Science.gov

Sample records for critical loading configurations

  1. CRITICAL LOADS METHODS

    EPA Science Inventory

    I summarize the results of an interagency project that 1) defines a generic approach to quantifying and reporting critical loads, and 2) exercises that generic approach by examining a data rich system -- the critical loads of sulfur deposition and it's effect on the chronic acidi...

  2. Compensator configurations for load currents' symmetrization

    NASA Astrophysics Data System (ADS)

    Rusinaru, D.; Manescu, L. G.; Dinu, R. C.

    2016-02-01

    This paper approaches aspects regarding the mitigation effects of asymmetries in 3-phase 3-wire networks. The measure consisting in connecting of load current symmetrization devices at the load coupling point is presented. A time-variation of compensators parameters is determined as a function of the time-recorded electrical values. The general sizing principle of the load current symmetrization reactive components is based on a simple equivalent model of the unbalanced 3-phase loads. By using these compensators a certain control of the power components transits is ensured in the network. The control is based on the variations laws of the compensators parameters as functions of the recorded electrical values: [B] = [T]·[M]. The link between compensator parameters and measured values is ensured by a transformation matrix [T] for each operation conditions of the supply network. Additional conditions for improving of energy and efficiency performance of the compensator are considered: i.e. reactive power compensation. The compensator sizing algorithm was implemented into a MATLAB environment software, which generate the time-evolution of the parameters of load current symmetrization device. The input data of application takes into account time-recording of the electrical values. By using the compensator sizing software, some results were achieved for the case of a consumer connected at 20 kV busbar of a distribution substation, during 24 hours measurement session. Even the sizing of the compensators aimed some additional network operation aspects (power factor correction) correlated with the total or major load symmetrizations, the harmonics aspects of the network values were neglected.

  3. Unsteady loads due to propulsive lift configurations

    NASA Technical Reports Server (NTRS)

    Morton, J. B.; Haviland, J. K.; Catalano, G. D.; Herling, W. W.

    1975-01-01

    The flow of a jet over an airfoil representative of upper surface blowing was studied using laser techniques. Experimental techniques were developed for the investigation of unsteady pressures behind a cold model jet. Construction of a 1/4 scale model of the 'Beach' test configuration was completed along with construction of a portable detector. The portable detector is used in conjunction with a laser to measure jet flows during tests on the 'Beach' facility. The detector incorporates both optical and electronic components.

  4. Inductrack III configuration--a maglev system for high loads

    SciTech Connect

    Post, Richard F

    2015-03-24

    Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.

  5. Acoustic-loads research for powered-lift configurations

    NASA Technical Reports Server (NTRS)

    Schoenster, J. A.; Willis, C. M.; Schroeder, J. C.; Mixson, J. S.

    1976-01-01

    Data presented from large-scale model tests with jet engines having thrusts of 9 kN (2000 lb) and 36 kN (8000 lb) include acoustic loads for an externally blown wing and flap induced by a TF34 jet engine, an upper surface blown (USB) aircraft model in a wind tunnel, and two USB models in static tests. Comparisons of these results with results from acoustic loads studies on configurations of other sizes are made and the implications of these results on interior noise and acoustic fatigue are discussed.

  6. Critical Configurations of Hard Disks on the Torus

    SciTech Connect

    Mason, J.

    2013-04-16

    CCHDT constructs and classifies various arrangements of hard disks of a single radius places on the unit square with periodic boundary conditions. Specifially, a given configuration is evolved to the nearest critical point on a smoothed hard disk energy fuction, and is classified by the adjacency matrix of the canonically labelled contact graph.

  7. Disposal criticality analysis for immobilized Pu: External configurations

    SciTech Connect

    Gottlieb, P.; Goluoglu, S.; Cloke, P.L.

    1998-03-01

    The problem of potential external criticality is defined according to the following features and issues: The environment outside the waste package is most conveniently divided into 3 zones: (1) Near-field, in the drift, external to the waste package; (2) Near far-field, several meters into the host rock immediately adjacent to the drift; (3) Far far-field, everything beyond the near far-field. These zones have different mechanisms for accumulating a critical mass from the passing waste package outflow. Fissile material can be transported outside of the waste package thereby becoming separated from the neutron absorber. Descriptions of uranium mineral deposits imply that concentrations sufficient for criticality can be accumulated by natural processes, particularly if the uranium is highly enriched. Some configurations of fissile material in the external environment have been identified as having the potential for autocatalytic criticality behavior, but without examining the likelihood of the processes necessary to achieve such configurations. The following factors limit the possibility of external criticality: absence of geologic formations in Yucca Mountain which can cause sufficient concentration, and length of time required to form the typical geologic mineral deposit. The paper summarizes the approach used to analyze criticality and gives results and conclusions of the analysis.

  8. Configuration selection study for isolated loads using parabolic dish modules

    NASA Technical Reports Server (NTRS)

    Revere, W.; Bowyer, J.; Fujita, T.; Awaya, H.

    1981-01-01

    A configuration tradeoff study has been conducted to determine optimum solar thermal parabolic dish power systems for isolated load applications. The specific application of an essentially constant power demand as required for MX missile shelters is treated. Supplying a continuous level of power with high reliability is shown to require a power system comprising modular parabolic dish power units where the heat engines of the modular power units can be driven by fossil fuels as well as solar-derived heat. Since constraints on reliability result in the provision of a power generating capability that exceeds the constant demand level, efficient utilization of the power system requires battery storage. Tradeoffs regarding the optimum size of storage are investigated as a function of the number of power modules and the cost of the fossil fuel which is used to meet the demand when insolation is unavailable and storage is depleted.

  9. Configuration selection study for isolated loads using parabolic dish modules

    NASA Technical Reports Server (NTRS)

    Revere, W.; Bowyer, J.; Fujita, T.; Awaya, H.

    1982-01-01

    A configuration tradeoff study was conducted to determine optimum solar thermal parabolic dish power systems for isolated load applications. The specific application of an essentially constant power demand as required for MX missile shelters is treated. Supplying a continuous level of power with high reliability is shown to require a power system comprising modular parabolic dish power units where the heat engines of the modular power units can be driven by fossil fuels as well as solar-derived heat. Since constraints on reliability result in the provision of a power generating capability that exceeds the constant demand level, efficient utilization of the power system requires battery storage. Tradeoffs regarding the optimum size of storage are investigated as a function of the number of power modules and the cost of the fossil fuel.

  10. Critical configurations for a system of semidegenerate fermions

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos R.; Ruffini, Remo; Fraga, Bernardo M. O.

    2014-09-01

    We study an isothermal system of semidegenerate self-gravitating fermions in general relativity. Such systems present mass density solutions with a central degenerate core, a plateau and a tail, this last following a power law behavior r -2. The different solutions are governed by the free parameters of the model: the degeneracy and the temperature parameters at the center and the particle mass m. We then analyze in detail the free parameter space for a fixed m in the keV region, by studying the one-parameter sequences of equilibrium configurations up to the critical point, which is represented by the maximum in a central density ( ρ 0) vs. core mass ( M c ) diagram. We show that for fully degenerate cores, the known expression for the critical core mass M {/c cr } ∝ m {/pl 3}/ m 2 is obtained, while for low degenerate cores, the critical core mass increases, showing temperature effects in a nonlinear way. The main result of this work is that when applying this theory to model the distribution of dark matter in galaxies from the very center to the outer halos, we do not find any critical corehalo configuration of self-gravitating fermions that would be able to explain the super-massive dark object in their centers and the outer halo simultaneously.

  11. Silicon Nitride Creep Under Various Specimen-Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Holland, Frederic A.

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC 132) was performed at 1300 C in air using five different specimen-loading configurations: (1) pure tension, (2) pure compression, (3) four-point uniaxial flexure, (4) ball-on-ring biaxial flexure, and (5) ring-on-ring biaxial flexure. This paper reports experimental results as well as test techniques developed in this work. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compression loading, nominal creep strain generally decreased with time, resulting in a less-defined steady-state condition. Of the four creep formulations-power-law, hyperbolic sine, step, and redistribution--the conventional power-law formulation still provides the most convenient and reasonable estimation of the creep parameters of the NC 132 material. The data base to be obtained will be used to validate the NASA Glenn-developed design code CARES/Creep (ceramics analysis and reliability evaluation of structures and creep).

  12. Detection of Critical Camera Configurations for Structure from Motion

    NASA Astrophysics Data System (ADS)

    Michelini, M.; Mayer, H.

    2014-03-01

    This paper deals with the detection of critical, i.e., poor or degenerate camera configurations, with a poor or undefined intersection geometry between views. This is the basis for a calibrated Structure from Motion (SfM) approach employing image triplets for complex, unordered image sets, e.g., obtained by combining terrestrial images and images from small Unmanned Aerial Systems (UAS). Poor intersection geometry results from a small ratio between the baseline length and the depth of the scene. If there is no baseline between views, the intersection geometry becomes undefined. Our approach can detect image pairs without or with a very weak baseline (motion degeneracy). For the detection we have developed various metrics and evaluated them by means of extensive experiments with about 1500 image pairs. The metrics are based on properties of the reconstructed 3D points, such as the roundness of the error ellipsoid. The detection of weak baselines is formulated as a classification problem using the metrics as features. Machine learning techniques are applied to improve the classification. By taking into account the critical camera configurations during the iterative composition of the image set, a complete, metric 3D reconstruction of the whole scene could be achieved also in this case. We sketch our approach for the orientation of unordered image sets and finally demonstrate that the approach is able to produce very accurate and reliable orientations.

  13. An Investigation of the Inertial Properties of Backpacks Loaded in Various Configurations

    DTIC Science & Technology

    1982-05-01

    and Richard C. Nelson, Ph.D. S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Biomechanics ...backpacks loads backpack system load carrying military clothing human backpack system military equipment loading configurations inertial properties 2i04...configuration, a 12.00-kg load, consisting of military clothing and equip- ment, was placed in the packs. The locations of the items were manipulated

  14. Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations

    SciTech Connect

    John D. Bess

    2009-11-01

    One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.

  15. Load support system analysis high speed input pinion configuration

    NASA Technical Reports Server (NTRS)

    Gassel, S. S.; Pirvics, J.

    1979-01-01

    An analysis and a series of computerized calculations were carried out to explore competing prototype design concepts of a shaft and two taper-roller bearings systems to support the high-speed input pinion of an advanced commercial helicopter transmission. The results were used to evaluate designs both for a straddle arrangement where the pinion gear is located between the bearings and for a cantilever arrangement where the pinion is outboard of the two bearings. Effects of varying parameters including applied gear load, preload, wall thickness, interference fits, bearing spacing and pinion gear location on system rigidity, load distribution and bearing rating life were assessed. A comparison of the bearing load distributions for these designs demonstrated that the straddle more equally distributes both radial and axial loads. The performance of these designs over a range of shaft rotational speeds, with lubrication and friction effects included, is also discussed.

  16. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    DOEpatents

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  17. Cognitive Load for Configuration Comprehension in Computer-Supported Geometry Problem Solving: An Eye Movement Perspective

    ERIC Educational Resources Information Center

    Lin, John Jr-Hung; Lin, Sunny S. J.

    2014-01-01

    The present study investigated (a) whether the perceived cognitive load was different when geometry problems with various levels of configuration comprehension were solved and (b) whether eye movements in comprehending geometry problems showed sources of cognitive loads. In the first investigation, three characteristics of geometry configurations…

  18. On Critical Buckling Loads of Columns under End Load Dependent on Direction

    PubMed Central

    Başbük, Musa; Eryılmaz, Aytekin; Atay, M. Tarık

    2014-01-01

    Most of the phenomena of various fields of applied sciences are nonlinear problems. Recently, various types of analytical approximate solution techniques were introduced and successfully applied to the nonlinear differential equations. One of the aforementioned techniques is the Homotopy analysis method (HAM). In this study, we applied HAM to find critical buckling load of a column under end load dependent on direction. We obtained the critical buckling loads and compared them with the exact analytic solutions in the literature. PMID:27379303

  19. Study of void sizes and loading configurations effects on shock initiation due to void collapse in heterogeneous energetic materials

    NASA Astrophysics Data System (ADS)

    Roy, Sidhartha; Rai, Nirmal; Udaykumar, H. S.

    2015-06-01

    In heterogeneous energetic materials, presence of porosity has been seen to increase its sensitivity towards shock initiation and ignition. Under the application of shock load, the viscoplastic deformation of voids and its collapse leads to the formation of local high temperature regions known as hot spots. The chemical reaction triggers at the hot spot depending on the local temperature and grows eventually leading to ignition and formation of detonation waves in the material. The temperature of the hot spot depends on various factors such as shock strength, void size, void arrangements, loading configuration etc. Hence, to gain deeper understanding on shock initiation and ignition study due to void collapse, a parametric study involving various factors which can affect the hot spot temperature is desired. In the current work, effects of void sizes, shock strength and loading configurations has been studied for shock initiation in HMX using massively parallel Eulerian code, SCIMITAR3D. The chemical reaction and decomposition for HMX has been modeled using Henson-Smilowitz multi step mechanism. The effect of heat conduction has also been taken into consideration. Ignition threshold criterion has been established for various factors as mentioned. The critical hot spot temperature and its size which can lead to ignition has been obtained from numerical experiments.

  20. Joint interaction with embedded concretions: joint loading configurations inferred from propagation paths

    NASA Astrophysics Data System (ADS)

    McConaughy, David T.; Engelder, Terry

    1999-11-01

    The interaction between propagating joints and embedded concretions in a Devonian black shale near Seneca Lake, NY, permits identification of the loading configurations responsible for two joint sets of different ages striking at nearly the same orientation. The earlier set consists of systematic joints cut by later Alleghanian joints of the Appalachian Plateau. The later set consists of non-systematic curving cross joints that abut these same Alleghanian joints. Field evidence shows that concretions functioned as stiff inclusions in a compliant black shale. As a consequence of this elastic contrast, local perturbations in the remote stress field persisted around the concretions during burial, tectonic deformation, and exhumation. These stress perturbations influenced joint propagation paths of both joint sets. Our conclusions about loading configurations are based on finite-element modeling of the effect of the local stress perturbation on concretion-modified joint propagation. Modeling shows that the local stress perturbation from a thermoelastic loading was responsible for deflecting cross joints away from concretions in a curved propagation path near the concretion. This load configuration also led to arrest of cross joints before they penetrated the shale-concretion interface. At greater distances from the concretion, the propagation path of cross joints was controlled by the contemporary tectonic stress field. The interface between concretions and the surrounding shale was strongly bonded, as indicated by the crossing of the interface by some of the systematic ENE joints. Higher compressive stress levels within the concretions relative to the shale suppressed joint development in the concretion, causing the arrest of those joints once they had driven across the interface and a short distance into the concretion. Numerical modeling shows that interface penetration by the systematic ENE joints is consistent with a fluid load, the same loading configuration

  1. Modeling surface water critical loads with PROFILE: possibilities and challenges.

    PubMed

    Rapp, L; Bishop, K

    2003-01-01

    The critical load concept has become a valuable tool for policymakers in the European negotiations on emission reductions. Despite the international acceptance, ongoing validation of critical load methodology is of the utmost importance to avoid a situation where the calculation results are difficult to defend. In this paper we explore the potential of using the steady state soil chemistry model PROFILE as an alternative to the Steady State Water Chemistry (SSWC) method for calculating critical loads of acidity. The hypothesis is that the uncertainty in prediction of preindustrial leaching of base cations is reduced when soil properties instead of lake chemistry are used as input data. Paleolimnological reconstructions of preindustrial lake chemistry are used to test PROFILE. As PROFILE requires soil data that are not generally available on a catchment level, we used distributions of crucial parameters from soil survey data within the vicinity of five lakes for which paleoecological pH reconstructions were available. An important concern is the characterization of catchment hydrology. A calibration of the "effective" soil depth, needed to give PROFILE predictions that coincided with paleolimnology, suggested that approximately 0.6 m of the total soil depth was hydrologically active in supplying acid neutralizing capacity (ANC) to runoff through weathering. At present, there is insufficient evidence to either recommend or reject the PROFILE model for surface water critical loads. Before such a judgement can be made, the approach presented here has to be tested for other regions, and the definition of catchment hydrology needs to be investigated further.

  2. Aerothermal loads analysis for high speed flow over a quilted surface configuration

    NASA Astrophysics Data System (ADS)

    Olsen, G. C.; Smith, R. E.

    1984-08-01

    Attention is given to hypersonic laminar flow over a quilted surface configuration that simulates an array of Space Shuttle Thermal Protection System panels bowed in a spherical shape as a result of thermal gradient through the panel thickness. Pressure and heating loads to the surface are determined. The flow field over the configuration was mathematically modeled by means of time-dependent, three-dimensional conservation of mass, momentum, and energy equations. A boundary mapping technique was then used to obtain a rectangular, parallel piped computational domain, and an explicit MacCormack (1972) explicit time-split predictor corrector finite difference algorithm was used to obtain steady state solutions. Total integrated heating loads vary linearly with bowed height when this value does not exceed the local boundary layer thickness.

  3. Pitch difference and belt tooth configuration effect on load distribution of timing belt using FEM analysis

    SciTech Connect

    Uchida, Takanao; Furukawa, Yoshihisa; Tomono, Kiyohisa; Takahashi, Hideaki

    1996-09-01

    A timing belt used for an automotive engine`s camshaft consists of a facing fabric, elastoeric body and glass fiber cords. These materials show significant non-linear characteristics. Therefore, a model of the timing belt was analyzed using ABAQUS (a general non-linear finite element program). As a result, the mechanism that generates the belt load distribution was successfully confirmed by calculation. It was found that the pitch difference existing between the timing belt and pulley, and belt tooth configuration both have a large affect on load distribution of toothed belts. This paper reports the development of an analytical model which shows the effects of pitch difference and pulley tooth configuration on belt contact pressure.

  4. Estimating Critical Nitrogen Loads for a California Grassland

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2007-12-01

    Rigorously established critical nitrogen loads to protect biodiversity can be effective policy tools for addressing the insidious impacts of atmospheric N-deposition on ecosystems. This presentation describes methods for determining critical N-loads to a California grassland ecosystem by careful examination of the continuum from emissions, transport, atmospheric chemistry, deposition, ecosystem response, and impacts on biodiversity. Nutrient-poor soils derived from serpentinite bedrock support diverse native grasslands with dazzling wildflower displays and numerous threatened and endangered species, including the Bay checkerspot butterfly. Under moderate atmospheric N-deposition, these sites are rapidly invaded by introduced nitrophilous annual grasses in the absence of appropriate grazing or other management. Critical loads to this ecosystem have been approached by measurements of atmospheric concentrations of reactive N gases using Ogawa passive samplers and seasonally averaged deposition velocities. A regional-scale pollution gradient was complemented by a very local-scale pollution gradient extending a few hundred meters downwind of a heavily traveled road in a relatively unpolluted area. The local gradient suggests a critical load of 5 kg-N ha-1 a-1 or less. The passive monitor calculations largely agree with deposition calculated with the CMAQ model at 4 km scale. Emissions of NH3 from catalytic converters are the dominant N-source at the roadway site, and are a function of traffic volume and speed. Plant tissue N-content and 15N gradients support the existence of N-deposition gradients. The complexities of more detailed calculations and measurements specific to this ecosystem include seasonal changes in LAI, temporal coincidence of traffic emissions and stomatal conductance, surface moisture, changes in oxidized versus reduced N sources, and annual weather variation. The concept of a "critical cumulative load" may be appropriate over decadal time scales in

  5. An Experimental Test of How Different Community Configurations and Environmental Pressures Influence the Susceptibility of Ponds to a Critical Transition

    NASA Astrophysics Data System (ADS)

    Gregory-Eaves, I.; Iacarella, J.; Giani, A.; Beisner, B. E.

    2015-12-01

    Over the past two centuries, humans have been modifying the planet at an accelerating rate and, in some cases, ecosystems have been observed to experience critical transitions. For example, shallow lakes and ponds may change abruptly from a clear-water, macrophyte-dominated state to a turbid state when exposed to minor increases in stress (e.g., nutrient loading). Yet, abrupt changes in shallow lakes and ponds are not consistently observed and considerable uncertainty remains regarding the ecological and environmental conditions that render these systems susceptible to sudden changes. To address this knowledge gap, we are conducting a mesocosm experiment to quantify how different community configurations and environmental pressures influence the susceptibility of ponds to critical transitions. This research tests the hypothesis that macrophyte density and the rate of external nutrient loading alter the trajectory of phytoplankton dynamics, thus influencing the transition to a turbid state. We supplied 18 mesocosms with field-collected sediment, phytoplankton, zooplankton and fish, and exposed them to three levels of macrophyte densities and two external nutrient loading regimes. Based on daily measurements of phytoplankton biomass (measured as chlorophyll a), we will apply early warning metrics for identifying critical transitions (e.g., http://www.early-warning-signals.org). Our preliminary results indicate that ponds with no macrophytes and the faster nutrient loading rate yield the greatest rate of increase in chlorophyll a. Key goals of this experiment are to enhance the mechanistic understanding of shallow lake and pond dynamics, and aid in the interpretation of lake sediment records as archives of historical critical transitions.

  6. Can martial arts techniques reduce fall severity? An in vivo study of femoral loading configurations in sideways falls.

    PubMed

    van der Zijden, A M; Groen, B E; Tanck, E; Nienhuis, B; Verdonschot, N; Weerdesteyn, V

    2012-06-01

    Sideways falls onto the hip are a major cause of femoral fractures in the elderly. Martial arts (MA) fall techniques decrease hip impact forces in sideways falls. The femoral fracture risk, however, also depends on the femoral loading configuration (direction and point of application of the force). The purpose of this study was to determine the effect of fall techniques, landing surface and fall height on the impact force and the loading configuration in sideways falls. Twelve experienced judokas performed sideways MA and Block ('natural') falls on a force plate, both with and without a judo mat on top. Kinematic and force data were analysed to determine the hip impact force and the loading configuration. In falls from a kneeling position, the MA technique reduced the impact force by 27%, but did not change the loading configuration. The use of the mat did not change the loading configuration. Falling from a standing changed the force direction. In all conditions, the point of application was distal and posterior to the greater trochanter, but it was less distal and more posterior in falls from standing than from kneeling position. The present decrease in hip impact force with an unchanged loading configuration indicates the potential protective effect of the MA technique on the femoral fracture risk. The change in loading configuration with an increased fall height warrant further studies to examine the effect of MA techniques on fall severity under more natural fall circumstances.

  7. Configurations of Splitter/Combiner Microstrip Sections Loaded with Stepped Impedance Resonators (SIRs) for Sensing Applications

    PubMed Central

    Su, Lijuan; Mata-Contreras, Javier; Vélez, Paris; Martín, Ferran

    2016-01-01

    In this paper, several configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) are analyzed. Such structures are useful as sensors and comparators, and the main aim of the paper is to show that the proposed configurations are useful for the optimization of sensitivity and discrimination. Specifically, for comparison purposes, i.e., to determine anomalies, abnormalities or defects of a sample under test (SUT) in comparison to a reference sample, it is shown that up to three samples can be simultaneously tested. Simple models of the proposed structures are presented, and these models are validated through electromagnetic simulation and experiment. Finally, the principle of operation is validated through a proof-of-concept demonstrator. PMID:27999399

  8. Configurations of Splitter/Combiner Microstrip Sections Loaded with Stepped Impedance Resonators (SIRs) for Sensing Applications.

    PubMed

    Su, Lijuan; Mata-Contreras, Javier; Vélez, Paris; Martín, Ferran

    2016-12-20

    In this paper, several configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) are analyzed. Such structures are useful as sensors and comparators, and the main aim of the paper is to show that the proposed configurations are useful for the optimization of sensitivity and discrimination. Specifically, for comparison purposes, i.e., to determine anomalies, abnormalities or defects of a sample under test (SUT) in comparison to a reference sample, it is shown that up to three samples can be simultaneously tested. Simple models of the proposed structures are presented, and these models are validated through electromagnetic simulation and experiment. Finally, the principle of operation is validated through a proof-of-concept demonstrator.

  9. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2

    SciTech Connect

    Bowman, S.M.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using selected critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations in this report is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies in the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and to provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of two reactor critical configurations for Surry Unit 1 Cycle 2. This unit and cycle were chosen for a previous analysis using a different methodology because detailed isotopics from multidimensional reactor calculations were available from the Virginia Power Company. These data permitted a direct comparison of criticality calculations using the utility-calculated isotopics with those using the isotopics generated by the SCALE-4

  10. Critical experiments supporting underwater storage of tightly packed configurations of spent fuel pins

    NASA Astrophysics Data System (ADS)

    Hoovler, G. S.; Baldwin, M. N.; Maceda, E. L.; Welfare, F. G.

    1981-11-01

    Critical experiments were performed with low enriched UO2 arrays simulating underwater pin storage of spent pressurized water reactor fuel. Pin storage refers to a storage concept in which fuel assemblies are dismantled and the individual fuel pins from several assemblies are tightly packed into specially designed cannisters. Each critical configuration is sufficiently described and documented to permit the use of these data for validating critically calculational methods according to ANSI Standard N16.9-1975. The reactivity of each benchmark core was calculated using the AMPX-KENO IV package. The results of these analyses are also presented.

  11. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3

    SciTech Connect

    Bowman, S.M.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations reported herein is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies in the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of three reactor critical configurations for the Sequoyah Unit 2 Cycle 3. This unit and cycle were chosen because of the relevance in spent fuel benchmark applications: (1) the unit had a significantly long downtime of 2.7 years during the middle of cycle (MOC) 3, and (2) the core consisted entirely of burned fuel at the MOC restart. The first benchmark critical calculation was the MOC restart at hot, full-power (HFP) critical conditions. The

  12. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for mediterranean evergreen woodlands

    NASA Astrophysics Data System (ADS)

    Pinho, P.; Theobald, M. R.; Dias, T.; Tang, Y. S.; Cruz, C.; Martins-Loução, M. A.; Máguas, C.; Sutton, M.; Branquinho, C.

    2011-11-01

    Nitrogen (N) has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds have been established, such as critical loads (deposition fluxes) and levels (concentrations). For Mediterranean ecosystems, few studies have been carried out to assess these parameters. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for Mediterranean evergreen woodlands. For that we have considered changes in epiphytic lichen communities, which have been shown to be one of the most sensitive to excessive N. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done under Mediterranean climate, in evergreen cork-oak woodlands, by sampling lichen functional diversity and annual atmospheric ammonia concentrations and modelling N deposition downwind from a reduced N source (a cattle barn). By modelling the highly significant relationship between lichen functional groups and N deposition, the critical load was estimated to be below 26 kg (N) ha-1 yr-1, which is within the upper range established for other semi-natural ecosystems. By modelling the highly significant relationship of lichen functional groups with annual atmospheric ammonia concentration, the critical level was estimated to be below 1.9 μg m-3, in agreement with recent studies for other ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should be taken into account in policies that aim at protecting Mediterranean woodlands from the initial effects of excessive N.

  13. Nitrogen removal from high organic loading wastewater in modified Ludzack-Ettinger configuration MBBR system.

    PubMed

    Torkaman, Mojtaba; Borghei, Seyed Mehdi; Tahmasebian, Sepehr; Andalibi, Mohammad Reza

    2015-01-01

    A moving bed biofilm reactor with pre-denitrification configuration was fed with a synthetic wastewater containing high chemical oxygen demand (COD) and ammonia. By changing different variables including ammonium and COD loading, nitrification rate in the aerobic reactor and denitrification rate in the anoxic reactor were monitored. Changing the influent loading was achieved via adjusting the inlet COD (956-2,096 mg/L), inlet ammonium (183-438 mg/L), and hydraulic retention time of the aerobic reactor (8, 12, and 18 hours). The overall organic loading rate was in the range of 3.60-17.37 gCOD/m2·day, of which 18.5-91% was removed in the anoxic reactor depending on the operational conditions. Considering the complementary role of the aerobic reactor, the overall COD removal was in the range 87.3-98.8%. In addition, nitrification rate increased with influent ammonium loading, the maximum rate reaching 3.05 gNH4/m2·day. One of the most important factors affecting nitrification rate was influent C:N entering the aerobic reactor, by increasing which nitrification rate decreased asymptotically. Nitrate removal efficiency in the anoxic reactor was also controlled by the inlet nitrate level entering the anoxic reactor. Furthermore, by increasing the nitrate loading rate from 0.91 to 3.49 gNO/m3·day, denitrification rate increased from 0.496 to 2.47 gNO/m3·day.

