities as a function of decreasing radius for channel sizes below R ≃ 20 nm, in stark contrast with what is observed in micrometer-sized channels. We interpret these deviations from bulk behavior as signaling the crossover to a quasi-1D state, whereby the size of a critical topological defect is cut off by the channel radius. PMID:26601177
Gas flow modelling through clay and claystones
NASA Astrophysics Data System (ADS)
Alonso, E.
2012-12-01
Large scale gas flow experiments conducted in connection with nuclear waste disposal research have shown the dominant effect of "minor" details such as interfaces, contacts and layer boundaries. Even if the scale of the analysis is highly reduced, in search of homogeneous point-like conditions, a systematic development of preferential paths is very often reported. Small size samples become boundary value problems. Preferential paths, when their thickness is modified by the stress-strain response of the media, under the combined action of stress and fluid pressure changes, become highly conductive features for gas flow. The development of preferential paths for fluid flow has been approached in a simple manner by embedding a discontinuity feature into an otherwise continuous element which models clay or claystone matrix behavior. The joint is activated when tensile strains develop in the continuous element. Then, hydraulic properties (permeability, retention behavior) are modified by means of laws derived from the physics of flow in discontinuities. The outlined idea was incorporated into a full Thermo-Hydro-Mechanical finite element code (CODE_BRIGHT) which has a wide range of capabilities for the modeling of two-phase flow in elasto-viscoplastic porous materials. A particular aspect which required attention is the modeling of expansive and shrinkage behavior induced by suction changes. In this way, healing effects during re-saturation may be simulated. Two experimental programs on clay shale samples, performed under triaxial stress conditions will be discussed. In the first case samples of Opalinus shale were subjected to a series of gas pulse decay tests during the application of stress paths involving a particular sequence of confining stress and shearing up to failure. In the second experimental program, performed on a tertiary mudstone from the Norwegian shelf, attention was paid to the effect of bedding-induced anisotropy. Experimental results will be
Mitchell, Jeffrey T
2011-01-01
The field of crisis intervention has grown dramatically during the last hundred years. Many new procedures and techniques have been added to the crisis intervention repertoire. Periodically, providers of crisis intervention, psychological first aid, critical incident stress management, or Peer Support overlook important elements of crisis intervention or make inadvertent mistakes as they attempt to intervene. The use of checklists and flow charts, similar to those used in aviation and medicine, may assist crisis intervention personnel in properly assessing a traumatic event and its impact on the people involved. Simple checklists and flow charts may significantly decrease the potential for mistakes in crisis intervention. This article provides background on the development of flip charts in aviation and medicine and suggests how these tools may be utilized within the field of crisis intervention. Examples of checklists and flow charts that are relevant to crisis intervention are provided. The article also provides guidelines for developing additional checklists and flow charts for use in crisis intervention services.
Carreras, B. A.; Lynch, V. E.; Dobson, I.; Newman, D. E.
2002-12-01
Cascading failures in large-scale electric power transmission systems are an important cause of blackouts. Analysis of North American blackout data has revealed power law (algebraic) tails in the blackout size probability distribution which suggests a dynamical origin. With this observation as motivation, we examine cascading failure in a simplified transmission system model as load power demand is increased. The model represents generators, loads, the transmission line network, and the operating limits on these components. Two types of critical points are identified and are characterized by transmission line flow limits and generator capability limits, respectively. Results are obtained for tree networks of a regular form and a more realistic 118-node network. It is found that operation near critical points can produce power law tails in the blackout size probability distribution similar to those observed. The complex nature of the solution space due to the interaction of the two critical points is examined.(c) 2002 American Institute of Physics.
Modelling flow to leachate wells in landfills.
Al-Thani, A A; Beaven, R P; White, J K
2004-01-01
Vertical wells are frequently used as a means of controlling leachate levels in landfills. They are often the only available dewatering option for both old landfills without any basal leachate collection layer and for newer sites where the installed drainage infrastructure has failed. When the well is pumped, a seepage face develops at the entry into the well so that the drawdown in the surrounding waste will not be as great as might be expected. The numerical groundwater flow model MODFLOW-SURFACT, which contains the functionality to model seepage surfaces, has been used to investigate the transient dewatering of a landfill. The study concludes that the position of the seepage face and information about the characteristics of the induced seepage flow field are important and should not be neglected when designing wells in landfills.
Modelling flow to leachate wells in landfills
Al-Thani, A.A.; Beaven, R.P.; White, J.K
2004-07-01
Vertical wells are frequently used as a means of controlling leachate levels in landfills. They are often the only available dewatering option for both old landfills without any basal leachate collection layer and for newer sites where the installed drainage infrastructure has failed. When the well is pumped, a seepage face develops at the entry into the well so that the drawdown in the surrounding waste will not be as great as might be expected. The numerical groundwater flow model MODFLOW-SURFACT, which contains the functionality to model seepage surfaces, has been used to investigate the transient dewatering of a landfill. The study concludes that the position of the seepage face and information about the characteristics of the induced seepage flow field are important and should not be neglected when designing wells in landfills.
A numerical model for dynamic crustal-scale fluid flow
NASA Astrophysics Data System (ADS)
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel
2015-04-01
Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude
Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model
NASA Astrophysics Data System (ADS)
Yamagishi, Osamu; Sugama, Hideo
2016-03-01
Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.
Benchmarking computational fluid dynamics models for lava flow simulation
NASA Astrophysics Data System (ADS)
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi
2016-04-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.
Critical properties of an aperiodic model for interacting polymers
NASA Astrophysics Data System (ADS)
Haddad, T. A. S.; Andrade, R. F. S.; Salinas, S. R.
2004-02-01
We investigate the effects of aperiodic interactions on the critical behaviour of an interacting two-polymer model on hierarchical lattices (equivalent to the Migadal-Kadanoff approximation for the model on Bravais lattices), via renormalization-group and transfer-matrix calculations. The exact renormalization-group recursion relations always present a symmetric fixed point, associated with the critical behaviour of the underlying uniform model. If the aperiodic interactions, defined by substitution rules, lead to relevant geometric fluctuations, this fixed point becomes fully unstable, giving rise to novel attractors of different nature. We present an explicit example in which this new attractor is a two-cycle attractor, with critical indices different from the uniform model. In the case of the four-letter Rudin-Shapiro substitution rule, we find a surprising closed curve whose points are attractors of period two, associated with a marginal operator. Nevertheless, a scaling analysis indicates that this attractor may lead to a new critical universality class. In order to provide an independent confirmation of the scaling results, we turn to a direct thermodynamic calculation of the specific-heat exponent. The thermodynamic free energy is obtained from a transfer-matrix formalism, which had been previously introduced for spin systems, and is now extended to the two-polymer model with aperiodic interactions.
Abdelsalam, Sara I; Vafai, Kambiz
2017-01-01
This work is concerned with theoretically investigating the pulsatile flow of a fluid with suspended particles in a flow driven by peristaltic waves that deform the wall of a small blood artery in the shape of traveling sinusoidal waves with constant velocity. The problem formulation in the wave frame of reference is presented and the governing equations are developed up to the second-order in terms of the asymptotic expansion of Womersley number which characterizes the unsteady effect in the wave frame. We suppose that the flow rate imposed, in this frame, is a function versus time. The analytical solution of the problem is achieved using the long wavelength approximation where Reynolds number is considered small with reference to the blood flow in the circulatory system. The present study inspects novelties brought about into the classic peristaltic mechanism by the inclusion of Womersley number, and the critical values of concentration and occlusion on the flow characteristics in a small artery with flexible walls. Momentum and mass equations for the fluid and particle phases are solved by means of a perturbation analysis in which the occlusion is a small parameter. Closed form solutions are obtained for the fluid/particle velocity distributions, stream function, pressure rise, friction force, wall shear stress, instantaneous mechanical efficiency, and time-averaged mechanical efficiency. The physical explanation of the Segré-Silberberg effect is introduced and the trapping phenomenon of plasma for haemodilution and haemoconcentration cases is discussed. It has been deduced that the width of the closed plasma streamlines is increased while their number is minimally reduced in case of haemoconcentration. This mathematical problem has numerous applications in various branches in science including blood flow in small blood vessels. Several results of other models can be deduced as limiting cases of our situation.
Rassi, Erik M; Codd, Sarah L; Seymour, Joseph D
2012-01-01
Supercritical fluids (SCF) are useful solvents in green chemistry and oil recovery and are of great current interest in the context of carbon sequestration. Magnetic resonance techniques were applied to study near critical and supercritical dynamics for pump driven flow through a capillary and a packed bed porous media. Velocity maps and displacement propagators measure the dynamics of C(2)F(6) at pressures below, at, and above the critical pressure and at temperatures below and above the critical temperature. Displacement propagators were measured at various displacement observation times to quantify the time evolution of dynamics. In capillary flow, the critical phase transition fluid C(2)F(6) showed increased compressibility compared to the near critical gas and supercritical fluid. These flows exhibit large variations in buoyancy arising from large changes in density due to very small changes in temperature.
Incorporating immigrant flows into microsimulation models.
Duleep, Harriet Orcutt; Dowhan, Daniel J
2008-01-01
Building on the research on immigrant earnings reviewed in the first article of this series, "Research on Immigrant Earnings," the preceding article, "Adding Immigrants to Microsimulation Models," linked research results to various issues essential for incorporating immigrant earnings into microsimulation models. The discussions of that article were in terms of a closed system. That is, it examined a system in which immigrant earnings and emigration are forecast for a given population represented in the base sample in the microsimulation model. This article, the last in the series, addresses immigrant earnings projections for open systems--microsimulation models that include projections of future immigration. The article suggests a simple method to project future immigrants and their earnings. Including the future flow of immigrants in microsimulation models can dramatically affect the projected Social Security benefits of some groups.
Turbulence modelling of thermal plasma flows
NASA Astrophysics Data System (ADS)
Shigeta, Masaya
2016-12-01
This article presents a discussion of the ideas for modelling turbulent thermal plasma flows, reviewing the challenges, efforts, and state-of-the-art simulations. Demonstrative simulations are also performed to present the importance of numerical methods as well as physical models to express turbulent features. A large eddy simulation has been applied to turbulent thermal plasma flows to treat time-dependent and 3D motions of multi-scale eddies. Sub-grid scale models to be used should be able to express not only turbulent but also laminar states because both states co-exist in and around thermal plasmas which have large variations of density as well as transport properties under low Mach-number conditions. Suitable solution algorithms and differencing schemes must be chosen and combined appropriately to capture multi-scale eddies and steep gradients of temperature and chemical species, which are turbulent features of thermal plasma flows with locally variable Reynolds and Mach numbers. Several simulations using different methods under different conditions show commonly that high-temperature plasma regions exhibit less turbulent structures, with only large eddies, whereas low-temperature regions tend to be more turbulent, with numerous small eddies. These numerical results agree with both theoretical insight and photographs that show the characteristics of eddies. Results also show that a turbulence transition of a thermal plasma jet through a generation-breakup process of eddies in a torch is dominated by fluid dynamic instability after ejection rather than non-uniform or unsteady phenomena.
Review and selection of unsaturated flow models
1993-09-10
Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer ground-water flow models; to conduct performance assessments; and to develop performance assessment models, where necessary. In the area of scientific modeling, the M&O CRWMS has the following responsibilities: To provide overall management and integration of modeling activities. To provide a framework for focusing modeling and model development. To identify areas that require increased or decreased emphasis. To ensure that the tools necessary to conduct performance assessment are available. These responsibilities are being initiated through a three-step process. It consists of a thorough review of existing models, testing of models which best fit the established requirements, and making recommendations for future development that should be conducted. Future model enhancement will then focus on the models selected during this activity. Furthermore, in order to manage future model development, particularly in those areas requiring substantial enhancement, the three-step process will be updated and reported periodically in the future.
An Adaptive Critic Approach to Reference Model Adaptation
NASA Technical Reports Server (NTRS)
Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.
2003-01-01
Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.
Flow and heat transfer model for a rotating cryogenic motor
Dykhuizen, R.C.; Baca, R.G.; Bickel, T.C.
1993-08-01
Development of a high-temperature, superconducting, synchronous motor for large applications (>1000 HP) could offer significant electrical power savings for industrial users. Presently 60% of all electric power generated in the United States is converted by electric motors. A large part of two power is utilized by motors 1000 HP or larger. The use of high-temperature superconducting materials with critical temperatures above that of liquid nitrogen (77 K) in the field winding would reduce the losses in these motors significantly, and therefore, would have a definite impact on the electrical power usage in the US. These motors will be 1/3 to 1/2 the size of conventional motors of similar power and, thus, offer potential savings in materials and floor space. The cooling of the superconducting materials in the field windings of the rotor presents a unique application of cryogenic engineering. The rotational velocity results in significant radial pressure gradients that affect the flow distribution of the cryogen. The internal pressure fields can result in significant nonuniformities in the two-phase flow of the coolant. Due to the variable speed design, the flow distribution has the potential to change during operation. A multiphase-flow computer model of the cryogenic cooling is developed to calculate the boiling heat transfer and phase distribution of the nitrogen coolant in the motor. The model accounts for unequal phase velocities and nonuniform cooling requirements of the rotor. The unequal radial pressure gradients in the inlet and outlet headers result in a larger driving force for flow in the outer cooling channels. The effect of this must be accounted for in the design of the motor. Continuing improvements of the model will allow the investigation of the transient thermal issues associated with localized quenching of the superconducting components of the motor.
Flow and heat transfer model for a rotating cryogenic motor
NASA Astrophysics Data System (ADS)
Dykhuizen, R. C.; Baca, R. G.; Bickel, T. C.
1993-08-01
Development of a high-temperature, superconducting, synchronous motor for large applications (greater than 1000 HP) could offer significant electrical power savings for industrial users. Presently 60% of all electric power generated in the United States is converted by electric motors. A large part of this power is utilized by motors 1000 HP or larger. The use of high-temperature superconducting materials with critical temperatures above that of liquid nitrogen (77 K) in the field winding would reduce the losses in these motors significantly, and therefore, would have a definite impact on the electrical power usage in the U.S. These motors will be 1/3 to 1/2 the size of conventional motors of similar power and, thus, offer potential savings in materials and floor space. The cooling of the superconducting materials in the field windings of the rotor presents a unique application of cryogenic engineering. The rotational velocity results in significant radial pressure gradients that affect the flow distribution of the cryogen. The internal pressure fields can result in significant nonuniformities in the two-phase flow of the coolant. Due to the variable speed design, the flow distribution has the potential to change during operation. A multiphase-flow computer model of the cryogenic cooling is developed to calculate the boiling heat transfer and phase distribution of the nitrogen coolant in the motor. The model accounts for unequal phase velocities and nonuniform cooling requirements of the rotor. The unequal radial pressure gradients in the inlet and outlet headers result in a larger driving force for flow in the outer cooling channels. The effect of this must be accounted for in the design of the motor. Continuing improvements of the model will allow the investigation of the transient thermal issues associated with localized quenching of the superconducting components of the motor.
Thermomechanical Fractional Model of TEMHD Rotational Flow
Hamza, F.; Abd El-Latief, A.; Khatan, W.
2017-01-01
In this work, the fractional mathematical model of an unsteady rotational flow of Xanthan gum (XG) between two cylinders in the presence of a transverse magnetic field has been studied. This model consists of two fractional parameters α and β representing thermomechanical effects. The Laplace transform is used to obtain the numerical solutions. The fractional parameter influence has been discussed graphically for the functions field distribution (temperature, velocity, stress and electric current distributions). The relationship between the rotation of both cylinders and the fractional parameters has been discussed on the functions field distribution for small and large values of time. PMID:28045941
Theoretical Models of Parental HIV Disclosure: A Critical Review
Qiao, Shan; Li, Xiaoming; Stanton, Bonita
2012-01-01
This review critically examined three major theoretical models related to parental HIV disclosure (i.e., the Four-Phase Model, the Disclosure Decision Making Model, and the Disclosure Process Model), and the existing studies that could provide empirical support to these models or their components. For each model, we briefly reviewed its theoretical background, described its components and or mechanisms, and discussed its strengths and limitations. The existing empirical studies supported most theoretical components in these models. However, hypotheses related to the mechanisms proposed in the models have not yet tested due to a lack of empirical evidence. This review also synthesized alternative theoretical perspectives and new issues in disclosure research and clinical practice that may challenge the existing models. The current review underscores the importance of including components related to social and cultural contexts in theoretical frameworks, and calls for more adequately designed empirical studies in order to test and refine existing theories and to develop new ones. PMID:22866903
Modos, Dezso; Brooks, Johanne; Fazekas, David; Ari, Eszter; Vellai, Tibor; Csermely, Peter; Korcsmaros, Tamas; Lenti, Katalin
2016-01-01
Extensive cross-talk between signaling pathways is required to integrate the myriad of extracellular signal combinations at the cellular level. Gene duplication events may lead to the emergence of novel functions, leaving groups of similar genes - termed paralogs - in the genome. To distinguish critical paralog groups (CPGs) from other paralogs in human signaling networks, we developed a signaling network-based method using cross-talk annotation and tissue-specific signaling flow analysis. 75 CPGs were found with higher degree, betweenness centrality, closeness, and ‘bowtieness’ when compared to other paralogs or other proteins in the signaling network. CPGs had higher diversity in all these measures, with more varied biological functions and more specific post-transcriptional regulation than non-critical paralog groups (non-CPG). Using TGF-beta, Notch and MAPK pathways as examples, SMAD2/3, NOTCH1/2/3 and MEK3/6-p38 CPGs were found to regulate the signaling flow of their respective pathways. Additionally, CPGs showed a higher mutation rate in both inherited diseases and cancer, and were enriched in drug targets. In conclusion, the results revealed two distinct types of paralog groups in the signaling network: CPGs and non-CPGs. Thus highlighting the importance of CPGs as compared to non-CPGs in drug discovery and disease pathogenesis. PMID:27922122
Critical gradients and plasma flows in the edge plasma of Alcator C-Moda)
NASA Astrophysics Data System (ADS)
Labombard, B.; Hughes, J. W.; Smick, N.; Graf, A.; Marr, K.; McDermott, R.; Reinke, M.; Greenwald, M.; Lipschultz, B.; Terry, J. L.; Whyte, D. G.; Zweben, S. J.; Alcator C-Mod Team
2008-05-01
Recent experiments have led to a fundamental shift in our view of edge transport physics; transport near the last-closed flux surface may be more appropriately described in terms of a critical gradient phenomenon rather than a diffusive and/or convective paradigm. Edge pressure gradients, normalized by the square of the poloidal magnetic field strength, appear invariant in plasmas with the same normalized collisionality, despite vastly different currents and magnetic fields—a behavior that connects with first-principles electromagnetic plasma turbulence simulations. Near-sonic scrape-off layer (SOL) flows impose a cocurrent rotation boundary condition on the confined plasma when B ×∇B points toward the active x-point, suggesting a link to the concomitant reduction in input power needed to attain high-confinement modes. Indeed, low-confinement mode plasmas are found to attain higher edge pressure gradients in this configuration, independent of the direction of B, evidence that SOL flows may affect transport and "critical gradient" values in the edge plasma.
Modos, Dezso; Brooks, Johanne; Fazekas, David; Ari, Eszter; Vellai, Tibor; Csermely, Peter; Korcsmaros, Tamas; Lenti, Katalin
2016-12-06
Extensive cross-talk between signaling pathways is required to integrate the myriad of extracellular signal combinations at the cellular level. Gene duplication events may lead to the emergence of novel functions, leaving groups of similar genes - termed paralogs - in the genome. To distinguish critical paralog groups (CPGs) from other paralogs in human signaling networks, we developed a signaling network-based method using cross-talk annotation and tissue-specific signaling flow analysis. 75 CPGs were found with higher degree, betweenness centrality, closeness, and 'bowtieness' when compared to other paralogs or other proteins in the signaling network. CPGs had higher diversity in all these measures, with more varied biological functions and more specific post-transcriptional regulation than non-critical paralog groups (non-CPG). Using TGF-beta, Notch and MAPK pathways as examples, SMAD2/3, NOTCH1/2/3 and MEK3/6-p38 CPGs were found to regulate the signaling flow of their respective pathways. Additionally, CPGs showed a higher mutation rate in both inherited diseases and cancer, and were enriched in drug targets. In conclusion, the results revealed two distinct types of paralog groups in the signaling network: CPGs and non-CPGs. Thus highlighting the importance of CPGs as compared to non-CPGs in drug discovery and disease pathogenesis.
Interpretive and Critical Phenomenological Crime Studies: A Model Design
ERIC Educational Resources Information Center
Miner-Romanoff, Karen
2012-01-01
The critical and interpretive phenomenological approach is underutilized in the study of crime. This commentary describes this approach, guided by the question, "Why are interpretive phenomenological methods appropriate for qualitative research in criminology?" Therefore, the purpose of this paper is to describe a model of the interpretive…
Critical integer quantum Hall topology in the integrable Maryland model
NASA Astrophysics Data System (ADS)
Ganeshan, Sriram; Kechedzhi, Kostyantyn
2014-03-01
One-dimensional tight binding models such as Aubry-Andre-Harper (AAH) model (with onsite cosine potential) and the integrable Maryland model (with onsite tangent potential) have been the subjects of extensive theoretical research in localization studies. AAH can be directly mapped onto the two-dimensional Hofstadter model that manifests the integer quantum Hall topology on a lattice. However, no such connection has been made for the Maryland model (MM). In this talk, we present a generalized model that contains AAH and MM as the limiting cases with the MM lying precisely at a topological quantum phase transition (TQPT) point. A remarkable feature of this critical point is that the 1D MM retains well-defined energy gaps whereas the equivalent 2D model becomes gapless, signifying the 2D nature of the TQPT. The criticality allows us to associate topological invariants with the Maryland model in a restricted mathematical sense at the special filling factors that are adiabatically connected to the spectral gaps in the 1D Aubry-Andre-Harper model. Our theory presented in this work establishes deep and unexpected mathematical connections between 2D topological models and a family of 1D incommensurate localization models. This work is supported by JQI-NSF-PFC, Microsoft Q and JQI-ARO-MU.
Efficient model learning methods for actor-critic control.
Grondman, Ivo; Vaandrager, Maarten; Buşoniu, Lucian; Babuska, Robert; Schuitema, Erik
2012-06-01
We propose two new actor-critic algorithms for reinforcement learning. Both algorithms use local linear regression (LLR) to learn approximations of the functions involved. A crucial feature of the algorithms is that they also learn a process model, and this, in combination with LLR, provides an efficient policy update for faster learning. The first algorithm uses a novel model-based update rule for the actor parameters. The second algorithm does not use an explicit actor but learns a reference model which represents a desired behavior, from which desired control actions can be calculated using the inverse of the learned process model. The two novel methods and a standard actor-critic algorithm are applied to the pendulum swing-up problem, in which the novel methods achieve faster learning than the standard algorithm.
Deconfined Criticality in a J - Q model on Honeycomb lattice
NASA Astrophysics Data System (ADS)
Pujari, Sumiran; Alet, Fabien; Damle, Kedar
2013-03-01
The Deconfined Criticality scenario[1] describes in the context of quantum magnets a generic non-Landau second-order transition between two orders that break different symmetries - antiferromagnetic order that breaks SU (2) symmetry and Valence bond (VB) order breaking lattice translational symmetry. We investigate this physics in the context of a J - Q model[2] on the honeycomb lattice using both T = 0 Projector Quantum Monte Carlo (QMC) and finite- T Stochastic Series Expansion QMC techniques. We find evidence for a continuous transition from different measurements including scaling of Néel and VB order parameters, Binder ratios of staggered magnetization, stiffness and uniform susceptibility. We have indications that this critical point belongs to the same universality class as the one observed on square lattice J - Q model. Our results also suggest that this critical fixed point controlling deconfined critical behaviour remains essentially unchanged even on the honeycomb lattice which allows three-fold hedgehog defects in the Néel order to be present in the continuum description of the critical point.
Unified Model Deformation and Flow Transition Measurements
NASA Technical Reports Server (NTRS)
Burner, Alpheus W.; Liu, Tianshu; Garg, Sanjay; Bell, James H.; Morgan, Daniel G.
1999-01-01
The number of optical techniques that may potentially be used during a given wind tunnel test is continually growing. These include parameter sensitive paints that are sensitive to temperature or pressure, several different types of off-body and on-body flow visualization techniques, optical angle-of-attack (AoA), optical measurement of model deformation, optical techniques for determining density or velocity, and spectroscopic techniques for determining various flow field parameters. Often in the past the various optical techniques were developed independently of each other, with little or no consideration for other techniques that might also be used during a given test. Recently two optical techniques have been increasingly requested for production measurements in NASA wind tunnels. These are the video photogrammetric (or videogrammetric) technique for measuring model deformation known as the video model deformation (VMD) technique, and the parameter sensitive paints for making global pressure and temperature measurements. Considerations for, and initial attempts at, simultaneous measurements with the pressure sensitive paint (PSP) and the videogrammetric techniques have been implemented. Temperature sensitive paint (TSP) has been found to be useful for boundary-layer transition detection since turbulent boundary layers convect heat at higher rates than laminar boundary layers of comparable thickness. Transition is marked by a characteristic surface temperature change wherever there is a difference between model and flow temperatures. Recently, additional capabilities have been implemented in the target-tracking videogrammetric measurement system. These capabilities have permitted practical simultaneous measurements using parameter sensitive paint and video model deformation measurements that led to the first successful unified test with TSP for transition detection in a large production wind tunnel.
Critical domain-wall dynamics of model B.
Dong, R H; Zheng, B; Zhou, N J
2009-05-01
With Monte Carlo methods, we simulate the critical domain-wall dynamics of model B, taking the two-dimensional Ising model as an example. In the macroscopic short-time regime, a dynamic scaling form is revealed. Due to the existence of the quasirandom walkers, the magnetization shows intrinsic dependence on the lattice size L . An exponent which governs the L dependence of the magnetization is measured to be sigma=0.243(8) .
Critical dynamics of a nonlocal model and critical behavior of perovskite manganites
NASA Astrophysics Data System (ADS)
Singh, Rohit; Dutta, Kishore; Nandy, Malay K.
