Sample records for critical fluid-based processing

  1. Development of new critical fluid-based processing methods for nutraceuticals and natural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. W.

    2004-01-01

    The development of new supercritical fluid processing technology as applied to nutraceuticals and natural products is no longer confined to using just supercritical fluid extraction (SFE) and supercritical carbon dioxide (SC-CO{sub 2}). Recently reported advances have been focused on modifying natural products and improving functionality of an end product using newer experimental techniques and fluid phases. In this presentation four focus areas will be emphasized: (1) control of particle size/morphology and encapsulation of the nutraceutical ingredients, (2) the use of combinatorial methodology to optimize critical fluid processing, (3) application of sub-critical water as a complementary medium for processing natural products,more » and (4) an assessment of the current state of products and processing which use critical fluid to produce nutraceutical and natural products for the food and cosmetic marketplace. Application of the various particle fomiation processes conducted in the presence of critical fluid media, such as: CPF, SAS, DELOS, RESS, PGSS, and GAS, can be used to produce particles of small and uniform distribution, having unique morphologies, that facilitate rapid dissolution or sustained release of many nutraceutical ingredients. These substances have included: therapeutic spices, phystosterols, vitamins, phospholpids, and carotenoids. Accelerating the development of critical fluid processing has been the application of combinatorial methodology to optimize extraction, fractionation, and/or reactions in near-, SC-, or subcritical fluid media. This is frequently accomplished by using sequential or multichannel automated instrumentation that was originally designed for analytical purposes. Several examples will be provided of rapidly assessing the extraction of anthocyanins with sub-critical water and the SFE of natural products. However, differences do exist in conducting experiments on the above instrumentation vs. scaled-up continuous processes, which will be noted. Sub-critical water is finding increase use as an extraction/fractionation or reaction medium. The literature reports applications for the extraction spices, natural antioxidants (rosemary, anthocyanins, etc.), and herbal components (tea and coffee ingredients), Our studies and the literature provide adequate correlations of solute solubility in sub-critical water as well as models for the kinetics of extraction in this medium. Finally, the current state of critical fluid technology as applied to natural products and nutraceuticals will be assessed; noting specific processes, organizations, and products that exist.« less

  2. Fluid-flow-rate metrology: laboratory uncertainties and traceabilities

    NASA Astrophysics Data System (ADS)

    Mattingly, G. E.

    1991-03-01

    Increased concerns for improved fluid flowrate measurement are driving the fluid metering community-meter manufacturers and users alike-to search for better verification and documentation for their fluid measurements. These concerns affect both our domestic and international market places they permeate our technologies - aerospace chemical processes automotive bioengineering etc. They involve public health and safety and they impact our national defense. These concerns are based upon the rising value of fluid resources and products and the importance of critical material accountability. These values directly impact the accuracy needs of fluid buyers and sellers in custody transfers. These concerns impact the designers and operators of chemical process systems where control and productivity optimization depend critically upon measurement precision. Public health and safety depend upon the quality of numerous pollutant measurements - both liquid and gaseous. The performance testing of engines - both automotive and aircraft are critically based upon accurate fuel measurements - both liquid and oxidizer streams. Fluid flowrate measurements are established differently from counterparts in length and mass measurement systems because these have the benefits of " identity" standards. For rate measurement systems the metrology is based upon " derived standards" . These use facilities and transfer standards which are designed built characterized and used to constitute basic measurement capabilities and quantify performance - accuracy and precision. Because " identity standards" do not exist for flow measurements facsimiles or equivalents must

  3. Assessment of critical-fluid extractions in the process industries

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The potential for critical-fluid extraction as a separation process for improving the productive use of energy in the process industries is assessed. Critical-fluid extraction involves the use of fluids, normally gaseous at ambient conditions, as extraction solvents at temperatures and pressures around the critical point. Equilibrium and kinetic properties in this regime are very favorable for solvent applications, and generally allow major reductions in the energy requirements for separating and purifying chemical component of a mixture.

  4. Profile of student critical thinking ability on static fluid concept

    NASA Astrophysics Data System (ADS)

    Sulasih; Suparmi, A.; Sarwanto

    2017-11-01

    Critical thinking ability is an important part of educational goals. It has higher complex processes, such as analyzing, synthesizing and evaluating, drawing conclusion and reflection. This study is aimed to know the critical thinking ability of students in learning static fluids of senior high school students. This research uses the descriptive method which its instruments based on the indicator of critical thinking ability developed according to Ennis. The population of this research is XIth grade science class Public Senior High School, SMA N 1, Sambungmacan, Sragen, Central Java. The static fluid teaching material is delivered using Problem Based Learning Model through class experiment. The results of this study shows that the average student of XIth science class have high critical thinking skills, particularly in the ability of providing simple explanation, build basic skill, and provide advanced explanation, but they do not have high enough in ability of drawing conclusion and strategic and tactical components of critical thinking ability in the study of static fluid teaching material. The average of students critical thinking ability is 72.94, with 27,94% of students are in a low category and 72,22% of students in the high category of critical thinking ability.

  5. Process for producing biodiesel, lubricants, and fuel and lubricant additives in a critical fluid medium

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.

    2005-05-03

    A process for producing alkyl esters useful in biofuels and lubricants by transesterifying glyceride- or esterifying free fatty acid-containing substances in a single critical phase medium is disclosed. The critical phase medium provides increased reaction rates, decreases the loss of catalyst or catalyst activity and improves the overall yield of desired product. The process involves the steps of dissolving an input glyceride- or free fatty acid-containing substance with an alcohol or water into a critical fluid medium; reacting the glyceride- or free fatty acid-containing substance with the alcohol or water input over either a solid or liquid acidic or basic catalyst and sequentially separating the products from each other and from the critical fluid medium, which critical fluid medium can then be recycled back in the process. The process significantly reduces the cost of producing additives or alternatives to automotive fuels and lubricants utilizing inexpensive glyceride- or free fatty acid-containing substances, such as animal fats, vegetable oils, rendered fats, and restaurant grease.

  6. [Supercritical and near-critical fluid solvents assisted reaction and separation processes].

    PubMed

    Song, R; Zeng, J; Zhong, B

    2001-11-01

    The tunability of supercritical and near-critical fluid (S/NCF) solvents offers environmental improvements and economic advantages from improved performances and flexibility for separation and reaction processes through density changes or cosolvents. The paper reviews the sustainable reaction and separation processes in S/NCF solvents such as supercritical carbon dioxide and near-critical water.

  7. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  8. Thermal relaxation and critical instability of near-critical fluid microchannel flow.

    PubMed

    Chen, Lin; Zhang, Xin-Rong; Okajima, Junnosuke; Maruyama, Shigenao

    2013-04-01

    We present two-dimensional numerical investigations of the temperature and velocity evolution of a pure near-critical fluid confined in microchannels. The fluid is subjected to two sides heating after it reached isothermal steady state. We focus on the abnormal behaviors of the near-critical fluid in response to the sudden imposed heat flux. New thermal-mechanical effects dominated by fluid instability originating from the boundary and local equilibrium process are reported. Near the microchannel boundaries, the instability grows very quickly and an unexpected vortex formation mode is identified when near-critical thermal-mechanical effect is interacting with the microchannel shear flow. The mechanism of the new kind of Kelvin-Helmholtz instability induced by boundary expansion and density stratification processes is also discussed in detail. This mechanism may bring about innovations in the field of microengineering.

  9. Thermal relaxation and critical instability of near-critical fluid microchannel flow

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Xin-Rong; Okajima, Junnosuke; Maruyama, Shigenao

    2013-04-01

    We present two-dimensional numerical investigations of the temperature and velocity evolution of a pure near-critical fluid confined in microchannels. The fluid is subjected to two sides heating after it reached isothermal steady state. We focus on the abnormal behaviors of the near-critical fluid in response to the sudden imposed heat flux. New thermal-mechanical effects dominated by fluid instability originating from the boundary and local equilibrium process are reported. Near the microchannel boundaries, the instability grows very quickly and an unexpected vortex formation mode is identified when near-critical thermal-mechanical effect is interacting with the microchannel shear flow. The mechanism of the new kind of Kelvin-Helmholtz instability induced by boundary expansion and density stratification processes is also discussed in detail. This mechanism may bring about innovations in the field of microengineering.

  10. Possibility of long-distance heat transport in weightlessness using supercritical fluids

    NASA Astrophysics Data System (ADS)

    Beysens, D.; Chatain, D.; Nikolayev, V. S.; Ouazzani, J.; Garrabos, Y.

    2010-12-01

    Heat transport over large distances is classically performed with gravity or capillarity driven heat pipes. We investigate here whether the “piston effect,” a thermalization process that is very efficient in weightlessness in compressible fluids, could also be used to perform long-distance heat transfer. Experiments are performed in a modeling heat pipe (16.5 mm long, 3 mm inner diameter closed cylinder), with nearly adiabatic polymethylmethacrylate walls and two copper base plates. The cell is filled with H2 near its gas-liquid critical point (critical temperature: 33 K). Weightlessness is achieved by submitting the fluid to a magnetic force that compensates gravity. Initially the fluid is isothermal. Then heat is sent to one of the bases with an electrical resistance. The instantaneous amount of heat transported by the fluid is measured at the other end. The data are analyzed and compared with a two-dimensional numerical simulation that allows an extrapolation to be made to other fluids (e.g., CO2 , with critical temperature of 300 K). The major result is concerned with the existence of a very fast response at early times that is only limited by the thermal properties of the cell materials. The yield in terms of ratio, injected or transported heat power, does not exceed 10-30% and is limited by the heat capacity of the pipe. These results are valid in a large temperature domain around the critical temperature.

  11. Review of electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to nanomaterials synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauss, Sven, E-mail: sven.stauss@plasma.k.u-tokyo.ac.jp; Terashima, Kazuo, E-mail: kazuo@plasma.k.u-tokyo.ac.jp; Muneoka, Hitoshi

    2015-05-15

    Plasma-based fabrication of novel nanomaterials and nanostructures is indispensible for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations, is crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Electric discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. This review discusses an anomaly observed for direct current microplasmas generated near the critical point, a local decrease in the breakdownmore » voltage. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths caused by the high-density fluctuation near the critical point. It is also shown that in the case of dielectric barrier microdischarges generated close to the critical point, the high-density fluctuation of the supercritical fluid persists. The final part of the review discusses the application of discharges generated in supercritical fluids to synthesis of nanomaterials, in particular, molecular diamond—so-called diamondoids—by microplasmas generated inside conventional batch-type and continuous flow microreactors.« less

  12. Rational design of capillary-driven flows for paper-based microfluidics.

    PubMed

    Elizalde, Emanuel; Urteaga, Raúl; Berli, Claudio L A

    2015-05-21

    The design of paper-based assays that integrate passive pumping requires a precise programming of the fluid transport, which has to be encoded in the geometrical shape of the substrate. This requirement becomes critical in multiple-step processes, where fluid handling must be accurate and reproducible for each operation. The present work theoretically investigates the capillary imbibition in paper-like substrates to better understand fluid transport in terms of the macroscopic geometry of the flow domain. A fluid dynamic model was derived for homogeneous porous substrates with arbitrary cross-sectional shapes, which allows one to determine the cross-sectional profile required for a prescribed fluid velocity or mass transport rate. An extension of the model to slit microchannels is also demonstrated. Calculations were validated by experiments with prototypes fabricated in our lab. The proposed method constitutes a valuable tool for the rational design of paper-based assays.

  13. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  14. Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2000-01-01

    This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.

  15. Laboratory layered latte.

    PubMed

    Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine K; Kim, Hyoungsoo; Stone, Howard A

    2017-12-12

    Inducing thermal gradients in fluid systems with initial, well-defined density gradients results in the formation of distinct layered patterns, such as those observed in the ocean due to double-diffusive convection. In contrast, layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, lattes formed by pouring espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering emerges over a time scale of minutes. We identify critical conditions to produce the layering, and relate the results quantitatively to double-diffusive convection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties vary step-wise along the length of the material.

  16. The Effect of a Yield Stress on the Drainage of the Thin Film Between Two Colliding Newtonian Drops

    NASA Astrophysics Data System (ADS)

    Goel, Sachin; Ramachandran, Arun

    2016-11-01

    Coalescence of drops immersed in fluids possessing a yield stress has been of interest to many industries such as the oil extraction, cosmetics and food industries. Unfortunately, a theoretical understanding of the drainage of the thin film of Bingham fluid (a model yield stress fluid) that develops between two drops undergoing a collision is still lacking, with the exception of two prior studies that make ad-hoc assumptions about the film shape. In this work, we examine this problem via a combination of scaling analysis and numerical simulations based on the lubrication analysis. There are four key features of the film drainage process of Bingham fluids. First, the introduction of a yield stress in the suspending fluid retards the drainage process relative to Newtonian fluid of the same viscosity. Second, the drainage time shows a minimum with respect to the capillary number. Third, the effect of yield stress on the drainage process becomes more pronounced at higher capillary numbers and lower Hamaker constant. Lastly, below a critical height, drainage can be arrested completely due to the yield stress. This critical height scales as τ02R3 τ02R3 γ2 γ2 , where τ0 is the yield stress, R is the drop radius and γ is the interfacial tension, and is, surprisingly, independent of the force colliding the drops. This and other distinguishing characteristics of the drainage process will be elucidated in the presentation.

  17. Bio-Oil Separation and Stabilization by Supercritical Fluid Fractionation. 2014 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agblevor, Foster; Petkovic, Lucia; Bennion, Edward

    The objective of this project is to use supercritical fluids to separate and fractionate algal-based bio-oils into stable products that can be subsequently upgraded to produce drop-in renewable fuels. To accomplish this objective, algae was grown and thermochemically converted to bio-oils using hydrothermal liquefaction (HTL), pyrolysis, and catalytic pyrolysis. The bio-oils were separated into an extract and a raffinate using near-critical propane or carbon dioxide. The fractions were then subjected to thermal aging studies to determine if the extraction process had stabilized the products. It was found that the propane extract fraction was twice as stable as the parent catalyticmore » pyrolysis bio-oils as measured by the change in viscosity after two weeks of accelerated aging at 80°C. Further, in-situ NMR aging studies found that the propane extract was chemically more stable than the parent bio-oil. Thus the milestone of stabilizing the product was met. A preliminary design of the extraction plant was prepared. The design was based on a depot scale plant processing 20,000,000 gallons per year of bio-oil. It was estimated that the capital costs for such a plant would be $8,700,000 with an operating cost of $3,500,000 per year. On a per gallon of product cost and a 10% annual rate of return, capital costs would represent $0.06 per gallon and operating costs would amount to $0.20 per gallon. Further, it was found that the energy required to run the process represented 6.2% of the energy available in the bio-oil, meeting the milestone of less than 20%. Life cycle analysis and greenhouse gas (GHG) emission analysis found that the energy for running the critical fluid separation process and the GHG emissions were minor compared to all the inputs to the overall well to pump system. For the well to pump system boundary, energetics in biofuel conversion are typically dominated by energy demands in the growth, dewater, and thermochemical process. Bio-oil stabilization by near critical propane extraction had minimal impact in the overall energetics of the process with NER contributions of 0.03. Based on the LCA, the overall conversion pathways were found to be energy intensive with a NER of about 2.3 and 1.2 for catalytic pyrolysis and HTL, respectively. GHG emissions for the catalytic pyrolysis process were greater than that of petroleum diesel at 210 g CO2 eq compared to 18.9 g CO2 eq. Microalgae bio-oil based diesel with thermochemical conversion through HTL meets renewable fuel standards with favorable emission reductions of -10.8 g CO2 eq. The importance of the outcomes is that the critical fluid extraction and stabilization process improved product stability and did so with minimal energy inputs and processing costs. The LCA and GHG emission calculations point toward the HTL pathway as the more favorable thermochemical route towards upgrading algae to bio-fuels. Since the quality of the HTL oil was significantly lower than that of the catalytic pyrolysis bio-oil, the next steps point toward improving the quality of the HTL oils from algae biomass and focusing the critical fluid stabilization on that bio-oil product.« less

  18. Critical asymmetry in renormalization group theory for fluids.

    PubMed

    Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun

    2013-06-21

    The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.

  19. Hypocapnic but Not Metabolic Alkalosis Impairs Alveolar Fluid Reabsorption

    PubMed Central

    Myrianthefs, Pavlos M.; Briva, Arturo; Lecuona, Emilia; Dumasius, Vidas; Rutschman, David H.; Ridge, Karen M.; Baltopoulos, George J.; Sznajder, Jacob Iasha

    2005-01-01

    Acid-base disturbances, such as metabolic or respiratory alkalosis, are relatively common in critically ill patients. We examined the effects of alkalosis (hypocapnic or metabolic alkalosis) on alveolar fluid reabsorption in the isolated and continuously perfused rat lung model. We found that alveolar fluid reabsorption after 1 hour was impaired by low levels of CO2 partial pressure (PCO2; 10 and 20 mm Hg) independent of pH levels (7.7 or 7.4). In addition, PCO2 higher than 30 mm Hg or metabolic alkalosis did not have an effect on this process. The hypocapnia-mediated decrease of alveolar fluid reabsorption was associated with decreased Na,K-ATPase activity and protein abundance at the basolateral membranes of distal airspaces. The effect of low PCO2 on alveolar fluid reabsorption was reversible because clearance normalized after correcting the PCO2 back to normal levels. These data suggest that hypocapnic but not metabolic alkalosis impairs alveolar fluid reabsorption. Conceivably, correction of hypocapnic alkalosis in critically ill patients may contribute to the normalization of lung ability to clear edema. PMID:15764729

  20. Hypocapnic but not metabolic alkalosis impairs alveolar fluid reabsorption.

    PubMed

    Myrianthefs, Pavlos M; Briva, Arturo; Lecuona, Emilia; Dumasius, Vidas; Rutschman, David H; Ridge, Karen M; Baltopoulos, George J; Sznajder, Jacob Iasha

    2005-06-01

    Acid-base disturbances, such as metabolic or respiratory alkalosis, are relatively common in critically ill patients. We examined the effects of alkalosis (hypocapnic or metabolic alkalosis) on alveolar fluid reabsorption in the isolated and continuously perfused rat lung model. We found that alveolar fluid reabsorption after 1 hour was impaired by low levels of CO2 partial pressure (PCO2; 10 and 20 mm Hg) independent of pH levels (7.7 or 7.4). In addition, PCO2 higher than 30 mm Hg or metabolic alkalosis did not have an effect on this process. The hypocapnia-mediated decrease of alveolar fluid reabsorption was associated with decreased Na,K-ATPase activity and protein abundance at the basolateral membranes of distal airspaces. The effect of low PCO2 on alveolar fluid reabsorption was reversible because clearance normalized after correcting the PCO2 back to normal levels. These data suggest that hypocapnic but not metabolic alkalosis impairs alveolar fluid reabsorption. Conceivably, correction of hypocapnic alkalosis in critically ill patients may contribute to the normalization of lung ability to clear edema.

  1. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  2. Precision Fluid Management in Continuous Renal Replacement Therapy.

    PubMed

    Murugan, Raghavan; Hoste, Eric; Mehta, Ravindra L; Samoni, Sara; Ding, Xiaoqiang; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio

    2016-01-01

    Fluid management during continuous renal replacement therapy (CRRT) in critically ill patients is a dynamic process that encompasses 3 inter-related goals: maintenance of the patency of the CRRT circuit, maintenance of plasma electrolyte and acid-base homeostasis and regulation of patient fluid balance. In this article, we report the consensus recommendations of the 2016 Acute Disease Quality Initiative XVII conference on 'Precision Fluid Management in CRRT'. We discuss the principles of fluid management, describe various prescription methods to achieve circuit integrity and introduce the concept of integrated fluid balance for tailoring fluid balance to the needs of the individual patient. We suggest that these recommendations could serve to develop the best clinical practice and standards of care for fluid management in patients undergoing CRRT. Finally, we identify and highlight areas of uncertainty in fluid management and set an agenda for future research. © 2016 S. Karger AG, Basel.

  3. Characteristics of lipid micro- and nanoparticles based on supercritical formation for potential pharmaceutical application

    PubMed Central

    2013-01-01

    The interest of the pharmaceutical industry in lipid drug delivery systems due to their prolonged release profile, biocompatibility, reduction of side effects, and so on is already known. However, conventional methods of preparation of these structures for their use and production in the pharmaceutical industry are difficult since these methods are usually multi-step and involve high amount of organic solvent. Furthermore, some processes need extreme conditions, which can lead to an increase of heterogeneity of particle size and degradation of the drug. An alternative for drug delivery system production is the utilization of supercritical fluid technique. Lipid particles produced by supercritical fluid have shown different physicochemical properties in comparison to lipid particles produced by classical methods. Such particles have shown more physical stability and narrower size distribution. So, in this paper, a critical overview of supercritical fluid-based processes for the production of lipid micro- and nanoparticles is given and the most important characteristics of each process are highlighted. PMID:24034341

  4. Design Space Approach in Optimization of Fluid Bed Granulation and Tablets Compression Process

    PubMed Central

    Djuriš, Jelena; Medarević, Djordje; Krstić, Marko; Vasiljević, Ivana; Mašić, Ivana; Ibrić, Svetlana

    2012-01-01

    The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content) using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force) and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs) were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors. PMID:22919295

  5. [Kidney, Fluid, and Acid-Base Balance].

    PubMed

    Shioji, Naohiro; Hayashi, Masao; Morimatsu, Hiroshi

    2016-05-01

    Kidneys play an important role to maintain human homeostasis. They contribute to maintain body fluid, electrolytes, and acid-base balance. Especially in fluid control, we, physicians can intervene body fluid balance using fluid resuscitation and diuretics. In recent years, one type of fluid resuscitation, hydroxyl ethyl starch has been extensively studied in the field of intensive care. Although their effects on fluid resuscitation are reasonable, serious complications such as kidney injury requiring renal replacement therapy occur frequently. Now we have to pay more attention to this important complication. Another topic of fluid management is tolvaptan, a selective vasopressin-2 receptor antagonist Recent randomized trial suggested that tolvaptan has a similar supportive effect for fluid control and more cost effective compared to carperitide. In recent years, Stewart approach is recognized as one important tool to assess acid-base balance in critically ill patients. This approach has great value, especially to understand metabolic components in acid-base balance. Even for assessing the effects of kidneys on acid-base balance, this approach gives us interesting insight. We should appropriately use this new approach to treat acid-base abnormality in critically ill patients.

  6. Numerical Modeling of Fluid Flow in Solid Tumors

    PubMed Central

    Soltani, M.; Chen, P.

    2011-01-01

    A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges. PMID:21673952

  7. Cognitive components underpinning the development of model-based learning.

    PubMed

    Potter, Tracey C S; Bryce, Nessa V; Hartley, Catherine A

    2017-06-01

    Reinforcement learning theory distinguishes "model-free" learning, which fosters reflexive repetition of previously rewarded actions, from "model-based" learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9-25, we examined whether the abilities to infer sequential regularities in the environment ("statistical learning"), maintain information in an active state ("working memory") and integrate distant concepts to solve problems ("fluid reasoning") predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Efficient simulation of press hardening process through integrated structural and CFD analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek

    Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integratedmore » commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.« less

  9. Cognitive Components Underpinning the Development of Model-Based Learning

    PubMed Central

    Potter, Tracey C.S.; Bryce, Nessa V.; Hartley, Catherine A.

    2016-01-01

    Reinforcement learning theory distinguishes “model-free” learning, which fosters reflexive repetition of previously rewarded actions, from “model-based” learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9–25, we examined whether the abilities to infer sequential regularities in the environment (“statistical learning”), maintain information in an active state (“working memory”) and integrate distant concepts to solve problems (“fluid reasoning”) predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. PMID:27825732

  10. A quality by design study applied to an industrial pharmaceutical fluid bed granulation.

    PubMed

    Lourenço, Vera; Lochmann, Dirk; Reich, Gabriele; Menezes, José C; Herdling, Thorsten; Schewitz, Jens

    2012-06-01

    The pharmaceutical industry is encouraged within Quality by Design (QbD) to apply science-based manufacturing principles to assure quality not only of new but also of existing processes. This paper presents how QbD principles can be applied to an existing industrial pharmaceutical fluid bed granulation (FBG) process. A three-step approach is presented as follows: (1) implementation of Process Analytical Technology (PAT) monitoring tools at the industrial scale process, combined with multivariate data analysis (MVDA) of process and PAT data to increase the process knowledge; (2) execution of scaled-down designed experiments at a pilot scale, with adequate PAT monitoring tools, to investigate the process response to intended changes in Critical Process Parameters (CPPs); and finally (3) the definition of a process Design Space (DS) linking CPPs to Critical to Quality Attributes (CQAs), within which product quality is ensured by design, and after scale-up enabling its use at the industrial process scale. The proposed approach was developed for an existing industrial process. Through enhanced process knowledge established a significant reduction in product CQAs, variability already within quality specifications ranges was achieved by a better choice of CPPs values. The results of such step-wise development and implementation are described. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Aging and free surface flow of a thixotropic fluid

    NASA Astrophysics Data System (ADS)

    Huynh, H. T.; Roussel, N.; Coussot, P.

    2005-03-01

    Free surface flows of thixotropic fluids such as paints, self-compacting concrete, or natural mudflows are of noticeable practical interest. Here we study the basic characteristics of the uniform flow of a layer of thixotropic fluid under gravity. A theoretical approach relying on a simple thixotropy constitutive equation shows that after some time at rest over a small slope angle the fluid layer should start to flow rather abruptly beyond a new, larger, critical slope angle. The theory also predicts that the critical time at which the layer velocity should significantly increase is proportional to the duration of the preliminary rest and tends to infinity when the new slope approaches the critical slope. Experiments carried out with different suspensions show that the qualitative trends of the flows are in very good agreement with the theoretical predictions, except that the critical time for flow start appears to be proportional to a power 0.6 of the time of rest whereas the theory predicts a linear dependence. We show that this indicates a restructuration process at rest differing from the restructuration process under flow.

  12. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    DOEpatents

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  13. Bulk properties and near-critical behaviour of SiO2 fluid

    NASA Astrophysics Data System (ADS)

    Green, Eleanor C. R.; Artacho, Emilio; Connolly, James A. D.

    2018-06-01

    Rocky planets and satellites form through impact and accretion processes that often involve silicate fluids at extreme temperatures. First-principles molecular dynamics (FPMD) simulations have been used to investigate the bulk thermodynamic properties of SiO2 fluid at high temperatures (4000-6000 K) and low densities (500-2240 kg m-3), conditions which are relevant to protoplanetary disc condensation. Liquid SiO2 is highly networked at the upper end of this density range, but depolymerises with increasing temperature and volume, in a process characterised by the formation of oxygen-oxygen (Odbnd O) pairs. The onset of vaporisation is closely associated with the depolymerisation process, and is likely to be non-stoichiometric at high temperature, initiated via the exsolution of O2 molecules to leave a Si-enriched fluid. By 6000 K the simulated fluid is supercritical. A large anomaly in the constant-volume heat capacity occurs near the critical temperature. We present tabulated thermodynamic properties for silica fluid that reconcile observations from FPMD simulations with current knowledge of the SiO2 melting curve and experimental Hugoniot curves.

  14. Tank Pressure Control Experiment on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.

  15. Laboratory Layered Latte

    NASA Astrophysics Data System (ADS)

    Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine; Kim, Hyoungsoo; Stone, Howard

    2017-11-01

    Layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, layered lattes formed by pouring espresso into a glass of warm milk. In such configurations, pouring forces a lower density liquid (espresso) into a higher density ambient, which is similar to the fountain effects that characterize a wide range of flows driven by injecting a fluid into a second miscible phase. Although the initial state of the mixture is complex and chaotic, there are conditions where the mixture cools at room temperature and exhibits an organized layered pattern. Here we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering naturally emerges over the time scale of minutes. We perform experimental and numerical analyses of the time-dependent flows to observe and understand the convective circulation in the layers. We identify critical conditions to produce the layering and relate the results quantitatively to the critical Rayleigh number in double-diffusive convection, which indicates the competition between the horizontal thermal gradient and the vertical density gradient generated by the fluid injection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties as well as the local material concentration vary step-wise along the length of the material.

  16. Particle sedimentation in a sheared viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-11-01

    Particle suspensions are ubiquitous in engineered processes, biological systems, and natural settings. For an engineering application - whether the intent is to suspend and transport particles (e.g., in hydraulic fracturing fluids) or allow particles to sediment (e.g., in industrial separations processes) - understanding and prediction of the particle mobility is critical. This task is often made challenging by the complex nature of the fluid phase, for example, due to fluid viscoelasticity. In this talk, we focus on a fully 3D flow problem in a viscoelastic fluid: a settling particle with a shear flow applied in the plane perpendicular to gravity (referred to as orthogonal shear). Previously, it has been shown that an orthogonal shear flow can reduce the settling rate of particles in viscoelastic fluids. Using experiments and numerical simulations across a wide range of sedimentation and shear Weissenberg number, this talk will address the underlying physical mechanism responsible for the additional drag experienced by a rigid sphere settling in a confined viscoelastic fluid with orthogonal shear. We will then explore multiple particle effects, and discuss the implications and extensions of this work for particle suspensions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747 (WLM).

  17. Fluid Intelligence Predicts Novel Rule Implementation in a Distributed Frontoparietal Control Network.

    PubMed

    Tschentscher, Nadja; Mitchell, Daniel; Duncan, John

    2017-05-03

    Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD function to a process of attentional focus on the successive parts of complex behavior. SIGNIFICANCE STATEMENT Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts. We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor foregrounding of task-critical information across a distributed MD system. Copyright © 2017 Tschentscher et al.

  18. Novel MRF fluid for ultra-low roughness optical surfaces

    NASA Astrophysics Data System (ADS)

    Dumas, Paul; McFee, Charles

    2014-08-01

    Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.

  19. More Analytical Tools for Fluids Management in Space

    NASA Astrophysics Data System (ADS)

    Weislogel, Mark

    Continued advances during the 2000-2010 decade in the analysis of a class of capillary-driven flows relevant to materials processing and fluids management aboard spacecraft have been made. The class of flows addressed concern combined forced and spontaneous capillary flows in complex containers with interior edges. Such flows are commonplace in space-based fluid systems and arise from the particular container geometry and wetting properties of the system. Important applications for this work include low-g liquid fill and/or purge operations and passive fluid phase separation operations, where the container (i.e. fuel tank, water processer, etc.) geometry possesses interior edges, and where quantitative information of fluid location, transients, flow rates, and stability is critical. Examples include the storage and handling of liquid propellants and cryogens, water conditioning for life support, fluid phase-change thermal systems, materials processing in the liquid state, on-orbit biofluids processing, among others. For a growing number of important problems, closed-form expressions to transient three-dimensional flows are possible that, as design tools, replace difficult, time-consuming, and rarely performed numerical calculations. An overview of a selection of solutions in-hand is presented with example problems solved. NASA drop tower, low-g aircraft, and ISS flight ex-periment results are employed where practical to buttress the theoretical findings. The current review builds on a similar review presented at COSPAR, 2002, for the approximate decade 1990-2000.

  20. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    NASA Astrophysics Data System (ADS)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  1. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    PubMed

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  2. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    PubMed

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  3. Evaluation of Working Fluids for Organic Rankine Cycle Based on Exergy Analysis

    NASA Astrophysics Data System (ADS)

    Setiawan, D.; Subrata, I. D. M.; Purwanto, Y. A.; Tambunan, A. H.

    2018-05-01

    One of the crucial aspects to determine the performance of Organic Rankine Cycle (ORC) is the selection of appropriate working fluids. This paper describes the simulative performance of several organic fluid and water as working fluid of an ORC based on exergy analysis with a heat source from waste heat recovery. The simulation was conducted by using Engineering Equation Solver (EES). The effect of several parameters and thermodynamic properties of working fluid was analyzed, and part of them was used as variables for the simulation in order to determine their sensitivity to the exergy efficiency changes. The results of this study showed that water is not appropriate to be used as working fluid at temperature lower than 130 °C, because the expansion process falls in saturated area. It was also found that Benzene had the highest exergy efficiency, i.e. about 10.49%, among the dry type working fluid. The increasing turbine inlet temperature did not lead to the increase of exergy efficiency when using organic working fluids with critical temperature near heat source temperature. Meanwhile, exergy efficiency decreasing linearly with the increasing condenser inlet temperature. In addition, it was found that working fluid with high latent heat of vaporization and specific heat exert in high exergy efficiency.

  4. Four-fluid MHD Simulations of the Plasma and Neutral Gas Environment of Comet Churyumov-Gerasimenko Near Perihelio

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Toth, G.; Gombosi, T. I.; Jia, X.; Rubin, M.; Hansen, K. C.; Fougere, N.; Bieler, A. M.; Shou, Y.; Altwegg, K.; Combi, M. R.; Tenishev, V.

    2015-12-01

    The neutral and plasma environment is critical in understanding the interaction of comet Churyumov-Gerasimenko (CG), the target of the Rosetta mission, and the solar wind. To serve this need and support the Rosetta mission, we develop a 3-D four fluid model, which is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photo and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment near perihelion with a realistic shape model of CG and compare our simulation results with Rosetta observations.

  5. Critical parameters of hard-core Yukawa fluids within the structural theory

    NASA Astrophysics Data System (ADS)

    Bahaa Khedr, M.; Osman, S. M.

    2012-10-01

    A purely statistical mechanical approach is proposed to account for the liquid-vapor critical point based on the mean density approximation (MDA) of the direct correlation function. The application to hard-core Yukawa (HCY) fluids facilitates the use of the series mean spherical approximation (SMSA). The location of the critical parameters for HCY fluid with variable intermolecular range is accurately calculated. Good agreement is observed with computer simulation results and with the inverse temperature expansion (ITE) predictions. The influence of the potential range on the critical parameters is demonstrated and the universality of the critical compressibility ratio is discussed. The behavior of the isochoric and isobaric heat capacities along the equilibrium line and the near vicinity of the critical point is discussed in details.

  6. Turbidity of a binary fluid mixture: Determining eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1994-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to the critical point. By covering the range of reduced temperatures t is equivalent to (T-T(sub c))/T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Interpreting the turbidity correctly is important if future NASA flight experiments use turbidity as an indirect measurement of relative temperature in shuttle experiments on critical phenomena in fluids.

  7. Intra-slab COH fluid fluxes evidenced by fluid-mediated decarbonation of lawsonite eclogite-facies altered oceanic metabasalts

    NASA Astrophysics Data System (ADS)

    Vitale Brovarone, Alberto; Chu, Xu; Martin, Laure; Ague, Jay J.; Monié, Patrick; Groppo, Chiara; Martinez, Isabelle; Chaduteau, Carine

    2018-04-01

    The interplay between the processes controlling the mobility of H2O and C-bearing species during subduction zone metamorphism exerts a critical control on plate tectonics and global volatile recycling. Here we present the first study on fresh, carbonate-bearing, lawsonite eclogite-facies metabasalts from Alpine Corsica, France, which reached the critical depths at which important devolatilization reactions occur in subducting slabs. The studied samples indicate that the evolution of oceanic crustal sequences subducted under present-day thermal regimes is dominated by localized fluid-rock interactions that are strongly controlled by the nature and extent of inherited (sub)seafloor hydrothermal processes, and by the possibility of deep fluids to be channelized along inherited or newly-formed discontinuities. Fluid channelization along inherited discontinuities controlled local rehydration and dehydration/decarbonation reactions and the stability of carbonate and silicate minerals at the blueschist-eclogite transition. Fluid-mediated decarbonation was driven by upward, up-temperature fluid flow in the inverted geothermal gradient of a subducting oceanic slab, a process that has not been documented in natural samples to date. We estimate that the observed fluid-rock reactions released 20-60 kg CO2 per m3 of rock (i.e. 0.7-2.1 wt% CO2), which is in line with the values predicted from decarbonation of metabasalts in open systems at these depths. Conversely, the estimated time-integrated fluid fluxes (20-50 t/m2) indicate that the amount of carbon transported by channelized fluid flow within the volcanic part of subducting oceanic plates is potentially much higher than previous numerical estimates, testifying to the percolation of C-bearing fluids resulting from devolatilization/dissolution processes operative in large reservoirs.

  8. A comparative analysis of conventional cytopreparatory and liquid based cytological techniques (Sure Path) in evaluation of serous effusion fluids.

    PubMed

    Dadhich, Hrishikesh; Toi, Pampa Ch; Siddaraju, Neelaiah; Sevvanthi, Kalidas

    2016-11-01

    Clinically, detection of malignant cells in serous body fluids is critical, as their presence implies the upstaging of the disease. Cytology of body cavity fluids serves as an important tool when other diagnostic tests cannot be performed. In most laboratories, currently, the effusion fluid samples are analysed chiefly by the conventional cytopreparatory (CCP) technique. Although, there are several studies comparing the liquid-based cytology (LBC), with CCP technique in the field of cervicovaginal cytology; the literature on such comparison with respect to serous body fluid examination is sparse. One hundred samples of serous body fluids were processed by both CCP and LBC techniques. Slides prepared by these techniques were studied using six parameters. A comparative analysis of the advantages and disadvantages of the techniques in detection of malignant cells was carried out with appropriate statistical tests. The samples comprised 52 pleural, 44 peritoneal and four pericardial fluids. No statistically significant difference was noted with respect to cellularity (P values = 0.22), cell distribution (P values = 0.39) and diagnosis of malignancy (P values = 0.20). As for the remaining parameters, LBC provided statistically significant clearer smear background (P values < 0.0001) and shorter screening time (P values < 0.0001), while CPP technique provided a significantly better staining quality (P values 0.01) and sharper cytomorphologic features (P values 0.05). Although, a reduced screening time and clearer smear background are the two major advantages of LBC; the CCP technique provides the better staining quality with sharper cytomorphologic features which is more critical from the cytologic interpretation point of view. Diagn. Cytopathol. 2016;44:874-879. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Astrophysics Data System (ADS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    2002-12-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  10. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.; Motil, Susan M. (Technical Monitor)

    2002-01-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  11. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature

    PubMed Central

    Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Pant, Kapil; Kiani, Mohammad F.

    2011-01-01

    Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, development of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and Computational Fluid Dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature are highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place are discussed. PMID:21763328

  12. Thermoacoustic effects in supercritical fluids near the critical point: Resonance, piston effect, and acoustic emission and reflection

    NASA Astrophysics Data System (ADS)

    Onuki, Akira

    2007-12-01

    We present a general theory of thermoacoustic phenomena in one phase states of one-component fluids. Singular behavior is predicted in supercritical fluids near the critical point. In a one-dimensional geometry we start with linearized hydrodynamic equations taking into account the effects of heat conduction in the boundary walls and the bulk viscosity. We introduce a coefficient Z(ω) characterizing reflection of sound with frequency ω at the boundary in a rigid cell. As applications, we examine acoustic eigenmodes, response to time-dependent perturbations, and sound emission and reflection. Resonance and rapid adiabatic changes are noteworthy. In these processes, the role of the thermal diffusion layers is enhanced near the critical point because of the strong critical divergence of the thermal expansion.

  13. A Systematic Approach of Employing Quality by Design Principles: Risk Assessment and Design of Experiments to Demonstrate Process Understanding and Identify the Critical Process Parameters for Coating of the Ethylcellulose Pseudolatex Dispersion Using Non-Conventional Fluid Bed Process.

    PubMed

    Kothari, Bhaveshkumar H; Fahmy, Raafat; Claycamp, H Gregg; Moore, Christine M V; Chatterjee, Sharmista; Hoag, Stephen W

    2017-05-01

    The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.

  14. Bed Erosion Process in Geophysical Viscoplastic Fluid

    NASA Astrophysics Data System (ADS)

    Luu, L. H.; Philippe, P.; Chambon, G.; Vigneaux, P.; Marly, A.

    2017-12-01

    The bulk behavior of materials involved in geophysical fluid dynamics such as snow avalanches or debris flows has often been modeled as viscoplastic fluid that starts to flow once its stress state overcomes a critical yield value. This experimental and numerical study proposes to interpret the process of erosion in terms of solid-fluid transition for these complex materials. The experimental setup consists in a closed rectangular channel with a cavity in its base. By means of high-resolution optical velocimetry (PIV), we properly examine the typical velocity profiles of a model elasto-viscoplastic flow (Carbopol) at the vicinity of the solid-fluid interface, separating a yielded flowing layer above from an unyielded dead zone below. In parallel, numerical simulations in this expansion-contraction geometry with Augmented Lagrangian and Finite-Differences methods intend to discuss the possibility to describe the specific flow related to the existence of a dead zone, with a simple Bingham rheology. First results of this comparative analysis show a good numerical ability to capture the main scalings and flow features, such as the non-monotonous evolution of the shear stress in the boundary layer between the central plug zone and the dead zone at the bottom of the cavity.

  15. Electrodeposition of metals from supercritical fluids

    PubMed Central

    Ke, Jie; Su, Wenta; Howdle, Steven M.; George, Michael W.; Cook, David; Perdjon-Abel, Magda; Bartlett, Philip N.; Zhang, Wenjian; Cheng, Fei; Levason, William; Reid, Gillian; Hyde, Jason; Wilson, James; Smith, David C.; Mallik, Kanad; Sazio, Pier

    2009-01-01

    Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology. PMID:19706479

  16. Goal neglect and knowledge chunking in the construction of novel behaviour☆

    PubMed Central

    Bhandari, Apoorva; Duncan, John

    2014-01-01

    Task complexity is critical in cognitive efficiency and fluid intelligence. To examine functional limits in task complexity, we examine the phenomenon of goal neglect, where participants with low fluid intelligence fail to follow task rules that they otherwise understand. Though neglect is known to increase with task complexity, here we show that – in contrast to previous accounts – the critical factor is not the total complexity of all task rules. Instead, when the space of task requirements can be divided into separate sub-parts, neglect is controlled by the complexity of each component part. The data also show that neglect develops and stabilizes over the first few performance trials, i.e. as instructions are first used to generate behaviour. In all complex behaviour, a critical process is combination of task events with retrieved task requirements to create focused attentional episodes dealing with each decision in turn. In large part, we suggest, fluid intelligence may reflect this process of converting complex requirements into effective attentional episodes. PMID:24141034

  17. Fluid Induced Earthquakes: From KTB Experiments to Natural Seismicity Swarms.

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.

    2006-12-01

    Experiments with borehole fluid injections are typical for exploration and development of hydrocarbon or geothermal reservoirs (e.g., fluid-injection experiments at Soultz, France and at Fenton-Hill, USA). Microseismicity occurring during such operations has a large potential for understanding physics of the seismogenic process as well as for obtaining detailed information about reservoirs at locations as far as several kilometers from boreholes. The phenomenon of microseismicity triggering by borehole fluid injections is related to the process of the Frenkel-Biot slow wave propagation. In the low-frequency range (hours or days of fluid injection duration) this process reduces to the pore pressure diffusion. Fluid induced seismicity typically shows several diffusion indicating features, which are directly related to the rate of spatial grow, to the geometry of clouds of micro earthquake hypocentres and to their spatial density. Several fluid injection experiments were conducted at the German Continental Deep Drilling Site (KTB) in 1994, 2000 and 2003-2005. Microseismicity occurred at different depth intervals. We analyze this microseismicity in terms of its diffusion-related features. Its relation to the 3-D distribution of the seismic reflectivity has important rock physical and tectonic implications. Starting from such diffusion-typical signatures of man-made earthquakes, we seek analogous patterns for the earthquakes in Vogtland/Bohemia at the German/Czech border region in central Europe. There is strong geophysical evidence that there seismic events are correlated to fluid-related processes in the crust. We test the hypothesis that ascending magmatic fluids trigger earthquakes by the mechanism of pore pressure diffusion. This triggering process is mainly controlled by two physical fields, the hydraulic diffusivity and the seismic criticality (i.e., critical pore pressure value leading to failure; stable locations are characterized by higher critical pressures), both heterogeneously distributed in rocks. The results of the analysis of the most significant and best studied (year 2000) earthquake swarm support this concept. Using a numerical model, where spatially correlated diffusivity and criticalit y patches (where patches with higher diffusivity are assumed to be less stable) are considered, we successfully simulate a general seismicity pattern of the swarms, including the spatio-temporal clustering of events and the migration of seismic activity. Therefore, in some cases spontaneously triggered natural seismicity, like earthquake swarms, also shows diffusion-typical signatures mentioned above. However, it seems that there are also some principle differences. They are emphasized in this presentation.

  18. Report of the EOS oceans panel to the payload panel

    NASA Astrophysics Data System (ADS)

    Abbott, Mark R.; Freilich, Michael H.

    1992-11-01

    The atmosphere and the ocean are the two great fluids of the earth system. Changes in the coupling of these two fluids will have a profound impact on the Earth's climate and biogeochemical systems. Although changes in atmospheric composition and dynamics are the usual focus of global climate models, it is apparent that the ocean plays a critical role in modulating the magnitude and rate of these changes. The ocean is responsible for nearly half of the poleward heat flux as well as for a significant portion of the uptake of atmospheric carbon dioxide. However, the processes governing the flux of materials and energy between the ocean atmosphere are poorly understood. Such processes include not only physical and chemical dynamics, but also biological processes which act to modify the chemical composition of the ocean as well as the trapping of solar energy as heat in the upper water column. Thus it is essential that the ocean be studied as a complete system of physical, chemical, and biological processes. Overlapping measurements must be made for at least 10-15 years to resolve critical low frequency fluctuations. The present EOS plan relies heavily on non-EOS entities to provide critical data sets for ocean studies. Although such partnerships are usually beneficial, there are risks that must be considered in terms of data coverage, quality, resolution, and availability. A simple replacement of an EOS sensor with a non-EOS sensor based on the fact that they both measure the same quantities will not guarantee that critical measurements will be made to address IPCC priorities in the area of ocean processes. EOS must continue to pursue appropriate methods to ensure that such partner — provided measurements meet scientific requirements. Such methods are analogous to contigencies applied in the area of schedules, cost, and performance for instrument projects. EOS must foster strong ties between US scientists and their foreign counterparts, in order to develop partnerships based on science, rather than just based on financial or administrative considerations. Effective international programs are necessary for a truly globally-based study, and they must begin with working scientists. In the area of ocean sciences, several opportunities exist in the early EOS era, such as ERS-1, TOPEX/Poseidon, and NSCAT / OCTS / SeaWiFS. We strongly encourage EOS to contribute to these efforts.

  19. Working fluid selection for space-based two-phase heat transport systems

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1988-01-01

    The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.

  20. Nucleation speed limit on remote fluid induced earthquakes

    USGS Publications Warehouse

    Parsons, Thomas E.; Akinci, Aybige; Malignini, Luca

    2017-01-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.

  1. Nucleation speed limit on remote fluid-induced earthquakes.

    PubMed

    Parsons, Tom; Malagnini, Luca; Akinci, Aybige

    2017-08-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth's crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.

  2. Nucleation speed limit on remote fluid-induced earthquakes

    PubMed Central

    Parsons, Tom; Malagnini, Luca; Akinci, Aybige

    2017-01-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes. PMID:28845448

  3. Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application.

    PubMed

    Gong, Max M; Sinton, David

    2017-06-28

    Infectious diseases are a major global health issue. Diagnosis is a critical first step in effectively managing their spread. Paper-based microfluidic diagnostics first emerged in 2007 as a low-cost alternative to conventional laboratory testing, with the goal of improving accessibility to medical diagnostics in developing countries. In this review, we examine the advances in paper-based microfluidic diagnostics for medical diagnosis in the context of global health from 2007 to 2016. The theory of fluid transport in paper is first presented. The next section examines the strategies that have been employed to control fluid and analyte transport in paper-based assays. Tasks such as mixing, timing, and sequential fluid delivery have been achieved in paper and have enabled analytical capabilities comparable to those of conventional laboratory methods. The following section examines paper-based sample processing and analysis. The most impactful advancement here has been the translation of nucleic acid analysis to a paper-based format. Smartphone-based analysis is another exciting development with potential for wide dissemination. The last core section of the review highlights emerging health applications, such as male fertility testing and wearable diagnostics. We conclude the review with the future outlook, remaining challenges, and emerging opportunities.

  4. Supercritical Nitrogen Processing for the Purification of Reactive Porous Materials

    PubMed Central

    Stadie, Nicholas P.; Callini, Elsa; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas

    2015-01-01

    Supercritical fluid extraction and drying methods are well established in numerous applications for the synthesis and processing of porous materials. Herein, nitrogen is presented as a novel supercritical drying fluid for specialized applications such as in the processing of reactive porous materials, where carbon dioxide and other fluids are not appropriate due to their higher chemical reactivity. Nitrogen exhibits similar physical properties in the near-critical region of its phase diagram as compared to carbon dioxide: a widely tunable density up to ~1 g ml-1, modest critical pressure (3.4 MPa), and small molecular diameter of ~3.6 Å. The key to achieving a high solvation power of nitrogen is to apply a processing temperature in the range of 80-150 K, where the density of nitrogen is an order of magnitude higher than at similar pressures near ambient temperature. The detailed solvation properties of nitrogen, and especially its selectivity, across a wide range of common target species of extraction still require further investigation. Herein we describe a protocol for the supercritical nitrogen processing of porous magnesium borohydride. PMID:26066492

  5. Supercritical fluid technology: concepts and pharmaceutical applications.

    PubMed

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is focused on different techniques that use supercritical fluids and their opportunities for the pharmaceutical sector.

  6. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    NASA Astrophysics Data System (ADS)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  7. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point.

    PubMed

    Weiss, Volker C

    2015-10-14

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  8. Design and testing of high temperature micro-ORC test stand using Siloxane as working fluid

    NASA Astrophysics Data System (ADS)

    Turunen-Saaresti, Teemu; Uusitalo, Antti; Honkatukia, Juha

    2017-03-01

    Organic Rankine Cycle is a mature technology for many applications e.g. biomass power plants, waste heat recovery and geothermal power for larger power capacity. Recently more attention is paid on an ORC utilizing high temperature heat with relatively low power. One of the attractive applications of such ORCs would be utilization of waste heat of exhaust gas of combustion engines in stationary and mobile applications. In this paper, a design procedure of the ORC process is described and discussed. The analysis of the major components of the process, namely the evaporator, recuperator, and turbogenerator is done. Also preliminary experimental results of an ORC process utilizing high temperature exhaust gas heat and using siloxane MDM as a working fluid are presented and discussed. The turbine type utilized in the turbogenerator is a radial inflow turbine and the turbogenerator consists of the turbine, the electric motor and the feed pump. Based on the results, it was identified that the studied system is capable to generate electricity from the waste heat of exhaust gases and it is shown that high molecular weight and high critical temperature fluids as the working fluids can be utilized in high-temperature small-scale ORC applications. 5.1 kW of electric power was generated by the turbogenerator.

  9. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  10. Impact of late fluid balance on clinical outcomes in the critically ill surgical and trauma population.

    PubMed

    Elofson, Kathryn A; Eiferman, Daniel S; Porter, Kyle; Murphy, Claire V

    2015-12-01

    Management of fluid status in critically ill patients poses a significant challenge due to limited literature. This study aimed to determine the impact of late fluid balance management after initial adequate fluid resuscitation on in-hospital mortality for critically ill surgical and trauma patients. This single-center retrospective cohort study included 197 patients who underwent surgical procedure within 24 hours of surgical intensive care unit admission. Patients with high fluid balance on postoperative day 7 (>5 L) were compared with those with a low fluid balance (≤5 L) with a primary end point of in-hospital mortality. Subgroup analyses were performed based on diuretic administration, diuretic response, and type of surgery. High fluid balance was associated with significantly higher in-hospital mortality (30.2 vs 3%, P<.001) compared with low fluid balance; this relationship remained after multivariable regression analysis. High fluid balance was associated with increased mortality, independent of diuretic administration, diuretic response, and type of surgery. Consistent with previous literature, high fluid balance on postoperative day 7 was associated with increased in-hospital mortality. Patients who received and responded to diuretic therapy did not demonstrate improved clinical outcomes, which questions their use in the postoperative period. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Turbidity of a Binary Fluid Mixture: Determining Eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  12. Preparation of Active Proteins, Vaccines and Pharmaceuticals as Fine Powders using Supercritical or Near-Critical Fluids

    PubMed Central

    Villa, Joseph A.; Huang, Edward T. S.; Yang, Tzung-Horng; Carpenter, John F.; Sievers, Robert E.

    2008-01-01

    Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer® (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), α1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions. PMID:18581212

  13. Approach to the critically ill camelid.

    PubMed

    Bedenice, Daniela

    2009-07-01

    The estimation of fluid deficits in camelids is challenging. However, early recognition and treatment of shock and hypovolemia is instrumental to improve morbidity and mortality of critically ill camelids. Early goal-directed fluid therapy requires specific knowledge of clinical indicators of hypovolemia and assessment of resuscitation endpoints, but may significantly enhance the understanding, monitoring, and safety of intravenous fluid therapy in South American camelids (SAC). It is important to recognize that over-aggressive fluid resuscitation is just as detrimental as under resuscitation. Nonetheless, a protocol of conservative fluid management is often indicated in the treatment of camelids with pulmonary inflammation, to counteract edema formation. The early recognition of lung dysfunction is often based on advanced diagnostic techniques, including arterial blood gas analysis, diagnostic imaging, and noninvasive pulmonary function testing.

  14. Goal neglect and knowledge chunking in the construction of novel behaviour.

    PubMed

    Bhandari, Apoorva; Duncan, John

    2014-01-01

    Task complexity is critical in cognitive efficiency and fluid intelligence. To examine functional limits in task complexity, we examine the phenomenon of goal neglect, where participants with low fluid intelligence fail to follow task rules that they otherwise understand. Though neglect is known to increase with task complexity, here we show that - in contrast to previous accounts - the critical factor is not the total complexity of all task rules. Instead, when the space of task requirements can be divided into separate sub-parts, neglect is controlled by the complexity of each component part. The data also show that neglect develops and stabilizes over the first few performance trials, i.e. as instructions are first used to generate behaviour. In all complex behaviour, a critical process is combination of task events with retrieved task requirements to create focused attentional episodes dealing with each decision in turn. In large part, we suggest, fluid intelligence may reflect this process of converting complex requirements into effective attentional episodes. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Supercritical Fluid Spray Application Process for Adhesives and Primers

    DTIC Science & Technology

    2003-03-01

    The basic scheme of SFE process consists of three steps. A solvent, typically carbon dioxide, first is heated and pressurized to a supercritical...passivation step to remove contaminants and to prevent recontamination. Bok et al. (25) describe a pressure pulsation mechanism to stimulate improved...in as a liquid, and then it is heated to above its critical temperature to become a supercritical fluid. The sample is injected and dissolved into

  16. Clarification of vaccines: An overview of filter based technology trends and best practices.

    PubMed

    Besnard, Lise; Fabre, Virginie; Fettig, Michael; Gousseinov, Elina; Kawakami, Yasuhiro; Laroudie, Nicolas; Scanlan, Claire; Pattnaik, Priyabrata

    2016-01-01

    Vaccines are derived from a variety of sources including tissue extracts, bacterial cells, virus particles, recombinant mammalian, yeast and insect cell produced proteins and nucleic acids. The most common method of vaccine production is based on an initial fermentation process followed by purification. Production of vaccines is a complex process involving many different steps and processes. Selection of the appropriate purification method is critical to achieving desired purity of the final product. Clarification of vaccines is a critical step that strongly impacts product recovery and subsequent downstream purification. There are several technologies that can be applied for vaccine clarification. Selection of a harvesting method and equipment depends on the type of cells, product being harvested, and properties of the process fluids. These techniques include membrane filtration (microfiltration, tangential-flow filtration), centrifugation, and depth filtration (normal flow filtration). Historically vaccine harvest clarification was usually achieved by centrifugation followed by depth filtration. Recently membrane based technologies have gained prominence in vaccine clarification. The increasing use of single-use technologies in upstream processes necessitated a shift in harvest strategies. This review offers a comprehensive view on different membrane based technologies and their application in vaccine clarification, outlines the challenges involved and presents the current state of best practices in the clarification of vaccines. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Recovery of energy from geothermal brine and other hot water sources

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  18. A magneto-rheological fluid-based torque sensor for smart torque wrench application

    NASA Astrophysics Data System (ADS)

    Ahmadkhanlou, Farzad; Washington, Gregory N.

    2013-04-01

    In this paper, the authors have developed a new application where MR fluid is being used as a sensor. An MR-fluid based torque wrench has been developed with a rotary MR fluid-based damper. The desired set torque ranges from 1 to 6 N.m. Having continuously controllable yield strength, the MR fluid-based torque wrench presents a great advantage over the regular available torque wrenches in the market. This design is capable of providing continuous set toque from the lower limit to the upper limit while regular torque wrenches provide discrete set torques only at some limited points. This feature will be especially important in high fidelity systems where tightening torque is very critical and the tolerances are low.

  19. Use of Computational Fluid Dynamics for improving freeze-dryers design and process understanding. Part 1: Modelling the lyophilisation chamber.

    PubMed

    Barresi, Antonello A; Rasetto, Valeria; Marchisio, Daniele L

    2018-05-15

    This manuscript shows how computational models, mainly based on Computational Fluid Dynamics (CFD), can be used to simulate different parts of an industrial freeze-drying equipment and to properly design them; in particular, the freeze-dryer chamber and the duct connecting the chamber with the condenser, with the valves and vanes eventually present are analysed in this work. In Part 1, it will be shown how CFD can be employed to improve specific designs, to perform geometry optimization, to evaluate different design choices and how it is useful to evaluate the effect on product drying and batch variance. Such an approach allows an in-depth process understanding and assessment of the critical aspects of lyophilisation. This can be done by running either steady-state or transient simulations with imposed sublimation rates or with multi-scale approaches. This methodology will be demonstrated on freeze-drying equipment of different sizes, investigating the influence of the equipment geometry and shelf inter-distance. The effect of valve type (butterfly and mushroom) and shape on duct conductance and critical flow conditions will be instead investigated in Part 2. Copyright © 2018. Published by Elsevier B.V.