  14. Critical configurations (determinantal loci) for range and range difference satellite networks

    NASA Technical Reports Server (NTRS)

    Tsimis, E.

    1973-01-01

    The observational modes of Geometric Satellite Geodesy are discussed. The geometrical analysis of the problem yielded a regression model for the adjustment of the observations along with a suitable and convenient metric for the least-squares criterion. The determinantal loci (critical configurations) for range networks are analyzed. An attempt is made to apply elements of the theory of variants for this purpose. The use of continuously measured range differences for loci determination is proposed.

  15. Final report for the field-reversed configuration power plant critical-issue scoping study

    SciTech Connect

    Santarius, John F.; Mogahed, Elsayed A.; Emmert, Gilbert A.; Khater, Hesham Y.; Nguyen, Canh N.; Ryzhkov, Sergei V.; Stubna, Michael D.; Steinhauer, Loren C.; Miley, George H.

    2001-03-01

    This report describes research in which a team from the Universities of Wisconsin, Washington, and Illinois performed a scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis of deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core.

  16. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations

    SciTech Connect

    Gauld, I.C.

    2000-03-01

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the US, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k{sub eff} values within about 1% {Delta}k/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models.

  17. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configuration

    SciTech Connect

    Gauld, I.C.

    2000-03-16

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the United States, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k{sub eff} values within about 1% {Delta}k/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models.

  18. Random-fractal Ansatz for the configurations of two-dimensional critical systems

    NASA Astrophysics Data System (ADS)

    Lee, Ching Hua; Ozaki, Dai; Matsueda, Hiroaki

    2016-12-01

    Critical systems have always intrigued physicists and precipitated the development of new techniques. Recently, there has been renewed interest in the information contained in the configurations of classical critical systems, whose computation do not require full knowledge of the wave function. Inspired by holographic duality, we investigated the entanglement properties of the classical configurations (snapshots) of the Potts model by introducing an Ansatz ensemble of random fractal images. By virtue of the central limit theorem, our Ansatz accurately reproduces the entanglement spectra of actual Potts snapshots without any fine tuning of parameters or artificial restrictions on ensemble choice. It provides a microscopic interpretation of the results of previous studies, which established a relation between the scaling behavior of snapshot entropy and the critical exponent. More importantly, it elucidates the role of ensemble disorder in restoring conformal invariance, an aspect previously ignored. Away from criticality, the breakdown of scale invariance leads to a renormalization of the parameter Σ in the random fractal Ansatz, whose variation can be used as an alternative determination of the critical exponent. We conclude by providing a recipe for the explicit construction of fractal unit cells consistent with a given scaling exponent.

  19. Air Pollution Critical Loads in the U.S.: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Blett, T. F.

    2012-12-01

    "Critical loads" describe the amount of air pollution initiating harmful changes in sensitive ecosystems. Critical loads generally have both a "science" component, describing the amount of deposition needed to alter chemical indicators (such as surface water acid neutralizing capacity) or biological endpoints (such as lichen biodiversity) and a "policy" component where critical loads are evaluated and utilized to help make land management or regulatory decisions. Critical loads science and policy have both made substantial headway in the U.S. over the past decade. For example, a recent review of critical loads of nitrogen cited over 300 published papers relevant to critical loads development in the U.S. The National Atmospheric Deposition Program's Critical Loads Science Subcommittee (CLAD) has recently synthesized most available U.S. critical loads data into a national-scale database and used it to develop maps for modeled surface water acidification, modeled soil acidification, and empirically derived excess nitrogen effects. Air quality regulators and land managers are increasingly using critical loads, in conjunction with policy objectives, to establish goals (target loads) for deposition reductions needed to improve sensitive resource conditions in impacted areas. These goals help focus air pollution emissions reduction efforts where they will be most effective. We will discuss critical loads history in the U.S., provide an overview of some of the most recent national-scale critical loads products, and outline future needs.

  20. Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods

    SciTech Connect

    Margaret A. Marshall

    2012-09-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.”(Reference 1) The experiment studied in this evaluation was the first of the series and had the fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, , and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configurations are described in Sections 1.3, 1.4 and 1.7, respectively. Information for this

  1. Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods

    SciTech Connect

    Margaret A. Marshall

    2013-03-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.”(Reference 1) The experiment studied in this evaluation was the first of the series and had the fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, , and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configurations are described in Sections 1.3, 1.4 and 1.7, respectively. Information for this

  2. Creep of a Silicon Nitride Under Various Specimen/Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Powers, Lynn M.; Holland, Frederic A.; Gyekenyesi, John P.; Holland, F. A. (Technical Monitor)

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC132) was performed at 1300 C in air using five different specimen/loading configurations, including pure tension, pure compression, four-point uniaxial flexure, ball-on-ring biaxial flexure, and ring-on-ring biaxial flexure. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compressive loading, nominal creep strain generally decreased with time, resulting in less-defined steady-state condition. Of the four different creep formulations - power-law, hyperbolic sine, step, redistribution models - the conventional power-law model still provides the most convenient and reasonable means to estimate simple, quantitative creep parameters of the material. Predictions of creep deformation for the case of multiaxial stress state (biaxial flexure) were made based on pure tension and compression creep data by using the design code CARES/Creep.

  3. Loading Configurations and Ground Reaction Forces During Treadmill Running in Weightlessness

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Schaffner, Grant; Blazine, Kristi; Bentley, Jason; Laughlin, Mitzi; Loehr, James; Hagan, Donald

    2003-01-01

    Studies have shown losses in bone mineral density of 1-2% per month in critical weight bearing areas such as the proximal femur during long-term space flight (Grigoriev, 1998). The astronauts currently onboard the International Space Station (ISS) use a treadmill as an exercise countermeasure to bone loss that occurs as a result of prolonged exposure to weightlessness. A crewmember exercising on the treadmill is attached by a harness and loading device. Ground reaction forces are obtained through the loading device that pulls the crewn1ember towards the treadmill surface during locomotion. McCrory et al. (2002) found that the magnitude of the peak ground reaction force (pGRF) during horizontal suspension running, or simulated weightlessness, was directly related to the load applied to the subject. It is thought that strain magnitude and strain rate affects osteogenesis, and is a function of the magnitude and rate of change of the ground reaction force. While it is not known if a minimum stimulus exists for osteogenesis, it has been hypothesized that in order to replicate the bone formation occurring in normal gravity (1 G), the exercise in weightlessness should mimic the forces that occur on earth. Specifically, the pGRF obtained in weightlessness should be comparable to that achieved in 1 G.

  4. Scale-4 analysis of pressurized water reactor critical configurations: Volume 5, North Anna Unit 1 Cycle 5

    SciTech Connect

    Bowman, S.M.; Suto, T. |

    1996-10-01

    ANSI/ANS 8.1 requires that calculational methods for away-from- reactor (AFR) criticality safety analyses be validated against experiment. This report summarizes part of the ongoing effort to benchmark AFR criticality analysis methods using selected critical configurations from commercial PWRs. Codes and data in the SCALE-4 code system were used. This volume documents the SCALE system analysis of one reactor critical configuration for North Anna Unit 1 Cycle 5. The KENO V.a criticality calculations for the North Anna 1 Cycle 5 beginning-of-cycle model yielded a value for k{sub eff} of 1. 0040{+-}0.0005.

  5. Moment ratios and dynamic critical behavior of a reactive system with several absorbing configurations.

    PubMed

    de Andrade, M F; Figueiredo, W

    2011-03-01

    We determine the critical behavior of a reactive model with many absorbing configurations. Monomers A and B land on the sites of a linear lattice and can react depending on the state of their nearest-neighbor sites. The probability of a reaction depends on temperature of the catalyst as well as on the energy coupling between pairs of nearest-neighbor monomers. We employ Monte Carlo simulations to calculate the moments of the order parameter of the model as a function of temperature. Some ratios between pairs of moments are independent of temperature and are in the same universality class of the contact process. We also find the dynamical critical exponents of the model and we show that they are in the directed percolation universality class whatever the values of temperature.

  6. The Critical Compression Load for a Universal Testing Machine When the Specimen Is Loaded Through Knife Edges

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Schwartz, Edward B

    1942-01-01

    The results of a theoretical and experimental investigation to determine the critical compression load for a universal testing machine are presented for specimens loaded through knife edges. The critical load for the testing machine is the load at which one of the loading heads becomes laterally instable in relation to the other. For very short specimens the critical load was found to be less than the rated capacity given by the manufacturer for the machine. A load-length diagram is proposed for defining the safe limits of the test region for the machine. Although this report is particularly concerned with a universal testing machine of a certain type, the basic theory which led to the derivation of the general equation for the critical load, P (sub cr) = alpha L can be applied to any testing machine operated in compression where the specimen is loaded through knife edges. In this equation, L is the length of the specimen between knife edges and alpha is the force necessary to displace the upper end of the specimen unit horizontal distance relative to the lower end of the specimen in a direction normal to the knife edges through which the specimen is loaded.

  7. Simulation of the ERDC Blast Load Simulator (BLS) in various test configurations using Loci/BLAST

    NASA Astrophysics Data System (ADS)

    Mord, Clayton T.

    This thesis describes the simulation of ERDC's Blast Load Simulator (BLS) using MSU's Loci/BLAST. The BLS was created to replicate waveforms found in blast scenarios. Loci/BLAST is an explicit, unstructured CFD code that specializes in moving waveforms. ERDC conducted various tests, and a grid for each scenario was created using the SolidMesh tool. Each grid was simulated, and the results were displayed as time history plots and spatial plots. Simulations were also performed that compared 2D and 3D grids and determined the effect of the grate and striker components. There was a strong correlation between the experimental and simulation results for each case, demonstrating that Loci/BLAST is fully capable of modeling the BLS waveforms. A 2D grid produced results comparable to those on a full 3D grid. The grate and striker were critical in the simulation because they significantly affected the waveform.

  8. Uncertainties in critical loads and target loads of sulphur and nitrogen for European forests: analysis and quantification.

    PubMed

    Reinds, Gert Jan; de Vries, Wim

    2010-03-15

    An analysis of the uncertainties in critical loads and target loads of sulphur (S) and nitrogen (N) for 182 European forest soils was carried out using the Very Simple Dynamic (VSD) model. The VSD model was calibrated with a Bayesian approach using prior probability functions for model parameters based on literature data, data from 200 Dutch forest sites and from simulated denitrification rates from a detailed ecosystem model. The calibration strongly improved the fit of the model to observed soil and soil solution concentrations, especially for pH and base saturation. Calibration also narrowed down the ranges in input parameters. The uncertainty analysis showed which parameters contribute most to the uncertainty in the critical loads and target loads. Base cation weathering and deposition and the parameters describing the H-Al equilibrium in the soil solution determine the uncertainty in the maximum critical loads for S, CL(max)(S), when based on the aluminium to base cation (Al/Bc) criterion. Uncertainty in CL(max)(S) based on an acid neutralizing capacity (ANC) criterion is completely determined by base cation inputs alone. The denitrification fraction is the most important source of uncertainty for the maximum critical loads of N, CL(max)(N). N uptake and N immobilisation determine the uncertainties in the critical load for N as a nutrient, CL(nut)(N). Calibration of VSD reduced the uncertainty: the coefficient of variation (CV) was reduced for all critical loads and criteria. After calibration, the CV for CL(max)(S) was below 0.4 for almost all plots; however for CL(max)(N) high values occurred for plots with high denitrification rates. Model calibration also improved the robustness of target load estimates: after calibration, no target loads were needed in any of the simulations for 40% of the plots, with the uncalibrated model there was a positive probability for the need of a target load for almost all plots.

  9. Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

    SciTech Connect

    Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.; Khater, H. Y.; Nguyen, C. N.; Ryzhkov, S. V.; Stubna, M. D.

    2000-03-31

    A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, good thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.

  10. Empirical Critical Loads of Atmospheric Nitrogen Deposition for Nutrient Enrichment and Acidification of Sensitive US Lakes

    EPA Science Inventory

    A critical load is a “quantitative estimate of the exposure to one or more pollutants below which significant harmful effects on specified sensitive elements of the environment do not occur according to present knowledge”. Critical loads can be either modeled, or calculated empi...

  11. Using change-point models to estimate empirical critical loads for nitrogen in mountain ecosystems.

    PubMed

    Roth, Tobias; Kohli, Lukas; Rihm, Beat; Meier, Reto; Achermann, Beat

    2017-01-01

    To protect ecosystems and their services, the critical load concept has been implemented under the framework of the Convention on Long-range Transboundary Air Pollution (UNECE) to develop effects-oriented air pollution abatement strategies. Critical loads are thresholds below which damaging effects on sensitive habitats do not occur according to current knowledge. Here we use change-point models applied in a Bayesian context to overcome some of the difficulties when estimating empirical critical loads for nitrogen (N) from empirical data. We tested the method using simulated data with varying sample sizes, varying effects of confounding variables, and with varying negative effects of N deposition on species richness. The method was applied to the national-scale plant species richness data from mountain hay meadows and (sub)alpine scrubs sites in Switzerland. Seven confounding factors (elevation, inclination, precipitation, calcareous content, aspect as well as indicator values for humidity and light) were selected based on earlier studies examining numerous environmental factors to explain Swiss vascular plant diversity. The estimated critical load confirmed the existing empirical critical load of 5-15 kg N ha(-1) yr(-1) for (sub)alpine scrubs, while for mountain hay meadows the estimated critical load was at the lower end of the current empirical critical load range. Based on these results, we suggest to narrow down the critical load range for mountain hay meadows to 10-15 kg N ha(-1) yr(-1).

  12. Ambiguity of the critical load for spherical shells with shear damageability of the material

    NASA Astrophysics Data System (ADS)

    Babich, D. V.; Dorodnykh, T. I.

    2016-06-01

    The structural-probabilistic approach to the modeling of combined crack formation and material deformation processes is used to develop a technique for solving bifurcation stability problems for thin-walled structural members made of damageable materials under single and repeated loadings. The example of a uniformly compressed spherical shell is used to show that, under repeated loading, thin-walled structural members made of shear damageable materials can lose stability under loads smaller than the upper critical loads. The ambiguity of the critical loads for various damage accumulation processes in the material of thin-walled structures depends on the level and character of loading. This phenomenon can be one possible cause of the experimental data spread and the discrepancy between theoretical and experimental results used to determine the critical loads for spherical and cylindrical shells.

  13. [Mapping Critical Loads of Heavy Metals for Soil Based on Different Environmental Effects].

    PubMed

    Shi, Ya-xing; Wu, Shao-hua; Zhou, Sheng-lu; Wang, Chun-hui; Chen, Hao

    2015-12-01

    China's rapid development of industrialization and urbanization causes the growing problem of heavy metal pollution of soil, threatening environment and human health. Therefore, prevention and management of heavy metal pollution become particularly important. Critical loads of heavy metals are an important management tool that can be utilized to prevent the occurrence of heavy metal pollution. Our study was based on three cases: status balance, water environmental effects and health risks. We used the steady-state mass balance equation to calculate the critical loads of Cd, Cu, Pb, Zn at different effect levels and analyze the values and spatial variation of critical loads. In addition, we used the annual input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta and China to estimate the proportion of area with exceedance of critical loads. The results demonstrated that the critical load value of Cd was the minimum, and the values of Cu and Zn were lager. There were spatial differences among the critical loads of four elements in the study area, lower critical loads areas mainly occurred in woodland and high value areas distributed in the east and southwest of the study area, while median values and the medium high areas mainly occurred in farmland. Comparing the input fluxes of heavy metals, we found that Pb and Zn in more than 90% of the area exceeded the critical loads under different environmental effects in the study area. The critical load exceedance of Cd mainly occurred under the status balance and the water environmental effect, while Cu under the status balance and water environmental effect with a higher proportion of exceeded areas. Critical loads of heavy metals at different effect levels in this study could serve as a reference from effective control of the emissions of heavy metals and to prevent the occurrence of heavy metal pollution.

  14. Debonding in Composite Skin/Stringer Configurations Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Cvitkovich, Michael K.; Krueger, Ronald; OBrien, T.; Minguet, Pierre J.

    2004-01-01

    The objective of this work was to investigate the damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions as typically experienced by aircraft crown fuselage panels. The specimens for all tests were identical and consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both loads simultaneously. Microscopic investigations of the specimen edges were used to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange near the flange tip causing the flange to almost fully debond from the skin. A two-dimensional plain-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in the locations where delaminations were experimentally observed. The analyses showed that unstable delamination propagation is likely to occur at the loads corresponding to matrix ply crack initiation for all three loadings.

  15. Effects of rotor location, coning, and tilt on critical loads in large wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, D. A.; Janetzke, D. C.

    1978-01-01

    Several large (1500 kW) horizontal rotor configurations were analyzed to determine the effects on dynamic loads of upwind downwind rotor locations, coned and radial blade positions, and tilted and horizontal rotor axis positions. Loads were calculated for a range of wind velocities at three locations in the structure: (1) the blade shank; (2) the hub shaft; and (3) the yaw drive. Blade axis coning and rotor axis tilt were found to have minor effects on loads. However, locating the rotor upwind of the tower significantly reduced loads at all locations analyzed.

  16. Development and Implementation of Critical Loads for Atmospheric Deposition: Federal Land Management Implications

    NASA Astrophysics Data System (ADS)

    Porter, E. M.

    2004-12-01

    Critical loads for atmospheric deposition have been widely developed and used in Europe, Canada, and other countries. Critical loads are used to influence air pollution emissions reductions, thereby protecting and restoring aquatic and terrestrial ecosystems. In the United States, federal land management agencies are adopting the critical load concept as a potentially valuable resource management tool. Certain parks and wilderness areas are currently being affected by anthropogenic nitrogen and sulfur deposition. Effects of excess deposition include acidification, nitrogen enrichment, toxicity, and changes in biotic communities. Streams in both Shenandoah and Great Smoky Mountains National Parks are experiencing chronic and episodic acidification and brook trout fisheries in Shenandoah have been affected. High elevation ecosystems in Rocky Mountain National Park are undergoing subtle changes in aquatic and terrestrial ecosystems attributable to atmospheric deposition. Natural resources in many other federal areas have been affected or are at risk from deposition. Federal land managers are refining strategies for critical loads that include working with scientists to identify resources sensitive to deposition, defining resource protection criteria that will meet management objectives, and estimating and implementing critical loads. Critical loads will be used in resource management decisions and federal land management planning. They will be used to evaluate management actions and assess progress towards meeting management goals. Federal land managers will also communicate critical loads information to air pollution regulatory agencies to inform emissions management strategies for clean air.

  17. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands

    NASA Astrophysics Data System (ADS)

    Pinho, P.; Theobald, M. R.; Dias, T.; Tang, Y. S.; Cruz, C.; Martins-Loução, M. A.; Máguas, C.; Sutton, M.; Branquinho, C.

    2012-03-01

    Nitrogen (N) has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds such as critical loads (deposition fluxes) and levels (concentrations) can be established. Few studies have assessed these thresholds for semi-natural Mediterranean ecosystems. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. We have considered changes in epiphytic lichen communities, one of the most sensitive comunity indicators of excessive N in the atmosphere. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done for a Mediterranean climate in evergreen cork-oak woodlands, based on the relation between lichen functional diversity and modelled N deposition for critical loads and measured annual atmospheric ammonia concentrations for critical levels, evaluated downwind from a reduced N source (a cattle barn). Modelling the highly significant relationship between lichen functional groups and annual atmospheric ammonia concentration showed the critical level to be below 1.9 μg m-3, in agreement with recent studies for other ecosystems. Modelling the highly significant relationship between lichen functional groups and N deposition showed that the critical load was lower than 26 kg (N) ha-1 yr-1, which is within the upper range established for other semi-natural ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should aid development of policies to protect Mediterranean woodlands from the initial effects of excessive N.

  18. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    SciTech Connect

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  19. Modeling and mapping of critical loads for heavy metals in Kunshan soil.

    PubMed

    Wu, Shaohua; Shi, Yaxing; Zhou, Shenglu; Wang, Chunhui; Chen, Hao

    2016-11-01

    The assessment of critical loads of metals in soil can be used as an important tool for evaluation and for risk precaution of future inputs of metal in order to avoid the occurrence of heavy metal pollution and its long-term risks for people. In this study, critical loads of Cd, Cu, and Pb in farming and non-farming areas of Kunshan were calculated based on three main effects. Two of these effects, limit value of daily metals dose and different environmental water quality criteria are new ways to calculate the critical content of heavy metals. The mean value of critical loads decreased in the order Cu>Pb>Cd when calculated using mass balance effects, child health risk effects, and adult health risk effects. Critical loads were highest in the areas near construction land, areas of low critical load were scattered throughout the city. The areal proportion of critical load exceedance is greatest for Pb based on mass balance effects, followed by Cu based on water quality effects, and Cd based on mass balance effects. Exceedances only occurred in 6% and 3% of farming areas for water quality effects for Cd and Pb when compared critical load values to the input fluxes in the Yangtze River delta. However, for these metals, values were up to 83% and 100%, respectively, based on mass balance effects. Exceedances completely covered non-farming areas for each effect for Pb. Most exceedances occurred in the north and south of the city in non-farming areas. Spatially explicit critical loads of heavy metals based on the different effects can serve as a reference for controlling the emissions of heavy metals effectively and meeting the demands of different management objectives.

  20. Faculty Work Load Formulas in Nursing Education: A Critical Theory Perspective.

    ERIC Educational Resources Information Center

    Grams, Kathryn M.; Christ, Mary Ann

    1992-01-01

    The purpose of this article is to increase faculty awareness and understanding of the constraints and contradictions that are embedded within faculty work load formulas. An overview of critical social theory serves as a framework for the analysis of work load formulas within the context of their historical development and current usage. (Author)

  1. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 5 - North Anna Unit 1 Cycle 5

    SciTech Connect

    Bowman, S.M.

    1993-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor (AFR) criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark AFR criticality analysis methods using selected critical configurations from commercial pressurized-water reactors (PWR). The analysis methodology selected for all calculations reported herein was the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies in the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and to provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of one reactor critical configuration for North Anna Unit 1 Cycle 5. This unit and cycle were chosen for a previous analysis using a different methodology because detailed isotopics from multidimensional reactor calculations were available from the Virginia Power Company. These data permitted comparison of criticality calculations directly using the utility-calculated isotopics to those using the isotopics generated by the SCALE-4 SAS2H

  2. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?

    PubMed

    Schileo, Enrico; Balistreri, Luca; Grassi, Lorenzo; Cristofolini, Luca; Taddei, Fulvia

    2014-11-07

    Proximal femur strength estimates from computed tomography (CT)-based finite element (FE) models are finding clinical application. Published models reached a high in-vitro accuracy, yet many of them rely on nonlinear methodologies or internal best-fitting of parameters. The aim of the present study is to verify to what extent a linear FE modelling procedure, fully based on independently determined parameters, can predict the failure characteristics of the proximal femur in stance and sideways fall loading configurations. Fourteen fresh-frozen cadaver femora were CT-scanned. Seven femora were tested to failure in stance loading conditions, and seven in fall. Fracture was monitored with high-speed videos. Linear FE models were built from CT images according to a procedure already validated in the prediction of strains. An asymmetric maximum principal strain criterion (0.73% tensile, 1.04% compressive limit) was used to define a node-based risk factor (RF). FE-predicted failure load, mode (tensile/compressive) and location were determined from the first node reaching RF=1. FE-predicted and measured failure loads were highly correlated (R(2)=0.89, SEE=814N). In all specimens, FE models correctly identified the failure mode (tensile in stance, compressive in fall) and the femoral region where fracture started (supero-lateral neck aspect). The location of failure onset was accurately predicted in eight specimens. In summary, a simple FE model, adaptable in the future to multiple loads (e.g. including muscles), was highly correlated with experimental failure in two loading conditions on specimens ranging from normal to osteoporotic. Thus, it can be suitable for use in clinical studies.

  3. Highly loaded multi-stage fan drive turbine: Performance of final three configurations

    NASA Technical Reports Server (NTRS)

    Cherry, D. G.; Thomas, M. W.

    1974-01-01

    Results for a three-stage highly loaded fan drive turbine follow-on test program are presented. The effects of combinations of tandem and leaned bladerows on three-stage turbine performance were tested. The three-stage turbine with a tandem stator in stage two exhibited a total-to-total efficiency of approximately 0.887 as compared to 0.886 for the plain blade turbine base case.

  4. Determining critical load in the multispan beams with the nonlinear model

    NASA Astrophysics Data System (ADS)

    DemÑ-r, D. Dönmez; Sinir, B. G.; Usta, L.

    2017-01-01

    The beams which are one of the most commonly used structural members are quite important for many researchers. Mathematical models determining the response of beams under external loads are concluded from elasticity theory through a series of assumptions concerning the kinematics of deformation and constitutive behavior. In this study, the derivation of the nonlinear model is introduced to determine the critical load in the multispan beams. Since the engineering practice of this kind of problems is very common, determining the critical load is quite important. For this purpose, the nonlinear mathematical model of the multispan Euler-Bernoulli beam is firstly obtained. To be able to obtain the independent of the material and the geometry, the present model are became dimensionless. Then, the critical axial load can be determined via the nonlinear solution of the governing equation.

  5. Influence of snow shovel shaft configuration on lumbosacral biomechanics during a load-lifting task.

    PubMed

    Lewinson, Ryan T; Rouhi, Gholamreza; Robertson, D Gordon E

    2014-03-01

    Lower-back injury from snow shovelling may be related to excessive joint loading. Bent-shaft snow shovels are commonly available for purchase; however, their influence on lower back-joint loading is currently not known. Therefore, the purpose of this study was to compare L5/S1 extension angular impulses between a bent-shaft and a standard straight-shaft snow shovel. Eight healthy subjects participated in this study. Each completed a simulated snow-lifting task in a biomechanics laboratory with each shovel design. A standard motion analysis procedure was used to determine L5/S1 angular impulses during each trial, as well as peak L5/S1 extension moments and peak upper body flexion angle. Paired-samples t-tests (α = 0.05) were used to compare variables between shovel designs. Correlation was used to determine the relationship between peak flexion and peak moments. Results of this study show that the bent-shaft snow shovel reduced L5/S1 extension angular impulses by 16.5% (p = 0.022), decreased peak moments by 11.8% (p = 0.044), and peak flexion by 13.0% (p = 0.002) compared to the straight-shaft shovel. Peak L5/S1 extension moment magnitude was correlated with peak upper body flexion angle (r = 0.70). Based on these results, it is concluded that the bent-shaft snow shovel can likely reduce lower-back joint loading during snow shovelling, and thus may have a role in snow shovelling injury prevention.

  6. Pressure loads and aerodynamic force information for the -89A space shuttle orbiter configuration, volume 2. [for structural strength analysis

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1973-01-01

    Experimental aerodynamic investigations were conducted on an 0.0405 scale representation of the Rockwell -89A Light Weight Space Shuttle Orbiter. The test purpose was to obtain pressure loads data in the presence of the ground for orbiter structural strength analysis. Aerodynamic force data was also recorded to allow correlation with all pressure loads information. Angles of attack from minus 3 deg to 18 deg and angles of sideslip of 0 deg, plus or minus 50 deg, and plus or minus 10 deg were tested in the presence of the NAAL ground plane. Static pressure bugs were used to obtain a pressure loads survey of the basic configuration, elevon deflections of 5 deg, 10 deg, 15 deg, and minus 20 deg and a rudder deflection of minus 15 deg, at a tunnel dynamic pressure of 40 psi. The test procedure was to locate a maximum of 30 static pressure bugs on the model surface at various locations calculated to prevent aerodynamic and physical interference. Then by various combinations of location the pressure bugs output was to define a complete pressure survey for the fuselages, wing, vertical tail, and main landing gear door.