2016-05-01
We investigate the nonconserved critical dynamics of a nonlocal model Hamiltonian incorporating screened long-range interactions in the quartic term. Employing dynamic renormalization group analysis at one-loop order, we calculate the dynamic critical exponent z =2 +ɛ f1(σ ,κ ,n ) +O (ɛ2) and the linewidth exponent w =-σ +ɛ f2(σ ,κ ,n ) +O (ɛ2) in the leading order of ɛ , where ɛ =4 -d +2 σ , with d the space dimension, n the number of components in the order parameter, and σ and κ the parameters coming from the nonlocal interaction term. The resulting values of linewidth exponent w for a wide range of σ is found to be in good agreement with the existing experimental estimates from spin relaxation measurements in perovskite manganite samples.
Critical dynamics of a nonlocal model and critical behavior of perovskite manganites.
Singh, Rohit; Dutta, Kishore; Nandy, Malay K
2016-05-01
We investigate the nonconserved critical dynamics of a nonlocal model Hamiltonian incorporating screened long-range interactions in the quartic term. Employing dynamic renormalization group analysis at one-loop order, we calculate the dynamic critical exponent z=2+εf_{1}(σ,κ,n)+O(ε^{2}) and the linewidth exponent w=-σ+εf_{2}(σ,κ,n)+O(ε^{2}) in the leading order of ε, where ε=4-d+2σ, with d the space dimension, n the number of components in the order parameter, and σ and κ the parameters coming from the nonlocal interaction term. The resulting values of linewidth exponent w for a wide range of σ is found to be in good agreement with the existing experimental estimates from spin relaxation measurements in perovskite manganite samples.
GENERAL: Self-organized Criticality Model for Ocean Internal Waves
NASA Astrophysics Data System (ADS)
Wang, Gang; Lin, Min; Qiao, Fang-Li; Hou, Yi-Jun
2009-03-01
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.
Evaluating Models of Human Performance: Safety-Critical Systems Applications
NASA Technical Reports Server (NTRS)
Feary, Michael S.
2012-01-01
This presentation is part of panel discussion on Evaluating Models of Human Performance. The purpose of this panel is to discuss the increasing use of models in the world today and specifically focus on how to describe and evaluate models of human performance. My presentation will focus on discussions of generating distributions of performance, and the evaluation of different strategies for humans performing tasks with mixed initiative (Human-Automation) systems. I will also discuss issues with how to provide Human Performance modeling data to support decisions on acceptability and tradeoffs in the design of safety critical systems. I will conclude with challenges for the future.
Comparing turbulence models for flow through a rigid glottal model.
Suh, Jungsoo; Frankel, Steven H
2008-03-01
Flow through a rigid model of the human vocal tract featuring a divergent glottis was numerically modeled using the Reynolds-averaged Navier-Stokes approach. A number of different turbulence models, available in a widely used commercial computational fluid dynamics code, were tested to determine their ability to capture various flow features recently observed in laboratory experiments and large eddy simulation studies. The study reveals that results from unsteady simulations employing the k-omega shear stress transport model were in much better agreement with previous measurements and predictions with regard to the ability to predict glottal jet skewing due to the Coanda effect and the intraglottal pressure distribution or related skin friction coefficient, than either steady or unsteady simulations using the Spalart-Allmaras model or any other two-equation turbulence model investigated in this study.
Modified Numerical Simulation Model of Blood Flow in Bend
Liu, X; Zhou, X; Hao, X; Sang, X
2015-01-01
ABSTRACT The numerical simulation model of blood flow in bend is studied in this paper. The curvature modification is conducted for the blood flow model in bend to obtain the modified blood flow model in bend. The modified model is verified by U tube. By comparing the simulation results with the experimental results obtained by measuring the flow data in U tube, it was found that the modified blood flow model in bend can effectively improve the prediction accuracy of blood flow data affected by the curvature effect. PMID:27398727
a Combustion Model for Incompressible Flows
NASA Astrophysics Data System (ADS)
Calzada, Maria Eugenia
We study the flow of a pre-mixed, reactive, incompressible, viscous fluid, using a combination of vortex methods and a flame propagation algorithm based on Huyghens' principle. The random vortex methods are lagrangian methods used to resolve the motion of incompressible fluids regulated by the Navier -Stokes equations. They are best suited for flows at high Reynolds numbers. Detailed description of the vortex blobs, and vortex sheets methods is given together with the presentation of a hybrid vortex method that relates the two. The combustion part of the problem is modeled by a variation of the SLIC (Simple Line Interface Calculation) algorithm, that involves the use of a flame dictionary which contains flame speeds and preheat thicknesses. The combined algorithms are tested on a cold flat late with different free stream velocities. The numerical results show the effects of cold boundaries, turbulence, and exothermicity on the burning process.
Modeling flow of mineralized carbon dioxide slurry
Penner, Larry R.; Dahlin, David C.; Gerdemann, Stephen J.; Saha, K.K.
2005-04-01
Direct mineral carbonation was investigated at Albany Research Center (US DOE) as a means to sequester carbon dioxide into stable mineral matrices. Although previous work focused on treating Mg-containing minerals in conventional autoclaves, recent work has been done using pipeline-reactor technology for the high-temperature, high-pressure (HTHP) reaction of the minerals in aqueous/CO2 media. Sequestration of CO2 using above-ground reactors may be uneconomical, but the technology may also be applicable in geological sequestration of CO2. Progress is described in using a prototype HTHP flow-loop reactor to model flow in the dynamic three-phase system to help determine the pumping-energy requirements to optimize reactivity.
The removal of nitrogen and organics in vertical flow wetland reactors: predictive models.
Saeed, Tanveer; Sun, Guangzhi
2011-01-01
Three kinetic models, for predicting the removal of nitrogen and organics in vertical flow wetlands, have been developed and evaluated. These models were established by combining first-order, Monod and multiple Monod kinetics with continuous stirred-tank reactor (CSTR) flow pattern. Critical evaluations of these models using three statistical parameters, coefficient of determination, relative root mean square error and model efficiency, indicated that when the Monod/multiple Monod kinetics was combined with CSTR flow pattern it allowed close match between theoretical prediction and experiment data of nitrogen and organics removal. The kinetic coefficients (derived from Monod/multiple Monod kinetics) was found to increase with pollutant loading, indicating that the coefficients may vary based on different factors, such as influent pollutant concentration, hydraulic loading, and water depth. Overall, this study demonstrated the validity of combining Monod and multiple Monod kinetics with CSTR flow pattern for the modelling and design of vertical flow wetland systems.
Mathematical modeling of fluid flow in aluminum ladles for degasification with impeller - injector
NASA Astrophysics Data System (ADS)
Ramos-Gómez, E.; González-Rivera, C.; Ramírez-Argáez, M. A.
2012-09-01
In this work a fundamental Eulerian mathematical model was developed to simulate fluid flow in a water physical model of an aluminum ladle equipped with impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate on the fluid flow and vortex formation was analyzed with this model. Commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this twophase fluid flow system. The mathematical model was successfully validated against experimentally measured liquid velocity and turbulent profiles in a physical model. From the results it was concluded that the angular speed of the impeller is the most important parameter promoting better stirred baths. Pumping effect of the impeller is increased as impeller rotation speed increases. Gas flow rate is detrimental on bath stirring and diminishes pumping effect of impeller.
Modeling steam pressure under martian lava flows
Dundas, Colin M.; Keszthelyi, Laszlo P.
2013-01-01
Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.
Review and assessment of turbulence models for hypersonic flows
NASA Astrophysics Data System (ADS)
Roy, Christopher J.; Blottner, Frederick G.
2006-10-01
Accurate aerodynamic prediction is critical for the design and optimization of hypersonic vehicles. Turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating for these systems. The first goal of this article is to update the previous comprehensive review of hypersonic shock/turbulent boundary-layer interaction experiments published in 1991 by Settles and Dodson (Hypersonic shock/boundary-layer interaction database. NASA CR 177577, 1991). In their review, Settles and Dodson developed a methodology for assessing experiments appropriate for turbulence model validation and critically surveyed the existing hypersonic experiments. We limit the scope of our current effort by considering only two-dimensional (2D)/axisymmetric flows in the hypersonic flow regime where calorically perfect gas models are appropriate. We extend the prior database of recommended hypersonic experiments (on four 2D and two 3D shock-interaction geometries) by adding three new geometries. The first two geometries, the flat plate/cylinder and the sharp cone, are canonical, zero-pressure gradient flows which are amenable to theory-based correlations, and these correlations are discussed in detail. The third geometry added is the 2D shock impinging on a turbulent flat plate boundary layer. The current 2D hypersonic database for shock-interaction flows thus consists of nine experiments on five different geometries. The second goal of this study is to review and assess the validation usage of various turbulence models on the existing experimental database. Here we limit the scope to one- and two-equation turbulence models where integration to the wall is used (i.e., we omit studies involving wall functions). A methodology for validating turbulence models is given, followed by an extensive evaluation of the turbulence models on the current hypersonic experimental database. A total of 18 one- and two-equation turbulence models are reviewed
NASA Astrophysics Data System (ADS)
Geistlinger, H. W.; Samani, S.
2010-12-01
The injection of gases into the subsurface has become an important research topic in groundwater remediation technology, e.g. air sparging, and in CCS-technology, e.g. CO2-sequestration into saline aquifers. In both cases risk assessment is based on 2-phase flow modeling assuming that the stochastic gas flow patterns can be described by the continuum approach. As Cinar et al. (2009) have stated: “The fundamental understanding of drainage, as it applies to CO2 sequestration process, is limited primarily by the lack of well characterized experiments that allow a detailed classification of the microscopic flow regimes”. In case of air sparging the two important flow regimes are capillary fingering and viscous fingering. Using pore scale network modeling Ewing and Berkowitz (1998) were able to describe the transition from capillary fingering (= incoherent channelized flow) to viscous fingering (= coherent channelized flow). In order to investigate the stability of buoyancy-driven gas flow and the transition between coherent channelized flow and incoherent channelized flow we conducted high-resolution optical bench scale experiments. Our main results, which are in strong contradiction to the commonly used continuum models (CM) are: (1) Capillary trapping can already occur during injection and at the front of the plume (Lazik and Geistlinger, 2008) (2) Gas clusters or bubbles can be mobile (incoherent gas flow) and immobile (capillary trapping), and (3) Incoherent gas flow can not be described by a generalized Darcy law (Geistlinger et al., 2006, 2009). Glass et al. (2000) conducted CO2-gas injection experiments. Based on their experimental results they also questioned the validity of CM to describe coherent and incoherent gas flow and the validity of homogeneous stability analysis to predict channel width, channel number and channel velocity in heterogeneous porous media. Despite these findings there is an ongoing controversial discussion in the literature about
Critical behavior of a lattice prey-predator model.
Antal, T; Droz, M; Lipowski, A; Odor, G
2001-09-01
The critical properties of a simple prey-predator model are revisited. For some values of the control parameters, the model exhibits a line of directed percolationlike transitions to a single absorbing state. For other values of the control parameters one finds a second line of continuous transitions toward an infinite number of absorbing states, and the corresponding steady-state exponents are mean-field-like. The critical behavior of the special point T (bicritical point), where the two transition lines meet, belongs to a different universality class. A particular strategy for preparing the initial states used for the dynamical Monte Carlo method is devised to correctly describe the physics of the system near the second transition line. Relationships with a forest fire model with immunization are also discussed.
VisFlow - Web-based Visualization Framework for Tabular Data with a Subset Flow Model.
Yu, Bowen; Silva, Claudio T
2017-01-01
Data flow systems allow the user to design a flow diagram that specifies the relations between system components which process, filter or visually present the data. Visualization systems may benefit from user-defined data flows as an analysis typically consists of rendering multiple plots on demand and performing different types of interactive queries across coordinated views. In this paper, we propose VisFlow, a web-based visualization framework for tabular data that employs a specific type of data flow model called the subset flow model. VisFlow focuses on interactive queries within the data flow, overcoming the limitation of interactivity from past computational data flow systems. In particular, VisFlow applies embedded visualizations and supports interactive selections, brushing and linking within a visualization-oriented data flow. The model requires all data transmitted by the flow to be a data item subset (i.e. groups of table rows) of some original input table, so that rendering properties can be assigned to the subset unambiguously for tracking and comparison. VisFlow features the analysis flexibility of a flow diagram, and at the same time reduces the diagram complexity and improves usability. We demonstrate the capability of VisFlow on two case studies with domain experts on real-world datasets showing that VisFlow is capable of accomplishing a considerable set of visualization and analysis tasks. The VisFlow system is available as open source on GitHub.
Critical points of the anyon-Hubbard model
NASA Astrophysics Data System (ADS)
Arcila-Forero, J.; Franco, R.; Silva-Valencia, J.
2016-07-01
Anyons are particles with fractional statistics that exhibit a nontrivial change in the wave function under an exchange of particles. Anyons can be considered to be a general category of particles that interpolate between fermions and bosons. We determined the position of the critical points of the one-dimensional anyon-Hubbard model, which was mapped to a modified Bose-Hubbard model where the tunneling depends on the local density and the interchange angle. We studied the latter model by using the density-matrix renormalization-group method and observed that gapped (Mott insulator) and gapless (superfluid) phases characterized the phase diagram, regardless of the value of the statistical angle. The phase diagram for higher densities was calculated and showed that the Mott lobes increase (decrease) as a function of the statistical angle (global density). The position of the critical point separating the gapped and gapless phases was found using quantum information tools, namely the block von Neumann entropy. We also studied the evolution of the critical point with the global density and the statistical angle and showed that the anyon-Hubbard model with a statistical angle θ =π /4 is in the same universality class as the Bose-Hubbard model with two-body interactions.
Nonthermal antiferromagnetic order and nonequilibrium criticality in the Hubbard model.
Tsuji, Naoto; Eckstein, Martin; Werner, Philipp
2013-03-29
We study dynamical phase transitions from antiferromagnetic to paramagnetic states driven by an interaction quench in the fermionic Hubbard model using the nonequilibrium dynamical mean-field theory. We identify two dynamical transition points where the relaxation behavior qualitatively changes: one corresponds to the thermal phase transition at which the order parameter decays critically slowly in a power law ∝t(-1/2), and the other is connected to the existence of nonthermal antiferromagnetic order in systems with effective temperature above the thermal critical temperature. The frequency of the amplitude mode extrapolates to zero as one approaches the nonthermal (quasi)critical point, and thermalization is significantly delayed by the trapping in the nonthermal state. A slow relaxation of the nonthermal order is followed by a faster thermalization process.
Flow based vs. demand based energy-water modelling
NASA Astrophysics Data System (ADS)
Rozos, Evangelos; Nikolopoulos, Dionysis; Efstratiadis, Andreas; Koukouvinos, Antonios; Makropoulos, Christos
2015-04-01
The water flow in hydro-power generation systems is often used downstream to cover other type of demands like irrigation and water supply. However, the typical case is that the energy demand (operation of hydro-power plant) and the water demand do not coincide. Furthermore, the water inflow into a reservoir is a stochastic process. Things become more complicated if renewable resources (wind-turbines or photovoltaic panels) are included into the system. For this reason, the assessment and optimization of the operation of hydro-power systems are challenging tasks that require computer modelling. This modelling should not only simulate the water budget of the reservoirs and the energy production/consumption (pumped-storage), but should also take into account the constraints imposed by the natural or artificial water network using a flow routing algorithm. HYDRONOMEAS, for example, uses an elegant mathematical approach (digraph) to calculate the flow in a water network based on: the demands (input timeseries), the water availability (simulated) and the capacity of the transmission components (properties of channels, rivers, pipes, etc.). The input timeseries of demand should be estimated by another model and linked to the corresponding network nodes. A model that could be used to estimate these timeseries is UWOT. UWOT is a bottom up urban water cycle model that simulates the generation, aggregation and routing of water demand signals. In this study, we explore the potentials of UWOT in simulating the operation of complex hydrosystems that include energy generation. The evident advantage of this approach is the use of a single model instead of one for estimation of demands and another for the system simulation. An application of UWOT in a large scale system is attempted in mainland Greece in an area extending over 130×170 km². The challenges, the peculiarities and the advantages of this approach are examined and critically discussed.
Critical and crossover behavior in the double-Gaussian model on a lattice
NASA Astrophysics Data System (ADS)
Baker, George A., Jr.; Bishop, A. R.; Fesser, K.; Beale, Paul D.; Krumhansl, J. A.
1982-09-01
The double-Gaussian model, as recently introduced by Baker and Bishop, is studied in the context of a lattice-dynamics Hamiltonian belonging to the familiar φ4 class. Advantage is taken of the partition-function factorability (into Ising and Gaussian components) to place bounds on the Ising-class critical temperature for various lattice dimensions and all degrees of displaciveness in the bare Hamiltonian. Further, a simple criterion for a noncritical and nonuniversal crossover from order-disorder to Gaussian behavior is evaluated in numerical detail. In one and two dimensions these critical and crossover properties are compared with predictions based on real-space decimation renormalization-group flows, as previously exploited in the φ4 model by Beale et al. The double-Gaussian model again introduces some unique analytical advantages.
Critical and crossover behavior in the double Gaussian model on a lattice
Baker, G.A. Jr.; Bishop, A.R.; Fesser, K.; Beale, P.D.; Krumhansl, J.A.
1982-09-01
The-double-Gaussian model, as recently introduced by Baker and Bishop, is studied in the context of a lattice-dynamics Hamiltonian belonging to the familiar phi/sup 4/ class. Advantage is taken of the partition-function factorability (into Ising and Gaussian components) to place bounds on the Ising-class critical temperature for various lattice dimensions and all degrees of displaciveness in the bare Hamiltonian. Further, a simple criterion for a noncritical and nonuniversal crossover from order-disorder to Gaussian behavior is evaluated in numerical detail. In one and two dimensions these critical and crossover properties are compared with predictions based on real-space decimation renormalization-group flows, as previously exploited in the phi/sup 4/ model by Beale et al. The double-Gaussian model again introduces some unique analytical advantages.
DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS
X. Wang; X. Sun; H. Zhao
2011-09-01
In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in
Stability of earthquake clustering models: criticality and branching ratios.
Zhuang, Jiancang; Werner, Maximilian J; Harte, David S
2013-12-01
We study the stability conditions of a class of branching processes prominent in the analysis and modeling of seismicity. This class includes the epidemic-type aftershock sequence (ETAS) model as a special case, but more generally comprises models in which the magnitude distribution of direct offspring depends on the magnitude of the progenitor, such as the branching aftershock sequence (BASS) model and another recently proposed branching model based on a dynamic scaling hypothesis. These stability conditions are closely related to the concepts of the criticality parameter and the branching ratio. The criticality parameter summarizes the asymptotic behavior of the population after sufficiently many generations, determined by the maximum eigenvalue of the transition equations. The branching ratio is defined by the proportion of triggered events in all the events. Based on the results for the generalized case, we show that the branching ratio of the ETAS model is identical to its criticality parameter because its magnitude density is separable from the full intensity. More generally, however, these two values differ and thus place separate conditions on model stability. As an illustration of the difference and of the importance of the stability conditions, we employ a version of the BASS model, reformulated to ensure the possibility of stationarity. In addition, we analyze the magnitude distributions of successive generations of the BASS model via analytical and numerical methods, and find that the compound density differs substantially from a Gutenberg-Richter distribution, unless the process is essentially subcritical (branching ratio less than 1) or the magnitude dependence between the parent event and the direct offspring is weak.
Stability of earthquake clustering models: Criticality and branching ratios
NASA Astrophysics Data System (ADS)
Zhuang, Jiancang; Werner, Maximilian J.; Harte, David S.
2013-12-01
We study the stability conditions of a class of branching processes prominent in the analysis and modeling of seismicity. This class includes the epidemic-type aftershock sequence (ETAS) model as a special case, but more generally comprises models in which the magnitude distribution of direct offspring depends on the magnitude of the progenitor, such as the branching aftershock sequence (BASS) model and another recently proposed branching model based on a dynamic scaling hypothesis. These stability conditions are closely related to the concepts of the criticality parameter and the branching ratio. The criticality parameter summarizes the asymptotic behavior of the population after sufficiently many generations, determined by the maximum eigenvalue of the transition equations. The branching ratio is defined by the proportion of triggered events in all the events. Based on the results for the generalized case, we show that the branching ratio of the ETAS model is identical to its criticality parameter because its magnitude density is separable from the full intensity. More generally, however, these two values differ and thus place separate conditions on model stability. As an illustration of the difference and of the importance of the stability conditions, we employ a version of the BASS model, reformulated to ensure the possibility of stationarity. In addition, we analyze the magnitude distributions of successive generations of the BASS model via analytical and numerical methods, and find that the compound density differs substantially from a Gutenberg-Richter distribution, unless the process is essentially subcritical (branching ratio less than 1) or the magnitude dependence between the parent event and the direct offspring is weak.
NASA Technical Reports Server (NTRS)
Johnson, R. C.
1972-01-01
Procedures for calculating the mass flow rate of methane and natural gas through nozzles are given, along with the FORTRAN 4 subroutines used to make these calculations. Three sets of independent variables are permitted in these routines. In addition to the plenum pressure and temperature, the third independent variable is either nozzle exit pressure, Mach number, or temperature. A critical-flow factor that becomes a convenient means for determining the mass flow rate of methane through critical-flow nozzles is tabulated. Other tables are included for nozzle throat velocity and critical pressure, density, and temperature ratios, along with some thermodynamic properties of methane, including compressibility factor, enthalpy, entropy, specific heat, specific-heat ratio, and speed of sound. These tabulations cover a temperature range from 120 to 600 K and pressures to 3 million N/sq m.
Data-Flow Based Model Analysis
NASA Technical Reports Server (NTRS)
Saad, Christian; Bauer, Bernhard
2010-01-01
The concept of (meta) modeling combines an intuitive way of formalizing the structure of an application domain with a high expressiveness that makes it suitable for a wide variety of use cases and has therefore become an integral part of many areas in computer science. While the definition of modeling languages through the use of meta models, e.g. in Unified Modeling Language (UML), is a well-understood process, their validation and the extraction of behavioral information is still a challenge. In this paper we present a novel approach for dynamic model analysis along with several fields of application. Examining the propagation of information along the edges and nodes of the model graph allows to extend and simplify the definition of semantic constraints in comparison to the capabilities offered by e.g. the Object Constraint Language. Performing a flow-based analysis also enables the simulation of dynamic behavior, thus providing an "abstract interpretation"-like analysis method for the modeling domain.
The Piece Wise Linear Reactive Flow Model
Vitello, P; Souers, P C
2005-08-18
For non-ideal explosives a wide range of behavior is observed in experiments dealing with differing sizes and geometries. A predictive detonation model must be able to reproduce many phenomena including such effects as: variations in the detonation velocity with the radial diameter of rate sticks; slowing of the detonation velocity around gentle corners; production of dead zones for abrupt corner turning; failure of small diameter rate sticks; and failure for rate sticks with sufficiently wide cracks. Most models have been developed to explain one effect at a time. Often, changes are made in the input parameters used to fit each succeeding case with the implication that this is sufficient for the model to be valid over differing regimes. We feel that it is important to develop a model that is able to fit experiments with one set of parameters. To address this we are creating a new generation of models that are able to produce better fitting to individual data sets than prior models and to simultaneous fit distinctly different regimes of experiments. Presented here are details of our new Piece Wise Linear reactive flow model applied to LX-17.
A Quasispecies Continuous Contact Model in a Critical Regime
NASA Astrophysics Data System (ADS)
Kondratiev, Yuri; Pirogov, Sergey; Zhizhina, Elena
2016-04-01
We study a new non-equilibrium dynamical model: a marked continuous contact model in d-dimensional space (d ge 3). We prove that for certain values of rates (the critical regime) this system has the one-parameter family of invariant measures labelled by the spatial density of particles. Then we prove that the process starting from the marked Poisson measure converges to one of these invariant measures. In contrast with the continuous contact model studied earlier in Kondratiev (Infin Dimens Anal Quantum Probab Relat Top 11(2):231-258, 2008), now the spatial particle density is not a conserved quantity.
Modeling of Sediment Bed Behavior for Critical Velocity in Horizontal Piping
Rector, David R.; Stewart, Mark L.; Poloski, Adam P.
2009-10-01
This paper compares results from a predictive tool for modeling transport of a multiphase mixture (solids in a liquid) in a pipeline, (up to and including plugging) with experiments performed to support the Hanford site’s Waste Treatment and Immobilization Plant (WTP). The treatment of high-level waste at the DOE Office of River Protection’s WTP will involve the transfer of high solid content suspensions through pipelines. Pipeline plugging was identified as a significant potential issue by a panel of external experts. In response to their concerns an experimental effort was initiated at PNNL to determine the critical velocities for a variety of operating conditions. A computational method has been developed to predict the dynamic behavior of a sediment bed in response to the surrounding suspension flow. The flow field is modeled using a lattice kinetics method, similar to the lattice Boltzmann method, which scales very well on highly parallel computers. Turbulent quantities are calculated using a k-epsilon RANS model. This work is part of a larger effort to develop a process simulation capability for a wide range of applications. Solids are represented using two different continuum fields. The suspended solids are treated as passive scalars in the flow field, including terms for hindered settling and Brownian diffusion. Normal stresses created by the irreversible collisions of particles during shearing are added to the pressure tensor. The sediment bed interface is represented using a continuum phase field with a diffuse interface. The bed may change with time due to settling, erosion and deposition through convection. The erosion rates are calculated using the local shear stress obtained from the turbulence model. The method is compared with data from the PNNL pipeline experiments conducted at PNNL (Poloski et al. 2008). The experimental flow loop consists of 3-inch schedule 40 piping with instrumentation for determining flow rate and pressure gradient. The
Modeling of heavy-gas effects on airfoil flows
NASA Technical Reports Server (NTRS)
Drela, Mark
1992-01-01
Thermodynamic models were constructed for a calorically imperfect gas and for a non-ideal gas. These were incorporated into a quasi one dimensional flow solver to develop an understanding of the differences in flow behavior between the new models and the perfect gas model. The models were also incorporated into a two dimensional flow solver to investigate their effects on transonic airfoil flows. Specifically, the calculations simulated airfoil testing in a proposed high Reynolds number heavy gas test facility. The results indicate that the non-idealities caused significant differences in the flow field, but that matching of an appropriate non-dimensional parameter led to flows similar to those in air.