  20. Effects of Froude number and geometry on water entry of a 2-D ellipse

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Liu, Pei-qing; Qu, Qiu-lin; Wang, Rui; Agarwal, Ramesh K.

    2018-05-01

    By using the finite volume method with volume of fluid model and global dynamic mesh technique, the effects of Froude number and geometry on the water entry process of a 2-D ellipse are investigated numerically. For the time history of the vertical force, the computational fluid dynamics (CFD) results match the experimental data much better than the classical potential-flow theories due to the consideration of the viscosity, turbulence, surface tension, gravity, and compressibility. The results show that the position of peak pressure on ellipse shifts from the spray root to the bottom of ellipse at a critical time. The critical time changes with the geometry and Froude number. By studying the vertical force, the ellipse water entry process can be divided into the initial and late stages based on the critical dimensionless time of about 0.1. The geometry of the ellipse plays a dominant role in the initial stage, while the Froude number is more important in the late stage of entry. The classical Wagner theory is extended to the ellipse water entry, and the predicted maximum value of vertical force coefficient in the initial stage is 4πa/b that matches the CFD results very well, where a and b are the horizontal axis and vertical axis of the ellipse parallel and perpendicular to the initial calm water surface, respectively.

  1. Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR).

    PubMed

    Forte, Esther; Llovell, Felix; Vega, Lourdes F; Trusler, J P Martin; Galindo, Amparo

    2011-04-21

    An accurate prediction of phase behavior at conditions far and close to criticality cannot be accomplished by mean-field based theories that do not incorporate long-range density fluctuations. A treatment based on renormalization-group (RG) theory as developed by White and co-workers has proven to be very successful in improving the predictions of the critical region with different equations of state. The basis of the method is an iterative procedure to account for contributions to the free energy of density fluctuations of increasing wavelengths. The RG method has been combined with a number of versions of the statistical associating fluid theory (SAFT), by implementing White's earliest ideas with the improvements of Prausnitz and co-workers. Typically, this treatment involves two adjustable parameters: a cutoff wavelength L for density fluctuations and an average gradient of the wavelet function Φ. In this work, the SAFT-VR (variable range) equation of state is extended with a similar crossover treatment which, however, follows closely the most recent improvements introduced by White. The interpretation of White's latter developments allows us to establish a straightforward method which enables Φ to be evaluated; only the cutoff wavelength L then needs to be adjusted. The approach used here begins with an initial free energy incorporating only contributions from short-wavelength fluctuations, which are treated locally. The contribution from long-wavelength fluctuations is incorporated through an iterative procedure based on attractive interactions which incorporate the structure of the fluid following the ideas of perturbation theories and using a mapping that allows integration of the radial distribution function. Good agreement close and far from the critical region is obtained using a unique fitted parameter L that can be easily related to the range of the potential. In this way the thermodynamic properties of a square-well (SW) fluid are given by the same number of independent intermolecular model parameters as in the classical equation. Far from the critical region the approach provides the correct limiting behavior reducing to the classical equation (SAFT-VR). In the critical region the β critical exponent is calculated and is found to take values close to the universal value. In SAFT-VR the free energy of an associating chain fluid is obtained following the thermodynamic perturbation theory of Wertheim from the knowledge of the free energy and radial distribution function of a reference monomer fluid. By determining L for SW fluids of varying well width a unique equation of state is obtained for chain and associating systems without further adjustment of critical parameters. We use computer simulation data of the phase behavior of chain and associating SW fluids to test the accuracy of the new equation.

  2. Neural Control Mechanisms and Body Fluid Homeostasis

    NASA Technical Reports Server (NTRS)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  3. Study on Fluid-solid Coupling Mathematical Models and Numerical Simulation of Coal Containing Gas

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Hao, Meng; Jin, Hongwei

    2018-02-01

    Based on coal seam gas migration theory under multi-physics field coupling effect, fluid-solid coupling model of coal seam gas was build using elastic mechanics, fluid mechanics in porous medium and effective stress principle. Gas seepage behavior under different original gas pressure was simulated. Results indicated that residual gas pressure, gas pressure gradient and gas low were bigger when original gas pressure was higher. Coal permeability distribution decreased exponentially when original gas pressure was lower than critical pressure. Coal permeability decreased rapidly first and then increased slowly when original pressure was higher than critical pressure.

  4. Understanding deviations in lithographic patterns near interfaces: Characterization of bottom anti-reflective coatings (BARC) and the BARC resist interface

    NASA Astrophysics Data System (ADS)

    Lenhart, Joseph L.; Fischer, Daniel; Sambasivan, Sharadha; Lin, Eric K.; Wu, Wen-Li; Guerrero, Douglas J.; Wang, Yubao; Puligadda, Rama

    2007-02-01

    Interactions between a bottom anti-reflective coating (BARC) and a photoresist can critically impact lithographic patterns. For example, a lithographic pattern can shrink or spread near a BARC interface, a process called undercutting or footing respectively, due to incompatibility between the two materials. Experiments were conducted on two industrial BARC coatings in an effort to determine the impact of BARC surface chemistry on the footing and undercutting phenomena. The BARC coatings were characterized by near edge X-ray absorption fine structure (NEXAFS), contact angle measurements, and neutron and X-ray reflectivity. Contact angle measurement using a variety of fluids showed that the fluid contact angles were independent of the type of BARC coating or the BARC processing temperature. NEXAFS measurements showed that the surface chemistry of each BARC was also independent of the processing temperature. These results suggest that acid-base interactions at the BARC-resist interface are not the cause of the footing-undercutting phenomena encountered in lithographic patterns.

  5. Apparatus and method for extraction of chemicals from aquifer remediation effluent water

    DOEpatents

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Moses, John M.; Barker, Donna L.

    2002-01-01

    An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  6. Method and system for extraction of chemicals from aquifer remediation effluent water

    DOEpatents

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Barker, Donna L.

    2003-01-01

    A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  7. Influence of in line monitored fluid bed granulation process parameters on the stability of Ethinylestradiol.

    PubMed

    Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela

    2015-12-30

    Ethinylestradiol (EE) as a highly active and low dosed compound is prone to oxidative degradation. The stability of the drug substance is therefore a critical parameter that has to be considered during drug formulation. Beside the stability of the drug substance, granule particle size and moisture are critical quality attributes (CQA) of the fluid bed granulation process which influence the tableting ability of the resulting granules. Both CQA should therefore be monitored during the production process by process analytic technology (PAT) according to ICH Q8. This work focusses on the effects of drying conditions on the stability of EE in a fluid-bed granulation process. We quantified EE degradation products 6-alpha-hydroxy-EE, 6-beta-hydroxy-EE, 9(11)-dehydro-EE and 6-oxo-EE during long time storage and accelerated conditions. PAT-tools that monitor granule particle size (Spatial filtering technology) and granule moisture (Microwave resonance technology) were applied and compared with off-line methods. We found a relevant influence of residual granule moisture and thermic stress applied during granulation on the storage stability of EE, whereas no degradation was found immediately after processing. Hence we conclude that drying parameters have a relevant influence on long term EE stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Design and optimization of organic rankine cycle for low temperature geothermal power plant

    NASA Astrophysics Data System (ADS)

    Barse, Kirtipal A.

    Rising oil prices and environmental concerns have increased attention to renewable energy. Geothermal energy is a very attractive source of renewable energy. Although low temperature resources (90°C to 150°C) are the most common and most abundant source of geothermal energy, they were not considered economical and technologically feasible for commercial power generation. Organic Rankine Cycle (ORC) technology makes it feasible to use low temperature resources to generate power by using low boiling temperature organic liquids. The first hypothesis for this research is that using ORC is technologically and economically feasible to generate electricity from low temperature geothermal resources. The second hypothesis for this research is redesigning the ORC system for the given resource condition will improve efficiency along with improving economics. ORC model was developed using process simulator and validated with the data obtained from Chena Hot Springs, Alaska. A correlation was observed between the critical temperature of the working fluid and the efficiency for the cycle. Exergy analysis of the cycle revealed that the highest exergy destruction occurs in evaporator followed by condenser, turbine and working fluid pump for the base case scenarios. Performance of ORC was studied using twelve working fluids in base, Internal Heat Exchanger and turbine bleeding constrained and non-constrained configurations. R601a, R245ca, R600 showed highest first and second law efficiency in the non-constrained IHX configuration. The highest net power was observed for R245ca, R601a and R601 working fluids in the non-constrained base configuration. Combined heat exchanger area and size parameter of the turbine showed an increasing trend as the critical temperature of the working fluid decreased. The lowest levelized cost of electricity was observed for R245ca followed by R601a, R236ea in non-constrained base configuration. The next best candidates in terms of LCOE were R601a, R245ca and R600 in non-constrained IHX configuration. LCOE is dependent on net power and higher net power favors to lower the cost of electricity. Overall R245ca, R601, R601a, R600 and R236ea show better performance among the fluids studied. Non constrained configurations display better performance compared to the constrained configurations. Base non-constrained offered the highest net power and lowest LCOE.

  9. The subscale orbital fluid transfer experiment

    NASA Technical Reports Server (NTRS)

    Meserole, J. S.; Collins, Frank G.; Jones, Ogden; Antar, Basil; Menzel, Reinhard; Gray, Perry

    1995-01-01

    The work during the present year consisted of examining concepts for visual observation of the fluid transfer process, examination of methods for accurately metering the amount of liquid transferred between the two tanks, examination of possible test fluids, and consideration of the materials to use for the elastomeric diaphragm. The objective of the visual observation is to locate the fluid-vapor interfaces and, if possible, quantify the amount of vapor and the area of the interface. It is proposed to use video cameras to view the overall process in each tank and to place borescopes or other devices through the tank walls to obtain detailed, undistorted views inside the tanks of critical portions of the transfer process. Further work will continue to find an economical means for providing this detailed view, which clearly would increase the data obtained from the experiment.

  10. Conditioning of carbonaceous material prior to physical beneficiation

    DOEpatents

    Warzinski, Robert P.; Ruether, John A.

    1987-01-01

    A carbonaceous material such as coal is conditioned by contact with a supercritical fluid prior to physical beneficiation. The solid feed material is contacted with an organic supercritical fluid such as cyclohexane or methanol at temperatures slightly above the critical temperature and pressures of 1 to 4 times the critical pressure. A minor solute fraction is extracted into critical phase and separated from the solid residuum. The residuum is then processed by physical separation such as by froth flotation or specific gravity separation to recover a substantial fraction thereof with reduced ash content. The solute in supercritical phase can be released by pressure reduction and recombined with the low-ash, carbonaceous material.

  11. Smart fast blood counting of trace volumes of body fluids from various mammalian species using a compact custom-built microscope cytometer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.; Gao, Tingjuan; Lin, Tzu-Yin; Carrade-Holt, Danielle; Lane, Stephen M.; Matthews, Dennis L.; Dwyre, Denis M.; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Cell counting in human body fluids such as blood, urine, and CSF is a critical step in the diagnostic process for many diseases. Current automated methods for cell counting are based on flow cytometry systems. However, these automated methods are bulky, costly, require significant user expertise, and are not well suited to counting cells in fluids other than blood. Therefore, their use is limited to large central laboratories that process enough volume of blood to recoup the significant capital investment these instruments require. We present in this talk a combination of a (1) low-cost microscope system, (2) simple sample preparation method, and (3) fully automated analysis designed for providing cell counts in blood and body fluids. We show results on both humans and companion and farm animals, showing that accurate red cell, white cell, and platelet counts, as well as hemoglobin concentration, can be accurately obtained in blood, as well as a 3-part white cell differential in human samples. We can also accurately count red and white cells in body fluids with a limit of detection ~3 orders of magnitude smaller than current automated instruments. This method uses less than 1 microliter of blood, and less than 5 microliters of body fluids to make its measurements, making it highly compatible with finger-stick style collections, as well as appropriate for small animals such as laboratory mice where larger volume blood collections are dangerous to the animal's health.

  12. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    NASA Technical Reports Server (NTRS)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  13. Utility of transthoracic echocardiography (TTE) in assessing fluid responsiveness in critically ill patients - a challenge for the bedside sonographer.

    PubMed

    Mielnicki, Wojciech; Dyla, Agnieszka; Zawada, Tomasz

    2016-12-05

    Transthoracic echocardiography (TTE) has become one of the most important diagnostic tools in the treatment of critically ill patients. It allows clinicians to recognise potentially reversible life-threatening situations and is also very effective in the monitoring of the fluid status of patients, slowly substituting invasive methods in the intensive care unit. Hemodynamic assessment is based on a few static and dynamic parameters. Dynamic parameters change during the respiratory cycle in mechanical ventilation and the level of this change directly corresponds to fluid responsiveness. Most of the parameters cannot be used in spontaneously breathing patients. For these patients the most important test is passive leg raising, which is a good substitute for fluid bolus. Although TTE is very useful in the critical care setting, we should not forget the important limitations, not only technical ones but also caused by the critical illness itself. Unfortunately, this method does not allow continuous monitoring and every change in the patient's condition requires repeated examination.

  14. Electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to the synthesis of molecular diamond

    NASA Astrophysics Data System (ADS)

    Stauss, Sven

    2014-10-01

    Plasma-based fabrication of novel nanomaterials and nanostructures is paramount for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations are crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. In the first part of the talk, we will discuss an anomaly observed for microplasmas generated near the critical point, a local decrease in the breakdown voltage, which has been observed for both molecular and monoatomic gases. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths induced by the high-density fluctuation near the critical point. We will also show that when generating microplasma discharges close to the critical point, that the high-density fluctuation of the supercritical fluid persists. In the second part of the presentation, we will first introduce the basic properties of diamondoids and their potential for application in many different fields - biotechnology, medicine, opto- and nanoelectronics - before discussing their synthesis by microplasmas generated inside both conventional batch-type and continuous flow reactors, using the smallest diamondoid, adamantane, as a precursor and seed. Finally we show that one possible growth mechanism of larger diamondoids from smaller ones consists in the repeated abstraction of hydrogen terminations and the addition of methyl radicals. Supported financially in part by Grant No. 23760688 and Grant No. 21110002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  15. Switching off malignant pleural effusion formation—fantasy or future?

    PubMed Central

    Giannou, Anastasios D.; Stathopoulos, Georgios T.

    2015-01-01

    Malignant pleural effusion (MPE) is common and difficult to treat. In the vast majority of patients the presence of MPE heralds incurable disease, associated with poor quality of life, morbidity and mortality. Current therapeutic approaches are inefficient and merely offer palliation of associated symptoms. Recent scientific progress has shed light in the biologic processes governing the mechanisms behind the pathobiology of MPE. Pleural based tumors interfere with pleural fluid drainage, as well as the host vasculature and immune system, resulting in decreased fluid absorption and increased pleural fluid production via enhanced plasma extravasation into the pleural space. In order to achieve this feat, pleural based tumors must elicit critical vasoactive events in the pleura, thus forming a favorable microenvironment for tumor dissemination and MPE development. Such properties involve specific transcriptional signaling cascades in addition to secretion of important mediators which attract and activate host cell populations which, in turn, impact tumor cell functions. The dissection of the biologic steps leading to MPE formation provides novel therapeutic targets and recent research findings provide encouraging results towards future therapeutic innovations in MPE management. PMID:26150914

  16. Fluid and Electrolyte Therapy During Vomiting and Diarrhea.

    PubMed

    Tello, Luis; Perez-Freytes, Rossana

    2017-03-01

    Fluid therapy is generally the most life saving and important therapeutic measure in a critical pet suffering from dehydration due to gastrointestinal losses (vomiting and/or diarrhea). Fluid therapy should be personalized to the patient's history, complaint, physical examination and laboratory findings. It is directed to the patients needs and modified based of the physical and laboratory findings until fluid therapy resuscitation end points are achieved. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. System configured for applying a modifying agent to a non-equidimensional substrate

    DOEpatents

    Janikowski,; Stuart K. , Argyle; Mark D. , Fox; Robert V. , Propp; W Alan, Toth [Idaho Falls, ID; William J. , Ginosar; Daniel M. , Allen; Charles A. , Miller; David, L [Idaho Falls, ID

    2007-07-10

    The present invention is related to systems and methods for modifying various non-equidimensional substrates with modifying agents. The system comprises a processing chamber configured for passing the non-equidimensional substrate therethrough, wherein the processing chamber is further configured to accept a treatment mixture into the chamber during movement of the non-equidimensional substrate through the processing chamber. The treatment mixture can comprise of the modifying agent in a carrier medium, wherein the carrier medium is selected from the group consisting of a supercritical fluid, a near-critical fluid, a superheated fluid, a superheated liquid, and a liquefied gas. Thus, the modifying agent can be applied to the non-equidimensional substrate upon contact between the treatment mixture and the non-equidimensional substrate.

  18. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  19. System configured for applying a modifying agent to a non-equidimensional substrate

    DOEpatents

    Janikowski, Stuart K.; Toth, William J.; Ginosar, Daniel M.; Allen, Charles A.; Argyle, Mark D.; Fox, Robert V.; Propp, W. Alan; Miller, David L.

    2003-09-23

    The present invention is related to systems and methods for modifying various non-equidimensional substrates with modifying agents. The system comprises a processing chamber configured for passing the non-equidimensional substrate therethrough, wherein the processing chamber is further configured to accept a treatment mixture into the chamber during movement of the non-equidimensional substrate through the processing chamber. The treatment mixture can comprise of the modifying agent in a carrier medium, wherein the carrier medium is selected from the group consisting of a supercritical fluid, a near-critical fluid, a superheated fluid, a superheated liquid, and a liquefied gas. Thus, the modifying agent can be applied to the non-equidimensional substrate upon contact between the treatment mixture and the non-equidimensional substrate.

  20. Identification of critical process variables affecting particle size following precipitation using a supercritical fluid.

    PubMed

    Sacha, Gregory A; Schmitt, William J; Nail, Steven L

    2006-01-01

    The critical processing parameters affecting average particle size, particle size distribution, yield, and level of residual carrier solvent using the supercritical anti-solvent method (SAS) were identified. Carbon dioxide was used as the supercritical fluid. Methylprednisolone acetate was used as the model solute in tetrahydrofuran. Parameters examined included pressure of the supercritical fluid, agitation rate, feed solution flow rate, impeller diameter, and nozzle design. Pressure was identified as the most important process parameter affecting average particle size, either through the effect of pressure on dispersion of the feed solution into the precipitation vessel or through the effect of pressure on solubility of drug in the CO2/organic solvent mixture. Agitation rate, impeller diameter, feed solution flow rate, and nozzle design had significant effects on particle size, which suggests that dispersion of the feed solution is important. Crimped HPLC tubing was the most effective method of introducing feed solution into the precipitation vessel, largely because it resulted in the least amount of clogging during the precipitation. Yields of 82% or greater were consistently produced and were not affected by the processing variables. Similarly, the level of residual solvent was independent of the processing variables and was present at 0.0002% wt/wt THF or less.

  1. Education on fluid management and encouraging critical thinking skills.

    PubMed

    Dale, Willette

    2012-01-01

    The unit is currently utilizing hematocrit-based blood volume monitoring on each patient, resulting in improved monitoring in patients achieving their target weight. The nurses expressed confidence in their understanding of the use of hematocrit-based blood volume monitoring. This learning experience provided a vivid look at the importance of fluid management in nephrology nursing. This area should always be included in nephrology nurse competencies and represented in a way that it ignites critical thinking within the nursing professional. It is the responsibility of a professional nurse to stay current in evidence-based practice and continuing education. Professional pride stimulates nephrology nurses to seek new learning experiences to enhance their practice.

  2. Transport of heat and mass in near-critical fluids

    NASA Astrophysics Data System (ADS)

    Garrabos, Yves; Leneindre, B.; Guenoun, P.; Perrot, F.; Beysens, Daniel

    1992-08-01

    In order to investigate some aspects of heat and mass transport in fluids in the absence of gravity, thermal cycles were performed near the liquid-phase critical point of CO2 and SF6 in the TEXUS 25 rocket and during the International Microgravity Laboratory (IML-1) Spacelab mission. In the absence of gravity driven convection, the heat transport is expected to be diffusive and very slow. Experimentally, although the local density and temperature gradients indeed relax by a diffusive process, clear evidence is found of fast and uniform thermal equilibration. This new mechanism is a 'piston effect'.

  3. CONVERTING FROM BATCH TO CONTINUOUS INTENSIFIED PROCESSING IN THE STT? REACTOR

    EPA Science Inventory


    The fluid dynamics, the physical dimensions and characteristics of the reaction zones of continuous process intensification reactors are often quite different from those of the batch reactors they replace. Understanding these differences is critical to the successful transit...

  4. Fluid and electrolyte homeostasis during spaceflight: Elucidation of mechanisms in a primate

    NASA Technical Reports Server (NTRS)

    Churchill, Susanne

    1990-01-01

    Although it is now well accepted that exposure to the hypogravic environment of space induces a shift of fluid from the lower extremities toward the upper body, the actual physiological responses to this central volume expansion have not been well characterized. Because it is likely that the fluid and electrolyte response to hypogravity plays a critical role in the development of Cardiovascular Deconditioning, elucidation of these mechanisms is of critical importance. The goal of flight experiment 223, scheduled to fly on SLS-2, is the definition of the basic renal, fluid and electrolyte response to spaceflight in four instrumented squirrel monkeys. The studies were those required to support the development of flight hardware and optimal inflight procedures, and to evaluate a ground-based model for weightlessness, lower body positive pressure (LBPP).

  5. Physical and chemical controls on the critical zone

    USGS Publications Warehouse

    Anderson, S.P.; Von Blanckenburg, F.; White, A.F.

    2007-01-01

    Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.

  6. Concepts and methods for describing critical phenomena in fluids

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Sengers, J. M. H. L.

    1977-01-01

    The predictions of theoretical models for a critical-point phase transistion in fluids, namely the classical equation with third-degree critical isotherm, that with fifth-degree critical isotherm, and the lattice gas, are reviewed. The renormalization group theory of critical phenomena and the hypothesis of universality of critical behavior supported by this theory are discussed as well as the nature of gravity effects and how they affect cricital-region experimentation in fluids. The behavior of the thermodynamic properties and the correlation function is formulated in terms of scaling laws. The predictions of these scaling laws and of the hypothesis of universality of critical behavior are compared with experimental data for one-component fluids and it is indicated how the methods can be extended to describe critical phenomena in fluid mixtures.

  7. A Geophysical Flow Experiment in a Compressible Critical Fluid

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Garcia, Laudelino

    1996-01-01

    The first objective of this experiment is to build an experimental system in which, in analogy to a geophysical system, a compressible fluid in a spherical annulus becomes radially stratified in density through an A.C. electric field. When this density gradient is demonstrated, the system will be augmented so that the fluid can be driven by heating and rotation and tested in preparation for a microgravity experiment. This apparatus consists of a spherical capacitor filled with critical fluid in a temperature controlled environment. To make the fluid critical, the apparatus will be operated near the critical pressure, critical density, and critical temperature of the fluid. This will result in a highly compressible fluid because of the properties of the fluid near its critical point. A high voltage A.C. source applied across the capacitor will create a spherically symmetric central force because of the dielectric properties of the fluid in an electric field gradient. This central force will induce a spherically symmetric density gradient that is analogous to a geophysical fluid system. To generate such a density gradient the system must be small (approx. 1 inch diameter). This small cell will also be capable of driving the critical fluid by heating and rotation. Since a spherically symmetric density gradient can only be made in microgravity, another small cell, of the same geometry, will be built that uses incompressible fluid. The driving of the fluid by rotation and heating in these small cells will be developed. The resulting instabilities from the driving in these two systems will then be studied. The second objective is to study the pattern forming instabilities (bifurcations) resulting from the well controlled experimental conditions in the critical fluid cell. This experiment will come close to producing conditions that are geophysically similar and will be studied as the driving parameters are changed.

  8. Solid-like features in dense vapors near the fluid critical point

    NASA Astrophysics Data System (ADS)

    Ruppeiner, George; Dyjack, Nathan; McAloon, Abigail; Stoops, Jerry

    2017-06-01

    The phase diagram (pressure versus temperature) of the pure fluid is typically envisioned as being featureless apart from the presence of the liquid-vapor coexistence curve terminating at the critical point. However, a number of recent authors have proposed that this simple picture misses important features, such as the Widom line, the Fisher-Widom line, and the Frenkel line. In our paper, we discuss another way of augmenting the pure fluid phase diagram, lines of zero thermodynamic curvature R = 0 separating regimes of fluid solid-like behavior (R > 0) from gas-like or liquid-like behavior (R < 0). We systematically evaluate R for the 121 pure fluids in the NIST/REFPROP (version 9.1) fluid database near the saturated vapor line from the triple point to the critical point. Our specific goal was to identify regions of positive R abutting the saturated vapor line ("feature D"). We found the following: (i) 97/121 of the NIST/REFPROP fluids have feature D. (ii) The presence and character of feature D correlates with molecular complexity, taken to be the number of atoms Q per molecule. (iii) The solid-like properties of feature D might be attributable to a mesoscopic model based on correlations among coordinated spinning molecules, a model that might be testable with computer simulations. (iv) There are a number of correlations between thermodynamic quantities, including the acentric factor ω , but we found little explicit correlation between ω and the shape of a molecule. (v) Feature D seriously constrains the size of the asymptotic fluid critical point regime, possibly resolving a long-standing mystery about why these are so small. (vi) Feature D correlates roughly with regimes of anomalous sound propagation.

  9. Consequences of Fluid Lag in Three-Dimensional Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Advani (Deceased), S. H.; Lee, T. S.; Dean, R. H.; Pak, C. K.; Avasthi, J. M.

    1997-04-01

    Research investigations on three-dimensional (3-D) rectangular hydraulic fracture configurations with varying degrees of fluid lag are reported. This paper demonstrates that a 3-D fracture model coupled with fluid lag (a small region of reduced pressure) at the fracture tip can predict very large excess pressure measurements for hydraulic fracture processes. Predictions of fracture propagation based on critical stress intensity factors are extremely sensitive to the pressure profile at the tip of a propagating fracture. This strong sensitivity to the pressure profile at the tip of a hydraulic fracture is more strongly pronounced in 3-D models versus 2-D models because 3-D fractures are clamped at the top and bottom, and pressures in the 3-D fractures that are far removed from the fracture tip have little effect on the stress intensity factor at the fracture tip. This rationale for the excess pressure mechanism is in marked contrast to the crack tip process damage zone assumptions and attendant high rock fracture toughness value hypotheses advanced in the literature. A comparison with field data is presented to illustrate the proposed fracture fluid pressure sensitivity phenomenon. This paper does not attempt to calculate the length of the fluid lag region in a propagating fracture but instead attempts to show that the pressure profile at the tip of the propagating fracture plays a major role in fracture propagation, and this role is magnified in 3-D models. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 229-240 (1997).

  10. Volumetric velocimetry for fluid flows

    NASA Astrophysics Data System (ADS)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  11. The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes.

    PubMed

    Holdway, Douglas A

    2002-03-01

    A review of the acute and chronic effects of produced formation water (PFW), drilling fluids (muds) including oil-based cutting muds, water-based cutting muds, ester-based cutting muds and chemical additives, and crude oils associated with offshore oil and gas production was undertaken in relation to both temperate and tropical marine ecological processes. The main environmental effects are summarized, often in tabular form. Generally, the temporal and spatial scales of these studies, along with the large levels of inherent variation in natural environments, have precluded our ability to predict the potential long-term environmental impacts of the offshore oil and gas production industry. A series of critical questions regarding the environmental effects of the offshore oil and gas production industry that still remain unanswered are provided for future consideration.

  12. Acetazolamide in the treatment of metabolic alkalosis in critically ill patients.

    PubMed

    Marik, P E; Kussman, B D; Lipman, J; Kraus, P

    1991-09-01

    Metabolic alkalosis is a common acid-base disturbance in critically ill patients. In many patients correction of fluid and electrolyte status does not fully correct the metabolic derangement. In this study we examined the effect of 500 mg of intravenous acetazolamide, after correcting for fluid and electrolyte abnormalities, on the acid-base status of 30 ventilated patients. In all patients studied there was a fall of total serum bicarbonate; the mean reduction at 24 hours was 6.4 mmol/L, with a normalization of the base excess and pH. The onset of action was rapid (within 2 hours), and the maximal effect occurred at a mean of 15.5 hours, although there was wide variation. The effect of acetazolamide was still apparent at 48 hours. No adverse effects were noted. We conclude that in patients with metabolic alkalosis, once fluid and electrolyte abnormalities have been corrected, acetazolamide is an effective and safe form of therapy with a quick onset and long duration of action.

  13. Determination of Critical Parameters Based on the Intensity of Transmitted Light Around Gas-Liquid Interface: Critical Parameters of CO

    NASA Astrophysics Data System (ADS)

    Nakayama, Masaki; Katano, Hiroaki; Sato, Haruki

    2014-05-01

    A precise determination of the critical temperature and density for technically important fluids would be possible on the basis of the digital image for the visual observation of the phase boundary in the vicinity of the critical point since the sensitivity and resolution are higher than those of naked eyes. In addition, the digital image can avoid the personal uncertainty of an observer. A strong density gradient occurs in a sample cell at the critical point due to gravity. It was carefully assessed to determine the critical density, where the density profile in the sample cell can be observed from the luminance profile of a digital image. The density-gradient profile becomes symmetric at the critical point. One of the best fluids, whose thermodynamic properties have been measured with the highest reliability among technically important fluids, would be carbon dioxide. In order to confirm the reliability of the proposed method, the critical temperature and density of carbon dioxide were determined using the digital image. The critical temperature and density values of carbon dioxide are ( and ( kg m, respectively. The critical temperature and density values agree with the existing best values within estimated uncertainties. The reliability of the method was confirmed. The critical pressure, 7.3795 MPa, corresponding to the determined critical temperature of 304.143 K is also proposed. A new set of parameters for the vapor-pressure equation is also provided.

  14. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    PubMed Central

    Poojary, Mahesha M.; Barba, Francisco J.; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A.; Juliano, Pablo

    2016-01-01

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability. PMID:27879659

  15. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.

    PubMed

    Poojary, Mahesha M; Barba, Francisco J; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A; Juliano, Pablo

    2016-11-22

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  16. Numerical modeling of fluid migration in subduction zones

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Quinteros, J.; Sobolev, S. V.

    2015-12-01

    It is well known that fluids play a crucial role in subduction evolution. For example, mechanical weakening along tectonic interfaces, due to high fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the down-going plate and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. Ultimately, the evolution of porosity is governed by a compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.

  17. Use of Computational Fluid Dynamics for improving freeze-dryers design and process understanding. Part 2: Condenser duct and valve modelling.

    PubMed

    Marchisio, Daniele L; Galan, Miquel; Barresi, Antonello A

    2018-05-05

    This manuscript shows how computational models, mainly based on Computational Fluid Dynamics (CFD), can be used to simulate different parts of an industrial freeze-drying equipment and to properly design them; in particular in this part the duct connecting the chamber with the condenser, with its valves, is considered, while the chamber design and its effect on drying kinetics have been investigated in Part 1. Such an approach allows a much deeper process understanding and assessment of the critical aspects of lyophilisation. This methodology will be demonstrated on freeze-drying equipment of different sizes, investigating influence of valve type (butterfly and mushroom) and shape on duct conductance and critical flow conditions. The role of the inlet and boundary conditions considered has been assessed, also by modelling the whole apparatus including chamber and condenser, and the influence of the duct diameter has been discussed; the results show a little dependence of the relationship between critical mass flux and chamber pressure on the duct size. Results concerning the fluid dynamics of a simple disk valve, a profiled butterfly valve and a mushroom valve installed in a medium size horizontal condenser are presented. Also in these cases the maximum allowable flow when sonic flow conditions are reached can be described by a correlation similar to that found valid for empty ducts; for the mushroom valve the parameters are dependent on the valve opening length. The possibility to use the equivalent length concept, and to extend the validity of the results obtained for empty ducts will be also discussed. Finally the presence of the inert gas modifies the conductance of the duct, reducing the maximum flow rate of water that can be removed through it before the flow is choked; this also requires a proper over-sizing of the duct (or duct-butterfly valve system). Copyright © 2018. Published by Elsevier B.V.

  18. Evaluating the process parameters of the dry coating process using a 2(5-1) factorial design.

    PubMed

    Kablitz, Caroline Désirée; Urbanetz, Nora Anne

    2013-02-01

    A recent development of coating technology is dry coating, where polymer powder and liquid plasticizer are layered on the cores without using organic solvents or water. Several studies evaluating the process were introduced in literature, however, little information about the critical process parameters (CPPs) is given. Aim of the study was the investigation and optimization of CPPs with respect to one of the critical quality attributes (CQAs), the coating efficiency of the dry coating process in a rotary fluid bed. Theophylline pellets were coated with hydroxypropyl methylcellulose acetate succinate as enteric film former and triethyl citrate and acetylated monoglyceride as plasticizer. A 2(5-1) design of experiments (DOEs) was created investigating five independent process parameters namely coating temperature, curing temperature, feeding/spraying rate, air flow and rotor speed. The results were evaluated by multilinear regression using the software Modde(®) 7. It is shown, that generally, low feeding/spraying rates and low rotor speeds increase coating efficiency. High coating temperatures enhance coating efficiency, whereas medium curing temperatures have been found to be optimum in terms of coating efficiency. This study provides a scientific base for the design of efficient dry coating processes with respect to coating efficiency.

  19. Development & experimental validation of a SINDA/FLUINT thermal/fluid/electrical model of a multi-tube AMTEC cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Borkowski, C.A.; Huang, C.

    1998-01-01

    AMTEC (Alkali Metal Thermal-to-Electric Conversion) cell development has received increased attention and funding in the space power community because of several desirable performance characteristics compared to current radioisotope thermoelectric generation and solar photovoltaic (PV) power generation. AMTEC cell development is critically dependent upon the ability to predict thermal, fluid dynamic and electrical performance of an AMTEC cell which has many complex thermal, fluid dynamic and electrical processes and interactions occurring simultaneously. Development of predictive capability is critical to understanding the complex processes and interactions within the AMTEC cell, and thereby creating the ability to design high-performance, cost-effective AMTEC cells. Amore » flexible, sophisticated thermal/fluid/electrical model of an operating AMTEC cell has been developed using the SINDA/FLUINT analysis software. This model can accurately simulate AMTEC cell performance at any hot side and cold side temperature combination desired, for any voltage and current conditions, and for a broad range of cell design parameters involving the cell dimensions, current collector and electrode design, electrode performance parameters, and cell wall and thermal shield emissivity. The model simulates the thermal radiation network within the AMTEC cell using RadCAD thermal radiation analysis; hot side, cold side and cell wall conductive and radiative coupling; BASE (Beta Alumina Solid Electrode) tube electrochemistry, including electrode over-potentials; the fluid dynamics of the low-pressure sodium vapor flow to the condenser and liquid sodium flow in the wick; sodium condensation at the condenser; and high-temperature sodium evaporation in the wick. The model predicts the temperature profiles within the AMTEC cell walls, the BASE tube temperature profiles, the sodium temperature profile in the artery return, temperature profiles in the evaporator, thermal energy flows throughout the AMTEC cell, all sodium pressure drops from hot BASE tubes to the condenser, the current, voltage, and power output from the cell, and the cell efficiency. This AMTEC cell model is so powerful and flexible that it is used in radioisotope AMTEC power system design, solar AMTEC power system design, and combustion-driven power system design on several projects at Advanced Modular Power Systems, Inc. (AMPS). The model has been successfully validated against actual cell experimental data and its performance predictions agree very well with experimental data on PX-5B cells and other test cells at AMPS. {copyright} {ital 1998 American Institute of Physics.}« less

  20. Mathematical Modeling of Fluid Flow in a Water Physical Model of an Aluminum Degassing Ladle Equipped with an Impeller-Injector

    NASA Astrophysics Data System (ADS)

    Gómez, Eudoxio Ramos; Zenit, Roberto; Rivera, Carlos González; Trápaga, Gerardo; Ramírez-Argáez, Marco A.

    2013-04-01

    In this work, a 3D numerical simulation using a Euler-Euler-based model implemented into a commercial CFD code was used to simulate fluid flow and turbulence structure in a water physical model of an aluminum ladle equipped with an impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate, and the point of gas injection (conventional injection through the shaft vs a novel injection through the bottom of the ladle) on the fluid flow and vortex formation was analyzed with this model. The commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this two-phase fluid flow system. The mathematical model was reasonably well validated against experimentally measured liquid velocity and vortex sizes in a water physical model built specifically for this investigation. From the results, it was concluded that the angular speed of the impeller is the most important parameter in promoting better stirred baths and creating smaller and better distributed bubbles in the liquid. The pumping effect of the impeller is increased as the impeller rotation speed increases. Gas flow rate is detrimental to bath stirring and diminishes the pumping effect of the impeller. Finally, although the injection point was the least significant variable, it was found that the "novel" injection improves stirring in the ladle.

  1. Representation and display of vector field topology in fluid flow data sets

    NASA Technical Reports Server (NTRS)

    Helman, James; Hesselink, Lambertus

    1989-01-01

    The visualization of physical processes in general and of vector fields in particular is discussed. An approach to visualizing flow topology that is based on the physics and mathematics underlying the physical phenomenon is presented. It involves determining critical points in the flow where the velocity vector vanishes. The critical points, connected by principal lines or planes, determine the topology of the flow. The complexity of the data is reduced without sacrificing the quantitative nature of the data set. By reducing the original vector field to a set of critical points and their connections, a representation of the topology of a two-dimensional vector field that is much smaller than the original data set but retains with full precision the information pertinent to the flow topology is obtained. This representation can be displayed as a set of points and tangent curves or as a graph. Analysis (including algorithms), display, interaction, and implementation aspects are discussed.

  2. Near-critical density filling of the SF6 fluid cell for the ALI-R-DECLIC experiment in weightlessness

    NASA Astrophysics Data System (ADS)

    Lecoutre, C.; Marre, S.; Garrabos, Y.; Beysens, D.; Hahn, I.

    2018-05-01

    Analyses of ground-based experiments on near-critical fluids to precisely determine their density can be hampered by several effects, especially the density stratification of the sample, the liquid wetting behavior at the cell walls, and a possible singular curvature of the "rectilinear" diameter of the density coexisting curve. For the latter effect, theoretical efforts have been made to understand the amplitude and shape of the critical hook of the density diameter, which depart from predictions from the so-called ideal lattice-gas model of the uniaxial 3D-Ising universality class. In order to optimize the observation of these subtle effects on the position and shape of the liquid-vapor meniscus in the particular case of SF6, we have designed and filled a cell that is highly symmetrized with respect to any median plane of the total fluid volume. In such a viewed quasi-perfect symmetrical fluid volume, the precise detection of the meniscus position and shape for different orientations of the cell with respect to the Earth's gravity acceleration field becomes a sensitive probe to estimate the cell mean density filling and to test the singular diameter effects. After integration of this cell in the ALI-R insert, we take benefit of the high optical and thermal performances of the DECLIC Engineering Model. Here we present the sensitive imaging method providing the precise ground-based SF6 benchmark data. From these data analysis it is found that the temperature dependence of the meniscus position does not reflect the expected critical hook in the rectilinear density diameter. Therefore the off-density criticality of the cell is accurately estimated, before near future experiments using the same ALI-R insert in the DECLIC facility already on-board the International Space Station.

  3. Controversies in fluid therapy: Type, dose and toxicity

    PubMed Central

    McDermid, Robert C; Raghunathan, Karthik; Romanovsky, Adam; Shaw, Andrew D; Bagshaw, Sean M

    2014-01-01

    Fluid therapy is perhaps the most common intervention received by acutely ill hospitalized patients; however, a number of critical questions on the efficacy and safety of the type and dose remain. In this review, recent insights derived from randomized trials in terms of fluid type, dose and toxicity are discussed. We contend that the prescription of fluid therapy is context-specific and that any fluid can be harmful if administered inappropriately. When contrasting ‘‘crystalloid vs colloid’’, differences in efficacy are modest but differences in safety are significant. Differences in chloride load and strong ion difference across solutions appear to be clinically important. Phases of fluid therapy in acutely ill patients are recognized, including acute resuscitation, maintaining homeostasis, and recovery phases. Quantitative toxicity (fluid overload) is associated with adverse outcomes and can be mitigated when fluid therapy based on functional hemodynamic parameters that predict volume responsiveness and minimization of non-essential fluid. Qualitative toxicity (fluid type), in particular for iatrogenic acute kidney injury and metabolic acidosis, remain a concern for synthetic colloids and isotonic saline, respectively. Physiologically balanced crystalloids may be the ‘‘default’’ fluid for acutely ill patients and the role for colloids, in particular hydroxyethyl starch, is increasingly unclear. We contend the prescription of fluid therapy is analogous to the prescription of any drug used in critically ill patients. PMID:24834399

  4. Analysis of alkyl phosphates in petroleum samples by comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection and post-column Deans switching.

    PubMed

    Nizio, Katie D; Harynuk, James J

    2012-08-24

    Alkyl phosphate based gellants used as viscosity builders for fracturing fluids used in the process of hydraulic fracturing have been implicated in numerous refinery-fouling incidents in North America. In response, industry developed an inductively coupled plasma optical emission spectroscopy (ICP-OES) based method for the analysis of total volatile phosphorus in distillate fractions of crude oil; however, this method is plagued by poor precision and a high limit of detection (0.5±1μg phosphorus mL(-1)). Furthermore this method cannot provide speciation information, which is critical for developing an understanding of the challenge of alkyl phosphates at a molecular level. An approach using comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection (GC×GC-NPD) and post-column Deans switching is presented. This method provides qualitative and quantitative profiles of alkyl phosphates in industrial petroleum samples with increased precision and at levels comparable to or below those achievable by ICP-OES. A recovery study in a fracturing fluid sample and a profiling study of alkyl phosphates in four recovered fracturing fluid/crude oil mixtures (flowback) are also presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Distributed-Lagrange-Multiplier-based computational method for particulate flow with collisions

    NASA Astrophysics Data System (ADS)

    Ardekani, Arezoo; Rangel, Roger

    2006-11-01

    A Distributed-Lagrange-Multiplier-based computational method is developed for colliding particles in a solid-fluid system. A numerical simulation is conducted in two dimensions using the finite volume method. The entire domain is treated as a fluid but the fluid in the particle domains satisfies a rigidity constraint. We present an efficient method for predicting the collision between particles. In earlier methods, a repulsive force was applied to the particles when their distance was less than a critical value. In this method, an impulsive force is computed. During the frictionless collision process between two particles, linear momentum is conserved while the tangential forces are zero. Thus, instead of satisfying a condition of rigid body motion for each particle separately, as done when particles are not in contact, both particles are rigidified together along their line of centers. Particles separate from each other when the impulsive force is less than zero and after this time, a rigidity constraint is satisfied for each particle separately. Grid independency is implemented to ensure the accuracy of the numerical simulation. A comparison between this method and previous collision strategies is presented and discussed.

  6. New Frontier in Probing Fluid Transport in Low-Permeability Geomedia: Applications of Elastic and Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Sussman, A. J.

    2016-12-01

    Low-permeability geomedia are prevalent in subsurface environments. They have become increasingly important in a wide range of applications such as CO2-sequestration, hydrocarbon recovery, enhanced geothermal systems, legacy waste stewardship, high-level radioactive waste disposal, and global security. The flow and transport characteristics of low-permeability geomedia are dictated by their exceedingly low permeability values ranging from 10-6 to 10-12 darcy with porosities dominated by nanoscale pores. Developing new characterization methods and robust computational models that allow estimation of transport properties of low-permeability geomedia has been identified as a critical basic research and technology development need for controlling subsurface and fluids flow. Due to its sensibility to hydrogen and flexible sample environment, neutron based elastic and inelastic scattering can, through various techniques, interrogate all the nanoscale pores in the sample whether they are fluid accessible or not, and readily characterize interfacial waters. In this presentation, we will present two studies revealing the effects of nanoscale pore confinement on fluid dynamics in geomedia. In one study, we use combined (ultra-small)/small-angle elastic neutron scatterings to probe nanoporous features responses in geological materials to transport processes. In the other study, incoherent inelastic neutron scattering was used to distingwish between intergranular pore water and fluid inclusion moisture in bedded rock salt, and to explore their thermal stablibility. Our work demonstrates that neutron based elastic and inelastic scatterings are techniques of choice for in situ probing hydrocarbon and water behavior in nanoporous materials, providing new insights into water-rock interaction and fluids transport in low-permeability geomaterials.

  7. Low-gravity fluid flows

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1982-01-01

    The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.

  8. Viscoelastic effects on residual oil distribution in flows through pillared microchannels.

    PubMed

    De, S; Krishnan, P; van der Schaaf, J; Kuipers, J A M; Peters, E A J F; Padding, J T

    2018-01-15

    Multiphase flow through porous media is important in a number of industrial, natural and biological processes. One application is enhanced oil recovery (EOR), where a resident oil phase is displaced by a Newtonian or polymeric fluid. In EOR, the two-phase immiscible displacement through heterogonous porous media is usually governed by competing viscous and capillary forces, expressed through a Capillary number Ca, and viscosity ratio of the displacing and displaced fluid. However, when viscoelastic displacement fluids are used, elastic forces in the displacement fluid also become significant. It is hypothesized that elastic instabilities are responsible for enhanced oil recovery through an elastic microsweep mechanism. In this work, we use a simplified geometry in the form of a pillared microchannel. We analyze the trapped residual oil size distribution after displacement by a Newtonian fluid, a nearly inelastic shear thinning fluid, and viscoelastic polymers and surfactant solutions. We find that viscoelastic polymers and surfactant solutions can displace more oil compared to Newtonian fluids and nearly inelastic shear thinning polymers at similar Ca numbers. Beyond a critical Ca number, the size of residual oil blobs decreases significantly for viscoelastic fluids. This critical Ca number directly corresponds to flow rates where elastic instabilities occur in single phase flow, suggesting a close link between enhancement of oil recovery and appearance of elastic instabilities. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Global and critical test of the perturbation density-functional theory based on extensive simulation of Lennard-Jones fluid near an interface and in confined systems.

    PubMed

    Zhou, Shiqi; Jamnik, Andrej

    2005-09-22

    The structure of a Lennard-Jones (LJ) fluid subjected to diverse external fields maintaining the equilibrium with the bulk LJ fluid is studied on the basis of the third-order+second-order perturbation density-functional approximation (DFA). The chosen density and potential parameters for the bulk fluid correspond to the conditions situated at "dangerous" regions of the phase diagram, i.e., near the critical temperature or close to the gas-liquid coexistence curve. The accuracy of DFA predictions is tested against the results of a grand canonical ensemble Monte Carlo simulation. It is found that the DFA theory presented in this work performs successfully for the nonuniform LJ fluid only on the condition of high accuracy of the required bulk second-order direct correlation function. The present report further indicates that the proposed perturbation DFA is efficient and suitable for both supercritical and subcritical temperatures.

  10. New mathematics for old physics: The case of lattice fluids

    NASA Astrophysics Data System (ADS)

    Barberousse, Anouk; Imbert, Cyrille

    2013-08-01

    We analyze the effects of the introduction of new mathematical tools on an old branch of physics by focusing on lattice fluids, which are cellular automata (CA)-based hydrodynamical models. We examine the nature of these discrete models, the type of novelty they bring about within scientific practice and the role they play in the field of fluid dynamics. We critically analyze Rohrlich's, Fox Keller's and Hughes' claims about CA-based models. We distinguish between different senses of the predicates "phenomenological" and "theoretical" for scientific models and argue that it is erroneous to conclude, as they do, that CA-based models are necessarily phenomenological in any sense of the term. We conversely claim that CA-based models of fluids, though at first sight blatantly misrepresenting fluids, are in fact conservative as far as the basic laws of statistical physics are concerned and not less theoretical than more traditional models in the field. Based on our case-study, we propose a general discussion of the prospect of CA for modeling in physics. We finally emphasize that lattice fluids are not just exotic oddities but do bring about new advantages in the investigation of fluids' behavior.

  11. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review

    PubMed Central

    2011-01-01

    Nanofluids (suspensions of nanometer-sized particles in base fluids) have recently been shown to have nucleate boiling critical heat flux (CHF) far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified. PMID:21711949

  12. Evaluation of generic types of drilling fluid using a risk-based analytic hierarchy process.

    PubMed

    Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil

    2003-12-01

    The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option.

  13. Onset of `stitching' in the fluid mechanical `sewing machine'

    NASA Astrophysics Data System (ADS)

    Ribe, Neil; Lister, John; Chiu-Webster, Sunny

    2006-11-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid mechanical `sewing machine', exhibiting a rich variety of `stitch' patterns including meanders, side kicks, slanted loops, braiding, figures-of-eight, W-patterns, and period-doubled patterns (Chiu-Webster and Lister, J. Fluid Mech., in press). Using a numerical linear stability analysis based on asymptotic `slender thread' theory, we determine the critical belt speed and frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to sideways oscillations (`meanders'). The predictions of the stability analysis agree closely with experimental measurements. Moreover, we find that the critical belt speed and frequency for meandering are nearly identical to the contact point migration speed and the frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  14. Representative equations for the thermodynamic and transport properties of fluids near the gas-liquid critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.

    1981-01-01

    A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.

  15. Mathematical modeling of fluid flow in aluminum ladles for degasification with impeller - injector

    NASA Astrophysics Data System (ADS)

    Ramos-Gómez, E.; González-Rivera, C.; Ramírez-Argáez, M. A.

    2012-09-01

    In this work a fundamental Eulerian mathematical model was developed to simulate fluid flow in a water physical model of an aluminum ladle equipped with impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate on the fluid flow and vortex formation was analyzed with this model. Commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this twophase fluid flow system. The mathematical model was successfully validated against experimentally measured liquid velocity and turbulent profiles in a physical model. From the results it was concluded that the angular speed of the impeller is the most important parameter promoting better stirred baths. Pumping effect of the impeller is increased as impeller rotation speed increases. Gas flow rate is detrimental on bath stirring and diminishes pumping effect of impeller.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, S.E.; McCorkle, D.; Yang, C.

    Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combinesmore » process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.« less

  17. Deformation and breakup of liquid-liquid threads, jets, and drops

    NASA Astrophysics Data System (ADS)

    Doshi, Pankaj

    The formation and breakup of two-fluid jets and drops find application in various industrially important processes like microencapsulation, inkjet printing, dispersion and emulsion formation, micro fluidics. Two important aspects of these problems are studied in this thesis. The first regards the study of the dynamics of a two-fluid jet issuing out of a concentric nozzle and breaking into multiple liquid drops. The second aspect concerns the study of the dynamics of liquid-liquid interface rupture. Highly robust and accurate numerical algorithms based on the Galerkin finite element method (G/FEM) and elliptic mesh generation technique are developed. The most important results of this research are the prediction of compound drop formation and volume partitioning between primary drop and satellite drops, which are of critical importance for microencapsulation technology. Another equally important result is computational and experimental demonstration of a self-similar behavior for the rupture of liquid-liquid interface. The final focus is the study of the pinch-off dynamics of generalized-Newtonian fluids with deformation-rate-dependent rheology using asymptotic analysis and numerical computation. A significant result is the first ever prediction of self-similar pinch-off of liquid threads of generalized Newtonian fluids.

  18. Lipid Processing Using Critical Fluids

    USDA-ARS?s Scientific Manuscript database

    A lipase (Novozyme 435) interesterification of soybean oil triacylglycerides with ethyl ferulate to produce feruloylated acylglycerols has been previously been described and patented. These feruloylated acylglycerols, termed SoyScreen™, are believed to have potential as natural sunscreens and as ant...

  19. Critical fluids for lipid processing

    USDA-ARS?s Scientific Manuscript database

    A lipase interesterification of soybean oil triacylglycerides with ethyl ferulate to produce feruloylated acylglycerols has been described and patented. These feruloylated acylglycerols, termed SoyScreen™, are believed to have potential as natural sunscreens and as antioxidants for the cosmetic and...

  20. Architecture for Absorption Based Heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghaddam, Saeed; Chugh, Devesh

    An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. Themore » absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.« less

  1. Towards a Model of Reactive-Cracking: the Role of Reactions, Elasticity and Surface Energy Driven Flow in Poro-elastic Media

    NASA Astrophysics Data System (ADS)

    Evans, O.; Spiegelman, M. W.; Wilson, C. R.; Kelemen, P. B.

    2016-12-01

    Many critical processes can be described by reactive fluid flow in brittle media, including hydration/alteration of oceanic plates near spreading ridges, chemical weathering, and dehydration/decarbonation of subducting plates. Such hydration reactions can produce volume changes that may induce stresses large enough to drive fracture in the rock, in turn exposing new reactive surface and modifying the permeability. A better understanding of this potentially rich feedback could also be critical in the design of engineered systems for geologic carbon sequestration. To aid understanding of these processes we have developed a macroscopic continuum description of reactive fluid flow in an elastically deformable porous media. We explore the behaviour of this model by considering a simplified hydration reaction (e.g. olivine + H20 -> serpentine + brucite). In a closed system, these hydration reactions will continue to consume available fluids until the permeability reaches zero, leaving behind it a highly stressed residuum. Our model demonstrates this limiting behaviour, and that the elastic stresses generated are large enough to cause failure/fracture of the host rock. Whilst it is understood that `reactive fracture' is an important mechanism for the continued evolution of this process, it is also proposed that imbibition/surface energy driven flow may play a role. Through a simplified set of computational experiments, we investigate the relative roles of elasticity and surface energy in both a non-reactive purely poro-elastic framework, and then in the presence of reaction. We demonstrate that surface energy can drive rapid diffusion of porosity, thus allowing the reaction to propagate over larger areas. As we expect both surface energy and fracture/failure to be of importance in these processes, we plan to integrate the current model into one that allows for fracture once critical stresses are exceeded.

  2. Bubble Dynamics on a Heated Surface

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Rashidnia, N.

    1999-01-01

    In this work, we study steady and oscillatory thermocapillary and natural convective flows generated by a bubble on a heated solid surface. The interaction between gas and vapor bubbles with the surrounding fluid is of interest for both space and ground-based processing. A combined numerical-experimental approach is adopted here. The temperature field is visualized using Mach-Zehnder and/or Wollaston Prism Interferometry and the flow field is observed by a laser sheet flow visualization technique. A finite element numerical model is developed which solves the transient two-dimensional continuity, momentum, and energy equations and includes the effects of temperature-dependent surface tension and bubble surface deformation. Below the critical Marangoni number, the steady state low-g and 1-g temperature and velocity fields predicted by the finite element model are in excellent agreement with both the visualization experiments in our laboratory and recently published experimental results in the literature. Above the critical Marangoni number, the model predicts an oscillatory flow which is also closely confirmed by experiments. It is shown that the dynamics of the oscillatory flow are directly controlled by the thermal and hydrodynamic interactions brought about by combined natural and thermocapillary convection. Therefore, as numerical simulations show, there are considerable differences between the 1-g and low-g temperature and flow fields at both low and high Marangoni numbers. This has serious implications for both materials processing and fluid management in space.

  3. Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.

    PubMed

    Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun

    2014-08-07

    The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.

  4. Numerical simulations of thermoacoustic waves in transcritical fluids employing the spectral difference approach

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Migliorino, Mario Tindaro; Chapelier, Jean-Baptiste

    2017-11-01

    We investigate the stability properties of thermoacoustically unstable planar waves in transcritical fluids via high-fidelity Navier-Stokes simulations based on a Spectral Difference (SD) discretization coupled with the Peng-Robinson equation of state and Chung's method for the fluid transport properties. A canonical thermoacoustically unstable standing-wave resonator filled with supercritical CO2 kept in pseudoboiling conditions in the stack is considered. Real fluid effects near the critical point are shown to boost thermoacoustic energy production, as also confirmed by companion eigenvalue analysis supporting the closure of the acoustic energy budgets. A kink in the eigenmode shape is observed at the location of pseudo phase change, consistent with the abrupt change in base impedance. The current study demonstrates a transformative approach to thermoacoustic energy generation, exploiting otherwise unwanted fluid dynamics instabilities commonly observed in aeronautical applications employing transcritical fluids.

  5. Mechanism and simulation of droplet coalescence in molten steel

    NASA Astrophysics Data System (ADS)

    Ni, Bing; Zhang, Tao; Ni, Hai-qi; Luo, Zhi-guo

    2017-11-01

    Droplet coalescence in liquid steel was carefully investigated through observations of the distribution pattern of inclusions in solidified steel samples. The process of droplet coalescence was slow, and the critical Weber number ( We) was used to evaluate the coalescence or separation of droplets. The relationship between the collision parameter and the critical We indicated whether slow coalescence or bouncing of droplets occurred. The critical We was 5.5, which means that the droplets gradually coalesce when We ≤ 5.5, whereas they bounce when We > 5.5. For the carbonate wire feeding into liquid steel, a mathematical model implementing a combined computational fluid dynamics (CFD)-discrete element method (DEM) approach was developed to simulate the movement and coalescence of variably sized droplets in a bottom-argon-blowing ladle. In the CFD model, the flow field was solved on the premise that the fluid was a continuous medium. Meanwhile, the droplets were dispersed in the DEM model, and the coalescence criterion of the particles was added to simulate the collision- coalescence process of the particles. The numerical simulation results and observations of inclusion coalescence in steel samples are consistent.