  7. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes

    USGS Publications Warehouse

    Baron, J.S.; Driscoll, C.T.; Stoddard, J.L.; Richer, E.E.

    2011-01-01

    The ecological effects of elevated atmospheric nitrogen (N) deposition on high-elevation lakes of the western and northeastern United States include nutrient enrichment and acidification. The nutrient enrichment critical load for western lakes ranged from 1.0 to 3.0 kilograms (kg) of N per hectare (ha) per year, reflecting the nearly nonexistent watershed vegetation in complex, snowmelt-dominated terrain. The nutrient enrichment critical load for northeastern lakes ranged from 3.5 to 6.0 kg N per ha per year. The N acidification critical loads associated with episodic N pulses in waters with low values of acid neutralizing capacity were 4.0 kg N per ha per year (western) and 8.0 kg N per ha per year (northeastern). The empirical critical loads for N-caused acidification were difficult to determine because of a lack of observations in the West, and high sulfur deposition in the East. For both nutrient enrichment and acidification, the N critical load was a function of how atmospheric N deposition was determined. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  8. Criticality Analysis for Proposed Maximum Fuel Loading in a Standardized SNF Canister with Type 1a Baskets

    SciTech Connect

    Chad Pope; Larry L. Taylor; Soon Sam Kim

    2007-02-01

    This document represents a summary version of the criticality analysis done to support loading SNF in a Type 1a basket/standard canister combination. Specifically, this engineering design file (EDF) captures the information pertinent to the intact condition of four fuel types with different fissile loads and their calculated reactivities. These fuels are then degraded into various configurations inside a canister without the presence of significant moderation. The important aspect of this study is the portrayal of the fuel degradation and its effect on the reactivity of a single canister given the supposition there will be continued moderation exclusion from the canister. Subsequent analyses also investigate the most reactive ‘dry’ canister in a nine canister array inside a hypothetical transport cask, both dry and partial to complete flooding inside the transport cask. The analyses also includes a comparison of the most reactive configuration to other benchmarked fuels using a software package called TSUNAMI, which is part of the SCALE 5.0 suite of software.

  9. Designing pinhole vacancies in graphene towards functionalization: Effects on critical buckling load

    NASA Astrophysics Data System (ADS)

    Georgantzinos, S. K.; Markolefas, S.; Giannopoulos, G. I.; Katsareas, D. E.; Anifantis, N. K.

    2017-03-01

    The effect of size and placement of pinhole-type atom vacancies on Euler's critical load on free-standing, monolayer graphene, is investigated. The graphene is modeled by a structural spring-based finite element approach, in which every interatomic interaction is approached as a linear spring. The geometry of graphene and the pinhole size lead to the assembly of the stiffness matrix of the nanostructure. Definition of the boundary conditions of the problem leads to the solution of the eigenvalue problem and consequently to the critical buckling load. Comparison to results found in the literature illustrates the validity and accuracy of the proposed method. Parametric analysis regarding the placement and size of the pinhole-type vacancy, as well as the graphene geometry, depicts the effects on critical buckling load. Non-linear regression analysis leads to empirical-analytical equations for predicting the buckling behavior of graphene, with engineered pinhole-type atom vacancies.

  10. STRUTEX: A prototype knowledge-based system for initially configuring a structure to support point loads in two dimensions

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Feyock, Stefan; Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    The purpose of this research effort is to investigate the benefits that might be derived from applying artificial intelligence tools in the area of conceptual design. Therefore, the emphasis is on the artificial intelligence aspects of conceptual design rather than structural and optimization aspects. A prototype knowledge-based system, called STRUTEX, was developed to initially configure a structure to support point loads in two dimensions. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user by integrating a knowledge base interface and inference engine, a data base interface, and graphics while keeping the knowledge base and data base files separate. The system writes a file which can be input into a structural synthesis system, which combines structural analysis and optimization.

  11. STRUTEX: A prototype knowledge-based system for initially configuring a structure to support point loads in two dimensions

    NASA Technical Reports Server (NTRS)

    Robers, James L.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    Only recently have engineers begun making use of Artificial Intelligence (AI) tools in the area of conceptual design. To continue filling this void in the design process, a prototype knowledge-based system, called STRUTEX has been developed to initially configure a structure to support point loads in two dimensions. This prototype was developed for testing the application of AI tools to conceptual design as opposed to being a testbed for new methods for improving structural analysis and optimization. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user. How the system is constructed to interact with the user is described. Of special interest is the information flow between the knowledge base and the data base under control of the algorithmic main program. Examples of computed and refined structures are presented during the explanation of the system.

  12. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes

    NASA Astrophysics Data System (ADS)

    Baron, J.; Driscoll, C. T.; Stoddard, J. L.; Richer, E. E.

    2011-12-01

    Ecological effects of elevated atmospheric N deposition for high elevation lakes of the western and northeastern US include nutrient enrichment and acidification. These effects are most evident in high elevation lakes, which are sensitive to atmospheric deposition and have been minimally impacted by land disturbance. Nitrogen-limited lakes will exhibit increases in productivity and shifts in the composition of phytoplankton in response to increases in atmospheric N deposition. Wet N deposition reported by NADP/NTN does not accurately depict total N deposition including dry species, and national NADP maps can misrepresent total deposition amounts in regions of complex terrain, so we calculated N deposition three different ways in order to explore critical loads. The nutrient enrichment critical load for Western lakes ranged 1.0-3.0 kg N per ha per yr, reflecting near-lack of watershed vegetation in complex, snow-melt dominated terrain. The nutrient enrichment critical load for Northeastern lakes ranged 3.5-6.0 kg N per ha per yr. The N acidification critical loads associated with episodic N pulses in waters with low values of acid neutralizing capacity were 4.0 kg N per ha per yr (western) and 8.0 kg N per ha per yr (northeastern). Empirical critical loads for N-caused acidification were difficult to determine due to lack of observations in the West, and because of the additive effects of decades of atmospheric sulfur deposition in the Northeast. For both nutrient enrichment and acidification, the N critical load was a function of how atmospheric N deposition was determined.

  13. Efficient critical design load case identification for floating offshore wind turbines with a reduced nonlinear model

    NASA Astrophysics Data System (ADS)

    Matha, Denis; Sandner, Frank; Schlipf, David

    2014-12-01

    Design verification of wind turbines is performed by simulation of design load cases (DLC) defined in the IEC 61400-1 and -3 standards or equivalent guidelines. Due to the resulting large number of necessary load simulations, here a method is presented to reduce the computational effort for DLC simulations significantly by introducing a reduced nonlinear model and simplified hydro- and aerodynamics. The advantage of the formulation is that the nonlinear ODE system only contains basic mathematic operations and no iterations or internal loops which makes it very computationally efficient. Global turbine extreme and fatigue loads such as rotor thrust, tower base bending moment and mooring line tension, as well as platform motions are outputs of the model. They can be used to identify critical and less critical load situations to be then analysed with a higher fidelity tool and so speed up the design process. Results from these reduced model DLC simulations are presented and compared to higher fidelity models. Results in frequency and time domain as well as extreme and fatigue load predictions demonstrate that good agreement between the reduced and advanced model is achieved, allowing to efficiently exclude less critical DLC simulations, and to identify the most critical subset of cases for a given design. Additionally, the model is applicable for brute force optimization of floater control system parameters.

  14. Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression

    NASA Astrophysics Data System (ADS)

    Timesli, Abdelaziz; Braikat, Bouazza; Jamal, Mohammad; Damil, Noureddine

    2017-02-01

    In this paper, we propose a new explicit analytical formula of the critical buckling load of double-walled carbon nanotubes (DWCNT) under axial compression. This formula takes into account van der Waals interactions between adjacent tubes and the effect of terms involving tube radii differences generally neglected in the derived expressions of the critical buckling load published in the literature. The elastic multiple Donnell shells continuum approach is employed for modelling the multi-walled carbon nanotubes. The validation of the proposed formula is made by comparison with a numerical solution. The influence of the neglected terms is also studied.

  15. EVALUATION OF THE INITIAL CRITICAL CONFIGURATION OF THE HTR-10 PEBBLE-BED REACTOR

    SciTech Connect

    William K. Terry

    2005-11-01

    This report describes the evaluation of data from the initial criticality measurement of the HTR-10 pebble-bed reactor at the Institute of Nuclear Energy Technology in China to determine whether the data are of sufficient quality to use as benchmarks for reactor physics computer codes intended for pebble-bed reactor analysis. The evaluation applied the INL pebble-bed reactor physics code PEBBED to perform an uncertainty analysis on the core critical height. The overall uncertainty in k-effective was slightly over 0.5%, which is considered adequate for an experimental benchmark.

  16. Two Configurations for Accessing Classroom Computers: Differential Impact on Students' Critical Reflections and Their Empowerment

    ERIC Educational Resources Information Center

    Solhaug, T.

    2009-01-01

    The context of this article is the new technological environment and the struggle to use meaningful teaching practices in Norwegian schools. Students' critical reflections in two different technological learning environments in six upper secondary schools are compared. Three of these schools offer Internet-connected computers in special computer…

  17. Benchmark Evaluation of the Medium-Power Reactor Experiment Program Critical Configurations

    SciTech Connect

    Margaret A. Marshall; John D. Bess

    2013-02-01

    A series of small, compact critical assembly (SCCA) experiments were performed in 1962-1965 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for the Medium-Power Reactor Experiment (MPRE) program. The MPRE was a stainless-steel clad, highly enriched uranium (HEU)-O2 fuelled, BeO reflected reactor design to provide electrical power to space vehicles. Cooling and heat transfer were to be achieved by boiling potassium in the reactor core and passing vapor directly through a turbine. Graphite- and beryllium-reflected assemblies were constructed at ORCEF to verify the critical mass, power distribution, and other reactor physics measurements needed to validate reactor calculations and reactor physics methods. The experimental series was broken into three parts, with the third portion of the experiments representing the beryllium-reflected measurements. The latter experiments are of interest for validating current reactor design efforts for a fission surface power reactor. The entire series has been evaluated as acceptable benchmark experiments and submitted for publication in the International Handbook of Evaluated Criticality Safety Benchmark Experiments and in the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  18. Critical levels and loads and the regulation of industrial emissions in northwest British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Williston, P.; Aherne, J.; Watmough, S.; Marmorek, D.; Hall, A.; de la Cueva Bueno, P.; Murray, C.; Henolson, A.; Laurence, J. A.

    2016-12-01

    Northwest British Columbia, Canada, a sparsely populated and largely pristine region, is targeted for rapid industrial growth owing to the modernization of an aluminum smelter and multiple proposed liquefied natural gas (LNG) facilities. Consequently, air quality in this region is expected to undergo considerable changes within the next decade. In concert, the increase in LNG capacity driven by gas production from shale resources across North America has prompted environmental concerns and highlighted the need for science-based management decisions regarding the permitting of air emissions. In this study, an effects-based approach widely-used to support transboundary emissions policy negotiations was used to assess industrial air emissions in the Kitimat and Prince Rupert airsheds under permitted and future potential industrial emissions. Critical levels for vegetation of SO2 and NO2 and critical loads of acidity and nutrient nitrogen for terrestrial and aquatic ecosystems were estimated for both regions and compared with modelled concentration and deposition estimates to identify the potential extent and magnitude of ecosystem impacts. The critical level for SO2 was predicted to be exceeded in an area ranging from 81 to 251 km2 in the Kitimat airshed owing to emissions from an existing smelter, compared with <1 km2 in Prince Rupert under the lowest to highest emissions scenarios. In contrast, the NO2 critical level was not exceeded in Kitimat, and ranged from 4.5 to 6 km2 in Prince Rupert owing to proposed LNG related emissions. Predicted areal exceedance of the critical load of acidity for soil ranged from 1 to 28 km2 in Kitimat and 4-10 km2 in Prince Rupert, while the areal exceedance of empirical critical load for nutrient N was predicted to be greater in the Prince Rupert airshed (20-94 km2) than in the Kitimat airshed (1-31 km2). The number of lakes that exceeded the critical load of acidity did not vary greatly across emissions scenarios in the Kitimat (21

  19. Critical loads and nitrogen availability under deposition and harvest scenarios for conifer forests in Ireland.

    PubMed

    Johnson, James; Cummins, Thomas; Aherne, Julian

    2016-01-15

    In this study we calculated the critical load of nutrient nitrogen (N) for Irish forest plots (n=380) under two harvesting scenarios: conventional stem-only harvest (SOH) and stem plus branch harvest (SBH) and two deposition scenarios: current and with a 10% increase in reduced-N. In addition, current N status was assessed using the following data from forest monitoring plots: forest floor C:N, foliar N and plant root simulation (PRS™) probe N supply rate. Average critical loads were 15.3 kg N ha(-1)year(-1) under SOH and 19.5 kg N ha(-1)year(-1) under SBH. Average total (wet+dry) N deposition was 18 kg N ha(-1)year(-1), ranging from 8.6 to 26 kg Nha(-1)year(-1). As a result, critical loads were exceeded at 67% of sites under SOH and 40% of sites under SBH. However, there was little evidence of exceedance at monitored plots. Foliar and forest floor C:N data indicated that most of these sites had low to intermediate N status. There were considerable differences in N cycling between soil types. Plant root simulation (PRS™) probe data indicated that this was likely due to differences in net N-mineralization and nitrification. Our results indicate that many sites are currently N limited but critical load exceedance suggests that these systems will accumulate N over time. The findings have implications for forest management, allowing for the assessment of nutrient management under different harvest scenarios.

  20. An Investigation of the Validity of Wang's Formula for the Critical Load for Circular Cylindrical Grids

    NASA Technical Reports Server (NTRS)

    Smull, Leland K.

    1943-01-01

    Four circular cylindrical grids were tested under axial compression to investigate the validity of a theoretical formula for the critical load for such structures. The chief result of the investigation was to throw light on some difficulties connected with the experimental validation of such formulas.

  1. Critical assessment of precracked specimen configuration and experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate

    NASA Technical Reports Server (NTRS)

    Domack, M. S.

    1985-01-01

    A research program was conducted to critically assess the effects of precracked specimen configuration, stress intensity solutions, compliance relationships and other experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate. Modified compact and double beam wedge-loaded specimens were tested and analyzed to determine the threshold stress intensity factor and stress corrosion crack growth rate. Stress intensity solutions and experimentally determined compliance relationships were developed and compared with other solutions available in the literature. Crack growth data suggests that more effective crack length measurement techniques are necessary to better characterize stress corrosion crack growth. Final load determined by specimen reloading and by compliance did not correlate well, and was considered a major source of interlaboratory variability. Test duration must be determined systematically, accounting for crack length measurement resolution, time for crack arrest, and experimental interferences. This work was conducted as part of a round robin program sponsored by ASTM committees G1.06 and E24.04 to develop a standard test method for stress corrosion testing using precracked specimens.

  2. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States

    USGS Publications Warehouse

    Pardo, L.H.; Fenn, M.E.; Goodale, C.L.; Geiser, L.H.; Driscoll, C.T.; Allen, E.B.; Baron, J.S.; Bobbink, R.; Bowman, W.D.; Clark, C.M.; Emmett, B.; Gilliam, F.S.; Greaver, T.L.; Hall, S.J.; Lilleskov, E.A.; Liu, L.; Lynch, J.A.; Nadelhoffer, K.J.; Perakis, S.S.; Robin-Abbott, M. J.; Stoddard, J.L.; Weathers, K.C.; Dennis, R.L.

    2011-01-01

    Human activity in the last century has led to a significant increase in nitrogen (N) emissions and atmospheric deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the deposition of pollution that would be harmful to ecosystems is the determination of critical loads. A critical load is defined as the input of a pollutant below which no detrimental ecological effects occur over the long-term according to present knowledge. The objectives of this project were to synthesize current research relating atmospheric N deposition to effects on terrestrial and freshwater ecosystems in the United States, and to estimate associated empirical N critical loads. The receptors considered included freshwater diatoms, mycorrhizal fungi, lichens, bryophytes, herbaceous plants, shrubs, and trees. Ecosystem impacts included: (1) biogeochemical responses and (2) individual species, population, and community responses. Biogeochemical responses included increased N mineralization and nitrification (and N availability for plant and microbial uptake), increased gaseous N losses (ammonia volatilization, nitric and nitrous oxide from nitrification and denitrification), and increased N leaching. Individual species, population, and community responses included increased tissue N, physiological and nutrient imbalances, increased growth, altered root : shoot ratios, increased susceptibility to secondary stresses, altered fire regime, shifts in competitive interactions and community composition, changes in species richness and other measures of biodiversity, and increases in invasive species. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1-39 kg N.ha -1.yr -1, spanning the range of N deposition observed over most of the country. The empirical critical loads for N tend to

  3. Criticality Safety Analysis Of As-loaded Spent Nuclear Fuel Casks

    SciTech Connect

    Banerjee, Kaushik; Scaglione, John M

    2015-01-01

    The final safety analysis report (FSAR) or the safety analysis report (SAR) for a particular spent nuclear fuel (SNF) cask system documents models and calculations used to demonstrate that a system meets the regulatory requirements under all normal, off-normal, and accident conditions of spent fuel storage, and normal and accident conditions of transportation. FSAR/SAR calculations and approved content specifications are intended to be bounding in nature to certify cask systems for a variety of fuel characteristics with simplified SNF loading requirements. Therefore, in general, loaded cask systems possess excess and uncredited criticality margins (i.e., the difference between the licensing basis and the as-loaded calculations). This uncredited margin could be quantified by employing more detailed cask-specific evaluations that credit the actual as-loaded cask inventory, and taking into account full (actinide and fission product) burnup credit. This uncredited criticality margin could be potentially used to offset (1) uncertainties in the safety basis that needs to account for the effects of system aging during extended dry storage prior to transportation, and (2) increases in SNF system reactivity over a repository performance period (e.g., 10,000 years or more) as the system undergoes degradation and internal geometry changes. This paper summarizes an assessment of cask-specific, as-loaded criticality margins for SNF stored at eight reactor sites (215 loaded casks were analyzed) under fully flooded conditions to assess the margins available during transportation after extended storage. It is observed that the calculated keff margin varies from 0.05 to almost 0.3 Δkeff for the eight selected reactor sites, demonstrating that significant uncredited safety margins are present. In addition, this paper evaluates the sufficiency of this excess margin in applications involving direct disposal of currently loaded SNF casks.

  4. Critical Threshold for Spontaneous Failure: Macro- and Micro- Behavior of Granite Loaded to Failure

    NASA Astrophysics Data System (ADS)

    Katz, O.; Reches, Z.

    2003-12-01

    The ultimate strength, time-dependence creep and associated microstructure of granite samples are examined as an attempt to characterize the critical parameters of brittle rock failure. We loaded triaxially 27 cylinders of the medium grain-size Mount Scott granite (western Oklahoma) under dry, room temperature conditions. Thirteen of the samples were loaded under confining pressure ranging from 0 to 50 MPa, and the group of 14 samples was loaded under confining pressure of 41MPa, for which the ultimate strength is Us = 586+-16 MPa. The 14 samples were loaded up to pre-selected differential stress (NDS) that ranges from 0.54 Us to 1.05 Us, and were then held under constant stroke for periods as long as six hours. The failure could be reasonably well predicted by two macroscopic parameters. One is the maximum differential stress: the eleven samples loaded under NSD <= 0.95 did not fail during the six hours of hold period, whereas the three samples loaded by NDS>0.95 failed spontaneously after a few seconds to an hour of hold time. The high Weibull parameter (m=13-22) of strength distribution of a heterogeneous rock is in agreement with this observation. The second parameter is the ``crack volumetric strain'' (CVS) that increases monotonously for NDS<=0.95, but at NDS>0.95 it reaches a critical value of ~0.001 beyond which it is poorly constrained (with CVS approaching 0.005). We mapped the microfractures in thin-sections prepared from 5 deformed samples that cover the full loading range: 0.00, 0.57, 0.88, 0.96 of the rock strength and failure. The microstructural thin-section maps provided quantitative damage intensity (approaching 0.2) and fractal dimensions of the microfractures length distribution (1.5 for unloaded sample and 2.2-2.4 for loaded samples); these maps however, provide no critical failure indicator. Which of the examined parameters could be used to determine a critical failure state in an active fault-zone? We believe that the "crack volumetric strain

  5. New approaches to provide ride-through for critical loads in electric power distribution systems

    NASA Astrophysics Data System (ADS)

    Montero-Hernandez, Oscar C.

    2001-07-01

    The extensive use of electronic circuits has enabled modernization, automation, miniaturization, high quality, low cost, and other achievements regarding electric loads in the last decades. However, modern electronic circuits and systems are extremely sensitive to disturbances from the electric power supply. In fact, the rate at which these disturbances happen is considerable as has been documented in recent years. In response to the power quality concerns presented previously, this dissertation is proposing new approaches to provide ride-through for critical loads during voltage disturbances with emphasis on voltage sags. In this dissertation, a new approach based on an AC-DC-AC system is proposed to provide ride-through for critical loads connected in buildings and/or an industrial system. In this approach, a three-phase IGBT inverter with a built in Dc-link voltage regulator is suitably controlled along with static by-pass switches to provide continuous power to critical loads. During a disturbance, the input utility source is disconnected and the power from the inverter is connected to the load. The remaining voltage in the AC supply is converted to DC and compensated before being applied to the inverter and the load. After detecting normal utility conditions, power from the utility is restored to the critical load. In order to achieve an extended ride-through capability a second approach is introduced. In this case, the Dc-link voltage regulator is performed by a DC-DC Buck-Boost converter. This new approach has the capability to mitigate voltage variations below and above the nominal value. In the third approach presented in this dissertation, a three-phase AC to AC boost converter is investigated. This converter provides a boosting action for the utility input voltages, right before they are applied to the load. The proposed Pulse Width Modulation (PWM) control strategy ensures independent control of each phase and compensates for both single-phase or poly

  6. A conceptual framework: redefining forest soil's critical acid loads under a changing climate.

    PubMed

    McNulty, Steven G; Boggs, Johnny L

    2010-06-01

    Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period

  7. Efficient identification of critical stresses in structures subject to dynamic loads

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Watson, L. T.; Grandhi, R. V.

    1986-01-01

    Optimum structural design problems generally employ constraints which are parametric in terms of space and time variables. A parametric constraint may be replaced by equivalent critical point constraints at its local minima for optimization applications. In complex structures, accurate identification of such critical points is computationally expensive due to the cost of finite element analyses. Three techniques are described for efficiently and accurately identifying critical points for space- and time-dependent parametric constraints. An adaptive search technique and a spline interpolation technique are developed for exactly known response. A least squares spline approximation is suggested for noisy behavior. A helicopter tail-boom structure subjected to transient loading is used as an example to demonstrate the techniques described. All three techniques are shown to be computationally efficient for critical point identification and the least squares approximation also removes noise from the data. The case of multiple constraints per element is shown to be particularly suited to the use of spline techniques.

  8. The effect of critically moving loads on the vibrations of soft soils and isolated railway tracks

    NASA Astrophysics Data System (ADS)

    Auersch, L.

    2008-02-01

    The dynamic response of the railway track is strongly influenced by the underlying soil. For a soft soil and very high train speeds or for a very soft soil and regular train speeds, the train speed can be close to the speed of elastic waves in the soil. This paper presents a detailed study of the so-called "moving-load effect", i.e. an amplification of the dynamic response due to the load movement, for the tracks on soft soil. The analysis is carried out by evaluating the related integrals in the wavenumber domain. The influence of the load speed is quantified for a large set of parameters, showing that the effect on the soil vibration is reduced with increase of the frequency, track width and inverse wave velocity. Therefore, the moving-load effect associated with vibratory train loads is negligible whereas the amplification associated with the moving dead weight of the train can be significant. The strong moving-load effect on a perfectly homogeneous soil, however, can be strongly diminished by a layered or randomly varying soil situation. This theoretical result is affirmed by measurements at a test site in Germany where the trains run on a very soft soil at a near-critical speed. The results for soft soils are compared with experimental and theoretical results for a stiff soil. It is found that the influence of the stiffness of the soil is much stronger than the moving-load effect. This holds for the soil vibration as well as for the track vibration which both show a minor dependence on the load speed but a considerable dependence on the soil stiffness in theory and experiment. Railway tracks can include soft isolation elements such as rail pads, sleeper shoes and ballast mats. For these types of isolation elements and normal soil conditions, the influence of the load speed is usually negligible. There is only one isolation measure for which the moving load may be effective: a track which is constructed as a heavy mass-spring system. The resonance of this track

  9. Unsteady loads due to propulsive lift configurations. Part D: The development of an experimental facility for the investigation of scaling effects on propulsive lift configurations

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.; Herling, W. W.

    1978-01-01

    The design and construction of an experimental facility for the investigation of scaling effects in propulsive lift configurations are described. The facility was modeled after an existing full size NASA facility which consisted of a coaxial turbofan jet engine with a rectangular nozzle in a blown surface configuration. The flow field of the model facility was examined with and without a simulated wing surface in place at several locations downstream of the nozzle exit plane. Emphasis was placed on obtaining pressure measurements which were made with static probes and surface pressure ports connected via plastic tubing to condenser microphones for fluctuating measurements. Several pressure spectra were compared with those obtained from the NASA facility, and were used in a preliminary evaluation of scaling laws.

  10. Critical loads and their exceedances at intensive forest monitoring sites in Europe.

    PubMed

    Lorenz, Martin; Nagel, Hans-Dieter; Granke, Oliver; Kraft, Philipp

    2008-10-01

    Intensive forest monitoring by means of harmonised methods has been conducted in Europe for more than a decade. Risks of atmospheric nitrogen and sulphur deposition are assessed by means of calculations of critical loads and their exceedances. In the present study throughfall and bulk deposition of nitrate (N-NO(3)), ammonium (N-NH(4)) and sulphate (S-SO(4)) show marked spatial patterns and temporal trends. In the period of observation (1999-2004), sulphate deposition on intensive monitoring plots decreased by about one quarter. This is in line with the reduction of S deposition by 70% since 1981 in Europe as a result of successful air pollution control politics under the Convention on Long-range Transboundary Air Pollution (CLRTAP). However, sulphate and especially nitrate and ammonium deposition were found to still exceed critical loads at many forest sites, indicating a continued need for further implementation of air pollution abatement strategies.

  11. Evaluation of atmospheric nitrogen deposition model performance in the context of U.S. critical load assessments

    NASA Astrophysics Data System (ADS)

    Williams, Jason J.; Chung, Serena H.; Johansen, Anne M.; Lamb, Brian K.; Vaughan, Joseph K.; Beutel, Marc

    2017-02-01

    Air quality models are widely used to estimate pollutant deposition rates and thereby calculate critical loads and critical load exceedances (model deposition > critical load). However, model operational performance is not always quantified specifically to inform these applications. We developed a performance assessment approach designed to inform critical load and exceedance calculations, and applied it to the Pacific Northwest region of the U.S. We quantified wet inorganic N deposition performance of several widely-used air quality models, including five different Community Multiscale Air Quality Model (CMAQ) simulations, the Tdep model, and 'PRISM x NTN' model. Modeled wet inorganic N deposition estimates were compared to wet inorganic N deposition measurements at 16 National Trends Network (NTN) monitoring sites, and to annual bulk inorganic N deposition measurements at Mount Rainier National Park. Model bias (model - observed) and error (|model - observed|) were expressed as a percentage of regional critical load values for diatoms and lichens. This novel approach demonstrated that wet inorganic N deposition bias in the Pacific Northwest approached or exceeded 100% of regional diatom and lichen critical load values at several individual monitoring sites, and approached or exceeded 50% of critical loads when averaged regionally. Even models that adjusted deposition estimates based on deposition measurements to reduce bias or that spatially-interpolated measurement data, had bias that approached or exceeded critical loads at some locations. While wet inorganic N deposition model bias is only one source of uncertainty that can affect critical load and exceedance calculations, results demonstrate expressing bias as a percentage of critical loads at a spatial scale consistent with calculations may be a useful exercise for those performing calculations. It may help decide if model performance is adequate for a particular calculation, help assess confidence in

  12. Effects and empirical critical loads of Nitrogen for ecoregions of the United States

    USGS Publications Warehouse

    Pardo, Linda H.; Robin-Abbott, Molly J.; Fenn, Mark E.; Goodale, Christine L.; Geiser, Linda H.; Driscoll, Charles T.; Allen, Edith B.; Baron, Jill S.; Bobbink, Roland; Bowman, William D.; Clark, C M; Emmett, B.; Gilliam, Frank S; Greaver, Tara L.; Hall, Sharon J; Lilleskov, Erik A.; Liu, Lingli; Lynch, Jason A.; Nadelhoffer, Knute J; Perakis, Steven; Stoddard, John L; Weathers, Kathleen C.; Dennis, Robin L.