The Piecewise Linear Reactive Flow Rate Model
Vitello, P; Souers, P C
2005-07-22
Conclusions are: (1) Early calibrations of the Piece Wise Linear reactive flow model have shown that it allows for very accurate agreement with data for a broad range of detonation wave strengths. (2) The ability to vary the rate at specific pressures has shown that corner turning involves competition between the strong wave that travels roughly in a straight line and growth at low pressure of a new wave that turns corners sharply. (3) The inclusion of a low pressure de-sensitization rate is essential to preserving the dead zone at large times as is observed.
Modeling surface water critical loads with PROFILE: possibilities and challenges.
Rapp, L; Bishop, K
2003-01-01
The critical load concept has become a valuable tool for policymakers in the European negotiations on emission reductions. Despite the international acceptance, ongoing validation of critical load methodology is of the utmost importance to avoid a situation where the calculation results are difficult to defend. In this paper we explore the potential of using the steady state soil chemistry model PROFILE as an alternative to the Steady State Water Chemistry (SSWC) method for calculating critical loads of acidity. The hypothesis is that the uncertainty in prediction of preindustrial leaching of base cations is reduced when soil properties instead of lake chemistry are used as input data. Paleolimnological reconstructions of preindustrial lake chemistry are used to test PROFILE. As PROFILE requires soil data that are not generally available on a catchment level, we used distributions of crucial parameters from soil survey data within the vicinity of five lakes for which paleoecological pH reconstructions were available. An important concern is the characterization of catchment hydrology. A calibration of the "effective" soil depth, needed to give PROFILE predictions that coincided with paleolimnology, suggested that approximately 0.6 m of the total soil depth was hydrologically active in supplying acid neutralizing capacity (ANC) to runoff through weathering. At present, there is insufficient evidence to either recommend or reject the PROFILE model for surface water critical loads. Before such a judgement can be made, the approach presented here has to be tested for other regions, and the definition of catchment hydrology needs to be investigated further.
Critical behavior in a stochastic model of vector mediated epidemics
NASA Astrophysics Data System (ADS)
Alfinito, E.; Beccaria, M.; Macorini, G.
2016-06-01
The extreme vulnerability of humans to new and old pathogens is constantly highlighted by unbound outbreaks of epidemics. This vulnerability is both direct, producing illness in humans (dengue, malaria), and also indirect, affecting its supplies (bird and swine flu, Pierce disease, and olive quick decline syndrome). In most cases, the pathogens responsible for an illness spread through vectors. In general, disease evolution may be an uncontrollable propagation or a transient outbreak with limited diffusion. This depends on the physiological parameters of hosts and vectors (susceptibility to the illness, virulence, chronicity of the disease, lifetime of the vectors, etc.). In this perspective and with these motivations, we analyzed a stochastic lattice model able to capture the critical behavior of such epidemics over a limited time horizon and with a finite amount of resources. The model exhibits a critical line of transition that separates spreading and non-spreading phases. The critical line is studied with new analytical methods and direct simulations. Critical exponents are found to be the same as those of dynamical percolation.
Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling
Not Available
2007-05-01
Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.
Critical region for an Ising model coupled to causal triangulations
NASA Astrophysics Data System (ADS)
Cerda-Hernández, J.
2017-02-01
This paper extends the results obtained by Hernández et al for the annealed Ising model coupled to two-dimensional causal dynamical triangulations. We employ the Fortuin‑Kasteleyn (FK) representation in order to determine a region in the quadrant of the parameters β,μ >0 where the critical curve for the annealed model is possibly located. This can be done by outlining a region where the model has a unique infinite-volume Gibbs measure, and a region where the finite-volume Gibbs measure does not have weak limit (in fact, does not exist if the volume is large enough). We also improve the region where the model has a one dimensional geometry with respect to the unique weak limit measure, which implies that the Ising model on causal triangulation does not have phase transition in this region. Furthermore, we provide a better approximation of the free energy for the coupled model.
Modern statistical models for forensic fingerprint examinations: a critical review.
Abraham, Joshua; Champod, Christophe; Lennard, Chris; Roux, Claude
2013-10-10
Over the last decade, the development of statistical models in support of forensic fingerprint identification has been the subject of increasing research attention, spurned on recently by commentators who claim that the scientific basis for fingerprint identification has not been adequately demonstrated. Such models are increasingly seen as useful tools in support of the fingerprint identification process within or in addition to the ACE-V framework. This paper provides a critical review of recent statistical models from both a practical and theoretical perspective. This includes analysis of models of two different methodologies: Probability of Random Correspondence (PRC) models that focus on calculating probabilities of the occurrence of fingerprint configurations for a given population, and Likelihood Ratio (LR) models which use analysis of corresponding features of fingerprints to derive a likelihood value representing the evidential weighting for a potential source.
Conceptual and Numerical Models for UZ Flow and Transport
H. Liu
2000-03-03
The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models.
Kuklov, A.B.; Prokof'ev, N.V. . E-mail: prokofev@physics.umass.edu; Svistunov, B.V.; Troyer, M.
2006-07-15
We perform a comparative Monte Carlo study of the easy-plane deconfined critical point (DCP) action and its short-range counterpart to reveal close similarities between the two models for intermediate and strong coupling regimes. For weak coupling, the structure of the phase diagram depends on the interaction range: while the short-range model features a tricritical point and a continuous U(1) x U(1) transition, the long-range DCP action is characterized by the runaway renormalization flow of coupling into a first (I) order phase transition. We develop a 'numerical flowgram' method for high precision studies of the runaway effect, weakly I-order transitions, and polycritical points. We prove that the easy-plane DCP action is the field theory of a weakly I-order phase transition between the valence bond solid and the easy-plane antiferromagnet (or superfluid, in particle language) for any value of the weak coupling strength. Our analysis also solves the long standing problem of what is the ultimate fate of the runaway flow to strong coupling in the theory of scalar electrodynamics in three dimensions with U(1) x U(1) symmetry of quartic interactions.
Uncertainty quantification in reacting flow modeling.
Le MaÒitre, Olivier P.; Reagan, Matthew T.; Knio, Omar M.; Ghanem, Roger Georges; Najm, Habib N.
2003-10-01
Uncertainty quantification (UQ) in the computational modeling of physical systems is important for scientific investigation, engineering design, and model validation. In this work we develop techniques for UQ based on spectral and pseudo-spectral polynomial chaos (PC) expansions, and we apply these constructions in computations of reacting flow. We develop and compare both intrusive and non-intrusive spectral PC techniques. In the intrusive construction, the deterministic model equations are reformulated using Galerkin projection into a set of equations for the time evolution of the field variable PC expansion mode strengths. The mode strengths relate specific parametric uncertainties to their effects on model outputs. The non-intrusive construction uses sampling of many realizations of the original deterministic model, and projects the resulting statistics onto the PC modes, arriving at the PC expansions of the model outputs. We investigate and discuss the strengths and weaknesses of each approach, and identify their utility under different conditions. We also outline areas where ongoing and future research are needed to address challenges with both approaches.
Evaluation of a watershed model for estimating daily flow using limited flow measurements
Technology Transfer Automated Retrieval System (TEKTRAN)
The Soil and Water Assessment Tool (SWAT) model was evaluated for estimation of continuous daily flow based on limited flow measurements in the Upper Oyster Creek (UOC) watershed. SWAT was calibrated against limited measured flow data and then validated. The Nash-Sutcliffe model Efficiency (NSE) and...
Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.
Bandyopadhyay, Amitava; Biswas, Manindra Nath
2008-08-01
The performance of a spray tower using an energy efficient two-phase critical flow atomizer on the scrubbing of particulate-laden SO(2) using water and dilute NaOH is reported in this article. Experimentation revealed that SO(2) removal was enhanced due to presence of particles (fly-ash) and almost 100% removal efficiency was achieved in water scrubbing. The removal efficiency is elucidated in reference to atomizing air pressure, droplet diameter and droplet velocity besides other pertinent variables of the system studied. The presence of fly-ash particles improved the removal efficiency to about 20% within the range of variables studied. Empirical and semi-empirical correlations were developed for predicting the removal efficiency in water and dilute NaOH respectively. Predicted data fitted excellently well with experimental values. The performance of the spray tower is compared with the performances of existing systems and very encouraging results are obtained.
Block voter model: Phase diagram and critical behavior
NASA Astrophysics Data System (ADS)
Sampaio-Filho, C. I. N.; Moreira, F. G. B.
2011-11-01
We introduce and study the block voter model with noise on two-dimensional square lattices using Monte Carlo simulations and finite-size scaling techniques. The model is defined by an outflow dynamics where a central set of NPCS spins, here denoted by persuasive cluster spins (PCS), tries to influence the opinion of their neighboring counterparts. We consider the collective behavior of the entire system with varying PCS size. When NPCS>2, the system exhibits an order-disorder phase transition at a critical noise parameter qc which is a monotonically increasing function of the size of the persuasive cluster. We conclude that a larger PCS has more power of persuasion, when compared to a smaller one. It also seems that the resulting critical behavior is Ising-like independent of the range of interaction.
A Baroclinic Model of turbulent dusty flows
Kuhl, A.L.
1992-04-01
The problem considered here is the numerical simulation of the turbulent dusty flow induced by explosions over soil surfaces. Some of the unresolved issues are: (1) how much dust is scoured from such surfaces; (2) where does the dust go in the boundary layer; (3) what is the dusty boundary layer height versus time; (4) what are the dusty boundary layer profiles; (5) how much of the dust mass becomes entrained into the dust stem; and (6) where does the dust go in the buoyant cloud? The author proposes a Baroclinic Model for flows with large density variations that actually calculates the turbulent mixing and transport of dust on an adaptive grid. The model is based on the following idealizations: (1) a loose dust bed; (2) an instantaneous shock fluidization of the dust layer; (3) the dust and air are in local equilibrium (so air viscosity enforces the no-slip condition); (4) the dust-air mixture is treated as a continuum dense fluid with zero viscosity; and (5) the turbulent mixing is dominated by baroclinically-generated vorticity. These assumptions lead to an inviscid set of conservation laws for the mixture, which are solved by means of a high-order Godunov algorithm for gasdynamics. Adaptive Mesh Refinement (AMR) is used to capture the turbulent mixing processes on the grid. One of the unique characteristics of these flows is that mixing occurs because vorticity is produced by an inviscid, baroclinic mechanism. A number of examples are presented to illustrate these baroclinic effects including shock interactions with dense-gas layers and dust beds, and dusty wall jets of airblast precursors. The conclusion of these studies is that dusty boundary layers grow because of mass entrainment from the fluidized bed (and not because of viscous wall drag) as proven by the Mass Integral Equation.
Critical clusters and efficient dynamics for frustrated spin models
NASA Astrophysics Data System (ADS)
Cataudella, V.; Franzese, G.; Nicodemi, M.; Scala, A.; Coniglio, A.
1994-03-01
A general method to find, in a systematic way, efficient Monte Carlo cluster dynamics among the vast class of dynamics introduced by Kandel et al. [Phys. Rev. Lett. 65, 941 (1990)] is proposed. The method is successfully applied to a class of frustrated two-dimensional Ising systems. In the case of the fully frustrated model, we also find the intriguing result that critical clusters consist of self-avoiding walk at the θ point.
A percolation model of ecological flows
Gardner, R.H.; Turner, M.G.; Dale, V.H.; O'Neill, R.V.
1988-01-01
The boundary zone between adjacent communities has long been recognized as a functionally important component of ecosystems. The diversity and abundance of species, the flow and accumulation of material and energy, and the propagation of disturbances may all be affected by landscape boundaries. However, the spatial arrangement of different habitats and their boundaries has received little direct study. The difficulty in studying landscape boundaries has been due, in part, to the variety of responses of organisms to ecotones. Therefore, definitive tests of relationships between ecological processes and the pattern of landscape boundaries will be greatly assisted by developing a standard against which comparisons can be made. Neutral models can define this standard by producing the expected'' Poisson distribution have been well established, but a general approach for relating ecological processes and landscape patterns must still be defined. The purpose of this chapter is to illustrate how neutral models that are developed from percolation theory can be used to address the problem How do ecological system boundaries influence biotic diversity and the flow of energy, information and materials '' 26 refs., 4 figs., 1 tab.
Graphical models for optimal power flow
Dvijotham, Krishnamurthy; Chertkov, Michael; Van Hentenryck, Pascal; Vuffray, Marc; Misra, Sidhant
2016-09-13
Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithm for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary tree-structured distribution networks and handle mixed-integer optimization problems. Further, it can be implemented in a distributed message-passing fashion that is scalable and is suitable for “smart grid” applications like control of distributed energy resources. In conclusion, numerical evaluations on several benchmark networks show that practical OPF problems can be solved effectively using this approach.
Graphical models for optimal power flow
Dvijotham, Krishnamurthy; Chertkov, Michael; Van Hentenryck, Pascal; ...
2016-09-13
Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithmmore » for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary tree-structured distribution networks and handle mixed-integer optimization problems. Further, it can be implemented in a distributed message-passing fashion that is scalable and is suitable for “smart grid” applications like control of distributed energy resources. In conclusion, numerical evaluations on several benchmark networks show that practical OPF problems can be solved effectively using this approach.« less
Advanced Combustion Modeling for Complex Turbulent Flows
NASA Technical Reports Server (NTRS)
Ham, Frank Stanford
2005-01-01
The next generation of aircraft engines will need to pass stricter efficiency and emission tests. NASA's Ultra-Efficient Engine Technology (UEET) program has set an ambitious goal of 70% reduction of NO(x) emissions and a 15% increase in fuel efficiency of aircraft engines. We will demonstrate the state-of-the-art combustion tools developed a t Stanford's Center for Turbulence Research (CTR) as part of this program. In the last decade, CTR has spear-headed a multi-physics-based combustion modeling program. Key technologies have been transferred to the aerospace industry and are currently being used for engine simulations. In this demo, we will showcase the next-generation combustion modeling tools that integrate a very high level of detailed physics into advanced flow simulation codes. Combustor flows involve multi-phase physics with liquid fuel jet breakup, evaporation, and eventual combustion. Individual components of the simulation are verified against complex test cases and show excellent agreement with experimental data.
Analytical model for flow duration curves in seasonally dry climates
NASA Astrophysics Data System (ADS)
Müller, Marc F.; Dralle, David N.; Thompson, Sally E.
2014-07-01
Flow duration curves (FDC) display streamflow values against their relative exceedance time. They provide critical information for watershed management by representing the variation in the availability and reliability of surface water to supply ecosystem services and satisfy anthropogenic needs. FDCs are particularly revealing in seasonally dry climates, where surface water supplies are highly variable. While useful, the empirical computation of FDCs is data intensive and challenging in sparsely gauged regions, meaning that there is a need for robust, predictive models to evaluate FDCs with simple parameterization. Here, we derive a process-based analytical expression for FDCs in seasonally dry climates. During the wet season, streamflow is modeled as a stochastic variable driven by rainfall, following the stochastic analytical model of Botter et al. (2007a). During the dry season, streamflow is modeled as a deterministic recession with a stochastic initial condition that accounts for the carryover of catchment storage across seasons. The resulting FDC model is applied to 38 catchments in Nepal, coastal California, and Western Australia, where FDCs are successfully modeled using five physically meaningful parameters with minimal calibration. A Monte Carlo analysis revealed that the model is robust to deviations from its assumptions of Poissonian rainfall, exponentially distributed response times and constant seasonal timing. The approach successfully models period-of-record FDCs and allows interannual and intra-annual sources of variations in dry season streamflow to be separated. The resulting median annual FDCs and confidence intervals allow the simulation of the consequences of interannual flow variations for infrastructure projects. We present an example using run-of-river hydropower in Nepal as a case study.
Stokes-Leibenson problem for Hele-Shaw flow: a critical set in the space of contours
NASA Astrophysics Data System (ADS)
Demidov, A. S.; Lohéac, J.-P.; Runge, V.
2016-01-01
The Stokes-Leibenson problem for Hele-Shaw flow is reformulated as a Cauchy problem of a nonlinear integro-differential equation with respect to functions a and b, linked by the Hilbert transform. The function a expresses the evolution of the coefficient longitudinal strain of the free boundary and b is the evolution of the tangent tilt of this contour. These functions directly reflect changes of geometric characteristics of the free boundary of higher order than the evolution of the contour point obtained by the classical Galin-Kochina equation. That is why we managed to uncover the reason of the absence of solutions in the sink-case if the initial contour is not analytic at at least one point, to prove existence and uniqueness theorems, and also to reveal a certain critical set in the space of contours. This set contains one attractive point in the source-case corresponding to a circular contour centered at the source-point. The main object of this work is the analysis of the discrete model of the problem. This model, called quasi-contour, is formulated in terms of functions corresponding to a and b of our integro-differential equation. This quasi-contour model provides numerical experiments which confirm the theoretical properties mentioned above, especially the existence of a critical subset of co-dimension 1 in space of quasi-contours. This subset contains one attractive point in the source-case corresponding to a regular quasi-contour centered at the source-point. The main contribution of our quasi-contour model concerns the sink-case: numerical experiments show that the above subset is attractive. Furthermore, this discrete model allows to extend previous results obtained by using complex analysis. We also provide numerical experiments linked to fingering effects.
Critical examination of two-equation turbulence closure models
NASA Technical Reports Server (NTRS)
Chambers, T. L.; Wilcox, D. C.
1976-01-01
Comparison of the Jones-Launder, Ng-Spalding, Saffman-Wilcox, and Wilcox-Traci two-equation turbulence models has been conducted. It was shown that the Saffman-Wilcox and Wilcox-Traci dissipation-rate formulations admit straightforward integration through the viscous sublayer, whereas integration through the viscous sublayer is a more difficult issue with the Jones-Launder dissipation-function and the Ng-Spalding length-scale formulations. Numerical computations were conducted in which the models were applied to four equilibrium boundary layer flows including adverse, zero, and favorable pressure gradients. Computations of zero pressure gradient flow over a convex wall composed the final part of the comparison.
Stocks, Flows, and Distribution of Critical Metals in Embedded Electronics in Passenger Vehicles.
Restrepo, Eliette; Løvik, Amund N; Wäger, Patrick; Widmer, Rolf; Lonka, Radek; Müller, Daniel B
2017-02-07
One of the major applications of critical metals (CMs) is in electrical and electronic equipment (EEE), which is increasingly embedded in other products, notably passenger vehicles. However, recycling strategies for future CM quantities in end-of-life vehicles (ELVs) are poorly understood, mainly due to a limited understating of the complexity of automotive embedded EEE. We introduce a harmonization of the network structure of automotive electronics that enables a comprehensive quantification of CMs in all embedded EEE in a vehicle. This network is combined with a material flow analysis along the vehicle lifecycle in Switzerland to quantify the stocks and flows of Ag, Au, Pd, Ru, Dy, La, Nd, and Co in automotive embedded EEE. In vehicles in use, we calculated 5-2(+3) t precious metals in controllers embedded in all vehicle types and 220-60(+90) t rare earth elements (REE); found mainly in five electric motors: alternator, starter, radiator-fan and electronic power steering motor embedded in conventional passenger vehicles and drive motor/generator embedded in hybrid and electric vehicles. Dismantling these devices before ELV shredding, as well as postshredder treatment of automobile shredder residue may increase the recovery of CMs from ELVs. Environmental and economic implications of such recycling strategies must be considered.
A Lagrangian model of Copepod dynamics in turbulent flows
NASA Astrophysics Data System (ADS)
Ardeshiri, Hamidreza; Benkeddad, Ibtissem; Schmitt, Francois G.; Souissi, Sami; Toschi, Federico; Calzavarini, Enrico
2016-04-01
Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an aptness is used to escape from high shear regions, which may be caused either by flow perturbations, produced by a large predator such as fish larave, or by the inherent highly turbulent dynamics of the ocean. Through a combined experimental and numerical study, we investigate the impact of jumping behaviour on the small-scale patchiness of copepods in a turbulent environment. Recorded velocity tracks of copepods displaying escape response jumps in still water are used to define and tune a Lagrangian Copepod (LC) model. The model is further employed to simulate the behaviour of thousands of copepods in a fully developed hydrodynamic turbulent flow obtained by direct numerical simulation of the Navier-Stokes equations. First, we show that the LC velocity statistics is in qualitative agreement with available experimental observations of copepods in turbulence. Second, we quantify the clustering of LC, via the fractal dimension D2. We show that D2 can be as low as 2.3, corresponding to local sheetlike aggregates, and that it critically depends on the shear-rate sensitivity of the proposed LC model. We further investigate the effect of jump intensity, jump orientation and geometrical aspect ratio of the copepods on the small-scale spatial distribution. Possible ecological implications of the observed clustering on encounter rates and mating success are discussed.
NASA Astrophysics Data System (ADS)
Stadelman, M.; Crandall, D.; Sams, W. N.; Bromhal, G. S.
2015-12-01
Complex fractured networks in the subsurface control the flow of fluids in many applications, and accurately modeling their interaction with wells is critical to understanding their behavior. For tight sand and shale formations, fluid flow is primarily restricted to fractures within each rock layer. NFFLOW was designed by the Department of Energy to model gas well production from naturally fractured reservoirs. NFFLOW is a discrete fracture simulator, with every fracture and rock matrix in the domain handled individually. One-dimensional models are used calculate the flow through connected fractures and flow from the surrounding rocks into fractures. Flow into wellbores are determined from the combined flux from connecting fractures and adjacent rock matrices. One-dimensional fluid flow equations are used because they are extremely fast to solve and represent a reasonable approximation of the physical behavior of fluids in most of the reservoir. However, near the wellbore those models become inaccurate due to gas flow convergence, which is a multidimensional situation. We present a method to correct the one-dimensional models, using data from two-dimensional fluid flow models, while maintaining the original simulator speed. By applying corrections from the two-dimensional model, the one-dimensional models can better account for gas flow convergence into the wellbore as well as the location of the wellbore within the rock strata. Corrections were successful in scaling the one-dimensional flow rates to match the two dimensional values over a wide range of parameters for both fracture flow and porous media flow into the wellbore. This is shown to increase the accuracy of history matching to production data for a wide range of wells, allowing for better modeling and prediction of future productivity. With an accurate history match established, NFFLOW can then be used to investigate issues such as the ability of the formation to sequester carbon dioxide or the effects
Flow Interpretation Implications for Poro-Elastic Modeling
2010-06-01
an otherwise Poiseuille dynamical range [5]. The assumption of fluid flow in straight constant cross section conduits is the single most critical...assumption of Poiseuille flow in the void structure of the porous media determines the relationship of compressional phase speed to frequency as well as...controlling the relationship between attenuation and frequency. In this paper some of the effects of assuming a non- Poiseuille flow will be elucidated
Critical role for resource constraints in neural models
Roberts, James A.; Iyer, Kartik K.; Vanhatalo, Sampsa; Breakspear, Michael
2014-01-01
Criticality has emerged as a leading dynamical candidate for healthy and pathological neuronal activity. At the heart of criticality in neural systems is the need for parameters to be tuned to specific values or for the existence of self-organizing mechanisms. Existing models lack precise physiological descriptions for how the brain maintains its tuning near a critical point. In this paper we argue that a key ingredient missing from the field is a formulation of reciprocal coupling between neural activity and metabolic resources. We propose that the constraint of optimizing the balance between energy use and activity plays a major role in tuning brain states to lie near criticality. Important recent findings aligned with our viewpoint have emerged from analyses of disorders that involve severe metabolic disturbances and alter scale-free properties of brain dynamics, including burst suppression. Moreover, we argue that average shapes of neuronal avalanches are a signature of scale-free activity that offers sharper insights into underlying mechanisms than afforded by traditional analyses of avalanche statistics. PMID:25309349
Ouyang, Min
2013-06-01
This paper selects three frequently used power grid models, including a purely topological model (PTM), a betweennness based model (BBM), and a direct current power flow model (DCPFM), to describe three different dynamical processes on a power grid under both single and multiple component failures. Each of the dynamical processes is then characterized by both a topology-based and a flow-based vulnerability metrics to compare the three models with each other from the vulnerability perspective. Taking as an example, the IEEE 300 power grid with line capacity set proportional to a tolerance parameter tp, the results show non-linear phenomenon: under single node failures, there exists a critical value of tp = 1.36, above which the three models all produce identical topology-based vulnerability results and more than 85% nodes have identical flow-based vulnerability from any two models; under multiple node failures that each node fails with an identical failure probability fp, there exists a critical fp = 0.56, above which the three models produce almost identical topology-based vulnerability results at any tp ≥ 1, but producing identical flow-based vulnerability results only occurs at fp = . In addition, the topology-based vulnerability results can provide a good approximation for the flow-based vulnerability under large fp, and the priority of PTM and BBM to better approach the DCPFM for vulnerability analysis mainly depends on the value of fp. Similar results are also found for other failure types, other system operation parameters, and other power grids.
Estimation of instantaneous peak flow from simulated maximum daily flow using the HBV model
NASA Astrophysics Data System (ADS)
Ding, Jie; Haberlandt, Uwe
2014-05-01
Instantaneous peak flow (IPF) data are the foundation of the design of hydraulic structures and flood frequency analysis. However, the long discharge records published by hydrological agencies contain usually only average daily flows which are of little value for design in small catchments. In former research, statistical analysis using observed peak and daily flow data was carried out to explore the link between instantaneous peak flow (IPF) and maximum daily flow (MDF) where the multiple regression model is proved to have the best performance. The objective of this study is to further investigate the acceptability of the multiple regression model for post-processing simulated daily flows from hydrological modeling. The model based flood frequency analysis allows to consider change in the condition of the catchments and in climate for design. Here, the HBV model is calibrated on peak flow distributions and flow duration curves using two approaches. In a two -step approach the simulated MDF are corrected with a priory established regressions. In a one-step procedure the regression coefficients are calibrated together with the parameters of the model. For the analysis data from 18 mesoscale catchments in the Aller-Leine river basin in Northern Germany are used. The results show that: (1) the multiple regression model is capable to predict the peak flows with the simulated MDF data; (2) the calibrated hydrological model reproduces well the magnitude and frequency distribution of peak flows; (3) the one-step procedure outperforms the two-step procedure regarding the estimation of peak flows.