  6. A comparison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids

    NASA Astrophysics Data System (ADS)

    Tan Shilan, Salihah; Amri Mazlan, Saiful; Ido, Yasushi; Hajalilou, Abdollah; Jeyadevan, Balachandran; Choi, Seung-Bok; Azhani Yunus, Nurul

    2016-09-01

    This work proposes different sizes of the plate-like particles from conventional spherical carbonyl iron (CI) particles by adjusting milling time in the ball mill process. The ball mill process to make the plate-like particles is called a solid-state powder processing technique which involves repeated welding, fracturing and re-welding of powder particles in a high-energy ball mill. The effect of ball milling process on the magnetic behavior of CI particles is firstly investigated by vibrating sample magnetometer. It is found form this investigation that the plate-like particles have higher saturation magnetization (about 8%) than that of the spherical particles. Subsequently, for the investigation on the sedimentation behavior the cylindrical measurement technique is used. It is observed from this measurement that the plate-like particles show slower sedimentation rate compared to the spherical particles indicating higher stability of the MR fluid. The field-dependent rheological properties of MR fluids based on the plate-like particles are then investigated with respect to the milling time which is directly connected to the size of the plate-like particles. In addition, the field-dependent rheological properties such as the yield stress are evaluated and compared between the plate-like particles based MR fluids and the spherical particles based MR fluid. It is found that the yield shear stress of the plate-like particles based MR fluid is increased up to 270% compared to the spherical particles based MR fluid.

  7. Bio-Oil Separation and Stabilization by Near-Critical Propane Fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginosar, Daniel M.; Petkovic, Lucia M.; Agblevor, Foster A.

    Bio-oils produced by thermal process are promising sources of sustainable, low greenhouse gas alternative fuels. These thermal processes are also well suited to decentralized energy production due to low capital and operating costs. Algae feedstocks for bio-oil production are of particular interest, due in part to their high-energy growth yields. Further, algae can be grown in non-arable areas in fresh, brackish, salt water, or even waste water. Unfortunately, bio-oils produced by thermal processes present significant stability challenges. These oils have complex chemical compositions, are viscous, reactive, and thermally unstable. Further, the components within the oils are difficult to separate bymore » fractional distillation. By far, the most effective separation and stabilization method has been solvent extraction. However, liquid phase extraction processes pose two main obstacles to commercialization; they require a significant amount of energy to remove and recover the solvent from the product, and they have a propensity for the solvent to become contaminated with minerals from the char and ash present in the original bio-oil. Separation and fractionation of thermally produced bio-oils using supercritical fluids (SCF) offers the advantages of liquid solvent extraction while drastically reducing energy demands and the predisposition to carry over solids into the extracted phase. SCFs are dense fluids with liquid-like solvent properties and gas-like transport properties. Further, SCF density and solvent strength can be tuned with minor adjustments in pressure, co-solvent addition, or gas anti-solvent addition. Catalytic pyrolysis oils were produced from Scenedesmus dimorphus algae using a fluid catalytic cracking catalyst. Bio-oil produced from catalytic fast pyrolysis (CFP) was separated using critical fluids. Propane extraction was performed at 65 °C at a fluid reduced pressure of 2.0 (85 bar) using an eight to one solvent to feed ratio by weight. Extraction of catalytic fast pyrolysis oil with near critical propane produced an oil extract that was physically and chemically different from and more stable than the original oil. The propane extract displayed lower viscosity and lower average molecular weight. The species present in the propane extract were likely the less polar that would be expected from using a non-polar solvent (propane). Carbonyl containing species in the extract were likely ketones and esters. The raffinate contained a higher amnount of OH bonded species along with the more polar more polar acids, amides, and alcohols. The higher concentration of nitrogen in the raffinate may confirm the presence of amides. Viscosity of the propane extract increased only half as much as that of the CFP bio-oil. Further, In situ NMR aging studies showed that the propane extract was more stable than the raw oil. In conclusion, propane extraction is a promising method to decrease the nitrogen content of bio-oils and to improve the stability of bio-oils obtained by the catalytic pyrolysis of algae based biomass.« less

  8. Continental Rifts and Resources

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.

    2017-04-01

    Nearly all resource-forming systems involve upward mobility of fluids and melts. In fact, one of the most effective means of chemically transforming the earth's crust can be readily observed in the rift environment. Imposition of rifting is based on deeper stresses that play out in the crust. At its most fundamental level, rifting transfers heat and fluids to the crust. Heat delivered by fluids aids both in transport of metal and maturation of hydrocarbons. The oxidizing capacity of fluids on their arrival in the deep crust, whether derived from old slabs, depleted upper mantle and/or deeper, more primitive mantle, is a fundamental part of the resource-forming equation. Oxidizing fluids transport some metals and breakdown kerogen, the precursor for oil. Reducing fluids transport a different array of metals. The tendency is to study the resource, not the precursor or the non-economic footprint. In doing so, we lose the opportunity to discover the involvement and significance of initiating processes; for example, externally derived fluids may produce widespread alteration in host rocks, a process that commonly precedes resource deposition. It is these processes that are ultimately the transferable knowledge for successful mineral and hydrocarbon exploration. Further limiting our understanding of process is the tendency to study large, highly complex, and economically successful ore-forming or petroleum systems. In order to understand their construction, however, it is necessary to put equal time toward understanding non-economic systems. It is the non-economic systems that often clearly preserve key processes. The large resource-forming systems are almost always characterized by multiple episodes of hydrothermal overprints, making it difficult if not impossible to clearly discern individual events. Understanding what geologic and geochemical features blocked or arrested the pathway to economic success or, even worse, caused loss of a resource, are critical to exploration. Central to resource-forming systems is the role and tempo of rifting, and the integrity of the geologic lid on the system. Whereas compressional subduction begets storage, extensional rifting is about release and upward migration. Comparison will be made of the older, Permian Oslo rift with minimal mineralization, and the younger, active Rio Grande rift in Colorado with extensive mineralization - discussing what we are missing in the way we study them.

  9. Scaling of postinjection-induced seismicity: An approach to assess hydraulic fracturing related processes

    NASA Astrophysics Data System (ADS)

    Johann, Lisa; Dinske, Carsten; Shapiro, Serge

    2017-04-01

    Fluid injections into unconventional reservoirs have become a standard for the enhancement of fluid-mobility parameters. Microseismic activity during and after the injection can be frequently directly associated with subsurface fluid injections. Previous studies demonstrate that postinjection-induced seismicity has two important characteristics: On the one hand, the triggering front, which corresponds to early and distant events and envelops farthest induced events. On the other hand, the back front, which describes the lower boundary of the seismic cloud and envelops the aseismic domain evolving around the source after the injection stop. A lot of research has been conducted in recent years to understand seismicity-related processes. For this work, we follow the assumption that the diffusion of pore-fluid pressure is the dominant triggering mechanism. Based on Terzaghi's concept of an effective normal stress, the injection of fluids leads to increasing pressures which in turn reduce the effective normal stress and lead to sliding along pre-existing critically stressed and favourably oriented fractures and cracks. However, in many situations, spatio-temporal signatures of induced events are captured by a rather non-linear process of pore-fluid pressure diffusion, where the hydraulic diffusivity becomes pressure-dependent. This is for example the case during hydraulic fracturing where hydraulic transport properties are significantly enhanced. For a better understanding of processes related to postinjection-induced seismicity, we analytically describe the temporal behaviour of triggering and back fronts. We introduce a scaling law which shows that postinjection-induced events are sensitive to the degree of non-linearity and to the Euclidean dimension of the seismic cloud (see Johann et al., 2016, JGR). To validate the theory, we implement comprehensive modelling of non-linear pore-fluid pressure diffusion in 3D. We solve numerically for the non-linear equation of diffusion with a power-law dependent hydraulic diffusivity on pressure and generate catalogues of synthetic seismicity. We study spatio-temporal features of the seismic clouds and compare the results to theoretical values predicted by the novel scaling law. Subsequently, we apply the scaling relation to real hydraulic fracturing and Enhanced Geothermal System data. Our results show that the derived scaling relations well describe synthetic and real data. Thus, the methodology can be used to obtain hydraulic reservoir properties and can contribute significantly to a general understanding of injection related processes as well as to hazard assessment.

  10. Rapid variations in fluid chemistry constrain hydrothermal phase separation at the Main Endeavour Field

    NASA Astrophysics Data System (ADS)

    Love, Brooke; Lilley, Marvin; Butterfield, David; Olson, Eric; Larson, Benjamin

    2017-02-01

    Previous work at the Main Endeavour Field (MEF) has shown that chloride concentration in high-temperature vent fluids has not exceeded 510 mmol/kg (94% of seawater), which is consistent with brine condensation and loss at depth, followed by upward flow of a vapor phase toward the seafloor. Magmatic and seismic events have been shown to affect fluid temperature and composition and these effects help narrow the possibilities for sub-surface processes. However, chloride-temperature data alone are insufficient to determine details of phase separation in the upflow zone. Here we use variation in chloride and gas content in a set of fluid samples collected over several days from one sulfide chimney structure in the MEF to constrain processes of mixing and phase separation. The combination of gas (primarily magmatic CO2 and seawater-derived Ar) and chloride data, indicate that neither variation in the amount of brine lost, nor mixing of the vapor phase produced at depth with variable quantities of (i) brine or (ii) altered gas rich seawater that has not undergone phase separation, can explain the co-variation of gas and chloride content. The gas-chloride data require additional phase separation of the ascending vapor-like fluid. Mixing and gas partitioning calculations show that near-critical temperature and pressure conditions can produce the fluid compositions observed at Sully vent as a vapor-liquid conjugate pair or as vapor-liquid pair with some remixing, and that the gas partition coefficients implied agree with theoretically predicted values.Plain Language SummaryWhen the chemistry of fluids from deep sea hot springs changes over a short time span, it allows us to narrow down the conditions and processes that created those fluids. This gives us a better idea what is happening under the seafloor where the water is interacting with hot rocks and minerals, boiling, and taking on the character it will have when it emerges at the seafloor. Gasses like argon can be especially helpful here. We found that the fluids we sampled must have been formed by multiple boiling (phase separation) events, and that one of these would have to be close to the critical point of these fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25208960','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25208960"><span>Guiding principles of fluid and volume therapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aditianingsih, Dita; George, Yohanes W H</p> <p>2014-09-01</p> <p>Fluid therapy is a core concept in the management of perioperative and critically ill patients for maintenance of intravascular volume and organ perfusion. Recent evidence regarding the vascular barrier and its role in terms of vascular leakage has led to a new concept for fluid administration. The choice of fluid used should be based on the fluid composition and the underlying pathophysiology of the patient. Avoidance of both hypo- and hypervolaemia is essential when treating circulatory failure. In daily practice, the assessment of individual thresholds in order to optimize cardiac preload and avoid hypovolaemia or deleterious fluid overload remains a challenge. Liberal versus restrictive fluid management has been challenged by recent evidence, and the ideal approach appears to be goal-directed fluid therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29i3606M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29i3606M"><span>Numerical modeling of flow focusing: Quantitative characterization of the flow regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mamet, V.; Namy, P.; Dedulle, J.-M.</p> <p>2017-09-01</p> <p>Among droplet generation technologies, the flow focusing technique is a major process due to its control, stability, and reproducibility. In this process, one fluid (the continuous phase) interacts with another one (the dispersed phase) to create small droplets. Experimental assays in the literature on gas-liquid flow focusing have shown that different jet regimes can be obtained depending on the operating conditions. However, the underlying physical phenomena remain unclear, especially mechanical interactions between the fluids and the oscillation phenomenon of the liquid. In this paper, based on published studies, a numerical diphasic model has been developed to take into consideration the mechanical interaction between phases, using the Cahn-Hilliard method to monitor the interface. Depending on the liquid/gas inputs and the geometrical parameters, various regimes can be obtained, from a steady state regime to an unsteady one with liquid oscillation. In the dispersed phase, the model enables us to compute the evolution of fluid flow, both in space (size of the recirculation zone) and in time (period of oscillation). The transition between unsteady and stationary regimes is assessed in relation to liquid and gas dimensionless numbers, showing the existence of critical thresholds. This model successfully highlights, qualitatively and quantitatively, the influence of the geometry of the nozzle, in particular, its inner diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25042164','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25042164"><span>Albumin administration in the acutely ill: what is new and where next?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vincent, Jean-Louis; Russell, James A; Jacob, Matthias; Martin, Greg; Guidet, Bertrand; Wernerman, Jan; Ferrer, Ricard; Roca, Ricard Ferrer; McCluskey, Stuart A; Gattinoni, Luciano</p> <p>2014-07-16</p> <p>Albumin solutions have been used worldwide for the treatment of critically ill patients since they became commercially available in the 1940s. However, their use has become the subject of criticism and debate in more recent years. Importantly, all fluid solutions have potential benefits and drawbacks. Large multicenter randomized studies have provided valuable data regarding the safety of albumin solutions, and have begun to clarify which groups of patients are most likely to benefit from their use. However, many questions remain related to where exactly albumin fits within our fluid choices. Here, we briefly summarize some of the physiology and history of albumin use in intensive care before offering some evidence-based guidance for albumin use in critically ill patients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4223404','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4223404"><span>Albumin administration in the acutely ill: what is new and where next?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Albumin solutions have been used worldwide for the treatment of critically ill patients since they became commercially available in the 1940s. However, their use has become the subject of criticism and debate in more recent years. Importantly, all fluid solutions have potential benefits and drawbacks. Large multicenter randomized studies have provided valuable data regarding the safety of albumin solutions, and have begun to clarify which groups of patients are most likely to benefit from their use. However, many questions remain related to where exactly albumin fits within our fluid choices. Here, we briefly summarize some of the physiology and history of albumin use in intensive care before offering some evidence-based guidance for albumin use in critically ill patients. PMID:25042164</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870045052&hterms=Supercritical+fluid&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSupercritical%2Bfluid','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870045052&hterms=Supercritical+fluid&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSupercritical%2Bfluid"><span>Volume-energy parameters for heat transfer to supercritical fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kumakawa, A.; Niino, M.; Hendricks, R. C.; Giarratano, P. J.; Arp, V. D.</p> <p>1986-01-01</p> <p>Reduced Nusselt numbers of supercritical fluids from different sources were grouped by several volume-energy parameters. A modified bulk expansion parameter was introduced based on a comparative analysis of data scatter. Heat transfer experiments on liquefied methane were conducted under near-critical conditions in order to confirm the usefulness of the parameters. It was experimentally revealed that heat transfer characteristics of near-critical methane are similar to those of hydrogen. It was shown that the modified bulk expansion parameter and the Gibbs-energy parameter grouped the heat transfer data of hydrogen, oxygen and methane including the present data on near-critical methane. It was also indicated that the effects of surface roughness on heat transfer were very important in grouping the data of high Reynolds numbers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MinDe.tmp...18P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MinDe.tmp...18P"><span>Fluid evolution and ore genesis of the Dalingshang deposit, Dahutang W-Cu ore field, northern Jiangxi Province, South China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peng, Ning-Jun; Jiang, Shao-Yong; Xiong, Suo-Fei; Pi, Dao-Hui</p> <p>2018-02-01</p> <p>The Dalingshang W-Cu deposit is located in the North section of the Dahutang ore field, northern Jiangxi Province, South China. Vein- and breccia-style tungsten-copper mineralization is genetically associated with Mesozoic S-type granitic rocks. Infrared and conventional microthermometric studies of both gangue and ore minerals show that the homogenization temperatures for primary fluid inclusions in wolframite ( 340 °C) are similar to those in scheelite ( 330 °C), but about 40 °C higher than those of apatite ( 300 °C) and generally 70 °C higher than those in coexisting quartz ( 270 °C). Laser Raman analysis identifies CH4 and N2 without CO2 in fluid inclusions in scheelite and coexisting quartz, while fluid inclusions in quartz of the sulfide stage have variable CO2 content. The ore-forming fluids overall are characterized by high- to medium-temperature, low-salinity, CH4, N2, and/or CO2-bearing aqueous fluids. Chalcopyrite, muscovite, and sphalerite are the most abundant solids recognized in fluid inclusions from different ores. The H-O-S-Pb isotope compositions favor a dominantly magmatic origin for ores and fluids, while some depleted δ34S values (- 14.4 to - 0.9‰) of sulfides from the sulfide stage are most likely produced by an increase of oxygen fugacity, possibly caused by inflow of oxidized meteoric waters. The microthermometric data also indicate that a simple cooling process formed early scheelite and wolframite. However, increasing involvement of meteoric waters and fluid mixing may trigger a successive deposition of base metal sulfides. Fluid-rock interaction was critical for scheelite mineralization as indicated by in-situ LA-ICP-MS analysis of trace elements in scheelite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970010851','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970010851"><span>The Microgravity Research Experiments (MICREX) Data Base. Volume 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Winter, C. A.; Jones, J. C.</p> <p>1996-01-01</p> <p>An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970011061','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970011061"><span>The Microgravity Research Experiments (MICREX) Data Base. Volume 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Winter, C. A.; Jones, J.C.</p> <p>1996-01-01</p> <p>An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11848002','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11848002"><span>Clinical decision making by nurses when faced with third-space fluid shift. How well do they fare?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Redden, M; Wotton, K</p> <p>2001-01-01</p> <p>Nurses' use of knowledge, the connection of this knowledge to treatment decisions and information actually used to reach such decisions, delineates nurses' level of expertise. Previous research has shown that nurses in their clinical decision-making use the hypothetico-deductive method and intuitive judgment or pattern recognition. This interpretive study explored experienced critical care nurses' (n = 5) and gastrointestinal surgical nurses' (n = 5) clinical decision-making processes through ascertaining their knowledge and understanding of third-space fluid shift in elderly patients undergoing major gastrointestinal surgery. Both groups of nurses, because of their experience with elderly patients undergoing gastrointestinal surgery, were assumed to be experts. Data collection techniques included semi-structured interviews and the use of think aloud protocol for clinical scenario analysis. The findings demonstrated that the gastrointestinal surgical nurses used the hypothetico-deductive method to recognize critical cues and the existence of a problem but could not name the problem. The critical care nurses, on the other hand, used a combination of the hypothetico-deductive method and pattern recognition as a basis for identification of critical cues. The critical care nurses also possessed in depth knowledge of third-space fluid shift and were able to use pivotal cues to identify the actual phenomenon. Ultimately, it would appear that the structure of critical care nurses' work, their increased educational qualifications and the culture of the critical care unit promote a more proactive approach to reasoning in the physiological domain. The findings have implications for the development of practice guidelines and curriculum development in both tertiary and continuing nurse education.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770006147','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770006147"><span>Spacelab experiment definition study on phase transition and critical phenomena in fluids: Interim report on experimental justification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moldover, M. R.; Hocken, M. R.; Gammon, R. W.; Sengers, J. V.</p> <p>1976-01-01</p> <p>Pure fluids and fluid mixtures near critical points are identified and are related to the progress of several disciplines. Consideration is given to thermodynamic properties, transport properties, and the complex nonlinear phenomena which occur when fluids undergo phase transitions in the critical region. The distinction is made between practical limits which may be extended by advances in technology and intrinsic ones which arise from the modification of fluid properties by the earth's gravitational field. The kinds of experiments near critical points which could best exploit the low gravity environment of an orbiting laboratory are identified. These include studies of the index of refraction, constant volume specific heat, and phase separation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H21C0748D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H21C0748D"><span>The impact of fluid topology on residual saturations - A pore-network model study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doster, F.; Kallel, W.; van Dijke, R.</p> <p>2014-12-01</p> <p>In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same normalized Euler numbers but different process histories yield the same residual saturations. Special attention is given to contact angle and process histories with varying drainage and imbibition periods. [1] Herring et al., Adv. Water. Resour., 62, 47-58 (2013) [2] Ryazanov et al., Transp. Porous Media, 80, 79-99 (2009).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060013344','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060013344"><span>Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McQuillen, John; Sankovic, John; Lekan, Jack</p> <p>2006-01-01</p> <p>The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25587916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25587916"><span>Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>García-González, Carlos A; Concheiro, Angel; Alvarez-Lorenzo, Carmen</p> <p>2015-07-15</p> <p>The increase in the world demand of bone and cartilage replacement therapies urges the development of advanced synthetic scaffolds for regenerative purposes, not only providing mechanical support for tissue formation, but also promoting and guiding the tissue growth. Conventional manufacturing techniques have severe restrictions for designing these upgraded scaffolds, namely, regarding the use of organic solvents, shearing forces, and high operating temperatures. In this context, the use of supercritical fluid technology has emerged as an attractive solution to design solvent-free scaffolds and ingredients for scaffolds under mild processing conditions. The state-of-the-art on the technological endeavors for scaffold production using supercritical fluids is presented in this work with a critical review on the key processing parameters as well as the main advantages and limitations of each technique. A special stress is focused on the strategies suitable for the incorporation of bioactive agents (drugs, bioactive glasses, and growth factors) and the in vitro and in vivo performance of supercritical CO2-processed scaffolds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23036159','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23036159"><span>Supercritical fluid technology: a promising approach in pharmaceutical research.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Girotra, Priti; Singh, Shailendra Kumar; Nagpal, Kalpana</p> <p>2013-02-01</p> <p>Supercritical fluids possess the unique properties of behaving like liquids and gases, above their critical point. Supercritical fluid technology has recently emerged as a green and novel technique for various processes such as solubility enhancement of poorly soluble drugs, plasticization of polymers, surface modification, nanosizing and nanocrystal modification, and chromatographic extraction. Research interest in this area has been fuelled because of the numerous advantages that the technology offers over the conventional methods. This work aims to review the merits, demerits, and various processes such as rapid expansion of supercritical solutions (RESS), particles from gas saturated solutions (PGSS), gas antisolvent process (GAS), supercritical antisolvent process (SAS) and polymerization induced phase separation (PIPS), that have enabled this technology to considerably raise the interest of researchers over the past two decades. An insight has been given into the numerous applications of this technology in pharmaceutical industry and the future challenges which must be appropriately dealt with to make it effective on a commercial scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JFS....28...72U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JFS....28...72U"><span>Fluid-structure analysis of a flexible flapping airfoil at low Reynolds number flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Unger, Ralf; Haupt, Matthias C.; Horst, Peter; Radespiel, Rolf</p> <p>2012-01-01</p> <p>In this paper, a coupling simulation methodology is applied to investigate the fluid flow around a light and flexible airfoil based on a handfoil of a seagull. A finite element model of the flexible airfoil is fully coupled to the flow solver by using a load and displacement transfer as well as a fluid grid deformation algorithm. The flow field is characterized by a laminar-turbulent transition at a Reynolds number of Re=100 000, which takes place along a laminar separation bubble. An unsteady Reynolds-averaged Navier-Stokes flow solver is used to take this transition process into account by comparison of a critical N-factor with the N-factor computed by the eN-method. Results of computations have shown that the flexibility of the airfoil has a major influence on the thrust efficiency, the mean drag and lift, and the location of laminar-turbulent transition. The thrust efficiency can be considerably improved by increasing the plunging amplitude and by using a time dependent airfoil stiffness, inspired by the muscle contraction of birds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996PhRvE..53.3732S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996PhRvE..53.3732S"><span>Shear flow of one-component polarizable fluid in a strong electric field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, J. M.; Tao, R.</p> <p>1996-04-01</p> <p>A shear flow of one-component polarizable fluid in a strong electric field has a structural transition at a critical shear stress. When the shear stress is increased from zero up to the critical shear stress, the flow (in the x direction) has a flowing-chain (FC) structure, consisting of tilted or broken chains along the field (z direction). At the critical shear stress, the FC structure gives way to a flowing-hexagonal-layered (FHL) structure, consisting of several two-dimensional layers which are parallel to the x-z plane. Within one layer, particles form strings in the flow direction. Strings are constantly sliding over particles in strings right beneath. The effective viscosity drops dramatically at the structural change. As the shear stress reduces, the FHL structure persists even under a stress-free state if the thermal fluctuation is very weak. This structure change in the charging and discharging process produces a large hysteresis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24641627','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24641627"><span>Muon radiolysis affected by density inhomogeneity in near-critical fluids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cormier, P J; Alcorn, C; Legate, G; Ghandi, K</p> <p>2014-04-01</p> <p>In this article we show the significant tunability of radiation chemistry in supercritical ethane and to a lesser extent in near critical CO2. The information was obtained by studies of muonium (Mu = μ(+)e(-)), which is formed by the thermalization of positive muons in different materials. The studies of the proportions of three fractions of muon polarization, PMu, diamagnetic PD and lost fraction, PL provided the information on radiolysis processes involved in muon thermalization. Our studies include three different supercritical fluids, water, ethane and carbon dioxide. A combination of mobile electrons and other radiolysis products such as (•)C2H5 contribute to interesting behavior at densities ∼40% above the critical point in ethane. In carbon dioxide, an increase in electron mobility contributes to the lost fraction. The hydrated electron in water is responsible for the lost fraction and decreases the muonium fraction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27484681','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27484681"><span>Fluid overload in the ICU: evaluation and management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Claure-Del Granado, Rolando; Mehta, Ravindra L</p> <p>2016-08-02</p> <p>Fluid overload is frequently found in acute kidney injury patients in critical care units. Recent studies have shown the relationship of fluid overload with adverse outcomes; hence, manage and optimization of fluid balance becomes a central component of the management of critically ill patients. In critically ill patients, in order to restore cardiac output, systemic blood pressure and renal perfusion an adequate fluid resuscitation is essential. Achieving an appropriate level of volume management requires knowledge of the underlying pathophysiology, evaluation of volume status, and selection of appropriate solution for volume repletion, and maintenance and modulation of the tissue perfusion. Numerous recent studies have established a correlation between fluid overload and mortality in critically ill patients. Fluid overload recognition and assessment requires an accurate documentation of intakes and outputs; yet, there is a wide difference in how it is evaluated, reviewed and utilized. Accurate volume status evaluation is essential for appropriate therapy since errors of volume evaluation can result in either in lack of essential treatment or unnecessary fluid administration, and both scenarios are associated with increased mortality. There are several methods to evaluate fluid status; however, most of the tests currently used are fairly inaccurate. Diuretics, especially loop diuretics, remain a valid therapeutic alternative. Fluid overload refractory to medical therapy requires the application of extracorporeal therapies. In critically ill patients, fluid overload is related to increased mortality and also lead to several complications like pulmonary edema, cardiac failure, delayed wound healing, tissue breakdown, and impaired bowel function. Therefore, the evaluation of volume status is crucial in the early management of critically ill patients. Diuretics are frequently used as an initial therapy; however, due to their limited effectiveness the use of continuous renal replacement techniques are often required for fluid overload treatment. Successful fluid overload treatment depends on precise assessment of individual volume status, understanding the principles of fluid management with ultrafiltration, and clear treatment goals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24773034','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24773034"><span>Developing a fluid intelligence scale through a combination of Rasch modeling and cognitive psychology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Primi, Ricardo</p> <p>2014-09-01</p> <p>Ability testing has been criticized because understanding of the construct being assessed is incomplete and because the testing has not yet been satisfactorily improved in accordance with new knowledge from cognitive psychology. This article contributes to the solution of this problem through the application of item response theory and Susan Embretson's cognitive design system for test development in the development of a fluid intelligence scale. This study is based on findings from cognitive psychology; instead of focusing on the development of a test, it focuses on the definition of a variable for the creation of a criterion-referenced measure for fluid intelligence. A geometric matrix item bank with 26 items was analyzed with data from 2,797 undergraduate students. The main result was a criterion-referenced scale that was based on information from item features that were linked to cognitive components, such as storage capacity, goal management, and abstraction; this information was used to create the descriptions of selected levels of a fluid intelligence scale. The scale proposed that the levels of fluid intelligence range from the ability to solve problems containing a limited number of bits of information with obvious relationships through the ability to solve problems that involve abstract relationships under conditions that are confounded with an information overload and distraction by mixed noise. This scale can be employed in future research to provide interpretations for the measurements of the cognitive processes mastered and the types of difficulty experienced by examinees. PsycINFO Database Record (c) 2014 APA, all rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhyE...83..275O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhyE...83..275O"><span>Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oveissi, Soheil; Toghraie, Davood; Eftekhari, Seyyed Ali</p> <p>2016-09-01</p> <p>Nowadays, carbon nanotubes (CNT) play an important role in practical applications in fluidic devices. To this end, researchers have studied various aspects of vibration analysis of a behavior of CNT conveying fluid. In this paper, based on nonlocal elasticity theory, single-walled carbon nanotube (SWCNT) is simulated. To investigate and analyze the effect of internal fluid flow on the longitudinal vibration and stability of SWCNT, the equation of motion for longitudinal vibration is obtained by using Navier-Stokes equations. In the governing equation of motion, the interaction of fluid-structure, dynamic and fluid flow velocity along the axial coordinate of the nanotube and the nano-scale effect of the structure are considered. To solve the nonlocal longitudinal vibration equation, the approximate Galerkin method is employed and appropriate simply supported boundary conditions are applied. The results show that the axial vibrations of the nanotubesstrongly depend on the small-size effect. In addition, the fluid flowing in nanotube causes a decrease in the natural frequency of the system. It is obvious that the system natural frequencies reach zero at lower critical flow velocities as the wave number increases. Moreover, the critical flow velocity decreases as the nonlocal parameter increases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI43A0344T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI43A0344T"><span>3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, X.; Rayudu, N. M.; Singh, G.</p> <p>2017-12-01</p> <p>Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930032138&hterms=solar+two&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsolar%2Btwo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930032138&hterms=solar+two&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsolar%2Btwo"><span>A parameter study of the two-fluid solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sandbaek, Ornulf; Leer, Egil; Holzer, Thomas E.</p> <p>1992-01-01</p> <p>A two-fluid model of the solar wind was introduced by Sturrock and Hartle (1966) and Hartle and Sturrock (1968). In these studies the proton energy equation was integrated neglecting the heat conductive term. Later several authors solved the equations for the two-fluid solar wind model keeping the proton heat conductive term. Methods where the equations are integrated simultaneously outward and inward from the critical point were used. The equations were also integrated inward from a large heliocentric distance. These methods have been applied to cases with low coronal base electron densities and high base temperatures. In this paper we present a method of integrating the two-fluid solar wind equations using an iteration procedure where the equations are integrated separately and the proton flux is kept constant during the integrations. The technique is applicable for a wide range of coronal base densities and temperatures. The method is used to carry out a parameter study of the two-fluid solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020074979','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020074979"><span>Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)</p> <p>2002-01-01</p> <p>Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970000370','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970000370"><span>Zeno: Critical Fluid Light Scattering Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gammon, Robert W.; Shaumeyer, J. N.; Briggs, Matthew E.; Boukari, Hacene; Gent, David A.; Wilkinson, R. Allen</p> <p>1996-01-01</p> <p>The Zeno (Critical Fluid Light Scattering) experiment is the culmination of a long history of critical fluid light scattering in liquid-vapor systems. The major limitation to making accurate measurements closer to the critical point was the density stratification which occurs in these extremely compressible fluids. Zeno was to determine the critical density fluctuation decay rates at a pair of supplementary angles in the temperature range 100 mK to 100 (mu)K from T(sub c) in a sample of xenon accurately loaded to the critical density. This paper gives some highlights from operating the instrument on two flights March, 1994 on STS-62 and February, 1996 on STS-75. More detail of the experiment Science Requirements, the personnel, apparatus, and results are displayed on the Web homepage at http://www.zeno.umd.edu.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97b2109P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97b2109P"><span>Vapor-liquid phase behavior of a size-asymmetric model of ionic fluids confined in a disordered matrix: The collective-variables-based approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.</p> <p>2018-02-01</p> <p>We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100003447','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100003447"><span>Computational Analyses of Pressurization in Cryogenic Tanks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chun P.; Field, Robert E.; Ryan, Harry</p> <p>2010-01-01</p> <p>A comprehensive numerical framework utilizing multi-element unstructured CFD and rigorous real fluid property routines has been developed to carry out analyses of propellant tank and delivery systems at NASA SSC. Traditionally CFD modeling of pressurization and mixing in cryogenic tanks has been difficult primarily because the fluids in the tank co-exist in different sub-critical and supercritical states with largely varying properties that have to be accurately accounted for in order to predict the correct mixing and phase change between the ullage and the propellant. For example, during tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. In our modeling framework, we incorporated two different approaches to real fluids modeling: (a) the first approach is based on the HBMS model developed by Hirschfelder, Beuler, McGee and Sutton and (b) the second approach is based on a cubic equation of state developed by Soave, Redlich and Kwong (SRK). Both approaches cover fluid properties and property variation spanning sub-critical gas and liquid states as well as the supercritical states. Both models were rigorously tested and properties for common fluids such as oxygen, nitrogen, hydrogen etc were compared against NIST data in both the sub-critical as well as supercritical regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950006821','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950006821"><span>Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.</p> <p>1991-01-01</p> <p>An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19368207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19368207"><span>Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J</p> <p>2009-03-15</p> <p>Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51..299W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51..299W"><span>The Influence of Fracturing Fluids on Fracturing Processes: A Comparison Between Water, Oil and SC-CO2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Jiehao; Elsworth, Derek; Wu, Yu; Liu, Jishan; Zhu, Wancheng; Liu, Yu</p> <p>2018-01-01</p> <p>Conventional water-based fracturing treatments may not work well for many shale gas reservoirs. This is due to the fact that shale gas formations are much more sensitive to water because of the significant capillary effects and the potentially high contents of swelling clay, each of which may result in the impairment of productivity. As an alternative to water-based fluids, gaseous stimulants not only avoid this potential impairment in productivity, but also conserve water as a resource and may sequester greenhouse gases underground. However, experimental observations have shown that different fracturing fluids yield variations in the induced fracture. During the hydraulic fracturing process, fracturing fluids will penetrate into the borehole wall, and the evolution of the fracture(s) then results from the coupled phenomena of fluid flow, solid deformation and damage. To represent this, coupled models of rock damage mechanics and fluid flow for both slightly compressible fluids and CO2 are presented. We investigate the fracturing processes driven by pressurization of three kinds of fluids: water, viscous oil and supercritical CO2. Simulation results indicate that SC-CO2-based fracturing indeed has a lower breakdown pressure, as observed in experiments, and may develop fractures with greater complexity than those developed with water-based and oil-based fracturing. We explore the relation between the breakdown pressure to both the dynamic viscosity and the interfacial tension of the fracturing fluids. Modeling demonstrates an increase in the breakdown pressure with an increase both in the dynamic viscosity and in the interfacial tension, consistent with experimental observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=magnetic+AND+cooling&id=EJ275158','ERIC'); return false;" href="https://eric.ed.gov/?q=magnetic+AND+cooling&id=EJ275158"><span>Notes on Experiments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Physics Education, 1983</p> <p>1983-01-01</p> <p>An experiment on cooling by convection, holographic processes achieved using optical fibers and observation of magnetic domains are described. Also describes four demonstrations: mechanical resonance on air track, independence of horizontal/vertical motion, motion of sphere in fluid medium, and light scattering near the critical point. (JN)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23568772','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23568772"><span>Application of quality by design concepts in the development of fluidized bed granulation and tableting processes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Djuris, Jelena; Medarevic, Djordje; Krstic, Marko; Djuric, Zorica; Ibric, Svetlana</p> <p>2013-06-01</p> <p>This study illustrates the application of experimental design and multivariate data analysis in defining design space for granulation and tableting processes. According to the quality by design concepts, critical quality attributes (CQAs) of granules and tablets, as well as critical parameters of granulation and tableting processes, were identified and evaluated. Acetaminophen was used as the model drug, and one of the study aims was to investigate the possibility of the development of immediate- or extended-release acetaminophen tablets. Granulation experiments were performed in the fluid bed processor using polyethylene oxide polymer as a binder in the direct granulation method. Tablets were compressed in the laboratory excenter tablet press. The first set of experiments was organized according to Plackett-Burman design, followed by the full factorial experimental design. Principal component analysis and partial least squares regression were applied as the multivariate analysis techniques. By using these different methods, CQAs and process parameters were identified and quantified. Furthermore, an in-line method was developed to monitor the temperature during the fluidized bed granulation process, to foresee possible defects in granules CQAs. Various control strategies that are based on the process understanding and assure desired quality attributes of the product are proposed. Copyright © 2013 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4090431','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4090431"><span>Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang</p> <p>2014-01-01</p> <p>Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25045749','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25045749"><span>Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang</p> <p>2014-01-01</p> <p>Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28461462','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28461462"><span>Complexity and compositionality in fluid intelligence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duncan, John; Chylinski, Daphne; Mitchell, Daniel J; Bhandari, Apoorva</p> <p>2017-05-16</p> <p>Compositionality, or the ability to build complex cognitive structures from simple parts, is fundamental to the power of the human mind. Here we relate this principle to the psychometric concept of fluid intelligence, traditionally measured with tests of complex reasoning. Following the principle of compositionality, we propose that the critical function in fluid intelligence is splitting a complex whole into simple, separately attended parts. To test this proposal, we modify traditional matrix reasoning problems to minimize requirements on information integration, working memory, and processing speed, creating problems that are trivial once effectively divided into parts. Performance remains poor in participants with low fluid intelligence, but is radically improved by problem layout that aids cognitive segmentation. In line with the principle of compositionality, we suggest that effective cognitive segmentation is important in all organized behavior, explaining the broad role of fluid intelligence in successful cognition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1741142','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1741142"><span>Osmosis, osmometry, and osmoregulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lord, R</p> <p>1999-01-01</p> <p>The maintenance of adequate body fluid volume and the correct distribution of this fluid between the body compartments is a critical part of homeostasis. The process of osmosis plays an important role in movement of fluid within the body and the use of osmometry is an important part of the management of many patients. In addition to the application of osmometry to the measurement of body fluids, most commonly plasma and urine, osmotic action plays a part in some therapeutic actions of drugs and its strength needs to be quantified in fluids administered to patients. Unfortunately confusion often exists in the various terms that are used in the field of osmometry. This review aims to explain the different terms used, the laboratory methodology involved in osmometry, and the clinical application and interpretation of the results obtained.