    2015-01-01

    Human activity in the last century has increased nitrogen (N) deposition to a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. We synthesized current research relating atmospheric N deposition to effects on terrestrial and freshwater ecosystems in the United States, and estimated associated empirical critical loads of N for several receptors: freshwater diatoms, mycorrhizal fungi, lichens, bryophytes, herbaceous plants, shrubs, and trees. Biogeochemical responses included increased N mineralization and nitrification, increased gaseous N losses, and increased N leaching. Individual species, population, and community responses included increased tissue N, physiological and nutrient imbalances, increased growth, altered root-shoot ratios, increased susceptibility to secondary stresses, altered fire regime, shifts in competitive interactions and community composition, changes in species richness and other measures of biodiversity, and increases in invasive species. The range of critical loads of nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1–39 kg N ha−1 yr−1, spanning the range of N deposition observed over most of the country. The empirical critical loads of N tend to increase in the following sequence: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees.

  13. Vegetation community change points suggest that critical loads of nutrient nitrogen may be too high

    NASA Astrophysics Data System (ADS)

    Wilkins, Kayla; Aherne, Julian; Bleasdale, Andy

    2016-12-01

    It is widely accepted that elevated nitrogen deposition can have detrimental effects on semi-natural ecosystems, including changes to plant diversity. Empirical critical loads of nutrient nitrogen have been recommended to protect many sensitive European habitats from significant harmful effects. In this study, we used Threshold Indicator Taxa Analysis (TITAN) to investigate shifts in vegetation communities along an atmospheric nitrogen deposition gradient for twenty-two semi-natural habitat types (as described under Annex I of the European Union Habitats Directive) in Ireland. Significant changes in vegetation community, i.e., change points, were determined for twelve habitats, with seven habitats showing a decrease in the number of positive indicator species. Community-level change points indicated a decrease in species abundance along a nitrogen deposition gradient ranging from 3.9 to 15.3 kg N ha-1 yr-1, which were significantly lower than recommended critical loads (Wilcoxon signed-rank test; V = 6, p < 0.05). These results suggest that lower critical loads of empirical nutrient nitrogen deposition may be required to protect many European habitats. Changes to vegetation communities may mean a loss of sensitive indicator species and potentially rare species in these habitats, highlighting how emission reductions policies set under the National Emissions Ceilings Directive may be directly linked to meeting the goal set out under the European Union's Biodiversity Strategy of "halting the loss of biodiversity" across Europe by 2020.

  14. Nitrogen Critical Loads for an Alpine Meadow Ecosystem on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zong, Ning; Shi, Peili; Song, Minghua; Zhang, Xianzhou; Jiang, Jing; Chai, Xi

    2016-03-01

    Increasing atmospheric nitrogen (N) deposition has the potential to alter plant diversity and thus the function and stability of terrestrial ecosystems. N-limited alpine ecosystems are expected to be particularly susceptible to increasing N deposition. However, little is known about the critical loads and saturation thresholds of ecosystem responses to increasing N deposition on the Tibetan Plateau, despite its importance to ecosystem management. To evaluate the N critical loads and N saturation thresholds in an alpine ecosystem, in 2010, we treated an alpine meadow with five levels of N addition (0, 10, 20, 40, and 80 kg N ha-1 year-1) and characterized plant and soil responses. The results showed that plant species richness and diversity index did not statistically vary with N addition treatments, but they both changed with years. N addition affected plant cover and aboveground productivity, especially for grasses, and soil chemical features. The N critical loads and saturation thresholds, in terms of plant cover and biomass change at the community level, were 8.8-12.7 and 50 kg N ha-1 year-1 (including the ambient N deposition rate), respectively. However, pronounced changes in soil inorganic N and net N mineralization occurred under the 20 and 40 kg N ha-1 year-1 treatments. Our results indicate that plant community cover and biomass are more sensitive than soil to increasing N inputs. The plant community composition in alpine ecosystems on the Qinghai-Tibetan Plateau may change under increasing N deposition in the future.

  15. Surface water acidification and critical loads: exploring the F-factor

    NASA Astrophysics Data System (ADS)

    Rapp, L.; Bishop, K.

    2009-11-01

    As acid deposition decreases, uncertainties in methods for calculating critical loads become more important when judgements have to be made about whether or not further emission reductions are needed. An important aspect of one type of model that has been used to calculate surface water critical loads is the empirical F-factor which estimates the degree to which acid deposition is neutralised before it reaches a lake at any particular point in time relative to the pre-industrial, steady-state water chemistry conditions. In this paper we will examine how well the empirical F-functions are able to estimate pre-industrial lake chemistry as lake chemistry changes during different phases of acidification and recovery. To accomplish this, we use the dynamic, process-oriented biogeochemical model SAFE to generate a plausible time series of annual runoff chemistry for ca. 140 Swedish catchments between 1800 and 2100. These annual hydrochemistry data are then used to generate empirical F-factors that are compared to the "actual" F-factor seen in the SAFE data for each lake and year in the time series. The dynamics of the F-factor as catchments acidify, and then recover are not widely recognised. Our results suggest that the F-factor approach worked best during the acidification phase when soil processes buffer incoming acidity. However, the empirical functions for estimating F from contemporary lake chemistry are not well suited to the recovery phase when the F-factor turns negative due to recovery processes in the soil. This happens when acid deposition has depleted the soil store of BC, and then acid deposition declines, reducing the leaching of base cations to levels below those in the pre-industrial era. An estimate of critical load from water chemistry during recovery and empirical F functions would therefore result in critical loads that are too low. Therefore, the empirical estimates of the F-factor are a significant source of uncertainty in the estimate of surface

  16. Atmospheric deposition and critical loads for nitrogen and metals in Arctic Alaska: Review and current status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  17. Surface water acidification and critical loads: exploring the F-factor

    NASA Astrophysics Data System (ADS)

    Rapp, L.; Bishop, K.

    2009-05-01

    As acid deposition decreases, uncertainties in methods for calculating critical loads become more important when judgements have to be made about whether or not further emission reductions are needed. An important aspect of one type of model that has been used to calculate surface water critical loads is the empirical F-factor which estimates the degree to which acid deposition is neutralised before it reaches a lake at any particular point in time relative to the pre-industrial, steady-state water chemistry conditions. In this paper we will examine how well the empirical F-functions are able to estimate pre-industrial lake chemistry as lake chemistry changes during different phases of acidification and recovery. To accomplish this, we use the dynamic, process-oriented biogeochemical model SAFE to generate a plausible time series of annual runoff chemistry for ca 140 Swedish catchments between 1800 and 2100. These annual hydrochemistry data are then used to generate empirical F-factors that are compared to the "actual" F-factor seen in the SAFE data for each lake and year in the time series. The dynamics of the F-factor as catchments acidify, and then recover are not widely recognised. Our results suggest that the F-factor approach worked best during the acidification phase when soil processes buffer incoming acidity. However, the empirical functions for estimating F from contemporary lake chemistry are not well suited to the recovery phase when the F-factor turns negative due to recovery processes in the soil. Therefore, the empirical estimates of the F-factor are a significant source of uncertainty in the estimate of surface water critical loads and related calculations for quantifying lake acidification status, especially now that acid deposition has declined across large areas of Europe and North America.

  18. Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity.

    PubMed

    Li, Harbin; McNulty, Steven G

    2007-10-01

    Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL estimates to the national scale could be developed. Specifically, we wanted to quantify CAL uncertainty under natural variability in 17 model parameters, and determine their relative contributions in predicting CAL. Results indicated that uncertainty in CAL came primarily from components of base cation weathering (BC(w); 49%) and acid neutralizing capacity (46%), whereas the most critical parameters were BC(w) base rate (62%), soil depth (20%), and soil temperature (11%). Thus, improvements in estimates of these factors are crucial to reducing uncertainty and successfully scaling up SMBE for national assessments of CAL.

  19. Supraspinatus tendon load during abduction is dependent on the size of the critical shoulder angle: A biomechanical analysis.

    PubMed

    Gerber, Christian; Snedeker, Jess G; Baumgartner, Daniel; Viehöfer, Arnd F

    2014-07-01

    Shoulders with supraspinatus (SSP) tears are associated with significantly larger critical shoulder angles (CSA) compared to disease-free shoulders. We hypothesized that larger CSAs increase the ratio of joint shear to joint compression forces (defined as "instability ratio"), requiring substantially increased compensatory supraspinatus loads. A shoulder simulator with simulated deltoid, supraspinatus, infraspinatus/teres minor, and subscapularis musculotendinous units was constructed. The model was configured to represent either a normal CSA of 33° or a CSA characteristic of shoulders with rotator cuff tears (38°), and the components of the joint forces were measured. The instability ratio increased for the 38° CSA compared with the control CSA (33°) for a range of motion between 6° to 61° of thoracohumeral abduction with the largest differences in instability observed between 33° and 37° of elevation. In this range, SSP force had to be increased by 13-33% (15-23 N) to stabilize the arm in space. Our results support the concept that a high CSA can induce SSP overload particularly at low degrees of active abduction.

  20. A modified approach for estimating the aquatic critical load of acid deposition in northern Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Whitfield, Colin J.; Mowat, Aidan C.; Scott, Kenneth A.; Watmough, Shaun A.

    2016-12-01

    Acid-sensitive ecosystems are found in northern Saskatchewan, which lies downwind of major sulphur (S) and nitrogen (N) emissions sources associated with the oil sands extraction industry. In order to protect these ecosystems against acidification, tolerance to acid deposition must be quantified. The suitability of the central empirical relationship used in the Steady-State Water Chemistry (SSWC) model to predict historical sulphate (SO4) concentrations was investigated, and an alternate approach for determining aquatic critical loads of acidity (CL(A)) was employed for the study lakes (n = 260). Critical loads of acidity were often low, with median values of 12-16 mmolc m-2 yr-1, with the lower value reflecting a region-specific limit for acid-neutralizing capacity identified in this study. Uncertain levels of atmospheric deposition in the region, however, are problematic for characterizing acidification risk. Accurate S and chloride (Cl) deposition are needed to identify catchment sources (and sinks) of these elements in the new approach for CL(A) calculation. Likewise, accurate depiction of atmospheric deposition levels can prove useful for evaluation of lake runoff estimates on which estimates of CL(A) are contingent. While CL(A) are low and exceedance may occur according to projected increases in S deposition in the near-term, S retention appears to be an important feature in many catchments and risk of acidification may be overstated should long-term S retention be occurring in peatlands.

  1. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.

    PubMed

    Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A

    2014-12-01

    The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those

  2. Benzo[a]pyrene in urban environments of eastern Moscow: pollution levels and critical loads

    NASA Astrophysics Data System (ADS)

    Kasimov, Nikolay S.; Kosheleva, Natalia E.; Nikiforova, Elena M.; Vlasov, Dmitry V.

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs), particularly benzo[a]pyrene (BaP), are toxic compounds emitted from various anthropogenic sources. Understanding the BaP concentrations, dynamics and decomposition in soil is required to assess the critical loads of BaP in urban environments. This study is the first attempt to evaluate all major input and output components of benzo[a]pyrene (BaP) balance and to calculate the permissible load on the urban environment in different land-use zones in the Eastern district of Moscow. BaP contamination of the snow cover in the Eastern district of Moscow was related to daily BaP fallout from the atmosphere. In 2010, the mean content of the pollutant in the snow dust was 1942 ng g-1, whereas the average intensity of its fallout was 7.13 ng m-2 per day. Across the territory, BaP winter fallout intensities varied from 0.3 to 1100 ng m-2 per day. The average BaP content in the surface (0-10 cm) soil horizons was 409 ng g-1, which is 83 times higher than the local background value and 20 times higher than the maximum permissible concentration (MPC) accepted in Russia. The variations in soil and snow BaP concentrations among different land-use zones were examined. A significant contribution of BaP from the atmosphere to urban soils was identified. Based on the measurements of BaP atmospheric fallout and BaP reserves in the soils, the critical loads of BaP for the land-use zones in the Eastern district were calculated for different values of degradation intensity and different exposure times. It was established that at an annual degradation intensity of 1-10 %, ecologically safe BaP levels in the soils of all land-use zones, excluding the agricultural zone, will only be reached after many decades or centuries.

  3. New colistin population pharmacokinetic data in critically ill patients suggesting an alternative loading dose rationale.

    PubMed

    Grégoire, N; Mimoz, O; Mégarbane, B; Comets, E; Chatelier, D; Lasocki, S; Gauzit, R; Balayn, D; Gobin, P; Marchand, S; Couet, W

    2014-12-01

    Colistin is an old antibiotic that has recently gained a considerable renewal of interest as the last-line defense therapy against multidrug-resistant Gram-negative bacteria. It is administered as colistin methanesulfonate (CMS), an inactive prodrug, and it was shown that due to slow CMS conversion, colistin plasma concentrations increase very slowly after treatment initiation, which constitutes the rationale for a loading dose in critically ill patients. However, faster CMS conversion was observed in healthy volunteers but using a different CMS brand, which may also have a major impact on colistin pharmacokinetics. Seventy-three critically ill patients not undergoing dialysis received multiple doses of CMS. The CMS concentrations were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a pharmacokinetic analysis was conducted using a population approach. We confirmed that CMS renal clearance and colistin concentrations at steady state are mostly governed by creatinine clearance, but we predict a typical maximum concentration of drug in serum (Cmax) of colistin close to 2 mg/liter, occurring 3 h after an initial dose of 2 million international units (MIU) of CMS. Accordingly, the estimated colistin half-life (t1/2) was relatively short (3.1 h), with rapid attainment of steady state. Our results are only partially consistent with other recently published results. We confirm that the CMS maintenance dose should be adjusted according to renal function in critically ill patients. However, much higher than expected colistin concentrations were observed after the initial CMS dose, with rapid steady-state achievement. These discrepancies challenge the pharmacokinetic rationale for a loading dose, which may still be appropriate for rapid bacterial eradication and an improved clinical cure rate.

  4. Influence of the heater material on the critical heat load at boiling of liquids on surfaces with different sizes

    NASA Astrophysics Data System (ADS)

    Anokhina, E. V.

    2010-05-01

    Data on critical heat loads q cr for the saturated and unsaturated pool boiling of water and ethanol under atmospheric pressure are reported. It is found experimentally that the critical heat load does not necessarily coincide with the heat load causing burnout of the heater, which should be taken into account. The absolute values of q cr for the boiling of water and ethanol on copper surfaces 65, 80, 100, 120, and 200 μm in diameter; tungsten surface 100 μm in diameter; and nichrome surface 100 μm in diameter are obtained experimentally.

  5. Controlled flame synthesis of αFe2O3 and Fe3O4 nanoparticles: effect of flame configuration, flame temperature, and additive loading

    NASA Astrophysics Data System (ADS)

    Buyukhatipoglu, K.; Morss Clyne, A.

    2010-05-01

    Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6-12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50-60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50-60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the

  6. Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet?

    PubMed

    Bowman, William D; Gartner, Julia R; Holland, Keri; Wiedermann, Magdalena

    2006-06-01

    Increases in the deposition of anthropogenic nitrogen (N) have been linked to several terrestrial ecological changes, including soil biogeochemistry, plant stress susceptibility, and community diversity. Recognizing the need to identify sensitive indicators of biotic response to N deposition, we empirically estimated the N critical load for changes in alpine plant community composition and compared this with the estimated critical load for soil indicators of ecological change. We also measured the degree to which alpine vegetation may serve as a sink for anthropogenic N and how much plant sequestration is related to changes in species composition. We addressed these research goals by adding 20, 40, or 60 kg N x ha(-1) x yr(-1), along with an ambient control (6 kg N x ha(-1) x yr(-1) total deposition), to a species-rich alpine dry meadow for an eight-year period. Change in plant species composition associated with the treatments occurred within three years of the initiation of the experiment and were significant at all levels of N addition. Using individual species abundance changes and ordination scores, we estimated the N critical loads (total deposition) for (1) change in individual species to be 4 kg N x ha(-1) yr(-1) and (2) for overall community change to be 10 kg N x ha(-1) x yr(-1). In contrast, increases in NO3- leaching, soil solution inorganic NO3-, and net N nitrification occurred at levels above 20 kg N x ha(-1) x yr(-1). Increases in total aboveground biomass were modest and transient, occurring in only one of the three years measured. Vegetative uptake of N increased significantly, primarily as a result of increasing tissue N concentrations and biomass increases in subdominant species. Aboveground vegetative uptake of N accounted for <40% of the N added. The results of this experiment indicate that changes in vegetation composition will precede detectable changes in more traditionally used soil indicators of ecosystem responses to N deposition and

  7. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    USGS Publications Warehouse

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CLNdep estimates (-1 yr-1) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha-1 yr-1), resulting in CLNdep exceedances ≥1.5 ± 1 kg N ha-1 yr-1. CLNdep and CLNdep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO3- threshold at which ecological effects are thought to occur. Based on an NO3- threshold of 0.5 μmol L-1, N deposition exceeds CLNdep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.

  8. Critical load analysis in hazard assessment of metals using a Unit World Model.

    PubMed

    Gandhi, Nilima; Bhavsar, Satyendra P; Diamond, Miriam L

    2011-09-01

    A Unit World approach has been used extensively to rank chemicals for their hazards and to understand differences in chemical behavior. Whereas the fate and effects of an organic chemical in a Unit World Model (UWM) analysis vary systematically according to one variable (fraction of organic carbon), and the chemicals have a singular ranking regardless of environmental characteristics, metals can change their hazard ranking according to freshwater chemistry, notably pH and dissolved organic carbon (DOC). Consequently, developing a UWM approach for metals requires selecting a series of representative freshwater chemistries, based on an understanding of the sensitivity of model results to this chemistry. Here we analyze results from a UWM for metals with the goal of informing the selection of appropriate freshwater chemistries for a UWM. The UWM loosely couples the biotic ligand model (BLM) to a geochemical speciation model (Windermere Humic Adsorption Model [WHAM]) and then to the multi-species fate transport-speciation (Transpec) model. The UWM is applied to estimate the critical load (CL) of cationic metals Cd, Cu, Ni, Pb, and Zn, using three lake chemistries that vary in trophic status, pH, and other parameters. The model results indicated a difference of four orders of magnitude in particle-to-total dissolved partitioning (K(d)) that translated into minimal differences in fate because of the short water residence time used. However, a maximum 300-fold difference was calculated in Cu toxicity among the three chemistries and three aquatic organisms. Critical loads were lowest (greatest hazard) in the oligotrophic water chemistry and highest (least hazard) in the eutrophic water chemistry, despite the highest fraction of free metal ion as a function of total metal occurring in the mesotrophic system, where toxicity was ameliorated by competing cations. Water hardness, DOC, and pH had the greatest influence on CL, because of the influence of these factors on aquatic

  9. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhong; Zhang, Lin; Chen, Youfan; Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Duan, Lei

    2017-03-01

    We present a national-scale model analysis on the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2° × 1/3° horizontal resolution. Model results for 2008-2012 are evaluated with an ensemble of surface measurements of wet deposition flux and gaseous ammonia (NH3) concentration, and satellite measurements of tropospheric NO2 columns. Annual total inorganic nitrogen deposition fluxes are simulated to be generally less than 10 kg N ha-1 a-1 in western China (less than 2 kg N ha-1 a-1 over Tibet), 15-50 kg N ha-1 a-1 in eastern China, and 16.4 kg N ha-1 a-1 averaged over China. Annual total deposition to China is 16.4 Tg N, with 10.2 Tg N (62%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported outside the terrestrial land of China. We find that atmospheric nitrogen deposition is about half of the nitrogen input from fertilizer application (29.6 Tg N a-1), and is much higher than that from natural biological fixation (7.3 Tg N a-1) over China. A comparison of nitrogen deposition with critical load estimates for eutrophication indicates that about 15% of the land over China experiences critical load exceedances, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects.

  10. Space shuttle: An investigation of the load distribution over the SRB and external tank of a 0.004 scale model of the 049 space shuttle launch configuration

    NASA Technical Reports Server (NTRS)

    Lott, R. A.; Ramsey, P. E.

    1973-01-01

    A study was conducted in a trisonic wind tunnel to determine the load distribution over the external tank and solid rocket boosters of the space shuttle launch configuration. The external tank was sting-supported and the solid rocket boosters and orbiter were mounted directly on the external tank. The external tank was, instrumented with 152 pressure orifices and the solid rocket boosters contained 78 orifices. The pressure data were obtained for various combinations of the three geometric components as the gap size between the external tank and the solid rocket boosters, angle of attack, and angle of sideslip were varied. Mach numbers ranged from 0.8 to 1.96.

  11. Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods (1.506-cm Pitch)

    SciTech Connect

    Margaret A. Marshall

    2013-03-01

    A series of critical experiments were completed from 1962–1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967.a The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were performed to determine critical reflector arrangements, relative fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector” (see Reference 1). The experiment studied in this evaluation was the second of the series and had the fuel rods in a 1.506-cm-triangular pitch. One critical configuration was found (see Reference 3). Once the critical configuration had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U,bc and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configuration are described in Sections 1.3, 1.4, and 1.7, respectively.

  12. Critical nitrogen deposition loads in high-elevation lakes of the western US inferred from paleolimnological records

    USGS Publications Warehouse

    Saros, J.E.; Clow, D.W.; Blett, T.; Wolfe, A.P.

    2011-01-01

    Critical loads of nitrogen (N) from atmospheric deposition were determined for alpine lake ecosystems in the western US using fossil diatom assemblages in lake sediment cores. Changes in diatom species over the last century were indicative of N enrichment in two areas, the eastern Sierra Nevada, starting between 1960 and 1965, and the Greater Yellowstone Ecosystem, starting in 1980. In contrast, no changes in diatom community structure were apparent in lakes of Glacier National Park. To determine critical N loads that elicited these community changes, we modeled wet nitrogen deposition rates for the period in which diatom shifts first occurred in each area using deposition data spanning from 1980 to 2007. We determined a critical load of 1.4 kg N ha-1 year-1 wet N deposition to elicit key nutrient enrichment effects on diatom communities in both the eastern Sierra Nevada and the Greater Yellowstone Ecosystem. ?? 2010 Springer Science+Business Media B.V.

  13. Effects of method of loading and specimen configuration on compressive strength of graphite/epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Clark, R. K.; Lisagor, W. B.

    1980-01-01

    Three test schemes were examined for testing graphite/epoxy (Narmco T300/5208) composite material specimens to failure in compression, including an adaptation of the IITRI "wedge grip" compression fixture, a face-supported-compression fixture, and an end-loaded-coupon fixture. The effects of specimen size, specimen support arrangement and method of load transfer on compressive behavior of graphite/epoxy were investigated. Compressive stress strain, strength, and modulus data obtained with the three fixtures are presented with evaluations showing the effects of all test parameters, including fiber orientation. The IITRI fixture has the potential to provide good stress/strain data to failure for unidirectional and quasi-isotropic laminates. The face supported fixture was found to be the most desirable for testing + or - 45 s laminates.

  14. Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations--a critical review.

    PubMed

    Mouele, Emile S Massima; Tijani, Jimoh O; Fatoba, Ojo O; Petrik, Leslie F

    2015-12-01

    The growing global drinking water crisis requires the development of novel advanced, sustainable, and cost-effective water treatment technologies to supplement the existing conventional methods. One such technology is advanced oxidation based on dielectric barrier discharge (DBD). DBD such as single and double planar and single and double cylindrical dielectric barrier configurations have been utilized for efficient degradation of recalcitrant organic pollutants. The overall performance of the different DBD system varies and depends on several factors. Therefore, this review was compiled to give an overview of different DBD configurations vis-a-viz their applications and the in situ mechanism of generation of free reactive species for water and wastewater treatment. Our survey of the literature indicated that application of double cylindrical dielectric barrier configuration represents an ideal and viable route for achieving greater water and wastewater purification efficiency.

  15. Slow Crack Growth Behavior and Life/Reliability Analysis of 96 wt % Alumina at Ambient Temperature With Various Specimen/Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Powers, Lynn M.; Nemeth, Noel N.

    2000-01-01

    Extensive constant stress-rate testing for 96 wt % alumina was conducted in room-temperature distilled water using four different specimen/loading configurations: rectangular beam test specimens under four-point uniaxial flexure, square plate test specimens in ring-on-ring biaxial flexure, square plate test specimens in ball-on-ring biaxial flexure, and dog-boned tensile test specimens in pure tension. The slow crack growth (SCG) parameter n was almost independent of specimen/loading configurations, in either four-point uniaxial flexure, ring-on-ring biaxial flexure, ball-on-ring biaxial flexure, or pure tension, ranging from n = 35 to 47 with an average value of n = 41.1 +/- 4.5. The prediction of fatigue strength/reliability based on the four-point uniaxial flexure data by using the CARES/Life design code as well as a simple PIA model was in good agreement with both the ring-on-ring biaxial and the ball-on-ring biaxial flexure data. A poor prediction using the PIA model was observed for the dog-boned tensile test specimens, presumably due to different flaw population involved in the tensile test specimens.

  16. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  17. WE-A-17A-05: Differences in Applicator Configuration and Dwell Loading Between Standard and Image-Guided Tandem and Ring (T and R) HDR Brachytherapy

    SciTech Connect

    Damato, A; Cormack, R; Bhagwat, M; Buzurovic, I; Lee, L; Viswanathan, A

    2014-06-15

    Purpose: To investigate differences in: (i) relative location of the tandem and the ring compared to a rigid standard applicator model; and (ii) relative loading and changes in loading pattern between standard and image-guided planning. Methods: All T and R insertions performed in 2013 in our institution under CT- or MR-guidance were analyzed. Standard plans were generated using library applicator models with a fixed relationship between ring and tandem, standardized uniform dwell loading and normalization to point A. The graphic plans and the associated standard-plan dwell configurations were compared: the rings were rigidly registered, and the residual tandem shift, rotation and maximum distance between plan tandem dwell and corresponding model tandem dwell were calculated. The normalization ratio (NR = the ratio of graphic versus standard-plan total reference air kerma [TRAK]), the general loading difference (GLD = the difference between graphic and standard ratios of the tandem versus the ring TRAK), and the percent standard deviation (SD% = SD/mean) of the tandem and the ring TRAK for the graphic plan (all standard-plans SD% = 0) were calculated. Results: 71 T and R were analyzed. Residual tandem shift, rotation and maximum corresponding dwell distance were 1.2±0.8mm (0.4±0.4mm lateral, 0.9±0.8mm craniocaudal, 0.4±0.3mm anterior-posterior), 2.3±1.9deg and 3.4±2.3mm. NR was 0.86±0.11 indicating a lower overall loading of the graphic compared to the standard plans. GLD was -0.12±0.16 indicating a modest increased ring loading relative to the tandem in the graphic plans. SD% was 2.1±1.6% for tandem and 2.8±1.9% for ring, indicating small deviations from uniform loading. Conclusion: Variability in the relative locations of the tandem and the ring necessitates the independent registration of each component model for accurate digitization. Our clinical experience suggests that graphically planned T and R results on average in a lower total dose to the

  18. Ecological risk assessment of acidification in the Northern Eurasia using critical load concept

    SciTech Connect

    Bashkin, V.; Golinets, O.