Critical points in the 16-moment approximation. [plasma flow in laboratory and space plasmas study
NASA Technical Reports Server (NTRS)
Yasseen, F.; Retterer, J. M.
1991-01-01
The singular points in steady state, field-aligned plasma transport models based on velocity moment theory are examined. In particular, two separate singular points in the equations obtained from the 16-moment approximation are identified. These equations are presented in a form that makes the singularities apparent, and they are solved in a simple illustrative case. The singular points, one occurring at the sonic point and the other at a critical value of the parallel heat flux, give rise to different outflow regimes, characterized generically by different asymptotic behavior. The existence of the different outflow regimes separated by the heat flux critical point has been only hinted at in previous discussions of numerical simulation of the polar wind.
CRITICAL CURVES AND CAUSTICS OF TRIPLE-LENS MODELS
Daněk, Kamil; Heyrovský, David E-mail: heyrovsky@utf.mff.cuni.cz
2015-06-10
Among the 25 planetary systems detected up to now by gravitational microlensing, there are two cases of a star with two planets, and two cases of a binary star with a planet. Other, yet undetected types of triple lenses include triple stars or stars with a planet with a moon. The analysis and interpretation of such events is hindered by the lack of understanding of essential characteristics of triple lenses, such as their critical curves and caustics. We present here analytical and numerical methods for mapping the critical-curve topology and caustic cusp number in the parameter space of n-point-mass lenses. We apply the methods to the analysis of four symmetric triple-lens models, and obtain altogether 9 different critical-curve topologies and 32 caustic structures. While these results include various generic types, they represent just a subset of all possible triple-lens critical curves and caustics. Using the analyzed models, we demonstrate interesting features of triple lenses that do not occur in two-point-mass lenses. We show an example of a lens that cannot be described by the Chang–Refsdal model in the wide limit. In the close limit we demonstrate unusual structures of primary and secondary caustic loops, and explain the conditions for their occurrence. In the planetary limit we find that the presence of a planet may lead to a whole sequence of additional caustic metamorphoses. We show that a pair of planets may change the structure of the primary caustic even when placed far from their resonant position at the Einstein radius.
Estimating Preferential Flow in Karstic Aquifers Using Statistical Mixed Models
Anaya, Angel A.; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J.; Meeker, John D.; Alshawabkeh, Akram N.
2013-01-01
Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless-steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the statistical mixed models used in the study. PMID:23802921
Modeling and simulation of high-speed wake flows
NASA Astrophysics Data System (ADS)
Barnhardt, Michael Daniel
High-speed, unsteady flows represent a unique challenge in computational hypersonics research. They are found in nearly all applications of interest, including the wakes of reentry vehicles, RCS jet interactions, and scramjet combustors. In each of these examples, accurate modeling of the flow dynamics plays a critical role in design performance. Nevertheless, literature surveys reveal that very little modern research effort has been made toward understanding these problems. The objective of this work is to synthesize current computational methods for high-speed flows with ideas commonly used to model low-speed, turbulent flows in order to create a framework by which we may reliably predict unsteady, hypersonic flows. In particular, we wish to validate the new methodology for the case of a turbulent wake flow at reentry conditions. Currently, heat shield designs incur significant mass penalties due to the large margins applied to vehicle afterbodies in lieu of a thorough understanding of the wake aerothermodynamics. Comprehensive validation studies are required to accurately quantify these modeling uncertainties. To this end, we select three candidate experiments against which we evaluate the accuracy of our methodology. The first set of experiments concern the Mars Science Laboratory (MSL) parachute system and serve to demonstrate that our implementation produces results consistent with prior studies at supersonic conditions. Second, we use the Reentry-F flight test to expand the application envelope to realistic flight conditions. Finally, in the last set of experiments, we examine a spherical capsule wind tunnel configuration in order to perform a more detailed analysis of a realistic flight geometry. In each case, we find that current 1st order in time, 2nd order in space upwind numerical methods are sufficiently accurate to predict statistical measurements: mean, RMS, standard deviation, and so forth. Further potential gains in numerical accuracy are
Numerical modeling of fluid flow with rafts: An application to lava flows
NASA Astrophysics Data System (ADS)
Tsepelev, Igor; Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander
2016-07-01
Although volcanic lava flows do not significantly affect the life of people, its hazard is not negligible as hot lava kills vegetation, destroys infrastructure, and may trigger a flood due to melting of snow/ice. The lava flow hazard can be reduced if the flow patterns are known, and the complexity of the flow with debris is analyzed to assist in disaster risk mitigation. In this paper we develop three-dimensional numerical models of a gravitational flow of multi-phase fluid with rafts (mimicking rigid lava-crust fragments) on a horizontal and topographic surfaces to explore the dynamics and the interaction of lava flows. We have obtained various flow patterns and spatial distribution of rafts depending on conditions at the surface of fluid spreading, obstacles on the way of a fluid flow, raft landing scenarios, and the size of rafts. Furthermore, we analyze two numerical models related to specific lava flows: (i) a model of fluid flow with rafts inside an inclined channel, and (ii) a model of fluid flow from a single vent on an artificial topography, when the fluid density, its viscosity, and the effusion rate vary with time. Although the studied models do not account for lava solidification, crust formation, and its rupture, the results of the modeling may be used for understanding of flows with breccias before a significant lava cooling.
NASA Technical Reports Server (NTRS)
Radwan, S. F.; Rockwell, D. O.; Johnson, S. H.
1982-01-01
Existing interpretations of the trailing edge condition, addressing both theoretical and experimental works in steady, as well as unsteady flows are critically reviewed. The work of Kutta and Joukowski on the trailing edge condition in steady flow is reviewed. It is shown that for most practical airfoils and blades (as in the case of most turbomachine blades), this condition is violated due to rounded trailing edges and high frequency effects, the flow dynamics in the trailing edge region being dominated by viscous forces; therefore, any meaningful modelling must include viscous effects. The question of to what extent the trailing edge condition affects acoustic radiation from the edge is raised; it is found that violation of the trailing edge condition leads to significant sound diffraction at the tailing edge, which is related to the problem of noise generation. Finally, various trailing edge conditions in unsteady flow are discussed, with emphasis on high reduced frequencies.
How to Model Water Flow in Moulins?
NASA Astrophysics Data System (ADS)
Phillips, T. P.; Steffen, K.
2007-12-01
The development of large melt ponds on the Greenland Ice Sheet (GIS) and their drainage system indicate that moulins are a major contributor to the englacial water system. Here we review the current state of knowledge and the history of moulin research. In the late 19th century glaciologists led by Vallot climbed and studied the Grand Moulin on Mont Blanc. Despite being considered mystic due to their size and water drainage they have been studied by a few scientists such as Holmlund and Hooke (1980) or Puccini and Badino (1990). We develop a qualitative model of geometry as well as of the driving forces in the life cycle of moulins using data, photos, sketches, and climbing reports by ice speleologists and climbers. The GIS is temperate for the first 10 km at its margin and consists of cold ice further inland. The recent increase in melt water leads to an increase in basal water availability. The observed increase in ice velocity might be caused by the lubrication at the bed combined with a possible temperature rise in the cold part of the GIS. The raise of englacial water flow increases the volume of the conduits thus reducing the timing of water to reach the ice sheet bed. Our initial model starts with a narrow englacial non-arborescent channel network. We anticipate the development of the englacial hydrology system by using the 'Roethlisberger' conduit model. In addition we will show first model results on temperature fluctuations in the ice due to the hydrologic system.
Multiscale Modeling of Cavitating Bubbly Flows
NASA Astrophysics Data System (ADS)
Ma, J.; Hsiao, C.-T.; Chahine, G. L.
2013-03-01
Modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Bubble Model for dispersed microbubbles and a level set N-S solver for macro cavities, along with a mesoscale transition model to bridge the two. This approach was implemented in 3DYNAFScopyright and used to simulate sheet-to-cloud cavitation over a hydrofoil. The hybrid model captures well the full cavitation process starting from free field nuclei and nucleation from solid surfaces. In low pressure region of the foil small nuclei are seen to grow large and eventually merge to form a large scale sheet cavity. A reentrant jet forms under the cavity, travels upstream, and breaks it, resulting in a bubble cloud of a large amount of microbubbles as the broken pockets shrink and travel downstream. This is in good agreement with experimental observations based of sheet lengths and frequency of lift force oscillation. DOE-SBIR, ONR (monitored by Dr. Ki-Han Kim)
A New Equation Solver for Modeling Turbulent Flow in Coupled Matrix-Conduit Flow Models.
Hubinger, Bernhard; Birk, Steffen; Hergarten, Stefan
2016-07-01
Karst aquifers represent dual flow systems consisting of a highly conductive conduit system embedded in a less permeable rock matrix. Hybrid models iteratively coupling both flow systems generally consume much time, especially because of the nonlinearity of turbulent conduit flow. To reduce calculation times compared to those of existing approaches, a new iterative equation solver for the conduit system is developed based on an approximated Newton-Raphson expression and a Gauß-Seidel or successive over-relaxation scheme with a single iteration step at the innermost level. It is implemented and tested in the research code CAVE but should be easily adaptable to similar models such as the Conduit Flow Process for MODFLOW-2005. It substantially reduces the computational effort as demonstrated by steady-state benchmark scenarios as well as by transient karst genesis simulations. Water balance errors are found to be acceptable in most of the test cases. However, the performance and accuracy may deteriorate under unfavorable conditions such as sudden, strong changes of the flow field at some stages of the karst genesis simulations.
Noise calculation on the basis of vortex flow models
NASA Technical Reports Server (NTRS)
Hardin, J. C.
1978-01-01
Flow-modeling technique yields relatively simple method for calculating sound radiation involving planar, cylindrical, or spherical surfaces. Model employs potential flow theory with action of viscosity on flowfield described in terms of point vortices. Surface presence in flow is analyzed, using classical image method; sound is calculated through sound generation theory reformulation.
Discrete Element Modeling of Complex Granular Flows
NASA Astrophysics Data System (ADS)
Movshovitz, N.; Asphaug, E. I.
2010-12-01
Granular materials occur almost everywhere in nature, and are actively studied in many fields of research, from food industry to planetary science. One approach to the study of granular media, the continuum approach, attempts to find a constitutive law that determines the material's flow, or strain, under applied stress. The main difficulty with this approach is that granular systems exhibit different behavior under different conditions, behaving at times as an elastic solid (e.g. pile of sand), at times as a viscous fluid (e.g. when poured), or even as a gas (e.g. when shaken). Even if all these physics are accounted for, numerical implementation is made difficult by the wide and often discontinuous ranges in continuum density and sound speed. A different approach is Discrete Element Modeling (DEM). Here the goal is to directly model every grain in the system as a rigid body subject to various body and surface forces. The advantage of this method is that it treats all of the above regimes in the same way, and can easily deal with a system moving back and forth between regimes. But as a granular system typically contains a multitude of individual grains, the direct integration of the system can be very computationally expensive. For this reason most DEM codes are limited to spherical grains of uniform size. However, spherical grains often cannot replicate the behavior of real world granular systems. A simple pile of spherical grains, for example, relies on static friction alone to keep its shape, while in reality a pile of irregular grains can maintain a much steeper angle by interlocking force chains. In the present study we employ a commercial DEM, nVidia's PhysX Engine, originally designed for the game and animation industry, to simulate complex granular flows with irregular, non-spherical grains. This engine runs as a multi threaded process and can be GPU accelerated. We demonstrate the code's ability to physically model granular materials in the three regimes
Field Evaluation of a Novel 2D Preferential Flow Snowpack Hydrology Model
NASA Astrophysics Data System (ADS)
Leroux, N.; Pomeroy, J. W.; Kinar, N. J.
2015-12-01
Accurate estimation of snowmelt flux is of primary importance for runoff hydrograph prediction, which is used for water management and flood forecasting. Lateral flows and preferential flow pathways in porous media flow have proven critical for improving soil and groundwater flow models, but though many physically-based layered snowmelt models have been developed, only 1D matrix flow is accounted for in these models. Therefore, there is a need for snowmelt models that include these processes so as to examine the potential to improve snowmelt hydrological modelling. A 2D model is proposed that enables an improved understanding of energy and water flows within deep heterogeneous snowpacks, including those on slopes. A dual pathway theory is presented that simulates the formation of preferential flow paths, vertical and lateral water flows through the snow matrix and flow fingers, internal energy fluxes, melt, wet snow metamorphism, and internal refreezing. The dual pathway model utilizes an explicit finite volume method to solve for the energy and water flux equations over a non-orthogonal grid. It was run and evaluated using in-situ data collected from snowpit - accessed gravimetric, thermometric, photographic, and dielectric observations and novel non-invasive acoustic observations of layering, temperature, flowpath geometry, density and wetness at the Fortress Mountain Snow Laboratory, Alberta, Canada. The melt of a natural snowpack was artificially generated after detailed observation of snowpack initial conditions such as snow layer properties, temperature, and liquid water content. Snowpack ablation and liquid water content distribution over time were then measured and used for model parameterization and validation. Energy available at the snow surface and soil slope angle were set as mondel inputs. Model verification was based on snowpack property evolution. The heterogeneous flow model can be an important tool to help understand snowmelt flow processes, how
Modeling and Design of Semi-Solid Flow Batteries
NASA Astrophysics Data System (ADS)
Brunini, Victor Eric
A three-dimensional dynamic model of the recently introduced semi-solid flow battery system is developed and applied to address issues with important design and operation implications. Because of the high viscosity of semi-solid flow battery suspensions, alternative modes of operation not typically used in conventional redox flow battery systems must be explored to reduce pumping energy losses. Modeling results are presented .and compared to experimental observations to address important considerations for both stoichiometric and intermittent flow operation. The importance of active material selection, and its impact on efficient stoichiometric flow operation is discussed. Electrochemically active zone considerations relevant to intermittent flow operation of semi-solid flow batteries (or other potential electronically conductive flow battery systems) are addressed. Finally, the use of the model as a design tool for optimizing flow channel design to improve system level performance is demonstrated.(Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
Turbulence Modeling for Unsteady Transonic Flows
NASA Technical Reports Server (NTRS)
Marvin, J. G.; Levy, L. L., Jr.; Seegmiller, H. L.
1980-01-01
Conditionally sampled, ensemble-averaged velocity measurements, made with a laser velocimeter, were taken in the flowfield over the rear half of an 18% thick circular arc airfoil at zero incidence tested at M = 0.76 and at a Reynolds number based on chord of 11 x 10(exp 6). Data for one cycle of periodic unsteady flow having a reduced frequency f of 0.49 are analyzed. A series of compression waves, which develop in the early stages of the cycle, strengthen and coalesce into a strong shock wave that moves toward the airfoil leading edge. A thick shear layer forms downstream of the shock wave. The kinetic energy and shear stresses increase dramatically, reach a maximum when dissipation and diffusion of the turbulence exceed production, and then decrease substantially. The response lime of the turbulence to the changes brought about by the shock-wave passage upstream depends on the shock-wave strength and position in the boundary layer. The cycle completes itself when the shock wave passes the midchord, weakens, and the shear layer collapses. Remarkably good comparisons are found with computations that employ the time-dependent Reynolds averaged form of the Navier-Stokes equations using an algebraic eddy viscosity model, developed for steady flows.
Predictive models for moving contact line flows
NASA Technical Reports Server (NTRS)
Rame, Enrique; Garoff, Stephen
2003-01-01
Modeling flows with moving contact lines poses the formidable challenge that the usual assumptions of Newtonian fluid and no-slip condition give rise to a well-known singularity. This singularity prevents one from satisfying the contact angle condition to compute the shape of the fluid-fluid interface, a crucial calculation without which design parameters such as the pressure drop needed to move an immiscible 2-fluid system through a solid matrix cannot be evaluated. Some progress has been made for low Capillary number spreading flows. Combining experimental measurements of fluid-fluid interfaces very near the moving contact line with an analytical expression for the interface shape, we can determine a parameter that forms a boundary condition for the macroscopic interface shape when Ca much les than l. This parameter, which plays the role of an "apparent" or macroscopic dynamic contact angle, is shown by the theory to depend on the system geometry through the macroscopic length scale. This theoretically established dependence on geometry allows this parameter to be "transferable" from the geometry of the measurement to any other geometry involving the same material system. Unfortunately this prediction of the theory cannot be tested on Earth.
Federated Modelling and Simulation for Critical Infrastructure Protection
NASA Astrophysics Data System (ADS)
Rome, Erich; Langeslag, Peter; Usov, Andrij
Modelling and simulation is an important tool for Critical Infrastructure (CI) dependency analysis, for testing methods for risk reduction, and as well for the evaluation of past failures. Moreover, interaction of such simulations with external threat models, e.g., a river flood model, or economic models enable consequence analysis and thus may assist in what-if decision-making processes. The simulation of complex scenarios involving several different CI sectors requires the usage of heterogeneous federated simulations of CIs. However, common standards for modelling and interoperability of such federated CI simulations are missing. Also, creating the required abstract models from CIs and other data, setting up the individual federate simulators and integrating all subsystems is a time-consuming and complicated task that requires substantial know-how and resources. In this chapter, we outline applications and benefit of federated modelling, simulation and analysis (MS&A) for Critical Infrastructure Protection (CIP). We review the state of the art in federated MS&A for CIP and categorise common approaches and interoperability concepts like central and lateral coupling of simulators. As examples for the latter two concepts, we will present in more detail an interoperability standard from the military domain, HLA, and an approach developed in the DIESIS project. Special emphasis will also be put on describing the problem of synchronising systems with different time models. Also, we will briefly assess the state of transferring MS&A for CIP research results to practical application by comparing the situations in the USA and in Europe.
Reduction of model structure bias in the prediction of critical source areas
NASA Astrophysics Data System (ADS)
Frey, M.; Stamm, C.; Schneider, M. K.; Reichert, P.
2009-04-01
Effective mitigation strategies to reduce the contamination of surface waters by agrochemicals rely on an accurate identification of critical source areas (CSA). We used a spatially distributed hydrological model to identify CSA in a small agricultural catchment in Switzerland. Since the knowledge about model parameters is coarse, prior predictions of CSA involve large uncertainties. We investigated to which degree river discharge data can constrain parameter values and improve the prediction. Thereby, we combined the prior knowledge used for the prior prediction with additional river discharge data within a Bayesian inference approach. In order to consider the effect of uncertainty in input data and in the model structure we formulated the likelihood function with an autoregressive error model additive to the river discharge calculated by the deterministic hydrological model. The additional information gained from river discharge data slightly reduced the width of some of the marginal parameter distributions and the prediction uncertainty for high or low-risk areas. However, the analysis of the statistical assumptions of the inference process revealed deficits in the model structure. Thus the base flow during dry periods tended to be overestimated. By making the percolation process water table dependent the base flow prediction could be improved. These improvements in model structure significantly reduced the model structure bias and thus improved the statistical basis of the probabilistic CSA prediction. Furthermore, the improved model structure led to a large constraint of the CSA prediction uncertainty.
NASA Astrophysics Data System (ADS)
Abancó, Clàudia; Hürlimann, Marcel; Moya, José; Berenguer, Marc
2016-10-01
Torrential flows like debris flows or debris floods are fast movements formed by a mix of water and different amounts of unsorted solid material. They generally occur in steep torrents and pose high risk in mountainous areas. Rainfall is their most common triggering factor and the analysis of the critical rainfall conditions is a fundamental research task. Due to their wide use in warning systems, rainfall thresholds for the triggering of torrential flows are an important outcome of such analysis and are empirically derived using data from past events. In 2009, a monitoring system was installed in the Rebaixader catchment, Central Pyrenees (Spain). Since then, rainfall data of 25 torrential flows ("TRIG rainfalls") were recorded, with a 5-min sampling frequency. Other 142 rainfalls that did not trigger torrential flows ("NonTRIG rainfalls") were also collected and analyzed. The goal of this work was threefold: (i) characterize rainfall episodes in the Rebaixader catchment and compare rainfall data that triggered torrential flows and others that did not; (ii) define and test Intensity-Duration (ID) thresholds using rainfall data measured inside the catchment by with different techniques; (iii) analyze how the criterion used for defining the rainfall duration and the spatial variability of rainfall influences the value obtained for the thresholds. The statistical analysis of the rainfall characteristics showed that the parameters that discriminate better the TRIG and NonTRIG rainfalls are the rainfall intensities, the mean rainfall and the total rainfall amount. The antecedent rainfall was not significantly different between TRIG and NonTRIG rainfalls, as it can be expected when the source material is very pervious (a sandy glacial soil in the study site). Thresholds were derived from data collected at one rain gauge located inside the catchment. Two different methods were applied to calculate the duration and intensity of rainfall: (i) using total duration, Dtot
2017-01-01
A thermodynamic model of thermoregulatory huddling interactions between endotherms is developed. The model is presented as a Monte Carlo algorithm in which animals are iteratively exchanged between groups, with a probability of exchanging groups defined in terms of the temperature of the environment and the body temperatures of the animals. The temperature-dependent exchange of animals between groups is shown to reproduce a second-order critical phase transition, i.e., a smooth switch to huddling when the environment gets colder, as measured in recent experiments. A peak in the rate at which group sizes change, referred to as pup flow, is predicted at the critical temperature of the phase transition, consistent with a thermodynamic description of huddling, and with a description of the huddle as a self-organising system. The model was subjected to a simple evolutionary procedure, by iteratively substituting the physiologies of individuals that fail to balance the costs of thermoregulation (by huddling in groups) with the costs of thermogenesis (by contributing heat). The resulting tension between cooperative and competitive interactions was found to generate a phenomenon called self-organised criticality, as evidenced by the emergence of avalanches in fitness that propagate across many generations. The emergence of avalanches reveals how huddling can introduce correlations in fitness between individuals and thereby constrain evolutionary dynamics. Finally, a full agent-based model of huddling interactions is also shown to generate criticality when subjected to the same evolutionary pressures. The agent-based model is related to the Monte Carlo model in the way that a Vicsek model is related to an Ising model in statistical physics. Huddling therefore presents an opportunity to use thermodynamic theory to study an emergent adaptive animal behaviour. In more general terms, huddling is proposed as an ideal system for investigating the interaction between self
A self-organized critical model for evolution
Flyvbjerg, H.; Bak, P.; Jensen, M.H.; Sneppen, K.
1996-01-01
A simple mathematical model of biological macroevolution is presented. It describes an ecology of adapting, interacting species. Species evolve to maximize their individual fitness in their environment. The environment of any given species is affected by other evolving species; hence it is not constant in time. The ecology evolves to a ``self-organized critical`` state where periods of stasis alternate with avalanches of causally connected evolutionary changes. This characteristic intermittent behaviour of natural history, known as ``punctuated equilibrium,`` thus finds a theoretical explanation as a selforganized critical phenomenon. In particular, large bursts of apparently simultaneous evolutionary activity require no external cause. They occur as the less frequent result of the very same dynamics that governs the more frequent small-scale evolutionary activity. Our results are compared with data from the fossil record collected by J. Sepkoski, Jr., and others.
Robust criticality of an Ising model on rewired directed networks
NASA Astrophysics Data System (ADS)
Lipowski, Adam; Gontarek, Krzysztof; Lipowska, Dorota
2015-06-01
We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to the formation of a relatively small core of agents that influence the entire system.
Robust criticality of an Ising model on rewired directed networks.
Lipowski, Adam; Gontarek, Krzysztof; Lipowska, Dorota
2015-06-01
We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to the formation of a relatively small core of agents that influence the entire system.
Fractional-order variational optical flow model for motion estimation.
Chen, Dali; Sheng, Hu; Chen, YangQuan; Xue, Dingyü
2013-05-13
A new class of fractional-order variational optical flow models, which generalizes the differential of optical flow from integer order to fractional order, is proposed for motion estimation in this paper. The corresponding Euler-Lagrange equations are derived by solving a typical fractional variational problem, and the numerical implementation based on the Grünwald-Letnikov fractional derivative definition is proposed to solve these complicated fractional partial differential equations. Theoretical analysis reveals that the proposed fractional-order variational optical flow model is the generalization of the typical Horn and Schunck (first-order) variational optical flow model and the second-order variational optical flow model, which provides a new idea for us to study the optical flow model and has an important theoretical implication in optical flow model research. The experiments demonstrate the validity of the generalization of differential order.
A critical review of macro models for road accidents.
Hakim, S; Shefer, D; Hakkert, A S; Hocherman, I
1991-10-01
This paper presents a critical review of state-of-the-art macro models for road accidents. Such a review is meant to identify and establish the significance of policy and socioeconomic variables affecting the level of road accidents. The aim is to identify those variables associated with effective policies and interventions to enable decision makers to improve the level of road safety. The variables that appear to affect the number of fatalities or injuries are: vehicle miles travelled (VMT), vehicle population, income (in its various forms), percentage of young drivers, intervention policies such as speed limits, periodic vehicle inspection, and minimum alcohol-drinking age. Viewed critically, the state-of-the-art models being used to explain and predict road accidents are still deficient. One possible approach to correcting this deficiency draws from consumer utility theory, using analytical models built on a newly constructed theoretical framework. Success in estimating such models may improve predictions of road accidents, thus demonstrating the comparative cost effectiveness of alternative intervention policies.
Modeling Flows Around Merging Black Hole Binaries
NASA Technical Reports Server (NTRS)
Centrella, Joan
2008-01-01
Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.
Dilatonic non-linear sigma models and Ricci flow extensions
NASA Astrophysics Data System (ADS)
Carfora, M.; Marzuoli, A.
2016-09-01
We review our recent work describing, in terms of the Wasserstein geometry over the space of probability measures, the embedding of the Ricci flow in the renormalization group flow for dilatonic non-linear sigma models.