Keywords: homeostasis; osmolality; osmolarity; colligative properties PMID:10448464</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830001824','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830001824"><span>Tolerance requirements to prevent fluid leakage in the crucible/plunger MEA experiment MPS 770030</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rathz, T. J.</p> <p>1982-01-01</p> <p>Molten Al-In leaked unexpectedly out of the crucible of a proposed MEA materials processing in space experiment. The molten metals use a spring loaded plunger to eliminate most free surfaces. The critical criteria necessary to initiate flow and the rate of fluid flow into the crucible/plunger annulus is calculated. Experimental in situ X-radiographs are interpreted according to the calculations. A note on possible effects of capillary flow if wetting occurs between crucible/plunger and liquids is included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030067576','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030067576"><span>Science Requirements for a Space Flight Experiment Entitled Critical Viscosity of Xenon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berg, Robert F.; Moldover, Michael R.</p> <p>1993-01-01</p> <p>We propose to measure in low gravity the viscosity of xenon close to its critical point. The accuracy will be sufficient to eliminate uncertainties currently associated with the analysis of l-g experiments. The measurements will provide the first direct observation of the predicted power-law divergence of viscosity in a pure fluid. The measurements will also strengthen Zeno's test of mode coupling theory by greatly increasing the reliability of the extrapolation of viscosity to low reduced temperatures. Our scientific objectives are described in more detail in one of the attached reports. The low-gravity experiment will be the final stage of a program whose completed ground-based stages are: (1) theoretical studies by one of the principal investigators (MRM) and coworkers, (2) critical viscosity measurements of binary liquid mixtures, (3) critical viscosity measurements of pure fluids in l-g, and development of a suitable vibration-insensitive viscometer. Our technical approach is described in the draft Science Requirements Document. One of us (MRM) has reviewed opportunities for critical phenomena research in low gravity. Both of us were co-principal investigators in the Thermal Equilibration Experiment in the Critical Point Facility, flown on IML-1 in 1992. From this experience, and from the technical maturity of our ground-based work, we believe our critical point viscometer is ready for development as a flight experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869041','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869041"><span>Supercritical fluid reverse micelle separation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Fulton, John L.; Smith, Richard D.</p> <p>1993-01-01</p> <p>A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5284002','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5284002"><span>Supercritical fluid reverse micelle separation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Fulton, J.L.; Smith, R.D.</p> <p>1993-11-30</p> <p>A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31J..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31J..04S"><span>Spectral Induced Polarization approaches to characterize reactive transport parameters and processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmutz, M.; Franceschi, M.; Revil, A.; Peruzzo, L.; Maury, T.; Vaudelet, P.; Ghorbani, A.; Hubbard, S. S.</p> <p>2017-12-01</p> <p>For almost a decade, geophysical methods have explored the potential for characterization of reactive transport parameters and processes relevant to hydrogeology, contaminant remediation, and oil and gas applications. Spectral Induced Polarization (SIP) methods show particular promise in this endeavour, given the sensitivity of the SIP signature to geological material electrical double layer properties and the critical role of the electrical double layer on reactive transport processes, such as adsorption. In this presentation, we discuss results from several recent studies that have been performed to quantify the value of SIP parameters for characterizing reactive transport parameters. The advances have been realized through performing experimental studies and interpreting their responses using theoretical and numerical approaches. We describe a series of controlled experimental studies that have been performed to quantify the SIP responses to variations in grain size and specific surface area, pore fluid geochemistry, and other factors. We also model chemical reactions at the interface fluid/matrix linked to part of our experimental data set. For some examples, both geochemical modelling and measurements are integrated into a SIP physico-chemical based model. Our studies indicate both the potential of and the opportunity for using SIP to estimate reactive transport parameters. In case of well sorted granulometry of the samples, we find that the grain size characterization (as well as the permeabililty for some specific examples) value can be estimated using SIP. We show that SIP is sensitive to physico-chemical conditions at the fluid/mineral interface, including the different pore fluid dissolved ions (Na+, Cu2+, Zn2+, Pb2+) due to their different adsorption behavior. We also showed the relevance of our approach to characterize the fluid/matrix interaction for various organic contents (wetting and non-wetting oils). We also discuss early efforts to jointly interpret SIP and other information for improved estimation, approaches to use SIP information to constrain mechanistic flow and transport models, and the potential to apply some of the approaches to field scale applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20572655','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20572655"><span>Guggenheim's rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weiss, Volker C</p> <p>2010-07-22</p> <p>One of Guggenheim's many corresponding-states rules for simple fluids implies that the molar enthalpy of vaporization (determined at the temperature at which the pressure reaches 1/50th of its critical value, which approximately coincides with the normal boiling point) divided by the critical temperature has a value of roughly 5.2R, where R is the universal gas constant. For more complex fluids, such as strongly polar and ionic fluids, one must expect deviations from Guggenheim's rule. Such a deviation has far-reaching consequences for other empirical rules related to the vaporization of fluids, namely Guldberg's rule and Trouton's rule. We evaluate these characteristic quantities for simple fluids, polar fluids, hydrogen-bonding fluids, simple inorganic molten salts, and room temperature ionic liquids (RTILs). For the ionic fluids, the critical parameters are not accessible to direct experimental observation; therefore, suitable extrapolation schemes have to be applied. For the RTILs [1-n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides, where the alkyl chain is ethyl, butyl, hexyl, or octyl], the critical temperature is estimated by extrapolating the surface tension to zero using Guggenheim's and Eotvos' rules; the critical density is obtained using the linear-diameter rule. It is shown that the RTILs adhere to Guggenheim's master curve for the reduced surface tension of simple and moderately polar fluids, but that they deviate significantly from his rule for the reduced enthalpy of vaporization of simple fluids. Consequences for evaluating the Trouton constant of RTILs, the value of which has been discussed controversially in the literature, are indicated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4277949','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4277949"><span>Fluid resuscitation in acute pancreatitis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Aggarwal, Aakash; Manrai, Manish; Kochhar, Rakesh</p> <p>2014-01-01</p> <p>Acute pancreatitis remains a clinical challenge, despite an exponential increase in our knowledge of its complex pathophysiological changes. Early fluid therapy is the cornerstone of treatment and is universally recommended; however, there is a lack of consensus regarding the type, rate, amount and end points of fluid replacement. Further confusion is added with the newer studies reporting better results with controlled fluid therapy. This review focuses on the pathophysiology of fluid depletion in acute pancreatitis, as well as the rationale for fluid replacement, the type, optimal amount, rate of infusion and monitoring of such patients. The basic goal of fluid epletion should be to prevent or minimize the systemic response to inflammatory markers. For this review, various studies and reviews were critically evaluated, along with authors’ recommendations, for predicted severe or severe pancreatitis based on the available evidence. PMID:25561779</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT.......326B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT.......326B"><span>A chemical and fluid dynamic study of the chemical vapor deposition of aluminum nitride in a vertical reactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bather, Wayne Anthony</p> <p></p> <p>The metalorganic chemical vapor deposition (MOCVD) growth of compound semiconductors has become important in producing many high performance electronic and optoelectronic devices from the wide bandgaps III-V nitrides, for example, aluminum nitride (AlN). A systematic theoretical and experimental investigation of the chemistry and mass transport process in a MOCVD system can yield predictive models of the deposition process. The chemistries and fluid dynamics of the MOCVD growth of AlN in a vertical reactor is analyzed and characterized in order to parameterize and model the deposition process. A Fourier Transform Infrared (FTIR) spectroscopic study of the predeposition reactions between trimethylaluminum (TMAl) and ammonia (NHsb3) is carried out in a static gas cell to examine the primary homogeneous gas phase reactions, pyrolysis of the reactants, and adduct formation, possibly accompanied by elimination reactions. A series of reactions, based on laboratory studies and literature review, is then proposed to model the deposition process. All pertinent kinetic, thermochemical, and transport properties were obtained. Utilizing a mass transport model, we performed computational fluid dynamics calculations using the FLUENT software package. We determined temperature, velocity, and concentration profiles, along with deposition rates inside the experimental vertical CVD reactor in the Howard University Material Science Research Center of Excellence. Experimental deposition rate data were found to be in good agreement with those predicted from the simulations, thus validating the proposed model. The control of the homogeneous gas phase reaction leading to the formation and subsequent decomposition of the adduct is critical to the formation of device-grade AlN films. Many basic processes occurring during MOCVD of AlN are still not completely understood, and none of the detailed surface reaction mechanisms are known.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22054080','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22054080"><span>Multidimensional Raman spectroscopic signatures as a tool for forensic identification of body fluid traces: a review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sikirzhytski, Vitali; Sikirzhytskaya, Aliaksandra; Lednev, Igor K</p> <p>2011-11-01</p> <p>The analysis of body fluid traces during forensic investigations is a critical step in determining the key details of a crime. Several confirmatory and presumptive biochemical tests are currently utilized. However, these tests are all destructive, and no single method can be used to analyze all body fluids. This review outlines recent progress in the development of a novel universal approach for the nondestructive, confirmatory identification of body fluid traces using Raman spectroscopy. The method is based on the use of multidimensional spectroscopic signatures of body fluids and accounts for the intrinsic heterogeneity of dry traces and donor variation. The results presented here demonstrate that Raman spectroscopy has potential for identifying traces of semen, blood, saliva, sweat, and vaginal fluid with high confidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V33C..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V33C..02M"><span>Aqueous Silicate Polymers: An Alternative to `Supercritical' Fluids as Transport Agents in Subduction Zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mannig, C. E.</p> <p>2005-12-01</p> <p>The chemistry of subduction-zone fluids is complicated by melt-vapor miscibility and the existence of critical end-points in rock-H2O systems. It is commonly assumed that fluids in subduction zones attain properties intermediate in composition between hydrous silicate liquid and H2O, and that such fluids possess enhanced material transport capabilities. However, the relevance of supercritical, intermediate fluids to subduction zones presents four problems. (1) Albite-H2O is typically used as an analogue system, but the favorable position of its critical curve is not representative; critical curves for polymineralic subduction-zone lithologies lie at substantially higher P. (2) Even if albite-H2O is relevant, jadeite may interfere because of its different solubility and the positive clapeyron slope of its solidus, which points to liquid-structure changes that could cause reappearance of the liquid+vapor field. (3) Critical curves are features of very H2O-rich compositions; low-porosity, H2O-poor natural systems will coexist with intermediate fluids only over a narrow PT interval. (4) Intermediate fluids are expected only over short length scales because their migration will likely result in compositional shifts via reaction and mineral precipitation in the mantle wedge. Although supercritical, intermediate fluids are probably relatively unimportant in subduction zones, they reflect a chemical process that may hold the key to understanding high- P mass transfer. Miscibility in melt-vapor systems is a consequence of polymerization of dissolved components, primarily Si ± Al, Na and Ca. This behavior yields, e.g., aqueous Si-Si, Si-Al, Si-Na-Al, and Si-Ca oxide dimers and other multimers of varying stoichiometry (silicate polymers), even in subcritical, dilute, H2O-rich vapor. Silicate polymers in subcritical aqueous solutions have been inferred from high- P mineral-solubility experiments. The abundance of these species at high P shows that the chemistry of aqueous fluids in subduction-zones differs fundamentally from the more familiar ionic solutions of the upper crust. This has important consequences for minor element transport. Measurements of Fe, phosphorous and Ti solubility reveal that dissolved concentrations rise with increased aqueous albite content at fixed P and T, with maximum enhancements exceeding 10X at melt saturation. Subcritical silicate polymerization thus permits transport of low solubility components via their substitution into sites on aqueous multimers constructed of "polymer formers" such as Na, Al, and Si, even in dilute solutions. The partitioning of elements between the bulk fluid, the polymer network, and the rock matrix likely controls the overall compositional evolution of subduction-zone fluids. Because they form over a wider PT and bulk X range, subcritical silicate polymers in dilute solutions are likely responsible for more mass transfer in subduction zones than intermediate, supercritical fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3313454','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3313454"><span>IVUS-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Haofei; Cai, Mingchao; Yang, Chun; Zheng, Jie; Bach, Richard; Kural, Mehmet H.; Billiar, Kristen L.; Muccigrosso, David; Lu, Dongsi; Tang, Dalin</p> <p>2012-01-01</p> <p>Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better plaque assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. A framework is proposed to combine intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling with fluid-structure interactions and anisotropic material properties to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. Impact of pre-shrink-stretch process, vessel curvature and high blood pressure on stress, strain, flow velocity and flow maximum principal shear stress was investigated. PMID:22428362</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8532W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8532W"><span>Numerical modeling of fluid migration in subduction zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walter, Marius J.; Quinteros, Javier; Sobolev, Stephan V.</p> <p>2015-04-01</p> <p>It is well known that fluids play a crucial role in subduction evolution. For example, excess mechanical weakening along tectonic interfaces, due to excess fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the downgoing plate, and resulting in chemical changes in earth interior and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It incorporates an arbitrary Lagrangian Eulerian formulation, free surface, and changes in density and viscosity, due to endothermic and exothermic phase transitions. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. This system of equations becomes, however, nonlinear, because the rheology and permeability are depended on the porosity (fluid fraction of the matrix). Ultimately, the evolution of porosity is governed by the compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks (e.g. solitary wave) and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21612956-two-stage-fluid-bed-plasma-gasification-process-solid-waste-valorisation-technical-review-preliminary-thermodynamic-modelling-sulphur-emissions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21612956-two-stage-fluid-bed-plasma-gasification-process-solid-waste-valorisation-technical-review-preliminary-thermodynamic-modelling-sulphur-emissions"><span>Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk</p> <p>2012-04-15</p> <p>Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process.more » This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3471B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3471B"><span>Episodic Tremor and Slip Explained by Fluid-Enhanced Microfracturing and Sealing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bernaudin, M.; Gueydan, F.</p> <p>2018-04-01</p> <p>Episodic tremor and slow-slip events at the deep extension of plate boundary faults illuminate seismic to aseismic processes around the brittle-ductile transition. These events occur in volumes characterized by overpressurized fluids and by near failure shear stress conditions. We present a new modeling approach based on a ductile grain size-sensitive rheology with microfracturing and sealing, which provides a mechanical and field-based explanation of such phenomena. We also model pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping. The fluid-enhanced dynamic evolution of microstructures defines cycles of ductile strain localization and implies increase in pore fluid pressure. We propose that slow-slip events are ductile processes related to transient strain localization, while nonvolcanic tremor corresponds to fracturing of the whole rock at the peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence and the P-T conditions of episodic tremor and slip.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28163984','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28163984"><span>Fluid mechanics as a driver of tissue-scale mechanical signaling in organogenesis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gilbert, Rachel M; Morgan, Joshua T; Marcin, Elizabeth S; Gleghorn, Jason P</p> <p>2016-12-01</p> <p>Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. Whereas significant focus and research effort has demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales. Fluid motion and pressure is capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt developing organs. This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H54F..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H54F..03S"><span>Modeling the Impact of Fracture Growth on Fluid Displacements in Deformable Porous Media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santillán, D.; Cueto-Felgueroso, L.; Juanes, R.</p> <p>2015-12-01</p> <p>Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The flow of a fluid through a deformable porous media is present in manyenvironmental, industrial, and biological processes,such as the removal of pollutants from underground water bodies, enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. However, the injection of a fluid can generate or propagate fractures, which are preferential flow paths. Using numerical simulation, we study the interplay between injection and rock mechanics, and elucidate fracture propagation as a function of injection rate, initial crack topology and mechanical rock properties. Finally, we discuss the role of fracture growth on fluid displacements in porous media. Figure: An example of fracture (in red) propagated in a porous media (in blue)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JIEIC..96...21L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JIEIC..96...21L"><span>Experimental Evaluation and Optimization of Flank Wear During Turning of AISI 4340 Steel with Coated Carbide Inserts Using Different Cutting Fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lawal, S. A.; Choudhury, I. A.; Nukman, Y.</p> <p>2015-01-01</p> <p>The understanding of cutting fluids performance in turning process is very important in order to improve the efficiency of the process. This efficiency can be determined based on certain process parameters such as flank wear, cutting forces developed, temperature developed at the tool chip interface, surface roughness on the work piece, etc. In this study, the objective is to determine the influence of cutting fluids on flank wear during turning of AISI 4340 with coated carbide inserts. The performances of three types of cutting fluids were compared using Taguchi experimental method. The results show that palm kernel oil based cutting fluids performed better than the other two cutting fluids in reducing flank wear. Mathematical models for cutting parameters such as cutting speed, feed rate, depth of cut and cutting fluids were obtained from regression analysis using MINITAB 14 software to predict flank wear. Experiments were conducted based on the optimized values to validate the regression equations for flank wear and 5.82 % error was obtained. The optimal cutting parameters for the flank wear using S/N ratio were 160 m/min of cutting speed (level 1), 0.18 mm/rev of feed (level 1), 1.75 mm of depth of cut (level 2) and 2.97 mm2/s palm kernel oil based cutting fluid (level 3). ANOVA shows cutting speed of 85.36 %; and feed rate 4.81 %) as significant factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23391708','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23391708"><span>Timing, predictors, and progress of third space fluid accumulation during preliminary phase fluid resuscitation in adult patients with dengue.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Premaratna, R; Ragupathy, A; Miththinda, J K N D; de Silva, H J</p> <p>2013-07-01</p> <p>Fluid leakage remains the hallmark of dengue hemorrhagic fever (DHF). The applicability of currently recommended predictors of DHF for adults with dengue is questionable as these are based on studies conducted in children. One hundred and two adults with dengue were prospectively followed up to investigate whether home-based or hospital-based early phase fluid resuscitation has an impact on clinical and hematological parameters used for the diagnosis of early or critical phase fluid leakage. In the majority of subjects, third space fluid accumulation (TSFA) was detected on the fifth and sixth days of infection. The quantity and quality of fluids administered played no role in TSFA. A reduction in systolic blood pressure appeared to be more helpful than a reduction in pulse pressure in predicting fluid leakage. TSFA occurred with lower percentage rises in packed cell volume (PCV) than stated in the current recommendations. A rapid reduction in platelets, progressive reduction in white blood cells, percentage rises in Haemoglobin (Hb), and PCV, and rises in aspartate aminotransferase and alanine aminotransferase were observed in patients with TSFA and therefore with the development of severe illness. Clinicians should be aware of the limitations of currently recommended predictors of DHF in adult patients who are receiving fluid resuscitation. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29j3307W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29j3307W"><span>Dilatancy and compaction effects on the submerged granular column collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Chun; Wang, Yongqi; Peng, Chong; Meng, Xiannan</p> <p>2017-10-01</p> <p>The effects of dilatancy on the collapse dynamics of granular materials in air or in a liquid are studied experimentally and numerically. Experiments show that dilatancy has a critical effect on the collapse of granular columns in the presence of an ambient fluid. Two regimes of the collapse, one being quick and the other being slow, are observed from the experiments and the underlying reasons are analyzed. A two-fluid smoothed particle hydrodynamics model, based on the granular-fluid mixture theory and the critical state theory, is employed to investigate the complex interactions between the solid particles and the ambient water. It is found that dilatancy, resulting in large effective stress and large frictional coefficient between solid particles, helps form the slow regime. Small permeability, representing large inter-phase drag force, also retards the collapse significantly. The proposed numerical model is capable of reproducing these effects qualitatively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820021684','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820021684"><span>Theoretical analyses of Baroclinic flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Antar, B.</p> <p>1982-01-01</p> <p>A stability analysis of a thin horizontal rotating fluid layer which is subjected to arbitrary horizontal and vertical temperature gradients is presented. The basic state is a nonlinear Hadley cell which contains both Ekman and thermal boundary layers; it is given in closed form. The stability analysis is based on the linearized Navier-Stokes equations, and zonally symmetric perturbations in the form of waves propagating in the meridional direction are considered. Numerical methods were used for the stability problem. It was found that the instability sets in when the Richardson number is close to unity and that the critical Richardson number is a non-monotonic function of the Prandtl number. Further, it was found that the critical Richardson number decreases with increasing Ekman number until a critical value of the Ekman number is reached beyond which the fluid is stable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002607','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002607"><span>Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen</p> <p>2013-01-01</p> <p>Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........80G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........80G"><span>Locomotion at Low Reynolds Number: Dynamics in Newtonian and Non-Newtonian Systems with Biomedical Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagnon, David A.</p> <p></p> <p>Swimming microorganisms such as bacteria, spermatozoa, algae, and nematodes are critical to ubiquitous biological phenomena such as disease and infection, ecosystem dynamics, and mammalian fertilization. While there has been much scientific and practical interest in studying these swimmers in Newtonian (water-like) fluids, there are fewer systematic experimental studies on swimming through non-Newtonian (non-water-like) fluids with biologically-relevant mechanical properties. These organisms commonly swim through viscoelastic, structured, or shear-rate-dependent fluids, such as blood, mucus, and living tissues. Furthermore, the small length scales of these organisms dictate that their motion is dominated by viscous forces and inertia is negligible. Using rheology, microscopy, particle tracking, and image processing techniques, we examine the interaction of low Reynolds number swimmers and non-Newtonian fluids including viscoelastic, locally-anisotropic, and shear-thinning fluids. We then apply our understanding of locomotion to the study of the genetic disease Spinal Muscular Atrophy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27982033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27982033"><span>Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen</p> <p>2016-12-16</p> <p>Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ 66 Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ 66 Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO 4 2- complexes preferentially incorporate heavy δ 66 Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5441793','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5441793"><span>Complexity and compositionality in fluid intelligence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Duncan, John; Chylinski, Daphne</p> <p>2017-01-01</p> <p>Compositionality, or the ability to build complex cognitive structures from simple parts, is fundamental to the power of the human mind. Here we relate this principle to the psychometric concept of fluid intelligence, traditionally measured with tests of complex reasoning. Following the principle of compositionality, we propose that the critical function in fluid intelligence is splitting a complex whole into simple, separately attended parts. To test this proposal, we modify traditional matrix reasoning problems to minimize requirements on information integration, working memory, and processing speed, creating problems that are trivial once effectively divided into parts. Performance remains poor in participants with low fluid intelligence, but is radically improved by problem layout that aids cognitive segmentation. In line with the principle of compositionality, we suggest that effective cognitive segmentation is important in all organized behavior, explaining the broad role of fluid intelligence in successful cognition. PMID:28461462</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H34B..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H34B..01M"><span>Modeling Coupled Processes for Multiphase Fluid Flow in Mechanically Deforming Faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McKenna, S. A.; Pike, D. Q.</p> <p>2011-12-01</p> <p>Modeling of coupled hydrological-mechanical processes in fault zones is critical for understanding the long-term behavior of fluids within the shallow crust. Here we utilize a previously developed cellular-automata (CA) model to define the evolution of permeability within a 2-D fault zone under compressive stress. At each time step, the CA model calculates the increase in fluid pressure within the fault at every grid cell. Pressure surpassing a critical threshold (e.g., lithostatic stress) causes a rupture in that cell, and pressure is then redistributed across the neighboring cells. The rupture can cascade through the spatial domain and continue across multiple time steps. Stress continues to increase and the size and location of rupture events are recorded until a percolating backbone of ruptured cells exists across the fault. Previous applications of this model consider uncorrelated random fields for the compressibility of the fault material. The prior focus on uncorrelated property fields is consistent with development of a number of statistical physics models including percolation processes and fracture propagation. However, geologic materials typically express spatial correlation and this can have a significant impact on the results of the pressure and permeability distributions. We model correlation of the fault material compressibility as a multiGaussian random field with a correlation length defined as the full-width at half maximum (FWHM) of the kernel used to create the field. The FWHM is varied from < 0.001 to approximately 0.47 of the domain size. The addition of spatial correlation to the compressibility significantly alters the model results including: 1) Accumulation of larger amounts of strain prior to the first rupture event; 2) Initiation of the percolating backbone at lower amounts of cumulative strain; 3) Changes in the event size distribution to a combined power-law and exponential distribution with a smaller power; and 4) Evolution of the spatial-temporal distribution of rupture event locations from a purely Poisson process to a complex pattern of clustered events with periodic patterns indicative of emergent phenomena. Switching the stress field from compressive to quiescent, or extensional, during the CA simulation results in a fault zone with a complex permeability pattern and disconnected zones of over-pressured fluid that serves as the initial conditions for simulation of capillary invasion of a separate fluid phase. We use Modified Invasion Percolation to simulate the invasion of a less dense fluid into the fault zone. Results show that the variability in fluid displacement measures caused by the heterogeneous permeability field and initial pressure conditions are significant. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006MicST..18...14S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006MicST..18...14S"><span>Highs and lows of 30 years research of fluid physics in microgravity, a personal memory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Straub, Johannes</p> <p>2006-09-01</p> <p>On October 4th 1957 the western world was shocked from the news that a Russian satellite, called Sputnik, had been launched and revolves the earth within 90 minutes periodically. This was the starting signal for the race to monde and stars; the "Star War" began. Just at that time I started with the investigation of the static and dynamic behavior of fluids at and near their critical point [1]. With an optical method I measured density stratifications caused by the diverging compressibility of critical fluids in the earth gravity field. There, the real critical state is compressed by its own weight to a layer of the order of the correlation length. I was myself aware that in a satellite a weightlessness environment exists. Thus a dream waked up within me; if it would be possible to perform critical point experiments in such a satellite our knowledge and understanding of its physics must be much improved, and questions violently discussed at that moment should find an answer. But I would never had thoughts that such a dream could be realized within my lifetime. However, in 1975 the German ministry for development and research instructed the DLR to inquiry scientists if weightlessness can support their research. Based on my experience I proposed two research programs: • Study of critical phenomenon, and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29527809','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29527809"><span>Microfluidic Model Porous Media: Fabrication and Applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anbari, Alimohammad; Chien, Hung-Ta; Datta, Sujit S; Deng, Wen; Weitz, David A; Fan, Jing</p> <p>2018-05-01</p> <p>Complex fluid flow in porous media is ubiquitous in many natural and industrial processes. Direct visualization of the fluid structure and flow dynamics is critical for understanding and eventually manipulating these processes. However, the opacity of realistic porous media makes such visualization very challenging. Micromodels, microfluidic model porous media systems, have been developed to address this challenge. They provide a transparent interconnected porous network that enables the optical visualization of the complex fluid flow occurring inside at the pore scale. In this Review, the materials and fabrication methods to make micromodels, the main research activities that are conducted with micromodels and their applications in petroleum, geologic, and environmental engineering, as well as in the food and wood industries, are discussed. The potential applications of micromodels in other areas are also discussed and the key issues that should be addressed in the near future are proposed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023395','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023395"><span>Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shanks, Wayne C.</p> <p>2001-01-01</p> <p>The recognition of abundant and widespread hydrothermal activity and associated unique life-forms on the ocean floor is one of the great scientific discoveries of the latter half of the twentieth century. Studies of seafloor hydrothermal processes have led to revolutions in understanding fluid convection and the cooling of the ocean crust, the chemical and isotopic mass balance of the oceans, the origin of stratiform and statabound massive-sulfide ore-deposits, the origin of greenstones and serpentinites, and the potential importance of the subseafloor biosphere. Stable isotope geochemistry has been a critical and definitive tool from the very beginning of the modern era of seafloor exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28778289','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28778289"><span>Alternative to Blood Replacement in the Critically Ill.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tolich, Deborah J; McCoy, Kelly</p> <p>2017-09-01</p> <p>This article reviews treatments and strategies that can be used to reduce, or as adjuncts to, blood transfusion to manage blood volumes in patients who are critically ill. Areas addressed include iatrogenic anemia, fluid management, pharmaceutical agents, hemostatic agents, hemoglobin-based oxygen carriers, and management of patients for whom blood is not an option. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026085','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026085"><span>The Microgravity Research Experiments (MICREX) Data Base</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Winter, C. A.; Jones, J. C.</p> <p>1996-01-01</p> <p>An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments) was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigator (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes thE MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026107','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026107"><span>The Microgravity Research Experiments (MICREX) Data Base, Volume 4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Winter, C. A.; Jones, J. C.</p> <p>1996-01-01</p> <p>An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical Memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23799202','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23799202"><span>Quality risk management of top spray fluidized bed process for antihypertensive drug formulation with control strategy engendered by Box-behnken experimental design space.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mukharya, Amit; Patel, Paresh U; Shenoy, Dinesh; Chaudhary, Shivang</p> <p>2013-01-01</p> <p>Lacidipine (LCDP) is a very low soluble and highly biovariable calcium channel blocker used in the treatment of hypertension. To increase its apparent solubility and to reduce its biovariability, solid dispersion fluid bed processing technology was explored, as it produces highly dispersible granules with a characteristic porous structure that enhances dispersibility, wettability, blend uniformity (by dissolving and spraying a solution of actives), flow ability and compressibility of granules for tableting and reducing variability by uniform drug-binder solution distribution on carrier molecules. Main object of this quality risk management (QRM) study is to provide a sophisticated "robust and rugged" Fluidized Bed Process (FBP) for the preparation of LCDP tablets with desired quality (stability) and performance (dissolution) by quality by design (QbD) concept. THIS STUDY IS PRINCIPALLY FOCUSING ON THOROUGH MECHANISTIC UNDERSTANDING OF THE FBP BY WHICH IT IS DEVELOPED AND SCALED UP WITH A KNOWLEDGE OF THE CRITICAL RISKS INVOLVED IN MANUFACTURING PROCESS ANALYZED BY RISK ASSESSMENT TOOLS LIKE: Qualitative Initial Risk-based Matrix Analysis (IRMA) and Quantitative Failure Mode Effective Analysis (FMEA) to identify and rank parameters with potential to have an impact on In Process/Finished Product Critical Quality Attributes (IP/FP CQAs). These Critical Process Parameters (CPPs) were further refined by DoE and MVDA to develop design space with Real Time Release Testing (RTRT) that leads to implementation of a control strategy to achieve consistent finished product quality at lab scale itself to prevent possible product failure at larger manufacturing scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3687233','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3687233"><span>Quality risk management of top spray fluidized bed process for antihypertensive drug formulation with control strategy engendered by Box-behnken experimental design space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mukharya, Amit; Patel, Paresh U; Shenoy, Dinesh; Chaudhary, Shivang</p> <p>2013-01-01</p> <p>Introduction: Lacidipine (LCDP) is a very low soluble and highly biovariable calcium channel blocker used in the treatment of hypertension. To increase its apparent solubility and to reduce its biovariability, solid dispersion fluid bed processing technology was explored, as it produces highly dispersible granules with a characteristic porous structure that enhances dispersibility, wettability, blend uniformity (by dissolving and spraying a solution of actives), flow ability and compressibility of granules for tableting and reducing variability by uniform drug-binder solution distribution on carrier molecules. Materials and Methods: Main object of this quality risk management (QRM) study is to provide a sophisticated “robust and rugged” Fluidized Bed Process (FBP) for the preparation of LCDP tablets with desired quality (stability) and performance (dissolution) by quality by design (QbD) concept. Results and Conclusion: This study is principally focusing on thorough mechanistic understanding of the FBP by which it is developed and scaled up with a knowledge of the critical risks involved in manufacturing process analyzed by risk assessment tools like: Qualitative Initial Risk-based Matrix Analysis (IRMA) and Quantitative Failure Mode Effective Analysis (FMEA) to identify and rank parameters with potential to have an impact on In Process/Finished Product Critical Quality Attributes (IP/FP CQAs). These Critical Process Parameters (CPPs) were further refined by DoE and MVDA to develop design space with Real Time Release Testing (RTRT) that leads to implementation of a control strategy to achieve consistent finished product quality at lab scale itself to prevent possible product failure at larger manufacturing scale. PMID:23799202</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24511922','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24511922"><span>Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Papaioannou, Vasileios; Lafitte, Thomas; Avendaño, Carlos; Adjiman, Claire S; Jackson, George; Müller, Erich A; Galindo, Amparo</p> <p>2014-02-07</p> <p>A generalization of the recent version of the statistical associating fluid theory for variable range Mie potentials [Lafitte et al., J. Chem. Phys. 139, 154504 (2013)] is formulated within the framework of a group contribution approach (SAFT-γ Mie). Molecules are represented as comprising distinct functional (chemical) groups based on a fused heteronuclear molecular model, where the interactions between segments are described with the Mie (generalized Lennard-Jonesium) potential of variable attractive and repulsive range. A key feature of the new theory is the accurate description of the monomeric group-group interactions by application of a high-temperature perturbation expansion up to third order. The capabilities of the SAFT-γ Mie approach are exemplified by studying the thermodynamic properties of two chemical families, the n-alkanes and the n-alkyl esters, by developing parameters for the methyl, methylene, and carboxylate functional groups (CH3, CH2, and COO). The approach is shown to describe accurately the fluid-phase behavior of the compounds considered with absolute average deviations of 1.20% and 0.42% for the vapor pressure and saturated liquid density, respectively, which represents a clear improvement over other existing SAFT-based group contribution approaches. The use of Mie potentials to describe the group-group interaction is shown to allow accurate simultaneous descriptions of the fluid-phase behavior and second-order thermodynamic derivative properties of the pure fluids based on a single set of group parameters. Furthermore, the application of the perturbation expansion to third order for the description of the reference monomeric fluid improves the predictions of the theory for the fluid-phase behavior of pure components in the near-critical region. The predictive capabilities of the approach stem from its formulation within a group-contribution formalism: predictions of the fluid-phase behavior and thermodynamic derivative properties of compounds not included in the development of group parameters are demonstrated. The performance of the theory is also critically assessed with predictions of the fluid-phase behavior (vapor-liquid and liquid-liquid equilibria) and excess thermodynamic properties of a variety of binary mixtures, including polymer solutions, where very good agreement with the experimental data is seen, without the need for adjustable mixture parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V53B2247I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V53B2247I"><span>Bingham fluid behavior of plagioclase-bearing basaltic magma: Approach from laboratory viscosity measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishibashi, H.; Sato, H.</p> <p>2010-12-01</p> <p>Datasets of one atmosphere high temperature rotational viscometry of the Fuji 1707 basalt (Ishibashi, 2009) were analyzed based on the Bingham fluid model, and both yield stress and Bingham viscosity were determined. Reproducibility of the dataset by the Bingham fluid model was slightly better than that by the power law fluid modes adopted in our previous study although both the fluid models well represent the dataset in practical perspective. The relation between Bingham viscosity and crystallinity was compared with the Krieger-Dougherty equation, and both the maximum packing fraction of crystals and intrinsic viscosity for Bingham viscosity were determined ca. 0.45 and ca. 5.25, respectively, revealing that the maximum packing fraction decreased and intrinsic viscosity increased concomitantly with the increase in shape-anisotropy of crystals. However, the obtained value of the product of the maximum packing fraction and intrinsic viscosity (= ca. 2.36) was similar to that of uniform, isotropic-shaped particles (= 2.5), indicating that the effect of crystal shape-anisotropy on Bingham viscosity might be predicted only by change of the maximum packing fraction. Finite yield stress was detected for crystallinity larger than 0.133; it increased with crystallinity which suggests that critical crystallinity for onset of yield stress is at least lower than 0.133. The upper limit value of the critical crystallinity resembles the value calculated numerically for randomly oriented uniform particles by Saar et al. (2001) (0.10-0.15 for width/length ratio of 0.1-0.2, which is similar to the ratios in the basalt) whereas crystals in the basalt were moderately parallel arranged and their sizes vary significantly. That fact might be explained as follows; effects of parallel arrangement and size variation of crystals on the critical crystallinity are offset by the effect of variation in crystal shape-anisotropy, which suggests that shape-anisotropy distribution of crystals must be a critical factor for the onset of yield stress. Keywords: magma, viscosity, Bingham fluid, yield stress, plagioclase</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDP14001V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDP14001V"><span>Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vandre, Eric</p> <p>2014-11-01</p> <p>Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of water/glycerol solutions. In addition, liquid pressurization (relative to ambient air) further postpones air entrainment when the meniscus is located near a sharp corner along the plate. Recorded critical speeds compare well to predictions from the model, supporting the hydrodynamic mechanism for the onset of wetting failure. Lastly, the industrial practice of curtain coating is investigated using the hydrodynamic model. Due to the complexity of this system, a new computational approach is developed combining a finite element method and lubrication theory in order to improve the efficiency of the numerical analysis. Results show that the onset of wetting failure varies strongly with the operating conditions of this system. In addition, stresses from the air flow dramatically affect the steady wetting behavior of curtain coating. Ultimately, these findings emphasize the important role of two-fluid displacement mechanics in high-speed wetting systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950008165','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950008165"><span>Surfactant-based critical phenomena in microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaler, Eric W.; Paulaitis, Michael E.</p> <p>1994-01-01</p> <p>The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980017316','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980017316"><span>Stability of Capillary Surfaces in Rectangular Containers: The Right Square Cylinder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weislogel, M. M.; Hsieh, K. C.</p> <p>1998-01-01</p> <p>The linearized governing equations for an ideal fluid are presented for numerical analysis for the stability of free capillary surfaces in rectangular containers against unfavorable disturbances (accelerations,i.e. Rayleigh-Taylor instability). The equations are solved for the case of the right square cylinder. The results are expressed graphically in term of a critical Bond number as a function of system contact angle. A critical wetting phenomena in the corners is shown to significantly alter the region of stability for such containers in contrast to simpler geometries such as the right circular cylinder or the infinite rectangular slot. Such computational results provide additional constraints for the design of fluids systems for space-based applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDD14005C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDD14005C"><span>Why do Cross-Flow Turbines Stall?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cavagnaro, Robert; Strom, Benjamin; Polagye, Brian</p> <p>2015-11-01</p> <p>Hydrokinetic turbines are prone to instability and stall near their peak operating points under torque control. Understanding the physics of turbine stall may help to mitigate this undesirable occurrence and improve the robustness of torque controllers. A laboratory-scale two-bladed cross-flow turbine operating at a chord-based Reynolds number ~ 3 ×104 is shown to stall at a critical tip-speed ratio. Experiments are conducting bringing the turbine to this critical speed in a recirculating current flume by increasing resistive torque and allowing the rotor to rapidly decelerate while monitoring inflow velocity, torque, and drag. The turbine stalls probabilistically with a distribution generated from hundreds of such events. A machine learning algorithm identifies stall events and indicates the effectiveness of available measurements or combinations of measurements as predictors. Bubble flow visualization and PIV are utilized to observe fluid conditions during stall events including the formation, separation, and advection of leading-edge vortices involved in the stall process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720020638','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720020638"><span>Choked flow of fluid nitrogen with emphasis on the thermodynamic critical region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hendricks, R. C.; Simoneau, R. J.; Ehlers, R. C.</p> <p>1972-01-01</p> <p>Experimental measurements of critical flow rate and pressure ratio for nitrogen flowing through a nozzle are presented. Data for selected stagnation isotherms from 87.5 to 234 K with pressures to 9.3 MN/m2 are compared to an equilibrium model with real fluid properties and also a nonequilibrium model. Critical flow pressure ratio along an isotherm tends to peak while the flow rate indicates an inflection. The point is closely associated with the transposed critical temperature and represents a change in the fluid structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JMiMi..20c5012L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JMiMi..20c5012L"><span>Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Lei; Lee, L. James; Castro, Jose M.; Yi, Allen Y.</p> <p>2010-03-01</p> <p>In this paper, a critical modification to a polymer based affordable split-and-recombination static micromixer is described. To evaluate the improvement, both the original and the modified design were carefully investigated using an experimental setup and numerical modeling approach. The structure of the micromixer was designed to take advantage of the process capabilities of both ultraprecision micromachining and microinjection molding process. Specifically, the original and the modified design were numerically simulated using commercial finite element method software ANSYS CFX to assist the re-designing of the micromixers. The simulation results have shown that both designs are capable of performing mixing while the modified design has a much improved performance. Mixing experiments with two different fluids were carried out using the original and the modified mixers again showed a significantly improved mixing uniformity by the latter. The measured mixing coefficient for the original design was 0.11, and for the improved design it was 0.065. The developed manufacturing process based on ultraprecision machining and microinjection molding processes for device fabrication has the advantage of high-dimensional precision, low cost and manufacturing flexibility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020039552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020039552"><span>Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steinberg, Susan L. (Editor); Ming, Doug W. (Editor); Henninger, Don (Editor)</p> <p>2002-01-01</p> <p>This NASA Technical Memorandum is a compilation of presentations and discussions in the form of minutes from a workshop entitled 'Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media' held at NASA's Johnson Space Center, July 24-25, 2000. This workshop arose from the growing belief within NASA's Advanced Life Support Program that further advances and improvements in plant production systems for microgravity would benefit from additional knowledge of fundamental processes occurring in the root zone. The objective of the workshop was to bring together individuals who had expertise in various areas of fluid physics, soil physics, plant physiology, hardware development, and flight tests to identify, discuss, and prioritize critical issues of water and air flow through porous media in microgravity. Participants of the workshop included representatives from private companies involved in flight hardware development and scientists from universities and NASA Centers with expertise in plant flight tests, plant physiology, fluid physics, and soil physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.3608H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.3608H"><span>Mass transfer in supercritical fluids instancing selected fluids in supercritical carbon dioxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Miao; Benning, Rainer; Delgado, Antonio; Ertunc, Oezguer</p> <p></p> <p>The research interests lie in a deeper understanding of the mechanisms of diffusion and nucle-ation of organic solutes in near-and supercritical state of a solvent, which count as important means of mass transfer in the process engineering industry. The use of supercritical fluids in industrial processes, such as extraction and particle handling, has become a more and more popular method. Take a closer look at the two processes one would find that there are obviously two sub-processes involved in each of the process, namely the diffusion/nucleation as well as a phase transition procedure. Because of the operational limitations in the practice, this phase transition can-not be neglected. So it is also included in the theoretical approach. Classically to deduce conclusions from experiment results, mathematical/physical models outlining property changes and summarizing characteristics of the two processes are expected. In order to become an insight of these phenomena from the origin, and also to serve as a fundamental attribute for the numerical simulation later, the theories of statistical thermodynamics are adopted here as a proper means to describe the behaviors of the two processes. As the diffusion coefficients of the samples in our case are only of an order of approx. 10-8m2s-1, it can be assumed that the processes are in equilibrium (local changes are neglectably small), a model can be built on a general macroscopic approach for equilibrium systems, namely the Boltzmann-Gibbs distri-bution. And some rather general methods e.g. linear response theory can be applied. But as the transfer phenomena are genuinely not equilibrium systems, from this aspect a model can also be built based on the microscopic description -the kinetic theory of the behaviors of the particles of this non-equilibrium system. The characteristics under compensated gravity are also to be considered in the models. The differences and constraints between the models are to be compared and discussed. As the thermodynamic properties of a fluid are strongly dependent on the dimensions and the conditions in which the process is taken place, the models are limited to the hardware designed for this experiment setup. In order to evolve other applications, they need to be generalized and adjusted to fit the situations accordingly. As usual, the experiment data are to be submitted to these calculations to complete the models, and also to test and to proof if they satisfy some general properties of the systems that are already known. This leads to another very important part of the work -the experiments. Because of the sophistication of the behavior of fluids around their critical points, throughout the literature the theoretical description of the phase transition as well as other processes taken place under this circumstance, still depends largely on the empirical analysis. No matter how well considered a model can be, it represents only a partial and a simplified picture of the whole process. So the experimental part is of great importance not only as a support to the theoretical solution, but also as a means to get first hand data especially for the processes under investigation in this work. As solvent supercritical carbon dioxide was chosen considering its unique economical and ecological effects. As solutes DL-α-tocopherol and n-hexane were cho-sen. Two fundamental mass transfer processes are observed, namely diffusion and nucleation, both in laboratory as well as under compensated gravity (The experiment are to be performed in parabolic flight this March 2010). Both phenomena are obtained under isothermal condition through adjustments of the pressure inside a high pressure container. The container was spe-cially designed for this case. It has a cylindrical geometry with two pistons as movable walls on both sides to control the solvent volume. For diffusion a droplet of sample is fixed between two wetting barriers in the middle of the container with filled solvent -sub-critical CO2. The ex-periment pressure is reached by reducing the volume of the container above the critical pressure of the solvent. For nucleation the container is firstly filled with saturated mixture of solvent -supercritical CO2 and the sample, the experiment pressure is achieved by enlarging the volume of the container below the critical pressure of the solvent. During the experiments the pressure and temperature data are monitored and recorded. As a direct observation means a high speed camera is used, the visual changes inside are recorded through the windows integrated on the container. The experiments are carried out under three different initial conditions, namely with three start temperatures (313K, 333K and 353K), to cover the area from vicinity of the critical point. This research serves as a pilot project topic in cooperation with DLR, which has the ultimate aim of performing the experiments of mass transfer processes in a longtime microgravity facility (e.g. ISS) in order to further explore the influences and utilities of earth gravity on these basic transport processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3714210','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3714210"><span>Real-Time Maps of Fluid Flow Fields in Porous Biomaterials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mack, Julia J.; Youssef, Khalid; Noel, Onika D.V.; Lake, Michael P.; Wu, Ashley; Iruela-Arispe, M. Luisa; Bouchard, Louis-S.</p> <p>2013-01-01</p> <p>Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, noninvasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics. PMID:23245922</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=348212','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=348212"><span>Eastern red cedar: critical fluid extraction and bioactivity of extracts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Eastern red cedar is an abundant natural resource in the United States. It is valuable for its lumber and cedarwood oil derived from the wood. Cedarwood is generally obtained by steam distillation; however, this process has several disadvantages, including relatively low yields and altered oil chara...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26578396','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26578396"><span>Fluid therapy in critically ill patients: perspectives from the right heart.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elbers, Paul; Rodrigus, Tim; Nossent, Esther; Malbrain, Manu L N G; Vonk-Noordegraaf, Anton</p> <p>2015-01-01</p> <p>As right heart function can affect outcome in the critically ill patient, a thorough understanding of factors determining right heart performance in health and disease is pivotal for the critical care physician. This review focuses on fluid therapy, which remains controversial in the setting of impending or overt right heart failure. In this context, we will attempt to elucidate which patients are likely to benefit from fluid administration and for which patients fluid therapy would likely be harmful. Following a general discussion of right heart function and failure, we specifically focus on important causes of right heart failure in the critically ill, i.e. sepsis induced myocardial dysfunction, the acute respiratory distress syndrome, acute pulmonary embolism and the effects of positive pressure ventilation. It is argued that fluid therapy should always be cautiously administered with the right heart in mind, which calls for close multimodal monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950008155','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950008155"><span>The extensional rheology of non-Newtonian materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spiegelberg, Stephen H.; Gaudet, Samuel; Mckinley, Gareth H.</p> <p>1994-01-01</p> <p>It has been proposed to measure the extensional viscosity function of a non-Newtonian polymer solution in a reduced gravity environment as part of the Advanced Fluid Module. In ground-based extensional measurements, the no-sip boundary condition at solid-fluid interfaces always result in appreciable shear gradients in the test fluid; however the removal of gravitational body forces permits controlled extensional deformation of containerless test samples and the first unambiguous measurements of this kind. Imperative to successful implementation of this experiment is the generation and subsequent deformation of a stable cylindrical column of test fluid. A study of the generation and deformation of liquid bridges demonstrates that Newtonian liquid bridges undergo capillary breakup as anticipated when stretched beyond a critical aspect ratio; non-Newtonian liquid bridges, however, are stabilized by the strain-hardening phenomenon exhibited by these materials. Numerical simulations of Newtonian breakup are compared with experimental results, and show that previous ground-based attempts at measuring the extensional viscosity of Newtonian fluids are of limited accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ExFl...57..187S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ExFl...57..187S"><span>Modelling droplet collision outcomes for different substances and viscosities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sommerfeld, Martin; Kuschel, Matthias</p> <p>2016-12-01</p> <p>The main objective of the present study is the derivation of models describing the outcome of binary droplet collisions for a wide range of dynamic viscosities in the well-known collision maps (i.e. normalised lateral droplet displacement at collision, called impact parameter, versus collision Weber number). Previous studies by Kuschel and Sommerfeld (Exp Fluids 54:1440, 2013) for different solution droplets having a range of solids contents and hence dynamic viscosities (here between 1 and 60 mPa s) revealed that the locations of the triple point (i.e. coincidence of bouncing, stretching separation and coalescence) and the critical Weber number (i.e. condition for the transition from coalescence to separation for head-on collisions) show a clear dependence on dynamic viscosity. In order to extend these findings also to pure liquids and to provide a broader data basis for modelling the viscosity effect, additional binary collision experiments were conducted for different alcohols (viscosity range 1.2-15.9 mPa s) and the FVA1 reference oil at different temperatures (viscosity range 3.0-28.2 mPa s). The droplet size for the series of alcohols was around 365 and 385 µm for the FVA1 reference oil, in each case with fixed diameter ratio at Δ= 1. The relative velocity between the droplets was varied in the range 0.5-3.5 m/s, yielding maximum Weber numbers of around 180. Individual binary droplet collisions with defined conditions were generated by two droplet chains each produced by vibrating orifice droplet generators. For recording droplet motion and the binary collision process with good spatial and temporal resolution high-speed shadow imaging was employed. The results for varied relative velocity and impact angle were assembled in impact parameter-Weber number maps. With increasing dynamic viscosity a characteristic displacement of the regimes for the different collision scenarios was also observed for pure liquids similar to that observed for solutions. This displacement could be described on a physical basis using the similarity number and structure parameter K which was obtained through flow process evaluation and optimal proportioning of momentum and energy by Naue and Bärwolff (Transportprozesse in Fluiden. Deutscher Verlag für Grundstoffindustrie GmbH, Leipzig 1992). Two correlations including the structure parameter K could be derived which describe the location of the triple point and the critical We number. All fluids considered, pure liquids and solutions, are very well fitted by these physically based correlations. The boundary model of Jiang et al. (J Fluid Mech 234:171-190, 1992) for distinguishing between coalescence and stretching separation could be adapted to go through the triple point by the two involved model parameters C a and C b, which were correlated with the relaxation velocity u_{{relax}} = {σ/μ}. Based on the predicted critical Weber number, denoting the onset of reflexive separation, the model of Ashgriz and Poo (J Fluid Mech 221:183-204, 1990) was adapted accordingly. The proper performance of the new generalised models was validated based on the present and previous measurements for a wide range of dynamic viscosities (i.e. 1-60 mPa s) and liquid properties. Although the model for the lower boundary of bouncing (Estrade et al. in J Heat Fluid Flow 20:486-491, 1999) could be adapted through the shape factor, it was found not suitable for the entire range of Weber numbers and viscosities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26879938','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26879938"><span>Prospects of Supercritical Fluids in Realizing Graphene-Based Functional Materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Padmajan Sasikala, Suchithra; Poulin, Philippe; Aymonier, Cyril</p> <p>2016-04-13</p> <p>Supercritical-fluids science and technology predate all the approaches that are currently established for graphene production by several decades in advanced materials design. However, it has only recently been proposed as a plausible approach for graphene processing. Since then, supercritical fluids have emerged into contention as an alternative to existing technologies because of their scalability and versatility in processing graphene materials, which include composites, aerogels, and foams. Here, an overview is presented of such materials prepared through supercritical fluids from an advanced materials science standpoint, with a discussion on their fundamental properties and technological applications. The benefits of supercritical-fluid processing over conventional liquid-phase processing are presented. The benefits include not only better performances for advanced applications but also environmental issues associated with the synthesis process. Nevertheless, the limitations of supercritical-fluid processing are also stressed, along with challenges that are still faced toward the achievement of the great expectations from graphene materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4887233','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4887233"><span>One-Dimensional Modeling Studies of the Gaseous Electronics Conference RF Reference Cell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Govindan, T. R.; Meyyappan, M.</p> <p>1995-01-01</p> <p>A review of the one-dimensional modeling studies in the literature of the Gaseous Electronics Conference (GEC) reference plasma reactor is presented. Most of the studies are based on the fluid model description of the discharge and some utilize hybrid fluid-kinetic schemes. Both models are discussed here briefly. The models provide a basic understanding of the discharge mechanisms and reproduce several critical discharge features observed experimentally. PMID:29151755</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HydJ...25..385C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HydJ...25..385C"><span>Uncertainty quantification of overpressure buildup through inverse modeling of compaction processes in sedimentary basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colombo, Ivo; Porta, Giovanni M.; Ruffo, Paolo; Guadagnini, Alberto</p> <p>2017-03-01</p> <p>This study illustrates a procedure conducive to a preliminary risk analysis of overpressure development in sedimentary basins characterized by alternating depositional events of sandstone and shale layers. The approach rests on two key elements: (1) forward modeling of fluid flow and compaction, and (2) application of a model-complexity reduction technique based on a generalized polynomial chaos expansion (gPCE). The forward model considers a one-dimensional vertical compaction processes. The gPCE model is then used in an inverse modeling context to obtain efficient model parameter estimation and uncertainty quantification. The methodology is applied to two field settings considered in previous literature works, i.e. the Venture Field (Scotian Shelf, Canada) and the Navarin Basin (Bering Sea, Alaska, USA), relying on available porosity and pressure information for model calibration. It is found that the best result is obtained when porosity and pressure data are considered jointly in the model calibration procedure. Uncertainty propagation from unknown input parameters to model outputs, such as pore pressure vertical distribution, is investigated and quantified. This modeling strategy enables one to quantify the relative importance of key phenomena governing the feedback between sediment compaction and fluid flow processes and driving the buildup of fluid overpressure in stratified sedimentary basins characterized by the presence of low-permeability layers. The results here illustrated (1) allow for diagnosis of the critical role played by the parameters of quantitative formulations linking porosity and permeability in compacted shales and (2) provide an explicit and detailed quantification of the effects of their uncertainty in field settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MPLB...3150259T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MPLB...3150259T"><span>Corresponding state-based correlations for the temperature-dependent surface tension of saturated hydrocarbons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, Jianxiang; Zhang, Cuihua; Zhang, Laibin; Zheng, Mengmeng; Liu, Shuzhen</p> <p>2017-10-01</p> <p>Based on the recent progresses on the corresponding state-based correlations for the temperature-dependent surface tension of saturated fluids [I. Cachadiña, A. Mulero and J. X. Tian, Fluid Phase Equilibr. 442 (2017) 68; J. X. Tian, M. M. Zheng, H. L. Yi, L. B. Zhang and S. Z. Liu, Mod. Phys. Lett. B 31 (2017) 1750110], we proposed a new correlation for saturated hydrocarbons. This correlation includes three fluid-independent parameters and inquires the critical temperature, the triple-point temperature and the surface tension at the triple-point temperature as inputs for each hydrocarbon. Results show that this correlation can reproduce NIST data with absolute average deviation (AAD) less than 1% for 10 out of 19 hydrocarbons and AAD less than 5% for 17 out of 19 hydrocarbons, clearly better than other correlations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26931708','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26931708"><span>Equation of state and critical point behavior of hard-core double-Yukawa fluids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Montes, J; Robles, M; López de Haro, M</p> <p>2016-02-28</p> <p>A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MAR.M1192C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MAR.M1192C"><span>Phase Behavior of Patchy Spheroidal Fluids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carpency, Thienbao</p> <p></p> <p>We employ Gibbs-ensemble Monte Carlo computer simulation to assess the impact of shape anisotropy and particle interaction anisotropy on the phase behavior of a colloidal (or, by extension, protein) fluid comprising patchy ellipsoidal particles, with an emphasis on critical behavior. More specifically, we obtain the fluid-fluid equilibrium phase diagram of hard prolate ellipsoids having Kern-Frenkel surface patches under a variety of conditions and study the critical behavior of these fluids as a function of particle shape parameters. It is found that the dependence of the critical temperature on aspect ratio for particles having the same volume can be described approximately in terms of patch solid angles. In addition, ordering in the fluid that is associated with particle elongation is also found to be an important factor in dictating phase behavior. The G. Harold & Leila Y. Mathers Foundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H53B1454Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H53B1454Z"><span>Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeng, C.; Deng, W.; Wu, C.; Insall, M.</p> <p>2017-12-01</p> <p>In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=299004','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=299004"><span>Computer simulation to predict energy use, greenhouse gas emissions and costs for production of fluid milk using alternative processing methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Computer simulation is a useful tool for benchmarking the electrical and fuel energy consumption and water use in a fluid milk plant. In this study, a computer simulation model of the fluid milk process based on high temperature short time (HTST) pasteurization was extended to include models for pr...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950019458','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950019458"><span>Electric field effects on a near-critical fluid in microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zimmerli, G.; Wilkinson, R. A.; Ferrell, R. A.; Hao, H.; Moldover, M. R.</p> <p>1994-01-01</p> <p>The effects of an electric field on a sample of SF6 fluid in the vicinity of the liquid-vapor critical point is studied. The isothermal increase of the density of a near-critical sample as a function of the applied electric field was measured. In agreement with theory, this electrostriction effect diverges near the critical point as the isothermal compressibility diverges. Also as expected, turning on the electric field in the presence of density gradients can induce flow within the fluid, in a way analogous to turning on gravity. These effects were observed in a microgravity environment by using the Critical Point Facility which flew onboard the Space Shuttle Columbia in July 1994 as part of the Second International Microgravity Laboratory Mission. Both visual and interferometric images of two separate sample cells were obtained by means of video downlink. The interferometric images provided quantitative information about the density distribution throughout the sample. The electric field was generated by applying 500 Volts to a fine wire passing through the critical fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5282515','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5282515"><span>Fluid mechanics as a driver of tissue-scale mechanical signaling in organogenesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gilbert, Rachel M.; Morgan, Joshua T.; Marcin, Elizabeth S.; Gleghorn, Jason P.</p> <p>2016-01-01</p> <p>Purpose of Review Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. Whereas significant focus and research effort has demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales. Recent Findings Fluid motion and pressure is capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt developing organs. Summary This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development. PMID:28163984</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhFl...25i2103D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhFl...25i2103D"><span>On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dahms, Rainer N.; Oefelein, Joseph C.</p> <p>2013-09-01</p> <p>A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for liquid injection is developed that quantifies the conditions under which classical sprays transition to dense-fluid jets. It is shown that the chamber pressure required to support diffusion-dominated mixing dynamics depends on the composition and temperature of the injected liquid and ambient gas. To illustrate the method and analysis, we use conditions typical of diesel engine injection. We also present a companion set of high-speed images to provide experimental validation of the presented theory. The basic theory is quite general and applies to a wide range of modern propulsion and power systems such as liquid rockets, gas turbines, and reciprocating engines. Interestingly, the regime diagram associated with diesel engine injection suggests that classical spray phenomena at typical injection conditions do not occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750018234','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750018234"><span>Pressure distribution in a converging-diverging nozzle during two-phase choked flow of subcooled nitrogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Simoneau, R. J.</p> <p>1975-01-01</p> <p>Choked flow rates and axial pressure distributions were measured for subcooled nitrogen in a converging-diverging nozzle with a constant area section in the throat region. Stagnation pressures ranged from slightly above saturation to twice the thermodynamic critical pressure. Stagnation temperatures ranged from 0.75 to 1.03 times the thermodynamic critical temperature. The choking plane is at the divergence end of the constant area throat section. At high stagnation pressures the fluid stays liquid well into the constant area throat region; at near saturation stagnation pressures it appears that vaporization occurs at or before the entrance to the constant area throat region. The throat-to-stagnation pressure ratio data exhibits an anomalous flat region, and this anomaly is related to the two-phase process. The fluid is metastably all liquid below the saturation pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1258532-situ-real-time-radiographic-study-thin-film-formation-inside-rotating-hollow-spheres','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1258532-situ-real-time-radiographic-study-thin-film-formation-inside-rotating-hollow-spheres"><span>In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph; ...</p> <p>2016-02-03</p> <p>The hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site-controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. We report on in situ real-time radiography experiments that provide critical spatiotemporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Furthermore, image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocitymore » on the film uniformity. The data were then used to demonstrate the fabrication of uniform sol–gel chemistry derived porous polymer films inside 2 mm inner diameter diamond shells.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1335880-situ-real-time-radiographic-study-thin-film-formation-inside-rotating-hollow-spheres','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1335880-situ-real-time-radiographic-study-thin-film-formation-inside-rotating-hollow-spheres"><span>In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph</p> <p>2016-02-03</p> <p>Hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. Here, we report on in-situ real-time radiography experiments that provide critical spatio-temporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocity onmore » the film uniformity. The data were then used to demonstrate the fabrication of uniform sol-gel chemistry derived porous polymer films inside 2mm inner diameter diamond shells.