    1995-12-31

    This research presents the risk analysis of acid forming compounds input using critical loads (CL) values of sulfur, nitrogen, and acidity under the computer calculations for terrestrial and freshwater ecosystems of Northern Eurasia. The Cl values are used to set goals for future deposition rates of acidifying and eutrophication compounds so that the environment is protected. CL values for various ecosystems are determined using EM GIS approach. The most influential sources, such as nitrogen, sulfur and base cations uptake by vegetation, surface and groundwater leaching from terrestrial to freshwater ecosystems are described for the whole territory under study regarding uncertainty analysis and the level of corresponding risk assessment. This may be explained by many factors of which the most important are: the estimation of plant uptake is carried out on the basis of data on the biogeochemical cycling of various elements, for which adequate quantitative characterization for all ecosystems under study is either absent or insufficient; reliable information on the quantitative assessment of the ratio between perennial plant biomes increase and dead matter is absent for the required level of spatial and temporal resolution; reliable data on surface and underground runoff in various ecosystems are rare; the influence of hydrothermic factors on the above mentioned processes has not been quantitatively determined at required level of model resolution.

  19. Use of Combined Biogeochemical Model Approaches and Empirical Data to Assess Critical Loads of Nitrogen

    SciTech Connect

    Fenn, Mark E.; Driscoll, Charles; Zhou, Qingtao; Rao, Leela E.; Meixner, Tom; Allen, Edith B.; Yuan, Fengming; Sullivan, Timothy J.

    2015-01-01

    Empirical and dynamic biogeochemical modelling are complementary approaches for determining the critical load (CL) of atmospheric nitrogen (N) or other constituent deposition that an ecosystem can tolerate without causing ecological harm. The greatest benefits are obtained when these approaches are used in combination. Confounding environmental factors can complicate the determination of empirical CLs across depositional gradients, while the experimental application of N amendments for estimating the CL does not realistically mimic the effects of chronic atmospheric N deposition. Biogeochemical and vegetation simulation models can provide CL estimates and valuable ecosystem response information, allowing for past and future scenario testing with various combinations of environmental factors, pollutants, pollutant control options, land management, and ecosystem response parameters. Even so, models are fundamentally gross simplifications of the real ecosystems they attempt to simulate. Empirical approaches are vital as a check on simulations and CL estimates, to parameterize models, and to elucidate mechanisms and responses under real world conditions. In this chapter, we provide examples of empirical and modelled N CL approaches in ecosystems from three regions of the United States: mixed conifer forest, desert scrub and pinyon- juniper woodland in California; alpine catchments in the Rocky Mountains; and lakes in the Adirondack region of New York state.

  20. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    USGS Publications Warehouse

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CLNdep estimates (−1 yr−1) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha−1 yr−1), resulting in CLNdep exceedances ≥1.5 ± 1 kg N ha−1 yr−1. CLNdep and CLNdep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO3− threshold at which ecological effects are thought to occur. Based on an NO3− threshold of 0.5 μmol L−1, N deposition exceeds CLNdep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.

  1. Analysis of three idealized reactor configurations: plate, pin, and homogeneous. [LMFBR

    SciTech Connect

    McKnight, R.D.

    1983-01-01

    Detailed Monte Carlo calculations have been performed for three distinct configurations of an idealized fast critical assembly. This idealized assembly was based on the LMFBR benchmark critical assembly ZPR-6/7. In the first configuration, the entire core was loaded with the plate unit cell of ZPR-6/7. In the second configuration, the entire core was loaded with the ZPR sodium-filled pin calandria. The actual ZPR pin calandria are loaded with mixed (U,Pu) oxide pins which closely match the composition of the ZPR-6/7 plate unit cell. For the present study, slight adjustments were made in the atom concentrations and the length of the pin calandria in order to make the core boundaries and average composition for the pin-cell configuration identical to those of the plate-cell configuration. In the third configuration, the core was homogeneous, again with identical core boundaries and average composition as the plate and pin configurations.

  2. Computer program analyzes whirl critical speeds and bearing loads for shafts coupled by nonlinear springs to machine housing

    NASA Technical Reports Server (NTRS)

    Severud, L. K.

    1969-01-01

    Computerized method of analysis predicts bearing loads, shaft deflections, and critical speeds for shafts coupled by rolling contact bearings to the machine housing. The bearing nonlinearities, casing as well as rotor dynamics, and rotor-imbalance forcing functions are all included in the system dynamics analysis.

  3. Search for critical loading condition of the spine--a meta analysis of a nonlinear viscoelastic finite element model.

    PubMed

    Wang, Jaw-Lin; Shirazi-Adl, Aboulfazl; Parnianpour, Mohamad

    2005-10-01

    The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2-L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix compressive/shear stresses and anulus fibers strain. The mechanical responses with respect to the two most-relevant variables were then regressed linearly using the response surface quadratic model. Axial force and sagittal rotation were identified as the most-relevant variables for mechanical responses. The procedure developed can be used to find the critical loading for finite element models with multi input variables. The derived meta-models can be used to predict the risk associated with various loading parameters and in setting safer load limits.

  4. Assessing Bone Quality in Terms of Bone Mineral Density, Buckling Ratio and Critical Fracture Load

    PubMed Central

    Anitha, D

    2014-01-01

    Background Bone mineral density (BMD) is used as a sole parameter in the diagnosis of osteoporosis. Due to the ease of acquirement of BMD, clinical diagnosis still involves its usage although the limitations of BMD are quite well-established. Therefore, this preliminary study hoped to reduce the errors introduced by BMD alone by incorporating geometric and structural predictors simultaneously to observe if strength was implicitly dependent on the geometry and BMD. Hence, we illustrated the triadic relationship between BMD, buckling ratio (BR) and critical fracture load (Fcr). Methods The geometric predictor was the BR as it involves both the changes in the periosteum and the cortical thickness. Also, structural changes were monitored by finite element (FE) analysis-predicted Fcr. These BR and Fcr measurements were plotted with their respective femoral neck BMD values in elderly female patients (n=6) in a 3-year follow-up study, treated with ibandronate. Results In all the three-dimensional plots (baseline, mid and final year), high Fcr values were found at regions containing high BMD and low BR values. Quantitatively, this was also proven where an averaged highest Fcr across the three years had a relatively higher BMD (46%) and lower BR (19%) than that of the averaged lowest Fcr. The dependence of FE predicted strength on both the geometry and bone density was illustrated. Conclusions We conclude that use of triadic relationships for the evaluation of osteoporosis and hip fractures with the combination of strength, radiology-derived BR and bone density will lay the foundation for more accurate predictions in the future. PMID:25489572

  5. Present and future nitrogen deposition to national parks in the United States: critical load exceedances

    NASA Astrophysics Data System (ADS)

    Ellis, R. A.; Jacob, D. J.; Sulprizio, M. P.; Zhang, L.; Holmes, C. D.; Schichtel, B. A.; Blett, T.; Porter, E.; Pardo, L. H.; Lynch, J. A.

    2013-09-01

    National parks in the United States are protected areas wherein the natural habitat is to be conserved for future generations. Deposition of anthropogenic nitrogen (N) transported from areas of human activity (fuel combustion, agriculture) may affect these natural habitats if it exceeds an ecosystem-dependent critical load (CL). We quantify and interpret the deposition to Class I US national parks for present-day and future (2050) conditions using the GEOS-Chem global chemical transport model with 1/2° × 2/3° horizontal resolution over North America. We estimate CL values in the range 2.5-5 kg N ha-1 yr-1 for the different parks to protect the most sensitive ecosystem receptors. For present-day conditions, we find 24 out of 45 parks to be in CL exceedance and 14 more to be marginally so. Many of these are in remote areas of the West. Most (40-85%) of the deposition originates from NOx emissions (fuel combustion). We project future changes in N deposition using representative concentration pathway (RCP) anthropogenic emission scenarios for 2050. These feature 52-73% declines in US NOx emissions relative to present but 19-50% increases in US ammonia (NH3) emissions. Nitrogen deposition at US national parks then becomes dominated by domestic NH3 emissions. While deposition decreases in the East relative to present, there is little progress in the West and increases in some regions. We find that 17-25 US national parks will have CL exceedances in 2050 based on the RCP8.5 and RCP2.6 scenarios. Even in total absence of anthropogenic NOx emissions, 14-18 parks would still have a CL exceedance. Returning all parks to N deposition below CL by 2050 would require at least a 50% decrease in US anthropogenic NH3 emissions relative to RCP-projected 2050 levels.

  6. Experimental study on the thorium-loaded accelerator-driven system at the Kyoto Univ. critical assembly

    SciTech Connect

    Pyeon, C. H.; Yagi, T.; Lim, J. Y.; Misawa, T.

    2012-07-01

    The experimental study on the thorium-loaded accelerator-driven system (ADS) is conducted in the Kyoto Univ. Critical Assembly (KUCA). The experiments are carried out in both the critical and subcritical states for attaining the reaction rates of the thorium capture and fission reactions. In the critical system, the thorium plate irradiation experiment is carried out for the thorium capture and fission reactions. From the results of the measurements, the thorium fission reactions are obtained apparently in the critical system, and the C/E values of reaction rates show the accuracy of relative difference of about 30%. In the ADS experiments with 14 MeV neutrons and 100 MeV protons, the subcritical experiments are carried out in the thorium-loaded cores to obtain the capture reaction rates through the measurements of {sup 115}In(n, {gamma}){sup 116m}In reactions. The results of the experiments reveal the difference between the reaction rate distributions for the change in not only the neutron spectrum but also the external neutron source. The comparison between the measured and calculated reaction rate distributions demonstrates a discrepancy of the accuracy of reaction rate analyses of thorium capture reactions through the thorium-loaded ADS experiments with 14 MeV neutrons. Hereafter, kinetic experiments are planned to be carried out to deduce the delayed neutron decay constants and subcriticality using the pulsed neutron method. (authors)

  7. Combined use of VUV and UVC photoreactors for the treatment of hospital laundry wastewaters: Reduction of load parameters, detoxification and life cycle assessment of different configurations.

    PubMed

    de Oliveira Schwaickhardt, Rômulo; Machado, Ênio Leandro; Lutterbeck, Carlos Alexandre

    2017-07-15

    The present research investigated the treatment of hospital laundry wastewaters by the combined use of photochemical VUV and UVC reactors. Seven different configurations were tested and the performances of each of them were evaluated based on the removal of the load parameters, detoxification and life cycle assessment (LCA). The characterization of studied wastewaters included analysis of the following parameters: COD, BOD5, TKN, total P, pH, turbidity and conductivity. Acute ecotoxicity was evaluated using Daphnia magna. Ultraviolet-Visible (UV-Vis) spectroscopy was performed to determine the organic fraction and chromatography coupled to the mass spectrometer (GC-MS) was used for the qualitative characterization of priority pollutants. Characterization parameters showed the presence of drugs like lidocaine and dipyrone and a high organic load with a poor biodegradability. Wastewaters presented an extreme acute toxicity against D. magna (EC50 6.7%). The ozonation process (mainly generated by the VUV reactor) obtained the best results concerning the ratio between the consumed energy and the removed COD and the UVC process presented the lowest environmental impacts for the characterization and normalization parameters of the LCA. Normalization revealed that the highest environmental burdens were associated with human toxicity, ecotoxicity and eutrophication of surface waters as well as to the use of non-renewable resources. VUV/UVC/O3 process presented the best results considering detoxification (EC50 100%).

  8. Determining Exercise Strength Requirements for Astronaut Critical Mission Tasks: Reaching Under G-Load

    NASA Technical Reports Server (NTRS)

    Schaffner, Grant; Bentley, Jason

    2008-01-01

    The critical mission tasks assessments effort seeks to determine the physical performance requirements that astronauts must meet in order to safely and successfully accomplish lunar exploration missions. These assessments will determine astronaut preflight strength, fitness, and flexibility requirements, and the extent to which exercise and other countermeasures must prevent the physical deconditioning associated with prolonged weightlessness. The purpose is to determine the flexibility and strength that crewmembers must possess in order to reach Crew Exploration Vehicle controls during maneuvers that result in sustained acceleration levels ranging from 3.7G to 7.8G. An industry standard multibody dynamics application was used to create human models representing a 5th percentile female, a 50th percentile male, and a 95th percentile male. The additional mass of a space suit sleeve was added to the reaching arm to account for the influence of the suit mass on the reaching effort. The human model was merged with computer models of a pilot seat and control panel for the Crew Exploration Vehicle. Three dimensional paths were created that guided the human models hand from a starting position alongside its thigh to three control targets: a joystick, a keyboard, and an overhead switch panel. The reaching motion to each target was repeated under four vehicle acceleration conditions: nominal ascent (3.7G), two ascent aborts (5.5G and 7.8G) and lunar reentry (4.6G). Elbow and shoulder joint angular excursions were analyzed to assess range of motion requirements. Mean and peak elbow and shoulder joint torques were determined and converted to equivalent resistive exercise loads to assess strength requirements. Angular excursions for the 50th and 95th percentile male models remained within joint range of motion limits. For the 5th percentile female, both the elbow and the shoulder exceeded range of motion limits during the overhead reach. Elbow joint torques ranged from 10 N

  9. The Science and Application of Critical Loads for Deposition of Nitrogen and Sulfur Compounds in National Parks

    NASA Astrophysics Data System (ADS)

    Porter, E.

    2008-12-01

    The National Parks of the U.S. contain resources of unsurpassed beauty and ecological significance. Park managers are directed to preserve the scenery and natural resources in these parks unimpaired for future generations. However, air pollution can damage the very resources that parks were created to preserve and, often, air pollution originates from outside park boundaries and therefore beyond the National Park Service's management jurisdiction. The Clean Air Act provides a framework and certain tools for protecting park resources from air pollution, but despite these programs, air pollution impacts to national park resources are widespread, including acidification or eutrophication from atmospheric deposition of nitrogen and sulfur compounds. Advances in ecosystem research and modeling have allowed national park managers to use critical loads to better evaluate ecosystem condition and set clear management goals for parks. Critical loads define the amount of deposition, usually nitrogen or sulfur compounds, below which harmful effects to a given resource are not expected. Resource protection goals based on critical loads, in turn, can be communicated to federal and State air regulatory agencies, and incorporated into air quality management planning for ecosystem protection. For example, the National Park Service, the Colorado Department of Public Health and Environment, and the Environmental Protection Agency have collaborated to use a critical load to set goals for a nitrogen deposition reduction plan to remedy ecosystem impacts in Rocky Mountain National Park. Elevated nitrogen deposition to the park has caused changes in the type and abundance of aquatic plant species, elevated levels of nitrate in surface waters, elevated levels of nitrogen in spruce needles, long-term accumulation of nitrogen in forest soils, and a shift in alpine tundra plant communities favoring sedges and grasses over the natural wildflower flora. The plan calls for nitrogen deposition to

  10. Determination of critical loads for cylindrical sandwich panels of composite materials under two-sided compression and shear

    NASA Astrophysics Data System (ADS)

    Rubina, A. L.; Krashakov, Yu. F.

    The problem of determining the critical buckling stress of symmetric and nonsymmetric sandwich panels loaded in two-sided compression and shear is investigated analytically. The governing equation is obtained by solving equations of balance of forces and moments for an element of a sandwich structure in the case of buckling. The solution is based on the general assumptions of the theory of thin shallow shells. The results of the study can be used to optimize the structure of sandwich panels.

  11. Identification of research relating to the critical loads concept and its potential application to the regulation of acidic deposition

    SciTech Connect

    Bhatti, N.

    1993-12-01

    The overwhelming majority of strategies currently implemented to regulate acidic deposition have focused on source-based or emission-control techniques. In the past few years, however, the fact that such source-based. strategies may not be sufficient to prevent adverse ecological effects and may therefore need to be supplemented with other control options, such as receptor-based strategies, has become apparent. Partly in response to this insufficiency of regulatory controls, the US Congress has required the National Acid Precipitation Assessment Program to determine (1) what deposition levels are needed to prevent such ecological damage, (2) whether such safe deposition levels (i.e., critical loads) can realistically be identified, and (3) what the costs and benefits of attaining such deposition levels are. This report reviews and culls the existing research on these alternative control strategies, emphasizing the critical loads concept, to determine the advantages and limitations and the cost-benefit relationships associated with receptor-based control options. The results of this study indicate that in spite of the significant limitations associated with the critical loads concept, this strategy dominates all discussions of non-source-based control options and offers considerable advantages, including cost-effectiveness, over the more traditional source-based control methods. Summaries of 10 of the most relevant studies dealing with alternative control strategies and the costs and benefits associated with them are also presented in this report.

  12. Developing Critical Loads of acidity for streams in the Great Smoky Mountains National Park, using PnET-BGC model

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.

    2015-12-01

    Acid deposition has impaired acid-sensitive streams and reduced aquatic biotic integrity in Great Smoky Mountains National Park (GRSM) by decreasing pH and acid neutralizing capacity (ANC). Twelve streams in GRSM are listed by the state of Tennessee as impaired due to low stream pH (pH<6.0) under Section 303(d) of the Clean Water Act. A dynamic biogeochemical model, PnET-BGC, was used to evaluate past, current and potential future changes in soil and water chemistry of watersheds of GRSM in response to changes in acid deposition. Calibrating 30 stream-watersheds in GRSM (including 12 listed impaired streams) to the long-term stream chemistry observations, the model was parameterized for the Park. The calibrated model was used to evaluate the level of atmospheric deposition above which harmful effects occur, known as "critical loads", for individual study watersheds. Estimated critical loads and exceedances (levels of deposition above the critical load) of atmospheric sulfur and nitrogen deposition were depicted through geographic information system maps. Accuracy of model simulations in the presence of uncertainties in the estimated model parameters and inputs was assessed using three uncertainty and sensitivity techniques.

  13. Spatial variation of atmospheric nitrogen deposition and critical loads for aquatic ecosystems in the Greater Yellowstone Area.

    PubMed

    Nanus, L; McMurray, J A; Clow, D W; Saros, J E; Blett, T; Gurdak, J J

    2017-04-01

    Current and historic atmospheric nitrogen (N) deposition has impacted aquatic ecosystems in the Greater Yellowstone Area (GYA). Understanding the spatial variation in total atmospheric deposition (wet + dry) of N is needed to estimate air pollution deposition critical loads for sensitive aquatic ecosystems. This is particularly important for areas that have an increasing contribution of ammonia dry deposition to total N (TN), such as the GYA. High resolution geostatistical models and maps of TN deposition (wet + dry) were developed using a variety of techniques including ordinary kriging in a geographic information system, to evaluate spatial variability and identify areas of elevated loading of pollutants for the GYA. TN deposition estimates in the GYA range from <1.4 to 7.5 kg N ha(-1) yr(-1) and show greater variability than wet inorganic N deposition. Critical loads of TN deposition (CLTNdep) for nutrient enrichment in aquatic ecosystems range from less than 1.5 ± 1.0 kg N ha(-1) yr(-1) to over 4.0 ± 1.0 kg N ha(-1) yr(-1) and variability is controlled by differences in basin characteristics. The lowest CLTNdep estimates occurred in high elevation basins within GYA Wilderness boundaries. TN deposition maps were used to identify critical load exceedances for aquatic ecosystems. Estimated CLTNdep exceedances for the GYA range from 17% to 48% depending on the surface water nitrate (NO3(-)) threshold. Based on a NO3(-) threshold of 1.0 μmol L(-1), TN deposition exceeds CLTNdep in approximately 30% of the GYA. These predictive models and maps can be used to help identify and protect sensitive ecosystems that may be impacted by excess atmospheric N deposition.

  14. Surface water acidification responses and critical loads of sulfur and nitrogen deposition in Loch Vale watershed, Colorado

    USGS Publications Warehouse

    Sullivan, T.J.; Cosby, B.J.; Tonnessen, K.A.; Clow, D.W.

    2005-01-01

    We evaluated the sensitivity of The Loch, a subalpine lake in Rocky Mountain National Park in Colorado, to acidification in response to increased atmospheric loading of sulfur (S) and nitrogen (N) using the Model of Acidification of Groundwater in Catchments (MAGIC). Lake water acid-base chemistry was moderately sensitive to changes in both S and N deposition. However, the loads of S deposition that would drive chronic lake water acid neutralizing capacity (ANC) to below 0 or 20 ??eq L-1 were estimated to be 11 and 8 kg S ha-1 yr-1, respectively, assuming constant future N deposition at current levels. Comparable loads for N deposition, assuming constant future S deposition, were estimated to be 21 and 12 kg N ha-1 yr-1, respectively. Modeling results for Andrews Creek, an alpine tributary to The Loch, suggested critical loads for surface water acidification that averaged about one third lower. Surface water ANC = 50 ??eq L-1 was projected to occur in 50 years in The Loch if S or N deposition increased by a moderate amount (<40%) but could not be achieved in Andrews Creek by reducing either S or N deposition to zero. On the basis of the results of synoptic surveys of lake water chemistry, about one fifth of the wilderness lakes in the Colorado Front Range are more acid-sensitive than The Loch. This modeling exercise suggests the need for a regional analysis of critical loads for the larger population of acid-sensitive aquatic resources in order to provide part of the scientific foundation for federally mandated land management decisions. Copyright 2005 by the American Geophysical Union.

  15. Surface water acidification responses and critical loads of sulfur and nitrogen deposition in Loch Vale watershed, Colorado

    NASA Astrophysics Data System (ADS)

    Sullivan, T. J.; Cosby, B. J.; Tonnessen, K. A.; Clow, D. W.

    2005-01-01

    We evaluated the sensitivity of The Loch, a subalpine lake in Rocky Mountain National Park in Colorado, to acidification in response to increased atmospheric loading of sulfur (S) and nitrogen (N) using the Model of Acidification of Groundwater in Catchments (MAGIC). Lake water acid-base chemistry was moderately sensitive to changes in both S and N deposition. However, the loads of S deposition that would drive chronic lake water acid neutralizing capacity (ANC) to below 0 or 20 μeq L-1 were estimated to be 11 and 8 kg S ha-1 yr-1, respectively, assuming constant future N deposition at current levels. Comparable loads for N deposition, assuming constant future S deposition, were estimated to be 21 and 12 kg N ha-1 yr-1, respectively. Modeling results for Andrews Creek, an alpine tributary to The Loch, suggested critical loads for surface water acidification that averaged about one third lower. Surface water ANC = 50 μeq L-1 was projected to occur in 50 years in The Loch if S or N deposition increased by a moderate amount (<40%) but could not be achieved in Andrews Creek by reducing either S or N deposition to zero. On the basis of the results of synoptic surveys of lake water chemistry, about one fifth of the wilderness lakes in the Colorado Front Range are more acid-sensitive than The Loch. This modeling exercise suggests the need for a regional analysis of critical loads for the larger population of acid-sensitive aquatic resources in order to provide part of the scientific foundation for federally mandated land management decisions.

  16. Critical Configuration and Physics Mesaurements for Graphite Reflected Assemblies of U(93.15)O2 Fuel Rods (1.27-CM Pitch)

    SciTech Connect

    Margaret A. Marshall

    2011-09-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory's Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950's efforts were made to study 'power plants for the production of electrical power in space vehicles'. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in FY 1964, 1965, and 1966. A summary of the program's effort was compiled in 1967. The delayed critical experiments served as a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated 253 stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. 'The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.' The experiment studied within this evaluation was the first of the series and had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Information for this evaluation was compiled from Reference 1 and 2, reports on subsequent experiments in the series, and the experimental logbook as well as from communication with the experimenter, John T. Mihalczo.

  17. Universal electromagnetic suspension balance with nanogramme mass resolution for measurement of sorption on small samples in top and bottom loading configurations

    NASA Astrophysics Data System (ADS)

    Norton, C. G.; Petermann, M.; Fieback, T. M.

    2017-04-01

    Determination of mass increase or decrease of very small amplitude is a task which goes hand in hand with gravimetric adsorption and absorption measurement and thermogravimetry. Samples are subjected to various process conditions and as such can experience a change in mass, i.e. when adsorbing gas from the process atmosphere, or can decrease in mass, such as when being dried or when thermal decomposition takes place. Current instruments used for such analysis, especially at high pressures, are often based on magnetic suspension balances, and have a maximum mass resolution of a few 10‑6 g. This necessitates more often than not quite significant sample quantities, which can sometimes not easily be manufactured, e.g. in the case of metal organic framework adsorbents, or which in other cases do not have a sufficient specific surface area resulting in low measuring effect. A new apparatus based on a high resolution thermogravimetric analyser has been developed. This new apparatus combines very high resolution of up to a few 10‑8 g with a relatively high sample mass of up to 1.5 g, whilst eliminating many of the disadvantages of the microbalances previously used in magnetic suspension balances. An interface was developed which permits free configuration of the new balance as top or bottom loading. Validation measurements of known adsorbents were subsequently performed, with sample quantities up to a factor of 174 smaller than in literature.

  18. The lithospheric-scale 3D structural configuration of the North Alpine Foreland Basin constrained by gravity modelling and the calculation of the 3D load distribution

    NASA Astrophysics Data System (ADS)

    Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael

    2014-05-01

    The North Alpine Foreland Basin is situated in the northern front of the European Alps and extends over parts of France, Switzerland, Germany and Austria. It formed as a wedge shaped depression since the Tertiary in consequence of the Euro - Adriatic continental collision and the Alpine orogeny. The basin is filled with clastic sediments, the Molasse, originating from erosional processes of the Alps and underlain by Mesozoic sedimentary successions and a Paleozoic crystalline crust. For our study we have focused on the German part of the basin. To investigate the deep structure, the isostatic state and the load distribution of this region we have constructed a 3D structural model of the basin and the Alpine area using available depth and thickness maps, regional scale 3D structural models as well as seismic and well data for the sedimentary part. The crust (from the top Paleozoic down to the Moho (Grad et al. 2008)) has been considered as two-parted with a lighter upper crust and a denser lower crust; the partition has been calculated following the approach of isostatic equilibrium of Pratt (1855). By implementing a seismic Lithosphere-Asthenosphere-Boundary (LAB) (Tesauro 2009) the crustal scale model has been extended to the lithospheric-scale. The layer geometry and the assigned bulk densities of this starting model have been constrained by means of 3D gravity modelling (BGI, 2012). Afterwards the 3D load distribution has been calculated using a 3D finite element method. Our results show that the North Alpine Foreland Basin is not isostatically balanced and that the configuration of the crystalline crust strongly controls the gravity field in this area. Furthermore, our results show that the basin area is influenced by varying lateral load differences down to a depth of more than 150 km what allows a first order statement of the required compensating horizontal stress needed to prevent gravitational collapse of the system. BGI (2012). The International

  19. A proposed procedure for expressing the behavior of a full engine cycle by identifying its critical load timings

    NASA Astrophysics Data System (ADS)

    Marius Andrei, Mihalache; Gheorghe, Nagit; Gavril, Musca; Vasile, Merticaru, Jr.; Marius Ionut, Ripanu

    2016-11-01

    In the present study the authors propose a new algorithm for identifying the right loads that act upon a functional connecting rod during a full engine cycle. The loads are then divided into three categories depending on the results they produce, as static, semi-dynamic and dynamic ones Because an engine cycle extends up to 720°, the authors aim to identify a method of substitution of values that produce the same effect as a previous value of a considered angle did. In other words, the proposed method aims to pin point the critical values that produce an effect different as the one seen before during a full engine cycle. Only those values will then be considered as valid loads that act upon the connecting rod inside FEA analyses. This technique has been applied to each of the three categories mentioned above and did produced different critical values for each one of them. The whole study relies on a theoretical mechanical project which was developed in order to identify the right values that correspond to each degree of the entire engine cycle of a Daewoo Tico automobile.

  20. A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate.

    PubMed

    Belyazid, Salim; Kurz, Dani; Braun, Sabine; Sverdrup, Harald; Rihm, Beat; Hettelingh, Jean-Paul

    2011-03-01

    A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate.