NASA Astrophysics Data System (ADS)
Tsai, C.; Yeh, G.
2011-12-01
In this investigation, newly proposed constitutive retentions are implemented to a fractional-flow based compressible multiphase-phase flow model. With the new model, a compressible three-phase (water, non-aqueous phase liquid (NAPL) and air) flow problem is simulated. In fractional-flow approaches, the three mass balance equations written in terms of three phase pressures are transformed to those in terms of the total pressure, saturation of water, and saturation of total liquid. These three governing equations are discretized with the Galerkin finite element method (FEM). The resulted matrix equation is solved with Bi-CGSTAB. Several numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results show the presented fractional-flow based multiphase flow model is feasible and yields physically realistic solutions for compressible three-phase flow problems in porous media.
Numerical simulation model for vertical flow in geothermal wells
Tachimori, M.
1982-01-01
A numerical simulation model for vertical flow in geothermal wells is presented. The model consists of equations for the conservation of mass, momentum, and energy, for thermodynamic state of water, for friction losses, for slip velocity relations, and of the criteria for various flow regimes. A new set of correlations and criteria is presented for two-phase flow to improve the accuracy of predictions; bubbly flow - Griffith and Wallis correlation, slug flow - Nicklin et al. one, annular-mist flow - Inoue and Aoki and modified by the author. The simulation method was verified by data from actual wells.
Multiphase Flow Modeling of Biofuel Production Processes
D. Gaston; D. P. Guillen; J. Tester
2011-06-01
advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.
Physical Model Study: Rill Erosion Morphology and Flow Conditions
NASA Astrophysics Data System (ADS)
Strohmeier, S.; Klik, A.; Nouwakpo, S. K.
2012-04-01
camera setup was installed to detect the channel topography whereas additional channel width and knick point depth measurements were undertaken manually. Flow velocity was measured at different channel development stages using colour tracer. Based on the measurements the comparison of flow conditions of different channel types was enabled. Assuming the flow conditions are described by the Manning-Strickler equation adequately, the extracted roughness factor for the SCR is influenced by skin friction only, whereas the FDR holistic roughness factor consists of both - skin and shape friction. By means of the rill erosion study a significant dependency of Manning-Strickler roughness factors and the developed rill morphology was observed. The experimentally extracted roughness values related to skin friction only (SCR) are up to 30 % higher than the roughness values out of the FDR experiment. Disregarding criticism about common channel flow equations used in erosion models, experimental studies may provide fractional explain-ability of holistic constants and diminish uncertainty in parameter estimations. The present study shows rill roughness characteristics under specific conditions - varying the experimental conditions reasonable predictions for estimating the rill morphological impact may result.
Mutzner, Lena; Staufer, Philipp; Ort, Christoph
2016-11-01
Wet-weather discharges contribute to anthropogenic micropollutant loads entering the aquatic environment. Thousands of wet-weather discharges exist in Swiss sewer systems, and we do not have the capacity to monitor them all. We consequently propose a model-based approach designed to identify critical discharge points in order to support effective monitoring. We applied a dynamic substance flow model to four substances representing different entry routes: indoor (Triclosan, Mecoprop, Copper) as well as rainfall-mobilized (Glyphosate, Mecoprop, Copper) inputs. The accumulation on different urban land-use surfaces in dry weather and subsequent substance-specific wash-off is taken into account. For evaluation, we use a conservative screening approach to detect critical discharge points. This approach considers only local dilution generated onsite from natural, unpolluted areas, i.e. excluding upstream dilution. Despite our conservative assumptions, we find that the environmental quality standards for Glyphosate and Mecoprop are not exceeded during any 10-min time interval over a representative one-year simulation period for all 2500 Swiss municipalities. In contrast, the environmental quality standard is exceeded during at least 20% of the discharge time at 83% of all modelled discharge points for Copper and at 71% for Triclosan. For Copper, this corresponds to a total median duration of approximately 19 days per year. For Triclosan, discharged only via combined sewer overflows, this means a median duration of approximately 10 days per year. In general, stormwater outlets contribute more to the calculated effect than combined sewer overflows for rainfall-mobilized substances. We further evaluate the Urban Index (Aurban,impervious/Anatural) as a proxy for critical discharge points: catchments where Triclosan and Copper exceed the corresponding environmental quality standard often have an Urban Index >0.03. A dynamic substance flow analysis allows us to identify the most
Self-organized criticality model for brain plasticity.
de Arcangelis, Lucilla; Perrone-Capano, Carla; Herrmann, Hans J
2006-01-20
Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Here we present a model that is based on self-organized criticality and takes into account brain plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists of an electrical network with threshold firing and activity-dependent synapse strengths. The system exhibits an avalanche activity in a power-law distribution. The analysis of the power spectra of the electrical signal reproduces very robustly the power-law behavior with the exponent 0.8, experimentally measured in EEG spectra. The same value of the exponent is found on small-world lattices and for leaky neurons, indicating that universality holds for a wide class of brain models.
Critical dynamics of cluster algorithms in the dilute Ising model
NASA Astrophysics Data System (ADS)
Hennecke, M.; Heyken, U.
1993-08-01
Autocorrelation times for thermodynamic quantities at T C are calculated from Monte Carlo simulations of the site-diluted simple cubic Ising model, using the Swendsen-Wang and Wolff cluster algorithms. Our results show that for these algorithms the autocorrelation times decrease when reducing the concentration of magnetic sites from 100% down to 40%. This is of crucial importance when estimating static properties of the model, since the variances of these estimators increase with autocorrelation time. The dynamical critical exponents are calculated for both algorithms, observing pronounced finite-size effects in the energy autocorrelation data for the algorithm of Wolff. We conclude that, when applied to the dilute Ising model, cluster algorithms become even more effective than local algorithms, for which increasing autocorrelation times are expected.
A review: Quantitative models for lava flows on Mars
NASA Technical Reports Server (NTRS)
Baloga, S. M.
1987-01-01
The purpose of this abstract is to review and assess the application of quantitative models (Gratz numerical correlation model, radiative loss model, yield stress model, surface structure model, and kinematic wave model) of lava flows on Mars. These theoretical models were applied to Martian flow data to aid in establishing the composition of the lava or to determine other eruption conditions such as eruption rate or duration.
An improved turbulence model for rotating shear flows*
NASA Astrophysics Data System (ADS)
Nagano, Yasutaka; Hattori, Hirofumi
2002-01-01
In the present study, we construct a turbulence model based on a low-Reynolds-number non-linear k e model for turbulent flows in a rotating channel. Two-equation models, in particular the non-linear k e model, are very effective for solving various flow problems encountered in technological applications. In channel flows with rotation, however, the explicit effects of rotation only appear in the Reynolds stress components. The exact equations for k and e do not have any explicit terms concerned with the rotation effects. Moreover, the Coriolis force vanishes in the momentum equation for a fully developed channel flow with spanwise rotation. Consequently, in order to predict rotating channel flows, after proper revision the Reynolds stress equation model or the non-linear eddy viscosity model should be used. In this study, we improve the non-linear k e model so as to predict rotating channel flows. In the modelling, the wall-limiting behaviour of turbulence is also considered. First, we evaluated the non-linear k e model using the direct numerical simulation (DNS) database for a fully developed rotating turbulent channel flow. Next, we assessed the non-linear k e model at various rotation numbers. Finally, on the basis of these assessments, we reconstruct the non-linear k e model to calculate rotating shear flows, and the proposed model is tested on various rotation number channel flows. The agreement with DNS and experiment data is quite satisfactory.
Quinlan, Nathan J; Dooley, Patrick N
2007-08-01
Viscous shear stress and Reynolds stress are often used to predict hemolysis and thrombosis due to flow-induced stress on blood elements in cardiovascular devices. These macroscopic stresses are distinct from the true stress on an individual cell, which is determined by the local microscale flow field. In this paper the flow-induced stress on blood cells is calculated for laminar and turbulent flow, using simplified models for cells and for turbulent eddies. The model is applied to estimate shear stress on red blood cells in flow through a prosthetic heart valve, using the energy spectral density measured by Liu et al. [J. Biomech. Eng. 122:118-124, 2000]. Results show that in laminar flow, the maximum stress on a cell is approximately equal to the macroscopic viscous shear stress. In turbulent flow through a prosthetic heart valve, the estimated root mean square of flow-induced stress on a cell is at least an order of magnitude less than the Reynolds stress. The results support the hypothesis that smaller turbulent eddies cause higher stress on cells. However, the stress due to an eddy depends on the velocity scale of the eddy as well as its length scale. For the heart valve flow investigated, turbulence contributes to flow-induced stress on cells almost equally across a broad range of the frequency spectrum. The model suggests that Reynolds stress alone is not an adequate predictor of cell damage in turbulent flow, and highlights the importance of the energy spectral density.
NASA Astrophysics Data System (ADS)
Inaba, Hideo; Miyahara, Satoshi; Takeya, Kengo
Supercooling characteristics of three kinds of organic water solutions (D-Sorbitol, Glycerol, Glucose) in a forced flow were investigated experimentally. The critical condition of ice nucleation in a cooled circular tube was examined for concentration of water solution and cooling temperature under various Reynolds numbers. It was found that the flow velocity and cooling temperature conditions in a laminar flow region. However, in a turbulent flow region, the critical degree of supercooling was influenced by the flow velocity and cooling temperature. As a result, non-dimensional correlation equations for the critical condition of ice formation were derived in the laminar and turbulent flow region as a function of some non-dimensional parameters. While the ice making efficiency of D-Sorbitol water solution was measured under various Reynolds numbers and cooling temperature conditions on the stable supercooling condition. The ice making efficiency of supercooled organic water solution was influenced by the degree of the supercooling based on the mixed organic water solution temperature at the outlet of the inner tube.
Simple Model for Identifying Critical Regions in Atrial Fibrillation
Peters, Nicholas S.
2015-01-01
Atrial fibrillation (AF) is the most common abnormal heart rhythm and the single biggest cause of stroke. Ablation, destroying regions of the atria, is applied largely empirically and can be curative but with a disappointing clinical success rate. We design a simple model of activation wave front propagation on an anisotropic structure mimicking the branching network of heart muscle cells. This integration of phenomenological dynamics and pertinent structure shows how AF emerges spontaneously when the transverse cell-to-cell coupling decreases, as occurs with age, beyond a threshold value. We identify critical regions responsible for the initiation and maintenance of AF, the ablation of which terminates AF. The simplicity of the model allows us to calculate analytically the risk of arrhythmia and express the threshold value of transversal cell-to-cell coupling as a function of the model parameters. This threshold value decreases with increasing refractory period by reducing the number of critical regions which can initiate and sustain microreentrant circuits. These biologically testable predictions might inform ablation therapies and arrhythmic risk assessment. PMID:25635565
Extreme Resolution Modeling of Integrated Critical Zone Processes
NASA Astrophysics Data System (ADS)
Kumar, P.; Le, P. V.; Woo, D. K.; Dutta, D.; Wang, K.; Lee, E.; Goodwell, A. E.; Yan, Q.; Wagner, D.
2015-12-01
The advent of high-resolution measurements of topographic and (vertical) vegetation features using areal LiDAR are enabling us to resolve micro-scale (~1m) landscape structural characteristics over large areas. Availability of hyperspectral measurements is further augmenting these LiDAR data by enabling the biogeochemical characterization of vegetation and soils at unprecedented spatial resolutions (~1-10m). Such data have opened up novel opportunities for modeling critical zone processes and addressing questions that were not possible before. We show how an integrated 3-D model at ~1m resolution can enable us to resolve micro-topographic and ecological dynamics and their control on hydrologic and biogeochemical processes. We capture vertical vegetation structure, i.e. vertical leaf area profile, using LiDAR point cloud data conditioned on vegetation species identified through hyperspectral data. This allows the resolutions of the vertical light regime and the resulting photosynthesis and latent and sensible heat energy profile. We address the computational challenge of such detailed modeling by exploiting GPU computing technologies. We show results of moisture, biogeochemical, and vegetation dynamics from studies in the Critical Zone Observatory for Intensively managed Landscapes (IMLCZO).
Simple Model for Identifying Critical Regions in Atrial Fibrillation
NASA Astrophysics Data System (ADS)
Christensen, Kim; Manani, Kishan A.; Peters, Nicholas S.
2015-01-01
Atrial fibrillation (AF) is the most common abnormal heart rhythm and the single biggest cause of stroke. Ablation, destroying regions of the atria, is applied largely empirically and can be curative but with a disappointing clinical success rate. We design a simple model of activation wave front propagation on an anisotropic structure mimicking the branching network of heart muscle cells. This integration of phenomenological dynamics and pertinent structure shows how AF emerges spontaneously when the transverse cell-to-cell coupling decreases, as occurs with age, beyond a threshold value. We identify critical regions responsible for the initiation and maintenance of AF, the ablation of which terminates AF. The simplicity of the model allows us to calculate analytically the risk of arrhythmia and express the threshold value of transversal cell-to-cell coupling as a function of the model parameters. This threshold value decreases with increasing refractory period by reducing the number of critical regions which can initiate and sustain microreentrant circuits. These biologically testable predictions might inform ablation therapies and arrhythmic risk assessment.
Critical ischemia time in a model of spinal cord section. A study performed on dogs
Garcia Martinez, David; Rosales Corral, Sergio A.; Flores Soto, Mario E.; Velarde Silva, Gustavo; Portilla de Buen, Eliseo
2006-01-01
Vascular changes after acute spinal cord trauma are important factors that predispose quadriplegia, in most cases irreversible. Repair of the spinal blood flow helps the spinal cord recovery. The average time to arrive and perform surgery is 3 h in most cases. It is important to determine the critical ischemia time in order to offer better functional prognosis. A spinal cord section and vascular clamping of the spinal anterior artery at C5–C6 model was used to determine critical ischemia time. The objective was to establish a critical ischemia time in a model of acute spinal cord section. Four groups of dogs were used, anterior approach and vascular clamp of spinal anterior artery with 1, 2, 3, and 4 h of ischemia and posterior hemisection of spinal cord at C5–C6 was performed. Clinical evaluation was made during 12 weeks and morphological evaluation at the end of this period. We obtained a maximal neurological coordination at 23 days average. Two cases showed sequels of right upper limb paresis at 1 and 3 ischemia hours. There was nerve conduction delay of 56% at 3 h of ischemia. Morphological examination showed 25% of damaged area. The VIII and IX Rexed’s laminae were the most affected. The critical ischemia time was 3 h. Dogs with 4 h did not exhibit any recovery. PMID:17024402
Parameters of a Steady State Model for In-Cylinder Flow of an Internal Combustion Engine
NASA Astrophysics Data System (ADS)
Fortner, Elizabeth; Puzinauskas, Paul; Bolus, Nicholas
2013-11-01
Flow structures in an internal combustion engine are critical to engine performance and fuel consumption. Experiments are often conducted to explore how intake port geometry can be modified to induce desired tumble and swirl flow structures within the cylinder. To make these experiments cost-effective, they are often first conducted using a model cylinder on a steady flow bench prior to, or in lieu of, performing full unsteady engine tests. This research examines how model characteristics and experimental configuration choices affect results on these steady-flow tests. The experimental set-up uses DPIV to visualize the flow and a horizontally extracting swirl meter to measure the strength of the tumble structure. The configurations and characteristics examined included model geometry, seeding particle type and location of flow induction. The symmetric geometry experiment investigates how extraction affects the flow structures inside the cylinder. Three different seeding particles were used to see how particle properties affect DPIV results. Reversing the direction of flow through the system causes set-up challenges with removing leaks and introducing seeding particles, but is safer as it directs particles away from the flow bench. Deviation of results from the different test set-ups may indicate that cylinder model experiments need to be carefully designed to ensure high quality results accurate enough for use in designing full scale engine tests. Support from NSF REU Grant #1062611 is gratefully acknowledged.
Modelling couplings between reaction, fluid flow and deformation: Kinetics
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Podladchikov, Yury Y.; Connolly, James A. D.
2016-04-01
Mineral assemblages out of equilibrium are commonly found in metamorphic rocks testifying of the critical role of kinetics for metamorphic reactions. As experimentally determined reaction rates in fluid-saturated systems generally indicate complete reaction in less than several years, i.e. several orders of magnitude faster than field-based estimates, metamorphic reaction kinetics are generally thought to be controlled by transport rather than by processes at the mineral surface. However, some geological processes like earthquakes or slow-slip events have shorter characteristic timescales, and transport processes can be intimately related to mineral surface processes. Therefore, it is important to take into account the kinetics of mineral surface processes for modelling fluid/rock interactions. Here, a model coupling reaction, fluid flow and deformation was improved by introducing a delay in the achievement of equilibrium. The classical formalism for dissolution/precipitation reactions was used to consider the influence of the distance from equilibrium and of temperature on the reaction rate, and a dependence on porosity was introduced to model evolution of reacting surface area during reaction. The fitting of experimental data for three reactions typically occurring in metamorphic systems (serpentine dehydration, muscovite dehydration and calcite decarbonation) indicates a systematic faster kinetics close from equilibrium on the dehydration side than on the hydration side. This effect is amplified through the porosity term in the reaction rate since porosity is formed during dehydration. Numerical modelling indicates that this difference in reaction rate close from equilibrium plays a key role in microtextures formation. The developed model can be used in a wide variety of geological systems where couplings between reaction, deformation and fluid flow have to be considered.
Extension of the Johnson-King turbulence model to the 3-D flows
NASA Technical Reports Server (NTRS)
Abid, Ridha
1988-01-01
A critical evaluation of the eddy viscosity model of Johnson and King extended to the three-dimensional case has been performed for three-dimensional boundary layer flows. The turbulence model is evaluated by a detailed comparison with available experimental data for incompressible flows over an infinite swept wing and near an idealized wing-body junction. The isotropic model of Johnson and King is found to work much better than the Cebeci-Smith model, especially in regions of strong cross flow. The significant decrease in the shear stress magnitude is almost reproduced. This means that this effect is as important as the nonisotropic eddy viscosity. The introduction of Rotta's modification to account for nonisotropic eddy viscosity in the Johnson-King formulation is found to have little effect on the predictions. The cross-flow properties are the most strongly affected.
Continuum modeling of rate-dependent granular flows in SPH
NASA Astrophysics Data System (ADS)
Hurley, Ryan C.; Andrade, José E.
2017-01-01
We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.
Binary fish passage models for uniform and nonuniform flows
Neary, Vincent S
2011-01-01
Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow
Multi-metric calibration of hydrological model to capture overall flow regimes
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Shao, Quanxi; Zhang, Shifeng; Zhai, Xiaoyan; She, Dunxian
2016-08-01
Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical role in water supply and flood control, environmental processes, as well as biodiversity and life history patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological model was usually inadequate to well capture all the characteristics of observed flow regimes. In this study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization objectives, which could represent the major characteristics of flow regimes. Model performance was compared with that of the single objective calibration. Results showed that most metrics were better simulated by the multi-objective approach than those of the single objective calibration, especially the low and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating. However, the model performance of middle flow magnitude was not significantly improved because this metric was usually well captured by single objective calibration. The timing of minimum flow was poorly predicted by both the multi-metric and single calibrations due to the uncertainties in model structure and input data. The sensitive parameter values of the hydrological model changed remarkably and the simulated hydrological processes by the multi-metric calibration became more reliable, because more flow characteristics were considered. The study is expected to provide more detailed flow information by hydrological simulation for the integrated water resources management, and to improve the simulation performances of overall flow regimes.
The influence of nonmonotonic synchronized flow branch in a cellular automaton traffic flow model
NASA Astrophysics Data System (ADS)
Jin, Cheng-Jie; Wang, Wei
2011-11-01
In this paper we study the congested patterns upstream of an isolated on-ramp in a cellular automaton traffic flow model, which is proposed in our previous paper [Cheng-Jie Jin, Wei Wang, Rui Jiang, Kun Gao, J. Stat. Mech (2010) P03018]. The simulation results under open boundary conditions are presented by spatiotemporal diagrams. Our diagram of congested patterns is quite similar to that of the cellular automaton models within Kerner’s three-phase traffic theory, while some differences in the “moving synchronized flow pattern” (MSP) should be noted. In our model the upstream front of MSP propagates not only upstream, but also downstream. The propagation direction depends on the flow rates and densities of free flow and synchronized flow. Besides, in our model the outflow of wide moving jams or bottlenecks could be free flow or synchronized flow, as reported in many empirical data. In the dissolving of congestions, the form of free flow may be hindered and stable synchronized flow may emerge. This phenomenon can help us understand more about the outflow. All the interesting characteristics of our model are due to the nonmonotonic structure of synchronized flow branch in the fundamental diagram, which has not been found in previous models.
Traffic flow theory and traffic flow simulation models. Transportation research record
1996-12-31
;Contents: Comparison of Simulation Modules of TRANSYT and INTEGRATION Models; Evaluation of SCATSIM-RTA Adaptive Traffic Network Simulation Model; Comparison NETSIM, NETFLO I, and NETFLO II Traffic Simulation Models for Fixed-Time Signal Control; Traffic Flow Simulation Through Parallel Processing; Cluster Analysis as Tool in Traffic Engineering; Traffic Platoon Dispersion Modeling on Arterial Streets; Hybrid Model for Estimating Permitted Left-Turn Saturations Flow Rate; and Passing Sight Distance and Overtaking Dilemma on Two-Lane Roads.
The Mach number of the cosmic flow - A critical test for current theories
NASA Technical Reports Server (NTRS)
Ostriker, Jeremiah P.; Suto, Yusushi
1990-01-01
A new cosmological, self-contained test using the ratio of mean velocity and the velocity dispersion in the mean flow frame of a group of test objects is presented. To allow comparison with linear theory, the velocity field must first be smoothed on a suitable scale. In the context of linear perturbation theory, the Mach number M(R) which measures the ratio of power on scales larger than to scales smaller than the patch size R, is independent of the perturbation amplitude and also of bias. An apparent inconsistency is found for standard values of power-law index n = 1 and cosmological density parameter Omega = 1, when comparing values of M(R) predicted by popular models with tentative available observations. Nonstandard models based on adiabatic perturbations with either negative n or small Omega value also fail, due to creation of unacceptably large microwave background fluctuations.
Ishii, M.; Denten, J.P.
1988-01-01
Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-CHF flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point. 45 refs., 9 figs., 4 tabs.
NASA Astrophysics Data System (ADS)
Hillewaere, J.; Dooms, D.; Van Quekelberghe, B.; Degroote, J.; Vierendeels, J.; De Roeck, G.; Lombaert, G.; Degrande, G.
2012-04-01
During a storm in October 2002, wind induced ovalling vibrations were observed on several empty silos of a closely spaced group (pitch-to-diameter ratio of 1.05) consisting of 8 by 5 silos in the port of Antwerp (Belgium). Numerical simulations of the turbulent wind flow are performed to clarify the occurrence of the observed ovalling vibrations near the lee side corner of the group by studying the dynamic wind pressures on the silo surfaces and linking to the dynamic properties of the silo structures. As the orientation of the group largely affects the pressure distribution around the cylinders of the group, the influence of the angle of incidence of the wind flow on these ovalling vibrations is examined while other parameters, such as spacing ratio and Reynolds number are unchanged. To achieve results within a reasonable computation time, 2D unsteady Reynolds averaged Navier-Stokes (URANS) equations using Menter's shear stress transport turbulence model were performed. In order to elucidate the influence of the applied turbulence model and to qualitatively validate the spatial and temporal discretization of the 2D highly turbulent post-critical (Re=1.24×107) flow simulations for the silo group, single cylinder simulations were used. The geometric resemblance of the group arrangement with rectangular cylinders on the one hand and of the interstitial spaces with tube arrays (e.g. heat exchangers) on the other hand is used to qualitatively compare the observed flow phenomena. The simulations show that the silo group can be treated neither as a tube array nor as a solid bluff body. Subsequent linking of dynamic wind pressures to dynamic properties of the silo structures reveals strong narrow band frequency peaks in the turbulent pressure coefficient spectra of the silos near the lee side corners of the group that match the structural natural frequencies of the third and fourth ovalling mode shape of the silos. This match indicates a forced, resonant response which
Integrable modification of the critical Chalker-Coddington network model
Ikhlef, Yacine; Fendley, Paul; Cardy, John
2011-10-01
We consider the Chalker-Coddington network model for the integer quantum Hall effect, and examine the possibility of solving it exactly. In the supersymmetric path integral framework, we introduce a truncation procedure, leading to a series of well-defined two-dimensional loop models with two loop flavors. In the phase diagram of the first-order truncated model, we identify four integrable branches related to the dilute Birman-Wenzl-Murakami braid-monoid algebra and parameterized by the loop fugacity n. In the continuum limit, two of these branches (1,2) are described by a pair of decoupled copies of a Coulomb-gas theory, whereas the other two branches (3,4) couple the two loop flavors, and relate to an SU(2){sub r}xSU(2){sub r}/SU(2){sub 2r} Wess-Zumino-Witten (WZW) coset model for the particular values n=-2cos[{pi}/(r+2)], where r is a positive integer. The truncated Chalker-Coddington model is the n=0 point of branch 4. By numerical diagonalization, we find that its universality class is neither an analytic continuation of the WZW coset nor the universality class of the original Chalker-Coddington model. It constitutes rather an integrable, critical approximation to the latter.
Integrable modification of the critical Chalker-Coddington network model
NASA Astrophysics Data System (ADS)
Ikhlef, Yacine; Fendley, Paul; Cardy, John
2011-10-01
We consider the Chalker-Coddington network model for the integer quantum Hall effect, and examine the possibility of solving it exactly. In the supersymmetric path integral framework, we introduce a truncation procedure, leading to a series of well-defined two-dimensional loop models with two loop flavors. In the phase diagram of the first-order truncated model, we identify four integrable branches related to the dilute Birman-Wenzl-Murakami braid-monoid algebra and parameterized by the loop fugacity n. In the continuum limit, two of these branches (1,2) are described by a pair of decoupled copies of a Coulomb-gas theory, whereas the other two branches (3,4) couple the two loop flavors, and relate to an SU(2)r×SU(2)r/SU(2)2r Wess-Zumino-Witten (WZW) coset model for the particular values n=-2cos[π/(r+2)], where r is a positive integer. The truncated Chalker-Coddington model is the n=0 point of branch 4. By numerical diagonalization, we find that its universality class is neither an analytic continuation of the WZW coset nor the universality class of the original Chalker-Coddington model. It constitutes rather an integrable, critical approximation to the latter.