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27899724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27899724"><span>Working Memory Capacity and Fluid Intelligence: Maintenance and Disengagement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shipstead, Zach; Harrison, Tyler L; Engle, Randall W</p> <p>2016-11-01</p> <p>Working memory capacity and fluid intelligence have been demonstrated to be strongly correlated traits. Typically, high working memory capacity is believed to facilitate reasoning through accurate maintenance of relevant information. In this article, we present a proposal reframing this issue, such that tests of working memory capacity and fluid intelligence are seen as measuring complementary processes that facilitate complex cognition. Respectively, these are the ability to maintain access to critical information and the ability to disengage from or block outdated information. In the realm of problem solving, high working memory capacity allows a person to represent and maintain a problem accurately and stably, so that hypothesis testing can be conducted. However, as hypotheses are disproven or become untenable, disengaging from outdated problem solving attempts becomes important so that new hypotheses can be generated and tested. From this perspective, the strong correlation between working memory capacity and fluid intelligence is due not to one ability having a causal influence on the other but to separate attention-demanding mental functions that can be contrary to one another but are organized around top-down processing goals. © The Author(s) 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060050063','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060050063"><span>Characterization and Analyses of Valves, Feed Lines and Tanks used in Propellant Delivery Systems at NASA SSC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ryan, Harry M.; Coote, David J.; Ahuja, Vineet; Hosangadi, Ashvin</p> <p>2006-01-01</p> <p>Accurate modeling of liquid rocket engine test processes involves assessing critical fluid mechanic and heat and mass transfer mechanisms within a cryogenic environment, and accurately modeling fluid properties such as vapor pressure and liquid and gas densities as a function of pressure and temperature. The Engineering and Science Directorate at the NASA John C. Stennis Space Center has developed and implemented such analytic models and analysis processes that have been used over a broad range of thermodynamic systems and resulted in substantial improvements in rocket propulsion testing services. In this paper, we offer an overview of the analyses techniques used to simulate pressurization and propellant fluid systems associated with the test stands at the NASA John C. Stennis Space Center. More specifically, examples of the global performance (one-dimensional) of a propellant system are provided as predicted using the Rocket Propulsion Test Analysis (RPTA) model. Computational fluid dynamic (CFD) analyses utilizing multi-element, unstructured, moving grid capability of complex cryogenic feed ducts, transient valve operation, and pressurization and mixing in propellant tanks are provided as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1174423','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1174423"><span>Incorporation of additives into polymers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>McCleskey, T. Mark; Yates, Matthew Z.</p> <p>2003-07-29</p> <p>There has been invented a method for incorporating additives into polymers comprising: (a) forming an aqueous or alcohol-based colloidal system of the polymer; (b) emulsifying the colloidal system with a compressed fluid; and (c) contacting the colloidal polymer with the additive in the presence of the compressed fluid. The colloidal polymer can be contacted with the additive by having the additive in the compressed fluid used for emulsification or by adding the additive to the colloidal system before or after emulsification with the compressed fluid. The invention process can be carried out either as a batch process or as a continuous on-line process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28525778','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28525778"><span>Inferior vena cava collapsibility detects fluid responsiveness among spontaneously breathing critically-ill patients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Corl, Keith A; George, Naomi R; Romanoff, Justin; Levinson, Andrew T; Chheng, Darin B; Merchant, Roland C; Levy, Mitchell M; Napoli, Anthony M</p> <p>2017-10-01</p> <p>Measurement of inferior vena cava collapsibility (cIVC) by point-of-care ultrasound (POCUS) has been proposed as a viable, non-invasive means of assessing fluid responsiveness. We aimed to determine the ability of cIVC to identify patients who will respond to additional intravenous fluid (IVF) administration among spontaneously breathing critically-ill patients. Prospective observational trial of spontaneously breathing critically-ill patients. cIVC was obtained 3cm caudal from the right atrium and IVC junction using POCUS. Fluid responsiveness was defined as a≥10% increase in cardiac index following a 500ml IVF bolus; measured using bioreactance (NICOM™, Cheetah Medical). cIVC was compared with fluid responsiveness and a cIVC optimal value was identified. Of the 124 participants, 49% were fluid responders. cIVC was able to detect fluid responsiveness: AUC=0.84 [0.76, 0.91]. The optimum cutoff point for cIVC was identified as 25% (LR+ 4.56 [2.72, 7.66], LR- 0.16 [0.08, 0.31]). A cIVC of 25% produced a lower misclassification rate (16.1%) for determining fluid responsiveness than the previous suggested cutoff values of 40% (34.7%). IVC collapsibility, as measured by POCUS, performs well in distinguishing fluid responders from non-responders, and may be used to guide IVF resuscitation among spontaneously breathing critically-ill patients. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25161215','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25161215"><span>Planning Decrements in Healthy Aging: Mediation Effects of Fluid Reasoning and Working Memory Capacity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Köstering, Lena; Leonhart, Rainer; Stahl, Christoph; Weiller, Cornelius; Kaller, Christoph P</p> <p>2016-03-01</p> <p>Although age-related differences in planning ability are well known, their cognitive foundations remain a matter of contention. To elucidate the specific processes underlying planning decrements in older age, the relative contributions of fluid reasoning, working memory (WM) capacity, and processing speed to accuracy on the Tower of London (TOL) planning task were investigated. Mediation analyses were used to relate overall and search depth-related TOL accuracy from older (N = 106; 60-89 years) and younger adults (N = 69; 18-54 years) to age and measures of fluid reasoning, WM capacity, and speed. For overall planning, fluid abilities mediated the effects of age, WM capacity, and speed in older adults. By contrast, fluid abilities and WM capacity mediated each other in younger adults. For planning accuracy under low demands on the depth of search, WM capacity was specifically important in older age, whereas younger adults recruited both WM capacity and fluid reasoning. Under high search-depth-demands, fluid abilities underlay the cognitive operations critical for resolving move interdependencies in both age groups. Fluid abilities and WM capacity undergo significant changes from younger to older age in their unique contribution to planning, which might represent a mechanism whereby planning decrements in older age are brought about. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036546','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036546"><span>A critical evaluation of crustal dehydration as the cause of an overpressured and weak San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fulton, P.M.; Saffer, D.M.; Bekins, B.A.</p> <p>2009-01-01</p> <p>Many plate boundary faults, including the San Andreas Fault, appear to slip at unexpectedly low shear stress. One long-standing explanation for a "weak" San Andreas Fault is that fluid release by dehydration reactions during regional metamorphism generates elevated fluid pressures that are localized within the fault, reducing the effective normal stress. We evaluate this hypothesis by calculating realistic fluid production rates for the San Andreas Fault system, and incorporating them into 2-D fluid flow models. Our results show that for a wide range of permeability distributions, fluid sources from crustal dehydration are too small and short-lived to generate, sustain, or localize fluid pressures in the fault sufficient to explain its apparent mechanical weakness. This suggests that alternative mechanisms, possibly acting locally within the fault zone, such as shear compaction or thermal pressurization, may be necessary to explain a weak San Andreas Fault. More generally, our results demonstrate the difficulty of localizing large fluid pressures generated by regional processes within near-vertical fault zones. ?? 2009 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27476827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27476827"><span>Chloride toxicity in critically ill patients: What's the evidence?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Soussi, Sabri; Ferry, Axelle; Chaussard, Maité; Legrand, Matthieu</p> <p>2017-04-01</p> <p>Crystalloids have become the fluid of choice in critically ill patients and in the operating room both for fluid resuscitation and fluid maintenance. Among crystalloids, NaCl 0.9% has been the most widely used fluid. However, emerging evidence suggests that administration of 0.9% saline could be harmful mainly through high chloride content and that the use of fluid with low chloride content may be preferable in major surgery and intensive care patients. Administration of NaCl 0.9% is the leading cause of metabolic hyperchloraemic acidosis in critically ill patients and side effects might target coagulation, renal function, and ultimately increase mortality. More balanced solutions therefore may be used especially when large amount of fluids are administered in high-risk patients. In this review, we discuss physiological background favouring the use of balanced solutions as well as the most recent clinical data regarding the use of crystalloid solutions in critically ill patients and patients undergoing major surgery. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900001618','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900001618"><span>Independent Orbiter Assessment (IOA): Analysis of the hydraulics/water spray boiler subsystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Duval, J. D.; Davidson, W. R.; Parkman, William E.</p> <p>1986-01-01</p> <p>The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Hydraulics/Water Spray Boiler Subsystem. The hydraulic system provides hydraulic power to gimbal the main engines, actuate the main engine propellant control valves, move the aerodynamic flight control surfaces, lower the landing gear, apply wheel brakes, steer the nosewheel, and dampen the external tank (ET) separation. Each hydraulic system has an associated water spray boiler which is used to cool the hydraulic fluid and APU lubricating oil. The IOA analysis process utilized available HYD/WSB hardware drawings, schematics and documents for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 430 failure modes analyzed, 166 were determined to be PCIs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1122558','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1122558"><span>Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose</p> <p>2011-09-30</p> <p>The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.894a2037I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.894a2037I"><span>On a criterion of incipient motion and entrainment into suspension of a particle from cuttings bed in shear flow of non-Newtonian fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland</p> <p>2017-10-01</p> <p>Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S23F..01E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S23F..01E"><span>Driving Processes of Earthquake Swarms: Evidence from High Resolution Seismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ellsworth, W. L.; Shelly, D. R.; Hill, D. P.; Hardebeck, J.; Hsieh, P. A.</p> <p>2017-12-01</p> <p>Earthquake swarms are transient increases in seismicity deviating from a typical mainshock-aftershock pattern. Swarms are most prevalent in volcanic and hydrothermal areas, yet also occur in other environments, such as extensional fault stepovers. Swarms provide a valuable opportunity to investigate source zone physics, including the causes of their swarm-like behavior. To gain insight into this behavior, we have used waveform-based methods to greatly enhance standard seismic catalogs. Depending on the application, we detect and precisely relocate 2-10x as many events as included in the initial catalog. Recently, we have added characterization of focal mechanisms (applied to a 2014 swarm in Long Valley Caldera, California), addressing a common shortcoming in microseismicity analyses (Shelly et al., JGR, 2016). In analysis of multiple swarms (both within and outside volcanic areas), several features stand out, including: (1) dramatic expansion of the active source region with time, (2) tendency for events to occur on the immediate fringe of prior activity, (3) overall upward migration, and (4) complex faulting structure. Some swarms also show an apparent mismatch between seismicity orientations (as defined by patterns in hypocentral locations) and slip orientations (as inferred from focal mechanisms). These features are largely distinct from those observed in mainshock-aftershock sequences. In combination, these swarm behaviors point to an important role for fluid pressure diffusion. Swarms may in fact be generated by a cascade of fluid pressure diffusion and stress transfer: in cases where faults are critically stressed, an increase in fluid pressure will trigger faulting. Faulting will in turn dramatically increase permeability in the faulted area, allowing rapid equilibration of fluid pressure to the fringe of the rupture zone. This process may perpetuate until fluid pressure perturbations drop and/or stresses become further from failure, such that any perturbation (fluid + stress transfer) is insufficient to generate further faulting. Numerical modeling supports this hypothesis - for example, the main features of the 2014 Long Valley swarm can be reproduced by a relatively simple model incorporating both stress transfer and rupture-aided fluid pressure diffusion (Hsieh et al., AGU FM, 2016).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18303916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18303916"><span>Membrane protein separation and analysis by supercritical fluid chromatography-mass spectrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Xu; Scalf, Mark; Westphall, Michael S; Smith, Lloyd M</p> <p>2008-04-01</p> <p>Membrane proteins comprise 25-30% of the human genome and play critical roles in a wide variety of important biological processes. However, their hydrophobic nature has compromised efforts at structural characterization by both X-ray crystallography and mass spectrometry. The detergents that are generally used to solubilize membrane proteins interfere with the crystallization process essential to X-ray studies and cause severe ion suppression effects that hinder mass spectrometric analysis. In this report, the use of supercritical fluid chromatography-mass spectrometry for the separation and analysis of integral membrane proteins and hydrophobic peptides is investigated. It is shown that detergents are rapidly and effectively separated from the proteins and peptides, yielding them in a state suitable for direct mass spectrometric analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JSG....69..481S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JSG....69..481S"><span>Fluid overpressures and strength of the sedimentary upper crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suppe, John</p> <p>2014-12-01</p> <p>The classic crustal strength-depth profile based on rock mechanics predicts a brittle strength σ1 -σ3 = κ(ρbar gz -Pf) that increases linearly with depth as a consequence of [1] the intrinsic brittle pressure dependence κ plus [2] an assumption of hydrostatic pore-fluid pressure, Pf = ρwgz. Many deep borehole stress data agree with a critical state of failure of this form. In contrast, fluid pressures greater than hydrostatic ρbar gz >Pf >ρw gz are normally observed in clastic continental margins and shale-rich mountain belts. Therefore we explore the predicted shapes of strength-depth profiles using data from overpressured regions, especially those dominated by the widespread disequilibrium-compaction mechanism, in which fluid pressures are hydrostatic above the fluid-retention depth zFRD and overpressured below, increasing parallel to the lithostatic gradient ρbar gz . Both brittle crustal strength and frictional fault strength below the zFRD must be constant with depth because effective stress (ρbar gz -Pf) is constant, in contrast with the classic linearly increasing profile. Borehole stress and fluid-pressure measurements in several overpressured deforming continental margins agree with this constant-strength prediction, with the same pressure-dependence κ as the overlying hydrostatic strata. The role of zFRD in critical-taper wedge mechanics and jointing is illustrated. The constant-strength approximation is more appropriate for overpressured crust than classic linearly increasing models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4555Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4555Y"><span>The role of heterogeneous fluid pressures in the shape of critical-taper submarine wedges, with application to Barbados</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yeh, En-Chao; Suppe, John</p> <p>2014-05-01</p> <p>Some classic accretionary wedges such as Nankai trough and Barbados are mechanically heterogeneous based on their spatial variation in taper, showing inward decrease in surface slope α without covariation in detachment dip β. Possible sources of regional heterogeniety include variation in fluid pressure, density, cohesion and fault strength, which can be constrained by the seismic or borehole observable parameter, fluid-retention depth Z_FRD, below which compaction is strongly diminished. In particular the Hubbert-Rubey fluid-pressure weakening can be addressed as (1-lambda)~0.6Z_FRD/Z. We recast the heterogeneous critical-taper wedge theory of Dahlen (1990) in terms of the observable Z_FRD/H, where H is the detachment depth, which allows for real world applications. For example, seismic velocity and borehole data from the Barbados shows that the fluid-retention depth Z_FRD is approximately constant and Z_FRD/H decreases inward. This leads to a factor of four inward decreases in wedge strength, dominated by fluid pressure, with only a second-order role for density and cohesion. An inward decrease in wedge strength should by itself produce an increase in taper, therefore the observed decreasing taper must be dominated by decreasing fault strength mu_b* from 0.03 to 0.01. Static fluid-pressures along the detachment in equilibrium with the overlying wedge predict the observed wedge geometry well, given a constant intrinsic friction coefficient mu_b=0.15.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........46N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........46N"><span>Multiphase flows with digital and traditional microfluidics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nilsson, Michael A.</p> <p></p> <p>Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both. In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter. As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how shear-thinning, shear-thickening, and viscoelastic fluids affect oil recovery. This work begins by looking at oil displacement from a microfluidic sandstone device, then investigates small-scale oil recovery from a single pore, and finally investigates oil displacement from larger scale, more complex microfluidic sandstone devices of varying permeability. The results demonstrate that with careful fluid design, it is possible to outperform current commercial additives using the patent-pending fluid we developed. Furthermore, the resulting microfluidic sandstone devices can reduce the time and cost of developing and testing of current and new enhanced oil recovery fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1734m0011J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1734m0011J"><span>Transient analysis of a molten salt central receiver (MSCR) in a solar power plant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.</p> <p>2016-05-01</p> <p>Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22834918','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22834918"><span>A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Su Hee; Jung, Youngmee; Kim, Soo Hyun</p> <p>2013-03-01</p> <p>Supercritical fluids are used in various industrial fields, such as the food and medical industries, because they have beneficial physical and chemical properties and are also nonflammable and inexpensive. In particular, supercritical carbon dioxide (ScCO(2)) is attractive due to its mild critical temperature, pressure values, and nontoxicity. Poly(L-lactide-co-ɛ-caprolactone) (PLCL), which is a biocompatible, biodegradable, and very elastic polymer, has been used in cartilage tissue engineering. However, organic solvents, such as chloroform or dichloromethane, are usually used for the fabrication of a PLCL scaffold through conventional methods. This leads to a cytotoxic effect and long processing time for removing solvents. To alleviate these problems, supercritical fluid processing is introduced here. In this study, we fabricated a mechano-active PLCL scaffold by supercritical fluid processing for cartilage tissue engineering, and we compared it with a scaffold made by a conventional solvent-casting method in terms of physical and biological performance. Also, to examine the optimum condition for preparing scaffolds with ScCO(2), we investigated the effects of pressure, temperature, and the depressurization rate on PLCL foaming. The PLCL scaffolds produced by supercritical fluid processing had a homogeneously interconnected porous structure, and they exhibited a narrow pore size distribution. Also, there was no cytotoxicity of the scaffolds made with ScCO(2) compared to the scaffolds made by the solvent-pressing method. The scaffolds were seeded with chondrocytes, and they were subcutaneously implanted into nude mice for up to 4 weeks. In vivo accumulation of extracellular matrix of cell-scaffold constructs demonstrated that the PLCL scaffold made with ScCO(2) formed a mature and well-developed cartilaginous tissue compared to the PLCL scaffold formed by solvent pressing. Consequently, these results indicated that the PLCL scaffolds made by supercritical fluid processing offer well-interconnected and nontoxic substrates for cell growth, avoiding problems associated with a solvent residue. This suggests that these elastic PLCL scaffolds formed by supercritical fluid processing could be used for cartilage tissue engineering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..294a2011M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..294a2011M"><span>The numerical modelling of mixing phenomena of nanofluids in passive micromixers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milotin, R.; Lelea, D.</p> <p>2018-01-01</p> <p>The paper deals with the rapid mixing phenomena in micro-mixing devices with four tangential injections and converging tube, considering nanoparticles and water as the base fluid. Several parameters like Reynolds number (Re = 6 - 284) or fluid temperature are considered in order to optimize the process and obtain fundamental insight in mixing phenomena. The set of partial differential equations is considered based on conservation of momentum and species. Commercial package software Ansys-Fluent is used for solution of differential equations, based on a finite volume method. The results reveal that mixing index and mixing process is strongly dependent both on Reynolds number and heat flux. Moreover there is a certain Reynolds number when flow instabilities are generated that intensify the mixing process due to the tangential injections of the fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890012356','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890012356"><span>Cryogenic fluid management in space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Antar, Basil N.</p> <p>1988-01-01</p> <p>Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060021948','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060021948"><span>Liquid Hydrogen Sensor Considerations for Space Exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moran, Matthew E.</p> <p>2006-01-01</p> <p>The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA563351','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA563351"><span>Dynamic Data Driven Applications Systems (DDDAS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-05-03</p> <p>response) – Earthquakes, hurricanes, tornados, wildfires, floods, landslides, tsunamis, … • Critical Infrastructure systems – Electric-powergrid...Multiphase Flow Weather and Climate Structural Mechanics Seismic Processing Aerodynamics Geophysical Fluids Quantum Chemistry Actinide Chemistry...Alloys • Approach and Objectives:  Consider porous SMAs:  similar macroscopic behavior but mass /weight is less, and thus attractive for</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT........83S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT........83S"><span>Modelling the crystallization of the globular proteins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shiryayev, Andrey S.</p> <p></p> <p>Crystallization of globular proteins has become a very important subject in recent yearn. However there is still no understanding of the particular conditions that lead to the crystallization. Since nucleation of a crystalline droplet is the critical step toward the formation of the solid phase from the supersaturated solution, this is the focus of current studies. In this work we use different approaches to investigate the collective behavior of a system of globular proteins. Especially we focused on the models which have a metastable critical point, because this reflects the properties of solutions of globular proteins. The first approach is a continuum model of globular proteins. This model was first presented by Talanquer and Oxtoby and is based on the van der Waals theory. The model can have either a stable or a metastable critical point. For the system with the metastable critical point we studied the behavior of the free energy barrier to nucleation; we found that along particular pathways the barrier to nucleation has a minimim around the critical point. As well, the number of molecules in the critical cluster was found to diverge as one approaches the critical point, though most of the molecules are in the fluid tail of the droplet. Our results are an extension of earlier work [17, 7]. The properties of the solvent affect the behavior of the solution. In our second approach, we proposed a model that takes into account the contribution of the solvent free energy to the free energy of the globular proteins. We show that one can map the phase diagram of a repulsive hard core plus attractive square well interacting system to the same system particles in the solvent environment. In particular we show that this leads to phase diagrams with upper critical points, lower critical points and even closed loops with both upper and lower critical points, similar to the one found before [10]. For systems with interaction different from the square well, in the presence of the solvent this mapping procedure can be a first approximation to understand the phase diagram. The final part of this work is dedicated to the behavior of sickle hemoglobin. While the fluid behavior of the HbS molecules can be approximately explained by the uniform interparticle potential, this model fails to describe the polymerization process and the particular structure of fibers. We develop an anisotropic "patchy" model to describe some features of the HbS polymerization process. To determine the degree of polymerization of the system a "patchy" order parameter was defined. Monte Carlo simulations for the simple two-patch model was performed and reveal the possibility of obtaining chains that can be considered as one dimensional crystals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160014682','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160014682"><span>Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Manning, Ted A.; Lawrence, Scott L.</p> <p>2014-01-01</p> <p>As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17935768','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17935768"><span>Signal transduction and oxidative processes in sinonasal polyposis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cannady, Steven B; Batra, Pete S; Leahy, Rachel; Citardi, Martin J; Janocha, Allison; Ricci, Kristin; Comhair, Suzy A A; Bodine, Melanie; Wang, Zeneng; Hazen, Stanley L; Erzurum, Serpil C</p> <p>2007-12-01</p> <p>Nasal polyposis is characterized by impaired regulation of nasal tissue growth and is associated with chronic inflammation, sinus infections, and low levels of nitric oxide (NO). Based on its critical role in mediating cell growth and antimicrobial function, decrease of NO levels has been implicated in the pathogenesis of nasal polyposis. We sought to evaluate mechanisms for the low NO level in polyposis, including factors regulating NO synthase (NOS) expression and activity and NO consumptive processes in nasal epithelial cells and nasal lavage fluid. Eighteen patients with nasal polyposis and 8 healthy control subjects were studied. Nasal brushings, nasal lavage fluid, and nasal biopsy specimens were collected and analyzed. NO metabolite levels (nitrite and nitrate) in nasal lavage fluid from patients with polyps were less than those in control subjects, but activation of signal transduction and inducer of transcription 1, which regulates inducible NOS gene expression and protein expression, was present at higher levels in polyp than in healthy control tissue. Levels of arginine, methylarginine, and endogenous NOS inhibitors were similar between polyp and control tissue. In contrast, superoxide dismutase activity of polyp tissues was lower than that seen in control tissue and associated with increased nitrotyrosine, a biomarker of oxidant consumptive products of NO. Taken together, these data suggest that the nasal polyp environment is characterized by abnormalities in NO metabolism that might predispose to altered regulation of tissue growth and infection. Identification of NO metabolic abnormalities might lead to novel treatments for sinonasal polyposis targeted against the pathways identified within this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1324905-landscape-viral-proteomics-its-potential-impact-human-health','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1324905-landscape-viral-proteomics-its-potential-impact-human-health"><span>The landscape of viral proteomics and its potential to impact human health</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Oxford, Kristie L.; Wendler, Jason P.; McDermott, Jason E.</p> <p>2016-05-06</p> <p>Translating the intimate discourse between viruses and their host cells during infection is a challenging but critical task for development of antiviral interventions and diagnostics. Viruses commandeer cellular processes at every step of their life cycle, altering expression of genes and proteins. Advances in mass spectrometry-based proteomic technologies are enhancing studies of viral pathogenesis by identifying virus-induced changes in the protein repertoire of infected cells or extracellular fluids. Interpretation of proteomics results using knowledge of cellular pathways and networks leads to identification of proteins that influence a range of infection processes, thereby focusing efforts for clinical diagnoses and therapeutics development.more » Herein we discuss applications of global proteomic studies of viral infections with the goal of providing a basis for improved studies that will benefit community-wide data integration and interpretation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JMMM..382..328K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JMMM..382..328K"><span>In-line monitoring of (MR) fluid properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kordonski, William; Gorodkin, Sergei; Behlok, Ray</p> <p>2015-05-01</p> <p>Proper functionality of devices and processes based on (MR) fluids greatly depends, along with other factors, on stability of fluid characteristics such as concentration of magnetic particles and magnetic properties of the particles. The concentration of magnetic particles may change due to evaporation or leakage of carrier fluid, as well as particle sedimentation. Magnetic properties may change due to temperature, corrosion of particles or irreversible aggregation. In-line noninvasive monitoring of particle concentration and magnetic properties allows, in one way or another, compensation for the impact of destabilizing factors and provides system stable output. Two novel methods of in-line measurement of MR fluid magnetic permeability or magnetic particle concentration are considered in this presentation. The first one is based on the principle of mutual inductance and is intended for monitoring MR fluid flowing in pipes or channels. In the second one, permeability is measured by a flash-mount sensor which reacts on changes in the reluctance of the MR fluid layer adjacent to the wall. The use of the methods for stabilization of the material removal rate in high precision finishing process employing aqueous MR fluid is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810262B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810262B"><span>Re-awakening Magmatic Systems: The Mechanics of an Open-system Event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bergantz, George; Burgisser, Alain; Schleicher, Jillian</p> <p>2016-04-01</p> <p>The re-awakening of magmatic systems requires new magma input, which often induces mixing with a resident magma existing as a crystal-rich mush. This is expressed by complex phenocryst populations, many of which preserve evidence of multiple episodes of recycling. The unlocking and mobilization of these resident mushes conditions the progress of re-awakening, however their processes are poorly understood. Crystal-rich but mobile systems, dominated by their granular mechanics, are not satisfactorily explained from either fluid or solid-like models. We will present a generalizing framework for describing the mechanics of crystal-rich mushes based on the notion of force chains. Force chains arise from crystal-crystal contacts and describe the highly non-uniform way that stress is transmitted in a crystal-rich mush. Using CFD-DEM simulations that resolve crystal-scale mechanics, we will show how the populations of crystal mush force chains and their spatial fabric change during an open-system event. We will show how the various forms of dissipation, such as: fluid drag, particle-fluid drag, particle normal and shear lubrication, and contact friction, jointly contribute to the processes of magma mush unlocking, mobilization and fabric formation. We will also describe non-intuitive constitutive behavior such as non-local and non-affine deformation as well as complex, rheological transitions from continuous to discontinuous shear thickening as a function of the dimensionless shear rate. One implication of this is that many of the commonly-invoked postulates about magma behavior such as lock-up at a critical crystallinity and suspension rheology, are better understood from a micro-physical (crystal-scale) perspective as a combination of far-field geometrical controls, local frictional thickening and shear jamming, each with distinct time scales. This kind of crystal-based unifying framework can simultaneously recover diverse processes such as strain-localization, shear-induced dilatency, and help to identify the volumes of resident magma re-mobilized during magma system re-awakening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16490646','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16490646"><span>Intravenous fluid temperature management by infrared thermometer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lapostolle, Frédéric; Catineau, Jean; Le Toumelin, Philippe; Proust, Clément; Garrigue, Bruno; Galinski, Michel; Adnet, Frédéric</p> <p>2006-03-01</p> <p>The management of intravenous (IV) fluid temperature is a daily challenge in critical care, anesthesiology, and emergency medicine. Infusion of IV fluids at the right temperature partly influences clinical outcomes of critically ill patients. Nowadays, intravenous fluid temperature is poorly managed, as no suitable device is routinely available. Infrared (IR) thermometers have been recently developed for industrial, personal, or medical purposes. The aim of this study was to evaluate the accuracy of an IR thermometer in measuring temperature of warmed and cooled infusion fluids in fluid bags. This study compared temperatures simultaneously recorded by an infrared thermometer and a temperature sensor. Temperatures of warmed (41 degrees C) and cooled (4 degrees C) infusion fluids in fluid bags were recorded by 2 independent operators every minute until IV bags' temperature reached ambient temperature. The relation curve was established with 576 measures. Temperature measures performed with an IR thermometer were perfectly linear and perfectly correlated with the reference method (R(2) = 0.995, P < 10(-5)). Infrared thermometers are efficient to measure IV fluid bag temperature in the range of temperatures used in clinical practice. As these devices are easy to use and inexpensive, they could be largely used in critical care, anesthesiology, or emergency medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53D1764C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53D1764C"><span>Insights into the base of the critical zone from geophysical logging and groundwater flow testing at U.S. Critical Zone Observatories (CZO) and critical zone study sites (CZs)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carr, B.; Zhang, Y.; Ren, S.; Flinchum, B. A.; Parsekian, A.; Holbrook, S.; Riebe, C. S.; Moravec, B. G.; Chorover, J.; Pelletier, J. D.; Richter, D. D., Jr.</p> <p>2017-12-01</p> <p>Four prominent hypotheses exist and predict conceptual models defining the base of the critical zone. These hypotheses lack insights and constraints from borehole data since few deep (> 20 m) boreholes (and even fewer connected wellfields) are present in the U.S. Critical Zone Observatories (CZO) and similar critical zone study sites (CZs). The influence and interaction of fracture presence, fracture density, fracture orientation, groundwater presence and groundwater flow have only begun to be analyzed relative to any definition of the base of the critical zone. In this presentation, we examine each hypothesis by jointly evaluating borehole geophysical logs and groundwater testing datasets collected by the Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) since 2014 at these deep CZO or CZ boreholes. Deep boreholes allow a unique opportunity to observe the factors influencing groundwater transmissivity/storage capacity within the three main subsurface CZ layers: Unconsolidated (soil/saprolite), Fractured/weathered Bedrock, and Protolith bedrock (i.e. less fractured bedrock). The boreholes used in this study consist of: 1) nine wells of the Blair-Wallis (WY) WyCEHG CZ, 2) two wells in Catalina-Jemez CZO (Valle Caldera NM) and 3) one borehole at the Calhoun (SC) CZO. At this time, these are the only sites that contain boreholes with depths ranging from at least 20 m up to 70m that have been geophysically logged with full-waveform seismic, acoustic and optical televiewer, electric, electromagnetic, flowmeter (impeller and heat pulse), fluid temperature, fluid conductivity and nuclear magnetic resonance. Further, the Blair-Wallis CZ site contains five hydraulically connected wells that allow us to estimate formation transmissivity and storage coefficients at increasing scales by conducting: slug tests, FLUTe™ borehole profiling, and cross-hole pumping tests. These well tests provide direct hydraulic data of the bedrock (both fractured and protolith) that can be integrated with geophysical logging data. Because fracture permeability is the dominant mechanism for groundwater transport in these igneous environments, a joint analysis of geophysical logging and hydraulic testing data provides in situ material-property-based refinements for the defining the base of the critical zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25219260','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25219260"><span>[Present status and trend of heart fluid mechanics research based on medical image analysis].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo</p> <p>2014-06-01</p> <p>With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24229466','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24229466"><span>A protocol guided by transpulmonary thermodilution and lactate levels for resuscitation of patients with severe burns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Berger, Mette M; Que, Yok Ai</p> <p>2013-11-11</p> <p>Over-resuscitation is deleterious in many critically ill conditions, including major burns. For more than 15 years, several strategies to reduce fluid administration in burns during the initial resuscitation phase have been proposed, but no single or simple parameter has shown superiority. Fluid administration guided by invasive hemodynamic parameters usually resulted in over-resuscitation. As reported in the previous issue of Critical Care, Sánchez-Sánchez and colleagues analyzed the performance of a 'permissive hypovolemia' protocol guided by invasive hemodynamic parameters (PiCCO, Pulsion Medical Systems, Munich, Germany) and vital signs in a prospective cohort over a 3-year period. The authors' results confirm that resuscitation can be achieved with below-normal levels of preload but at the price of a fluid administration greater than predicted by the Parkland formula (2 to 4 mL/kg per% burn). The classic approach based on an adapted Parkland equation may still be the simplest until further studies identify the optimal bundle of resuscitation goals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5171646','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5171646"><span>Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen</p> <p>2016-01-01</p> <p>Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ66Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ66Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO42− complexes preferentially incorporate heavy δ66Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge. PMID:27982033</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984uill.reptS....J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984uill.reptS....J"><span>Transport relaxation processes in supercritical fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jonas, J.</p> <p></p> <p>The technique for solubility measurements of solids in compressed supercritical fluids using NMR and theoretical analysis of experimental data on collision induced scattering were examined. Initial tests for a determination of solid solubilities in supercritical fluids without mixing were previously described and these preparations have continued. Super critical carbon dioxide dissolving naphthalene, for which solubility data is already available (M. McHugh, M.E. Paulaitis, J. Chem. Eng. Data, Vol. 25 (4), 1980) is being studied. This initial testing of the NMR technique for measuring solubilities in a well characterized system should prove very valuable for our later determinations with the proposed mixing probe. Systematic experimental studies of collision induced spectra in several supercritical fluids using both Raman and Rayleigh scattering are continued. The experimental work on SF6 and CH4 was finished and the experimental data testing of the various theoretical models for collision induced scattering is being analyzed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940012385','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940012385"><span>Characterization of voids formed during liquid impregnation of nonwoven multifilament glass networks as related to composite processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mahale, Anant D.; Prudhomme, Robert K.; Rebenfeld, Ludwig</p> <p>1993-01-01</p> <p>A technique based on matching the refractive index of an invading liquid to that of a fiber mat was used to study entrapment of air ('voids') that occurs during forced in-plane radial flow into nonwoven multifilament glass networks. The usefulness of this technique is demonstrated in quantifying and mapping the air pockets. Experiments with a series of fluids with surface tensions varying from 28 x 10(exp -3) to 36 x 10(exp -3) N/m, viscosities from 45 x 10(exp -3) to 290 x 10(exp -3) Pa.s, and inlet flow rates from 0.15 x 10(exp -6) to 0.75 x 10(exp -6) m(exp 3)/s, showed that void content is a function of the capillary number characterizing the flow process. A critical value of capillary number, Ca = 2.5 x 10(exp -3), identifies a zone below which void content increases exponentially with decreasing capillary number. Above this critical value, negligible entrapment of voids is observed. Similar experiments carried out on surface treated nonwoven mats spanning a range of equilibrium contact angles from 20 deg to 78 deg showed that there is a critical contact angle above which negligible entrapment is observed. Below this value, there is no apparent effect of contact angle on the void fraction - capillary number relationship described earlier. Studies on the effect of filament wettability, and fluid velocity and viscosity on the size of the entrapment (voids) were also carried out. These indicate that larger sized entrapments which envelop more than one pore are favored by a low capillary number in comparison to smaller, pore level bubbles. Experiments were carried out on deformed mats - imposing high permeability spots at regular intervals on a background of low permeability. The effect of these spatial fluctuations in heterogeneity of the mat on entrapment is currently being studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040013407','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040013407"><span>Computational Fluid Dynamics Technology for Hypersonic Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gnoffo, Peter A.</p> <p>2003-01-01</p> <p>Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020013328','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020013328"><span>Visual Environments for CFD Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Watson, Val; George, Michael W. (Technical Monitor)</p> <p>1994-01-01</p> <p>This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890010911','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890010911"><span>Hormone purification by isoelectric focusing in space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bier, M.</p> <p>1988-01-01</p> <p>The objective of the program was the definition and development of optimal methods for electrophoretic separations in microgravity. The approach is based on a triad consisting of ground based experiments, mathematical modeling and experiments in microgravity. Zone electrophoresis is a rate process, where separation is achieved in uniform buffers on the basis of differences in electrophoretic mobilities. Optimization and modeling of continuous flow electrophoresis mainly concern the hydrodynamics of the flow process, including gravity dependent fluid convection due to density gradients and gravity independent electroosmosis. Optimization of focusing requires a more complex model describing the molecular transport processes involved in electrophoresis of interacting systems. Three different focusing instruments were designed, embodying novel principles of fluid stabilization. Fluid stability was achieved by: (1) flow streamlining by means of membrane elements in combination with rapid fluid recycling; (2) apparatus rotation in combination with said membrane elements; and (3) shear stress induced by rapid recycling through a narrow gap channel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050192125','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050192125"><span>Viscosity of Xenon Examined in Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.</p> <p>1999-01-01</p> <p>Why does water flow faster than honey? The short answer, that honey has a greater viscosity, merely rephrases the question. The fundamental answer is that viscosity originates in the interactions between a fluid s molecules. These interactions are so complicated that, except for low-density gases, the viscosity of a fluid cannot be accurately predicted. Progress in understanding viscosity has been made by studying moderately dense gases and, more recently, fluids near the critical point. Modern theories predict a universal behavior for all pure fluids near the liquid-vapor critical point, and they relate the increase in viscosity to spontaneous fluctuations in density near this point. The Critical Viscosity of Xenon (CVX) experiment tested these theories with unprecedented precision when it flew aboard the Space Shuttle Discovery (STS-85) in August 1997. Near the critical point, xenon is a billion times more compressible than water, yet it has about the same density. Because the fluid is so "soft," it collapses under its own weight when exposed to the force of Earth s gravity - much like a very soft spring. Because the CVX experiment is conducted in microgravity, it achieves a very uniform fluid density even very close to the critical point. At the heart of the CVX experiment is a novel viscometer built around a small nickel screen. An oscillating electric field forces the screen to oscillate between pairs of electrodes. Viscosity, which dampens the oscillations, can be calculated by measuring the screen motion and the force applied to the screen. So that the fluid s delicate state near the critical point will not be disrupted, the screen oscillations are set to be both slow and small.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AREPS..43..105H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AREPS..43..105H"><span>Jadeitites and Plate Tectonics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harlow, George E.; Tsujimori, Tatsuki; Sorensen, Sorena S.</p> <p>2015-05-01</p> <p>Jadeitite is a relatively rare, very tough rock composed predominantly of jadeite and typically found associated with tectonic blocks of high-pressure/low-temperature metabasaltic rocks (e.g., eclogite, blueschist) in exhumed serpentinite-matrix mélanges. Studies over the past ˜20 years have interpreted jadeitite either as the direct hydrous fluid precipitate from subduction channel dewatering into the overlying mantle wedge or as the metasomatic replacement by such fluids of oceanic plagiogranite, graywacke, or metabasite along the channel margin. Thus, jadeitites directly sample and record fluid transport in the subduction factory and provide a window into this geochemical process that is critical to a major process in the Earth system. They record the remarkable transport of large ion lithophile elements, such as Li, Ba, Sr, and Pb, as well as elements generally considered more refractory, such as U, Th, Zr, and Hf. Jadeitite is also the precious form of jade, utilized since antiquity in the form of tools, adornments, and symbols of prestige.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1041480-coupled-discrete-element-finite-volume-solution-two-classical-soil-mechanics-problems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1041480-coupled-discrete-element-finite-volume-solution-two-classical-soil-mechanics-problems"><span>Coupled discrete element and finite volume solution of two classical soil mechanics problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Feng; Drumm, Eric; Guiochon, Georges A</p> <p></p> <p>One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAMmore » for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031959','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031959"><span>In situ Raman spectroscopic investigation of the structure of subduction-zone fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mibe, Kenji; Chou, I.-Ming; Bassett, William A.</p> <p>2008-01-01</p> <p>In situ Raman spectra of synthetic subduction-zone fluids (KAlSi3O8-H2O system) were measured to 900?? and 2.3 GPa using a hydrothermal diamond-anvil cell. The structures of aqueous fluid and hydrous melt become closer when conditions approach the second critical endpoint. Almost no three-dimensional network was observed in the supercritical fluid above 2 GPa although a large amount of silicate component is dissolved, suggesting that the physical and chemical properties of these phases change drastically at around the second critical endpoint. Our experimental results indicate that the fluids released from a subducting slab change from aqueous fluid to supercritical fluid with increasing depth under the volcanic arcs. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2646316','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2646316"><span>An artificial intelligence tool to predict fluid requirement in the intensive care unit: a proof-of-concept study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Celi, Leo Anthony; Hinske, L Christian; Alterovitz, Gil; Szolovits, Peter</p> <p>2008-01-01</p> <p>Introduction The goal of personalised medicine in the intensive care unit (ICU) is to predict which diagnostic tests, monitoring interventions and treatments translate to improved outcomes given the variation between patients. Unfortunately, processes such as gene transcription and drug metabolism are dynamic in the critically ill; that is, information obtained during static non-diseased conditions may have limited applicability. We propose an alternative way of personalising medicine in the ICU on a real-time basis using information derived from the application of artificial intelligence on a high-resolution database. Calculation of maintenance fluid requirement at the height of systemic inflammatory response was selected to investigate the feasibility of this approach. Methods The Multi-parameter Intelligent Monitoring for Intensive Care II (MIMIC II) is a database of patients admitted to the Beth Israel Deaconess Medical Center ICU in Boston. Patients who were on vasopressors for more than six hours during the first 24 hours of admission were identified from the database. Demographic and physiological variables that might affect fluid requirement or reflect the intravascular volume during the first 24 hours in the ICU were extracted from the database. The outcome to be predicted is the total amount of fluid given during the second 24 hours in the ICU, including all the fluid boluses administered. Results We represented the variables by learning a Bayesian network from the underlying data. Using 10-fold cross-validation repeated 100 times, the accuracy of the model in predicting the outcome is 77.8%. The network generated has a threshold Bayes factor of seven representing the posterior probability of the model given the observed data. This Bayes factor translates into p < 0.05 assuming a Gaussian distribution of the variables. Conclusions Based on the model, the probability that a patient would require a certain range of fluid on day two can be predicted. In the presence of a larger database, analysis may be limited to patients with identical clinical presentation, demographic factors, co-morbidities, current physiological data and those who did not develop complications as a result of fluid administration. By better predicting maintenance fluid requirements based on the previous day's physiological variables, one might be able to prevent hypotensive episodes requiring fluid boluses during the course of the following day. PMID:19046450</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19046450','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19046450"><span>An artificial intelligence tool to predict fluid requirement in the intensive care unit: a proof-of-concept study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Celi, Leo Anthony; Hinske, L Christian; Alterovitz, Gil; Szolovits, Peter</p> <p>2008-01-01</p> <p>The goal of personalised medicine in the intensive care unit (ICU) is to predict which diagnostic tests, monitoring interventions and treatments translate to improved outcomes given the variation between patients. Unfortunately, processes such as gene transcription and drug metabolism are dynamic in the critically ill; that is, information obtained during static non-diseased conditions may have limited applicability. We propose an alternative way of personalising medicine in the ICU on a real-time basis using information derived from the application of artificial intelligence on a high-resolution database. Calculation of maintenance fluid requirement at the height of systemic inflammatory response was selected to investigate the feasibility of this approach. The Multi-parameter Intelligent Monitoring for Intensive Care II (MIMIC II) is a database of patients admitted to the Beth Israel Deaconess Medical Center ICU in Boston. Patients who were on vasopressors for more than six hours during the first 24 hours of admission were identified from the database. Demographic and physiological variables that might affect fluid requirement or reflect the intravascular volume during the first 24 hours in the ICU were extracted from the database. The outcome to be predicted is the total amount of fluid given during the second 24 hours in the ICU, including all the fluid boluses administered. We represented the variables by learning a Bayesian network from the underlying data. Using 10-fold cross-validation repeated 100 times, the accuracy of the model in predicting the outcome is 77.8%. The network generated has a threshold Bayes factor of seven representing the posterior probability of the model given the observed data. This Bayes factor translates into p < 0.05 assuming a Gaussian distribution of the variables. Based on the model, the probability that a patient would require a certain range of fluid on day two can be predicted. In the presence of a larger database, analysis may be limited to patients with identical clinical presentation, demographic factors, co-morbidities, current physiological data and those who did not develop complications as a result of fluid administration. By better predicting maintenance fluid requirements based on the previous day's physiological variables, one might be able to prevent hypotensive episodes requiring fluid boluses during the course of the following day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25427278','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25427278"><span>Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kahrilas, Genevieve A; Blotevogel, Jens; Stewart, Philip S; Borch, Thomas</p> <p>2015-01-06</p> <p>Biocides are critical components of hydraulic fracturing ("fracking") fluids used for unconventional shale gas development. Bacteria may cause bioclogging and inhibit gas extraction, produce toxic hydrogen sulfide, and induce corrosion leading to downhole equipment failure. The use of biocides such as glutaraldehyde and quaternary ammonium compounds has spurred a public concern and debate among regulators regarding the impact of inadvertent releases into the environment on ecosystem and human health. This work provides a critical review of the potential fate and toxicity of biocides used in hydraulic fracturing operations. We identified the following physicochemical and toxicological aspects as well as knowledge gaps that should be considered when selecting biocides: (1) uncharged species will dominate in the aqueous phase and be subject to degradation and transport whereas charged species will sorb to soils and be less bioavailable; (2) many biocides are short-lived or degradable through abiotic and biotic processes, but some may transform into more toxic or persistent compounds; (3) understanding of biocides' fate under downhole conditions (high pressure, temperature, and salt and organic matter concentrations) is limited; (4) several biocidal alternatives exist, but high cost, high energy demands, and/or formation of disinfection byproducts limits their use. This review may serve as a guide for environmental risk assessment and identification of microbial control strategies to help develop a sustainable path for managing hydraulic fracturing fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4848057','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4848057"><span>Urine Flow Dynamics Through Prostatic Urethra With Tubular Organ Modeling Using Endoscopic Imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kambara, Yoichi; Yamanishi, Tomonori; Naya, Yukio; Igarashi, Tatsuo</p> <p>2014-01-01</p> <p>Voiding dysfunction is common in the aged male population. However, the obstruction mechanism in the lower urinary tract and critical points for obstruction remains uncertain. The aim of this paper was to develop a system to investigate the relationship between voiding dysfunction and alteration of the shape of the prostatic urethra by processing endoscopic video images of the urethra and analyzing the fluid dynamics of the urine stream. A panoramic image of the prostatic urethra was generated from cystourethroscopic video images. A virtual 3-D model of the urethra was constructed using the luminance values in the image. Fluid dynamics using the constructed model was then calculated assuming a static urethra and maximum urine flow rate. Cystourethroscopic videos from 11 patients with benign prostatic hyperplasia were recorded around administration of an alpha-1 adrenoceptor antagonist. The calculated pressure loss through the prostatic urethra in each model corresponded to the prostatic volume, and the improvements of the pressure loss after treatment correlated to the conventional clinical indices. As shown by the proposed method, the shape of the prostatic urethra affects the transporting urine fluid energy, and this paper implies a possible method for detecting critical lesions responsible for voiding dysfunction. The proposed method provides critical information about deformation of the prostatic urethra on voiding function. Detailed differences in the various types of relaxants for the lower urinary tract could be estimated. PMID:27170869</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19420292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19420292"><span>Balance point characterization of interstitial fluid volume regulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M</p> <p>2009-07-01</p> <p>The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29454544','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29454544"><span>Mapping the spatiotemporal evolution of solute transport in articular cartilage explants reveals how cartilage recovers fluid within the contact area during sliding.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Graham, Brian T; Moore, Axel C; Burris, David L; Price, Christopher</p> <p>2018-04-11</p> <p>The interstitial fluid within articular cartilage shields the matrix from mechanical stresses, reduces friction and wear, enables biochemical processes, and transports solutes into and out of the avascular extracellular matrix. The balanced competition between fluid exudation and recovery under load is thus critical to the mechanical and biological functions of the tissue. We recently discovered that sliding alone can induce rapid solute transport into buried cartilage contact areas via a phenomenon termed tribological rehydration. In this study, we use in situ confocal microscopy measurements to track the spatiotemporal propagation of a small neutral solute into the buried contact area to clarify the fluid mechanics underlying the tribological rehydration phenomenon. Sliding experiments were interrupted by periodic static loading to enable scanning of the entire contact area. Spatiotemporal patterns of solute transport combined with tribological data suggested pressure driven flow through the extracellular matrix from the contact periphery rather than into the surface via a fluid film. Interestingly, these testing interruptions also revealed dynamic, repeatable and history-independent fluid loss and recovery processes consistent with those observed in vivo. Unlike the migrating contact area, which preserves hydration by moving faster than interstitial fluid can flow, our results demonstrate that the stationary contact area can maintain and actively recover hydration through a dynamic competition between load-induced exudation and sliding-induced recovery. The results demonstrate that sliding contributes to the recovery of fluid and solutes by cartilage within the contact area while clarifying the means by which it occurs. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130000582','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130000582"><span>Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Motil, Brian; Urban, David</p> <p>2012-01-01</p> <p>From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in multiphase flows, capillary phenomena, and heat pipes. Finally in complex fluids, experiments in rheology and soft condensed materials will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050199442','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050199442"><span>Extensional Rheology Experiment Developed to Investigate the Rheology of Dilute Polymer Solutions in Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Logsdon, Kirk A.</p> <p>2001-01-01</p> <p>A fundamental characteristic of fluid is viscosity; that is, the fluid resists forces that cause it to flow. This characteristic, or parameter, is used by manufacturers and end-users to describe the physical properties of a specific material so that they know what to expect when a material, such as a polymer, is processed through an extruder, a film blower, or a fiber-spinning apparatus. Normally, researchers will report a shear viscosity that depends on the rate of an imposed shearing flow. Although this type of characterization is sufficient for some processes, simple shearing experiments do not provide a complete picture of what a processor may expect for all materials. Extensional stretching flows are common in many polymer-processing operations such as extrusion, blow molding, and fiber spinning. Therefore, knowledge of the complete rheological (ability to flow and be deformed) properties of the polymeric fluid being processed is required to accurately predict and account for the flow behavior. In addition, if numerical simulations are ever able to serve as a priori design tools for optimizing polymer processing operations such as those described above, an accurate knowledge of the extensional viscosity of a polymer system and its variation with temperature, concentration, molecular weight, and strain rate is critical.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21284578','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21284578"><span>Effects of process parameters on solid self-microemulsifying particles in a laboratory scale fluid bed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mukherjee, Tusharmouli; Plakogiannis, Fotios M</p> <p>2012-01-01</p> <p>The purpose of this study was to select the critical process parameters of the fluid bed processes impacting the quality attribute of a solid self-microemulsifying (SME) system of albendazole (ABZ). A fractional factorial design (2(4-1)) with four parameters (spray rate, inlet air temperature, inlet air flow, and atomization air pressure) was created by MINITAB software. Batches were manufactured in a laboratory top-spray fluid bed at 625-g scale. Loss on drying (LOD) samples were taken throughout each batch to build the entire moisture profiles. All dried granulation were sieved using mesh 20 and analyzed for particle size distribution (PSD), morphology, density, and flow. It was found that as spray rate increased, sauter-mean diameter (D(s)) also increased. The effect of inlet air temperature on the peak moisture which is directly related to the mean particle size was found to be significant. There were two-way interactions between studied process parameters. The main effects of inlet air flow rate and atomization air pressure could not be found as the data were inconclusive. The partial least square (PLS) regression model was found significant (P < 0.01) and predictive for optimization. This study established a design space for the parameters for solid SME manufacturing process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8270N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8270N"><span>Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nader, Fadi; Bachaud, Pierre; Michel, Anthony</p> <p>2015-04-01</p> <p>Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This contribution is based on several studies that were undertaken on carbonate rocks diagenesis in some of the major reservoir rocks in the Middle East and outcrop analogues in Europe. Here, the main processes at hand are related to fracture-related dolomitization and carbonate dissolution. We would like to present the workflows we have followed and the questioning that resulted for a series of case studies. The way forward, seems evident as the integration of workflows and numerical modelling tools at different scales, bringing better constrains on the boundary data and less uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3179346','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3179346"><span>Real-Time Measurement of Solute Transport Within the Lacunar-Canalicular System of Mechanically Loaded Bone: Direct Evidence for Load-Induced Fluid Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Price, Christopher; Zhou, Xiaozhou; Li, Wen; Wang, Liyun</p> <p>2011-01-01</p> <p>Since proposed by Piekarski and Munro in 1977, load-induced fluid flow through the bone lacunar-canalicular system (LCS) has been accepted as critical for bone metabolism, mechanotransduction, and adaptation. However, direct unequivocal observation and quantification of load-induced fluid and solute convection through the LCS have been lacking due to technical difficulties. Using a novel experimental approach based on fluorescence recovery after photobleaching (FRAP) and synchronized mechanical loading and imaging, we successfully quantified the diffusive and convective transport of a small fluorescent tracer (sodium fluorescein, 376 Da) in the bone LCS of adult male C57BL/6J mice. We demonstrated that cyclic end-compression of the mouse tibia with a moderate loading magnitude (–3 N peak load or 400 µɛ surface strain at 0.5 Hz) and a 4-second rest/imaging window inserted between adjacent load cycles significantly enhanced (+31%) the transport of sodium fluorescein through the LCS compared with diffusion alone. Using an anatomically based three-compartment transport model, the peak canalicular fluid velocity in the loaded bone was predicted (60 µm/s), and the resulting peak shear stress at the osteocyte process membrane was estimated (∼5 Pa). This study convincingly demonstrated the presence of load-induced convection in mechanically loaded bone. The combined experimental and mathematical approach presented herein represents an important advance in quantifying the microfluidic environment experienced by osteocytes in situ and provides a foundation for further studying the mechanisms by which mechanical stimulation modulates osteocytic cellular responses, which will inform basic bone biology, clinical understanding of osteoporosis and bone loss, and the rational engineering of their treatments. © 2011 American Society for Bone and Mineral Research. PMID:20715178</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..276a2010H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..276a2010H"><span>Multi-fluid CFD analysis in Process Engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hjertager, B. H.</p> <p>2017-12-01</p> <p>An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.6787B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.6787B"><span>Imbibition of hydraulic fracturing fluids into partially saturated shale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Birdsell, Daniel T.; Rajaram, Harihar; Lackey, Greg</p> <p>2015-08-01</p> <p>Recent studies suggest that imbibition of hydraulic fracturing fluids into partially saturated shale is an important mechanism that restricts their migration, thus reducing the risk of groundwater contamination. We present computations of imbibition based on an exact semianalytical solution for spontaneous imbibition. These computations lead to quantitative estimates of an imbibition rate parameter (A) with units of LT-1/2 for shale, which is related to porous medium and fluid properties, and the initial water saturation. Our calculations suggest that significant fractions of injected fluid volumes (15-95%) can be imbibed in shale gas systems, whereas imbibition volumes in shale oil systems is much lower (3-27%). We present a nondimensionalization of A, which provides insights into the critical factors controlling imbibition, and facilitates the estimation of A based on readily measured porous medium and fluid properties. For a given set of medium and fluid properties, A varies by less than factors of ˜1.8 (gas nonwetting phase) and ˜3.4 (oil nonwetting phase) over the range of initial water saturations reported for the Marcellus shale (0.05-0.6). However, for higher initial water saturations, A decreases significantly. The intrinsic permeability of the shale and the viscosity of the fluids are the most important properties controlling the imbibition rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H41O..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H41O..03R"><span>Numerical Modeling of Permeability Enhancement by Hydroshearing: the Case of Phase I Reservoir Creation at Fenton Hill</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rutqvist, J.; Rinaldi, A. P.</p> <p>2017-12-01</p> <p>The exploitation of a geothermal system is one of the most promising clean and almost inexhaustible forms of energy production. However, the exploitation of hot dry rock (HDR) reservoirs at depth requires circulation of a large amount of fluids. Indeed, the conceptual model of an Enhanced Geothermal System (EGS) requires that the circulation is enhanced by fluid injection. The pioneering experiments at Fenton Hill demonstrated the feasibility of EGS by producing the world's first HDR reservoirs. Such pioneering project demonstrated that the fluid circulation can be effectively enhanced by stimulating a preexisting fracture zone. The so-called "hydroshearing" involving shear activation of preexisting fractures is recognized as one of the main processes effectively enhancing permeability. The goal of this work is to quantify the effect of shear reactivation on permeability by proposing a model that accounts for fracture opening and shearing. We develop a case base on a pressure stimulation experiment at Fenton Hill, in which observation suggest that a fracture was jacked open by pressure increase. The proposed model can successfully reproduce such a behavior, and we compare the base case of pure elastic opening with the hydroshearing model to demonstrate that this latter could have occurred at the field, although no "felt" seismicity was observed. Then we investigate on the sensitivity of the proposed model by varying some of the critical parameters such as the maximum aperture, the dilation angle, as well as the fracture density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17964684','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17964684"><span>Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando</p> <p>2008-02-14</p> <p>Solid-state, crystallographic purity and careful monitoring of the polymorphism of drugs and excipients are currently an integral part of the development of modern drug delivery systems. The reproducible preparation of organic crystals in a specific form and size is a major issue that must be addressed. A recent approach for obtaining pharmaceutical materials in pure physical form is represented by the technologies based on supercritical fluids. The present work aims to provide a critical review of the recent advances in the use of supercritical fluids for the preparation and control of the specific physical form of pharmaceutical substances with particular attention to those fluids used for drug delivery systems. These innovative technologies are highly promising for future application in particle design and engineering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28805306','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28805306"><span>Bioprocess scale-up/down as integrative enabling technology: from fluid mechanics to systems biology and beyond.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Delvigne, Frank; Takors, Ralf; Mudde, Rob; van Gulik, Walter; Noorman, Henk</p> <p>2017-09-01</p> <p>Efficient optimization of microbial processes is a critical issue for achieving a number of sustainable development goals, considering the impact of microbial biotechnology in agrofood, environment, biopharmaceutical and chemical industries. Many of these applications require scale-up after proof of concept. However, the behaviour of microbial systems remains unpredictable (at least partially) when shifting from laboratory-scale to industrial conditions. The need for robust microbial systems is thus highly needed in this context, as well as a better understanding of the interactions between fluid mechanics and cell physiology. For that purpose, a full scale-up/down computational framework is already available. This framework links computational fluid dynamics (CFD), metabolic flux analysis and agent-based modelling (ABM) for a better understanding of the cell lifelines in a heterogeneous environment. Ultimately, this framework can be used for the design of scale-down simulators and/or metabolically engineered cells able to cope with environmental fluctuations typically found in large-scale bioreactors. However, this framework still needs some refinements, such as a better integration of gas-liquid flows in CFD, and taking into account intrinsic biological noise in ABM. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19230113','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19230113"><span>Near-critical fluid boiling: overheating and wetting films.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hegseth, J; Oprisan, A; Garrabos, Y; Lecoutre-Chabot, C; Nikolayev, V S; Beysens, D</p> <p>2008-08-01</p> <p>The heating of coexisting gas and liquid phases of pure fluid through its critical point makes the fluid extremely compressible, expandable, slows the diffusive transport, and decreases the contact angle to zero (perfect wetting by the liquid phase). We have performed experiments on near-critical fluids in a variable volume cell in the weightlessness of an orbiting space vehicle, to suppress buoyancy-driven flows and gravitational constraints on the liquid-gas interface. The high compressibility, high thermal expansion, and low thermal diffusivity lead to a pronounced adiabatic heating called the piston effect. We have directly visualized the near-critical fluid's boundary layer response to a volume quench when the external temperature is held constant. We have found that when the system's temperature T is increased at a constant rate past the critical temperature T(c), the interior of the fluid gains a higher temperature than the hot wall (overheating). This extends previous results in temperature quenching experiments in a similarly prepared system when the gas is clearly isolated from the wall. Large elliptical wetting film distortions are also seen during these ramps. By ray tracing through the elliptically shaped wetting film, we find very thick wetting film on the walls. This wetting film is at least one order of magnitude thicker than films that form in the Earth's gravity. The thick wetting film isolates the gas bubble from the wall allowing gas overheating to occur due to the difference in the piston effect response between gas and liquid. Remarkably, this overheating continues and actually increases when the fluid is ramped into the single-phase supercritical phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020083273','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020083273"><span>Critical Care Dialysis System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1992-01-01</p> <p>Organon Teknika Corporation's REDY 2000 dialysis machine employs technology originally developed under NASA contract by Marquardt Corporation. The chemical process developed during the project could be applied to removing toxic waste from used dialysis fluid. This discovery led to the development of a kidney dialysis machine using "sorbent" dialysis, a method of removing urea from human blood by treating a dialysate solution. The process saves electricity and, because the need for a continuous water supply is eliminated, the patient has greater freedom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16853659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16853659"><span>Prediction of global vapor-liquid equilibria for mixtures containing polar and associating components with improved renormalization group theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mi, Jianguo; Tang, Yiping; Zhong, Chongli; Li, Yi-Gui</p> <p>2005-11-03</p> <p>Our recently improved renormalization group (RG) theory is further reformulated within the context of density functional theory. To improve the theory for polar and associating fluids, an explicit and complete expression of the theory is derived in which the density fluctuation is expanded up to the third-order term instead of the original second-order term. A new predictive equation of state based on the first-order mean spherical approximation statistical associating fluid theory (FMSA-SAFT) and the newly improved RG theory is proposed for systems containing polar and associating fluids. The calculated results for both pure fluids and mixtures are in good agreement with experimental data both inside and outside the critical region. This work demonstrates that the RG theory incorporated with the solution of FMSA is a promising route for accurately describing the global phase behavior of complex fluids and mixtures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS41A1391G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS41A1391G"><span>Studying deep seafloor processes based on the analysis of Ocean Bottom Seismometer records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geli, L. B.; Evangelia, B.; Bayrakci, G.; Tary, J. B.; Klingelhoefer, F.