  1. CRITICAL CONFIGURATION FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)

    SciTech Connect

    Margaret A. Marshall

    2012-05-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950’s efforts were made to study “power plants for the production of electrical power in space vehicles”. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of 253 unmoderated stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.” The first two experiments in the series were evaluated in HEU-COMP-FAST-001 (SCCA-FUND-EXP-001) and HEU-COMP-FAST-002 (SCCA-FUND-EXP-002). The first experiment had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank (References 1 and 2). The second experiment in the series, performed in early 1963, had the 253 fuel tubes at a 1.506-cm triangular lattice in a 25.96 cm OD core tank and graphite reflectors on all sides. The third set of experiments in the series, performed in mid-1963, which is studied in this evaluation, used beryllium reflectors. The beryllium reflected system was the preferred reactor configuration for this application because of the small thickness of the reflector. The two core configurations had the 253 fuel tubes

  2. Loading and testing a light scattering cell with a binary fluid mixture near its critical composition

    NASA Astrophysics Data System (ADS)

    Jacobs, Donald T.; Becker, James S.

    1993-06-01

    Critical phenomena has been the subject of physics research for many years. However, only in recent years has the research effort become intense. The current intensity has caused the study of critical phenomena to be grouped into a previous older era and a present contemporary era. Turbidity cell filling with methanol cyclohexane is one of the first steps toward a further understanding of critical phenomena. Work performed during the research period is outlined. During this period, research was spent developing apparatus and techniques that will make it possible to study critical phenomena through turbidity measurements on methanol cyclohexane. Topics covered range from the orientation of turbidity cell parts for assembly to the filling apparatus and procedure used when th cell is built. The last section will briefly cover some of the observations made when viewing the cell in a controlled water bath. However, before mention is made of the specifics of the summer research, a short introduction to critical phenomena and turbidity and how they relate to this experiment is provided.

  3. Loading and testing a light scattering cell with a binary fluid mixture near its critical composition

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.; Becker, James S.

    1993-01-01

    Critical phenomena has been the subject of physics research for many years. However, only in recent years has the research effort become intense. The current intensity has caused the study of critical phenomena to be grouped into a previous older era and a present contemporary era. Turbidity cell filling with methanol cyclohexane is one of the first steps toward a further understanding of critical phenomena. Work performed during the research period is outlined. During this period, research was spent developing apparatus and techniques that will make it possible to study critical phenomena through turbidity measurements on methanol cyclohexane. Topics covered range from the orientation of turbidity cell parts for assembly to the filling apparatus and procedure used when th cell is built. The last section will briefly cover some of the observations made when viewing the cell in a controlled water bath. However, before mention is made of the specifics of the summer research, a short introduction to critical phenomena and turbidity and how they relate to this experiment is provided.

  4. Extraction Method Plays Critical Role in Antibacterial Activity of Propolis-Loaded Hydrogels.

    PubMed

    de Lima, Gabriel G; de Souza, Ronaldo O; Bozzi, Aline D; Poplawska, Malgorzata A; Devine, Declan M; Nugent, Michael J D

    2016-03-01

    Extracted propolis has been used for a long time as a remedy. However, if the release rate of propolis is not controlled, the efficacy is reduced. To overcome this issue, extracted propolis was added to a cryogel system. Propolis collected from southern Brazil was extracted using different methods and loaded at different concentrations into polyvinyl alcohol (PVA) and polyacrylic acid hydrogels as carrier systems. The material properties were investigated with a focus on the propolis release profiles and the cryogel antibacterial properties against 4 different bacteria, namely: Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Pseudomonas putida. Swelling studies indicated that the swelling of the hydrogel was inversely related to propolis content. In addition, propolis release studies indicated a decreased release rate with increased propolis loading. PVA and PVA/polyacrylic acid-loaded propolis were effective against all 4 bacteria studied. These results indicate that the efficacy of propolis can be enhanced by incorporation into hydrogel carrier systems and that hydrogels with higher concentrations of propolis can be considered for use as bactericide dressing.

  5. Critical shimmy speed of nonswiveling landing-gear wheels subject to lateral loading

    NASA Astrophysics Data System (ADS)

    Plakhtienko, N. P.; Shifrin, B. M.

    2006-09-01

    The paper presents a nonlinear model describing vibration of the landing gear relative to the fuselage. The model is intended to analyze the dynamic stability of nonswiveling main-gear wheels. The model is used to show that the lateral component of the fuselage speed has a significant effect on the critical shimmy speed

  6. Critical analysis of rhinovirus RNA load quantification by real-time reverse transcription-PCR.

    PubMed

    Schibler, Manuel; Yerly, Sabine; Vieille, Gaël; Docquier, Mylène; Turin, Lara; Kaiser, Laurent; Tapparel, Caroline

    2012-09-01

    Rhinoviruses are the most frequent cause of human respiratory infections, and quantitative rhinovirus diagnostic tools are needed for clinical investigations. Although results obtained by real-time reverse-transcription PCR (RT-PCR) assays are frequently converted to viral RNA loads, this presents several limitations regarding accurate virus RNA quantification, particularly given the need to reliably quantify all known rhinovirus genotypes with a single assay. Using an internal extraction control and serial dilutions of an in vitro-transcribed rhinovirus RNA reference standard, we validated a quantitative one-step real-time PCR assay. We then used chimeric rhinovirus genomes with 5'-untranslated regions (5'UTRs) originating from the three rhinovirus species and from one enterovirus to estimate the impact of the 5'UTR diversity. Respiratory specimens from infected patients were then also analyzed. The assay quantification ability ranged from 4.10 to 9.10 log RNA copies/ml, with an estimated error margin of ±10%. This variation was mainly linked to target variability and interassay variability. Taken together, our results indicate that our assay can reliably estimate rhinovirus RNA load, provided that the appropriate error margin is used. In contrast, due to the lack of a universal rhinovirus RNA standard and the variability related to sample collection procedures, accurate absolute rhinovirus RNA quantification in respiratory specimens is currently hardly feasible.

  7. Research Study to Define the Critical Failure Mechanisms in Notched Composites under Compression Fatigue Loading.

    DTIC Science & Technology

    1981-03-01

    A0-13 654 MATERIALS SCIENCES CORP SPRING HOUSE PA FGS 11/ " RESEARCH STUDY TO DEFINE THE CRITICAL FAILURE MECHANISMS IN NOT--ETC(U) MAR 81 B W ROSEN... House , PA 19477 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Naval Air Systems Command March, 1981 Washington, DC 20361 13. NUMBER OF PAGES...fatigue of a laminate containing a hole. The emphasis is upon understanding the governing physical phe- nomnena. Accordingly, the experimental tasks

  8. A national critical loads framework for atmospheric deposition effects assessment: II. Defining assessment end points, indicators, and functional subregions

    NASA Astrophysics Data System (ADS)

    Hunsaker, Carolyn; Graham, Robin; Turner, Robert S.; Ringold, Paul L.; Holdren, George R.; Strickland, Timothy C.

    1993-05-01

    The United States Environmental Protection Agency, with support from the US Department of Energy and the National Oceanographic and Atmospheric Administration, has been evaluating the feasibility of an effects-based (critical loads) approach to atmospheric pollutant regulation and abatement. The rationale used to develop three of the six steps in a flexible assessment framework (Strickland and others, 1992) is presented along with a discussion of a variety of implementation approaches and their ramifications. The rationale proposes that it is necessary to provide an explicit statement of the condition of the resource that is considered valuable (assessment end point) because: (1) individual ecosystem components may be more or less sensitive to deposition, (2) it is necessary to select indicators of ecosystem condition that can be objectively measured and that reflect changes in the quality of the assessment end point, and (3) acceptable status (i.e., value of indicator and quality of assessment end point at critical load) must be defined. The rationale also stresses the importance of defining the assessment regions and subregions to improve the analysis and understanding of the indicator response to deposition. Subregional definition can be based on a variety of criteria, including informed judgment or quantitative procedures. It also depends on the geographic scale at which exposure and effects models are accurate and on data availability, resolution, and quality.

  9. Factors diminishing the effectiveness of phosphorus loading from municipal effluent: critical information for TMDL analyses.

    PubMed

    Effler, Steven W; Auer, Martin T; Peng, Feng; Perkins, MaryGail; O'Donnell, Susan M; Prestigiacomo, Anthony R; Matthews, David A; DePetro, Phillip A; Lambert, Renn S; Minott, Natalie M

    2012-03-01

    Factors that diminish the effectiveness of phosphorus inputs from a municipal wastewater treatment facility (Metro) in contributing to phosphorus levels and its availability to support algae growth in a culturally eutrophic urban lake (Onondaga Lake, NY) were characterized and quantified. These factors included the bioavailability and settling characteristics of particulate phosphorus from this effluent, the dominant form (70%) of phosphorus in this input, and the plunging of the discharge to stratified layers in the lake. Supporting studies included: (1) chemical and morphometric characterization of the phosphorus-enriched particles of this effluent, compared to particle populations of the tributaries and lake, with an individual particle analysis technique; (2) conduct of algal bioavailability assays of the particulate phosphorus of the effluent; (3) conduct of multiple size class settling velocity measurements on effluent particles; and (4) determinations of the propensity of the discharge to plunge, and documentation of plunging through three-dimensional monitoring of a tracer adjoining the outfall. All of these diminishing effects were found to be operative for the Metro effluent in Onondaga Lake and will be integrated into a forthcoming phosphorus "total maximum daily load" analysis for the lake, through appropriate representation in a supporting mechanistic water quality model. The particulate phosphorus in the effluent was associated entirely with Fe-rich particles formed in the phosphorus treatment process. These particles did not contribute to concentrations in pelagic portions of the lake, due to local deposition associated with their large size. Moreover, this particulate phosphorus was found to be nearly entirely unavailable to support algae growth. While substantial differences are to be expected for various inputs, the effective loading concept and the approaches adopted here to assess the diminishing factors are broadly applicable.

  10. A perfusion bioreactor system efficiently generates cell‐loaded bone substitute materials for addressing critical size bone defects

    PubMed Central

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne‐Wistrand, Anna; Walles, Heike

    2015-01-01

    Abstract Critical size bone defects and non‐union fractions are still challenging to treat. Cell‐loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor‐made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L‐lactide‐co‐caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. PMID:26011163

  11. Colistin Population Pharmacokinetics after Application of a Loading Dose of 9 MU Colistin Methanesulfonate in Critically Ill Patients

    PubMed Central

    Friberg, Lena E.; Pontikis, Konstantinos; Ioannidis, Konstantinos; Tsagkari, Vasiliki; Galani, Lamprini; Kostakou, Eirini; Baziaka, Fotini; Paskalis, Charalambos; Koutsoukou, Antonia; Giamarellou, Helen

    2015-01-01

    Colistin has been revived, in the era of extensively drug-resistant (XDR) Gram-negative infections, as the last-resort treatment in critically ill patients. Recent studies focusing on the optimal dosing strategy of colistin have demonstrated the necessity of a loading dose at treatment initiation (D. Plachouras, M. Karvanen, L. E. Friberg, E. Papadomichelakis, A. Antoniadou, I. Tsangaris, I. Karaiskos, G. Poulakou, F. Kontopidou, A. Armaganidis, O. Cars, and H. Giamarellou, Antimicrob Agents Chemother 53:3430–3436, 2009, http://dx.doi.org/10.1128/AAC.01361-08; A. F. Mohamed, I. Karaiskos, D. Plachouras, M. Karvanen, K. Pontikis, B. Jansson, E. Papadomichelakis, A. Antoniadou, H. Giamarellou, A. Armaganidis, O. Cars, and L. E. Friberg, Antimicrob Agents Chemother 56:4241– 4249, 2012, http://dx.doi.org/10.1128/AAC.06426-11; S. M. Garonzik, J. Li, V. Thamlikitkul, D. L. Paterson, S. Shoham, J. Jacob, F. P. Silveira, A. Forrest, and R. L. Nation, Antimicrob Agents Chemother 55:3284–3294, 2011, http://dx.doi.org/10.1128/AAC.01733-10). In 19 critically ill patients with suspected or microbiologically documented infections caused by XDR Gram-negative strains, a loading dose of 9 MU colistin methanesulfonate (CMS) (∼270 mg colistin base activity) was administered with a maintenance dose of 4.5 MU every 12 h, commenced after 24 h. Patients on renal replacement were excluded. CMS infusion was given over 30 min or 1 h. Repeated blood sampling was performed after the loading dose and after the 5th or 6th dose. Colistin concentrations and measured CMS, determined after hydrolization to colistin and including the partially sulfomethylated derivatives, were determined with a liquid chromatography-tandem mass spectrometry assay. Population pharmacokinetic analysis was conducted in NONMEM with the new data combined with data from previous studies. Measured colistimethate concentrations were described by 4 compartments for distribution and removal of sulfomethyl groups

  12. Colistin Population Pharmacokinetics after Application of a Loading Dose of 9 MU Colistin Methanesulfonate in Critically Ill Patients.

    PubMed

    Karaiskos, Ilias; Friberg, Lena E; Pontikis, Konstantinos; Ioannidis, Konstantinos; Tsagkari, Vasiliki; Galani, Lamprini; Kostakou, Eirini; Baziaka, Fotini; Paskalis, Charalambos; Koutsoukou, Antonia; Giamarellou, Helen

    2015-12-01

    Colistin has been revived, in the era of extensively drug-resistant (XDR) Gram-negative infections, as the last-resort treatment in critically ill patients. Recent studies focusing on the optimal dosing strategy of colistin have demonstrated the necessity of a loading dose at treatment initiation (D. Plachouras, M. Karvanen, L. E. Friberg, E. Papadomichelakis, A. Antoniadou, I. Tsangaris, I. Karaiskos, G. Poulakou, F. Kontopidou, A. Armaganidis, O. Cars, and H. Giamarellou, Antimicrob Agents Chemother 53:3430-3436, 2009, http://dx.doi.org/10.1128/AAC.01361-08; A. F. Mohamed, I. Karaiskos, D. Plachouras, M. Karvanen, K. Pontikis, B. Jansson, E. Papadomichelakis, A. Antoniadou, H. Giamarellou, A. Armaganidis, O. Cars, and L. E. Friberg, Antimicrob Agents Chemother 56:4241- 4249, 2012, http://dx.doi.org/10.1128/AAC.06426-11; S. M. Garonzik, J. Li, V. Thamlikitkul, D. L. Paterson, S. Shoham, J. Jacob, F. P. Silveira, A. Forrest, and R. L. Nation, Antimicrob Agents Chemother 55:3284-3294, 2011, http://dx.doi.org/10.1128/AAC.01733-10). In 19 critically ill patients with suspected or microbiologically documented infections caused by XDR Gram-negative strains, a loading dose of 9 MU colistin methanesulfonate (CMS) (∼ 270 mg colistin base activity) was administered with a maintenance dose of 4.5 MU every 12 h, commenced after 24 h. Patients on renal replacement were excluded. CMS infusion was given over 30 min or 1 h. Repeated blood sampling was performed after the loading dose and after the 5th or 6th dose. Colistin concentrations and measured CMS, determined after hydrolization to colistin and including the partially sulfomethylated derivatives, were determined with a liquid chromatography-tandem mass spectrometry assay. Population pharmacokinetic analysis was conducted in NONMEM with the new data combined with data from previous studies. Measured colistimethate concentrations were described by 4 compartments for distribution and removal of sulfomethyl groups, while

  13. A survey on investigating the need for intelligent power-aware load balanced routing protocols for handling critical links in MANETs.

    PubMed

    Sivakumar, B; Bhalaji, N; Sivakumar, D

    2014-01-01

    In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing.

  14. A Survey on Investigating the Need for Intelligent Power-Aware Load Balanced Routing Protocols for Handling Critical Links in MANETs

    PubMed Central

    Sivakumar, B.; Bhalaji, N.; Sivakumar, D.

    2014-01-01

    In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing. PMID:24790546

  15. Buckling of Beams and Columns under Combined Axial and Horizontal Loading with Various Axial Loading Application Locations

    NASA Astrophysics Data System (ADS)

    Javidinejad, Amir

    2012-12-01

    In this paper the buckling behaviour of an I-beam under combined axial and horizontal side loading is examined. It is to shown that the actual application location of the axial loading governs the buck- ling behaviour of the long I-beam. Theoretical formulation is developed to determine the critical buckling load for such combined loading configura- tion from the elastic static theory. Both, the beam deflection theoretical model and the critical load capacity are derived for this combined loading condition. The Finite Element Analysis (FEA) is utilized to apply the axial load on the beam at various configuration locations and it is shown that this application location determines the buckling behaviour and the critical load of the buckling of the I-beam. Numerical example is given.

  16. Load and dynamic assessment of B-52B-008 carrier aircraft for finned configuration 1 space shuttle solid rocket booster deceleration subsystem drop test vehicle. Volume 4: Pylon load data

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The pylon loading at the drop test vehicle and wing interface attack points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the forward hook guide and the fore and aft stiffness of each drag pin to be equal. The net effect of this assumption is that the forward hook guide reacts approximately 96% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.

  17. Critical Configuration and Physics Measurements for Beryllium Reflected Assemblies of U(93.15)O₂ Fuel Rods (1.506-cm Pitch and 7-Tube Clusters)

    SciTech Connect

    Marshall, Margaret A.; Bess, John D.; Briggs, J. Blair; Murphy, Michael F.; Mihalczo, John T.

    2015-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one Na

  18. CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)

    SciTech Connect

    Margaret A. Marshall

    2014-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one Na

  19. CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH)

    SciTech Connect

    Margaret A. Marshall

    2013-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one Na

  20. Strontium folate loaded biohybrid scaffolds seeded with dental pulp stem cells induce in vivo bone regeneration in critical sized defects.

    PubMed

    Martin-Del-Campo, Marcela; Rosales-Ibañez, Raul; Alvarado, Keila; Sampedro, Jose G; Garcia-Sepulveda, Christian A; Deb, Sanjukta; San Román, Julio; Rojo, Luis

    2016-10-18

    Strontium folate (SrFO) is a recently developed bone promoting agent with interest in medical and pharmaceutical fields due to its improved features in comparison to current strontium based therapies for osteoporosis and other bone diseases. In this work SrFO derivative was synthesized and loaded into biohybrid scaffolds obtained through lyophilisation of semi-interpenetrating networks of chitosan polyethylene glycol dimethacrylate and beta tri-calcium phosphate (βTCP) fabricated using free radical polymerization. The scaffolds were seeded with pluripotent stem cells obtained from human dental pulp and their potential to regenerate bone tissues were assessed using a critical sized defect model of calvaria in rats and compared with those obtained without SrFO. The results obtained both in vitro and in vivo demonstrated excellent cyto-compatibility with resorption of scaffolds in 4-6 weeks and a total regeneration of the defect, with a more rapid and dense bone formation in the group with SrFO. Thus, the use of stem cells sourced from human dental pulp in combination with SrFO are very promising systems for their application in compromised osseous tissue regeneration.

  1. Module Configuration

    DOEpatents

    Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.

    2002-06-04

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  2. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    SciTech Connect

    Heffner, Grayson C.

    2002-09-01

    The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

  3. Critical loads of acidity for 90,000 lakes in northern Saskatchewan: A novel approach for mapping regional sensitivity to acidic deposition

    NASA Astrophysics Data System (ADS)

    Cathcart, H.; Aherne, J.; Jeffries, D. S.; Scott, K. A.

    2016-12-01

    Atmospheric emissions of sulphur dioxide (SO2) from large point sources are the primary concern for acidic deposition in western Canada, particularly in the Athabasca Oil Sands Region (AOSR) where prevailing winds may potentially carry SO2 over acid-sensitive lakes in northern Saskatchewan. A novel catchment-scale regression kriging approach was used to assess regional sensitivity and critical loads of acidity for the total lake population of northern Saskatchewan (89,947 lakes). Lake catchments were delineated using Thiessen polygons, and surface water chemistry was predicted for sensitivity indicators (calcium, pH, alkalinity, and acid neutralizing capacity). Critical loads were calculated with the steady state water chemistry model using regression-kriged base cations, sulphate, and dissolved organic carbon concentrations modelled from surface water observations (n > 800) and digital landscape-scale characteristics, e.g., climate, soil, vegetation, landcover, and geology maps. A large region (>13,726 km2) of two or more indicators of acid sensitivity (pH < 6 and acid neutralizing capacity, alkalinity, calcium < 50 μeq L-1) and low critical loads < 5 meq m-2 yr-1 were predicted on the Athabasca Basin. Exceedance of critical loads under 2006 modelled total sulphate deposition was predicted for 12% of the lakes (covering an area of 3742 km2), primarily located on the Athabasca Basin, within 100 km of the AOSR. There have been conflicting scientific reports of impacts from atmospheric emissions from the AOSR; the results of this study suggest that catchments in the Athabasca Basin within 100 km of the AOSR have received acidic deposition in excess of their critical loads and many of them may be at risk of ecosystem damage owing to their sensitivity.

  4. Airborne soil dust and its importance in buffering of atmospheric acidity and critical load assessment, over the semi arid tract of northern India.

    NASA Astrophysics Data System (ADS)

    Sharma, Disha; Kulshrestha, Umesh

    Airborne soil dust and its importance in buffering of atmospheric acidity and critical load assessment, over the semi arid tract of northern India. The Critical Load approach alongwith integrated assessment models has been used in the European nations for policy formations to reduce acidic emissions. This unique approach was applied to assess the of vulnerability of natural systems to the present day atmospheric pollution scenario. The calculated values of critical loads of sulphur ( 225 - 275 eq/ha/yr) and nitrogen (298 - 303 eq/ha/yr), for the soil system in Delhi, were calculated with respect to Anjan grass, Hibiscus and Black siris. The present loads of sulphur (PL(S) = 26.40 eq/ha/yr) and nitrogen (PL(N) = 36.51 eq/ha/yr) were found to be much lower than their critical loads without posing any danger of atmospheric acidic deposition on the soil systems. The study indicated that the system is still protective due to high pH of soil. The nature of buffering capability of calcium derived from soil dust can be considered as a natural tool to combat acidification in the Indian region. The results showed that the pollution status in Delhi is still within the safe limits. However, at the pace at which the city is growing, it is likely that in coming decades, it may exceed these critical values. In order to set deposition limits and avoid adverse effects of acidic deposition this approach can be applied in India too. Such approach is very useful, not only in abating pollution but also in devising means of cost optimal emission abatement strategies.

  5. Synthesis of recent advances in critical loads research on impacts from atmospheric nitrogen deposition on terrestrial plant communities.

    NASA Astrophysics Data System (ADS)

    Clark, C.; Horn, K. J.; Thomas, R. Q.; Simkin, S.; Pardo, L. H.; Blett, T.; Lawrence, G. B.; Belyazid, S.; Phelan, J.

    2015-12-01

    Nitrogen (N) deposition is one of the primary threats to plant biodiversity world-wide after habitat destruction and climate change. As a primary limiting nutrient and contributor to soil acidification, N inputs have the capacity to alter ecosystems through several mechanisms. Up until now, there was very little detailed information on the impacts from this stressor at the species level, or how climate and edaphic factors could alter ecosystem sensitivity. Here we summarize and synthesize four major efforts, funded by EPA, USGS, USFS, and the NPS, which greatly advance our understanding of this stressor. These include (1) a national analysis of sensitivity to N deposition for 114 tree species, (2) a national analysis of impacts from N deposition on herbaceous species and how climate and soil factors modify that sensitivity, (3) a regional dynamic modeling study of impacts and recovery from N and S deposition for a dominant northeastern forest type under a range of future climate and deposition scenarios, and (4) a large assessment of impacts to streams, soils, and vegetation along the 2000+ mile stretch of the Appalachian Trail. Here we show many responses to this stressor for all taxonomic groups, with some species decreasing, some increasing, and some unaffected by N deposition. However, dozens of tree and herb species are negatively affected and are of particular concern for conservation purposes, with vulnerability being greatly affected by regional climate and local edaphic factors. Dynamic modeling suggests that, at least in some northeastern forests, recovery across a broad range of climate change and management scenarios is unlikely by 2100. The study along the Appalachian Trail, a beloved national recreation trail, echoes these findings, with stream, soils, and vegetation impacted across large percentages of sites, and only moderate capacity for recovery by 2100. In total, this work highlights several recent advances in the area of critical loads research

  6. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading.

    PubMed

    Krull, Scott M; Moreno, Jacqueline; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-03-16

    Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9 and 49wt% in HPMC-E15 films and 30 and 73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films.

  7. Photocatalytic splitting of water under visible-light irradiation over the NiOx-loaded Sm{sub 2}InTaO{sub 7} with 4f-d{sup 10}-d{sup 0} configuration

    SciTech Connect

    Tang Xinde; Ye Hongqi; Liu Hui; Ma Chenxia; Zhao Zhi

    2010-01-15

    A new visible-light-response photocatalyst Sm{sub 2}InTaO{sub 7} with 4f-d{sup 10}-d{sup 0} configuration crystallized in a cubic system with the space group Fd3m was synthesized by a solid-state reaction method. NiOx-loaded Sm{sub 2}InTaO{sub 7} showed high photocatalytic activities for H{sub 2} evolution from pure water under visible light irradiation (lambda>400 nm). Changes in the photocatalytic activity with the calcination temperature of Sm{sub 2}InTaO{sub 7} and the amount of NiOx loaded indicated that the combination of highly crystallized Sm{sub 2}InTaO{sub 7} and a high dispersion of NiOx particles led to high photocatalytic activity. The high photocatalytic performance of NiOx-loaded Sm{sub 2}InTaO{sub 7} supported the existing view that the photocatalytic activity correlated with the lattice distortion. Density functional theory calculation indicated that strong dispersion from the hybridized In 5s 5p orbitals at the bottom of the conduction band was responsible for the high activity of photocatalyst Sm{sub 2}InTaO{sub 7}. - Graphical abstract: A new visible-light-response photocatalyst Sm{sub 2}InTaO{sub 7} with 4f-d{sup 10}-d{sup 0} configuration was developed. DFT calculation indicated that strong dispersion from the hybridized In 5s 5p orbitals was responsible for the high photocatalytic activity.

  8. Influence of cyclic loading at room temperature on the critical current at 4.2 K of Nb3Sn superconducting composite wire

    NASA Astrophysics Data System (ADS)

    Ochiai, S.; Osamura, K.

    The influence of cyclic loading at room temperature on the critical current at 4.2 K of bronze-processed multifilamentary Nb3Sn superconducting composite wire was studied. After the first cycle, the critical current and upper critical magnetic field increased, reaching a maximum and then decreased with increasing applied stress. After the second and following cycles, the changes were small when the applied stress was not high enough to cause damage to the Nb3Sn. These results can be described well quantitatively by substituting the strain values of Nb3Sn calculated in this work into Ekin's scaling law for the strain effect. When the applied stress was high enough to cause damage to the Nb3Sn in the first cycle, the critical current decreased with increasing numbers of cycles.

  9. Study on critical-sized ultra-high molecular weight polyethylene wear particles loaded with alendronate sodium: in vitro release and cell response.

    PubMed

    Liu, Yumei; Shi, Feng; Gong, Kemeng; Liu, Yang; Zhi, Wei; Weng, Jie; Qu, Shuxin

    2017-04-01

    The aim of this study was to investigate the in vitro release and the effect of RAW 264.7 macrophages of critical-sized wear particles of ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN), one of the most effective drugs to treat osteoporosis in clinic. The critical-sized UHMWPE-ALN 0.5 wt.% wear particles were prepared by vacuum gradient filtration combined with Pluronic F-68. In vitro release of ALN from critical-sized UHMWPE-ALN wear particles was investigated in phosphate buffered saline (PBS) at 37 °C with a shaker. Cell morphology, proliferation, lactate dehydrogenase (LDH) leakage and secretions of cytokines were evaluated after co-cultured with critical-sized UHMWPE-ALN wear particles in vitro. Results showed that ALN released from critical-sized UHMWPE-ALN wear particles included burst release and slow release in vitro. Macrophages would be chemotaxis and aggregated around the critical-sized UHMWPE-ALN or UHMWPE wear particle, which was phagocytosed with time. The proliferation of macrophages co-cultured with critical-sized UHMWPE-ALN wear particles was significantly decreased compared with that of critical-sized UHMWPE group. Meanwhile, the critical-sized UHMWPE-ALN wear particles significantly induced the LDH leakage of macrophages, which indicated the cell death. The death of macrophages induced by ALN was one of pathways to inhibit their proliferation. The secretions of cytokines (interleukin-6 and tumor necrosis factor-alpha) in critical-sized UHMWPE-ALN group were significantly lower than those in critical-sized UHMWPE group due to the released ALN. The present results suggested that UHMWPE-ALN had the potential application in clinic to treat osteolysis induced by wear particles.