Compressible cell gas models for asymmetric fluid criticality
NASA Astrophysics Data System (ADS)
Cerdeiriña, Claudio A.; Orkoulas, Gerassimos
2017-03-01
We thoroughly describe a class of models recently presented by Fisher and coworkers [Phys. Rev. Lett. 116, 040601 (2016)], 10.1103/PhysRevLett.116.040601. The crucial feature of such models, termed compressible cell gases (CCGs), is that the individual cell volumes of a lattice gas are allowed to fluctuate. They are studied via the seldom-used (μ , p , T ) ensemble, which leads to their exact mapping onto the Ising model. Remarkably, CCGs obey complete scaling, a formulation for the thermodynamic behavior of fluids near the gas-liquid critical point that accommodates features inherent to the asymmetric nature of this phase transition like the Yang-Yang (YY) and singular coexistence-curve diameter anomalies. The CCG0 models generated when volumes vary freely reveal local free volume fluctuations as the origin of these phenomena. Local energy-volume coupling is found to be another relevant microscopic factor. Furthermore, the CCG class is greatly extended by using the decoration transformation, with an interesting example being the Sastry-Debenedetti-Sciortino-Stanley model for hydrogen bonding in low-temperature water. The magnitude of anomalies is characterized by a single parameter, the YY ratio, which for the models so far considered here ranges from -∞ to 1/2 .
Monitoring of cerebral blood flow and ischemia in the critically ill.
Miller, Chad; Armonda, Rocco
2014-12-01
Secondary ischemic injury is common after acute brain injury and can be evaluated with the use of neuromonitoring devices. This manuscript provides guidelines for the use of devices to monitor cerebral blood flow (CBF) in critically ill patients. A Medline search was conducted to address essential pre-specified questions related to the utility of CBF monitoring. Peer-reviewed recommendations were constructed according to the GRADE criteria based upon the available supporting literature. Transcranial Doppler ultrasonography (TCD) and transcranial color-coded duplex sonography (TCCS) are predictive of angiographic vasospasm and delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage. TCD and TCCS may be beneficial in identifying vasospasm after traumatic brain injury. TCD and TCCS have shortcomings in identifying some secondary ischemic risks. Implantable thermal diffusion flowmetry (TDF) probes may provide real-time continuous quantitative assessment of ischemic risks. Data are lacking regarding ischemic thresholds for TDF or their correlation with ischemic injury and clinical outcomes.TCD and TCCS can be used to monitor CBF in the neurocritical care unit. Better and more developed methods of continuous CBF monitoring are needed to limit secondary ischemic injury in the neurocritical care unit.
Urbani, Francesca; Proietti, Enrico
2013-01-01
The development of immune monitoring assays is essential to determine the immune responses against tumor-specific antigens (TSAs) and tumor-associated antigens (TAAs) and their possible correlation with clinical outcome in cancer patients receiving immunotherapies. Despite the wide range of techniques used, to date these assays have not shown consistent results among clinical trials and failed to define surrogate markers of clinical efficacy to antitumor vaccines. Multiparameter flow cytometry- (FCM-) based assays combining different phenotypic and functional markers have been developed in the past decade for informative and longitudinal analysis of polyfunctional T-cells. These technologies were designed to address the complexity and functional heterogeneity of cancer biology and cellular immunity and to define biomarkers predicting clinical response to anticancer treatment. So far, there is still a lack of standardization of some of these immunological tests. The aim of this review is to overview the latest technologies for immune monitoring and to highlight critical steps involved in some of the FCM-based cellular immune assays. In particular, our laboratory is focused on melanoma vaccine research and thus our main goal was the validation of a functional multiparameter test (FMT) combining different functional and lineage markers to be applied in clinical trials involving patients with melanoma. PMID:24195078
The critical tension in the Cascading DGP model
Sbisà, Fulvio; Koyama, Kazuya E-mail: kazuya.koyama@port.ac.uk
2014-09-01
We study the behaviour of weak gravitational fields in the 6D Cascading DGP model using a bulk-based approach. To deal with the ambiguity in the thin limit of branes of codimension higher than one, we consider a specific regularization of the internal structure of the branes where the 5D brane can be considered thin with respect to the 4D one. We consider the solutions corresponding to pure tension sources on the 4D brane, and study perturbations at first order around these background solutions. We adopt a 4D scalar-vector-tensor decomposition, and focus on the scalar sector of perturbations. We show that, in a suitable 4D limit, the trace part of the 4D metric perturbations obeys a decoupled equation which suggests that it is a ghost for background tensions smaller than a critical tension, while it is a healthy field otherwise. We give a geometrical interpretation of the existence of the critical tension and of the reason why the relevant field is a ghost or not depending on the background tension. We however find a value of the critical tension which is different from the one already found in the literature. Differently from the results in the literature, our analysis implies that, choosing the background tension suitably, we can construct ghost-free models for any value of the free parameters of the theory. We suggest that the difference lies in the procedure used to evaluate the pillbox integration across the codimension-2 brane. We confirm the validity of our analysis by performing numerically the integration in a particular case where the solution inside the thick cod-2 brane is known exactly. We stress that the singular structure of the perturbation fields in the nested branes set-ups is very subtle, and that great care has to be taken when deriving the codimension-2 junction conditions.
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook
1987-01-01
Various experimental, analytical, and numerical analysis methods for flow-solid interaction of a nest of cylinders subjected to cross flows are reviewed. A nest of cylinders subjected to cross flows can be found in numerous engineering applications including the Space Shuttle Maine Engine-Main Injector Assembly (SSME-MIA) and nuclear reactor heat exchangers. Despite its extreme importance in engineering applications, understanding of the flow-solid interaction process is quite limited and design of the tube banks are mostly dependent on experiments and/or experimental correlation equations. For future development of major numerical analysis methods for the flow-solid interaction of a nest of cylinders subjected to cross flow, various turbulence models, nonlinear structural dynamics, and existing laminar flow-solid interaction analysis methods are included.
Concepts and parameterisation of Perla and FLM model using Flow-R for debris flow
NASA Astrophysics Data System (ADS)
Horton, P.; Jaboyedoff, M.; Rudaz, B.
2012-04-01
The Flow-R software was built to allow regional debris flow susceptibility assessment. It uses propagation algorithms such as the friction model from Perla and friction-limited models (FLM). By using concepts from both models, a methodology is proposed to evaluate the friction angle and mass-to-drag ratio based on the maximum velocity estimation for debris flows, and on the observed runout on the debris fan. The goal is to use the energy line concept, the debris fan slope, and the runout on the latter, to estimate the friction angle, the Mass to Drag ratio and maximum flow velocity for a given debris flow event and specific conditions of a catchment. A relation between those parameters themselves and between them and the observed characteristics of the flow (runout, speed of flow, viscosity, thickness) is established. The sensitivity of the Flow-R model is tested on two real cases and a theoretical topography for both model types. The importance of the friction angle, relative to M/D, is established. It demonstrates that the FLM model gives results similar to the Perla model, and is useful to determine the friction angle and M/D parameters on debris fan topography, using known events as calibration for each case. Those parameters can then be used as input for local hazard simulation and prediction. In addition, using a broad set of parameters instead of of an ideal one, inducing different propagation results, is proposed for debris flow hazard mapping and assessment.
Critical Behavior in Cellular Automata Animal Disease Transmission Model
NASA Astrophysics Data System (ADS)
Morley, P. D.; Chang, Julius
Using cellular automata model, we simulate the British Government Policy (BGP) in the 2001 foot and mouth epidemic in Great Britain. When clinical symptoms of the disease appeared in a farm, there is mandatory slaughter (culling) of all livestock in an infected premise (IP). Those farms in the neighboring of an IP (contiguous premise, CP), are also culled, aka nearest neighbor interaction. Farms where the disease may be prevalent from animal, human, vehicle or airborne transmission (dangerous contact, DC), are additionally culled, aka next-to-nearest neighbor interactions and lightning factor. The resulting mathematical model possesses a phase transition, whereupon if the physical disease transmission kernel exceeds a critical value, catastrophic loss of animals ensues. The nonlocal disease transport probability can be as low as 0.01% per day and the disease can still be in the high mortality phase. We show that the fundamental equation for sustainable disease transport is the criticality equation for neutron fission cascade. Finally, we calculate that the percentage of culled animals that are actually healthy is ≈30%.
Critical rotation of general-relativistic polytropic models revisited
NASA Astrophysics Data System (ADS)
Geroyannis, V.; Karageorgopoulos, V.
2013-09-01
We develop a perturbation method for computing the critical rotational parameter as a function of the equatorial radius of a rigidly rotating polytropic model in the "post-Newtonia approximation" (PNA). We treat our models as "initial value problems" (IVP) of ordinary differential equations in the complex plane. The computations are carried out by the code dcrkf54.f95 (Geroyannis and Valvi 2012 [P1]; modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane). Such a complex-plane treatment removes the syndromes appearing in this particular family of IVPs (see e.g. P1, Sec. 3) and allows continuation of the numerical integrations beyond the surface of the star. Thus all the required values of the Lane-Emden function(s) in the post-Newtonian approximation are calculated by interpolation (so avoiding any extrapolation). An interesting point is that, in our computations, we take into account the complete correction due to the gravitational term, and this issue is a remarkable difference compared to the classical PNA. We solve the generalized density as a function of the equatorial radius and find the critical rotational parameter. Our computations are extended to certain other physical characteristics (like mass, angular momentum, rotational kinetic energy, etc). We find that our method yields results comparable with those of other reliable methods. REFERENCE: V.S. Geroyannis and F.N. Valvi 2012, International Journal of Modern Physics C, 23, No 5, 1250038:1-15.
Modeling financial markets by self-organized criticality
NASA Astrophysics Data System (ADS)
Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea
2015-10-01
We present a financial market model, characterized by self-organized criticality, that is able to generate endogenously a realistic price dynamics and to reproduce well-known stylized facts. We consider a community of heterogeneous traders, composed by chartists and fundamentalists, and focus on the role of informative pressure on market participants, showing how the spreading of information, based on a realistic imitative behavior, drives contagion and causes market fragility. In this model imitation is not intended as a change in the agent's group of origin, but is referred only to the price formation process. We introduce in the community also a variable number of random traders in order to study their possible beneficial role in stabilizing the market, as found in other studies. Finally, we also suggest some counterintuitive policy strategies able to dampen fluctuations by means of a partial reduction of information.
Modeling financial markets by self-organized criticality.
Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea
2015-10-01
We present a financial market model, characterized by self-organized criticality, that is able to generate endogenously a realistic price dynamics and to reproduce well-known stylized facts. We consider a community of heterogeneous traders, composed by chartists and fundamentalists, and focus on the role of informative pressure on market participants, showing how the spreading of information, based on a realistic imitative behavior, drives contagion and causes market fragility. In this model imitation is not intended as a change in the agent's group of origin, but is referred only to the price formation process. We introduce in the community also a variable number of random traders in order to study their possible beneficial role in stabilizing the market, as found in other studies. Finally, we also suggest some counterintuitive policy strategies able to dampen fluctuations by means of a partial reduction of information.
Assessing Stop-Loss Policy Options through Personnel Flow Modeling
2014-01-01
Policy Options Through Personnel Flow Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Assessing Stop-Loss Policy Options Through Personnel Flow Modeling Stephen D. Brady NATIONAL DEFENSE RESEARCH INSTITUTE Assessing Stop-Loss Policy...Options Through Personnel Flow Modeling Stephen D. Brady Prepared for the Office of the Secretary of Defense Approved for public release
Architecture Models and Data Flows in Local and Group Datawarehouses
NASA Astrophysics Data System (ADS)
Bogza, R. M.; Zaharie, Dorin; Avasilcai, Silvia; Bacali, Laura
Architecture models and possible data flows for local and group datawarehouses are presented, together with some data processing models. The architecture models consists of several layers and the data flow between them. The choosen architecture of a datawarehouse depends on the data type and volumes from the source data, and inflences the analysis, data mining and reports done upon the data from DWH.
Effects of turbulent mixing on critical behaviour: renormalization-group analysis of the Potts model
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Malyshev, A. V.
2012-06-01
The critical behaviour of a system, subjected to strongly anisotropic turbulent mixing, is studied by means of the field-theoretic renormalization group. Specifically, the relaxational stochastic dynamics of a non-conserved multicomponent order parameter of the Ashkin-Teller-Potts model, coupled to a random velocity field with prescribed statistics, is considered. The velocity is taken to be Gaussian, white in time, with a correlation function of the form ∝δ(t - t‧)/|k⊥|d - 1 + ξ, where k⊥ is the component of the wave vector, perpendicular to the distinguished direction (‘direction of the flow’)—the d-dimensional generalization of the ensemble was introduced by Avellaneda and Majda (1990 Commun. Math. Phys. 131 381) within the context of passive scalar advection. This model can describe a rich class of physical situations. It is shown that, depending on the values of the parameters that define the self-interaction of the order parameter and the relation between the exponent ξ and the space dimension d, the system exhibits various types of large-scale scaling behaviour, associated with different infrared attractive fixed points of the renormalization-group equations. In addition to known asymptotic regimes (critical dynamics of the Potts model and passively advected field without self-interaction), the existence of a new, non-equilibrium and strongly anisotropic, type of critical behaviour (universality class) is established, and the corresponding critical dimensions are calculated to the leading order of the double expansion in ξ and ɛ = 6 - d (one-loop approximation). The scaling appears to be strongly anisotropic in the sense that the critical dimensions related to the directions parallel and perpendicular to the flow are essentially different.
An electricity consumption model for electric vehicular flow
NASA Astrophysics Data System (ADS)
Xiao, Hong; Huang, Hai-Jun; Tang, Tie-Qiao
2016-09-01
In this paper, we apply the relationships between the macro and micro variables of traffic flow to develop an electricity consumption model for electric vehicular flow. We use the proposed model to study the quantitative relationships between the electricity consumption/total power and speed/density under uniform flow, and the electricity consumptions during the evolution processes of shock, rarefaction wave and small perturbation. The numerical results indicate that the proposed model can perfectly describe the electricity consumption for electric vehicular flow, which shows that the proposed model is reasonable.
Modeling traffic flow at a single-lane urban roundabout
NASA Astrophysics Data System (ADS)
Wang, Ruili; Ruskin, Heather J.
2002-08-01
In this paper, we propose a new model to study traffic flow at a single-lane urban roundabout, using a multi-state cellular automata (CA) ring under the offside-priority rule (by which a vehicle entering gives way to one already on the roundabout). Each vehicle entering the roundabout is randomly characterized by a predetermined exit with specified probability. Driver behavior at the roundabout entrance is randomly grouped into four categories based on space required to enter the roundabout. Three aspects of roundabout performance in particular have been studied. The first looks at overall throughput (the number of vehicles that navigate the roundabout in a given time). This is considered for different geometries, turning and arrival rates (vehicles arrive at random with a Poisson distribution, with parameter λ⩽0.5 in general for free flow). The second investigates changes in queue length, delay time and vehicle density (ratio of the number vehicles to the number of cells) for an individual road. The third considers the impact of driver choices on throughput and operation of the roundabout. We find that throughput is influenced by the topology of the roundabout and turning rates, but only incidentally by size. Throughput reaches a maximum for critical arrival rate on one or more roads. Driver behavior has considerable impact on overall performance, with rapid congestion resulting from reckless choices. Vehicles drive on the left in Ireland, but rules are generally applicable.
Sample stream distortion modeled in continuous-flow electrophoresis
NASA Technical Reports Server (NTRS)
Rhodes, P. H.
1979-01-01
Buoyancy-induced disturbances in an electrophoresis-type chamber were investigated. Five tracer streams (latex) were used to visualize the flows while a nine-thermistor array sensed the temperature field. The internal heating to the chamber was provided by a 400 Hz electrical field. Cooling to the chamber was provided on the front and back faces and, in addition, on both chamber side walls. Disturbances to the symmetric base flow in the chamber occurred in the broad plane of the chamber and resulted from the formation of lateral and axial temperature gradients. The effect of these gradients was to retard or increase local flow velocities at different positions in the chamber cross section, which resulted in lateral secondary flows being induced in the broad plane of the chamber. As the adverse temperature gradients increased in magnitude, the critical Rayleigh number was approached and reverse (separated) flow became apparent, which, subsequently, led to the onset of time variant secondary flows.
Enhancing debris flow modeling parameters integrating Bayesian networks
NASA Astrophysics Data System (ADS)
Graf, C.; Stoffel, M.; Grêt-Regamey, A.
2009-04-01
Applied debris-flow modeling requires suitably constraint input parameter sets. Depending on the used model, there is a series of parameters to define before running the model. Normally, the data base describing the event, the initiation conditions, the flow behavior, the deposition process and mainly the potential range of possible debris flow events in a certain torrent is limited. There are only some scarce places in the world, where we fortunately can find valuable data sets describing event history of debris flow channels delivering information on spatial and temporal distribution of former flow paths and deposition zones. Tree-ring records in combination with detailed geomorphic mapping for instance provide such data sets over a long time span. Considering the significant loss potential associated with debris-flow disasters, it is crucial that decisions made in regard to hazard mitigation are based on a consistent assessment of the risks. This in turn necessitates a proper assessment of the uncertainties involved in the modeling of the debris-flow frequencies and intensities, the possible run out extent, as well as the estimations of the damage potential. In this study, we link a Bayesian network to a Geographic Information System in order to assess debris-flow risk. We identify the major sources of uncertainty and show the potential of Bayesian inference techniques to improve the debris-flow model. We model the flow paths and deposition zones of a highly active debris-flow channel in the Swiss Alps using the numerical 2-D model RAMMS. Because uncertainties in run-out areas cause large changes in risk estimations, we use the data of flow path and deposition zone information of reconstructed debris-flow events derived from dendrogeomorphological analysis covering more than 400 years to update the input parameters of the RAMMS model. The probabilistic model, which consistently incorporates this available information, can serve as a basis for spatial risk
Flow in geothermal wells: Part III. Calculation model for self-flowing well
Bilicki, Z.; Kestin, J.; Michaelides, E.E.
1981-06-01
The theoretical model described predicts the temperature, pressure, dynamic dryness fraction, and void fraction along the vertical channel of two-phase flow. The existing data from operating wells indicate good agreement with the model. (MHR)
ERIC Educational Resources Information Center
Combs, Liesl Baum; Cennamo, Katherine S.; Newbill, Phyllis Leary
2009-01-01
Critical and creative thinking skills are essential for students who plan to work and excel in the 21st-century workforce. This goal of the project reported in this article was to define critical and creative thinking in a way that would be useful for classroom teachers charged with developing such skills in their students. To accomplish their…
On explicit algebraic stress models for complex turbulent flows
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Speziale, C. G.
1992-01-01
Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.
Numerical modeling of two-dimensional confined flows
NASA Technical Reports Server (NTRS)
Greywall, M. S.
1979-01-01
A numerical model of two-dimensional confined flows is presented. The flow in the duct is partitioned into finite streams. The difference equations are then obtained by applying conservation principles directly to the individual streams. A listing of a computer code based on this approach in FORTRAN 4 language is presented. The code computes two dimensional compressible turbulent flows in ducts when the duct area along the flow is specified and the pressure gradient is unknown.
Experimental flow studies in an elastic Y-model.
Mijovic, Budimir; Liepsch, Dieter
2003-01-01
To determine the causes and history of atherosclerosis it is necessary to understand the hemodynamic parameters of blood circulation. Hemodynamic parameters play an important role in the formation of atherosclerotic plaques, especially near bends and bifurcations where the flow separates from the wall. Here the flow is laminar and non-axial with eddies, secondary flow, flow separation and stagnation points. Stenoses are found predominantly in flow separation areas. Therefore, it is important to separately study the following flow parameters: steady and pulsatile flow, wall elasticity and non-Newtonian flow behavior of blood. A simplified silicon elastic y-model simulating the human carotid artery was used for the analysis of these parameters. This model can be used for numerical studies as well. Flow was visualized at steady flow using dyes and at pulsatile flow with a photoelastic apparatus and a birefringent solution. The local axial velocity at steady and pulsatile flow was determined with a one-component Laser-Doppler-Anemometer (LDA). Pulsatile flow was generated by a piston membrane pump. A glycerin-water solution was used to simulate the Newtonian flow behavior of blood. A DMSO-Separan water solution was used to simulate the non-Newtonian flow behavior. Pulsatile flow creates higher and lower shear rates so called oscillating shear rate compare to steady flow depending on the velocity amplitude. The non-Newtonian fluid showed a markedly different flow behavior than the Newtonian fluid especially in areas of flow separation. Shear gradients were calculated from these velocity measurements using a bicubic spline interpolation. Shear stresses were calculated from these velocity shear gradients and the viscosity of the non-Newtonian fluid at these shear gradients. At special areas, high shear stresses > 10 Pa were found. The elasticity of the model wall also influences the flow behavior. The measurements showed that the characteristics of pulsatile flow and the
NASA Technical Reports Server (NTRS)
Berrier, B. L.; Leavitt, L. D.; Bangert, L. S.
1985-01-01
An investigation has been conducted in the Langley 16 Foot Transonic Tunnel to determine the weight flow measurement characteristics of a multiple critical Venturi system and the nozzle discharge coefficient characteristics of a series of convergent calibration nozzles. The effects on model discharge coefficient of nozzle throat area, model choke plate open area, nozzle pressure ratio, jet total temperature, and number and combination of operating Venturis were investigated. Tests were conducted at static conditions (tunnel wind off) at nozzle pressure ratios from 1.3 to 7.0.
A new two-temperature dissociation model for reacting flows
NASA Technical Reports Server (NTRS)
Olynick, David R.; Hassan, H. A.
1992-01-01
A new two-temperature dissociation model for flows undergoing compression is derived from kinetic theory. The model minimizes uncertainties associated with the two-temperature model of Park. The effects of the model on AOTV type flowfields are examined and compared with the Park model. Calculations are carried out for flows with and without ionization. When considering flows with ionization, a four temperature model is employed. For Fire II conditions, the assumption of equilibrium between the vibrational and electron-electronic temperatures is somewhat poor. A similar statement holds for the translational and rotational temperatures. These trends are consistent with results obtained using the direct simulation Monte Carlo method.
Modeling Blood Flow in the Aorta.
ERIC Educational Resources Information Center
McConnell, Colin J.; Carmichael, Jonathan B.; DeMont, M. Edwin
1997-01-01
Presents an exercise to demonstrate two fundamental concepts of fluid mechanics: the Reynolds number and the Principle of Continuity. The exercise demonstrates flow in a major blood vessel, such as the aorta, with and without a stenosis. Students observe the transition from laminar to turbulent flow as well as downstream persistence of turbulence.…
From Data Patterns to Mechanistic Models in Acute Critical Illness
Aerts, Jean-Marie; Haddad, Wassim M.; An, Gary; Vodovotz, Yoram
2014-01-01
The complexity of the physiologic and inflammatory response in acute critical illness has stymied the accurate diagnosis and development of therapies. The Society for Complex Acute Illness was formed a decade ago with the goal of leveraging multiple complex systems approaches in order to address this unmet need. Two main paths of development have characterized the Society’s approach: i) data pattern analysis, either defining the diagnostic/prognostic utility of complexity metrics of physiological signals or multivariate analyses of molecular and genetic data, and ii) mechanistic mathematical and computational modeling, all being performed with an explicit translational goal. Here, we summarize the progress to date on each of these approaches, along with pitfalls inherent in the use of each approach alone. We suggest that the next decade holds the potential to merge these approaches, connecting patient diagnosis to treatment via mechanism-based dynamical system modeling and feedback control, and allowing extrapolation from physiologic signals to biomarkers to novel drug candidates. As a predicate example, we focus on the role of data-driven and mechanistic models in neuroscience, and the impact that merging these modeling approaches can have on general anesthesia. PMID:24768566
Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.
1992-09-01
This report deals with critical heat flux (CHF) measurements in vertical down flow of water at low pressures in a round Inconel tube, 96 inches long and 0.62 inch inside diameter. A total of 28 CHF points were obtained. These data were found to correlate linearly with the single variable q, defined as the heat flux required to raise the enthalpy from the inlet value to the saturation value. These results were compared to the published results of Swedish investigators for vertical upflow of water at low pressures in round tubes of similar diameters and various lengths. The parameter q depends on the inlet enthalpy and is a nonlocal variable, thus this correlation is nonlocal unless the coefficients depend upon tube length in a particular prescribed manner. For the low pressure Swedish data, the coefficients are practically independent of length and hence the correlation is nonlocal. In the present investigation only one length was employed, so it is not possible to determine whether the correlation for these data is local or nonlocal, although there is reason to believe that it is local. The same correlation was applied to a large data base (thousands of CHF points) compiled from the published data of a number of groups and found to apply, with reasonable accuracy over a wide range of conditions, yielding sometimes local and sometimes nonlocal correlations. The basic philosophy of data analysis here was not to generate a single correlation which would reproduce all data, but to search for correlations which apply adequately over some range and which might have some mechanistic significance. The tentative conclusion is that at least two mechanisms appear operative, leading to two types of correlations, one local, the other nonlocal.
Combined Cellular Automaton Model for Mixed Traffic Flow with Non-Motorized Vehicles
NASA Astrophysics Data System (ADS)
Xie, Dong-Fan; Gao, Zi-You; Zhao, Xiao-Mei
To depict the mixed traffic flow consisting of motorized (m-) and non-motorized (nm-) vehicles, a new cellular automaton model is proposed by combining the NaSch model and the BCA model, and some rules are also introduced to depict the interaction between m-vehicles and nm-vehicles. By numerical simulations, the flux-density relations are investigated in detail. It can be found that the flux-density curves of m-vehicle flow can be classified into two types, corresponding to small and large density regions of nm-vehicles, respectively. In small density region of nm-vehicles, the maximum flux as well as the critical density decreases with the increase of nm-vehicle density. Similar characteristics can also be found in large density region of nm-vehicles. However, compared with the former case, the maximum flux is much lower, the phase transition from free flow to congested flow becomes continuous and thus the corresponding critical points are non-existent. The flux-density curves of nm-vehicle flow can also be classified into two types. And interestingly, the maximum flux and the corresponding density decrease first and keep constant later as the density of m-vehicle increases. Finally, the total transport capacity of the system is investigated. The results show that the maximum capacity can be reached at appropriate proportions for m-vehicles and nm-vehicles, which induces a controlling method to promote the capacity of mixed traffic flow.