</p> <p>2017-12-01</p> <p>Ocean Bottom Seismometers (OBSs) are ultra-sensible instruments capable to detect micrometric motions of seafloor sediments. OBSs commonly record Short Duration Events (SDEs) characterized by durations of less than 0.8 s, by frequencies ranging between 4 and 30 Hz, by highly variable amplitudes and by one single wavetrain, e.g. with undistinguishable P and S arrivals. SDEs may occur either on a regular, permanent basis, at a rate of a few hundred times per day; either as swarms of SDEs, occurring over time spans of a few hours. Seafloor sediment motion may result from a large variety of causes, among which four are described here: i) seabottom currents (including tidal currents); ii) bioturbation processes through which living organisms buried within the uppermost centimeters of sediments expel fluids from tiny cavities just below the seafloor; iii) fluid (water or gas) migration processes, possibly triggered by earthquakes shaking the seafloor sediments; iv) marine mammals, such as finback whales, which also produce signals recorded by hydrophones in the water column. Hence, OBSs are powerful tools that could contribute addressing a number of critical challenges in ocean sciences, provided that we can discriminate between the different causes, e.g.: i) the coupling between ocean current and sediment properties; ii) the role of bioturbation processes in global carbon budgets; iii) the amount of methane and carbon dioxide released by earthquakes into the water column; iv) the tracking of marine mammals, etc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21468200','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21468200"><span>Fluid and electrolyte disturbances in critically ill patients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jay Wook</p> <p>2010-12-01</p> <p>Disturbances in fluid and electrolytes are among the most common clinical problems encountered in the intensive care unit (ICU). Recent studies have reported that fluid and electrolyte imbalances are associated with increased morbidity and mortality among critically ill patients. To provide optimal care, health care providers should be familiar with the principles and practice of fluid and electrolyte physiology and pathophysiology. Fluid resuscitation should be aimed at restoration of normal hemodynamics and tissue perfusion. Early goal-directed therapy has been shown to be effective in patients with severe sepsis or septic shock. On the other hand, liberal fluid administration is associated with adverse outcomes such as prolonged stay in the ICU, higher cost of care, and increased mortality. Development of hyponatremia in critically ill patients is associated with disturbances in the renal mechanism of urinary dilution. Removal of nonosmotic stimuli for vasopressin secretion, judicious use of hypertonic saline, and close monitoring of plasma and urine electrolytes are essential components of therapy. Hypernatremia is associated with cellular dehydration and central nervous system damage. Water deficit should be corrected with hypotonic fluid, and ongoing water loss should be taken into account. Cardiac manifestations should be identified and treated before initiating stepwise diagnostic evaluation of dyskalemias. Divalent ion deficiencies such as hypocalcemia, hypomagnesemia and hypophosphatemia should be identified and corrected, since they are associated with increased adverse events among critically ill patients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJT....35.1661N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJT....35.1661N"><span>Freezing Transition Studies Through Constrained Cell Model Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nayhouse, Michael; Kwon, Joseph Sang-Il; Heng, Vincent R.; Amlani, Ankur M.; Orkoulas, G.</p> <p>2014-10-01</p> <p>In the present work, a simulation method based on cell models is used to deduce the fluid-solid transition of a system of particles that interact via a pair potential, , which is of the form with . The simulations are implemented under constant-pressure conditions on a generalized version of the constrained cell model. The constrained cell model is constructed by dividing the volume into Wigner-Seitz cells and confining each particle in a single cell. This model is a special case of a more general cell model which is formed by introducing an additional field variable that controls the number of particles per cell and, thus, the relative stability of the solid against the fluid phase. High field values force configurations with one particle per cell and thus favor the solid phase. Fluid-solid coexistence on the isotherm that corresponds to a reduced temperature of 2 is determined from constant-pressure simulations of the generalized cell model using tempering and histogram reweighting techniques. The entire fluid-solid phase boundary is determined through a thermodynamic integration technique based on histogram reweighting, using the previous coexistence point as a reference point. The vapor-liquid phase diagram is obtained from constant-pressure simulations of the unconstrained system using tempering and histogram reweighting. The phase diagram of the system is found to contain a stable critical point and a triple point. The phase diagram of the corresponding constrained cell model is also found to contain both a stable critical point and a triple point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI33C..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI33C..06K"><span>Key issues, observations and goals for coupled, thermodynamic/geodynamic models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelemen, P. B.</p> <p>2017-12-01</p> <p>In coupled, thermodynamic/geodynamic models, focus should be on processes involving major rock forming minerals and simple fluid compositions, and parameters with first-order effects on likely dynamic processes: In a given setting, will fluid mass increase or decrease? How about solid density? Will flow become localized or diffuse? Will rocks flow or break? How do reactions affect global processes such as formation and evolution of the plates, plate boundary deformation, metamorphism, weathering, climate and geochemical cycles. Important reaction feedbacks in geodynamics include formation of dissolution channels and armored channels; divergence of flow and formation of permeability barriers due to crystallization in pore space; localization of fluid transport and ductile deformation in shear zones; reaction-driven cracking; mechanical channels granular media; shear heating; density instabilities; viscous fluid-weakening; fluid-induced frictional failure; and hydraulic fracture. Density instabilities often lead to melting, and there is an interesting dialectic between porous flow and diapirs. The best models provide a simple but comprehensive framework that can account for the general features in many or most of these phenomena. Ideally, calculations based on thermodynamic data and rheological observations alone should delineate the regimes in which each of these processes will occur and the boundaries between them. These often start with "toy models" and lab experiments on analog systems, with highly approximate scaling to simplified geological conditions and materials. Geologic observations provide the best constraints where `frozen' fluid transport pathways or deformation processes are preserved. Inferences about completed processes based on fluid or solid products alone is more challenging and less unique. Not all important processes have good examples in outcrop, so directed searches for specific phenomena may fail. A highly generalized approach provides a way forward, allowing serendipitous discoveries of iconic examples wherever they are best developed. These then constrain and inspire the overall "phase diagram" of geodynamic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JMSA....2a..66Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JMSA....2a..66Z"><span>Experimental study on a magnetofluid sealing liquid for propeller shaft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Chang-Fa; Sun, Rong-Hua; Zheng, Jin-Xing</p> <p>2003-06-01</p> <p>The selecting and preparing method of the basic material of magnetic fluid was introduced. By using a chemical method, the magnetic micropowder Fe3O4 was successfully yielded, and an oil-base as a working carrier and dispersing agent was determined. The preparation process of the magnetic fluid and prescription of the oil-base magnetic fluid were discussed. The simulation experimental rig of magnetic fluid sealing for propeller shaft was designed. The sealing ability experiment was conducted and results were analyzed. The pressure of sealing is up to 2 MPa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMMM..451..647K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMMM..451..647K"><span>Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaur, Navjot; Chudasama, Bhupendra</p> <p>2018-04-01</p> <p>Synthesizing stable temperature sensitive magnetic fluids with tunable magnetic properties that can be used as coolant in transformers is of great interest, however not exploited commercially due to the lack of its stability at elevated temperatures in bulk quantities. The task is quite challenging as the performance parameters of magnetic fluids are strongly influenced by thermal aging. In this article, we report the effect of thermal aging on colloidal stability and magnetic properties of Mn1-xZnxFe2O4 magnetic fluids prepared in industrial grade transformer oil. As-synthesized magnetic fluids possess good dispersion stability and tunable magnetic properties. Effect of accelerated thermal aging on the dispersion stability and magnetic properties have been evaluated by photon correlation spectroscopy and vibration sample magnetometry, respectively. Magnetic fluids are stable under accelerated aging at elevated temperatures (from 50 °C to 125 °C), which is critical for their efficient performance in high power transformers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28667343','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28667343"><span>Interfacial fluid instabilities and Kapitsa pendula.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krieger, Madison S</p> <p>2017-07-01</p> <p>The onset and development of instabilities is one of the central problems in fluid mechanics. Here we develop a connection between instabilities of free fluid interfaces and inverted pendula. When acted upon solely by the gravitational force, the inverted pendulum is unstable. This position can be stabilized by the Kapitsa phenomenon, in which high-frequency low-amplitude vertical vibrations of the base creates a fictitious force which opposes the gravitational force. By transforming the dynamical equations governing a fluid interface into an appropriate pendulum-type equation, we demonstrate how stability can be induced in fluid systems by properly tuned vibrations. We construct a "dictionary"-type relationship between various pendula and the classical Rayleigh-Taylor, Kelvin-Helmholtz, Rayleigh-Plateau and the self-gravitational instabilities. This makes several results in control theory and dynamical systems directly applicable to the study of tunable fluid instabilities, where the critical wavelength depends on the external forces or the instability is suppressed entirely. We suggest some applications and instances of the effect ranging in scale from microns to the radius of a galaxy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121.4247H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121.4247H"><span>Four-fluid MHD simulations of the plasma and neutral gas environment of comet 67P/Churyumov-Gerasimenko near perihelion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas I.; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael R.; Bieler, Andre; Hansen, Kenneth C.; Shou, Yinsi; Altwegg, Kathrin</p> <p>2016-05-01</p> <p>The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. To serve this need and support the Rosetta mission, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photoionization and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulated the plasma and neutral gas environment near perihelion in three different cases: an idealized comet with a spherical body and uniform neutral gas outflow, an idealized comet with a spherical body and illumination-driven neutral gas outflow, and comet CG with a realistic shape model and illumination-driven neutral gas outflow. We compared the results of the three cases and showed that the simulations with illumination-driven neutral gas outflow have magnetic reconnection, a magnetic pileup region and nucleus directed plasma flow inside the nightside reconnection region, which have not been reported in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5343498','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5343498"><span>Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Priemel, Tobias; Degtyar, Elena; Dean, Mason N.; Harrington, Matthew J.</p> <p>2017-01-01</p> <p>Protein-based biogenic materials provide important inspiration for the development of high-performance polymers. The fibrous mussel byssus, for instance, exhibits exceptional wet adhesion, abrasion resistance, toughness and self-healing capacity–properties that arise from an intricate hierarchical organization formed in minutes from a fluid secretion of over 10 different protein precursors. However, a poor understanding of this dynamic biofabrication process has hindered effective translation of byssus design principles into synthetic materials. Here, we explore mussel byssus assembly in Mytilus edulis using a synergistic combination of histological staining and confocal Raman microspectroscopy, enabling in situ tracking of specific proteins during induced thread formation from soluble precursors to solid fibres. Our findings reveal critical insights into this complex biological manufacturing process, showing that protein precursors spontaneously self-assemble into complex architectures, while maturation proceeds in subsequent regulated steps. Beyond their biological importance, these findings may guide development of advanced materials with biomedical and industrial relevance. PMID:28262668</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001682','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001682"><span>Tidal disruption of inviscid protoplanets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boss, Alan P.; Cameron, A. G. W.; Benz, W.</p> <p>1991-01-01</p> <p>Roche showed that equilibrium is impossible for a small fluid body synchronously orbiting a primary within a critical radius now termed the Roche limit. Tidal disruption of orbitally unbound bodies is a potentially important process for planetary formation through collisional accumulation, because the area of the Roche limit is considerably larger then the physical cross section of a protoplanet. Several previous studies were made of dynamical tidal disruption and different models of disruption were proposed. Because of the limitation of these analytical models, we have used a smoothed particle hydrodynamics (SPH) code to model the tidal disruption process. The code is basically the same as the one used to model giant impacts; we simply choose impact parameters large enough to avoid collisions. The primary and secondary both have iron cores and silicate mantles, and are initially isothermal at a molten temperature. The conclusions based on the analytical and numerical models are summarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25788447','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25788447"><span>Solvent-free melting techniques for the preparation of lipid-based solid oral formulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Becker, Karin; Salar-Behzadi, Sharareh; Zimmer, Andreas</p> <p>2015-05-01</p> <p>Lipid excipients are applied for numerous purposes such as taste masking, controlled release, improvement of swallowability and moisture protection. Several melting techniques have evolved in the last decades. Common examples are melt coating, melt granulation and melt extrusion. The required equipment ranges from ordinary glass beakers for lab scale up to large machines such as fluid bed coaters, spray dryers or extruders. This allows for upscaling to pilot or production scale. Solvent free melt processing provides a cost-effective, time-saving and eco-friendly method for the food and pharmaceutical industries. This review intends to give a critical overview of the published literature on experiences, formulations and challenges and to show possibilities for future developments in this promising field. Moreover, it should serve as a guide for selecting the best excipients and manufacturing techniques for the development of a product with specific properties using solvent free melt processing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21441911','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21441911"><span>Comparative advantages of mechanical biosensors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arlett, J L; Myers, E B; Roukes, M L</p> <p>2011-04-01</p> <p>Mechanical interactions are fundamental to biology. Mechanical forces of chemical origin determine motility and adhesion on the cellular scale, and govern transport and affinity on the molecular scale. Biological sensing in the mechanical domain provides unique opportunities to measure forces, displacements and mass changes from cellular and subcellular processes. Nanomechanical systems are particularly well matched in size with molecular interactions, and provide a basis for biological probes with single-molecule sensitivity. Here we review micro- and nanoscale biosensors, with a particular focus on fast mechanical biosensing in fluid by mass- and force-based methods, and the challenges presented by non-specific interactions. We explain the general issues that will be critical to the success of any type of next-generation mechanical biosensor, such as the need to improve intrinsic device performance, fabrication reproducibility and system integration. We also discuss the need for a greater understanding of analyte-sensor interactions on the nanoscale and of stochastic processes in the sensing environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750006718','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750006718"><span>Fluid physics, thermodynamics, and heat transfer experiments in space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.</p> <p>1975-01-01</p> <p>An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1280213','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1280213"><span>Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wannamaker, Philip E.</p> <p></p> <p>The goal of this project has been to analyze available magnetotelluric (MT) geophysical surveys, structural geology based on mapping and LiDAR, and fluid geochemical data, to identify high-temperature fluid upwellings, critically stressed rock volumes, and other evidence of structurally-controlled geothermal resources. Data were to be integrated to create conceptual models of volcanic-hosted geothermal resources along the Central Cascades arc segment, especially in the vicinity of Mt. Jefferson to Three Sisters. LiDAR data sets available at Oregon State University (OSU) allowed detailed structural geology modeling through forest canopy. Copious spring and well fluid chemistries, including isotopes, were modeled using Geo-T andmore » TOUGHREACT software.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5118821','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5118821"><span>Differences in time-dependent mechanical properties between extruded and molded hydrogels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ersumo, N; Witherel, CE; Spiller, KL</p> <p>2016-01-01</p> <p>The mechanical properties of hydrogels used in biomaterials and tissue engineering applications are critical determinants of their functionality. Despite the recent rise of additive manufacturing, and specifically extrusion-based bioprinting, as a prominent biofabrication method, comprehensive studies investigating the mechanical behavior of extruded constructs remain lacking. To address this gap in knowledge, we compared the mechanical properties and swelling properties of crosslinked gelatin-based hydrogels prepared by conventional molding techniques or by 3D bioprinting using a BioBots Beta pneumatic extruder. A preliminary characterization of the impact of bioprinting parameters on construct properties revealed that both Young's modulus and optimal extruding pressure increased with polymer content, and that printing resolution increased with both printing speed and nozzle gauge. High viability (>95%) of encapsulated NIH 3T3 fibroblasts confirmed the cytocompatibility of the construct preparation process. Interestingly, the Young's moduli of extruded and molded constructs were not different, but extruded constructs did show increases in both the rate and extent of time-dependent mechanical behavior observed in creep. Despite similar polymer densities, extruded hydrogels showed greater swelling over time compared to molded hydrogels, suggesting that differences in creep behavior derived from differences in microstructure and fluid flow. Because of the crucial roles of time-dependent mechanical properties, fluid flow, and swelling properties on tissue and cell behavior, these findings highlight the need for greater consideration of the effects of the extrusion process on hydrogel properties. PMID:27550945</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApCM...24..643P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApCM...24..643P"><span>Design and Manufacturing of a Novel Shear Thickening Fluid Composite (STFC) with Enhanced out-of-Plane Properties and Damage Suppression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pinto, F.; Meo, M.</p> <p>2017-06-01</p> <p>The ability to absorb a large amount of energy during an impact event without generating critical damages represents a key feature of new generation composite systems. Indeed, the intrinsic layered nature of composite materials allows the embodiment of specific hybrid plies within the stacking sequence that can be exploited to increase impact resistance and damping of the entire structure without dramatic weight increase. This work is based on the development of an impact-resistant hybrid composite obtained by including a thin layer of Non-Newtonian silica based fluid in a carbon fibres reinforced polymer (CFRP) laminate. This hybrid phase is able to respond to an external solicitation by activating an order-disorder transition that thickens the fluid increasing its viscosity, hence dissipating the energy impact without any critical failure. Several Shear Thickening Fluids (STFs) were manufactured by changing the dimensions of the particles that constitute the disperse phase and their concentrations into the continuous phase. The dynamic viscosity of the different STFs was evaluated via rheometric tests, observing both shear thinning and shear thickening effects depending on the concentration of silica particles. The solutions were then embedded as an active layer within the stacking sequence to manufacture the hybrid CFRP laminates with different embedded STFs. Free vibration tests were carried out in order to assess the damping properties of the different laminates, while low velocity impact tests were used to evaluate their impact properties. Results indicate that the presence of the non-Newtonian fluid is able to absorb up to 45 % of the energy during an impact event for impacts at 2.5 m/s depending on the different concentrations and particles dimensions. These results were confirmed via C-Scan analyses to assess the extent of the internal delamination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJT....39....8U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJT....39....8U"><span>New Comment on Gibbs Density Surface of Fluid Argon: Revised Critical Parameters, L. V. Woodcock, Int. J. Thermophys. (2014) 35, 1770-1784</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Umirzakov, I. H.</p> <p>2018-01-01</p> <p>The author comments on an article by Woodcock (Int J Thermophys 35:1770-1784, 2014), who investigates the idea of a critical line instead of a single critical point using the example of argon. In the introduction, Woodcock states that "The Van der Waals critical point does not comply with the Gibbs phase rule. Its existence is based upon a hypothesis rather than a thermodynamic definition". The present comment is a response to the statement by Woodcock. The comment mathematically demonstrates that a critical point is not only based on a hypothesis that is used to define values of two parameters of the Van der Waals equation of state. Instead, the author argues that a critical point is a direct consequence of the thermodynamic phase equilibrium conditions resulting in a single critical point. It is shown that the thermodynamic conditions result in the first and second partial derivatives of pressure with respect to volume at constant temperature at a critical point equal to zero which are usual conditions of an existence of a critical point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..108c2001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..108c2001S"><span>The Research of New Environment-Friendly Oil-based Drilling Fluid Base Oil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sui, Dianjie; Sun, Yuxue; Zhao, Jingyuan; Zhao, Fulei; Zhu, Xiuyu; Xu, Jianjun</p> <p>2018-01-01</p> <p>In this paper, the heavy hydrocarbon of Daqing is used, and the desulfurization and de-aromatization experiments and refining process are carried out, A base oil suitable for oil-based drilling fluid was developed, and the performance of base oil was evaluated, we can know the aromatics content of oil base is low, less toxic, less pollution and it can meet the requirement of environmental protection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21219024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21219024"><span>Gas-liquid phase coexistence in quasi-two-dimensional Stockmayer fluids: A molecular dynamics study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ouyang, Wen-Ze; Xu, Sheng-Hua; Sun, Zhi-Wei</p> <p>2011-01-07</p> <p>The Maxwell construction together with molecular dynamics simulation is used to study the gas-liquid phase coexistence of quasi-two-dimensional Stockmayer fluids. The phase coexistence curves and corresponding critical points under different dipole strength are obtained, and the critical properties are calculated. We investigate the dependence of the critical point and critical properties on the dipole strength. When the dipole strength is increased, the abrupt disappearance of the gas-liquid phase coexistence in quasi-two-dimensional Stockmayer fluids is not found. However, if the dipole strength is large enough, it does lead to the formation of very long reversible chains which makes the relaxation of the system very slow and the observation of phase coexistence rather difficult or even impossible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H24C..06Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H24C..06Y"><span>Water Resources Management for Shale Energy Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoxtheimer, D.</p> <p>2015-12-01</p> <p>The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens the use of fresh water and disposal needs thus is a major innovation for the industry. Proper water resource managment techniques from the begining of drilling through production are critical to ensure the energy necessary for society is produced while also protecting the environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24032770','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24032770"><span>Ginzburg criterion for ionic fluids: the effect of Coulomb interactions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Patsahan, O</p> <p>2013-08-01</p> <p>The effect of the Coulomb interactions on the crossover between mean-field and Ising critical behavior in ionic fluids is studied using the Ginzburg criterion. We consider the charge-asymmetric primitive model supplemented by short-range attractive interactions in the vicinity of the gas-liquid critical point. The model without Coulomb interactions exhibiting typical Ising critical behavior is used to calibrate the Ginzburg temperature of the systems comprising electrostatic interactions. Using the collective variables method, we derive a microscopic-based effective Hamiltonian for the full model. We obtain explicit expressions for all the relevant Hamiltonian coefficients within the framework of the same approximation, i.e., the one-loop approximation. Then we consistently calculate the reduced Ginzburg temperature t(G) for both the purely Coulombic model (a restricted primitive model) and the purely nonionic model (a hard-sphere square-well model) as well as for the model parameters ranging between these two limiting cases. Contrary to the previous theoretical estimates, we obtain the reduced Ginzburg temperature for the purely Coulombic model to be about 20 times smaller than for the nonionic model. For the full model including both short-range and long-range interactions, we show that t(G) approaches the value found for the purely Coulombic model when the strength of the Coulomb interactions becomes sufficiently large. Our results suggest a key role of Coulomb interactions in the crossover behavior observed experimentally in ionic fluids as well as confirm the Ising-like criticality in the Coulomb-dominated ionic systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28275554','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28275554"><span>Metabolic profiling of body fluids and multivariate data analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trezzi, Jean-Pierre; Jäger, Christian; Galozzi, Sara; Barkovits, Katalin; Marcus, Katrin; Mollenhauer, Brit; Hiller, Karsten</p> <p>2017-01-01</p> <p>Metabolome analyses of body fluids are challenging due pre-analytical variations, such as pre-processing delay and temperature, and constant dynamical changes of biochemical processes within the samples. Therefore, proper sample handling starting from the time of collection up to the analysis is crucial to obtain high quality samples and reproducible results. A metabolomics analysis is divided into 4 main steps: 1) Sample collection, 2) Metabolite extraction, 3) Data acquisition and 4) Data analysis. Here, we describe a protocol for gas chromatography coupled to mass spectrometry (GC-MS) based metabolic analysis for biological matrices, especially body fluids. This protocol can be applied on blood serum/plasma, saliva and cerebrospinal fluid (CSF) samples of humans and other vertebrates. It covers sample collection, sample pre-processing, metabolite extraction, GC-MS measurement and guidelines for the subsequent data analysis. Advantages of this protocol include: •Robust and reproducible metabolomics results, taking into account pre-analytical variations that may occur during the sampling process•Small sample volume required•Rapid and cost-effective processing of biological samples•Logistic regression based determination of biomarker signatures for in-depth data analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26382875','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26382875"><span>Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vogt, E T C; Weckhuysen, B M</p> <p>2015-10-21</p> <p>Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4594121','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4594121"><span>Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2015-01-01</p> <p>Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials. PMID:26382875</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28481118','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28481118"><span>How working memory enables fluid reasoning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dehn, Milton J</p> <p>2017-01-01</p> <p>The strong relation between fluid reasoning (Gf) and working memory (WM) is well established. Gf depends on WM to hold necessary information in a span of awareness until the reasoning task is completed. The influence of time constraints on the Gf-WM relation indicates that the abilities to control attention and inhibit interference may be the underlying traits that account for the Gf-WM relation. Neuroanatomy also explains the interrelations among these cognitive processes. Neuroimaging (fMRI) studies have confirmed that the same regions of the prefrontal cortex (PFC) are active during Gf and WM functioning. The dorsolateral prefrontal cortex (dPFC) is also a critical structure for attention functions and inhibition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ArTh...35..145C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ArTh...35..145C"><span>Experimental investigation of the ecological hybrid refrigeration cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman</p> <p>2014-09-01</p> <p>The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28258565','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28258565"><span>Transport Characteristics of Aquaporins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geng, Xiaoqiang; Yang, Baoxue</p> <p>2017-01-01</p> <p>Aquaporins (AQPs ) are a class of the integral membrane proteins, which are permeable to water , some small neutral solutes and certain gases across biological membranes. AQPs are considered as critical transport mediators that are involved in many physiological functions and pathological processes such as transepithelial fluid transport , cell migration, brain edema , neuro excitation and carcinoma. This chapter will provide information about the transport characteristics of AQPs .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26702020','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26702020"><span>Automated Processing of Plasma Samples for Lipoprotein Separation by Rate-Zonal Ultracentrifugation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peters, Carl N; Evans, Iain E J</p> <p>2016-12-01</p> <p>Plasma lipoproteins are the primary means of lipid transport among tissues. Defining alterations in lipid metabolism is critical to our understanding of disease processes. However, lipoprotein measurement is limited to specialized centers. Preparation for ultracentrifugation involves the formation of complex density gradients that is both laborious and subject to handling errors. We created a fully automated device capable of forming the required gradient. The design has been made freely available for download by the authors. It is inexpensive relative to commercial density gradient formers, which generally create linear gradients unsuitable for rate-zonal ultracentrifugation. The design can easily be modified to suit user requirements and any potential future improvements. Evaluation of the device showed reliable peristaltic pump accuracy and precision for fluid delivery. We also demonstrate accurate fluid layering with reduced mixing at the gradient layers when compared to usual practice by experienced laboratory personnel. Reduction in layer mixing is of critical importance, as it is crucial for reliable lipoprotein separation. The automated device significantly reduces laboratory staff input and reduces the likelihood of error. Overall, this device creates a simple and effective solution to formation of complex density gradients. © 2015 Society for Laboratory Automation and Screening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29315320','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29315320"><span>Association of day 4 cumulative fluid balance with mortality in critically ill patients with influenza: A multicenter retrospective cohort study in Taiwan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chao, Wen-Cheng; Tseng, Chien-Hua; Chien, Ying-Chun; Sheu, Chau-Chyun; Tsai, Ming-Ju; Fang, Wen-Feng; Chen, Yu-Mu; Kao, Kuo-Chin; Hu, Han-Chung; Perng, Wann-Cherng; Yang, Kuang-Yao; Chen, Wei-Chih; Liang, Shinn-Jye; Wu, Chieh-Liang; Wang, Hao-Chien; Chan, Ming-Cheng</p> <p>2018-01-01</p> <p>Fluid balance is a fundamental management of patients with sepsis, and this study aimed to investigate the impact of cumulative fluid balance on critically ill patients with influenza admitted to an intensive care unit (ICU). This multicenter retrospective cohort study was conducted by the Taiwan Severe Influenza Research Consortium (TSIRC) which includes eight medical centers. Patients with virology-proven influenza infection admitted to ICUs between October 2015 and March 2016 were included for analysis. A total of 296 patients were enrolled (mean age: 61.4±15.6 years; 62.8% men), and 92.2% (273/296) of them required mechanical ventilation. In the survivors, the daily fluid balance was positive from day 1 to day 3, and then gradually became negative from day 4 to day 7, whereas daily fluid balance was continuously positive in the non-survivors. Using the cumulative fluid balance from day 1-4 as a cut-off point, we found that a negative cumulative day 1-4 fluid balance was associated with a lower 30-day mortality rate (log-rank test, P = 0.003). To evaluate the impact of shock on this association, we divided the patients into shock and non-shock groups. The positive correlation between negative day 1-4 fluid balance and mortality was significant in the non-shock group (log-rank test, P = 0.008), but not in the shock group (log-rank test, P = 0.396). In a multivariate Cox proportional hazard regression model adjusted for age, sex, cerebrovascular disease, and PaO2/FiO2, day 1-4 fluid balance was independently associated with a higher 30-day mortality rate (aHR 1.088, 95% CI: 1.007-1.174). A negative day 1-4 cumulative fluid balance was associated with a lower mortality rate in critically ill patients with influenza. Our findings indicate the critical role of conservative fluid strategy in the management of patients with complicated influenza.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010004273','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010004273"><span>Magnetic Control of Convection in Electrically Nonconducting Fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huang, Jie; Gray, Donald D.; Edwards, Boyd F.</p> <p>1999-01-01</p> <p>Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27199301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27199301"><span>Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Sung Il; Hwang, Kyo Seon; Kwak, Rhokyun; Lee, Jeong Hoon</p> <p>2016-06-21</p> <p>Microfluidic paper-based analytical devices (μPADs) for molecular detection have great potential in the field of point-of-care diagnostics. Currently, a critical problem being faced by μPADs is improving their detection sensitivity. Various preconcentration processes have been developed, but they still have complicated structures and fabrication processes to integrate into μPADs. To address this issue, we have developed a novel paper-based preconcentrator utilizing ion concentration polarization (ICP) with minimal addition on lateral-flow paper. The cation selective membrane (i.e., Nafion) is patterned on adhesive tape, and this tape is then attached to paper-based channels. When an electric field is applied across the Nafion, ICP is initiated to preconcentrate the biomolecules in the paper channel. Departing from previous paper-based preconcentrators, we maintain steady lateral fluid flow with the separated Nafion layer; as a result, fluorescent dyes and proteins (FITC-albumin and bovine serum albumin) are continuously delivered to the preconcentration zone, achieving high preconcentration performance up to 1000-fold. In addition, we demonstrate that the Nafion-patterned tape can be integrated with various geometries (multiplexed preconcentrator) and platforms (string and polymer microfluidic channel). This work would facilitate integration of various ICP devices, including preconcentrators, pH/concentration modulators, and micro mixers, with steady lateral flows in paper-based platforms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28847426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28847426"><span>Carotenoids microencapsulation by spray drying method and supercritical micronization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Janiszewska-Turak, Emilia</p> <p>2017-09-01</p> <p>Carotenoids are used as natural food colourants in the food industry. As unstable natural pigments they need protection. This protection can involve the microencapsulation process. There are numerous techniques that can be used for carotenoid protection, but two of them -spray drying and supercritical micronization - are currently the most commonly used. The objective of this paper is to describe these two techniques for carotenoid microencapsulation. In this review information from articles from the last five years was taken into consideration. Pigments described in the review are all carotenoids. Short summary of carotenoids sources was presented. For the spray drying technique, a review of carrier material and process conditions was made. Moreover, a short description of some of the most suitable processes involving supercritical fluids for carotenoids (astaxanthin, β-carotene, lutein and lycopene) encapsulation was given. These include the Supercritical Antisolvent process (SAS), Particles from Gas-Saturated Solutions (PGSS), Supercritical Fluid Extraction From an Emulsion (SFEE) and Solution Enhanced Dispersion by Supercritical fluids (SEDS). In most cases the studies, independently of the described method, were conducted on the laboratory scale. In some a scale-up was also tested. In the review a critical assessment of the used methods was made. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9685891','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9685891"><span>Development of metoprolol tartrate extended-release matrix tablet formulations for regulatory policy consideration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nellore, R V; Rekhi, G S; Hussain, A S; Tillman, L G; Augsburger, L L</p> <p>1998-01-02</p> <p>This research study was designed to develop model extended-release (ER) matrix tablet formulations for metoprolol tartrate (100 mg) sufficiently sensitive to manufacturing variable and to serve as the scientific basis for regulatory policy development on scale-up and post approval changes for modified-release dosage forms (SUPAC-MR). Several grades and levels of hydroxypropyl methylcellulose (Methocel K4M, K15M, K100M and K100LV), fillers and binders and studied. Three granulation processes were evaluated; direct compression, fluid-bed or high-shear granulation. Lubrication was performed in a V-blender and tablets were compressed on an instrumented rotary tablet press. Direct compression formulations exhibited poor flow, picking and sticking problems during tableting. High-shear granulation resulted in the formation of hard granules that were difficult to mill but yielded good tablets. Fluid-bed granulations were made using various binders and appeared to be satisfactory in terms of flow and tableting performance. In vitro drug release testing was performed in pH 6.8 phosphate buffer using USP apparatus 2 (paddle) at 50 rpm. At a fixed polymer level, drug release from the higher viscosity grades (K100M) was slower as compared to the lower viscosity grades (K100LV). In addition, release from K100LV was found to be more sensitive to polymer level changes. Increased in polymer level from 10 to 40% and/or filler change from lactose to dicalcium phosphate resulted in about 25-30% decrease in the amount of metoprolol release after 12 h. The results of this study led to the choice of Methocel K100LV as the hydrophilic matrix polymer and fluid-bed granulation as the process of choice for further evaluation of critical and non-critical formulation and processing variables.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7160322-thermophysical-properties-argon-addendum','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7160322-thermophysical-properties-argon-addendum"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jaques, A.</p> <p></p> <p>The data presented in these tables were gathered with the use of the Fortran program FLUIDS which was provided by the National Bureau of Standards. Fluid properties at transitional boundaries and points are those obtained with the best fit equation or formula for that particular fluid. Consequently, at such divergent points as the triple and critical points, the accuracy of the properties given by FLUIDS can be off up to 10% in some cases. In listing the critical and triple point conditions within, values were taken from the National Bureau of Standards' publication ''Thermodynamic Properties of Argon'', not from FLUIDS.more » Outside of these two points, however, the error in FLUIDS is minimal, thus all other data in these tables were obtained through FLUIDS. The Temperature-Entropy Chart for Argon is also taken from NBS' ''Thermodynamic Properties of Argon''.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V11A..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V11A..08G"><span>Decarbonation and carbonation processes in the slab and mantle wedge - insights from thermomechanical modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gonzalez, C. M.; Gorczyk, W.; Connolly, J. A.; Gerya, T.; Hobbs, B. E.; Ord, A.</p> <p>2013-12-01</p> <p>Subduction zones offer one of the most geologically active and complex systems to investigate. They initiate a process in which crustal sediments are recycled, mantle heterogeneities arise, and mantle wedge refertilization occurs via slab derived volatiles and magma generation. Slab derived volatiles, consisting primarily of H2O - CO2 fluids, are especially critical in subduction evolution as they rheologically weaken the mantle wedge, decrease solidus temperatures, and rock-fluid interactions result in metasomatism. While the effects of H2O in these processes have been well studied in the past decades, CO2's role remains open for much scientific study. This is partly attributed to the sensitivity of decarbonation to the thermal gradient of the subduction zone, bulk compositions (sediments, basalts, peridotites) and redox state of the mantle. Here we show benchmarking results of a subduction scenario that implements carbonation-decarbonation reactions into a fully coupled petrological-thermomechanical numerical modeling code. We resolve stable mineralogy and extract rock properties via Perple_X at a resolution of 5°C and 25 MPa. The numerical technique employed is a characteristics-based marker-in-cell technique with conservative finite-differences that includes visco-elastic-plastic rheologies (I2ELVIS). The devolatilized fluids are tracked via markers that are either generated or consumed based on P-T conditions. The fluids are also allowed to freely advect within the velocity field. The hosts for CO2 in this system are computed via GLOSS average sediments (H2O: 7.29 wt% & CO2: 3.01 wt%), metabasalts ( H2O: 2.63 & CO2: 2.90 wt%), and ophicarbonates (H2O: 1.98 wt% & CO2: 5.00 wt%). Our results demonstrate the feasibility of applying this decarbonation-carbonation numerical method to a range of geodynamic scenarios that simulate the removal of CO2 from the subducting slab. Such applicable scenarios include sediment diapirism into the convecting wedge and better understanding the fate of carbonates beyond the subarc and consequent subduction into the deeper mantle within a fully coupled model framework. A case study where CO2 fluids are intimately connected to subduction and metasomatism of the mantle is in the Western Mediterranean in Italy. There, carbonate melts metasomatized the asthenosphere leading to a seismic low velocity zone associated with large scale mantle degassing in the region of approximately 70 Mt/year of CO2 [1]. This natural laboratory provides us with a present day example to help constrain the benchmarking process in order to refine our numerical techniques. [1] Frezzotti, Peccerillo, & Panza, 2009. Chemical Geology, 262(1-2), 108-120. doi: DOI 10.1016/j.chemgeo.2009.02.015</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29783083','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29783083"><span>Adsorption behaviors of supercritical Lennard-Jones fluid in slit-like pores.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yingfeng; Cui, Mengqi; Peng, Bo; Qin, Mingde</p> <p>2018-05-18</p> <p>Understanding the adsorption behaviors of supercritical fluid in confined space is pivotal for coupling the supercritical technology and the membrane separation technology. Based on grand canonical Monte Carlo simulations, the adsorption behaviors of a Lennard-Jones (LJ) fluid in slit-like pores at reduced temperatures over the critical temperature, T c *  = 1.312, are investigated; and impacts of the wall-fluid interactions, the pore width, and the temperature are taken into account. It is found that even if under supercritical conditions, the LJ fluid can undergo a "vapor-liquid phase transition" in confined space, i.e., the adsorption density undergoes a sudden increase with the bulk density. A greater wall-fluid attractive potential, a smaller pore width, and a lower temperature will bring about a stronger confinement effect. Besides, the adsorption pressure reaches a local minimum when the bulk density equals to a certain value, independent of the wall-fluid potential or pore width. The insights in this work have both practical and theoretical significances. Copyright © 2018 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..336...19B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..336...19B"><span>Self-organizing maps in geothermal exploration-A new approach for understanding geochemical processes and fluid evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brehme, Maren; Bauer, Klaus; Nukman, Mochamad; Regenspurg, Simona</p> <p>2017-04-01</p> <p>Understanding geochemical processes is an important part of geothermal exploration to get information about the source and evolution of geothermal fluids. However, in most cases knowledge of fluid properties is based on few parameters determined in samples from the shallow subsurface. This study presents a new approach that allows to conclude from the combination of a variety of these data on processes occurring at depth in a geothermal reservoir. The neural network clustering technique called "self-organizing maps" (SOMs) successfully distinguished two different geothermal settings based on a hydrochemical database and disclosed the source, evolution and flow pathways of geothermal fluids. Scatter plots, as shown in this study, are appropriate presentations of element concentrations and the chemical interaction of water and rock at depth. One geological setting presented here is marked by fault dominated fluid pathways and minor influence of volcanic affected fluids with high concentrations of HCO3, Ca and Sr. The second is a magmatically dominated setting showing strong alteration features in volcanic rocks and accommodates acidic fluids with high SO4 and Si concentrations. Former studies, i.e., Giggenbach (1988), suggested Cl, HCO3 and SO4 to be generally the most important elements for understanding hydrochemical processes in geothermal reservoirs. Their relation has been widely used to classify different water types in geothermal fields. However, this study showed that non-standard elements are at least of same importance to reveal different fluid types in geothermal systems. Therefore, this study is an extended water classification approach using SOM for element correlations. SOM have been proven to be a successful method for analyzing even relatively small hydrochemical datasets in geothermal applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MMTB...47..467Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MMTB...47..467Z"><span>Numerical Study of the Reduction Process in an Oxygen Blast Furnace</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng</p> <p>2016-02-01</p> <p>Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/875605','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/875605"><span>Methods for simulation-based analysis of fluid-structure interaction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Barone, Matthew Franklin; Payne, Jeffrey L.</p> <p>2005-10-01</p> <p>Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonalmore » decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JMP....48f5602H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JMP....48f5602H"><span>Stratified rotating Boussinesq equations in geophysical fluid dynamics: Dynamic bifurcation and periodic solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsia, Chun-Hsiung; Ma, Tian; Wang, Shouhong</p> <p>2007-06-01</p> <p>The main objective of this article is to study the dynamics of the stratified rotating Boussinesq equations, which are a basic model in geophysical fluid dynamics. First, for the case where the Prandtl number is greater than 1, a complete stability and bifurcation analysis near the first critical Rayleigh number is carried out. Second, for the case where the Prandtl number is smaller than 1, the onset of the Hopf bifurcation near the first critical Rayleigh number is established, leading to the existence of nontrivial periodic solutions. The analysis is based on a newly developed bifurcation and stability theory for nonlinear dynamical systems (both finite and infinite dimensional) by two of the authors [T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Series on Nonlinear Sciences Vol. 53 (World Scientific, Singapore, 2005)].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/87374-generalized-equation-state-refrigerants','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/87374-generalized-equation-state-refrigerants"><span>Generalized equation of state for refrigerants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, Y.; Sonntag, R.E.; Borgnakke, C.</p> <p>1995-08-01</p> <p>A new four-parameter generalized equation of state with three reference fluids has been developed for predicting thermodynamic properties of the methane and ethane-series refrigerants. The four chosen characteristic parameters are critical temperature, critical pressure, acentric factor, and the polarity factor proposed in this work. The three selected reference fluids are argon, n-butane and 1,1-difluoroethane (R-152a). When the results of this work are compared with the refrigerant experimental data, they show significant improvement over Lee and Kesler (1975) and Wu and Stiel (1985). If the characteristic parameters of the refrigerants of interest are not available, an estimation method based on themore » group contribution method is given. The ideal vapor-compression refrigeration cycle was studied using the newly developed generalized equation of state to verify the accuracy of this work.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28701210','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28701210"><span>Follicular Fluid redox involvement for ovarian follicle growth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Freitas, Cláudia; Neto, Ana Catarina; Matos, Liliana; Silva, Elisabete; Ribeiro, Ângela; Silva-Carvalho, João Luís; Almeida, Henrique</p> <p>2017-07-12</p> <p>As the human ovarian follicle enlarges in the course of a regular cycle or following controlled ovarian stimulation, the changes in its structure reveal the oocyte environment composed of cumulus oophorus cells and the follicular fluid (FF).In contrast to the dynamic nature of cells, the fluid compartment appears as a reservoir rich in biomolecules. In some aspects, it is similar to the plasma, but it also exhibits differences that likely relate to its specific localization around the oocyte. The chemical composition indicates that the follicular fluid is able to detect and buffer excessive amounts of reactive oxygen species, employing a variety of antioxidants, some of them components of the intracellular milieu.An important part is played by albumin through specific cysteine residues. But the fluid contains other molecules whose cysteine residues may be involved in sensing and buffering the local oxidative conditions. How these molecules are recruited and regulated to intervene such process is unknown but it is a critical issue in reproduction.In fact, important proteins in the FF, that regulate follicle growth and oocyte quality, exhibit cysteine residues at specific points, whose untoward oxidation would result in functional loss. Therefore, preservation of controlled oxidative conditions in the FF is a requirement for the fine-tuned oocyte maturation process. In contrast, its disturbance enhances the susceptibility to the establishment of reproductive disorders that would require the intervention of reproductive medicine technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Litho.234..100C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Litho.234..100C"><span>Comment on 'Water-fluxed melting of the continental crust: A review' by R.F. Weinberg and P. Hasalová</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clemens, J. D.; Stevens, G.</p> <p>2015-10-01</p> <p>In this invited 'review' article, the authors come to the conclusion that fluid-present partial melting reactions are of widespread occurrence and critical importance in the processes of high-grade metamorphism and crustal differentiation. In their abstract, the authors correctly restate the conclusions of Clemens and Droop (1998) that it is not necessarily the case that melts formed by fluid-present reactions (even by H2O-saturated melting) cannot leave their sources. This realisation is not actually relevant to the question of formation and ascent of granitic magmas by crustal partial melting. Although they refer to Clemens and Watkins (2001), the authors seem ignore the main point of the argument presented therein, namely that the distribution of temperature and H2O contents in felsic igneous systems is only compatible with derivation of the magmas by fluid-absent partial melting reactions at high-temperature, granulite-facies conditions. Neither fluid-saturated nor fluid-deficient partial melting could have resulted in the observed covariation in temperature and melt H2O content.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3360719','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3360719"><span>Novel on-demand droplet generation for selective fluid sample extraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lin, Robert; Fisher, Jeffery S.; Simon, Melinda G.; Lee, Abraham P.</p> <p>2012-01-01</p> <p>A novel microfluidic device enabling selective generation of droplets and encapsulation of targets is presented. Unlike conventional methods, the presented mechanism generates droplets with unique selectivity by utilizing a K-junction design. The K-junction is a modified version of the classic T-junction with an added leg that serves as the exit channel for waste. The dispersed phase fluid enters from one diagonal of the K and exits the other diagonal while the continuous phase travels in the straight leg of the K. The intersection forms an interface that allows the dispersed phase to be controllably injected through actuation of an elastomer membrane located above the inlet channel near the interface. We have characterized two critical components in controlling the droplet size—membrane actuation pressure and timing as well as identified the region of fluid in which the droplet will be formed. This scheme will have applications in fluid sampling processes and selective encapsulation of materials. Selective encapsulation of a single cell from the dispersed phase fluid is demonstrated as an example of functionality of this design. PMID:22655015</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030061414&hterms=hydrate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dhydrate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030061414&hterms=hydrate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dhydrate"><span>Magnetic Control of Solutal Buoyancy Driven Convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ramachandran, N.; Leslie, F. W.</p> <p>2003-01-01</p> <p>Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050199452','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050199452"><span>Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilkinson, R. Allen</p> <p>2001-01-01</p> <p>The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the critical point, so getting heat out of the compressed bubble is observably slow. This gives the appearance of a backward heat flow, or heat flow from a cold surface to a warm fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4059376','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4059376"><span>A protocol guided by transpulmonary thermodilution and lactate levels for resuscitation of patients with severe burns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>Over-resuscitation is deleterious in many critically ill conditions, including major burns. For more than 15 years, several strategies to reduce fluid administration in burns during the initial resuscitation phase have been proposed, but no single or simple parameter has shown superiority. Fluid administration guided by invasive hemodynamic parameters usually resulted in over-resuscitation. As reported in the previous issue of Critical Care, Sánchez-Sánchez and colleagues analyzed the performance of a ‘permissive hypovolemia’ protocol guided by invasive hemodynamic parameters (PiCCO, Pulsion Medical Systems, Munich, Germany) and vital signs in a prospective cohort over a 3-year period. The authors’ results confirm that resuscitation can be achieved with below-normal levels of preload but at the price of a fluid administration greater than predicted by the Parkland formula (2 to 4 mL/kg per% burn). The classic approach based on an adapted Parkland equation may still be the simplest until further studies identify the optimal bundle of resuscitation goals. PMID:24229466</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20867855','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20867855"><span>Visualization study of counterflow in superfluid 4He using metastable helium molecules.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guo, W; Cahn, S B; Nikkel, J A; Vinen, W F; McKinsey, D N</p> <p>2010-07-23</p> <p>Heat is transferred in superfluid 4He via a process known as thermal counterflow. It has been known for many years that above a critical heat current the superfluid component in this counterflow becomes turbulent. It has been suspected that the normal-fluid component may become turbulent as well, but experimental verification is difficult without a technique for visualizing the flow. Here we report a series of visualization studies on the normal-fluid component in a thermal counterflow performed by imaging the motion of seeded metastable helium molecules using a laser-induced-fluorescence technique. We present evidence that the flow of the normal fluid is indeed turbulent at relatively large velocities. Thermal counterflow in which both components are turbulent presents us with a theoretically challenging type of turbulent behavior that is new to physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015635','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015635"><span>Fluid inclusion gas chemistry as a potential minerals exploration tool: Case studies from Creede, CO, Jerritt Canyon, NV, Coeur d'Alene district, ID and MT, southern Alaska mesothermal veins, and mid-continent MVT's</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Landis, G.P.; Hofstra, A.H.</p> <p>1991-01-01</p> <p>Recent advances in instrumentation now permit quantitative analysis of gas species from individual fluid inclusions. Fluid inclusion gas data can be applied to minerals exploration empirically to establish chemical (gas composition) signatures of the ore fluids, and conceptually through the development of genetic models of ore formation from a framework of integrated geologic, geochemical, and isotopic investigations. Case studies of fluid inclusion gas chemistry from ore deposits representing a spectrum of ore-forming processes and environments are presented to illustrate both the empirical and conceptual approaches. We consider epithermal silver-gold deposits of Creede, Colorado, Carlin-type sediment-hosted disseminated gold deposits of Jerritt Canyon, Nevada, metamorphic silver-base-metal veins of the Coeur d'Alene district, Idaho and Montana, gold-quartz veins in accreted terranes of southern Alaska, and the mid-continent base-metal sulfide deposits of Mississippi Valley-Type (MVT's). Variations in gas chemistry determine the redox state of the ore fluids, provide compositional input for gas geothermometers, characterize ore fluid chemistry (e.g., CH4CO2, H2SSO2, CO2/H2S, organic-rich fluids, gas-rich and gas-poor fluids), identify magmatic, meteoric, metamorphic, shallow and deep basin fluids in ore systems, locate upwelling plumes of magmatic-derived volatiles, zones of boiling and volatile separation, interfaces between contrasting fluids, and important zones of fluid mixing. Present techniques are immediately applicable to exploration programsas empirical studies that monitor fluid inclusion gas threshold concentration levels, presence or absence of certain gases, or changes in gas ratios. We suggest that the greater contribution of fluid inclusion gas analysis is in the integrated and comprehensive chemical dimension that gas data impart to genetic models, and in the exploration concepts based on processes and environments of ore formation derived from these genetic models. ?? 1991.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JThSc..20..454S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JThSc..20..454S"><span>Convection in the Rayleigh-Bénard flow with all fluid properties variable</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sassos, Athanasios; Pantokratoras, Asterios</p> <p>2011-10-01</p> <p>In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Bénard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873163','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873163"><span>Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.</p> <p>2000-01-01</p> <p>This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920014396','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920014396"><span>Study of density distribution in a near-critical simple fluid (19-IML-1)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Michels, Teun</p> <p>1992-01-01</p> <p>This experiment uses visual observation, interferometry, and light scattering techniques to observe and analyze the density distribution in SF6 above and below the critical temperature. Below the critical temperature, the fluid system is split up into two coexisting phases, liquid and vapor. The spatial separation of these phases on earth, liquid below and vapor above, is not an intrinsic property of the fluid system; it is merely an effect of the action of the gravity field. At a fixed temperature, the density of each of the coexisting phases is in principle fixed. However, near T sub c where the fluid is strongly compressible, gravity induced hydrostatic forces will result in a gradual decrease in density with increasing height in the sample container. This hydrostatic density profile is even more pronounced in the one phase fluid at temperatures slightly above T sub c. The experiment is set up to study the intrinsic density distributions and equilibration rates of a critical sample in a small container. Interferometry will be used to determine local density and thickness of surface and interface layers. The light scattering data will reveal the size of the density fluctuations on a microscopic scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28707617','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28707617"><span>Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wrona, Olga; Rafińska, Katarzyna; Możeński, Cezary; Buszewski, Bogusław</p> <p>2017-11-01</p> <p>There has been growing interest in the application of supercritical solvents over the last several years, many of the applications industrial in nature. The purpose of plant material extraction is to obtain large amounts of extract rich in the desired active compounds in a time-sensitive and cost-effective manner. The productivity and profitability of a supercritical fluid extraction (SFE) process largely depends on the selection of process parameters, which are elaborated upon in this paper. Carbon dioxide (CO2) is the most desirable solvent for the supercritical extraction of natural products. Its near-ambient critical temperature makes it suitable for the extraction of thermolabile components without degradation. A new approach has been adopted for SFE in which the solubility of nonpolar supercritical CO2 can be enhanced by the addition of small amounts of cosolvent.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050177157&hterms=national+combustion+code&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dnational%2Bcombustion%2Bcode','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050177157&hterms=national+combustion+code&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dnational%2Bcombustion%2Bcode"><span>National Combustion Code: A Multidisciplinary Combustor Design System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stubbs, Robert M.; Liu, Nan-Suey</p> <p>1997-01-01</p> <p>The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29297387','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29297387"><span>Personalised fluid resuscitation in the ICU: still a fluid concept?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Haren, Frank</p> <p>2017-12-28</p> <p>The administration of intravenous fluid to critically ill patients is one of the most common, but also one of the most fiercely debated, interventions in intensive care medicine. Even though many thousands of patients have been enrolled in large trials of alternative fluid strategies, consensus remains elusive and practice is widely variable. Critically ill patients are significantly heterogeneous, making a one size fits all approach unlikely to be successful.New data from basic, animal, and clinical research suggest that fluid resuscitation could be associated with significant harm. There are several important limitations and concerns regarding fluid bolus therapy as it is currently being used in clinical practice. These include, but are not limited to: the lack of an agreed definition; limited and short-lived physiological effects; no evidence of an effect on relevant patient outcomes; and the potential to contribute to fluid overload, specifically when fluid responsiveness is not assessed and when targets and safety limits are not used.Fluid administration in critically ill patients requires clinicians to integrate abnormal physiological parameters into a clinical decision-making model that also incorporates the likely diagnosis and the likely risk or benefit in the specific patient's context. Personalised fluid resuscitation requires careful attention to the mnemonic CIT TAIT: context, indication, targets, timing, amount of fluid, infusion strategy, and type of fluid.The research agenda should focus on experimental and clinical studies to: improve our understanding of the physiological effects of fluid infusion, e.g. on the glycocalyx; evaluate new types of fluids; evaluate novel fluid minimisation protocols; study the effects of a no-fluid strategy for selected patients and scenarios; and compare fluid therapy with other interventions. The adaptive platform trial design may provide us with the tools to evaluate these types of interventions in the intrinsically heterogeneous intensive care unit population, accounting for the explicit assumption that treatment effects may be heterogeneous.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5472755','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5472755"><span>Water pumping in mantle shear zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Précigout, Jacques; Prigent, Cécile; Palasse, Laurie; Pochon, Anthony</p> <p>2017-01-01</p> <p>Water plays an important role in geological processes. Providing constraints on what may influence the distribution of aqueous fluids is thus crucial to understanding how water impacts Earth's geodynamics. Here we demonstrate that ductile flow exerts a dynamic control on water-rich fluid circulation in mantle shear zones. Based on amphibole distribution and using dislocation slip-systems as a proxy for syn-tectonic water content in olivine, we highlight fluid accumulation around fine-grained layers dominated by grain-size-sensitive creep. This fluid aggregation correlates with dislocation creep-accommodated strain that localizes in water-rich layers. We also give evidence of cracking induced by fluid pressure where the highest amount of water is expected. These results emphasize long-term fluid pumping attributed to creep cavitation and associated phase nucleation during grain size reduction. Considering the ubiquitous process of grain size reduction during strain localization, our findings shed light on multiple fluid reservoirs in the crust and mantle. PMID:28593947</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25679499','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25679499"><span>Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Qing, Yan; Wu, Yiqiang</p> <p>2015-03-04</p> <p>Rheological and filtration characteristics of drilling fluids are considered as two critical aspects to ensure the success of a drilling operation. This research demonstrates the effectiveness of cellulose nanoparticles (CNPs), including microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) in enhancing the rheological and filtration performances of bentonite (BT) water-based drilling fluids (WDFs). CNCs were isolated from MFC through sulfuric acid hydrolysis. In comparison with MFC, the resultant CNCs had much smaller dimensions, more negative surface charge, higher stability in aqueous solutions, lower viscosity, and less evident shear thinning behavior. These differences resulted in the distinctive microstructures between MFC/BT- and CNC/BT-WDFs. A typical "core-shell" structure was created in CNC/BT-WDFs due to the strong surface interactions among BT layers, CNCs, and immobilized water molecules. However, a similar structure was not formed in MFC/BT-WDFs. As a result, CNC/BT-WDFs had superior rheological properties, higher temperature stability, less fluid loss volume, and thinner filter cakes than BT and MFC/BT-WDFs. Moreover, the presence of polyanionic cellulose (PAC) further improved the rheological and filtration performances of CNC/BT-WDFs, suggesting a synergistic effect between PAC and CNCs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97b0101G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97b0101G"><span>Liquid-vapor rectilinear diameter revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garrabos, Y.; Lecoutre, C.; Marre, S.; Beysens, D.; Hahn, I.</p> <p>2018-02-01</p> <p>In the modern theory of critical phenomena, the liquid-vapor density diameter in simple fluids is generally expected to deviate from a rectilinear law approaching the critical point. However, by performing precise scannerlike optical measurements of the position of the SF6 liquid-vapor meniscus, in an approach much closer to criticality in temperature and density than earlier measurements, no deviation from a rectilinear diameter can be detected. The observed meniscus position from far (10 K ) to extremely close (1 mK ) to the critical temperature is analyzed using recent theoretical models to predict the complete scaling consequences of a fluid asymmetry. The temperature dependence of the meniscus position appears consistent with the law of rectilinear diameter. The apparent absence of the critical hook in SF6 therefore seemingly rules out the need for the pressure scaling field contribution in the complete scaling theoretical framework in this SF6 analysis. More generally, this work suggests a way to clarify the experimental ambiguities in the simple fluids for the near-critical singularities in the density diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900001613','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900001613"><span>Independent Orbiter Assessment (IOA): Analysis of the ascent thrust vector control actuator subsystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, R. E.; Riccio, J. R.</p> <p>1986-01-01</p> <p>The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Ascent Thrust Vector Control (ATVC) Actuator hardware are documented. The function of the Ascent Thrust Vector Control Actuators (ATVC) is to gimbal the main engines to provide for attitude and flight path control during ascent. During first stage flight, the SRB nozzles provide nearly all the steering. After SRB separation, the Orbiter is steered by gimbaling of its main engines. There are six electrohydraulic servoactuators, one pitch and one yaw for each of the three main engines. Each servoactuator is composed of four electrohydraulic servovalve assemblies, one second stage power spool valve assembly, one primary piston assembly and a switching valve. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Critical failures resulting in loss of ATVC were mainly due to loss of hydraulic fluid, fluid contamination and mechanical failures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=planets&pg=7&id=EJ1050033','ERIC'); return false;" href="https://eric.ed.gov/?q=planets&pg=7&id=EJ1050033"><span>Critical Place as a Fluid Margin in Post-Critical Environmental Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Nakagawa, Yoshifumi; Payne, Phillip G.</p> <p>2015-01-01</p> <p>Positive claims about place pedagogy in education are problematized through this small-scale interpretive study of internationally mobile students' experiences of outdoor environmental education. Of specific interest in this empirical study of learners' pedagogically constructed experiences of place are the fluid subjectivities, cultural…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1960n0002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1960n0002A"><span>2D modeling of direct laser metal deposition process using a finite particle method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.</p> <p>2018-05-01</p> <p>Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..DFD.LH007S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..DFD.LH007S"><span>Electro-hydrodynamic printing of drugs onto edible substrates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Yueyang; Elele, Ezinwa; Palle, Prashanth; Khusid, Boris; Basaran, Osman; McGough, Patrick T.; Collins, Robert T.</p> <p>2009-11-01</p> <p>While most existing drugs are manufactured as tablets using powder processing techniques, there is growing interest in printing drops containing pharmaceutical actives on edible substrates. We have developed a drop-on-demand (DOD) printing method appropriate for either replacing existing manufacturing platforms or enabling personalized medicine that overcomes the various critical challenges facing current DOD technologies. To eliminate adverse effects of electro-chemical reactions at the fluid-electrode interface, the fluid is infused into an electrically insulating nozzle to form a pendant drop that serves as a floating electrode capacitively coupled to external electrodes. A liquid bridge is formed and broken as the voltage applied at the electrode is varied in time. This gentle method for drop deposition has been demonstrated to operate with fluids spanning over three orders of magnitude in viscosity and conductivity. The proposed method has the potential for the evolving field of pharmaceutical and biomedical applications requiring the deposition of fluids at the exact locations with high volume accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1164456.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1164456.pdf"><span>Teaching Radioactive Decay and Radiometric Dating: An Analog Activity Based on Fluid Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Claiborne, Lily L.; Miller, Calvin F.</p> <p>2012-01-01</p> <p>We present a new laboratory activity for teaching radioactive decay by using hydrodynamic processes as an analog and an evaluation of its efficacy in the classroom. A fluid flowing from an upper beaker into a lower beaker (shampoo in this case) behaves mathematically identically to radioactive decay, mimicking the exponential decay process,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7g5202H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7g5202H"><span>Investigate the complex process in particle-fluid based surface generation technology using reactive molecular dynamics method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Xuesong; Li, Haiyan; Zhao, Fu</p> <p>2017-07-01</p> <p>Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.5253D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.5253D"><span>Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeCarlo, Thomas M.; D'Olivo, Juan P.; Foster, Taryn; Holcomb, Michael; Becker, Thomas; McCulloch, Malcolm T.</p> <p>2017-11-01</p> <p>Quantifying the saturation state of aragonite (ΩAr) within the calcifying fluid of corals is critical for understanding their biomineralization process and sensitivity to environmental changes including ocean acidification. Recent advances in microscopy, microprobes, and isotope geochemistry enable the determination of calcifying fluid pH and [CO32-], but direct quantification of ΩAr (where ΩAr = [CO32-][Ca2+]/Ksp) has proved elusive. Here we test a new technique for deriving ΩAr based on Raman spectroscopy. First, we analysed abiogenic aragonite crystals precipitated under a range of ΩAr from 10 to 34, and we found a strong dependence of Raman peak width on ΩAr with no significant effects of other factors including pH, Mg/Ca partitioning, and temperature. Validation of our Raman technique for corals is difficult because there are presently no direct measurements of calcifying fluid ΩAr available for comparison. However, Raman analysis of the international coral standard JCp-1 produced ΩAr of 12.3 ± 0.3, which we demonstrate is consistent with published skeletal Mg/Ca, Sr/Ca, B/Ca, δ11B, and δ44Ca data. Raman measurements are rapid ( ≤ 1 s), high-resolution ( ≤ 1 µm), precise (derived ΩAr ± 1 to 2 per spectrum depending on instrument configuration), accurate ( ±2 if ΩAr < 20), and require minimal sample preparation, making the technique well suited for testing the sensitivity of coral calcifying fluid ΩAr to ocean acidification and warming using samples from natural and laboratory settings. To demonstrate this, we also show a high-resolution time series of ΩAr over multiple years of growth in a Porites skeleton from the Great Barrier Reef, and we evaluate the response of ΩAr in juvenile Acropora cultured under elevated CO2 and temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22403215-experimental-study-elliptical-jet-from-supercritical-subcritical-conditions-using-planar-laser-induced-fluorescence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22403215-experimental-study-elliptical-jet-from-supercritical-subcritical-conditions-using-planar-laser-induced-fluorescence"><span>Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in</p> <p>2015-03-15</p> <p>The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical andmore » near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97l5145C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97l5145C"><span>Universal thermodynamics of the one-dimensional attractive Hubbard model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Song; Yu, Yi-Cong; Batchelor, M. T.; Guan, Xi-Wen</p> <p>2018-03-01</p> <p>The one-dimensional (1D) Hubbard model, describing electrons on a lattice with an on-site repulsive interaction, provides a paradigm for the physics of quantum many-body phenomena. Here, by solving the thermodynamic Bethe ansatz equations, we study the universal thermodynamics, quantum criticality, and magnetism of the 1D attractive Hubbard model. We show that the compressibility and the susceptibility of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like state obey simple additivity rules at low temperatures, indicating an existence of two free quantum fluids. The magnetic properties, such as magnetization and susceptibility, reveal three physical regions: quantum fluids at low temperatures, a non-Fermi liquid at high temperatures, and the quantum fluid to non-Fermi liquid crossover in between. The lattice interaction is seen to significantly influence the nature of the FFLO-like state in 1D. Furthermore, we show that the dimensionless Wilson ratio provides an ideal parameter to map out the various phase boundaries and to characterize the two free fluids of the FLLO-like state. The quantum scaling functions for the thermal and magnetic properties yield the same dynamic critical exponent z =2 and correlation critical exponent ν =1 /2 in the quantum critical region whenever a phase transition occurs. Our results provide a rigorous understanding of quantum criticality and free fluids of many-body systems on a 1D lattice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24595961','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24595961"><span>A "distorted-BODIPY"-based fluorescent probe for imaging of cellular viscosity in live cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Hao; Fan, Jiangli; Li, Miao; Cao, Jianfang; Wang, Jingyun; Peng, Xiaojun</p> <p>2014-04-14</p> <p>Cellular viscosity is a critical factor in governing diffusion-mediated cellular processes and is linked to a number of diseases and pathologies. Fluorescent molecular rotors (FMRs) have recently been developed to determine viscosity in solutions or biological fluid. Herein, we report a "distorted-BODIPY"-based probe BV-1 for cellular viscosity, which is different from the conventional "pure rotors". In BV-1, the internal steric hindrance between the meso-CHO group and the 1,7-dimethyl group forced the boron-dipyrrin framework to be distorted, which mainly caused nonradiative deactivation in low-viscosity environment. BV-1 gave high sensitivity (x=0.62) together with stringent selectivity to viscosity, thus enabling viscosity mapping in live cells. Significantly, the increase of cytoplasmic viscosity during apoptosis was observed by BV-1 in real time. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDD15004H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDD15004H"><span>Wall Shear Stress Distribution in a Patient-Specific Cerebral Aneurysm Model using Reduced Order Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya</p> <p>2016-11-01</p> <p>We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29852852','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29852852"><span>Fluid bolus therapy in critically ill children: a survey of practice among paediatric intensive care doctors in Australia and New Zealand.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gelbart, Ben; Schlapbach, Luregn; Ganeshalingham, Anusha; Ganu, Subodh; Erickson, Simon; Oberender, Felix; Hoq, Monsurul; Williams, Gary; George, Shane; Festa, Marino</p> <p>2018-06-01</p> <p>Fluid bolus therapy (FBT) is a widely used intervention in paediatric critical illness. The aim of this study was to describe the attitudes and practices towards FBT of paediatric intensive care doctors in Australia and New Zealand. An internet-based survey of paediatric intensive care doctors in Australia and New Zealand between 7 and 30 November 2016. Paediatric intensive care units with greater than 400 admissions annually. Paediatric intensive care specialists and junior medical staff. Preferences for FBT and markers of fluid responsiveness. There were 106/175 respondents (61%); 0.9% saline and 4% albumin are used frequently or almost always by 86% and 57% of respondents respectively. The preferred volume and duration were 10 mL/kg in less than 10 minutes. The highest rated markers of fluid responsiveness were heart rate and blood pressure - rated as "good" or "very good" by 75% and 58% of respondents respectively. Central venous saturations and serum lactate were the highest rated biochemical markers. The most frequently expected magnitude of change for heart rate and blood pressure was 6-15% by 89% and 76% of respondents respectively. The preferred fluid composition for sepsis, trauma, traumatic brain injury and acute lung injury was 0.9% saline, and 4% albumin for post-operative cardiac surgery. Paediatric intensive care doctors prefer 0.9% saline and 4% albumin for FBT. Heart rate and blood pressure are the most preferred markers to assess fluid responsiveness. Preferences for FBT in specific conditions exist.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/62623','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/62623"><span>Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Muguercia, I.; Yang, G.; Ebadian, M.A.</p> <p></p> <p>The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.119d8002W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.119d8002W"><span>Mixing by Unstirring: Hyperuniform Dispersion of Interacting Particles upon Chaotic Advection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weijs, Joost H.; Bartolo, Denis</p> <p>2017-07-01</p> <p>We show how to achieve both fast and hyperuniform dispersions of particles in viscous fluids. To do so, we first extend the concept of critical random organization to chaotic drives. We show how palindromic sequences of chaotic advection cause microscopic particles to effectively interact at long range, thereby inhibiting critical self-organization. Based on this understanding we go around this limitation and design sequences of stirring and unstirring which simultaneously optimize the speed of particle spreading and the homogeneity of the resulting dispersions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMMR33B2327E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMMR33B2327E"><span>A new model of reaction-driven cracking: fluid volume consumption and tensile failure during serpentinization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eichenbaum-Pikser, J. M.; Spiegelman, M. W.; Kelemen, P. B.; Wilson, C. R.</p> <p>2013-12-01</p> <p>Reactive fluid flow plays an important role in a wide range of geodynamic processes, such as melt migration, formation of hydrous minerals on fault surfaces, and chemical weathering. These processes are governed by the complex coupling between fluid transport, reaction, and solid deformation. Reaction-driven cracking is a potentially critical feedback mechanism, by which volume change associated with chemical reaction drives fracture in the surrounding rock. It has been proposed to play a role in both serpentinization and carbonation of peridotite, motivating consideration of its application to mineral carbon sequestration. Previous studies of reactive cracking have focused on the increase in solid volume, and as such, have considered failure in compression. However, if the consumption of fluid is considered in the overall volume budget, the reaction can be net volume reducing, potentially leading to failure in tension. To explore these problems, we have formulated and solved a 2-D model of coupled porous flow, reaction kinetics, and elastic deformation using the finite element model assembler TerraFERMA (Wilson et al, G3 2013 submitted). The model is applied to the serpentinization of peridotite, which can be reasonably approximated as the transfer of a single reactive component (H2O) between fluid and solid phases, making it a simple test case to explore the process. The behavior of the system is controlled by the competition between the rate of volume consumption by the reaction, and the rate of volume replacement by fluid transport, as characterized by a nondimensional parameter χ, which depends on permeability, reaction rate, and the bulk modulus of the solid. Large values of χ correspond to fast fluid transport relative to reaction rate, resulting in a low stress, volume replacing regime. At smaller values of χ, fluid transport cannot keep up with the reaction, resulting in pore fluid under-pressure and tensile solid stresses. For the range of χ relevant to the serpentinization of peridotite, these stresses can reach hundreds of MPa, exceeding the tensile strength of peridotite.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026090','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026090"><span>Hydromechanical coupling in geologic processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neuzil, C.E.</p> <p>2003-01-01</p> <p>Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex and poorly understood and (2) the architecture, mechanical properties and boundary conditions, and deformation history of most geologic systems are not well known. Much of what is known about hydromechanical processes in geologic systems is derived from simpler analyses that ignore certain aspects of solid-fluid coupling. The simplifications introduce error, but more complete analyses usually are not warranted. Hydromechanical analyses should thus be interpreted judiciously, with an appreciation for their limitations. Innovative approaches to hydromechanical modeling and obtaining critical data may circumvent some current limitations and provide answers to remaining questions about crustal processes and fluid behavior in the crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28555615','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28555615"><span>Hydrodynamic cavitation in Stokes flow of anisotropic fluids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G; Sengupta, Anupam</p> <p>2017-05-30</p> <p>Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5459993','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5459993"><span>Hydrodynamic cavitation in Stokes flow of anisotropic fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam</p> <p>2017-01-01</p> <p>Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids. PMID:28555615</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080006642','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080006642"><span>Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.</p> <p>2007-01-01</p> <p>In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCo...815550S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCo...815550S"><span>Hydrodynamic cavitation in Stokes flow of anisotropic fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam</p> <p>2017-05-01</p> <p>Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.4457D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.4457D"><span>Different seismic signatures of fractures slip and their correlations with fluid pressures in in-situ rupture experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Derode, B.; Cappa, F.; Guglielmi, Y.</p> <p>2012-04-01</p> <p>The recent observations of non-volcanic tremors (NVT), slow-slip events (SSE), low- (LFE) and very-low (VLF) frequency earthquakes on seismogenic faults reveal that unexpected, large, non-linear transient deformations occur during the interseismic loading of the earthquake cycle. Such phenomena modify stress to the adjacent locked zones bringing them closer to failure. Recent studies indicated various driving factors such as high-fluid pressures and frictional processes. Here we focus on the role of fluids in the different seismic signatures observed in in-situ fractures slip experiments. Experiments were conducted in critically stressed fractures zone at 250 m-depth within the LSBB underground laboratory (south of France). This experiment seeks to explore the field measurements of temporal variations in fluid and stress through continuous monitoring of seismic waves, fluid pressures and mechanical deformations between boreholes and the ground surface. The fluid pressure was increased step-by-step in a fracture isolated between packers until a maximum value of 35 bars; a pressure analog to ones known to trigger earthquakes at crustal depths. We observed in the seismic signals: (1) Tremor-like signatures, (2) Low Frequency signatures, and (3) sudden and short ruptures like micro-earthquakes. By analogy, we suggest that fluid pressures may trigger these different seismic signatures in active faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840030748&hterms=sound+amplitude&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsound%2Bamplitude','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840030748&hterms=sound+amplitude&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsound%2Bamplitude"><span>Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Turner, T. N.</p> <p>1983-01-01</p> <p>A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740026215','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740026215"><span>Space processing applications payload equipment study. Volume 2A: Experiment requirements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, A. G.; Anderson, W. T., Jr.</p> <p>1974-01-01</p> <p>An analysis of the space processing applications payload equipment was conducted. The primary objective was to perform a review and an update of the space processing activity research equipment requirements and specifications that were derived in the first study. The analysis is based on the six major experimental classes of: (1) biological applications, (2) chemical processes in fluids, (3) crystal growth, (4) glass technology, (5) metallurgical processes, and (6) physical processes in fluids. Tables of data are prepared to show the functional requirements for the areas of investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010MMTA...41.2337B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010MMTA...41.2337B"><span>Probing Reliability of Transport Phenomena Based Heat Transfer and Fluid Flow Analysis in Autogeneous Fusion Welding Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bag, S.; de, A.</p> <p>2010-09-01</p> <p>The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4095895','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4095895"><span>Enabling the environmentally clean air transportation of the future: a vision of computational fluid dynamics in 2030</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Slotnick, Jeffrey P.; Khodadoust, Abdollah; Alonso, Juan J.; Darmofal, David L.; Gropp, William D.; Lurie, Elizabeth A.; Mavriplis, Dimitri J.; Venkatakrishnan, Venkat</p> <p>2014-01-01</p> <p>As global air travel expands rapidly to meet demand generated by economic growth, it is essential to continue to improve the efficiency of air transportation to reduce its carbon emissions and address concerns about climate change. Future transports must be ‘cleaner’ and designed to include technologies that will continue to lower engine emissions and reduce community noise. The use of computational fluid dynamics (CFD) will be critical to enable the design of these new concepts. In general, the ability to simulate aerodynamic and reactive flows using CFD has progressed rapidly during the past several decades and has fundamentally changed the aerospace design process. Advanced simulation capabilities not only enable reductions in ground-based and flight-testing requirements, but also provide added physical insight, and enable superior designs at reduced cost and risk. In spite of considerable success, reliable use of CFD has remained confined to a small region of the operating envelope due, in part, to the inability of current methods to reliably predict turbulent, separated flows. Fortunately, the advent of much more powerful computing platforms provides an opportunity to overcome a number of these challenges. This paper summarizes the findings and recommendations from a recent NASA-funded study that provides a vision for CFD in the year 2030, including an assessment of critical technology gaps and needed development, and identifies the key CFD technology advancements that will enable the design and development of much cleaner aircraft in the future. PMID:25024413</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JChPh.148l3318L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JChPh.148l3318L"><span>A fluid membrane enhances the velocity of cargo transport by small teams of kinesin-1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Qiaochu; Tseng, Kuo-Fu; King, Stephen J.; Qiu, Weihong; Xu, Jing</p> <p>2018-03-01</p> <p>Kinesin-1 (hereafter referred to as kinesin) is a major microtubule-based motor protein for plus-end-directed intracellular transport in live cells. While the single-molecule functions of kinesin are well characterized, the physiologically relevant transport of membranous cargos by small teams of kinesins remains poorly understood. A key experimental challenge remains in the quantitative control of the number of motors driving transport. Here we utilized "motile fraction" to overcome this challenge and experimentally accessed transport by a single kinesin through the physiologically relevant transport by a small team of kinesins. We used a fluid lipid bilayer to model the cellular membrane in vitro and employed optical trapping to quantify the transport of membrane-enclosed cargos versus traditional membrane-free cargos under identical conditions. We found that coupling motors via a fluid membrane significantly enhances the velocity of cargo transport by small teams of kinesins. Importantly, enclosing a cargo in a fluid lipid membrane did not impact single-kinesin transport, indicating that membrane-dependent velocity enhancement for team-based transport arises from altered interactions between kinesins. Our study demonstrates that membrane-based coupling between motors is a key determinant of kinesin-based transport. Enhanced velocity may be critical for fast delivery of cargos in live cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040161259','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040161259"><span>Fluid Physics and Transport Phenomena in a Simulated Reduced Gravity Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lipa, J.</p> <p>2004-01-01</p> <p>We describe a ground-based apparatus that allows the cancellation of gravity on a fluid using magnetic forces. The present system was designed for liquid oxygen studies over the range 0.001 - 5 g s. This fluid is an essential component of any flight mission using substantial amounts of liquid propellant, especially manned missions. The apparatus has been used to reduce the hydrostatic compression near the oxygen critical point and to demonstrate inverted phase separation. It could also be used to study pool boiling and two-phase heat transfer in Martian, Lunar or near-zero gravity, as well as phenomena such as Marangoni flow and convective instabilities. These studies would contribute directly to the reliability and optimization of the Moon and Mars flight programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26231834','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26231834"><span>Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael</p> <p>2016-08-01</p> <p>The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured characterization to enable fast and agile process transfers, scale up and troubleshooting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24245887','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24245887"><span>Analysis of thermal processing of table olives using computational fluid dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dimou, A; Panagou, E; Stoforos, N G; Yanniotis, S</p> <p>2013-11-01</p> <p>In the present work, the thermal processing of table olives in brine in a stationary metal can was studied through computational fluid dynamics (CFD). The flow patterns of the brine and the temperature evolution in the olives and brine during the heating and the cooling cycles of the process were calculated using the CFD code. Experimental temperature measurements at 3 points (2 inside model olive particles and 1 at a point in the brine) in a can (with dimensions of 75 mm × 105 mm) filled with 48 olives in 4% (w/v) brine, initially held at 20 °C, heated in water at 100 °C for 10 min, and thereafter cooled in water at about 20 °C for 10 min, validated model predictions. The distribution of temperature and F-values and the location of the slowest heating zone and the critical point within the product, as far as microbial destruction is concerned, were assessed for several cases. For the cases studied, the critical point was located at the interior of the olives at the 2nd, or between the 1st and the 2nd olive row from the bottom of the container, the exact location being affected by olive size, olive arrangement, and geometry of the container. © 2013 Institute of Food Technologists®</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JPhCS.412a2055H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JPhCS.412a2055H"><span>Experimental and numerical determination of the static critical pressure in ferrofluid seals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horak, W.; Szczęch, M.</p> <p>2013-02-01</p> <p>Ferrofluids have various engineering applications; one of them are magnetic fluid seals for rotating shafts. There are various constructions of this type of seals, but the main difference is the number of sealing stages. The development of this construction is a complex process which requires knowledge of ferrofluid physical and rheological properties and the magnetic field distribution inside the sealing gap. One of the most important parameters of ferrofluid seals is the critical (burst) pressure. It is the pressure value at which a leak will occur. This study presents results of numerical simulation of magnetic field distribution inside the seal gap and calculations of the critical pressure value. The obtained pressure values were verified by experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22233045','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22233045"><span>[Study on the dynamic model with supercritical CO2 fluid extracting the lipophilic components in Panax notoginseng].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duan, Xian-Chun; Wang, Yong-Zhong; Zhang, Jun-Ru; Luo, Huan; Zhang, Heng; Xia, Lun-Zhu</p> <p>2011-08-01</p> <p>To establish a dynamics model for extracting the lipophilic components in Panax notoginseng with supercritical carbon dioxide (CO2). Based on the theory of counter-flow mass transfer and the molecular mass transfer between the material and the supercritical CO2 fluid under differential mass-conservation equation, a dynamics model was established and computed to compare forecasting result with the experiment process. A dynamics model has been established for supercritical CO2 to extract the lipophilic components in Panax notoginseng, the computed result of this model was consistent with the experiment process basically. The supercritical fluid extract dynamics model established in this research can expound the mechanism in the extract process of which lipophilic components of Panax notoginseng dissolve the mass transfer and is tallied with the actual extract process. This provides certain instruction for the supercritical CO2 fluid extract' s industrialization enlargement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA242198','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA242198"><span>An Analysis of Bore Surface Temperatures in Electrothermal-Chemical Guns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-10-01</p> <p>bore surface. As the fluid is heated by the combustion gases, it is assumed to vaporize at its critical temperature and to be swept into the gas flow...subsequently vaporizes as it reaches its critical temperature. However, two questions are pertinent: 1) Can the thermal properties of the working fluid... critical temperature, 647.3 K, mixtures containing hydrogen peroxide or methanol decompose exothermically, that is, with the liberation of heat</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4700172','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4700172"><span>Fluid Therapy: Double-Edged Sword during Critical Care?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Benes, Jan; Kirov, Mikhail; Kuzkov, Vsevolod; Lainscak, Mitja; Molnar, Zsolt; Voga, Gorazd; Monnet, Xavier</p> <p>2015-01-01</p> <p>Fluid therapy is still the mainstay of acute care in patients with shock or cardiovascular compromise. However, our understanding of the critically ill pathophysiology has evolved significantly in recent years. The revelation of the glycocalyx layer and subsequent research has redefined the basics of fluids behavior in the circulation. Using less invasive hemodynamic monitoring tools enables us to assess the cardiovascular function in a dynamic perspective. This allows pinpointing even distinct changes induced by treatment, by postural changes, or by interorgan interactions in real time and enables individualized patient management. Regarding fluids as drugs of any other kind led to the need for precise indication, way of administration, and also assessment of side effects. We possess now the evidence that patient centered outcomes may be altered when incorrect time, dose, or type of fluids are administered. In this review, three major features of fluid therapy are discussed: the prediction of fluid responsiveness, potential harms induced by overzealous fluid administration, and finally the problem of protocol-led treatments and their timing. PMID:26798642</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26798642','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26798642"><span>Fluid Therapy: Double-Edged Sword during Critical Care?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Benes, Jan; Kirov, Mikhail; Kuzkov, Vsevolod; Lainscak, Mitja; Molnar, Zsolt; Voga, Gorazd; Monnet, Xavier</p> <p>2015-01-01</p> <p>Fluid therapy is still the mainstay of acute care in patients with shock or cardiovascular compromise. However, our understanding of the critically ill pathophysiology has evolved significantly in recent years. The revelation of the glycocalyx layer and subsequent research has redefined the basics of fluids behavior in the circulation. Using less invasive hemodynamic monitoring tools enables us to assess the cardiovascular function in a dynamic perspective. This allows pinpointing even distinct changes induced by treatment, by postural changes, or by interorgan interactions in real time and enables individualized patient management. Regarding fluids as drugs of any other kind led to the need for precise indication, way of administration, and also assessment of side effects. We possess now the evidence that patient centered outcomes may be altered when incorrect time, dose, or type of fluids are administered. In this review, three major features of fluid therapy are discussed: the prediction of fluid responsiveness, potential harms induced by overzealous fluid administration, and finally the problem of protocol-led treatments and their timing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...93a2023L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...93a2023L"><span>Properties and heat transfer coefficients of four molten-salt high temperature heat transfer fluid candidates for concentrating solar power plants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, T. L.; Liu, W. R.; Xu, X. H.</p> <p>2017-11-01</p> <p>Heat transfer fluid is one critical component for transferring and storing heat energy in concentrating solar power systems. Molten-salt mixtures can be used as high temperature heat transfer fluids because of their thermophysical properties. This paper studied the thermophysical properties of Li2CO3-Na2CO3-K2CO3 eutectic salt and three eutectic chloride salts NaCl-KCl-ZnCl2 with different compositions in the range of 450-600°C and 250-800°C, respectively. Properties including specific heat capacity, thermal conductivity, density and viscosity were determined based on imperial correlations and compared at different operating temperatures. The heat transfer coefficients of using different eutectic salts as heat transfer fluids were also calculated and compared in their operating temperature range. It is concluded that all the four eutectic salts can satisfy the requirements of a high-temperature heat transfer fluid.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868895','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868895"><span>Chemical reactions in reverse micelle systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.</p> <p>1993-08-24</p> <p>This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970000367','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970000367"><span>Electric Field Induced Interfacial Instabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-Lun; Onuki, Akira</p> <p>1996-01-01</p> <p>The study of the interface in a charge-free, nonpolar, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In zero gravity, the interface is unstable at all long wavelengths in the presence of a field applied across it. It is conjectured that this will cause the binary fluid to break up into domains small enough to be outside the instability condition. The resulting pattern formation, and the effects on the critical properties as the domains approach the correlation length are of acute interest. With direct observation, laser light scattering, and interferometry, the phenomena can be probed to gain further understanding of interfacial instabilities and the pattern formation which results, and dimensional crossover in critical systems as the critical fluctuations in a particular direction are suppressed by external forces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920014395','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920014395"><span>Near-critical point phenomena in fluids (19-IML-1)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beysens, D.</p> <p>1992-01-01</p> <p>Understanding the effects of gravity is essential if the behavior of fluids is to be predicted in spacecraft and orbital stations, and, more generally, to give a better understanding of the hydrodynamics in these systems. An understanding is sought of the behavior of fluids in space. What should emerge from the International Microgravity Lab (IML-1) mission is a better understanding of the kinetics of growth in off-critical conditions, in both liquid mixtures and pure fluids. This complex phenomenon is the object of intensive study in physics and materials sciences area. It is also expected that the IML-1 flight will procure key results to provide a better understanding of how a pure fluid can be homogenized without gravity induced convections, and to what extent the 'Piston Effect' is effective in thermalizing the compressible fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...61a2106L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...61a2106L"><span>Numerical simulation of nanofluids based on power-law fluids with flow and heat transfer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Lin; Jiang, Yongyue; Chen, Aixin</p> <p>2017-04-01</p> <p>In this paper, we investigate the heat transfer of nanofluids based on power-law fluids and movement of nanoparticles with the effect of thermophoresis in a rotating circular groove. The velocity of circular groove rotating is a constant and the temperature on the wall is kept to be zero all the time which is different from the temperature of nanofluids in the initial time. The effects of thermophoresis and Brownian diffusion are considered in temperature and concentration equations, and it is assumed that the thermal conductivity of nanofluids is a function of concentration of nanoparticles. Based on numerical results, it can be found that nanofluids improve the process of heat transfer than base fluids in a rotating circular groove. The enhancement of heat transfer increases as the power law index of base fluids decreases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29356810','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29356810"><span>Association Between Fluid Balance and Outcomes in Critically Ill Children: A Systematic Review and Meta-analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alobaidi, Rashid; Morgan, Catherine; Basu, Rajit K; Stenson, Erin; Featherstone, Robin; Majumdar, Sumit R; Bagshaw, Sean M</p> <p>2018-03-01</p> <p>After initial resuscitation, critically ill children may accumulate fluid and develop fluid overload. Accruing evidence suggests that fluid overload contributes to greater complexity of care and worse outcomes. To describe the methods to measure fluid balance, define fluid overload, and evaluate the association between fluid balance and outcomes in critically ill children. Systematic search of MEDLINE, EMBASE, Cochrane Library, trial registries, and selected gray literature from inception to March 2017. Studies of children admitted to pediatric intensive care units that described fluid balance or fluid overload and reported outcomes of interest were included. No language restrictions were applied. All stages were conducted independently by 2 reviewers. Data extracted included study characteristics, population, fluid metrics, and outcomes. Risk of bias was assessed using the Newcastle-Ottawa Scale. Narrative description of fluid assessment methods and fluid overload definitions was done. When feasible, pooled analyses were performed using random-effects models. Mortality was the primary outcome. Secondary outcomes included treatment intensity, organ failure, and resource use. A total of 44 studies (7507 children) were included in this systematic review and meta-analysis. Of those, 27 (61%) were retrospective cohort studies, 13 (30%) were prospective cohort studies, 3 (7%) were case-control studies, and 1 study (2%) was a secondary analysis of a randomized trial. The proportion of children with fluid overload varied by case mix and fluid overload definition (median, 33%; range, 10%-83%). Fluid overload, however defined, was associated with increased in-hospital mortality (17 studies [n = 2853]; odds ratio [OR], 4.34 [95% CI, 3.01-6.26]; I2 = 61%). Survivors had lower percentage fluid overload than nonsurvivors (22 studies [n = 2848]; mean difference, -5.62 [95% CI, -7.28 to -3.97]; I2 = 76%). After adjustment for illness severity, there was a 6% increase in odds of mortality for every 1% increase in percentage fluid overload (11 studies [n = 3200]; adjusted OR, 1.06 [95% CI, 1.03-1.10]; I2 = 66%). Fluid overload was associated with increased risk for prolonged mechanical ventilation (>48 hours) (3 studies [n = 631]; OR, 2.14 [95% CI, 1.25-3.66]; I2 = 0%) and acute kidney injury (7 studies [n = 1833]; OR, 2.36 [95% CI, 1.27-4.38]; I2 = 78%). Fluid overload is common and is associated with substantial morbidity and mortality in critically ill children. Additional research should now ideally focus on interventions aimed to mitigate the potential for harm associated with fluid overload.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhFl...28k4107S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhFl...28k4107S"><span>Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sengupta, Tapan K.; Gullapalli, Atchyut</p> <p>2016-11-01</p> <p>Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26615385','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26615385"><span>CFD-aided modelling of activated sludge systems - A critical review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karpinska, Anna M; Bridgeman, John</p> <p>2016-01-01</p> <p>Nowadays, one of the major challenges in the wastewater sector is the successful design and reliable operation of treatment processes, which guarantee high treatment efficiencies to comply with effluent quality criteria, while keeping the investment and operating cost as low as possible. Although conceptual design and process control of activated sludge plants are key to ensuring these goals, they are still based on general empirical guidelines and operators' experience, dominated often by rule of thumb. This review paper discusses the rationale behind the use of Computational Fluid Dynamics (CFD) to model aeration, facilitating enhancement of treatment efficiency and reduction of energy input. Several single- and multiphase approaches commonly used in CFD studies of aeration tank operation, are comprehensively described, whilst the shortcomings of the modelling assumptions imposed to evaluate mixing and mass transfer in AS tanks are identified and discussed. Examples and methods of coupling of CFD data with biokinetics, accounting for the actual flow field and its impact on the oxygen mass transfer and yield of the biological processes occurring in the aeration tanks, are also critically discussed. Finally, modelling issues, which remain unaddressed, (e.g. coupling of the AS tank with secondary clarifier and the use of population balance models to simulate bubbly flow or flocculation of the activated sludge), are also identified and discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28119982','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28119982"><span>Progress in the development and integration of fluid flow control tools in paper microfluidics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fu, Elain; Downs, Corey</p> <p>2017-02-14</p> <p>Paper microfluidics is a rapidly growing subfield of microfluidics in which paper-like porous materials are used to create analytical devices. There is a need for higher performance field-use tests for many application domains including human disease diagnosis, environmental monitoring, and veterinary medicine. A key factor in creating high performance paper-based devices is the ability to manipulate fluid flow within the devices. This critical review is focused on the progress that has been made in (i) the development of fluid flow control tools and (ii) the integration of those tools into paper microfluidic devices. Further, we strive to be comprehensive in our presentation and provide historical context through discussion and performance comparisons, when possible, of both relevant earlier work and recent work. Finally, we discuss the major areas of focus for fluid flow methods development to advance the potential of paper microfluidics for high-performance field applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25313872','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25313872"><span>The imaging and modelling of the physical processes involved in digestion and absorption.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schulze, K S</p> <p>2015-02-01</p> <p>The mechanical activity of the gastro-intestinal tract serves to store, propel and digest food. Contractions disperse particles and transform solids and secretions into the two-phase slurry called chyme; movements of the intestine deliver nutrients to mucosal sites of absorption, and from the submucosa into the lymphatic and portal venous circulation. Colonic motor activity helps to extract fluid and electrolytes from chyme and to compound and compact luminal debris into faeces for elimination. We outline how dynamic imaging by ultrasound and magnetic resonance can demonstrate intestinal flow processes critical to digestion like mixing, dilution, swelling, dispersion and elution. Computational fluid mechanics enables a numerical rendition of the forces promoting digestion: pressure and flow fields, the shear stresses dispersing particles or the effectiveness of bolus mixing can be calculated. These technologies provide new insights into the mechanical processes that promote digestion and absorption. © 2014 This article is a U.S. Government work and is in the public domain in the USA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810008633&hterms=DDT&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DDDT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810008633&hterms=DDT&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DDDT"><span>Fluid dynamics of the unsteady two phase processes leading to DDT in granular solid propellants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krier, H.; Butler, P. B.; Lembeck, M. F.</p> <p>1980-01-01</p> <p>Deflagration to Detonation (DDT) was predicted to occur in porous beds of high-energy solid propellants by solving the unsteady fluid mechanical convective heat transfer from hot gas products, obtained from the rapid burning at high pressures, provides the impetus to develop a narrow combustion zone and a resulting strong shock. A parametric study clearly indicates that DDT occurs only when a combination of the solids loading fraction, the burning rate constants, the propellant chemical energy, and the particle size provide for critical energy and gas release to support a detonation wave. Predictions for the run-up length to detonation as a function of these parameters are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29439960','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29439960"><span>Anidulafungin Pharmacokinetics in Ascites Fluid and Pleural Effusion of Critically Ill Patients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Welte, R; Eller, P; Lorenz, I; Joannidis, M; Bellmann, R</p> <p>2018-04-01</p> <p>Anidulafungin concentrations were quantified with high-pressure liquid chromatography (HPLC) and UV detection of the ascites fluid and pleural effusion of 10 adult critically ill patients. Samples were collected from ascites fluid and from pleural drains or during paracentesis and thoracentesis, respectively. Anidulafungin levels in ascites fluid (0.12 to 0.99 μg/ml) and in pleural effusion (0.32 to 2.02 μg/ml) were below the simultaneous levels in plasma (1.04 to 7.70 and 2.48 to 13.36 μg/ml, respectively) and below the MIC values for several pathogenic Candida strains. Copyright © 2018 American Society for Microbiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27685848','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27685848"><span>Fluid composition and acute kidney injury.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zampieri, Fernando G; Libório, Alexandre B; Cavalcanti, Alexandre B</p> <p>2016-12-01</p> <p>To describe recent advances in the understanding of the role of fluid composition in renal outcomes in critically ill patients. The debate on fluid composition is now focused in a pragmatic discussion on fluid electrolyte composition. The resurgence of this debate was propelled by several observational studies that suggested that balanced (i.e., low chloride) solutions were associated with less acute kidney injury in critically ill patients. Nevertheless, a cluster randomized trial failed to show any benefit of balanced solutions. This trial, however, may have failed to detect an effect because of low global illness severity and little fluid infused. If balanced solutions are to be associated with less acute kidney injury, it will probably be in high risk, aggressively resuscitated patients. Additionally, the causal loop involving unbalanced solution infusion, induction of hyperchloremia and acute kidney injury is yet to be closed. Other factors, such as buffer type, speed of infusion and temperature, among others, may also be important. Recent evidence suggests that crystalloid fluid composition matters and can influence renal outcomes in critically ill patients. Further studies should assess the impact and cost-efficiency of balanced solutions in the context of high-risk scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040161190','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040161190"><span>Microfluidic Biochip Design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Panzarella, Charles</p> <p>2004-01-01</p> <p>As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and several bubble filter designs are being evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H53M..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H53M..02P"><span>Characterization of double continuum formulations of transport through pore-scale information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Porta, G.; Ceriotti, G.; Bijeljic, B.</p> <p>2016-12-01</p> <p>Information on pore-scale characteristics is becoming increasingly available at unprecedented levels of detail from modern visualization/data-acquisition techniques. These advancements are not completely matched by corresponding developments of operational procedures according to which we can engineer theoretical findings aiming at improving our ability to reduce the uncertainty associated with the outputs of continuum-scale models to be employed at large scales. We present here a modeling approach which rests on pore-scale information to achieve a complete characterization of a double continuum model of transport and fluid-fluid reactive processes. Our model makes full use of pore-scale velocity distributions to identify mobile and immobile regions. We do so on the basis of a pointwise (in the pore space) evaluation of the relative strength of advection and diffusion time scales, as rendered by spatially variable values of local Péclet numbers. After mobile and immobile regions are demarcated, we build a simplified unit cell which is employed as a representative proxy of the real porous domain. This model geometry is then employed to simplify the computation of the effective parameters embedded in the double continuum transport model, while retaining relevant information from the pore-scale characterization of the geometry and velocity field. We document results which illustrate the applicability of the methodology to predict transport of a passive tracer within two- and three-dimensional media upon comparison with direct pore-scale numerical simulation of transport in the same geometrical settings. We also show preliminary results about the extension of this model to fluid-fluid reactive transport processes. In this context, we focus on results obtained in two-dimensional porous systems. We discuss the impact of critical quantities required as input to our modeling approach to obtain continuum-scale outputs. We identify the key limitations of the proposed methodology and discuss its capability also in comparison with alternative approaches grounded, e.g., on nonlocal and particle-based approximations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H43A0950V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H43A0950V"><span>A Numerical Study on Small-Scale Permeability Creation Associated with Fluid Pressure Induced Inelastic Shearing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogler, D.; Amann, F.; Bayer, P.</p> <p>2014-12-01</p> <p>Anthropogenic perturbations in a rock mass at great depth cause a complex thermal-hydro-mechanical (THM) response. This is of particular relevance when dealing with enhanced geothermal systems (EGS) and unconventional oil and gas recovery utilizing hydraulic fracturing. Studying the key THM coupled processes associated with specific reservoir characteristics in an EGS are of foremost relevance to establish a heat exchanger able to achieve the target production rate.Many reservoirs are naturally low permeable, and the target permeability can only be achieved through the creation of new fractures or inelastic and dilatant shearing of pre-existing discontinuities. The latter process, which is considered to irreversibly increase the apertures of pre-existing discontinuities, has been shown to be especially important for EGS. Common constitutive equations linking the change in hydraulic aperture and the change in mechanical aperture are based on the basic formulation of the cubic law, which linearly relates the flow rate in a fracture to the pressure gradient. However, HM-coupled laboratory investigations demonstrate, that the relation between the mechanical and the hydraulic aperture as assumed in the cubic law, is not valid when dealing with very small initial apertures, which are likely to occur at great depth. In a current study, we investigate the relevance of this discrepancy for the early stage of permeability creation in an EGS, where massive fluid injections trigger largely irreversible in-elastic shearing of critically stressed discontinuities. Understanding small-scale effects in fractures in EGS during fluid injection is crucial to predict reservoir fluid production rates and seismic events.Our study aims to implement an empirical constitutive law in an existing discrete fracture code, and calibrate this against experimental data showing the irreversible shearing induced permeability changes. This empirical relation will later be used to quantify the relevance of uncertainties in reservoir characterisation such as discrete fracture networks (DFN) and in-situ state of stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940028267','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940028267"><span>On the Use of Computers for Teaching Fluid Mechanics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Benson, Thomas J.</p> <p>1994-01-01</p> <p>Several approaches for improving the teaching of basic fluid mechanics using computers are presented. There are two objectives to these approaches: to increase the involvement of the student in the learning process and to present information to the student in a variety of forms. Items discussed include: the preparation of educational videos using the results of computational fluid dynamics (CFD) calculations, the analysis of CFD flow solutions using workstation based post-processing graphics packages, and the development of workstation or personal computer based simulators which behave like desk top wind tunnels. Examples of these approaches are presented along with observations from working with undergraduate co-ops. Possible problems in the implementation of these approaches as well as solutions to these problems are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI51B0316E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI51B0316E"><span>Reactive-brittle dynamics in peridotite alteration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evans, O.; Spiegelman, M. W.; Kelemen, P. B.</p> <p>2017-12-01</p> <p>The interactions between reactive fluids and brittle solids are critical in Earth dynamics. Implications of such processes are wide-ranging: from earthquake physics to geologic carbon sequestration and the cycling of fluids and volatiles through subduction zones. Peridotite alteration is a common feature in many of these processes, which - despite its obvious importance - is relatively poorly understood from a geodynamical perspective. In particular, alteration reactions are thought to be self-limiting in nature, contradicting observations of rocks that have undergone 100% hydration/carbonation. One potential explanation of this observation is the mechanism of "reaction-driven cracking": that volume changes associated with these reactions are large enough to fracture the surrounding rock, leading to a positive feedback where new reactive surfaces are exposed and fluid pathways are created. The purpose of this study is to investigate the relative roles of reaction, elastic stresses and surface tension in alteration reactions. In this regard we derive a system of equations describing reactive fluid flow in an elastically deformable porous media, and explore them via a combination of analytic and numerical solutions. Using this model we show that the final stress state of a dry peridotite that has undergone reaction depends strongly on the rates of reaction versus fluid transport: significant fluid flow driven by pressure and/or surface tension gradients implies higher fractions of serpentinization, leaving behind a highly stressed residuum of partially reacted material. Using a model set-up that mimics a cylindrical triaxial apparatus we predict that the resulting stresses would lead to tensile failure and the generation of radially oriented cracks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CG....115..122B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CG....115..122B"><span>AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bakker, Ronald J.</p> <p>2018-06-01</p> <p>The program AqSo_NaCl has been developed to calculate pressure - molar volume - temperature - composition (p-V-T-x) properties, enthalpy, and heat capacity of the binary H2O-NaCl system. The algorithms are designed in BASIC within the Xojo programming environment, and can be operated as stand-alone project with Macintosh-, Windows-, and Unix-based operating systems. A series of ten self-instructive interfaces (modules) are developed to calculate fluid inclusion properties and pore fluid properties. The modules may be used to calculate properties of pure NaCl, the halite-liquidus, the halite-vapourus, dew-point and bubble-point curves (liquid-vapour), critical point, and SLV solid-liquid-vapour curves at temperatures above 0.1 °C (with halite) and below 0.1 °C (with ice or hydrohalite). Isochores of homogeneous fluids and unmixed fluids in a closed system can be calculated and exported to a.txt file. Isochores calculated for fluid inclusions can be corrected according to the volumetric properties of quartz. Microthermometric data, i.e. dissolution temperatures and homogenization temperatures, can be used to calculated bulk fluid properties of fluid inclusions. Alternatively, in the absence of total homogenization temperature the volume fraction of the liquid phase in fluid inclusions can be used to obtain bulk properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1360806','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1360806"><span>Supercritical Fluids Processing of Biomass to Chemicals and Fuels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Olson, Norman K.</p> <p>2011-09-28</p> <p>The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect tomore » the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..149a2123G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..149a2123G"><span>Optimization of Machining Parameters of Milling Operation by Application of Semi-synthetic oil based Nano cutting Fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giri Prasad, M. J.; Abhishek Raaj, A. S.; Rishi Kumar, R.; Gladson, Frank; M, Gautham</p> <p>2016-09-01</p> <p>The present study is concerned with resolving the problems pertaining to the conventional cutting fluids. Two samples of nano cutting fluids were prepared by dispersing 0.01 vol% of MWCNTs and a mixture of 0.01 vol% of MWCNTs and 0.01 vol% of nano ZnO in the soluble oil. The thermophysical properties such as the kinematic viscosity, density, flash point and the tribological properties of the prepared nano cutting fluid samples were experimentally investigated and were compared with those of plain soluble oil. In addition to this, a milling process was carried by varying the process parameters and by application of different samples of cutting fluids and an attempt was made to determine optimal cutting condition using the Taguchi optimization technique.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT....54.1779K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT....54.1779K"><span>Experimental investigation of nucleate pool boiling characteristics of high concentrated alumina/water nanofluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kshirsagar, Jagdeep M.; Shrivastava, Ramakant</p> <p>2018-06-01</p> <p>In Present study, the critical heat flux (CHF) and boiling heat transfer coefficient of alumina nanoparticles with the base fluid as deionised water is measured. The selected concentrations of nanofluids for the experimentation are from 0.3, 0.6, 0.9, 1.2 and 1.5 wt%. The main objective to select higher concentration is that to study the surface morphology of heater surface at higher concentrations and its effect on critical heat flux and heat transfer coefficient. It is observed that the critical heat flux enhancement rate decreases as concentration increases and surface roughness of heater surface decreases after 1.2 wt% concentration of nanofluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT.......287S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT.......287S"><span>Aeroelastic analysis of circular cylindrical and truncated conical shells subjected to a supersonic flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sabri, Farhad</p> <p></p> <p>Shells of revolution, particularly cylindrical and conical shells, are one of the basic structural elements in the aerospace structures. With the advent of high speed aircrafts, these shells can show dynamic instabilities when they are exposed to a supersonic flow. Therefore, aeroelastic analysis of these elements is one of the primary design criteria which aeronautical engineers are dealing with. This analysis can be done with the help of finite element method (FEM) coupled with the computational fluid dynamic (CFD) or by experimental methods but it is time consuming and very expensive. The purpose of this dissertation is to develop such a numerical tool to do aeroelastic analysis in a fast and precise way. Meanwhile during the design stage, where the different configurations, loading and boundary conditions may need to be analyzed, this numerical method can be used very easily with the high order of reliability. In this study structural modeling is a combination of linear Sanders thin shell theory and classical finite element method. Based on this hybrid finite element method, the shell displacements are found from the exact solutions of shell theory rather than approximating by polynomial function done in traditional finite element method. This leads to a precise and fast convergence. Supersonic aerodynamic modeling is done based on the piston theory and modified piston theory with the shell curvature term. The stress stiffening due to lateral pressure and axial compression are also taken into accounts. Fluid-structure interaction in the presence of inside quiescent fluid is modeled based on the potential theory. In this method, fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacements at the fluid-structure interface. This proposed hybrid finite element has capabilities to do following analysis: (i) Buckling and vibration of an empty or partially fluid filled circular cylindrical shell or truncated conical shell subjected to internal/external pressure and axial compression loading. This is a typical example of external liquid propellant tanks of space shuttles and re-entry vehicles where they may experience this kind of loading during the flight. In the current work, different end boundary conditions of a circular cylindrical shell with different filling ratios were analyzed. To the best author' knowledge this is the first study where this kind of complex loading and boundary conditions are treated together during such an analysis. Only static instability, divergence, was observed where it showed that the fluid filling ratio does not have any effect on the critical buckling pressure and axial compression. It only reduces the vibration frequencies. It also revealed that the pressurized shell loses its stability at a higher critical axial load. (ii) Aeroelastic analysis of empty or partially liquid filled circular cylindrical and conical shells. Different boundary conditions with different geometries of shells subjected to supersonic air flow are studied here. In all of cases shell loses its stability though the coupled mode flutter. The results showed that internal pressure has a stabilizing effect and increases the critical flutter speed. It is seen that the value of critical dynamic pressure changes rapidly and widely as the filling ratio increases from a low value. In addition, by increasing the length ratio the decrement of flutter speed is decreased and vanishes. This rapid change in critical dynamic pressure at low filling ratios and its almost steady behaviour at large filling ratios indicate that the fluid near the bottom of the shell is largely influenced by elastic deformation when a shell is subjected to external subsonic flow. Based on comparison with the existing numerical, analytical and experimental data and the power of capabilities of this hybrid finite element method to model different boundary conditions and complex loadings, this FEM package can be used effectively for the design of advanced aerospace structures. It provides the results at less computational cost compare to the commercial FEM software, which imposes some restrictions when such an analysis is done.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5760042','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5760042"><span>Association of day 4 cumulative fluid balance with mortality in critically ill patients with influenza: A multicenter retrospective cohort study in Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chien, Ying-Chun; Sheu, Chau-Chyun; Tsai, Ming-Ju; Fang, Wen-Feng; Chen, Yu-Mu; Kao, Kuo-Chin; Hu, Han-Chung; Perng, Wann-Cherng; Yang, Kuang-Yao; Chen, Wei-Chih; Liang, Shinn-Jye; Wu, Chieh-Liang; Wang, Hao-Chien; Chan, Ming-Cheng</p> <p>2018-01-01</p> <p>Background Fluid balance is a fundamental management of patients with sepsis, and this study aimed to investigate the impact of cumulative fluid balance on critically ill patients with influenza admitted to an intensive care unit (ICU). Methods This multicenter retrospective cohort study was conducted by the Taiwan Severe Influenza Research Consortium (TSIRC) which includes eight medical centers. Patients with virology-proven influenza infection admitted to ICUs between October 2015 and March 2016 were included for analysis. Results A total of 296 patients were enrolled (mean age: 61.4±15.6 years; 62.8% men), and 92.2% (273/296) of them required mechanical ventilation. In the survivors, the daily fluid balance was positive from day 1 to day 3, and then gradually became negative from day 4 to day 7, whereas daily fluid balance was continuously positive in the non-survivors. Using the cumulative fluid balance from day 1–4 as a cut-off point, we found that a negative cumulative day 1–4 fluid balance was associated with a lower 30-day mortality rate (log-rank test, P = 0.003). To evaluate the impact of shock on this association, we divided the patients into shock and non-shock groups. The positive correlation between negative day 1–4 fluid balance and mortality was significant in the non-shock group (log-rank test, P = 0.008), but not in the shock group (log-rank test, P = 0.396). In a multivariate Cox proportional hazard regression model adjusted for age, sex, cerebrovascular disease, and PaO2/FiO2, day 1–4 fluid balance was independently associated with a higher 30-day mortality rate (aHR 1.088, 95% CI: 1.007–1.174). Conclusions A negative day 1–4 cumulative fluid balance was associated with a lower mortality rate in critically ill patients with influenza. Our findings indicate the critical role of conservative fluid strategy in the management of patients with complicated influenza. PMID:29315320</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17788230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17788230"><span>Precession of the Earth as the Cause of Geomagnetism: Experiments lend support to the proposal that precessional torques drive the earth's dynamo.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malkus, W V</p> <p>1968-04-19</p> <p>I have proposed that the precessional torques acting on the earth can sustain a turbulent hydromagnetic flow in the molten core. A gross balance of the Coriolis force, the Lorentz force, and the precessional force in the core fluid provided estimates of the fluid velocity and the interior magnetic field characteristic of such flow. Then these numbers and a balance of the processes responsible for the decay and regeneration of the magnetic field provided an estimate of the magnetic field external to the core. This external field is in keeping with the observations, but its value is dependent upon the speculative value for the electrical conductivity of core material. The proposal that turbulent flow due to precession can occur in the core was tested in a study of nonmagnetic laboratory flows induced by the steady precession of fluid-filled rotating spheroids. It was found that these flows exhibit both small wavelike instabilities and violent finite-amplitude instability to turbulent motion above critical values of the precession rate. The observed critical parameters indicate that a laminar flow in the core, due to the earth's precession, would have weak hydrodynamic instabilities at most, but that finite-amplitude hydromagnetic instability could lead to fully turbulent flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT........90M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT........90M"><span>A cyber-physical approach to experimental fluid mechanics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mackowski, Andrew Williams</p> <p></p> <p>This Thesis documents the design, implementation, and use of a novel type of experimental apparatus, termed Cyber-Physical Fluid Dynamics (CPFD). Unlike traditional fluid mechanics experiments, CPFD is a general-purpose technique that allows one to impose arbitrary forces on an object submerged in a fluid. By combining fluid mechanics with robotics, we can perform experiments that would otherwise be incredibly difficult or time-consuming. More generally, CPFD allows a high degree of automation and control of the experimental process, allowing for much more efficient use of experimental facilities. Examples of CPFD's capabilites include imposing a gravitational force in the horizontal direction (allowing a test object to "fall" sideways in a water channel), simulating nonlinear springs for a vibrating fluid-structure system, or allowing a self-propelled body to move forward under its own force. Because experimental parameters (including forces and even the mass of the test object) are defined in software, one can define entire ensembles of experiments to run autonomously. CPFD additionally integrates related systems such as water channel speed control, LDV flow speed measurements, and PIV flowfield measurements. The end result is a general-purpose experimental system that opens the door to a vast array of fluid-structure interaction problems. We begin by describing the design and implementation of CPFD, the heart of which is a high-performance force-feedback control system. Precise measurement of time-varying forces (including removing effects of the test object's inertia) is more critical here than in typical robotic force-feedback applications. CPFD is based on an integration of ideas from control theory, fluid dynamics, computer science, electrical engineering, and solid mechanics. We also describe experiments using the CPFD experimental apparatus to study vortex-induced vibration (VIV) and oscillating-airfoil propulsion. We show how CPFD can be used to simulate a hypothetical VIV energy harvesting device. By replacing standard linear springs with nonlinear ones, we can broaden the system's frequency response. Next, we transition from bluff bodies to unsteady airfoils, where we begin by measuring the thrust and efficiency of an airfoil pitching about its quarter-chord point. Finally, we examine how the propulsive performance of an oscillating airfoil is improved by the addition of passive dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29675697','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29675697"><span>Computational Fluid Dynamics Assessment Associated with Transcatheter Heart Valve Prostheses: A Position Paper of the ISO Working Group.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wei, Zhenglun Alan; Sonntag, Simon Johannes; Toma, Milan; Singh-Gryzbon, Shelly; Sun, Wei</p> <p>2018-04-19</p> <p>The governing international standard for the development of prosthetic heart valves is International Organization for Standardization (ISO) 5840. This standard requires the assessment of the thrombus potential of transcatheter heart valve substitutes using an integrated thrombus evaluation. Besides experimental flow field assessment and ex vivo flow testing, computational fluid dynamics is a critical component of this integrated approach. This position paper is intended to provide and discuss best practices for the setup of a computational model, numerical solving, post-processing, data evaluation and reporting, as it relates to transcatheter heart valve substitutes. This paper is not intended to be a review of current computational technology; instead, it represents the position of the ISO working group consisting of experts from academia and industry with regards to considerations for computational fluid dynamic assessment of transcatheter heart valve substitutes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Sci...350..534S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Sci...350..534S"><span>Geophysical imaging reveals topographic stress control of bedrock weathering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>St. Clair, J.; Moon, S.; Holbrook, W. S.; Perron, J. T.; Riebe, C. S.; Martel, S. J.; Carr, B.; Harman, C.; Singha, K.; Richter, D. deB.</p> <p>2015-10-01</p> <p>Bedrock fracture systems facilitate weathering, allowing fresh mineral surfaces to interact with corrosive waters and biota from Earth’s surface, while simultaneously promoting drainage of chemically equilibrated fluids. We show that topographic perturbations to regional stress fields explain bedrock fracture distributions, as revealed by seismic velocity and electrical resistivity surveys from three landscapes. The base of the fracture-rich zone mirrors surface topography where the ratio of horizontal compressive tectonic stresses to near-surface gravitational stresses is relatively large, and it parallels the surface topography where the ratio is relatively small. Three-dimensional stress calculations predict these results, suggesting that tectonic stresses interact with topography to influence bedrock disaggregation, groundwater flow, chemical weathering, and the depth of the “critical zone” in which many biogeochemical processes occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16388936','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16388936"><span>Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando</p> <p>2006-03-01</p> <p>The present commentary aims to review the modern and innovative strategies in particle engineering by the supercritical fluid technologies and it is principally concerned with the aspects of solid-state chemistry. Supercritical fluids based processes for particle production have been proved suitable for controlling solid-state, morphology and particle size of pharmaceuticals, in some cases on an industrial scale. Supercritical fluids should be considered in a prominent position in the development processes of drug products for the 21st century. In this respect, this innovative technology will help in meeting the more and more stringent requirements of regulatory authorities in terms of solid-state characterisation and purity, and environmental acceptability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100011094','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100011094"><span>Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gonda, Steve R.; Jordan, Jacqueline; Fraga, Denise N.</p> <p>2007-01-01</p> <p>A process has been developed for the rapid tissue engineering of multicellular-tissue-equivalent assemblies by the controlled enzymatic degradation of polymeric beads in a low-fluid-shear bioreactor. In this process, the porous polymeric beads serve as temporary scaffolds to support the assemblies of cells in a tissuelike 3D configuration during the critical initial growth phases of attachment of anchorage-dependent cells, aggregation of the cells, and formation of a 3D extracellular matrix. Once the cells are assembled into a 3D array and enmeshed in a structural supportive 3D extracellular matrix (ECM), the polymeric scaffolds can be degraded in the low-fluid-shear environment of the NASA-designed bioreactor. The natural 3D tissuelike assembly, devoid of any artificial support structure, is maintained in the low-shear bioreactor environment by the newly formed natural cellular/ECM. The elimination of the artificial scaffold allows normal tissue structure and function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3691565','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3691565"><span>Unraveling the Geometry Dependence of In-Nozzle Cavitation in High-Pressure Injectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Im, Kyoung-Su; Cheong, Seong-Kyun; Powell, Christopher F.; Lai, Ming-chia D.; Wang, Jin</p> <p>2013-01-01</p> <p>Cavitation is an intricate multiphase phenomenon that interplays with turbulence in fluid flows. It exhibits clear duality in characteristics, being both destructive and beneficial in our daily lives and industrial processes. Despite the multitude of occurrences of this phenomenon, highly dynamic and multiphase cavitating flows have not been fundamentally well understood in guiding the effort to harness the transient and localized power generated by this process. In a microscale, multiphase flow liquid injection system, we synergistically combined experiments using time-resolved x-radiography and a novel simulation method to reveal the relationship between the injector geometry and the in-nozzle cavitation quantitatively. We demonstrate that a slight alteration of the geometry on the micrometer scale can induce distinct laminar-like or cavitating flows, validating the multiphase computational fluid dynamics simulation. Furthermore, the simulation identifies a critical geometric parameter with which the high-speed flow undergoes an intriguing transition from non-cavitating to cavitating. PMID:23797665</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28494815','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28494815"><span>Association between fluid intake and mortality in critically ill patients with negative fluid balance: a retrospective cohort study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shen, Yanfei; Huang, Xinmei; Zhang, Weimin</p> <p>2017-05-12</p> <p>Compared to positive fluid balance (FB), negative FB is associated with improved clinical outcomes in critically ill patients. However, as to whether achieving more negative FB can further improve outcomes has not been investigated. This study aimed to investigate whether more negative FB and restricted fluid intake were associated with improved outcomes in critically ill patients. Data were extracted from the Multi-parameter Intelligent Monitoring in Intensive Care III Database. Patients achieving negative FB at 48 hours after intensive care unit (ICU) admission were screened. The primary outcome was hospital mortality. Logistic models were built to explore the association between FB, fluid intake and mortality, using FB and fluid intake (both four levels) as design variables and using the linear spline function method. There were 2068 patients meeting the inclusion criteria. Compared to slight negative FB (level 1), there was a decreased tendency towards mortality with FB level 2 (OR 0.88, 95% CI 0.69-1.11) and level 3 (OR 0.79, 95% CI 0. 65-1.11); however, only extreme negative FB (level 4) was significant (OR 0.56, 95% CI 0. 33-0.95). Fluid intake and urine output were evenly distributed over the first 48 hours after ICU admission. Fluid intake was inversely associated with hospital mortality, with the OR decreased stepwise from level 2 (OR 0.73, 95% CI 0.56-0.96) to level 4 (OR 0.47, 95% CI 0.30-0.74), referred to level 1. Urine output also showed a similar pattern. Diuretic use was associated with higher mortality in both models. In critically ill patients with negative FB, both increased fluid intake and urine output were associated with decreased hospital mortality. However, compared to slight FB, achieving more negative FB was not associated with reduced mortality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23320693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23320693"><span>Molecular dynamics simulations of diffusion and clustering along critical isotherms of medium-chain n-alkanes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mutoru, J W; Smith, W; O'Hern, C S; Firoozabadi, A</p> <p>2013-01-14</p> <p>Understanding the transport properties of molecular fluids in the critical region is important for a number of industrial and natural systems. In the literature, there are conflicting reports on the behavior of the self diffusion coefficient D(s) in the critical region of single-component molecular systems. For example, D(s) could decrease to zero, reach a maximum, or remain unchanged and finite at the critical point. Moreover, there is no molecular-scale understanding of the behavior of diffusion coefficients in molecular fluids in the critical regime. We perform extensive molecular dynamics simulations in the critical region of single-component fluids composed of medium-chain n-alkanes-n-pentane, n-decane, and n-dodecane-that interact via anisotropic united-atom potentials. For each system, we calculate D(s), and average molecular cluster sizes κ(cl) and numbers N(cl) at various cluster lifetimes τ, as a function of density ρ in the range 0.2ρ(c) ≤ ρ ≤ 2.0ρ(c) at the critical temperature T(c). We find that D(s) decreases with increasing ρ but remains finite at the critical point. Moreover, for any given τ < 1.2 × 10(-12) s, κ(cl) increases with increasing ρ but is also finite at the critical point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23337082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23337082"><span>Process-based account for the effects of perceptual attention and executive attention on fluid intelligence: an integrative approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ren, Xuezhu; Altmeyer, Michael; Reiss, Siegbert; Schweizer, Karl</p> <p>2013-02-01</p> <p>Perceptual attention and executive attention represent two higher-order types of attention and associate with distinctly different ways of information processing. It is hypothesized that these two types of attention implicate different cognitive processes, which are assumed to account for the differential effects of perceptual attention and executive attention on fluid intelligence. Specifically, an encoding process is assumed to be crucial in completing the tasks of perceptual attention while two executive processes, updating and shifting, are stimulated in completing the tasks of executive attention. The proposed hypothesis was tested by means of an integrative approach combining experimental manipulations and psychometric modeling. In a sample of 210 participants the encoding process has proven indispensable in completing the tasks of perceptual attention, and this process accounted for a considerable part of fluid intelligence that was assessed by two figural reasoning tests. In contrast, the two executive processes, updating and shifting, turned out to be necessary in performance according to the tasks of executive attention and these processes accounted for a larger part of the variance in fluid intelligence than that of the processes underlying perceptual attention. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20715717','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20715717"><span>Preload assessment and optimization in critically ill patients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Voga, Gorazd</p> <p>2010-01-01</p> <p>Preload assessment and optimization is the basic hemodynamic intervention in critically ill. Beside clinical assessment, non-invasive or invasive assessment by measurement of various pressure or volume hemodynamic variables, are helpful for estimation of preload and fluid responsiveness. The use of dynamic variables is useful in particular subgroup of critically ill patients. In patients with inadequate preload, fluid responsiveness and inadequate flow, treatment with crystalloids or colloids is mandatory. When rapid hemodynamic response is necessary colloids are preferred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0100146&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0100146&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon"><span>Critical Viscosity of Xenon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2001-01-01</p> <p>The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PRPER..13b0132S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PRPER..13b0132S"><span>Students' conceptual difficulties in hydrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suarez, Alvaro; Kahan, Sandra; Zavala, Genaro; Marti, Arturo C.</p> <p>2017-12-01</p> <p>We describe a study on the conceptual difficulties faced by college students in understanding hydrodynamics of ideal fluids. This study was based on responses obtained in hundreds of written exams complemented with several oral interviews, which were held with first-year engineering and science university students. Their responses allowed us to identify a series of misconceptions unreported in the literature so far. The study findings demonstrate that the most critical difficulties arise from the students' inability to establish a link between the kinematics and dynamics of moving fluids, and from a lack of understanding regarding how different regions of a system interact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1297656-oscillations-standing-shock-wave-generated-richtmyer-meshkov-instability','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1297656-oscillations-standing-shock-wave-generated-richtmyer-meshkov-instability"><span>Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mikaelian, Karnig O.</p> <p>2016-07-13</p> <p>In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio R critical, in terms of the adiabatic indices of the two fluids, andmore » a critical Mach number M critical s of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than R critical then a standing shock wave is possible at M s=M critical s. Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. Furthermore, we point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11687932','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11687932"><span>Hydrodynamic characteristics and mixing behaviour of Sclerotium glucanicum culture fluids in an airlift reactor with an internal loop used for scleroglucan production.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kang, X; Wang, H; Wang, Y; Harvey, L M; McNeil, B</p> <p>2001-10-01</p> <p>The filamentous fungus, Sclerotium glucanicum NRRL 3006, was cultivated in a 0.008 m(3) airlift bioreactor with internal recirculation loop (ARL-IL) for production of the biopolymer, scleroglucan. The rheological behaviour of the culture fluid was characterised by measurement of the fluid consistency coefficient (K) and the flow behaviour index (n). Based on these measurements, the culture fluid changed from a low viscosity Newtonian system early in the process, to a viscous non-Newtonian (pseudoplastic) system. In addition, reactor hydrodynamics and mixing behaviour were characterised by measurement of whole mean gas hold-up (epsilon(g)), liquid re-circulation velocity (U(ld)) and mixing time (t(m)). Under identical process conditions, the effects of the viscosity of the culture fluid and air flow rate on epsilon(g), U(ld) and t(m) were examined and empirical correlations for epsilon(g), U(ld) and t(m) with both superficial velocity U(g) and consistency coefficient K were obtained and expressed separately. The correlations obtained are likely to describe the behaviour of real fungal culture fluids more accurately than previous correlations based on Newtonian or simulated non-Newtonian systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.V11C..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.V11C..01B"><span>Sub-seafloor Processes and the Composition of Diffuse Hydrothermal Fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butterfield, D. A.; Lilley, M. D.; Huber, J. A.; Baross, J. A.