  10. Investigation of space shuttle vehicle 140C configuration orbiter (model 16-0) wheel well pressure loads in the Rockwell International 7.75 x 11 foot wind tunnel (OA143)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1975-01-01

    Experimental aerodynamic investigations were conducted on a sting mounted .0405-scale representation of the 140C outer mold line space shuttle orbiter configuration in the Rockwell International 7.75 x 11.00 foot low speed wind tunnel. The primary test objectives were to define the orbiter wheel well pressure loading and its effects on landing gear thermal insulation and to investigate the pressure environment experienced by both the horizontal flight nose probe and air vent door probes. Steady state and dynamic pressure values were recorded in the orbiter nose gear well, left main landing gear well, horizontal flight nose probe, and both left and right air vent door probe. All steady state pressure levels were measured by Statham differential pressure transducers while dynamic pressure levels were recorded by Kulite high frequency response pressure sensors.

  11. CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR GRAPHITE REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH)

    SciTech Connect

    Margaret A. Marshall

    2012-03-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950’s efforts were made to study “power plants for the production of electrical power in space vehicles”. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of 253 unmoderated stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.” The first experiment in the series was evaluated in HEU-COMP-FAST-001. It had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank (References 1 and 2). The second experiment in the series, performed in early 1963, which is studied in this evaluation, had the 253 fuel tubes at a 1.506-cm triangular lattice in a 25.96 cm OD core tank and graphite reflectors on all sides. The experiment has been determined to represent an acceptable benchmark experiment. Information for this evaluation was compiled from published reports on all three parts of the experimental series (Reference 1-5) and the experimental logbook as

  12. Criticality Model

    SciTech Connect

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality

  13. Observed Temperature Effects on Hourly Residential Electric LoadReduction in Response to an Experimental Critical Peak PricingTariff

    SciTech Connect

    Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

    2005-11-14

    The goal of this investigation was to characterize themanual and automated response of residential customers to high-price"critical" events dispatched under critical peak pricing tariffs testedin the 2003-2004 California Statewide Pricing Pilot. The 15-monthexperimental tariff gave customers a discounted two-price time-of-userate on 430 days in exchange for 27 critical days, during which the peakperiod price (2 p.m. to 7 p.m.) was increased to about three times thenormal time-of-use peak price. We calculated response by five-degreetemperature bins as the difference between peak usage on normal andcritical weekdays. Results indicatedthat manual response to criticalperiods reached -0.23 kW per home (-13 percent) in hot weather(95-104.9oF), -0.03 kW per home (-4 percent) in mild weather (60-94.9oF),and -0.07 kW per home (-9 percent) during cold weather (50-59.9oF).Separately, we analyzed response enhanced by programmable communicatingthermostats in high-use homes with air-conditioning. Between 90oF and94.9oF, the response of this group reached -0.56 kW per home (-25percent) for five-hour critical periods and -0.89 kW/home (-41 percent)for two-hour critical periods.

  14. Combined impacts of precipitation and temperature on diffuse phosphorus pollution loading and critical source area identification in a freeze-thaw area.

    PubMed

    Wei, Peng; Ouyang, Wei; Hao, Fanghua; Gao, Xiang; Yu, Yongyong

    2016-05-15

    The loss of diffuse phosphorus (P) presented different characteristics in the freeze-thaw area due to the combined impacts of precipitation and temperature, which caused spatiotemporal variations of the critical source area of diffuse P (CSAP). The temperature and precipitation classification (TPC) method was proposed to identify the spatiotemporal characteristics of the CSAP in the cold area, and each year was divided into a freeze-thaw season and a growing season according to the average monthly temperature. The Soil and Water Assessment Tool (SWAT) provided the spatiotemporal patterns of the diffuse P loads. The years were also reclassified into dry, normal and wet years according to the annual precipitation levels. The CSAP with the 1st cumulative load level shared 9.68% of the same area between the two seasons, which had dry land as the dominant land use with direct P fertilization. The spatial distributions of the potential areas and the CSAP with the 2nd cumulative load level were more sensitive to the variation in temperature, which had 30.8%-46.1% of unvaried area between seasons. The cumulative load level analysis indicated that 14 subbasins in the freeze-thaw season and 7 subbasins in the growing season, which covered 61.2% and 48.6% of the total basin area, respectively, changed with the traditional CSAP identification among dry, normal and wet years. The fluctuation level analysis was carried out to compare the distributional difference of the CSAP and the potential areas between the TPC method and the traditional method, which highlighted the advantages of the TPC method. The results would be useful in identifying the distribution of the CSAP in cold areas, which improved the efficiency of diffuse pollution control.

  15. Analysis of Advanced Rotorcraft Configurations

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2000-01-01

    Advanced rotorcraft configurations are being investigated with the objectives of identifying vehicles that are larger, quieter, and faster than current-generation rotorcraft. A large rotorcraft, carrying perhaps 150 passengers, could do much to alleviate airport capacity limitations, and a quiet rotorcraft is essential for community acceptance of the benefits of VTOL operations. A fast, long-range, long-endurance rotorcraft, notably the tilt-rotor configuration, will improve rotorcraft economics through productivity increases. A major part of the investigation of advanced rotorcraft configurations consists of conducting comprehensive analyses of vehicle behavior for the purpose of assessing vehicle potential and feasibility, as well as to establish the analytical models required to support the vehicle development. The analytical work of FY99 included applications to tilt-rotor aircraft. Tilt Rotor Aeroacoustic Model (TRAM) wind tunnel measurements are being compared with calculations performed by using the comprehensive analysis tool (Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD 11)). The objective is to establish the wing and wake aerodynamic models that are required for tilt-rotor analysis and design. The TRAM test in the German-Dutch Wind Tunnel (DNW) produced extensive measurements. This is the first test to encompass air loads, performance, and structural load measurements on tilt rotors, as well as acoustic and flow visualization data. The correlation of measurements and calculations includes helicopter-mode operation (performance, air loads, and blade structural loads), hover (performance and air loads), and airplane-mode operation (performance).

  16. Critical Material Attributes of Strip Films Loaded With Poorly Water-Soluble Drug Nanoparticles: II. Impact of Polymer Molecular Weight.

    PubMed

    Krull, Scott M; Ammirata, Jennifer; Bawa, Sonia; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-02-01

    Recent work established polymer strip films as a robust platform for delivery of poorly water-soluble drug particles. However, a simple means of manipulating rate of drug release from films with minimal impact on film mechanical properties has yet to be demonstrated. This study explores the impact of film-forming polymer molecular weight (MW) and concentration on properties of polymer films loaded with poorly water-soluble drug nanoparticles. Nanoparticles of griseofulvin, a model Biopharmaceutics Classification System class II drug, were prepared in aqueous suspension via wet stirred media milling. Aqueous solutions of 3 viscosity grades of hydroxypropyl methylcellulose (14, 21, and 88 kDa) at 3 viscosity levels (∼9500, ∼12,000, and ∼22,000 cP) were mixed with drug suspension, cast, and dried to produce films containing griseofulvin nanoparticles. Few differences in film tensile strength or elongation at break were observed between films within each viscosity level regardless of polymer MW despite requiring up to double the time to achieve 100% drug release. This suggests film-forming polymer MW can be used to manipulate drug release with little impact on film mechanical properties by matching polymer solution viscosity. In addition, changing polymer MW and concentration had no negative impact on drug content uniformity or nanoparticle redispersibility.

  17. Aquarius Main Structure Configuration

    NASA Technical Reports Server (NTRS)

    Eremenko, Alexander

    2012-01-01

    The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.

  18. Computational methods for predicting the response of critical as-built infrastructure to dynamic loads (architectural surety)

    SciTech Connect

    Preece, D.S.; Weatherby, J.R.; Attaway, S.W.; Swegle, J.W.; Matalucci, R.V.

    1998-06-01

    Coupled blast-structural computational simulations using supercomputer capabilities will significantly advance the understanding of how complex structures respond under dynamic loads caused by explosives and earthquakes, an understanding with application to the surety of both federal and nonfederal buildings. Simulation of the effects of explosives on structures is a challenge because the explosive response can best be simulated using Eulerian computational techniques and structural behavior is best modeled using Lagrangian methods. Due to the different methodologies of the two computational techniques and code architecture requirements, they are usually implemented in different computer programs. Explosive and structure modeling in two different codes make it difficult or next to impossible to do coupled explosive/structure interaction simulations. Sandia National Laboratories has developed two techniques for solving this problem. The first is called Smoothed Particle Hydrodynamics (SPH), a relatively new gridless method comparable to Eulerian, that is especially suited for treating liquids and gases such as those produced by an explosive. The SPH capability has been fully implemented into the transient dynamics finite element (Lagrangian) codes PRONTO-2D and -3D. A PRONTO-3D/SPH simulation of the effect of a blast on a protective-wall barrier is presented in this paper. The second technique employed at Sandia National Laboratories uses a relatively new code called ALEGRA which is an ALE (Arbitrary Lagrangian-Eulerian) wave code with specific emphasis on large deformation and shock propagation. ALEGRA is capable of solving many shock-wave physics problems but it is especially suited for modeling problems involving the interaction of decoupled explosives with structures.

  19. Enabling the Distributed Generation Market of High Temperature Fuel Cell and Absorption Chiller Systems to Support Critical and Commercial Loads

    NASA Astrophysics Data System (ADS)

    DiMola, Ashley M.

    Buildings account for over 18% of the world's anthropogenic Greenhouse Gas (GHG) emissions. As a result, a technology that can offset GHG emissions associated with buildings has the potential to save over 9 Giga-tons of GHG emissions per year. High temperature fuel cell and absorption chiller (HTFC/AC) technology offers a relatively low-carbon option for meeting cooling and electric loads for buildings while producing almost no criteria pollutants. GHG emissions in the state of California would decrease by 7.48 million metric tons per year if every commercial building in the State used HTFC/AC technology to meet its power and cooling requirements. In order to realize the benefits of HTFC/AC technology on a wide scale, the distributed generation market needs to be exposed to the technology and informed of its economic viability and real-world potential. This work characterizes the economics associated with HTFC/AC technology using select scenarios that are representative of realistic applications. The financial impacts of various input factors are evaluated and the HTFC/AC simulations are compared to the economics of traditional building utilities. It is shown that, in addition to the emissions reductions derived from the systems, HTFC/AC technology is financially preferable in all of the scenarios evaluated. This work also presents the design of a showcase environment, centered on a beta-test application, that presents (1) system operating data gathered using a custom data acquisition module, and (2) HTFC/AC technology in a clear and approachable manner in order to serve the target audience of market stakeholders.

  20. Nickel-hydrogen spacecraft module configurations study

    NASA Technical Reports Server (NTRS)

    Collins, W. B.; Mcdermott, J. K.; Smith, O. B.

    1985-01-01

    The incorporation of nickel-hydrogen technology into spacecraft power system designs for low Earth orbit vehicles offers significant power system weight reductions by increasing the power storage watt-hour efficiency. Several possible module configurations exist for the power system. The module configurations were compared utilizing reliability, weight, volume and load capability as evaluation parameters.

  1. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  2. Operational experience and performance characteristics of a valve-regulated lead-acid battery energy-storage system for providing the customer with critical load protection and energy-management benefits at a lead-recycling plant

    NASA Astrophysics Data System (ADS)

    Hunt, G. W.

    The Power Control Division of GNB Technologies, commissioned on May 13, 1996 a new facility which houses a 5-MW battery energy-storage system (BESS) at GNB's Lead Recycling Centre in Vernon, CA. When the plant loses utility power (which typically happens two or three times a year), the BESS will provide up to 5 MW of power at 4160 VAC in support of all the plant loads. Since the critical loads are not isolated, it is necessary to carry the entire plant load (maximum of 5 MVA) for a short period immediately following an incident until non-critical loads have been automatically shed. Plant loading typically peaks at 3.5 MVA with critical loads of about 2.1 MVA. The BESS also provides the manufacturing plant with customer-side-of-the-meter energy management options to reduce its energy demand during peak periods of the day. The BESS has provided a reduction in monthly electric bills through daily peak-shaving. By design, the battery can provide up to 2.5 MWh of energy and still retain 2.5 MWh of capacity in reserve to handle the possibility of a power outage in protecting the critical loads for up to 1 h. By storing energy from the utility during off-peak hours of the night in the batteries when the cost is low (US4.5¢ per kWh), GNB can then discharge this energy during high demand periods of the day (US14.50 per kW). For example, by reducing its peak demand by 300 kW, the lead-recycling centre can save over US4000 per month in its electric bills. The BESS at Vernon represents a first large-scale use of valve-regulated lead-acid batteries in such a demanding application. This paper presents a summary of the operational experience and performance characteristics of the BESS over the past 2 years.

  3. Wind-tunnel investigation of aerodynamic performance, steady amd vibratory loads, surface temperatures, and acoustic characteristics of a large-scale twin-engine upper-surface blown jet-flap configuration

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Static and wind-on tests were conducted to determine the aerodynamic characteristics of and the effects of jet impingement on the wing of a large scale upper surface blown configuration powered with an actual turbine engine. The wing and flaps were instrumented with experimental dual-sensing transducer units consisting of a fluctuating pressure gage, a vibratory accelerometer, and a surface mounted alumel thermocouple. Noise directivity and spectral content measurements were obtained for various flap configurations and various engine thrust settings to provide baseline noise data for other upper surface blown configurations.

  4. Data on respiratory variables in critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+).

    PubMed

    Georgopoulos, Dimitris; Xirouchaki, Nectaria; Tzanakis, Nikolaos; Younes, Magdy

    2016-09-01

    The data show respiratory variables in 108 critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+) after at least 36 h on passive mechanical ventilation. PAV+ was continued for 48 h until the patients met pre-defined criteria either for switching to controlled modes or for breathing without ventilator assistance. Data during passive mechanical ventilation and during PAV+ are reported. Data are acquired from the whole population, as well as from patients with and without acute respiratory distress syndrome. The reported variables are tidal volume, driving pressure (ΔP, the difference between static end-inspiratory plateau pressure and positive end-expiratory airway pressure), respiratory system compliance and resistance, and arterial blood gasses. The data are supplemental to our original research article, which described individual ΔP in these patients and examined how it related to ΔP when the same patients were ventilated with passive mechanical ventilation using the currently accepted lung-protective strategy "Driving pressure during assisted mechanical ventilation. Is it controlled by patient brain?" [1].

  5. Constrained simultaneous multi-state reconfigurable wing structure configuration optimization

    NASA Astrophysics Data System (ADS)

    Snyder, Matthew

    A reconfigurable aircraft is capable of in-flight shape change to increase mission performance or provide multi-mission capability. Reconfigurability has always been a consideration in aircraft design, from the Wright Flyer, to the F-14, and most recently the Lockheed-Martin folding wing concept. The Wright Flyer used wing-warping for roll control, the F-14 had a variable-sweep wing to improve supersonic flight capabilities, and the Lockheed-Martin folding wing demonstrated radical in-flight shape change. This dissertation will examine two questions that aircraft reconfigurability raises, especially as reconfiguration increases in complexity. First, is there an efficient method to develop a light weight structure which supports all the loads generated by each configuration? Second, can this method include the capability to propose a sub-structure topology that weighs less than other considered designs? The first question requires a method that will design and optimize multiple configurations of a reconfigurable aerostructure. Three options exist, this dissertation will show one is better than the others. Simultaneous optimization considers all configurations and their respective load cases and constraints at the same time. Another method is sequential optimization which considers each configuration of the vehicle one after the other - with the optimum design variable values from the first configuration becoming the lower bounds for subsequent configurations. This process repeats for each considered configuration and the lower bounds update as necessary. The third approach is aggregate combination — this method keeps the thickness or area of each member for the most critical configuration, the configuration that requires the largest cross-section. This research will show that simultaneous optimization produces a lower weight and different topology for the considered structures when compared to the sequential and aggregate techniques. To answer the second question

  6. CFD Data Generation Process for Nonlinear Loads

    NASA Technical Reports Server (NTRS)

    Arslan, Alan; Magee, Todd; Unger, Eric; Hartwich, Peter; Agrawal, Shreekant; Giesing, Joseph; Bharadvaj, Bala; Chaderjian, Neal; Murman, Scott

    1999-01-01

    This paper discusses the development of a process to generate a CFD database for the non-linear loads process capability for critical loads evaluation at Boeing Long Beach. The CFD simulations were performed for wing/body configurations at high angles of attack and Reynolds numbers with transonic and elastic deflection effects. Convergence criteria had to be tailored for loads applications rather than the usual drag performance. The time-accurate approach was subsequently adopted in order to improve convergence and model possible unsteadiness in the flowfield. In addition, uncertainty issues relating to the turbulence model and grid resolution in areas of high vortical flows were addressed and investigated for one of the cases.

  7. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    PubMed

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations.

  8. Steady-state sulfur critical loads and exceedances for protection of aquatic ecosystems in the U.S. Southern Appalachian Mountains.

    PubMed

    McDonnell, Todd C; Sullivan, Timothy J; Hessburg, Paul F; Reynolds, Keith M; Povak, Nicholas A; Cosby, Bernard J; Jackson, William; Salter, R Brion

    2014-12-15

    Atmospherically deposited sulfur (S) causes stream water acidification throughout the eastern U.S. Southern Appalachian Mountain (SAM) region. Acidification has been linked with reduced fitness and richness of aquatic species and changes to benthic communities. Maintaining acid-base chemistry that supports native biota depends largely on balancing acidic deposition with the natural resupply of base cations. Stream water acid neutralizing capacity (ANC) is maintained by base cations that mostly originate from weathering of surrounding lithologies. When ambient atmospheric S deposition exceeds the critical load (CL) an ecosystem can tolerate, stream water chemistry may become lethal to biota. This work links statistical predictions of ANC and base cation weathering for streams and watersheds of the SAM region with a steady-state model to estimate CLs and exceedances. Results showed that 20.1% of the total length of study region streams displayed ANC <100 μeq∙L(-1), a level at which effects to biota may be anticipated; most were 4th or lower order streams. Nearly one-third of the stream length within the study region exhibited CLs of S deposition <50 meq∙m(-2)∙yr(-1), which is less than the regional average S deposition of 60 meq∙m(-2)∙yr(-1). Owing to their geologic substrates, relatively high elevation, and cool and moist forested conditions, the percentage of stream length in exceedance was highest for mountain wilderness areas and in national parks, and lowest for privately owned valley bottom land. Exceedance results were summarized by 12-digit hydrologic unit code (subwatershed) for use in developing management goals and policy objectives, and for long-term monitoring.

  9. Configuration Management Policy

    EPA Pesticide Factsheets

    This Policy establishes an Agency-wide Configuration Management Program and to provide responsibilities, compliance requirements, and overall principles for Configuration and Change Management processes to support information technology management.

  10. Operational Dynamic Configuration Analysis

    NASA Technical Reports Server (NTRS)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  11. Configuration Analysis Tool

    NASA Technical Reports Server (NTRS)

    Merwarth, P. D.

    1983-01-01

    Configuration Analysis Tool (CAT), is information storage and report generation system for aid of configuration management activities. Configuration management is discipline composed of many techniques selected to track and direct evolution of complex systems. CAT is interactive program that accepts, organizes and stores information pertinent to specific phases of project.

  12. Computer Lab Configuration.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2003-01-01

    Describes the layout and elements of an effective school computer lab. Includes configuration, storage spaces, cabling and electrical requirements, lighting, furniture, and computer hardware and peripherals. (PKP)

  13. Equilibrium Configuration of Φ4 Oscillatons

    NASA Astrophysics Data System (ADS)

    Valdez-Alvarado, Susana; Becerril, Ricardo; Ureña-López, L. Arturo

    2010-07-01

    We search for equilibrium configurations of the (coupled) Einstein-Klein-Gordon equations for the case of a real scalar field endowed with a quartic self-interaction potential. The resulting solutions are the generalizations of the (massive) oscillating soliton stars, the so-called oscillatons. Among other parameters, we estimate the mass curve of the configurations, and determine their critical mass for different values of the quartic interaction.

  14. Cold-air investigation of a 31/2-stage fan-drive turbine with a stage loading factor of 4 designed for an integral lift engine. 2: Performance of 2-, 3- and 3 1/2-stage configurations

    NASA Technical Reports Server (NTRS)

    Whitney, W. J.

    1977-01-01

    The stage work distribution among the three stages was very close to the design value. The specific work output-mass flow characteristics of the three stages were closely matched. The efficiency of the 3 1/2 stage turbine at design specific work output and design speed was within 0.008 of the estimated value, and this agreement was felt to demonstrate the adequacy of the prediction method in the high stage loading factor regime.

  15. PIV Logon Configuration Guidance

    SciTech Connect

    Lee, Glen Alan

    2016-03-04

    This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).

  16. Configuration Management Process Assessment Strategy

    NASA Technical Reports Server (NTRS)

    Henry, Thad

    2014-01-01

    Purpose: To propose a strategy for assessing the development and effectiveness of configuration management systems within Programs, Projects, and Design Activities performed by technical organizations and their supporting development contractors. Scope: Various entities CM Systems will be assessed dependent on Project Scope (DDT&E), Support Services and Acquisition Agreements. Approach: Model based structured against assessing organizations CM requirements including best practices maturity criteria. The model is tailored to the entity being assessed dependent on their CM system. The assessment approach provides objective feedback to Engineering and Project Management of the observed CM system maturity state versus the ideal state of the configuration management processes and outcomes(system). center dot Identifies strengths and risks versus audit gotcha's (findings/observations). center dot Used "recursively and iteratively" throughout program lifecycle at select points of need. (Typical assessments timing is Post PDR/Post CDR) center dot Ideal state criteria and maturity targets are reviewed with the assessed entity prior to an assessment (Tailoring) and is dependent on the assessed phase of the CM system. center dot Supports exit success criteria for Preliminary and Critical Design Reviews. center dot Gives a comprehensive CM system assessment which ultimately supports configuration verification activities.*

  17. Compact Torsatron configurations

    SciTech Connect

    Carreras, B. A.; Dominguez, N.; Garcia, L.; Lynch, V. E.; Lyon, J. F.; Cary, J. R.; Hanson, J. D.; Navarro, A. P.

    1987-09-01

    Low-aspect-ratio stellarator configurations can be realized by using torsatron winding. Plasmas with aspect ratios in the range of 3.5 to 5 can be confined by these Compact Torsatron configurations. Stable operation at high BETA should be possible in these devices, if a vertical field coil system is adequately designed to avoid breaking of the magnetic surfaces at finite BETA. 17 refs., 21 figs., 1 tab.

  18. ION Configuration Editor

    NASA Technical Reports Server (NTRS)

    Borgen, Richard L.

    2013-01-01

    The configuration of ION (Inter - planetary Overlay Network) network nodes is a manual task that is complex, time-consuming, and error-prone. This program seeks to accelerate this job and produce reliable configurations. The ION Configuration Editor is a model-based smart editor based on Eclipse Modeling Framework technology. An ION network designer uses this Eclipse-based GUI to construct a data model of the complete target network and then generate configurations. The data model is captured in an XML file. Intrinsic editor features aid in achieving model correctness, such as field fill-in, type-checking, lists of valid values, and suitable default values. Additionally, an explicit "validation" feature executes custom rules to catch more subtle model errors. A "survey" feature provides a set of reports providing an overview of the entire network, enabling a quick assessment of the model s completeness and correctness. The "configuration" feature produces the main final result, a complete set of ION configuration files (eight distinct file types) for each ION node in the network.

  19. Minimum induced drag configurations with jet interaction

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Lan, C. E.

    1978-01-01

    A theoretical method is presented for determining the optimum camber shape and twist distribution for the minimum induced drag in the wing-alone case without prescribing the span loading shape. The same method was applied to find the corresponding minimum induced drag configuration with the upper-surface-blowing jet. Lan's quasi-vortex-lattice method and his wing-jet interaction theory was used. Comparison of the predicted results with another theoretical method shows good agreement for configurations without the flowing jet. More applicable experimental data with blowing jets are needed to establish the accuracy of the theory.

  20. Shaping scaffold structures in rapid manufacturing implants: a modeling approach toward mechano-biologically optimized configurations for large bone defect.

    PubMed

    Razi, Hajar; Checa, Sara; Schaser, Klaus-Dieter; Duda, Georg N

    2012-10-01

    Large segmental bone defects remain a clinical challenge. Titanium lattice-structured implants in combination with laser sintering technology promises to be an alternative to bone grafting in the treatment of critical sized bone defects. Laser sintering allows the rapid manufacturing of patient specific 3D-structured scaffolds with highly interconnected macroporous networks and tunable mechanical properties. Unknown remains to what degree the mechanical properties of these implants could be tuned, without leading to mechanical failure but still providing adequate mechanical stimuli for tissue ingrowth. The aim of this study was to evaluate various implant designs for their mechanical potential towards (a) optimized safety against stress failure and (b) optimal intrastructural straining for bone ingrowth. Finite element analyses of several lattice-structured configurations were performed. Results illustrated a strong influence of the configuration on the load carrying capacity of the constructs. The likelihood of mechanical failure was predicted to be highly dependent on structure configuration with little influence of implant porosity. Increasing porosity did not result in an increase in the implant intrastructural straining in all configurations; however, the lattice configuration was the determinant factor for implant load transfer capacity. This study provides a framework for the design of effective implants with open pore structures to ensure mechanical stability as well as promote mechanical stimulation and encourage in vivo osseointegration.

  1. Nonlinear Aeroelastic Analysis of Joined-Wing Configurations

    NASA Astrophysics Data System (ADS)

    Cavallaro, Rauno

    Aeroelastic design of joined-wing configurations is yet a relatively unexplored topic which poses several difficulties. Due to the overconstrained nature of the system combined with structural geometric nonlinearities, the behavior of Joined Wings is often counterintuitive and presents challenges not seen in standard layouts. In particular, instability observed on detailed aircraft models but never thoroughly investigated, is here studied with the aid of a theoretical/computational framework. Snap-type of instabilities are shown for both pure structural and aeroelastic cases. The concept of snap-divergence is introduced to clearly identify the true aeroelastic instability, as opposed to the usual aeroelastic divergence evaluated through eigenvalue approach. Multi-stable regions and isola-type of bifurcations are possible characterizations of the nonlinear response of Joined Wings, and may lead to branch-jumping phenomena well below nominal critical load condition. Within this picture, sensitivity to (unavoidable) manufacturing defects could have potential catastrophic effects. The phenomena studied in this work suggest that the design process for Joined Wings needs to be revisited and should focus, when instability is concerned, on nonlinear post-critical analysis since linear methods may provide wrong trend indications and also hide potentially catastrophical situations. Dynamic aeroelastic analyses are also performed. Flutter occurrence is critically analyzed with frequency and time-domain capabilities. Sensitivity to different-fidelity aeroelastic modeling (fluid-structure interface algorithm, aerodynamic solvers) is assessed showing that, for some configurations, wake modeling (rigid versus free) has a strong impact on the results. Post-flutter regimes are also explored. Limit cycle oscillations are observed, followed, in some cases, by flip bifurcations (period doubling) and loss of periodicity of the solution. Aeroelastic analyses are then carried out on a

  2. Elastomeric load sharing device

    NASA Technical Reports Server (NTRS)

    Isabelle, Charles J. (Inventor); Kish, Jules G. (Inventor); Stone, Robert A. (Inventor)

    1992-01-01

    An elastomeric load sharing device, interposed in combination between a driven gear and a central drive shaft to facilitate balanced torque distribution in split power transmission systems, includes a cylindrical elastomeric bearing and a plurality of elastomeric bearing pads. The elastomeric bearing and bearing pads comprise one or more layers, each layer including an elastomer having a metal backing strip secured thereto. The elastomeric bearing is configured to have a high radial stiffness and a low torsional stiffness and is operative to radially center the driven gear and to minimize torque transfer through the elastomeric bearing. The bearing pads are configured to have a low radial and torsional stiffness and a high axial stiffness and are operative to compressively transmit torque from the driven gear to the drive shaft. The elastomeric load sharing device has spring rates that compensate for mechanical deviations in the gear train assembly to provide balanced torque distribution between complementary load paths of split power transmission systems.