A modified Green-Ampt model for water infiltration and preferential flow
NASA Astrophysics Data System (ADS)
Liu, D.
2015-12-01
Preferential flow is significant for its contribution to rapid response to hydrologic inputs at the soil surface and unsaturated zone flow, which is critical for flow generation in rainfall-runoff models. In combination with the diffuse and source-responsive flow equations, a new model for water infiltration that incorporates preferential flow is proposed in this paper. Its performance in estimating soil moisture at the catchment scale was tested with observed water content data from the Elder sub-basin of the South Fork Eel River, located in northern California, USA. The case study shows that the new model can improve the accuracy of soil water content simulation even at the catchment scale. The impacts of preferential flow on rainfall-runoff simulation were tested by the MISDc lumped hydrological model for the Elder River basin. 11 significant floods events, which were defined as having flood peak magnitudes greater than 10 times average discharge during the study period, were employed to assess runoff simulation improvement. The accuracy of the runoff simulation incorporating the preferential flow at the catchment scale improved significantly even though more model parameters were expected through the likelihood ratio test.
ShowFlow: A practical interface for groundwater modeling
Tauxe, J.D.
1990-12-01
ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.
A review of Reynolds stress models for turbulent shear flows
NASA Technical Reports Server (NTRS)
Speziale, Charles G.
1995-01-01
A detailed review of recent developments in Reynolds stress modeling for incompressible turbulent shear flows is provided. The mathematical foundations of both two-equation models and full second-order closures are explored in depth. It is shown how these models can be systematically derived for two-dimensional mean turbulent flows that are close to equilibrium. A variety of examples are provided to demonstrate how well properly calibrated versions of these models perform for such flows. However, substantial problems remain for the description of more complex turbulent flows where there are large departures from equilibrium. Recent efforts to extend Reynolds stress models to nonequilibrium turbulent flows are discussed briefly along with the major modeling issues relevant to practical naval hydrodynamics applications.
Self-organized criticality in a computer network model
Yuan; Ren; Shan
2000-02-01
We study the collective behavior of computer network nodes by using a cellular automaton model. The results show that when the load of network is constant, the throughputs and buffer contents of nodes are power-law distributed in both space and time. Also the feature of 1/f noise appears in the power spectrum of the change of the number of nodes that bear a fixed part of the system load. It can be seen as yet another example of self-organized criticality. Power-law decay in the distribution of buffer contents implies that heavy network congestion occurs with small probability. The temporal power-law distribution for throughput might be a reasonable explanation for the observed self-similarity in computer network traffic.
A compressible Navier-Stokes code for turbulent flow modeling
NASA Technical Reports Server (NTRS)
Coakley, T. J.
1984-01-01
An implicit, finite volume code for solving two dimensional, compressible turbulent flows is described. Second order upwind differencing of the inviscid terms of the equations is used to enhance stability and accuracy. A diagonal form of the implicit algorithm is used to improve efficiency. Several zero and two equation turbulence models are incorporated to study their impact on overall flow modeling accuracy. Applications to external and internal flows are discussed.
On a Decomposition Model for Optical Flow
NASA Astrophysics Data System (ADS)
Abhau, Jochen; Belhachmi, Zakaria; Scherzer, Otmar
In this paper we present a variational method for determining cartoon and texture components of the optical flow of a noisy image sequence. The method is realized by reformulating the optical flow problem first as a variational denoising problem for multi-channel data and then by applying decomposition methods. Thanks to the general formulation, several norms can be used for the decomposition. We study a decomposition for the optical flow into bounded variation and oscillating component in greater detail. Numerical examples demonstrate the capabilities of the proposed approach.
Wavelet transforms in a critical interface model for Barkhausen noise.
de Queiroz, S L A
2008-02-01
We discuss the application of wavelet transforms to a critical interface model which is known to provide a good description of Barkhausen noise in soft ferromagnets. The two-dimensional version of the model (one-dimensional interface) is considered, mainly in the adiabatic limit of very slow driving. On length scales shorter than a crossover length (which grows with the strength of the surface tension), the effective interface roughness exponent zeta is approximately 1.20 , close to the expected value for the universality class of the quenched Edwards-Wilkinson model. We find that the waiting times between avalanches are fully uncorrelated, as the wavelet transform of their autocorrelations scales as white noise. Similarly, detrended size-size correlations give a white-noise wavelet transform. Consideration of finite driving rates, still deep within the intermittent regime, shows the wavelet transform of correlations scaling as 1/f(1.5) for intermediate frequencies. This behavior is ascribed to intra-avalanche correlations.
Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow
NASA Astrophysics Data System (ADS)
Balouchi, Ashkan; Browne, Dana
2015-03-01
The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.
Paillet, Frederick L.
1998-01-01
A numerical model of flow in the vicinity of a borehole is used to analyze flowmeter data obtained with high-resolution flowmeters. The model is designed to (1) precisely compute flow in a borehole, (2) approximate the effects of flow in surrounding aquifers on the measured borehole flow, (3) allow for an arbitrary number (N) of entry/exit points connected to M < N far-field aquifers, and (4) be consistent with the practical limitations of flowmeter measurements such as limits of resolution, typical measurement error, and finite measurement periods. The model is used in three modes: (1) a quasi-steady pumping mode where there is no ambient flow, (2) a steady flow mode where ambient differences in far-field water levels drive flow between fracture zones in the borehole, and (3) a cross-borehole test mode where pumping in an adjacent borehole drives flow in the observation borehole. The model gives estimates of transmissivity for any number of fractures in steady or quasi-steady flow experiments that agree with straddle-packer test data. Field examples show how these cross-borehole-type curves can be used to estimate the storage coefficient of fractures and bedding planes and to determine whether fractures intersecting a borehole at different locations are hydraulically connected in the surrounding rock mass.
NASA Astrophysics Data System (ADS)
Nikolopoulos, Efthymios I.; Borga, Marco; Destro, Elisa; Marchi, Lorenzo
2015-04-01
Most of the work so far on the prediction of debris flow occurrence is focused on the identification of critical rainfall conditions. However, findings in the literature have shown that critical rainfall thresholds cannot always accurately identify debris flow occurrence, leading to false detections (positive or negative). One of the main reasons for this limitation is attributed to the fact that critical rainfall thresholds do not account for the characteristics of underlying land surface (e.g. geomorphology, moisture conditions, sediment availability, etc), which are strongly related to debris flow triggering. In addition, in areas where debris flows occur predominantly as a result of channel bed failure (as in many Alpine basins), the triggering factor is runoff, which suggests that identification of critical runoff conditions for debris flow prediction is more pertinent than critical rainfall. The primary objective of this study is to investigate the potential of a triggering index (TI), which combines variables related to runoff generation and channel morphology, for predicting debris flows occurrence. TI is based on a threshold criterion developed on past works (Tognacca et al., 2000; Berti and Simoni, 2005; Gregoretti and Dalla Fontana, 2008) and combines information on unit width peak flow, local channel slope and mean grain size. Estimation of peak discharge is based on the application of a distributed hydrologic model, while local channel slope is derived from a high-resolution (5m) DEM. Scaling functions of peak flows and channel width with drainage area are adopted since it is not possible to measure channel width or simulate peak flow at all channel nodes. TI values are mapped over the channel network thus allowing spatially distributed prediction but instead of identifying debris flow occurrence on single points, we identify their occurrence with reference to the tributary catchment involved. Evaluation of TI is carried out for five different basins
Modeling particle transport in downward and upward flows
NASA Astrophysics Data System (ADS)
Basha, H. A.; Culligan, P. J.
2010-07-01
Experimental data obtained for particle transport in downward and upward flows in smooth and rough porous media are analyzed at various flow rates. The data analysis and interpretation are aided through an analytical model with linear kinetics that assumes two sites for particle deposition within a medium, namely, reversible and irreversible, together with a dual mode of irreversible deposition. The bimodal particle transport model is obtained using the Green's function method and is capable of fitting, with reasonable accuracy, the observed transport and deposition behavior of particles. Approximations for advection-dominated flows are also obtained that could represent a simplified modeling tool. Expressions of the temporal moments are developed and algebraic equations are derived that express the model parameters in terms of the moments of the measured particle concentration distributions. The transport models helped define the relationship of the modeled parameters to flow velocity and media roughness. The fitting results show that the parameters for rough and smooth media vary in a systematic way with the pore fluid velocity. The results also reveal that flow direction has a significant influence on the mode and magnitude of irreversible particle deposition for the conditions investigated. For the same seepage velocity, the rate of particle deposition is greater for upward flows than for downward flows. Moreover, roughness effects increase the irreversible particle deposition in downward flows but have little effect in upward flows.
Modeling tree water flow as an unsaturated flow through a porous medium.
Aumann, Craig A; Ford, E David
2002-12-21
The electric circuit analogy has had a profound influence on how tree physiologists measure, model and think about tree water flow. For example, previous models that attempt to account for changes in saturation use the electric circuit analogy to define capacitance as the change in saturation per change in pressure. Given that capacitance is constant, this relationship implies that subjecting a block of wood to a pressure of -2.5 MPa for 2 min results in the same change in saturation as subjecting the same block to the same pressure for 2 days. Given the definition of capacitance, it is unclear how the electric circuit analogy could be used to predict changes in saturation separately from changes in pressure. The inadequacies in the electric circuit analogy discussed in this paper necessitate a new theory of tree water flow that recognizes the sapwood as being a porous medium and explicitly deals with the full implications of the unsaturated flow occurring in the sapwood. The theory proposed in this paper combines the Cohesion theory with a mathematical theory of multiphase flow through porous media. Based on this theory, both saturated and unsaturated tree water flow models are presented. Previous partial differential equation models of tree water flow based on the electric circuit analogy are shown to be mathematically equivalent to the model of saturated porous flow. The unsaturated model of tree water flow explicitly models the pressure profile and the rates of change in saturation and specific interfacial area (a measure of how the water in the unsaturated sapwood is partitioned between mobile and immobile components). The unsaturated model highlights the differences between saturated and unsaturated flow and the need to measure the variables governing tree water flow at higher spatial and temporal resolutions.
Critical ingredients of Type Ia supernova radiative-transfer modelling
NASA Astrophysics Data System (ADS)
Dessart, Luc; Hillier, D. John; Blondin, Stéphane; Khokhlov, Alexei
2014-07-01
We explore the physics of Type Ia supernova (SN Ia) light curves and spectra using the 1D non-local thermodynamic equilibrium (non-LTE) time-dependent radiative-transfer code CMFGEN. Rather than adjusting ejecta properties to match observations, we select as input one `standard' 1D Chandrasekhar-mass delayed-detonation hydrodynamical model, and then explore the sensitivity of radiation and gas properties of the ejecta on radiative-transfer modelling assumptions. The correct computation of SN Ia radiation is not exclusively a solution to an `opacity problem', characterized by the treatment of a large number of lines. We demonstrate that the key is to identify and treat important atomic processes consistently. This is not limited to treating line blanketing in non-LTE. We show that including forbidden-line transitions of metals, and in particular Co, is increasingly important for the temperature and ionization of the gas beyond maximum light. Non-thermal ionization and excitation are also critical since they affect the colour evolution and the ΔM15 decline rate of our model. While impacting little the bolometric luminosity, a more complete treatment of decay routes leads to enhanced line blanketing, e.g. associated with 48Ti in the U and B bands. Overall, we find that SN Ia radiation properties are influenced in a complicated way by the atomic data we employ, so that obtaining converged results is a real challenge. Nonetheless, with our fully fledged CMFGEN model, we obtain good agreement with the golden standard Type Ia SN 2005cf in the optical and near-IR, from 5 to 60 d after explosion, suggesting that assuming spherical symmetry is not detrimental to SN Ia radiative-transfer modelling at these times. Multi-D effects no doubt matter, but they are perhaps less important than accurately treating the non-LTE processes that are crucial to obtain reliable temperature and ionization structures.
Energy flow model for thin plate considering fluid loading with mean flow
NASA Astrophysics Data System (ADS)
Han, Ju-Bum; Hong, Suk-Yoon; Song, Jee-Hun
2012-11-01
Energy Flow Analysis (EFA) has been developed to predict the vibration energy density of system structures in the high frequency range. This paper develops the energy flow model for the thin plate in contact with mean flow. The pressure generated by mean flow affects energy governing equation and power reflection-transmission coefficients between plates. The fluid pressure is evaluated by using velocity potential and Bernoulli's equation, and energy governing equations are derived by considering the flexural wavenumbers of a plate, which are different along the direction of flexural wave and mean flow. The derived energy governing equation is composed of two kinds of group velocities. To verify the developed energy flow model, various numerical analyses are performed for a simple plate and a coupled plate for several excitation frequencies. The EFA results are compared with the analytical solutions, and correlations between the EFA results and the analytical solutions are verified.
Hamilton, David A.; Sorrell, Richard C.; Holtschlag, David J.
2008-01-01
In 2006, Michigan enacted laws to prevent new large capacity withdrawals from decreasing flows to the extent that they would functionally impair a stream's ability to support characteristic fish populations. The median streamflow for the summer month of lowest flow was specified by state decision makers as the index flow on which likely impacts of withdrawals would be assessed. At sites near long-term streamflow-gaging stations, analysis of streamflow records during July, August, and September was used to determine the index flow. At ungaged sites, an alternate method for computing the index flow was needed. This report documents the development of a method for computing index flows at ungaged stream sites in Michigan. The method is based on a regression model that computes the index water yield, which is the index flow divided by the drainage area. To develop the regression model, index flows were determined on the basis of daily flows measured during July, August, and September at 147 streamflow-gaging stations having 10 or more years of record (considered long-term stations) in Michigan. The corresponding index water yields were statistically related to climatic and basin characteristics upstream from the stations in the regression model. Climatic and basin characteristics selected as explanatory variables in the regression model include two aquifer-transmissivity and hydrologic-soil groups, forest land cover, and normal annual precipitation. Regression model estimates of water yield explain about 70.8 percent of the variability in index water yields indicated by streamflow-gaging station records. Index flows computed on the basis of regression-model estimates of water yield and corresponding drainage areas explain about 94.0 percent of the variability in index flows indicated by streamflow-gaging station records. No regional bias was detected in the regression-based estimates of water yield within seven hydrologic subregions spanning Michigan. Thus, the single
A general kinetic-flow coupling model for FCC riser flow simulation.
Chang, S. L.
1998-05-18
A computational fluid dynamic (CFD) code has been developed for fluid catalytic cracking (FCC) riser flow simulation. Depending on the application of interest, a specific kinetic model is needed for the FCC flow simulation. This paper describes a method to determine a kinetic model based on limited pilot-scale test data. The kinetic model can then be used with the CFD code as a tool to investigate optimum operating condition ranges for a specific FCC unit.
Spatial and Temporal Low-Dimensional Models for Fluid Flow
NASA Technical Reports Server (NTRS)
Kalb, Virginia
2008-01-01
A document discusses work that obtains a low-dimensional model that captures both temporal and spatial flow by constructing spatial and temporal four-mode models for two classic flow problems. The models are based on the proper orthogonal decomposition at two reference Reynolds numbers. Model predictions are made at an intermediate Reynolds number and compared with direct numerical simulation results at the new Reynolds number.
Nonlinear Reynolds stress model for turbulent shear flows
NASA Technical Reports Server (NTRS)
Barton, J. Michael; Rubinstein, R.; Kirtley, K. R.
1991-01-01
A nonlinear algebraic Reynolds stress model, derived using the renormalization group, is applied to equilibrium homogeneous shear flow and fully developed flow in a square duct. The model, which is quadratically nonlinear in the velocity gradients, successfully captures the large-scale inhomogeneity and anisotropy of the flows studied. The ratios of normal stresses, as well as the actual magnitudes of the stresses are correctly predicted for equilibrium homogeneous shear flow. Reynolds normal stress anisotropy and attendant turbulence driven secondary flow are predicted for a square duct. Profiles of mean velocity and normal stresses are in good agreement with measurements. Very close to walls, agreement with measurements diminishes. The model has the benefit of containing no arbitrary constants; all values are determined directly from the theory. It seems that near wall behavior is influenced by more than the large scale anisotropy accommodated in the current model. More accurate near wall calculations may well require a model for anisotropic dissipation.
Heck, Margaret L; Yen, Allen; Snyder, Trevor A; O'Rear, Edgar A; Papavassiliou, Dimitrios V
2017-02-07
The design of blood pumps for use in ventricular assist devices, which provide life-saving circulatory support in patients with heart failure, require remarkable precision and attention to detail to replicate the functionality of the native heart. The United States Food and Drug Administration (FDA) initiated a Critical Path Initiative to standardize and facilitate the use of computational fluid dynamics in the study and development of these devices. As a part of the study, a simplified centrifugal blood pump model generated by computer-aided design was released to universities and laboratories nationwide. The effects of changes in fluid rheology due to temperature, hematocrit, and turbulent flow on key metrics of the FDA pump were examined in depth using results from a finite volume-based commercial computational fluid dynamics code. Differences in blood damage indices obtained using Eulerian and Lagrangian formulations were considered. These results are presented and discussed awaiting future validation using experimental results, which will be released by the FDA at a future date.
Second moment closure modeling for rotating stably stratified turbulent shear flow
NASA Astrophysics Data System (ADS)
Ji, Minsuk
The general linear second moment closure (SMC) turbulence model is considered for flows subjected to buoyancy and rotation. Model response to external forces are analyzed with the aid of structural equilibrium analysis. A closed form equilibrium solution for the anisotropy tensor bij, dispersion tensor Kij, dimensionless scalar variance q2 /k(S/Stheta )2, and the ratio of mean to turbulent time scale epsilon/ Sk is obtained. The variable of particular interest to bifurcation analysis, epsilon/Sk is shown as a function of the parameters characterizing the body forces: O/S (the ratio of the rotation rate to the mean shear rate) for rotation and Rig (the gradient Richardson number) for buoyancy; it determines the bifurcation surface in the epsilon/Sk-O/S-Rig space. It is shown, with the use of the closed form solution, that the conventional general linear models do not have a real and stable equilibrium solution when rotational and buoyant forces of certain magnitudes are simultaneously imposed on the flow. When this occurs, time integration of the turbulence model results in a diverging solution. A new model is proposed that removes this unphysical behavior. It ensures the existence of stable, real solutions for all combinations of rotation and buoyancy. Further improvements to the model are made through bifurcation analysis. Model constants are adjusted such that the model's bifurcation characteristics are in agreement with the physically observed onset of turbulence stabilization due to stable stratification. Experimental data and numerical simulation results for stably stratified homogeneous shear flow suggest the critical gradient Richardson number of Ricrg = 0.25, and the new model is able to predict it correctly. In connection with the bifurcation analysis of SMC models, rapid distortion theory (RDT) of turbulence is applied to rotating, stably stratified shear flow to provide the stability characteristics of such flows. It is shown that the RDT predictions are
Development and Validation of a Turbulence Wall Model for Compressible Flows with Heat Transfer
NASA Astrophysics Data System (ADS)
Komives, Jeffrey R.
The computational cost to model high Reynolds number flows of engineering interest scales poorly with problem size and is excessively expensive. This fact motivates the development of turbulence wall models to lessen the computational burden. These models aim to provide accurate wall flux quantification on computational meshes that would otherwise be unable to accurately estimate these quantities. The benefit of using such an approximation is that the height of the wall-adjacent computational elements can be increased by one to two orders of magnitude, allowing for comparable increases in stable explicit timestep. This increase in timestep is critically necessary for the large eddy simulation of high Reynolds number turbulent flows. To date, most research in the application of wall models has focused on incompressible flows or flows with very weak compressibility. Very few studies examine the applicability of wall models to flows with significant compressibility and heat transfer. The present work details the derivation of a wall model appropriate for compressible flows with heat transfer. The model framework allows for the inclusion of non-equilibrium terms in the determination of wall shear and heat transfer. The model is applied to a variety of supersonic and hypersonic flows, and is studied in both Reynolds-averaged simulations and large eddy simulations. The impact of several modeling approaches and model terms is examined. The wall-modeled calculations show excellent agreement with wall-resolved calculations and experimental data. For time accurate calculations, the use of the wall model allows for explicit timesteps more than 20 times larger than that of the wall-resolved calculation, significantly reducing both the cost of the calculation and the time required converge the solution.
Ciaffoni, Luca; O’Neill, David P.; Couper, John H.; Ritchie, Grant A. D.; Hancock, Gus; Robbins, Peter A.
2016-01-01
There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible. PMID:27532048
A New Critical State Model for Geomechanical Behavior of Methane Hydrate-Bearing Sands
NASA Astrophysics Data System (ADS)
Lin, J. S.; Xing, P.; Rutqvist, J.; Seol, Y.; Choi, J. H.
2014-12-01
Methane hydrate bearing sands behave like sands once the hydrate has dissociated, but could exhibit a substantial increase in the shear strength, stiffness and dilatancy as the degree of hydrate saturation increases. A new critical state model was developed that incorporates the spatially mobilized plane (SMP) concept, which has been proven effective in modeling mechanical behavior of sands. While this new model was built on the basic constructs of the critical state model, important enhancements were introduced. The model adopted the t-stress concept, which defined the normal and shear stress on the SMP, in describing the plastic behavior of the soil. In this connection the versatile Matsuoka-Nakai yield criterion was also employed, which defined the general three dimensional yield behavior. The resulting constitutive law was associated in the t-stress space, but became non-associated in the conventional p-q stress space as it should be for sands. The model also introduced a generalized degree of hydrate saturation concept that was modified from the pioneering work of the Cambridge group. The model gives stress change when the sands are subjected to straining, and/or to hydrate saturation changes. The performance of the model has been found satisfactory using data from laboratory triaxial tests on reconstituted samples and core samples taken from Nankai Trough, Japan. The model has been implemented into FLAC3D. A coupling example with the multiphase flow code, TOUGH+, is presented which simulates the mechanical behavior of a sample when the surrounding temperature has been raised, and the hydrate undergoes state change and no longer resides in the stability zone.
Modeling of the blood rheology in steady-state shear flows
Apostolidis, Alex J.; Beris, Antony N.
2014-05-15
We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.
Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Suh, Sangwon; Shigetomi, Yosuke; Oshita, Yuko
2014-01-01
This study, encompassing 231 countries and regions, quantifies the global transfer of three critical metals (neodymium, cobalt, and platinum) considered vital for low-carbon technologies by means of material flow analysis (MFA), using trade data (BACI) and the metal contents of trade commodities, resolving the optimization problem to ensure the material balance of the metals within each country and region. The study shows that in 2005 international trade led to global flows of 18.6 kt of neodymium, 154 kt of cobalt, and 402 t of platinum and identifies the main commodities and top 50 bilateral trade links embodying these metals. To explore the issue of consumption efficiency, the flows were characterized according to the technological level of each country or region and divided into three types: green ("efficient use"), yellow ("moderately efficient use"), and red ("inefficient use"). On this basis, the shares of green, yellow, and red flows in the aggregate global flow of Nd were found to be 1.2%, 98%, and 1.2%, respectively. For Co, the respective figures are 53%, 28%, and 19%, and for Pt 15%, 84%, and 0.87%. Furthermore, a simple indicator focusing on the composition of the three colored flows for each commodity was developed to identify trade commodities that should be prioritized for urgent technical improvement to reduce wasteful use of the metals. Based on the indicator, we discuss logical, strategic identification of the responsibilities and roles of the countries involved in the global flows.
Critical behavior of the random-bond Ashkin-Teller model: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Wiseman, Shai; Domany, Eytan
1995-04-01
The critical behavior of a bond-disordered Ashkin-Teller model on a square lattice is investigated by intensive Monte Carlo simulations. A duality transformation is used to locate a critical plane of the disordered model. This critical plane corresponds to the line of critical points of the pure model, along which critical exponents vary continuously. Along this line the scaling exponent corresponding to randomness φ=(α/ν) varies continuously and is positive so that the randomness is relevant, and different critical behavior is expected for the disordered model. We use a cluster algorithm for the Monte Carlo simulations based on the Wolff embedding idea, and perform a finite size scaling study of several critical models, extrapolating between the critical bond-disordered Ising and bond-disordered four-state Potts models. The critical behavior of the disordered model is compared with the critical behavior of an anisotropic Ashkin-Teller model, which is used as a reference pure model. We find no essential change in the order parameters' critical exponents with respect to those of the pure model. The divergence of the specific heat C is changed dramatically. Our results favor a logarithmic type divergence at Tc, C~lnL for the random-bond Ashkin-Teller and four-state Potts models and C~ln lnL for the random-bond Ising model.
International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.
Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen
2015-01-01
This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.
International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis
Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen
2015-01-01
This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries’ roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading “trophic levels” have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows. PMID:26569618
A Conceptual Framework for Improving Critical Care Patient Flow and Bed Use
Long, Elisa F.