</p> <p>2002-12-01</p> <p>High-temperature water/rock reactions create the primary hydrothermal fluids that are diluted with cool, "crustal seawater" to produce low-temperature, diffuse hydrothermal vent fluids. By knowing the composition of each of the components that combine to produce diffuse fluids, one can compare the composition of calculated mixtures with the composition of sampled fluids, and thereby infer what chemical constituents have been affected by processes other than simple conservative mixing. Although there is always uncertainty in the composition of fluids from the sub-seafloor, some processes are significant enough to alter diffuse fluid compositions from the expected conservative mixtures of hot,primary fluid and "crustal seawater." When hydrothermal vents with a wide range of temperature are sampled, processes occurring in different thermal and chemical environments potentially can be discerned. At Axial Volcano (AV) on the Juan de Fuca ridge, methane clearly is produced in warm sub-seafloor environments at temperatures of ~ 100° or less. Based on culturing and phylogenetic analysis from the same water samples at AV, hyperthermophilic methanogens are present in water samples taken from vents ranging in temperature from 15 to 78° C. Ratios of hydrogen sulfide to pseudo-conservative tracers (dissolved silica or heat) at AV decrease when primary fluids are highly diluted with oxygenated seawater. Phylogenetic signatures of microbes closely related to sulfide-oxidizers are present in these same fluids. Hydrogen sulfide oxidation represents the dominant source of energy for chemosynthesis at AV, as in most hydrothermal systems, but a relatively small proportion of the total hydrogen sulfide available is actually oxidized, except at the very lowest temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22098898','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22098898"><span>Life expectancy of modular Ti6Al4V hip implants: influence of stress and environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chandra, A; Ryu, J J; Karra, P; Shrotriya, P; Tvergaard, V; Gaisser, M; Weik, T</p> <p>2011-11-01</p> <p>Stress dependent electrochemical dissolution is identified as one of the key mechanisms governing surface degradation in fretting and crevice corrosion of biomedical implants. The present study focuses on delineating the roles of mechanical stress and chemical conditions on the life expectancy of modular hip implants. First, material removal on a stressed surface of Ti6Al4V subjected to single asperity contact is investigated experimentally to identify the influence of contact load, in-plane stress and chemical environment on mean wear rates. A range of known stress levels are applied to the specimen while its surface is mechanically stimulated in different non-reactive to oxidizing aqueous environments. Evolution of surface degradation is monitored, and its mechanism is elucidated. This phase allows estimation of Preston Constant which is later used in the analysis. Second phase of the work is semi-analytical and computational, where, based on the estimated Preston constant and other material and process parameters, the scratch propensity (consisting of magnitude of scratch depth and their frequency per unit area) due to micro-motion in modular hip implants is estimated. The third phase views these scratches as initial notches and utilizes a mixed-mode fatigue crack propagation model to estimate the critical crack length for onset of instability. The number of loading cycles needed to reach this critical crack length is then labeled as the expected life of the implant under given mechanical and chemical conditions. Implications of different material and process conditions to life expectancy of orthopedic implants are discussed. It is observed that transverse micro-motion, compared to longitudinal micro-motion, plays a far more critical role in determining the implant life. Patient body weight, as well as proximity of the joint fluid to its iso-electric point play key roles in determining wear rates and associated life expectancies of modular hip implants. Sustained aeration of joint fluid, as well as proper tolerancing of mating surfaces, along with a proper choice of material microstructure may be utilized to extend implant life. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol1/pdf/CFR-2014-title14-vol1-sec25-863.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol1/pdf/CFR-2014-title14-vol1-sec25-863.pdf"><span>14 CFR 25.863 - Flammable fluid fire protection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec25-863.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec25-863.pdf"><span>14 CFR 25.863 - Flammable fluid fire protection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec25-863.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec25-863.pdf"><span>14 CFR 25.863 - Flammable fluid fire protection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-863.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-863.pdf"><span>14 CFR 25.863 - Flammable fluid fire protection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920014397','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920014397"><span>Critical fluid thermal equilibration experiment (19-IML-1)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilkinson, R. Allen</p> <p>1992-01-01</p> <p>Gravity sometimes blocks all experimental techniques of making a desired measurement. Any pure fluid possesses a liquid-vapor critical point. It is defined by a temperature, pressure, and density state in thermodynamics. The critical issue that this experiment attempts to understand is the time it takes for a sample to reach temperature and density equilibrium as the critical point is approached; is it infinity due to mass and thermal diffusion, or do pressure waves speed up energy transport while mass is still under diffusion control. The objectives are to observe: (1) large phase domain homogenization without and with stirring; (2) time evolution of heat and mass after temperature step is applied to a one phase equilibrium sample; (3) phase evolution and configuration upon going two phase from a one phase equilibrium state; (4) effects of stirring on a low g two phase configuration; (5) two phase to one phase healing dynamics starting from a two phase low g configuration; and (6) effects of shuttle acceleration events on spatially and temporally varying compressible critical fluid dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MPLA...3350070A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MPLA...3350070A"><span>Accretion onto a charged Kiselev black hole</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbas, G.; Ditta, A.</p> <p>2018-04-01</p> <p>Accretion of matter onto a compact is one of the interesting astrophysical processes. Here, we study the accretion of matter onto a charged Kiselev black hole. The problem of static and spherically symmetric accretion of a polytropic fluid is explored for the analytic solution of equations of motion. We have investigated the necessary conditions for existence of the critical flow points and the mass accretion rate. Finally, we discuss the polytropic gas accretion in detail. It has been found that in the accretion process the quintessence and charge parameters play a dominant role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28165086','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28165086"><span>Heat of capillary condensation in nanopores: new insights from the equation of state.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tan, Sugata P; Piri, Mohammad</p> <p>2017-02-15</p> <p>Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) coupled with the Young-Laplace equation is a recently developed equation of state (EOS) that successfully presents not only the capillary condensation but also the pore critical phenomena. The development of this new EOS allows further investigation of the heats involved in condensation. Compared to the conventional approaches, the EOS calculations present the temperature-dependent behavior of the heat of capillary condensation as well as that of the contributing effects. The confinement effect was found to be the strongest at the pore critical point. Therefore, contrary to the bulk heat condensation that vanishes at the critical point, the heat of capillary condensation in small pores shows a minimum and then increases with temperature when approaching the pore critical temperature. Strong support for the existence of the pore critical point is also discussed as the volume expansivity of the condensed phase in confinement was found to increase dramatically near the pore critical temperature. At high reduced temperatures, the Clausius-Clapeyron equation was found to apply better for confined fluids than it does for bulk fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1336270','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1336270"><span>Selective Recovery of Metals from Geothermal Brines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ventura, Susanna; Bhamidi, Srinivas; Hornbostel, Marc</p> <p></p> <p>The objective of this project was to determine the feasibility of developing a new generation of highly selective low-cost ion-exchange resins based on metal-ion imprinted polymers for the separation of metals from geothermal fluids. Expansion of geothermal energy production over the entire U.S. will involve exploitation of low-to-medium temperature thermal waters. Creating value streams from the recovery of critical and near-critical metals from these thermal waters will encourage geothermal expansion. Selective extraction of metals from geothermal fluids is needed to design a cost-effective process for the recovery of lithium and manganese-two near-critical metals with well-known application in the growing lithiummore » battery industry. We have prepared new lithium- and manganese-imprinted polymers in the form of beads by crosslinking polymerization of a metal polymerizable chelate, where the metal acts as a template. Upon leaching out the metal template, the crosslinked polymer is expected to leave cavities defined by the ligand functional group with enhanced selectivity for binding the template metal. We have demonstrated that lithium- and manganese-imprinted polymer beads can be used as selective solid sorbents for the extraction of lithium and manganese from brines. The polymers were tested both in batch extractions and packed bed lab-scale columns at temperatures of 45-100°C. Lithium-imprinted polymers were found to have Li + adsorption capacity as high as 2.8 mg Li +/g polymer at 45°C. Manganese-imprinted polymers were found to have a Mn 2+ adsorption capacity of more than 23 mg Mn 2+/g polymer at 75°C. The Li + extraction efficiency of the Li-imprinted polymer was found to be more that 95% when a brine containing 390 ppm Li +, 410 ppm Na +, and 390 ppm K + was passed through a packed bed of the polymer in a lab-scale column at 45°C. In brines containing 360 ppm Li +, 10,000 ppm Na +, and 3,000 ppm K +, the Li separation efficiency of the imprinted sorbent was found to be about 30% at 45°C. The Mn extraction efficiency of the Mn-imprinted polymer from a synthetic brine containing competing cations such as Li +, Na +, K +, Ca 2+, Mg 2+, and Ba 2+ was found to be 72% at 75°C in a lab-scale column. A preliminary process cost assessment for the recovery of lithium and production of lithium carbonate from geothermal brines was performed. We concluded that the total cost of a plant designed to process 6000 gal of brine/min is 20,456,265 with a total annual operating costs of $11,057,048 based on 300 days/year uptime. Assuming a conservative sale price of 2000/ton for Li 2CO 3, the annual revenue from the sale of Li 2CO 3 produced by this plant would exceed $40,000,000 at a production rate of 49Kg/min for geothermal fluids containing 400 ppm Li +.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2070.6039K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2070.6039K"><span>Main Difference with Formed Process of the Moon and Earth Minerals and Fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kato, T.; Miura, Y.</p> <p>2018-04-01</p> <p>Minerals show large and global distribution on Earth system, but small and local formation on the Moon. Fluid water is formed as same size and distribution on Earth and the Moon based on their body-systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29202543','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29202543"><span>[Experts consensus on the management of the right heart function in critically ill patients].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, X T; Liu, D W; Zhang, H M; Long, Y; Guan, X D; Qiu, H B; Yu, K J; Yan, J; Zhao, H; Tang, Y Q; Ding, X; Ma, X C; Du, W; Kang, Y; Tang, B; Ai, Y H; He, H W; Chen, D C; Chen, H; Chai, W Z; Zhou, X; Cui, N; Wang, H; Rui, X; Hu, Z J; Li, J G; Xu, Y; Yang, Y; Ouyan, B; Lin, H Y; Li, Y M; Wan, X Y; Yang, R L; Qin, Y Z; Chao, Y G; Xie, Z Y; Sun, R H; He, Z Y; Wang, D F; Huang, Q Q; Jiang, D P; Cao, X Y; Yu, R G; Wang, X; Chen, X K; Wu, J F; Zhang, L N; Yin, M G; Liu, L X; Li, S W; Chen, Z J; Luo, Z</p> <p>2017-12-01</p> <p>To establish the experts consensus on the right heart function management in critically ill patients. The panel of consensus was composed of 30 experts in critical care medicine who are all members of Critical Hemodynamic Therapy Collaboration Group (CHTC Group). Each statement was assessed based on the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) principle. Then the Delphi method was adopted by 52 experts to reassess all the statements. (1) Right heart function is prone to be affected in critically illness, which will result in a auto-exaggerated vicious cycle. (2) Right heart function management is a key step of the hemodynamic therapy in critically ill patients. (3) Fluid resuscitation means the process of fluid therapy through rapid adjustment of intravascular volume aiming to improve tissue perfusion. Reversed fluid resuscitation means reducing volume. (4) The right ventricle afterload should be taken into consideration when using stroke volume variation (SVV) or pulse pressure variation (PPV) to assess fluid responsiveness.(5)Volume overload alone could lead to septal displacement and damage the diastolic function of the left ventricle. (6) The Starling curve of the right ventricle is not the same as the one applied to the left ventricle,the judgement of the different states for the right ventricle is the key of volume management. (7) The alteration of right heart function has its own characteristics, volume assessment and adjustment is an important part of the treatment of right ventricular dysfunction (8) Right ventricular enlargement is the prerequisite for increased cardiac output during reversed fluid resuscitation; Nonetheless, right heart enlargement does not mandate reversed fluid resuscitation.(9)Increased pulmonary vascular resistance induced by a variety of factors could affect right heart function by obstructing the blood flow. (10) When pulmonary hypertension was detected in clinical scenario, the differentiation of critical care-related pulmonary hypertension should be a priority. (11) Attention should be paid to the change of right heart function before and after implementation of mechanical ventilation and adjustment of ventilator parameter. (12) The pulmonary arterial pressure should be monitored timingly when dealing with critical care-related pulmonary hypertension accompanied with circulatory failure.(13) The elevation of pulmonary aterial pressure should be taken into account in critical patients with acute right heart dysfunction. (14) Prone position ventilation is an important measure to reduce pulmonary vascular resistance when treating acute respiratory distress syndrome patients accompanied with acute cor pulmonale. (15) Attention should be paid to right ventricle-pulmonary artery coupling during the management of right heart function. (16) Right ventricular diastolic function is more prone to be affected in critically ill patients, the application of critical ultrasound is more conducive to quantitative assessment of right ventricular diastolic function. (17) As one of the parameters to assess the filling pressure of right heart, central venous pressure can be used to assess right heart diastolic function. (18). The early and prominent manifestation of non-focal cardiac tamponade is right ventricular diastolic involvement, the elevated right atrial pressure should be noticed. (19) The effect of increased intrathoracic pressure on right heart diastolic function should be valued. (20) Ttricuspid annular plane systolic excursion (TAPSE) is an important parameter that reflects right ventricular systolic function, and it is recommended as a general indicator of critically ill patient. (21) Circulation management with right heart protection as the core strategy is the key point of the treatment of acute respiratory distress syndrome. (22) Right heart function involvement after cardiac surgery is very common and should be highly valued. (23) Right ventricular dysfunction should not be considered as a routine excuse for maintaining higher central venous pressure. (24) When left ventricular dilation, attention should be paid to the effect of left ventricle on right ventricular diastolic function. (25) The impact of left ventricular function should be excluded when the contractility of the right ventricle is decreased. (26) When the right heart load increases acutely, the shunt between the left and right heart should be monitored. (27) Attention should be paid to the increase of central venous pressure caused by right ventricular dysfunction and its influence on microcirculation blood flow. (28) When the vasoactive drugs was used to reduce the pressure of pulmonary circulation, different effects on pulmonary and systemic circulation should be evaluated. (29) Right atrial pressure is an important factor affecting venous return. Attention should be paid to the influence of the pressure composition of the right atrium on the venous return. (30) Attention should be paid to the role of the right ventricle in the acute pulmonary edema. (31) Monitoring the difference between the mean systemic filling pressure and the right atrial pressure is helpful to determine whether the infusion increases the venous return. (32) Venous return resistance is often considered to be a insignificant factor that affects venous return, but attention should be paid to the effect of the specific pathophysiological status, such as intrathoracic hypertension, intra-abdominal hypertension and so on. Consensus can promote right heart function management in critically ill patients, optimize hemodynamic therapy, and even affect prognosis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17042538','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17042538"><span>Anomalous sorption of supercritical fluids on polymer thin films.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xiaochu; Sanchez, Isaac C</p> <p>2006-10-24</p> <p>Unusual sorption has been reported in thin polymer films exposed to near-critical CO2. When the supercritical fluid approaches the critical point, the film appears to thicken, but it is not clear whether the film swells or there is an adsorption layer on the film surface. A combination of the gradient theory of inhomogeneous systems and the Sanchez-Lacombe equation of state has been used to investigate this phenomenon. It is shown analytically that surface adsorption on an attractive surface is proportional to the compressibility of the fluid. We have also investigated numerically the sorption of supercritical CO2 on poly(dimethylsiloxane) and polyisobutylene, and supercritical 1,1-difluoroethane on polystyrene. By calculating the Gibbs adsorption and adsorption layer thickness of the supercritical fluids, we found in all cases (different substrates, different supercritical fluids) that maximum adsorption occurs when the supercritical fluid is near its compressibility maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT........61W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT........61W"><span>Computational and experimental analysis of the flow in an annular centrifugal contactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wardle, Kent E.</p> <p></p> <p>The annular centrifugal contactor has been developed for solvent extraction processes for recycling used nuclear fuel. The compact size and high efficiency of these contactors have made them the choice for advanced reprocessing schemes and a key equipment for a proposed future advanced fuel cycle facility. While a sufficient base of experience exists to facilitate successful operation of current contactor technology, a more complete understanding of the fluid flow within the contactor would enable further advancements in design and operation of future units and greater confidence for use of such contactors in a variety of other solvent extraction applications. This research effort has coupled computational fluid dynamics modeling with a variety of experimental measurements and observations to provide a valid detailed analysis of the flow within the centrifugal contactor. CFD modeling of the free surface flow in the annular mixing zone using the Volume of Fluid (VOF) volume tracking method combined with Large Eddy Simulation (LES) of turbulence was found to have very good agreement with the experimental measurements and observations. A detailed study of the flow and mixing for different housing vane geometries was performed and it was found that the four straight mixing vane geometry had greater mixing for the flow rate simulated and more predictable operation over a range of low to moderate flow rates. The separation zone was also modeled providing a useful description of the flow in this region and identifying critical design features. It is anticipated that this work will form a foundation for additional efforts at improving the design and operation of centrifugal contactors and provide a framework for progress towards simulation of solvent extraction processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920012968','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920012968"><span>Development of an integrated BEM approach for hot fluid structure interaction: BEST-FSI: Boundary Element Solution Technique for Fluid Structure Interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dargush, G. F.; Banerjee, P. K.; Shi, Y.</p> <p>1992-01-01</p> <p>As part of the continuing effort at NASA LeRC to improve both the durability and reliability of hot section Earth-to-orbit engine components, significant enhancements must be made in existing finite element and finite difference methods, and advanced techniques, such as the boundary element method (BEM), must be explored. The BEM was chosen as the basic analysis tool because the critical variables (temperature, flux, displacement, and traction) can be very precisely determined with a boundary-based discretization scheme. Additionally, model preparation is considerably simplified compared to the more familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow is captured through the use of an analytical fundamental solution, eliminating the dependence of the solution on the discretization pattern. The price that must be paid in order to realize these advantages is that any BEM formulation requires a considerable amount of analytical work, which is typically absent in the other numerical methods. All of the research accomplishments of a multi-year program aimed toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-orbit engine hot section components are detailed. Most of the effort was directed toward the examination of fluid flow, since BEM's for fluids are at a much less developed state. However, significant strides were made, not only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure interaction problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9803E..38S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9803E..38S"><span>Micro acoustic resonant chambers for heating/agitating/mixing (MARCHAM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita M.; Takano, Nobuyuki; Grunthaner, Frank</p> <p>2016-04-01</p> <p>A variety of applications require the mixing and/or heating of a slurry made from a powder/fluid mixture. One of these applications, Sub Critical Water Extraction (SCWE), is a process where water and an environmental powder sample (sieved soil, drill cuttings, etc.) are heated in a sealed chamber to temperatures greater than 200 degrees Celsius by allowing the pressure to increase, but without reaching the critical point of water. At these temperatures, the ability of water to extract organics from solid particulate increases drastically. This paper describes the modeling and experimentation on the use of an acoustic resonant chamber which is part of an amino acid detection instrument called Astrobionibbler [Noell et al. 2014, 2015]. In this instrument we use acoustics to excite a fluid- solid fines mixture in different frequency/amplitude regimes to accomplish a variety of sample processing tasks. Driving the acoustic resonant chamber at lower frequencies can create circulation patterns in the fluid and mixes the liquid and fines, while driving the chamber at higher frequencies one can agitate the fluid and powder and create a suspension. If one then drives the chamber at high amplitude at resonance heating of the slurry occurs. In the mixing and agitating cell the particle levitation force depends on the relative densities and compressibility's of the particulate and fluid and on the kinetic and potential energy densities associated with the velocity and pressure fields [Glynne-Jones, Boltryk and Hill 2012] in the cell. When heating, the piezoelectric transducer and chamber is driven at high power in resonance where the solid/fines region is modelled as an acoustic transmission line with a large loss component. In this regime, heat is pumped into the solution/fines mixture and rapidly heats the sample. We have modeled the piezoelectric transducer/chamber/ sample using Mason's equivalent circuit. In order to assess the validity of the model we have built and tested a variety of chambers. This paper describes the experimental results which are in general agreement with theory within the limitations of the modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22257692-turbulent-mixing-slightly-supercritical-van-der-waals-fluid-low-mach-number','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22257692-turbulent-mixing-slightly-supercritical-van-der-waals-fluid-low-mach-number"><span>Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Battista, F.; Casciola, C. M.; Picano, F.</p> <p>2014-05-15</p> <p>Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightlymore » supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27894794','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27894794"><span>Fluid Therapy: Options and Rational Selection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Byers, Christopher G</p> <p>2017-03-01</p> <p>Administration of appropriate types and volumes of parenteral fluids is of paramount importance when treating sick and debilitated patients, especially those fighting critical illness. Fluid selection and accurate calculations must be performed logically and accurately to maximize positive outcomes. Knowledge of fluid types, as well as the complex relationship of the body's fluid compartments, helps clinicians develop rational fluid therapy plans for their patients. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24979711','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24979711"><span>Economics of fluid therapy in critically ill patients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lyu, Peter F; Murphy, David J</p> <p>2014-08-01</p> <p>Fluid therapy practices are an ongoing debate in critical care as evidence continues to emerge on the clinical effectiveness of different fluids and regimens. Although fluid therapy is a frequent and often costly treatment in the ICU, cost considerations have been largely absent from these studies. To facilitate a more structured approach to understanding fluid therapy costs and their role in clinical practice, we summarize currently available options and describe a framework for identifying and organizing relevant costs. Fluid therapy is a complex area of care that has been rarely studied from a cost-effectiveness perspective. We identify seven cost areas that capture fluid therapy-related costs during preutilization, point-of-utilization, and postutilization periods. These costs are driven by decisions on the type of fluid and administration strategy. Although estimates for some cost areas could be informed by medical literature, other cost areas remain unclear and require further investigation. Given the growing emphasis on the value of care, providers must recognize the important cost consequences of clinical decisions in fluid therapy. Future research into fluid therapy costs is needed and can be guided by this framework. Developing a complete cost picture is an initial and necessary step for improving values for patients, hospitals, and healthcare systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890030270&hterms=critical+infrastructure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcritical%2Binfrastructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890030270&hterms=critical+infrastructure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcritical%2Binfrastructure"><span>Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.</p> <p>1988-01-01</p> <p>Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880020461','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880020461"><span>Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.</p> <p>1988-01-01</p> <p>Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873876','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873876"><span>Method of filtering a target compound from a first solvent that is above its critical density</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Phelps, Max R [Richland, WA; Yonker, Clement R [Kennewick, WA; Fulton, John L [Richland, WA; Bowman, Lawrence E [Richland, WA</p> <p>2001-07-24</p> <p>The present invention is a method of separating a first compound having a macromolecular structure from a mixture. The first solvent is a fluid that is a gas at standard temperature and pressure and is at a density greater than a critical density of the fluid. A macromolecular structure containing a first compound is dissolved therein as a mixture. The mixture is contacted onto a selective barrier and the first solvent passed through the selective barrier thereby retaining the first compound, followed by recovering the first compound. By using a fluid that is a gas at standard temperature and pressure at a density greater than its critical density, separation without depressurization is fast and efficient.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/188919','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/188919"><span>Improved techniques for fluid diversion in oil recovery. Final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Seright, R.</p> <p></p> <p>This three-year project had two technical objectives. The first objective was to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes were compared, including those using gels, foams, emulsions, particulates, and microorganisms. The ultimate goals of these comparisons were to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments were performed to verify which materials are the most effective inmore » entering and blocking high-permeability zones. The second objective of the project was to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. A capacity to reduce water permeability much more than oil or gas permeability is critical to the success of gel treatments in production wells if zones cannot be isolated during gel placement. Topics covered in this report include (1) determination of gel properties in fractures, (2) investigation of schemes to optimize gel placement in fractured systems, (3) an investigation of why some polymers and gels can reduce water permeability more than oil permeability, (4) consideration of whether microorganisms and particulates can exhibit placement properties that are superior to those of gels, and (5) examination of when foams may show placement properties that are superior to those of gels.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990084042&hterms=osmosis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dosmosis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990084042&hterms=osmosis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dosmosis"><span>Microgravity Transport Phenomena Experiment (MTPE) Overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mason, Larry W.</p> <p>1999-01-01</p> <p>The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry of constant cross sectional area, and to facilitate fluid filling and draining operations in microgravity. The fluid cells may be used singly for bulk solutions, or in a Stokes diaphragm configuration to investigate membrane mediated phenomena. Thermal and electrical driving potentials are applied to the experiment fluids through boundary plates located at the ends of the fluid cells. In the ground based instrument, two constant temperature baths circulate through reservoirs adjacent to the boundary plates, and establish the thermal environment within the fluid cells. The boundary plates also serve as electrodes for measurement and application of electrical potentials. The Fluid Manipulation System associated with the MTA is a computer controlled system that enables storage and transfer of experiment fluids during on orbit operations. The system is used to automatically initiate experiments and manipulate fluids by orchestrating pump and valve operations through scripted sequences. Unique technologies are incorporated in the MTA for measurement of fluid properties. Volumetric Flow Sensors have been developed for precision measurement of total fluid volume contained within the fluid cells over time. This data is most useful for measuring the kinetics of osmosis, where fluid is transported from one fluid cell to another through a semipermeable membrane. The MicroSensor Array has been designed to perform in situ measurement of several important fluid parameters, providing simultaneous measurement of solution composition at multiple locations within the experiment fluids. Micromachined sensors and interface electronics have been developed to measure temperature, electrical conductivity, pH, cation activity, and anion activity. The Profile Refractometer uses a laser optical system to directly image the fluid Index of Refraction profile that exists along the MTA fluid cell axis. A video system acquires images of the RI profile over time, and records the transport kinetics that occur upon application of chemical, thermal, or electrical driving potentials. Image processing algorithms have been developed to analyze the refractometer images on a pixel by pixel basis, calibrating and scaling the measured Index of Refraction profile to correlated solution properties of interest such as density, concentration, and temperature. Additional software has been developed to compile the processed images into a three dimensional matrix that contains fluid composition data as a function of experiment time and position in the fluid cell. These data are combined with data from the other sensor systems, and analyzed in the context of transport coefficients associated with the various transport phenomena. Analysis protocols have been developed to measure the transient kinetics, and steady state distribution of fluid components that occur in response to the applied driving potentials. The results are expressed in terms of effective transport coefficients. Experiments have been performed using a variety of solutes, and results generated are that are in agreement with published transport coefficient values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1347881','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1347881"><span>A Critical Review of the Impacts of Leaking CO 2 Gas and Brine on Groundwater Quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qafoku, Nikolla; Zheng, Liange; Bacon, Diana H.</p> <p>2015-09-30</p> <p>Geological carbon sequestration (GCS) is a global carbon emission reduction strategy involving the capture of CO 2 emitted from fossil fuel burning power plants, as well as the subsequent injection of the captured CO 2 gas into deep saline aquifers or depleted oil and gas reservoirs. A critical question that arises from the proposed GCS is the potential impacts of CO 2 injection on the quality of drinking-water systems overlying CO 2 sequestration storage sites. Although storage reservoirs are evaluated and selected based on their ability to safely and securely store emplaced fluids, leakage of CO 2 from storage reservoirsmore » is a primary risk factor and potential barrier to the widespread acceptance of geologic CO 2 sequestration (OR Harvey et al. 2013; Y-S Jun et al. 2013; DOE 2007). Therefore, a systematic understanding of how CO 2 leakage would affect the geochemistry of potable aquifers, and subsequently control or affect elemental and contaminant release via sequential and/or simultaneous abiotic and biotic processes and reactions is vital.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5455622','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5455622"><span>Experimental and Numerical Study on Effect of Sample Orientation on Auto-Ignition and Piloted Ignition of Poly(methyl methacrylate)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Peng, Fei; Zhou, Xiao-Dong; Zhao, Kun; Wu, Zhi-Bo; Yang, Li-Zhong</p> <p>2015-01-01</p> <p>In this work, the effect of seven different sample orientations from 0° to 90° on pilot and non-pilot ignition of PMMA (poly(methyl methacrylate)) exposed to radiation has been studied with experimental and numerical methods. Some new and significant conclusions are drawn from the study, including a U-shape curve of ignition time and critical mass flux as sample angle increases for pilot ignition conditions. However, in auto-ignition, the ignition time and critical mass flux increases with sample angle α. Furthermore, a computational fluid dynamic model have been built based on the Fire Dynamics Simulator (FDS6) code to investigate the mechanisms controlling the dependence on sample orientation of the ignition of PMMA under external radiant heating. The results of theoretical analysis and modeling results indicate the decrease of total incident heat flux at sample surface plays the dominant role during the ignition processes of auto-ignition, but the volatiles gas flow has greater influence for piloted ignition conditions. PMID:28793421</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9282E..1NS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9282E..1NS"><span>Study on the temperature gradient evolution of large size nonlinear crystal based on the fluid-solid coupling theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, F. Z.; Zhang, P.; Liang, Y. C.; Lu, L. H.</p> <p>2014-09-01</p> <p>In the non-critical phase-matching (NCPM) along the Θ =90° direction, ADP and DKDP crystals which have many advantages, including a large effective nonlinear optical coefficient, a small PM angular sensitivity and non beam walk-off, at the non-critical phase-matching become the competitive candidates in the inertial confinement fusion(ICF) facility, so the reasonable temperature control of crystals has become more and more important .In this paper, the fluid-solid coupling models of ADP crystal and DKDP crystal which both have anisotropic thermal conductivity in the states of vacuum and non-vacuum were established firstly, and then simulated using the fluid analysis software Fluent. The results through the analysis show that the crystal surface temperature distribution is a ring shape, the temperature gradients in the direction of the optical axis both the crystals are 0.02°C and 0.01°C due to the air, the lowest temperature points of the crystals are both at the center of surface, and the temperatures are lower than 0.09°C and 0.05°C compared in the vacuum and non-vacuum environment, then propose two designs for heating apparatus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865007','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865007"><span>Aqueous cutting fluid for machining fissionable materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Duerksen, Walter K.; Googin, John M.; Napier, Jr., Bradley</p> <p>1984-01-01</p> <p>The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApNan...5.1009H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApNan...5.1009H"><span>Polymeric nanospheres as a displacement fluid in enhanced oil recovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hendraningrat, Luky; Zhang, Julien</p> <p>2015-12-01</p> <p>This paper presents the investigation of using nanoscale polyacrylamide-based spheres (nanospheres) as a displacement fluid in enhanced oil recovery (EOR). Coreflood experiments were conducted to evaluate the impact of nanospheres and its concentration dispersed in model formation water on oil recovery during a tertiary oil recovery process. The coreflood results showed that nanospheres can enhance residual oil recovery in the sandstone rock samples and its concentration showed a significant impact into incremental oil. By evaluating the contact angle, it was observed that wettability alteration also might be involved in the possible oil displacement mechanism in this process together with fluid behavior and permeability to water that might divert injected fluid into unswept oil areas and enhance the residual oil recovery. These investigations promote nanospheres aqueous disperse solution as a potential displacement fluid in EOR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21149135-transient-droplet-behavior-droplet-breakup-during-bulk-confined-shear-flow-blends-one-viscoelastic-component-experiments-modelling-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21149135-transient-droplet-behavior-droplet-breakup-during-bulk-confined-shear-flow-blends-one-viscoelastic-component-experiments-modelling-simulations"><span>Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cardinaels, Ruth; Verhulst, Kristof; Moldenaers, Paula</p> <p>2008-07-07</p> <p>The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects ofmore » droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally, experimental data are compared with 3D simulations, performed with a volume-of-fluid algorithm.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1660i0036B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1660i0036B"><span>Base fluid in improving heat transfer for EV car battery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bin-Abdun, Nazih A.; Razlan, Zuradzman M.; Shahriman, A. B.; Wan, Khairunizam; Hazry, D.; Ahmed, S. Faiz; Adnan, Nazrul H.; Heng, R.; Kamarudin, H.; Zunaidi, I.</p> <p>2015-05-01</p> <p>This study examined the effects of base fluid (as coolants) channeling inside the heat exchanger in the process of the increase in thermal conductivity between EV car battery and the heat exchanger. The analysis showed that secondary cooling system by means of water has advantages in improving the heat transfer process and reducing the electric power loss on the form of thermal energy from batteries. This leads to the increase in the efficiency of the EV car battery, hence also positively reflecting the performance of the EV car. The present work, analysis is performed to assess the design and use of heat exchanger in increasing the performance efficiency of the EV car battery. This provides a preface to the use this design for nano-fluids which increase and improve from heat transfer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870015206','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870015206"><span>Three-step cylindrical seal for high-performance turbomachines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hendricks, Robert C.</p> <p>1987-01-01</p> <p>A three-step cylindrical seal configuration representing the seal for a high performance turbopump (e.g., the space shuttle main engine fuel pump) was tested under static (nonrotating) conditions. The test data included critical mass flux and pressure profiles over a wide range of inlet temperatures and pressures for fluid nitrogen and fluid hydrogen with the seal in concentric and fully eccentric positions. The critical mass flux (leakage rate) was 70% that of an equivalent straight cylindrical seal with a correspondingly higher pressure drop based on the same flow areas of 0.3569 sq cm but 85% that of the straight seal based on the third-step flow area of 0.3044 sq cm. The mass flow rates for the three step cylindrical seal in the fully eccentric and concentric positions were essentially the same, and the trends in flow coefficient followed those of a simple axisymmetric inlet configuration. However, for inlet stagnation temperatures less than the thermodynamic critical temperature the pressure profiles exhibited a flat region throughout the third step of the seal, with the pressure magnitude dependent on the inlet stagnation temperature. Such profiles represent an extreme positive direct stiffness. These conditions engendered a crossover in the pressure profile upstream of the postulated choke that resulted in a local negative stiffness. Flat and crossover profiles resulting from choking within the seal are practically unknown to the seal designer. However, they are of critical importance to turbomachine stability and must be integrated into any dynamic analysis of a seal of this configuration. In addition, choking is highly dependent on geometry, inlet-to-backpressure ratio, and inlet temperature and can occur within the seal even though the backpressure is above the critical pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JHyd..335..330T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JHyd..335..330T"><span>Hypoaigic influences on groundwater flux to a seasonally saline river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trefry, M. G.; Svensson, T. J. A.; Davis, G. B.</p> <p>2007-03-01</p> <p>SummaryHypoaigic zones are aquifer volumes close to and beneath the shores of saline surface water bodies, and are characterized by the presence of time-dependent natural convection and chemical stratification. When transient and cyclic processes are involved there is significant potential for complex flow and reaction in the near-shore aquifer, presenting a unique challenge to pollutant risk assessment methodologies. This work considers the nature of some hypoaigic processes generated by the seasonally saline Canning River of Western Australia near a site contaminated by petroleum hydrocarbons. A dissolved hydrocarbon plume migrates within the shallow superficial aquifer to the nearby bank of the Canning River. Beneath the river bank a zone of complex fluid mixing is established by seasonal and tidal influences. Understanding this complexity and the subsequent ramifications for local biogeochemical conditions is critical to inferring the potential for degradation of advecting contaminants. A range of modelling approaches throws light on the overall topographic controls of discharge to the river, on the saline convection processes operating under the river bank, on the potential for fluid mixing, and on the various important time scales in the system. Saline distributions simulated within the aquifer hypoaigic zone are in at least qualitative agreement with previous field measurements at the site and are strongly affected by seasonal influences. Groundwater seepage velocities at the shoreline are found to be positively correlated with river salinity. Calculations of fluid age distributions throughout the system show sensitivity to dispersivity values; however, maximum fluid ages under the river appear to be diffusion limited to a few decades. The saline convection cell in the aquifer defines a zone of strong dispersive dilution of aged (many decades) deep aquifer fluids with relatively young (several months) riverine fluids. Seasonal recharge and river salinity cycles induce regular perturbations to the convection cell, yielding intra-annual variations of 50% in seepage velocity and almost 30% in wedge penetration distance at the plume location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920012032','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920012032"><span>A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Karimi, Amir</p> <p>1991-01-01</p> <p>NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28840687','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28840687"><span>[Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin</p> <p>2017-07-01</p> <p>In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJP..132..202K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJP..132..202K"><span>Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krishna, P. Mohan; Sandeep, N.; Sharma, Ram Prakash</p> <p>2017-05-01</p> <p>This paper presents the two-dimensional magnetohydrodynamic Carreau fluid flow over a plane and parabolic regions in the form of buoyancy and exponential heat source effects. Soret and Dufour effects are used to examine the heat and mass transfer process. The system of ODE's is obtained by utilizing similarity transformations. The RK-based shooting process is employed to generate the numerical solutions. The impact of different parameters of interest on fluid flow, concentration and thermal fields is characterized graphically. Tabular results are presented to discuss the wall friction, reduced Nusselt and Sherwood numbers. It is seen that the flow, thermal and concentration boundary layers of the plane and parabolic flows of Carreau fluid are non-uniform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940005991&hterms=approach+activities+experimental&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dapproach%2Bactivities%2Bexperimental','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940005991&hterms=approach+activities+experimental&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dapproach%2Bactivities%2Bexperimental"><span>Issues and approach to develop validated analysis tools for hypersonic flows: One perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Deiwert, George S.</p> <p>1993-01-01</p> <p>Critical issues concerning the modeling of low density hypervelocity flows where thermochemical nonequilibrium effects are pronounced are discussed. Emphasis is on the development of validated analysis tools, and the activity in the NASA Ames Research Center's Aerothermodynamics Branch is described. Inherent in the process is a strong synergism between ground test and real gas computational fluid dynamics (CFD). Approaches to develop and/or enhance phenomenological models and incorporate them into computational flowfield simulation codes are discussed. These models were partially validated with experimental data for flows where the gas temperature is raised (compressive flows). Expanding flows, where temperatures drop, however, exhibit somewhat different behavior. Experimental data for these expanding flow conditions is sparse and reliance must be made on intuition and guidance from computational chemistry to model transport processes under these conditions. Ground based experimental studies used to provide necessary data for model development and validation are described. Included are the performance characteristics of high enthalpy flow facilities, such as shock tubes and ballistic ranges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCo...815817O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCo...815817O"><span>Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oakes, Patrick W.; Wagner, Elizabeth; Brand, Christoph A.; Probst, Dimitri; Linke, Marco; Schwarz, Ulrich S.; Glotzer, Michael; Gardel, Margaret L.</p> <p>2017-06-01</p> <p>Cytoskeletal mechanics regulates cell morphodynamics and many physiological processes. While contractility is known to be largely RhoA-dependent, the process by which localized biochemical signals are translated into cell-level responses is poorly understood. Here we combine optogenetic control of RhoA, live-cell imaging and traction force microscopy to investigate the dynamics of actomyosin-based force generation. Local activation of RhoA not only stimulates local recruitment of actin and myosin but also increased traction forces that rapidly propagate across the cell via stress fibres and drive increased actin flow. Surprisingly, this flow reverses direction when local RhoA activation stops. We identify zyxin as a regulator of stress fibre mechanics, as stress fibres are fluid-like without flow reversal in its absence. Using a physical model, we demonstrate that stress fibres behave elastic-like, even at timescales exceeding turnover of constituent proteins. Such molecular control of actin mechanics likely plays critical roles in regulating morphodynamic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930010190','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930010190"><span>Issues and approach to develop validated analysis tools for hypersonic flows: One perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Deiwert, George S.</p> <p>1992-01-01</p> <p>Critical issues concerning the modeling of low-density hypervelocity flows where thermochemical nonequilibrium effects are pronounced are discussed. Emphasis is on the development of validated analysis tools. A description of the activity in the Ames Research Center's Aerothermodynamics Branch is also given. Inherent in the process is a strong synergism between ground test and real-gas computational fluid dynamics (CFD). Approaches to develop and/or enhance phenomenological models and incorporate them into computational flow-field simulation codes are discussed. These models have been partially validated with experimental data for flows where the gas temperature is raised (compressive flows). Expanding flows, where temperatures drop, however, exhibit somewhat different behavior. Experimental data for these expanding flow conditions are sparse; reliance must be made on intuition and guidance from computational chemistry to model transport processes under these conditions. Ground-based experimental studies used to provide necessary data for model development and validation are described. Included are the performance characteristics of high-enthalpy flow facilities, such as shock tubes and ballistic ranges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNG21A1805V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNG21A1805V"><span>Increasing the production efficiency and reducing the environmental impacts of hydraulic fracturing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viswanathan, H. S.</p> <p>2016-12-01</p> <p>Shale gas is an unconventional fossil energy resource profoundly impacting US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydraulic fracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and prototyped the microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. The goal is transformation of hydraulic fracturing from present ad hoc approaches to science-based strategies while safely enhancing production. Specifically, we have demonstrated an integrated experimental/modeling approach that allows for a comprehensive characterization of fluid-solid interactions and develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880014515','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880014515"><span>Noncontact temperature measurement: Requirements and applications for metals and alloys research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Perepezko, J. H.</p> <p>1988-01-01</p> <p>Temperature measurement is an essential capability for almost all areas of metals and alloys research. In the microgravity environment many of the science priorities that have been identified for metals and alloys also require noncontact temperature measurement capability. For example, in order to exploit the full potential of containerless processing, it is critical to have available a suitable noncontact temperature measurement system. This system is needed to track continuously the thermal history, including melt undercooling and rapid recalescence, of relatively small metal spheres during free-fall motion in drop tube systems. During containerless processing with levitation-based equipment, accurate noncontact temperature measurement is required to monitor one or more quasi-static samples with sufficient spatial and thermal resolution to follow the progress of solidification fronts originating in undercooled melts. In crystal growth, thermal migration, coarsening and other experiments high resolution thermal maps would be a valuable asset in the understanding and modeling of solidification processes, fluid flows and microstructure development. The science and applications requirements place several constraints on the spatial resolution, response time and accuracy of suitable instrumentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24328430','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24328430"><span>Modern supercritical fluid technology for food applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>King, Jerry W</p> <p>2014-01-01</p> <p>This review provides an update on the use of supercritical fluid (SCF) technology as applied to food-based materials. It advocates the use of the solubility parameter theory (SPT) for rationalizing the results obtained when employing sub- and supercritical media to food and nutrient-bearing materials and for optimizing processing conditions. Total extraction and fractionation of foodstuffs employing SCFs are compared and are illustrated by using multiple fluids and unit processes to obtain the desired food product. Some of the additional prophylactic benefits of using carbon dioxide as the processing fluid are explained and illustrated with multiple examples of commercial products produced using SCF media. I emphasize the role of SCF technology in the context of environmentally benign and sustainable processing, as well as its integration into an overall biorefinery concept. Conclusions are drawn in terms of current trends in the field and future research that is needed to secure new applications of the SCF platform as applied in food science and technology.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29389698','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29389698"><span>Goal-Directed Fluid Resuscitation Protocol Based on Arterial Waveform Analysis of Major Burn Patients in a Mass Burn Casualty.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chiao, Hao-Yu; Chou, Chang-Yi; Tzeng, Yuan-Sheng; Wang, Chih-Hsin; Chen, Shyi-Gen; Dai, Niann-Tzyy</p> <p>2018-02-01</p> <p>Adequate fluid titration during the initial resuscitation period of major burn patients is crucial. This study aimed to evaluate the feasibility and efficacy of a goal-directed fluid resuscitation protocol that used hourly urine output plus the arterial waveform analysis FloTrac (Edwards LifeSciences, Irvine, Calif) system for major burns to avoid fluid overload. We conducted a retrospective cohort study of 43 major burn patients at the Tri-Service General Hospital after the Formosa Fun Coast Dust Explosion on June 27, 2015. Because of the limited capacity of intensive care units (ICUs), 23 intubated patients were transferred from the burn wards or emergency department to the ICU within 24 hours. Fluid administration was adjusted to achieve a urine output of 30 to 50 mL/h, cardiac index greater than 2.5 L/min/m, and stroke volume variation (SVV) less than 12%. The hourly crystalloid fluid infusion rate was titrated based on SVV and hourly urine output. Of the 23 critically burned patients admitted to the ICU, 13 patients who followed the goal-directed fluid resuscitation protocol within 12 hours postburn were included in the analysis. The mean age (years) was 21.8, and the mean total body surface area (TBSA) burned (%) was 68.0. The mean Revised Baux score was 106.8. All patients sustained inhalation injury. The fluid volumes administered to patients in the first 24 hours and the second 24 hours (mL/kg/% total body surface area) were 3.62 ± 1.23 and 2.89 ± 0.79, respectively. The urine outputs in the first 24 hours and the second 24 hours (mL/kg/h) were 1.13 ± 0.66 and 1.53 ± 0.87, respectively. All patients achieved the established goals within 32 hours postburn. In-hospital mortality rate was 0%. The SVV-based goal-directed fluid resuscitation protocol leads to less unnecessary fluid administration during the early resuscitation phase. Clinicians can efficaciously manage the dynamic body fluid changes in major burn patients under the guidance of the protocol.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720020315','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720020315"><span>Joule-Thomson inversion curves and related coefficients for several simple fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hendricks, R. C.; Peller, I. C.; Baron, A. K.</p> <p>1972-01-01</p> <p>The equations of state (PVT relations) for methane, oxygen, argon, carbon dioxide, carbon monoxide, neon, hydrogen, and helium were used to establish Joule-Thomson inversion curves for each fluid. The principle of corresponding states was applied to the inversion curves, and a generalized inversion curve for fluids with small acentric factors was developed. The quantum fluids (neon, hydrogen, and helium) were excluded from the generalization, but available data for the fluids xenon and krypton were included. The critical isenthalpic Joule-Thomson coefficient mu sub c was determined; and a simplified approximation mu sub c approximates T sub c divided by 6P sub c was found adequate, where T sub c and P sub c are the temperature and pressure at the thermodynamic critical point. The maximum inversion temperatures were obtained from the second virial coefficient (maximum (B/T)).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4557507','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4557507"><span>Fluid Therapy and Outcome: Balance Is Best</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Allen, Sara J.</p> <p>2014-01-01</p> <p>Abstract: The use of intravenous fluids is routine in patients undergoing surgery or critical illness; however, controversy still exists regarding optimum fluid therapy. Recent literature has examined the effects of different types, doses, and timing of intravenous fluid therapy. Each of these factors may influence patient outcomes. Crystalloids consist of isotonic saline or balanced electrolyte solutions and widely distribute across extracellular fluid compartments, whereas colloids contain high-molecular-weight molecules suspended in crystalloid carrier solution and do not freely distribute across the extracellular fluid compartments. Colloids vary in composition and associated potential adverse effects. Recent evidence has highlighted safety and ethical concerns regarding the use of colloid solutions in critically ill patients, particularly the use of synthetic starch solutions. which have been associated with increased morbidity and mortality. Crystalloid solutions with a chloride-rich composition (e.g., isotonic saline) have been associated with metabolic acidosis, hyperchloremia, increased incidence of acute kidney injury, and increased requirement for renal replacement therapy. An optimum dose of intravenous fluids remains controversial with no definitive evidence to support restrictive versus liberal approaches. Further high-quality trials are needed to elucidate the optimum fluid therapy for patients, but currently a balanced approach to type, dose, and timing of fluids is recommended. PMID:24779116</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24779116','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24779116"><span>Fluid therapy and outcome: balance is best.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Allen, Sara J</p> <p>2014-03-01</p> <p>The use of intravenous fluids is routine in patients undergoing surgery or critical illness; however, controversy still exists regarding optimum fluid therapy. Recent literature has examined the effects of different types, doses, and timing of intravenous fluid therapy. Each of these factors may influence patient outcomes. Crystalloids consist of isotonic saline or balanced electrolyte solutions and widely distribute across extracellular fluid compartments, whereas colloids contain high-molecular-weight molecules suspended in crystalloid carrier solution and do not freely distribute across the extracellular fluid compartments. Colloids vary in composition and associated potential adverse effects. Recent evidence has highlighted safety and ethical concerns regarding the use of colloid solutions in critically ill patients, particularly the use of synthetic starch solutions, which have been associated with increased morbidity and mortality. Crystalloid solutions with a chloride-rich composition (e.g., isotonic saline) have been associated with metabolic acidosis, hyperchloremia, increased incidence of acute kidney injury, and increased requirement for renal replacement therapy. An optimum dose of intravenous fluids remains controversial with no definitive evidence to support restrictive versus liberal approaches. Further high-quality trials are needed to elucidate the optimum fluid therapy for patients, but currently a balanced approach to type, dose, and timing of fluids is recommended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23967709','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23967709"><span>Modeling and validation of heat and mass transfer in individual coffee beans during the coffee roasting process using computational fluid dynamics (CFD).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan</p> <p>2013-01-01</p> <p>Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25970415','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25970415"><span>[Hyperhydration and dialysis in acute kidney failure].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saner, Fuat H; Bienholz, Anja; Tyczynski, Bartosz; Kribben, Andreas; Feldkamp, Thorsten</p> <p>2015-05-01</p> <p>Despite the advances in critical care medicine, the hospital mortality in patients with acute kidney injury (AKI) requiring dialysis remains high. Depending on the underlying disease the in-house mortality is reported to be up to 80%. Several observational studies demonstrated an association between mortality and fluid overload. A primary mechanism of interest is that fluid overload causes tissue edema and subsequent reduction of perfusion, oxygenation and nutrient delivery. This results in further renal damage. In addition, fluid overload-related dilution within the extracellular space causes artificially low serum creatinine, which masks AKI diagnosis. As a consequence, renal protective management strategies are deferred, which further aggravates kidney injury. This aggravation of renal damage subsequently increases the mortality. This review discusses the role of fluid overload for outcomes in critically ill patients as described in the current literature and assesses criteria for the initiation of renal replacement therapy in this critically ill population. © Georg Thieme Verlag KG Stuttgart · New York.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1291213-fast-magnetic-reconnection-large-guide-fields','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1291213-fast-magnetic-reconnection-large-guide-fields"><span>Fast magnetic reconnection with large guide fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Stanier, A.; Simakov, Andrei N.; Chacón, L.; ...</p> <p>2015-01-09</p> <p>We domonstrate, using two-fluid simulations, that low-βmagnetic reconnection remains fast, regardless of the presence of fast dispersive waves, which have been previously suggested to play a critical role. In order to understand these results, a discrete model is constructed that offers scaling relationships for the reconnection rate and dissipation region (DR) thickness in terms of the upstream magnetic field and DR length. Moreover, we verify these scalings numerically and show how the DR self-adjusts to process magnetic flux at the same rate that it is supplied to a larger region where two-fluid effects become important. The rate is therefore independentmore » of the DR physics and is in good agreement with kinetic results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27100933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27100933"><span>Ionic Vapor Composition in Critical and Supercritical States of Strongly Interacting Ionic Compounds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chaban, Vitaly V; Prezhdo, Oleg V</p> <p>2016-05-12</p> <p>The critical point, CP (T, P), of the phase diagram quantifies the minimum amount of kinetic energy needed to prevent a substance from existing in a condensed phase. Therefore, the CP is closely related to the properties of the fluid far below the critical temperature. Approaches designed to predict thermophysical properties of a system necessarily aim to provide reliable estimates of the CP. Vice versa, CP estimation is impossible without knowledge of the vapor phase behavior. We report ab initio Born-Oppenheimer molecular dynamics (BOMD) simulations of sodium and potassium chlorides, NaCl and KCl, at and above their expected CPs. We advance the present knowledge regarding the existence of ionic species in the vapor phase by establishing significant percentages of atomic clusters: 29-30% in NaCl and 34-38% in KCl. A neutral pair of counterions is the most abundant cluster in the ionic vapors (ca. 35% of all vaporized ions exist in this form). Unexpectedly, an appreciable fraction of clusters is charged. The ionic vapor composition is determined by the vapor density, rather than the nature of the alkali ion. The previously suggested CPs of NaCl and KCl appear overestimated, based on the present simulations. The reported results offer essential insights into the ionic fluid properties and assist in development of thermodynamic theories. The ab initio BOMD method has been applied to investigate the vapor phase composition of an ionic fluid for the first time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840061397&hterms=facility+management&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfacility%2Bmanagement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840061397&hterms=facility+management&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfacility%2Bmanagement"><span>Cryogenic Fluid Management Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.</p> <p>1984-01-01</p> <p>The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950017797','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950017797"><span>High frequency flow-structural interaction in dense subsonic fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Baw-Lin; Ofarrell, J. M.</p> <p>1995-01-01</p> <p>Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25024413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25024413"><span>Enabling the environmentally clean air transportation of the future: a vision of computational fluid dynamics in 2030.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Slotnick, Jeffrey P; Khodadoust, Abdollah; Alonso, Juan J; Darmofal, David L; Gropp, William D; Lurie, Elizabeth A; Mavriplis, Dimitri J; Venkatakrishnan, Venkat</p> <p>2014-08-13</p> <p>As global air travel expands rapidly to meet demand generated by economic growth, it is essential to continue to improve the efficiency of air transportation to reduce its carbon emissions and address concerns about climate change. Future transports must be 'cleaner' and designed to include technologies that will continue to lower engine emissions and reduce community noise. The use of computational fluid dynamics (CFD) will be critical to enable the design of these new concepts. In general, the ability to simulate aerodynamic and reactive flows using CFD has progressed rapidly during the past several decades and has fundamentally changed the aerospace design process. Advanced simulation capabilities not only enable reductions in ground-based and flight-testing requirements, but also provide added physical insight, and enable superior designs at reduced cost and risk. In spite of considerable success, reliable use of CFD has remained confined to a small region of the operating envelope due, in part, to the inability of current methods to reliably predict turbulent, separated flows. Fortunately, the advent of much more powerful computing platforms provides an opportunity to overcome a number of these challenges. This paper summarizes the findings and recommendations from a recent NASA-funded study that provides a vision for CFD in the year 2030, including an assessment of critical technology gaps and needed development, and identifies the key CFD technology advancements that will enable the design and development of much cleaner aircraft in the future. © 2014 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.908a2077M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.908a2077M"><span>A study of energy consumption in turning process using lubrication of nanoparticles enhanced coconut oil (NECO)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mansor, A. F.; Zakaria, M. S.; Azmi, A. I.; Khalil, A. N. M.; Musa, N. A.</p> <p>2017-10-01</p> <p>Cutting fluids play very important role in machining application in order to increase tool life, surface finish and reduce energy consumption. Instead of using petrochemical and synthetic based cutting fluids, vegetable oil based lubricants is safety for operators, environmental friendly and become more popular in the industrial applications. This research paper aims to find the advantage of using vegetable oils (coconut oil) with additional of nano particles (CuO) as lubricant to the energy consumption during machining process. The energy was measured for each run from 2 level factorial experimental layout. Obtained results illustrate that lubricant with enhancement of nanoparticles has capability to improve the energy consumption during the machining process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA505036','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA505036"><span>Engineering Design Theory: Applying the Success of the Modern World to Campaign Creation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-05-21</p> <p>and school of thought) to the simple methods of design.6 This progression is analogous to Peter Senge’s levels of learning disciplines.7 Senge...iterative learning and adaptive action that develops and employs critical and creative thinking , enabling leaders to apply the necessary logic to...overcome mental rigidity and develop group insight, the Army must learn to utilize group learning and thinking , through a fluid and creative open process</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V41B4809S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V41B4809S"><span>Laboratory and numerical decompression experiments: an insight into the nucleation and growth of bubbles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spina, L.; Colucci, S.; De'Michieli Vitturi, M.; Scheu, B.; Dingwell, D. B.</p> <p>2014-12-01</p> <p>Numerical modeling, joined with experimental investigations, is fundamental for studying the dynamics of magmatic fluid into the conduit, where direct observations are unattainable. Furthermore, laboratory experiments can provide invaluable data to vunalidate complex multiphase codes. With the aim on unveil the essence of nucleation process, as well as the behavior of the multiphase magmatic fluid, we performed slow decompression experiments in a shock tube system. We choose silicon oil as analogue for the magmatic melt, and saturated it with Argon at 10 MPa for 72h. The slow decompression to atmospheric conditions was monitored through a high speed camera and pressure sensors, located into the experimental conduit. The experimental conditions of the decompression process have then been reproduced numerically with a compressible multiphase solver based on OpenFOAM. Numerical simulations have been performed by the OpenFOAM compressibleInterFoam solver for 2 compressible, non-isothermal immiscible fluids, using a VOF (volume of fluid) phase-fraction based interface capturing approach. The data extracted from 2D images obtained from laboratory analyses were compared to the outcome of numerical investigation, showing the capability of the model to capture the main processes studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcMod.106...12T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcMod.106...12T"><span>Generation of long subharmonic internal waves by surface waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tahvildari, Navid; Kaihatu, James M.; Saric, William S.</p> <p>2016-10-01</p> <p>A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10475256','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10475256"><span>Improved soft-agar colony assay in a fluid processing apparatus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Forsman, A D; Herpich, A R; Chapes, S K</p> <p>1999-01-01</p> <p>The standard method for quantitating bone marrow precursor cells has been to count the number of colony-forming units that form in semisolid (0.3%) agar. Recently we adapted this assay for use in hardware, the Fluid Processing Apparatus, that is flown in standard payload lockers of the space shuttle. When mouse or rat macrophage colony-forming units were measured with this hardware in ground-based assays, we found significantly more colony growth than that seen in standard plate assays. The improved growth correlates with increased agar thickness but also appears to be due to properties inherent to the Fluid Processing Apparatus. This paper describes an improved method for determining bone marrow macrophage precursor numbers in semisolid agar.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol15/pdf/CFR-2010-title40-vol15-sec65-119.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol15/pdf/CFR-2010-title40-vol15-sec65-119.pdf"><span>40 CFR 65.119 - Recordkeeping provisions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... agitators equipped with a dual mechanical seal system that includes barrier fluid system, the owner or... assessment that identifies the representative composition of the process fluid. The assessment shall be based... pump visual inspections as specified in § 65.107(b)(4). (ii) Documentation of dual mechanical seal pump...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16852077','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16852077"><span>Predicting mixture phase equilibria and critical behavior using the SAFT-VRX approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Lixin; Zhao, Honggang; Kiselev, Sergei B; McCabe, Clare</p> <p>2005-05-12</p> <p>The SAFT-VRX equation of state combines the SAFT-VR equation with a crossover function that smoothly transforms the classical equation into a nonanalytical form close to the critical point. By a combinination of the accuracy of the SAFT-VR approach away from the critical region with the asymptotic scaling behavior seen at the critical point of real fluids, the SAFT-VRX equation can accurately describe the global fluid phase diagram. In previous work, we demonstrated that the SAFT-VRX equation very accurately describes the pvT and phase behavior of both nonassociating and associating pure fluids, with a minimum of fitting to experimental data. Here, we present a generalized SAFT-VRX equation of state for binary mixtures that is found to accurately predict the vapor-liquid equilibrium and pvT behavior of the systems studied. In particular, we examine binary mixtures of n-alkanes and carbon dioxide + n-alkanes. The SAFT-VRX equation accurately describes not only the gas-liquid critical locus for these systems but also the vapor-liquid equilibrium phase diagrams and thermal properties in single-phase regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43G1731E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43G1731E"><span>Sample environment for in situ synchrotron XRD measurements for CO2 interaction with subsurface materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elbakhshwan, M.; Gill, S.; Weidner, R.; Ecker, L.</p> <p>2017-12-01</p> <p>Sequestration of CO2 in geological formations requires a deep understanding of its interaction with the cement-casing components in the depleted oil and gas wells. Portland cement is used to seal the wellbores; however it tends to interact with the CO2. Therefore it is critical to investigate the wellbore integrity over long term exposure to CO2. Studies showed that, CO2 leakage is due to the flow through the casing-cement microannulus, cement-cement fractures, or the cement-caprock interface. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using XRF, XANES and X-ray tomography techniques. In this study, a synthetic wellbore system, consisting of cement with an embedded rectangular length of steel casing that had grooves to accommodate fluid flow, was used to investigate the casing-cement microannulus through core-flood experiments. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using a sample environment designed and built for in situ X-ray diffraction in the National Synchrotron Light Source II (NSLS II). The formation of carbonate phases at cement -fluid and cement-steel/fluid interfaces will be monitored in real time. Samples may be exposed to super critical CO2 at pressures above 1100 psi and temperatures around 50°C. The reaction cell is built from hastealloy to provide corrosion resistance, while the experimental temperature and pressure are controlled with thermocouples and pressure vessel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1395494','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1395494"><span>A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay</p> <p></p> <p>Horizontal wells combined with successful multistage-hydraulic-fracture treatments are currently the most-established method for effectively stimulating and enabling economic development of gas-bearing organic-rich shale formations. Fracture cleanup in the stimulated reservoir volume (SRV) is critical to stimulation effectiveness and long-term well performance. But, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls to less than expectations. A systematic study of the factors that hinder fracture-fluid cleanup in shale formations can help optimize fracture treatments and better quantify long-term volumes of produced water and gas. Fracture-fluid cleanup is a complex process influenced by mutliphase flow through porousmore » media (relative permeability hysteresis, capillary pressure), reservoir-rock and -fluid properties, fracture-fluid properties, proppant placement, fracture-treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best and most-practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent effect on fracture-fluid cleanup and well deliverability. Here, a 3D, two-phase, dual-porosity model was used to investigate the effect of mutliphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir-rock compaction, gas slippage, and gas desorption on fracture-fluid cleanup and well performance in Marcellus Shale. Our findings have shed light on the factors that substantially constrain efficient fracture-fluid cleanup in gas shales, and we have provided guidelines for improved fracture-treatment designs and water management.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>