2015-01-01
Rationale: High demand for intensive care unit (ICU) services and limited bed availability have prompted hospitals to address capacity planning challenges. Simulation modeling can examine ICU bed assignment policies, accounting for patient acuity, to reduce ICU admission delays. Objectives: To provide a framework for data-driven modeling of ICU patient flow, identify key measurable outcomes, and present illustrative analysis demonstrating the impact of various bed allocation scenarios on outcomes. Methods: A description of key inputs for constructing a queuing model was outlined, and an illustrative simulation model was developed to reflect current triage protocol within the medical ICU and step-down unit (SDU) at a single tertiary-care hospital. Patient acuity, arrival rate, and unit length of stay, consisting of a “service time” and “time to transfer,” were estimated from 12 months of retrospective data (n = 2,710 adult patients) for 36 ICU and 15 SDU staffed beds. Patient priority was based on acuity and whether the patient originated in the emergency department. The model simulated the following hypothetical scenarios: (1) varied ICU/SDU sizes, (2) reserved ICU beds as a triage strategy, (3) lower targets for time to transfer out of the ICU, and (4) ICU expansion by up to four beds. Outcomes included ICU admission wait times and unit occupancy. Measurements and Main Results: With current bed allocation, simulated wait time averaged 1.13 (SD, 1.39) hours. Reallocating all SDU beds as ICU decreased overall wait times by 7.2% to 1.06 (SD, 1.39) hours and increased bed occupancy from 80 to 84%. Reserving the last available bed for acute patients reduced wait times for acute patients from 0.84 (SD, 1.12) to 0.31 (SD, 0.30) hours, but tripled subacute patients’ wait times from 1.39 (SD, 1.81) to 4.27 (SD, 5.44) hours. Setting transfer times to wards for all ICU/SDU patients to 1 hour decreased wait times for incoming ICU patients, comparable to building
New concepts for Reynolds stress transport equation modeling of inhomogeneous flows
NASA Technical Reports Server (NTRS)
Perot, J. Blair; Moin, Parviz
1993-01-01
The ability to model turbulence near solid walls and other types of boundaries is important in predicting complex engineering flows. Most turbulence modeling has concentrated either on flows which are nearly homogeneous or isotropic, or on turbulent boundary layers. Boundary layer models usually rely very heavily on the presence of mean shear and the production of turbulence due to that mean shear. Most other turbulence models are based on the assumption of quasi-homogeneity. However, there are many situations of engineering interest which do not involve large shear rates and which are not quasi-homogeneous or isotropic. Shear-free turbulent boundary layers are the prototypical example of such flows, with practical situations being separation and reattachment, bluff body flow, high free-stream turbulence, and free surface flows. Although these situations are not as common as the variants of the flat plate turbulent boundary layer, they tend to be critical factors in complex engineering situations. The models developed are intended to extend classical quasi-homogeneous models into regions of large inhomogeneity. These models do not rely on the presence of mean shear or production, but are still applicable when those additional effects are included. Although the focus is on shear-free boundary layers as tests for these models, results for standard shearing boundary layers are also shown.
Two-phase-flow models and their limitations
Ishii, M.; Kocamustafaogullari, G.
1982-01-01
An accurate prediction of transient two-phase flow is essential to safety analyses of nuclear reactors under accident conditions. The fluid flow and heat transfer encountered are often extremely complex due to the reactor geometry and occurrence of transient two-phase flow. Recently considerable progresses in understanding and predicting these phenomena have been made by a combination of rigorous model development, advanced computational techniques, and a number of small and large scale supporting experiments. In view of their essential importance, the foundation of various two-phase-flow models and their limitations are discussed in this paper.
A formal definition of data flow graph models
NASA Technical Reports Server (NTRS)
Kavi, Krishna M.; Buckles, Bill P.; Bhat, U. Narayan
1986-01-01
In this paper, a new model for parallel computations and parallel computer systems that is based on data flow principles is presented. Uninterpreted data flow graphs can be used to model computer systems including data driven and parallel processors. A data flow graph is defined to be a bipartite graph with actors and links as the two vertex classes. Actors can be considered similar to transitions in Petri nets, and links similar to places. The nondeterministic nature of uninterpreted data flow graphs necessitates the derivation of liveness conditions.
Validation of numerical models for flow simulation in labyrinth seals
NASA Astrophysics Data System (ADS)
Frączek, D.; Wróblewski, W.
2016-10-01
CFD results were compared with the results of experiments for the flow through the labyrinth seal. RANS turbulence models (k-epsilon, k-omega, SST and SST-SAS) were selected for the study. Steady and transient results were analyzed. ANSYS CFX was used for numerical computation. The analysis included flow through sealing section with the honeycomb land. Leakage flows and velocity profiles in the seal were compared. In addition to the comparison of computational models, the divergence of modeling and experimental results has been determined. Tips for modeling these problems were formulated.
CFD code evaluation for internal flow modeling
NASA Technical Reports Server (NTRS)
Chung, T. J.
1990-01-01
Research on the computational fluid dynamics (CFD) code evaluation with emphasis on supercomputing in reacting flows is discussed. Advantages of unstructured grids, multigrids, adaptive methods, improved flow solvers, vector processing, parallel processing, and reduction of memory requirements are discussed. As examples, researchers include applications of supercomputing to reacting flow Navier-Stokes equations including shock waves and turbulence and combustion instability problems associated with solid and liquid propellants. Evaluation of codes developed by other organizations are not included. Instead, the basic criteria for accuracy and efficiency have been established, and some applications on rocket combustion have been made. Research toward an ultimate goal, the most accurate and efficient CFD code, is in progress and will continue for years to come.
Synchronized traffic flow simulating with cellular automata model
NASA Astrophysics Data System (ADS)
Tian, Jun-fang; Jia, Bin; Li, Xin-gang; Jiang, Rui; Zhao, Xiao-mei; Gao, Zi-you
2009-12-01
The synchronized flow traffic phase of Kerner’s three-phase traffic theory can be well reproduced by the model proposed by Jiang and Wu [R. Jiang, Q.S. Wu, J. Phys. A: Math. Gen. 36 (2003) 381]. But in the Jiang and Wu model, the rule for brake light-after switching on, the brake light will not set off until the vehicle accelerates-is obviously unrealistic. Thus we improved the model by considering the difference in accelerating and decelerating performance under different driving conditions. The fundamental diagram and spatial-temporal diagrams are analyzed. We confirmed that the new model could reproduce the synchronized flow by two methods, i.e. the traffic flow interruption effect and performing microscopic analysis of time series data. Simulation results show that the decelerating difference is an important factor to reproduce the synchronized flow. We expect that our work could make contributions to understanding the mechanism of the synchronized flow.
Computational modeling of flow-altering surgeries in basilar aneurysms.
Rayz, V L; Abla, A; Boussel, L; Leach, J R; Acevedo-Bolton, G; Saloner, D; Lawton, M T
2015-05-01
In cases where surgeons consider different interventional options for flow alterations in the setting of pathological basilar artery hemodynamics, a virtual model demonstrating the flow fields resulting from each of these options can assist in making clinical decisions. In this study, image-based computational fluid dynamics (CFD) models were used to simulate the flow in four basilar artery aneurysms in order to evaluate postoperative hemodynamics that would result from flow-altering interventions. Patient-specific geometries were constructed using MR angiography and velocimetry data. CFD simulations carried out for the preoperative flow conditions were compared to in vivo phase-contrast MRI measurements (4D Flow MRI) acquired prior to the interventions. The models were then modified according to the procedures considered for each patient. Numerical simulations of the flow and virtual contrast transport were carried out in each case in order to assess postoperative flow fields and estimate the likelihood of intra-aneurysmal thrombus deposition following the procedures. Postoperative imaging data, when available, were used to validate computational predictions. In two cases, where the aneurysms involved vital pontine perforator arteries branching from the basilar artery, idealized geometries of these vessels were incorporated into the CFD models. The effect of interventions on the flow through the perforators was evaluated by simulating the transport of contrast in these vessels. The computational results were in close agreement with the MR imaging data. In some cases, CFD simulations could help determine which of the surgical options was likely to reduce the flow into the aneurysm while preserving the flow through the basilar trunk. The study demonstrated that image-based computational modeling can provide guidance to clinicians by indicating possible outcome complications and indicating expected success potential for ameliorating pathological aneurysmal flow
Testing geodynamic models of lowermost mantle flow with a regional shear wave splitting data set
NASA Astrophysics Data System (ADS)
Ford, H. A.; Long, M. D.
2015-12-01
Global flow models rely on a number of assumptions, including composition, temperature, viscosity, and deformation mechanism. In the upper mantle, flow models and their associated assumptions can be tested and refined with observations of seismic anisotropy, which is treated as a proxy for flow direction. Beneath the transition zone, direct observations of seismic anisotropy are scarce, except for in the lowermost ~250 km of the mantle. In this study, we utilize a comprehensive, previously published (Ford et al., 2015) shear wave splitting study in order to test a three-dimensional global geodynamic flow model (Walker et al., 2011). Our study focuses on a region of the lowermost mantle along the eastern edge of the African Superplume beneath the Afar region. We find that our observations are fit by a model which invokes slip along the (010) plane of post-perovskite with flow directed down and to the southwest. Critically, we demonstrate the ability of a regional data set to interrogate models of lower mantle flow.
Modeling of Wall-Bounded Complex Flows and Free Shear Flows
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.
1994-01-01
Various wall-bounded flows with complex geometries and free shear flows have been studied with a newly developed realizable Reynolds stress algebraic equation model. The model development is based on the invariant theory in continuum mechanics. This theory enables us to formulate a general constitutive relation for the Reynolds stresses. Pope was the first to introduce this kind of constitutive relation to turbulence modeling. In our study, realizability is imposed on the truncated constitutive relation to determine the coefficients so that, unlike the standard k-E eddy viscosity model, the present model will not produce negative normal stresses in any situations of rapid distortion. The calculations based on the present model have shown an encouraging success in modeling complex turbulent flows.
Mathematical modeling of slope flows with entrainment as flows of non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Zayko, Julia; Eglit, Margarita
2015-04-01
Non-Newtonian fluids in which the shear stresses are nonlinear functions of the shear strain rates are used to model slope flows such as snow avalanches, mudflows, debris flows. The entrainment of bottom material is included into the model basing on the assumption that in entraining flows the bed friction is equal to the shear stress of the bottom material (Issler et al, 2011). Unsteady motion down long homogeneous slopes with constant inclines is studied numerically for different flow rheologies and different slope angles. Variation of the velocity profile, increase of the flow depth and velocity due to entrainment as well as the value of the entrainment rate is calculated. Asymptotic formulae for the entrainment rate are derived for unsteady flows of different rheological properties. REFERENCES Chowdhury M., Testik F., 2011. Laboratory testing of mathematical models for high-concentration fluid mud turbidity currents. Ocean Engineering 38, 256-270. Eglit, M.E., Demidov, K.S., 2005. Mathematical modeling of snow entrainment in avalanche motion. Cold Reg. Sci. Technol. 43 (1-2), 10-23. Eglit M. E., Yakubenko A. E., 2012, Mathematical Modeling of slope flows entraining bottom material. Eglit M. E., Yakubenko A. E., 2014, Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol. 108, 139-148. Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), pp.143-147 Kern M. A., Tiefenbacher F., McElwaine J., N., 2004. The rheology of snow in large chute flows. Cold Regions Science and Technology, 39, 181 -192. Naaim, M., Faug, T., Naaim-Bouvet, F., 2003. Dry granular flow modelling including erosion and deposition. Surv. Geophys. 24, 569-585. Naaim, M., Naaim-Bouvet, F., Faug, T., Bouchet, A., 2004. Dense snow avalanche modeling: flow, erosion, deposition and obstacle effects. Cold Reg. Sci. Technol. 39, 193-204. Rougier, J & Kern, M 2010, 'Predicting snow
Verification of the karst flow model under laboratory controlled conditions
NASA Astrophysics Data System (ADS)
Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko
2016-04-01
Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different
Current Trends in Modeling Research for Turbulent Aerodynamic Flows
NASA Technical Reports Server (NTRS)
Gatski, Thomas B.; Rumsey, Christopher L.; Manceau, Remi
2007-01-01
The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.
Information transfer and criticality in the Ising model on the human connectome.
Marinazzo, Daniele; Pellicoro, Mario; Wu, Guorong; Angelini, Leonardo; Cortés, Jesús M; Stramaglia, Sebastiano
2014-01-01
We implement the Ising model on a structural connectivity matrix describing the brain at two different resolutions. Tuning the model temperature to its critical value, i.e. at the susceptibility peak, we find a maximal amount of total information transfer between the spin variables. At this point the amount of information that can be redistributed by some nodes reaches a limit and the net dynamics exhibits signature of the law of diminishing marginal returns, a fundamental principle connected to saturated levels of production. Our results extend the recent analysis of dynamical oscillators models on the connectome structure, taking into account lagged and directional influences, focusing only on the nodes that are more prone to became bottlenecks of information. The ratio between the outgoing and the incoming information at each node is related to the the sum of the weights to that node and to the average time between consecutive time flips of spins. The results for the connectome of 66 nodes and for that of 998 nodes are similar, thus suggesting that these properties are scale-independent. Finally, we also find that the brain dynamics at criticality is organized maximally to a rich-club w.r.t. the network of information flows.
Self-organized criticality in asymmetric exclusion model with noise for freeway traffic
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1995-02-01
The one-dimensional asymmetric simple-exclusion model with open boundaries for parallel update is extended to take into account temporary stopping of particles. The model presents the traffic flow on a highway with temporary deceleration of cars. Introducing temporary stopping into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. In the self-organized critical state, start-stop waves (or traffic jams) appear with various sizes (or lifetimes). The typical interval < s>between consecutive jams scales as < s> ≃ Lv with v = 0.51 ± 0.05 where L is the system size. It is shown that the cumulative jam-interval distribution Ns( L) satisfies the finite-size scaling form ( Ns( L) ≃ L- vf( s/ Lv). Also, the typical lifetime
ERIC Educational Resources Information Center
Huh, Seonmin
2016-01-01
This article explores the general patterns of interactions between the teacher and students during the different instructional steps when the teacher attempted to incorporate both conventional skill-based reading and critical literacy in an English as a foreign language (EFL) literacy class in a Korean university. There has been a paucity of EFL…
ERIC Educational Resources Information Center
Muhlisin, Ahmad; Susilo, Herawati; Amin, Mohamad; Rohman, Fatchur
2016-01-01
The purposes of this study were to: 1) Examine the effect of RMS learning model towards critical thinking skills. 2) Examine the effect of different academic abilities against critical thinking skills. 3) Examine the effect of the interaction between RMS learning model and different academic abilities against critical thinking skills. The research…
Verjus, Romuald; Angilella, Jean-Régis
2016-05-01
Inertial particles are often observed to be trapped, temporarily or permanently, by recirculation cells which are ubiquitous in natural or industrial flows. In the limit of small particle inertia, determining the conditions of trapping is a challenging task, as it requires a large number of numerical simulations or experiments to test various particle sizes or densities. Here, we investigate this phenomenon analytically and numerically in the case of heavy particles (e.g., aerosols) at low Reynolds number, to derive a trapping criterion that can be used both in analytical and numerical velocity fields. The resulting criterion allows one to predict the characteristics of trapped particles as soon as single-phase simulations of the flow are performed. Our analysis is valid for two-dimensional particle-laden flows in the vertical plane, in the limit where the particle inertia, the free-fall terminal velocity, and the flow unsteadiness can be treated as perturbations. The weak unsteadiness of the flow generally induces a chaotic tangle near heteroclinic or homoclinic cycles if any, leading to the apparent diffusion of fluid elements through the boundary of the cell. The critical particle Stokes number St_{c} below which aerosols also enter and exit the cell in a complex manner has been derived analytically, in terms of the flow characteristics. It involves the nondimensional curvature-weighted integral of the squared velocity of the steady fluid flow along the dividing streamline of the recirculation cell. When the flow is unsteady and St>St_{c}, a regular motion takes place due to gravity and centrifugal effects, like in the steady case. Particles driven towards the interior of the cell are trapped permanently. In contrast, when the flow is unsteady and St
NASA Astrophysics Data System (ADS)
Verjus, Romuald; Angilella, Jean-Régis
2016-05-01
Inertial particles are often observed to be trapped, temporarily or permanently, by recirculation cells which are ubiquitous in natural or industrial flows. In the limit of small particle inertia, determining the conditions of trapping is a challenging task, as it requires a large number of numerical simulations or experiments to test various particle sizes or densities. Here, we investigate this phenomenon analytically and numerically in the case of heavy particles (e.g., aerosols) at low Reynolds number, to derive a trapping criterion that can be used both in analytical and numerical velocity fields. The resulting criterion allows one to predict the characteristics of trapped particles as soon as single-phase simulations of the flow are performed. Our analysis is valid for two-dimensional particle-laden flows in the vertical plane, in the limit where the particle inertia, the free-fall terminal velocity, and the flow unsteadiness can be treated as perturbations. The weak unsteadiness of the flow generally induces a chaotic tangle near heteroclinic or homoclinic cycles if any, leading to the apparent diffusion of fluid elements through the boundary of the cell. The critical particle Stokes number Stc below which aerosols also enter and exit the cell in a complex manner has been derived analytically, in terms of the flow characteristics. It involves the nondimensional curvature-weighted integral of the squared velocity of the steady fluid flow along the dividing streamline of the recirculation cell. When the flow is unsteady and St>Stc , a regular motion takes place due to gravity and centrifugal effects, like in the steady case. Particles driven towards the interior of the cell are trapped permanently. In contrast, when the flow is unsteady and St
Yamabata, Shiho; Shiraishi, Hirokazu; Munechika, Mai; Fukushima, Hideki; Fukuoka, Yoshiyuki; Hojo, Tatsuya; Shirayama, Takeshi; Horii, Motoyuki; Matoba, Satoaki; Kubo, Toshikazu
2016-01-01
Objectives: We investigated the effects of electrical stimulation therapy on cutaneous and muscle blood flow in critical limb ischemia patients following regenerative therapy. Methods: Three groups were studied: 10 healthy young subjects, 10 elderly subjects, and 7 critical limb ischemia patients after regenerative therapy. After 5 min rest, electrical stimulation was applied at 5 Hz on the tibialis anterior muscle for 10 min. We estimated the relative changes in oxyhemoglobin and total hemoglobin compared to the basal values at rest (Δ[HbO2], Δ[Hbtot]), which reflected the blood flow in the skin and muscle layer, and we simultaneously measured the tissue O2 saturation (StO2) throughout the electrical stimulation and recovery phase by near-infrared spectroscopy. Results: The Δ[HbO2] and Δ[Hbtot] values of the muscle layer in critical limb ischemia patients increased gradually and remained significantly higher at the 5-min and 10-min recovery periods after the electrical stimulation without reducing the StO2, but there is no significant change in the other two groups. Skin blood flow was not influenced by electrical stimulation in three groups. Conclusion: This improvement of the peripheral circulation by electrical stimulation would be beneficial as the adjunctive therapy after regenerative cell therapy. PMID:27504185
A Non-Fickian Mixing Model for Stratified Turbulent Flows
2011-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Non-Fickian Mixing Model for Stratified Turbulent Flows...would be to improve the predictive skill of the Navy numerical models for submesoscale transport in the ocean. OBJECTIVES My main objective...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE A Non-Fickian Mixing Model for Stratified Turbulent Flows 5a. CONTRACT NUMBER 5b. GRANT
APPROXIMATE MULTIPHASE FLOW MODELING BY CHARACTERISTIC METHODS
The flow of petroleum hydrocarbons, organic solvents and other liquids that are immiscible with water presents the nation with some of the most difficult subsurface remediation problems. One aspect of contaminant transport associated releases of such liquids is the transport as a...
Mathematical and Numerical Modeling of Turbulent Flows.
Vedovoto, João M; Serfaty, Ricardo; Da Silveira Neto, Aristeu
2015-01-01
The present work is devoted to the development and implementation of a computational framework to perform numerical simulations of low Mach number turbulent flows over complex geometries. The algorithm under consideration is based on a classical predictor-corrector time integration scheme that employs a projection method for the momentum equations. The domain decomposition strategy is adopted for distributed computing, displaying very satisfactory levels of speed-up and efficiency. The Immersed Boundary Methodology is used to characterize the presence of a complex geometry. Such method demands two separate grids: An Eulerian, where the transport equations are solved with a Finite Volume, second order discretization and a Lagrangian domain, represented by a non-structured shell grid representing the immersed geometry. The in-house code developed was fully verified by the Method of Manufactured Solutions, in both Eulerian and Lagrangian domains. The capabilities of the resulting computational framework are illustrated on four distinct cases: a turbulent jet, the Poiseuille flow, as a matter of validation of the implemented Immersed Boundary methodology, the flow over a sphere covering a wide range of Reynolds numbers, and finally, with the intention of demonstrating the applicability of Large Eddy Simulations - LES - in an industrial problem, the turbulent flow inside an industrial fan.
Predictive Capabilities of a Relaxation Model for Parcel-Based Granular Flow Simulations
NASA Astrophysics Data System (ADS)
Radl, Stefan; Sundaresan, Sankaran
2011-11-01
Parcel-based methods have a great potential to reduce the computational cost of particle simulations for dense flows. Here we investigate a relaxation model, similar to that of Bhatnagar-Gross-Krook (BGK), when applied to such a parcel-based simulation method. Specifically, we have chosen the simulation methodology initially proposed by Patankar and Joseph, and combined it with the relaxation model published by O'Rourke and Snider. We show that a relaxation model is key to correctly predicting macroscopic flow features, e.g., the scattering pattern of a granular jet impinging on a flat surface, studied experimentally by Cheng et al.. Simple shear flow simulations reveal that calculation of the locally-averaged velocity is a critical ingredient to correctly predict streaming and collisional stresses. SR acknowledges the support of the Austrian Science Foundation through the Erwin-Schroedinger fellowship J-3072.
Modeling Complex Biological Flows in Multi-Scale Systems using the APDEC Framework
Trebotich, D
2006-06-24
We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA-laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.
Redesigned nursing practice: a case management model for critical care.
Ritter, J; Fralic, M F; Tonges, M C; McCormac, M
1992-03-01
Changes within the health care system necessitate changes in nursing practice. Given the financial environment and the need to balance the cost/quality equation, case management will become increasingly important and has the potential to become the predominant care delivery system of the 1990s. This transition represents a tremendous opportunity for nursing. The CCM role offers many potential advantages and benefits for individual nurses and the profession as a whole. Nurses practicing as case managers have the opportunity to function in a highly professional, independent manner with a great deal of interdisciplinary collaboration. In addition to the challenges and satisfactions of the work itself, the nurse case manager may also enjoy a higher salary and more scheduling control and flexibility. The broader advantages of case management include its benefits to patients and institutions and its fit with current trends in the health care environment. Nurse case managers manage hospital systems to produce optimal clinical outcomes for patients in the shortest time using as few resources as possible. This approach to care delivery places nurses in a position to demonstrate the tremendous contribution they can make to achieving the institution's goal of delivering high-quality, cost-effective care. Thus, case management fits extremely well with current trends in health care financing and outcome measurement. The model described in this article illustrates one approach to implementing these important concepts in a critical care setting.
Computational technology of multiscale modeling the gas flows in microchannels
NASA Astrophysics Data System (ADS)
Podryga, V. O.
2016-11-01
The work is devoted to modeling the gas mixture flows in engineering microchannels under conditions of many scales of computational domain. The computational technology of using the multiscale approach combining macro - and microscopic models is presented. At macrolevel the nature of the flow and the external influence on it are considered. As a model the system of quasigasdynamic equations is selected. At microlevel the correction of gasdynamic parameters and the determination of boundary conditions are made. As a numerical model the Newton's equations and the molecular dynamics method are selected. Different algorithm types used for implementation of multiscale modeling are considered. The results of the model problems for separate stages are given.
NASA Astrophysics Data System (ADS)
Costa, Antonio
2016-04-01
Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.
Modeling of karst aquifer genesis: Influence of exchange flow
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Liedl, Rudolf; Sauter, Martin
2003-10-01
This paper presents a numerical model study simulating the early karstification of a single conduit embedded in a fissured system. A hybrid continuum-discrete pipe flow model (CAVE) is used for the modeling. The effects of coupling of the two flow systems on type and duration of early karstification are studied for different boundary conditions. Assuming fixed head boundaries at both ends of the conduit, coupling of the two flow systems via exchange flow between the conduit and the fissured system leads to an enhanced evolution of the conduit. This effect is valid over a wide range of initial conduit diameters, and karstification is accelerated by a factor of about 100 as compared to the case of no exchange flow. Parameter studies reveal the influence of the exchange coefficient and of the hydraulic conductivity of the fissured system on the development time for the conduit. In a second scenario the upstream fixed head boundary is switched to a fixed flow boundary at a specified flow rate during the evolution, limiting the amount of water draining toward the evolving conduit. Depending on the flow rate specified, conduit evolution may be slowed down or greatly impaired if exchange flow is considered.
A Simple Critical-sized Femoral Defect Model in Mice
Clough, Bret H.; McCarley, Matthew R.; Gregory, Carl A.
2015-01-01
While bone has a remarkable capacity for regeneration, serious bone trauma often results in damage that does not properly heal. In fact, one tenth of all limb bone fractures fail to heal completely due to the extent of the trauma, disease, or age of the patient. Our ability to improve bone regenerative strategies is critically dependent on the ability to mimic serious bone trauma in test animals, but the generation and stabilization of large bone lesions is technically challenging. In most cases, serious long bone trauma is mimicked experimentally by establishing a defect that will not naturally heal. This is achieved by complete removal of a bone segment that is larger than 1.5 times the diameter of the bone cross-section. The bone is then stabilized with a metal implant to maintain proper orientation of the fracture edges and allow for mobility. Due to their small size and the fragility of their long bones, establishment of such lesions in mice are beyond the capabilities of most research groups. As such, long bone defect models are confined to rats and larger animals. Nevertheless, mice afford significant research advantages in that they can be genetically modified and bred as immune-compromised strains that do not reject human cells and tissue. Herein, we demonstrate a technique that facilitates the generation of a segmental defect in mouse femora using standard laboratory and veterinary equipment. With practice, fabrication of the fixation device and surgical implantation is feasible for the majority of trained veterinarians and animal research personnel. Using example data, we also provide methodologies for the quantitative analysis of bone healing for the model. PMID:25867551
A simple critical-sized femoral defect model in mice.
Clough, Bret H; McCarley, Matthew R; Gregory, Carl A
2015-03-15
While bone has a remarkable capacity for regeneration, serious bone trauma often results in damage that does not properly heal. In fact, one tenth of all limb bone fractures fail to heal completely due to the extent of the trauma, disease, or age of the patient. Our abil