  3. Restructured Freedom configuration characteristics

    NASA Technical Reports Server (NTRS)

    Troutman, Patrick A.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.

    1991-01-01

    In Jan. 1991, the LaRc SSFO performed an assessment of the configuration characteristics of the proposed pre-integrated Space Station Freedom (SSF) concept. Of particular concern was the relationship of solar array operation and orientation with respect to spacecraft controllability. For the man-tended configuration (MTC), it was determined that torque equilibrium attitude (TEA) seeking Control Moment Gyroscope (CMG) control laws could not always maintain attitude. The control problems occurred when the solar arrays were tracking the sun to produce full power while flying in an arrow or gravity gradient flight mode. The large solar array articulations that sometimes result from having the functions of the alpha and beta joints reversed on MTC induced large product of inertia changes that can invalidate the control system gains during an orbit. Several modified sun tracking techniques were evaluated with respect to producing a controllable configuration requiring no modifications to the CMG control algorithms. Another assessment involved the permanently manned configuration (PMC) which has a third asymmetric PV unit on one side of the transverse boom. Recommendations include constraining alpha rotations for MTC in the arrow and gravity gradient flight modes and perhaps developing new non-TEA seeking control laws. Recommendations for PMC include raising the operational altitude and moving to a symmetric configuration as soon as possible.

  4. Software Configuration Management Guidebook

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The growth in cost and importance of software to NASA has caused NASA to address the improvement of software development across the agency. One of the products of this program is a series of guidebooks that define a NASA concept of the assurance processes which are used in software development. The Software Assurance Guidebook, SMAP-GB-A201, issued in September, 1989, provides an overall picture of the concepts and practices of NASA in software assurance. Lower level guidebooks focus on specific activities that fall within the software assurance discipline, and provide more detailed information for the manager and/or practitioner. This is the Software Configuration Management Guidebook which describes software configuration management in a way that is compatible with practices in industry and at NASA Centers. Software configuration management is a key software development process, and is essential for doing software assurance.

  5. Electronically configured battery pack

    SciTech Connect

    Kemper, D.

    1997-03-01

    Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

  6. Results of Experimental Investigations to Determine External Tank Protuberance Loads Using a 0.03-Scale Model of the Space Shuttle Launch Configuration (Model 47-OTS) in the NASA/ARC Unitary Plan Wind Tunnel, Volume 2

    NASA Technical Reports Server (NTRS)

    Houlihan, S. R.

    1992-01-01

    Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA19OA/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA19OA) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA19OB). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline; (2) GO2 pressure line; (3) LO2 antigeyser line; (4) GH2 pressure line; (5) LH2 tank cable tray; (6) LO2 tank cable tray; (7) Bipod; (8) ET/SRB cable tray; and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above; 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements; Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures; and Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

  7. Results of experimental investigations to determine external tank protuberance loads using a 0.03-scale model of the Space Shuttle launch configuration (model 47-OTS) in the NASA/ARC unitary plan wind tunnel, volume 1

    NASA Technical Reports Server (NTRS)

    Houlihan, S. R.

    1992-01-01

    Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA190A/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA190A) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA190B). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline, (2) GO2 pressure line, (3) LO2 antigeyser line, (4) GH2 pressure line, (5) LH2 tank cable tray, (6) LO2 tank cable tray, (7) Bipod, (8) ET/SRB cable tray, and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: (1) Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above. (2) 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements. (3) Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures. (4) Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

  8. Low speed wind tunnel test of ground proximity and deck edge effects on a lift cruise fan V/STOL configuration, volume 1

    NASA Technical Reports Server (NTRS)

    Stewart, V. R.

    1979-01-01

    The characteristics were determined of a lift cruise fan V/STOL multi-mission configuration in the near proximity to the edge of a small flat surface representation of a ship deck. Tests were conducted at both static and forward speed test conditions. The model (0.12 scale) tested was a four fan configuration with modifications to represent a three fan configuration. Analysis of data showed that the deck edge effects were in general less critical in terms of differences from free air than a full deck (in ground effect) configuration. The one exception to this was when the aft edge of the deck was located under the center of gravity. This condition, representative of an approach from the rear, showed a significant lift loss. Induced moments were generally small compared to the single axis control power requirements, but will likely add to the pilot work load.

  9. DAQMAN - A flexible configurable data acquisition system

    SciTech Connect

    Sivertz, Michael; Larry Hoff, Seth Nemesure

    2012-08-01

    DAQMAN is a flexible configurable interface that allows the user to build and operate a VME-based data acquisition system on a Linux workstation. It consists of two parts: a Java-based Graphical User Interface to configure the system, and a C-based utility that reads out the data and creates the output ASCII data file, with two levels of diagnostic tools. The data acquisition system requires a CAEN CONET-VME Bridge to communicate between the hardware in the VME crate and the Linux workstation. Data acquisition modules, such as ADCs, TDC, Scalers, can be loaded into the system, or removed easily. The GUI allows users to activate modules, and channels within modules by clicking on icons. Running configurations are stored; data are collected and can be viewed either as raw numbers, or by charts and histograms that update as the data are accumulated. Data files are written to disk in ASCII format, with a date and time stamp.

  10. Saturn IB Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This 1968 chart depicts the various mission configurations for the Saturn IB launch vehicle. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's 'building block' approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar missions.

  11. Inclusive Services Innovation Configuration

    ERIC Educational Resources Information Center

    Holdheide, Lynn R.; Reschly, Daniel J.

    2011-01-01

    Teacher preparation to deliver inclusive services to students with disabilities is increasingly important because of changes in law and policy emphasizing student access to, and achievement in, the general education curriculum. This innovation configuration identifies the components of inclusive services that should be incorporated in teacher…

  12. Nuclear Shuttle Logistics Configuration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This 1971 artist's concept shows the Nuclear Shuttle in both its lunar logistics configuraton and geosynchronous station configuration. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to lunar orbits or other destinations then return to Earth orbit for refueling and additional missions.

  13. Modular tokamak configuration

    SciTech Connect

    Thomson, S.L.

    1985-01-01

    This report is concerned with the modular tokamak configuration, and presents information on the following topics: modularity; external vacuum boundary; vertical maintenance; combined reactor building/biological shield with totally remote maintenance; independent TF coils; minimum TF coil bore; saddle PF coils; and heat transport system in bore.

  14. Load cell

    DOEpatents

    Spletzer, Barry L.

    1998-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components.

  15. Load cell

    DOEpatents

    Spletzer, B.L.

    1998-12-15

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

  16. Load cell

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs which can be combined to determine any one of the six general load components.

  17. Criticality Model Report

    SciTech Connect

    J.M. Scaglione

    2003-03-12

    The purpose of the ''Criticality Model Report'' is to validate the MCNP (CRWMS M&O 1998h) code's ability to accurately predict the effective neutron multiplication factor (k{sub eff}) for a range of conditions spanned by various critical configurations representative of the potential configurations commercial reactor assemblies stored in a waste package may take. Results of this work are an indication of the accuracy of MCNP for calculating eigenvalues, which will be used as input for criticality analyses for spent nuclear fuel (SNF) storage at the proposed Monitored Geologic Repository. The scope of this report is to document the development and validation of the criticality model. The scope of the criticality model is only applicable to commercial pressurized water reactor fuel. Valid ranges are established as part of the validation of the criticality model. This model activity follows the description in BSC (2002a).

  18. Configurations of the amphiphilic molecules in micelles

    SciTech Connect

    Dill, K.A.

    1982-04-29

    Several theoretic models aim to account for the properties of micelles in terms of the configurations of the constituent amphiphilic chain molecules. Recent /sup 13/C NMR measurement of one property of the configuration distribution of the the hydrocarbon chain segments allows critical evaluation of these theories. It is concluded that the interphase and singly-bent chain theories, which fully account for chain continuity and for intermolecular constraints imposed by hydrophobic and steric forces, give a more satisfactory description of micellar molecular organization than models in which chains are ordered and radially aligned, or in which they have the complete disorder characteristic of an amorphous hydrocarbon liquid.

  19. Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Bloem, Michael J.

    2014-01-01

    In air traffic management systems, airspace is partitioned into regions in part to distribute the tasks associated with managing air traffic among different systems and people. These regions, as well as the systems and people allocated to each, are changed dynamically so that air traffic can be safely and efficiently managed. It is expected that new air traffic control systems will enable greater flexibility in how airspace is partitioned and how resources are allocated to airspace regions. In this talk, I will begin by providing an overview of some previous work and open questions in Dynamic Airspace Configuration research, which is concerned with how to partition airspace and assign resources to regions of airspace. For example, I will introduce airspace partitioning algorithms based on clustering, integer programming optimization, and computational geometry. I will conclude by discussing the development of a tablet-based tool that is intended to help air traffic controller supervisors configure airspace and controllers in current operations.

  20. Versatile composite amplifier configuration

    NASA Astrophysics Data System (ADS)

    Gift, Stephan J. G.; Maundy, Brent

    2015-06-01

    This paper describes a versatile composite amplifier in which a current feedback amplifier (CFA) drives an operational amplifier (OPA). In the conventional OPA-CFA composite amplifier, an OPA drives a CFA resulting in a composite structure that combines the DC input stability of the OPA and the high speed capability of the CFA. The proposed composite configuration combines different features of the CFA and OPA, specifically the constant bandwidth property of the CFA and the high power and high current output capacity of the OPA. The new circuit is easily implemented in the standard inverting and non-inverting configurations using commercially available devices, and the accuracy and constant bandwidth features were experimentally verified. Local feedback around the associated CFA ensures that the proposed composite amplifier possesses a higher level of bandwidth constancy than a single CFA.

  1. Modular small hydro configuration

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Smaller sites (those under 750 kilowatts) which previously were not attractive to develop using equipment intended for application at larger scale sites, were the focal point in the conception of a system which utilizes standard industrial components which are generally available within short procurement times. Such components were integrated into a development scheme for sites having 20 feet to 150 feet of head. The modular small hydro configuration maximizes the use of available components and minimizes modification of existing civil works. A key aspect of the development concept is the use of a vertical turbine multistage pump, used in the reverse mode as a hydraulic turbine. The configuration allows for automated operation and control of the hydroelectric facilities with sufficient flexibility for inclusion of potential hydroelectric sites into dispersed storage and generation (DSG) utility grid systems.

  2. Fuel cell system configurations

    DOEpatents

    Kothmann, Richard E.; Cyphers, Joseph A.

    1981-01-01

    Fuel cell stack configurations having elongated polygonal cross-sectional shapes and gaskets at the peripheral faces to which flow manifolds are sealingly affixed. Process channels convey a fuel and an oxidant through longer channels, and a cooling fluid is conveyed through relatively shorter cooling passages. The polygonal structure preferably includes at least two right angles, and the faces of the stack are arranged in opposite parallel pairs.

  3. Flexible heliac configuration

    SciTech Connect

    Harris, J.H.; Cantrell, J.L.; Hender, T.C.; Carreras, B.A.; Morris, R.N.

    1985-04-01

    The addition of an l = 1 helical winding to the heliac central conductor adds a significant degree of flexibility to the configuration by making it possible to control the rotational transform and shear. Such control is essential for an experiment because the presence of low-order resonances in the rotational transform profile can cause breakup of the equilibrium magnetic surfaces. The use of the additional winding also permits reduction of the total central conductor current and can deepen the magnetic well.

  4. Critical review of the trailing edge condition in steady and unsteady flow. Blade flutter in compressors and fans: Numerical simulation of the aerodynamic loading

    NASA Technical Reports Server (NTRS)

    Radwan, S. F.; Rockwell, D. O.; Johnson, S. H.

    1982-01-01

    Existing interpretations of the trailing edge condition, addressing both theoretical and experimental works in steady, as well as unsteady flows are critically reviewed. The work of Kutta and Joukowski on the trailing edge condition in steady flow is reviewed. It is shown that for most practical airfoils and blades (as in the case of most turbomachine blades), this condition is violated due to rounded trailing edges and high frequency effects, the flow dynamics in the trailing edge region being dominated by viscous forces; therefore, any meaningful modelling must include viscous effects. The question of to what extent the trailing edge condition affects acoustic radiation from the edge is raised; it is found that violation of the trailing edge condition leads to significant sound diffraction at the tailing edge, which is related to the problem of noise generation. Finally, various trailing edge conditions in unsteady flow are discussed, with emphasis on high reduced frequencies.

  5. Inferring unstable equilibrium configurations from experimental data

    NASA Astrophysics Data System (ADS)

    Virgin, L. N.; Wiebe, R.; Spottswood, S. M.; Beberniss, T.

    2016-09-01

    This research considers the structural behavior of slender, mechanically buckled beams and panels of the type commonly found in aerospace structures. The specimens were deflected and then clamped in a rigid frame in order to exhibit snap-through. That is, the initial equilibrium and the buckled (snapped-through) equilibrium configurations both co-existed for the given clamped conditions. In order to transit between these two stable equilibrium configurations (for example, under the action of an externally applied load), it is necessary for the structural component to pass through an intermediate unstable equilibrium configuration. A sequence of sudden impacts was imparted to the system, of various strengths and at various locations. The goal of this impact force was to induce relatively intermediate-sized transients that effectively slowed-down in the vicinity of the unstable equilibrium configuration. Thus, monitoring the velocity of the motion, and specifically its slowing down, should give an indication of the presence of an equilibrium configuration, even though it is unstable and not amenable to direct experimental observation. A digital image correlation (DIC) system was used in conjunction with an instrumented impact hammer to track trajectories and statistical methods used to infer the presence of unstable equilibria in both a beam and a panel.

  6. Role of specific amine surface configurations for grafted surfaces: implications for nanostructured CO2 adsorbents.

    PubMed

    Shimizu, Steven; Song, Changsik; Strano, Michael

    2011-03-15

    Amine-grafted porous materials that capture CO2 from emission streams have been considered to be potential alternatives to the more energy-intensive liquid amine systems currently employed. An underappreciated fact in the uptake mechanism of these materials is that under dry, anhydrous conditions each CO2 molecule must react with two adjacent amine groups to adsorb onto the surface, which makes the configuration of amine groups on the surface critically important. Using this chemical mechanism, we developed a semiempirical adsorption isotherm equation that allows straightforward computation of the adsorption isotherm from an arbitrary surface configuration of grafted amines for honeycomb, square, and triangular lattices. The model makes use of the fact that the distribution of amines with respect to the number of nearest neighbors, referred to as the z-histogram, along with the amine loading and equilibrium constant, uniquely determine the adsorption characteristics to a very good approximation. This model was used to predict the range of uptakes possible just through surface configuration, and it was used to fit experimental data in the literature to give a meaningful equilibrium constant and show how efficiently amines were utilized. We also demonstrate how the model can be utilized to design more efficient nanostructured adsorbents and polymer-based adsorbents. Recommendations for exploiting the role of surface configuration include the use of linear instead of branched polyamines, higher amine grafting densities, the use of flexible, less bulky, long, and rotationally free amine groups, and increased silanol densities.

  7. Ultrasonic pulsed phase locked loop interferometer for bolt load measurements

    NASA Technical Reports Server (NTRS)

    Allison, S. G.; Clendenin, C. G.

    1989-01-01

    The pulsed phase-locked-loop bolt monitor (P2L2) that uses ultrasonic waves to measure bolt preload with accuracies ranging from 1 to 3 percent (depending on the specific bolt) is described. To remeasure bolt load after installation, a thermal calibration factor compensates for bolt temperature changes, and a standard reference block allows correction for acoustic phase errors due to measurement equipment configuration such as utilization of a different transducer, couplant, or cable. Some examples of critical applications including Space Shuttle landing-gear wheels and NASA wind-tunnel fan blades are discussed.

  8. Critical Joints in Large Composite Primary Aircraft Structures. Volume 3: Ancillary Test Results

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.; Sagui, R. L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints for composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of a comprehensive ancillary test program are summarized, consisting of single-bolt composite joint specimens tested in a variety of configurations. These tests were conducted to characterize the strength and load deflection properties that are required for multirow joint analysis. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.005 and 0.01 inch thick unidirectional tape. Tests were conducted in single and double shear for loaded and unloaded hole configurations under both tensile and compressive loading. Two different layup patterns were examined. All tests were conducted at room temperature. In addition, the results of NASA Standard Toughness Test (NASA RP 1092) are reported, which were conducted for several material systems.

  9. GSC configuration management plan

    NASA Technical Reports Server (NTRS)

    Withers, B. Edward

    1990-01-01

    The tools and methods used for the configuration management of the artifacts (including software and documentation) associated with the Guidance and Control Software (GCS) project are described. The GCS project is part of a software error studies research program. Three implementations of GCS are being produced in order to study the fundamental characteristics of the software failure process. The Code Management System (CMS) is used to track and retrieve versions of the documentation and software. Application of the CMS for this project is described and the numbering scheme is delineated for the versions of the project artifacts.

  10. Configuring Battalion File Servers

    DTIC Science & Technology

    2012-01-01

    AGM Server 2008 to load on a Dell D630 laptop. Though not ideal, it did allow the battalion staff and command group to share...and install the AGM Microsoft Server 2008. The final contract included two Dell R610 1U servers with RAID 5 comprising of three 1 TB hard drives...continuity in data between garrison and deployment environ- ments. With the usage of AGM Server operating systems, the Army is

  11. SIM Configuration Evolution

    NASA Technical Reports Server (NTRS)

    Aaron, Kim M.

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10 m baseline Michelson interferometer. Planned for launch in 2005 aboard a Delta III launch vehicle, or equivalent, its primary objective is to measure the positions of stars and other celestial objects with an unprecedented accuracy of 4 micro arc seconds. With such an instrument, tremendous advancement can be expected in our understanding of stellar and galactic dynamics. Using triangulation from opposite sides of the orbit around the sun (i.e. by using parallax) one can measure the distance to any observable object in our galaxy. By directly measuring the orbital wobble of nearby stars, the mass and orbit of planets can be determined over a wide range of parameters. The distribution of velocity within nearby galaxies will be measurable. Observations of these and other objects will improve the calibration of distance estimators by more than an order of magnitude. This will permit a much better determination of the Hubble Constant as well as improving our overall understanding of the evolution of the universe. SIM has undergone several transformations, especially over the past year and a half since the start of Phase A. During this phase of a project, it is desirable to perform system-level trade studies, so the substantial evolution of the design that has occurred is quite appropriate. Part of the trade-off process has addressed two major underlying architectures: SIM Classic; and Son of SIM. The difference between these two architectures is related to the overall arrangement of the optical elements and the associated metrology system. Several different configurations have been developed for each architecture. Each configuration is the result of design choices that are influenced by many competing considerations. Some of the more important aspects will be discussed. The Space Interferometry Mission has some extremely challenging goals: millikelvin thermal stability, nanometer stabilization of optics

  12. Ames Optimized TCA Configuration

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.

    1999-01-01

    Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the

  13. An automated approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Dekeyser, W.; Baelmans, M.; Gauger, N. R.; Reiter, D.

    2015-01-01

    Automated methods based on optimization can greatly assist computational engineering design in many areas. In this paper an optimization approach to the magnetic design of a nuclear fusion reactor divertor is proposed and applied to a tokamak edge magnetic configuration in a first feasibility study. The approach is based on reduced models for magnetic field and plasma edge, which are integrated with a grid generator into one sensitivity code. The design objective chosen here for demonstrative purposes is to spread the divertor target heat load as much as possible over the entire target area. Constraints on the separatrix position are introduced to eliminate physically irrelevant magnetic field configurations during the optimization cycle. A gradient projection method is used to ensure stable cost function evaluations during optimization. The concept is applied to a configuration with typical Joint European Torus (JET) parameters and it automatically provides plausible configurations with reduced heat load.

  14. 14 CFR 27.341 - Gust loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Gust loads. 27.341 Section 27.341... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.341 Gust loads. The rotorcraft must be designed to withstand, at each critical airspeed including hovering, the loads resulting from...

  15. 14 CFR 29.341 - Gust loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Gust loads. 29.341 Section 29.341... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.341 Gust loads. Each rotorcraft must be designed to withstand, at each critical airspeed including hovering, the loads...

  16. 14 CFR 29.341 - Gust loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Gust loads. 29.341 Section 29.341... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.341 Gust loads. Each rotorcraft must be designed to withstand, at each critical airspeed including hovering, the loads...

  17. 14 CFR 29.341 - Gust loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Gust loads. 29.341 Section 29.341... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.341 Gust loads. Each rotorcraft must be designed to withstand, at each critical airspeed including hovering, the loads...

  18. 14 CFR 27.341 - Gust loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Gust loads. 27.341 Section 27.341... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.341 Gust loads. The rotorcraft must be designed to withstand, at each critical airspeed including hovering, the loads resulting from...

  19. 14 CFR 29.341 - Gust loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Gust loads. 29.341 Section 29.341... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.341 Gust loads. Each rotorcraft must be designed to withstand, at each critical airspeed including hovering, the loads...

  20. 14 CFR 27.341 - Gust loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Gust loads. 27.341 Section 27.341... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.341 Gust loads. The rotorcraft must be designed to withstand, at each critical airspeed including hovering, the loads resulting from...

  1. 14 CFR 27.341 - Gust loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Gust loads. 27.341 Section 27.341... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.341 Gust loads. The rotorcraft must be designed to withstand, at each critical airspeed including hovering, the loads resulting from...

  2. 14 CFR 29.341 - Gust loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Gust loads. 29.341 Section 29.341... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.341 Gust loads. Each rotorcraft must be designed to withstand, at each critical airspeed including hovering, the loads...

  3. Criticality safety analysis on fissile materials in Fukushima reactor cores

    SciTech Connect

    Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong; Hirano, Fumio

    2013-07-01

    The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

  4. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Vassigh, Kenny; Bendek, Selman; Young, Zion W; Lynch, Dana H.

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide strawman mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible andor UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST.

  5. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  6. Software Configurable Multichannel Transceiver

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter

    2009-01-01

    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  7. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-10-14

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  8. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-12-16

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  9. Power converter connection configuration

    SciTech Connect

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2008-11-11

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  10. Lidar configurations for wind turbine control

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmood; Mann, Jakob

    2016-09-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best configuration of an inexpensive lidar in terms of number of measurement points, the measurement distance and the opening angle is the subject of this study. In order to solve the problem, a lidar model is developed and used to measure wind speed in a turbulence box. The effective wind speed measured by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points.

  11. Multiplexer/Demultiplexer Loading Tool (MDMLT)

    NASA Technical Reports Server (NTRS)

    Brewer, Lenox Allen; Hale, Elizabeth; Martella, Robert; Gyorfi, Ryan

    2012-01-01

    The purpose of the MDMLT is to improve the reliability and speed of loading multiplexers/demultiplexers (MDMs) in the Software Development and Integration Laboratory (SDIL) by automating the configuration management (CM) of the loads in the MDMs, automating the loading procedure, and providing the capability to load multiple or all MDMs concurrently. This loading may be accomplished in parallel, or single MDMs (remote). The MDMLT is a Web-based tool that is capable of loading the entire International Space Station (ISS) MDM configuration in parallel. It is able to load Flight Equivalent Units (FEUs), enhanced, standard, and prototype MDMs as well as both EEPROM (Electrically Erasable Programmable Read-Only Memory) and SSMMU (Solid State Mass Memory Unit) (MASS Memory). This software has extensive configuration management to track loading history, and the performance improvement means of loading the entire ISS MDM configuration of 49 MDMs in approximately 30 minutes, as opposed to 36 hours, which is what it took previously utilizing the flight method of S-Band uplink. The laptop version recently added to the MDMLT suite allows remote lab loading with the CM of information entered into a common database when it is reconnected to the network. This allows the program to reconfigure the test rigs quickly between shifts, allowing the lab to support a variety of onboard configurations during a single day, based on upcoming or current missions. The MDMLT Computer Software Configuration Item (CSCI) supports a Web-based command and control interface to the user. An interface to the SDIL File Transfer Protocol (FTP) server is supported to import Integrated Flight Loads (IFLs) and Internal Product Release Notes (IPRNs) into the database. An interface to the Monitor and Control System (MCS) is supported to control the power state, and to enable or disable the debug port of the MDMs to be loaded. Two direct interfaces to the MDM are supported: a serial interface (debug port) to

  12. Flexor tenorrhaphy tensile strength: reduction by cyclic loading: in vitro and ex vivo porcine study.

    PubMed

    Gibbons, C E R; Thompson, D; Sandow, M J

    2009-06-01

    The integrity of the repair is critical to maintain coaptation of the severed flexor tendon end until healing has advanced sufficiently. In our hospital, we use a modified Savage repair (four-strand Adelaide technique) using 3-0 Ethibond (Ethicon, Somerville, NJ, USA) for acute flexor tenorrhaphy and an active postrepair mobilization protocol. To explain the apparent differences between the theoretical and actual repair strength of a multistrand repair in a single tension test and the reduced strength of a repair subjected to cyclic loading, we compared single and cyclical tensile loading with different suture in vitro configurations of 3-0 Ethibond (Ethicon, Somerville, NJ, USA; one, two, and four strands) and an ex vivo four-strand repair of freshly divided porcine tendon to calculate the ultimate tensile strength (UTS). Mechanical testing was repeated 15 times with both single tensile and cyclical loading for each suture configuration and porcine repair. In the in vitro model, the presence of a knot in a single strand reduced the UTS by 50%. The stiffness of a knotted strand was substantially less than the unknotted strand but became identical after cyclical loading. There was no statistical significance of the UTS between single and cyclical loading with different numbers of strands in this model. In the ex vivo four-strand porcine repair model, there was a significant reduction in UTS with cyclical loading, which equated to the number of strands times the strength of the knotted strand. This discrepancy can be explained by the change in stiffness of the knotted strand after cyclical loading and has important implications for previous studies of suture tendon repair using single tensile loading where the UTS may have been overestimated. We believe that cyclical loading is more representative of physiological loading after acute flexor tendon repair and should be the testing model of choice in suture tenorrhaphy studies.

  13. Load cell having strain gauges of arbitrary location

    DOEpatents

    Spletzer, Barry

    2007-03-13

    A load cell utilizes a plurality of strain gauges mounted upon the load cell body such that there are six independent load-strain relations. Load is determined by applying the inverse of a load-strain sensitivity matrix to a measured strain vector. The sensitivity matrix is determined by performing a multivariate regression technique on a set of known loads correlated to the resulting strains. Temperature compensation is achieved by configuring the strain gauges as co-located orthogonal pairs.

  14. Incremental full configuration interaction

    NASA Astrophysics Data System (ADS)

    Zimmerman, Paul M.

    2017-03-01

    The incremental expansion provides a polynomial scaling method for computing electronic correlation energies. This article details a new algorithm and implementation for the incremental expansion of full configuration interaction (FCI), called iFCI. By dividing the problem into n-body interaction terms, accurate correlation energies can be recovered at low n in a highly parallel computation. Additionally, relatively low-cost approximations are possible in iFCI by solving for each incremental energy to within a specified threshold. Herein, systematic tests show that FCI-quality energies can be asymptotically reached for cases where dynamic correlation is dominant as well as where static correlation is vital. To further reduce computational costs and allow iFCI to reach larger systems, a select-CI approach (heat-bath CI) requiring two parameters is incorporated. Finally, iFCI provides the first estimate of FCI energies for hexatriene with a polarized double zeta basis set, which has 32 electrons correlated in 118 orbitals, corresponding to a FCI dimension of over 1038.

  15. Ground state configurations in two-mode quantum Rabi models

    NASA Astrophysics Data System (ADS)

    Chilingaryan, Suren; Rodríguez-Lara, B. M.

    We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal configuration. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited. S A Chilingaryan acknowledges financial support from CONACYT.

  16. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...); or (2) Sufficient to develop 1.5 times the limit load factor. (b) The critical landing condition...

  17. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...); or (2) Sufficient to develop 1.5 times the limit load factor. (b) The critical landing condition...

  18. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...); or (2) Sufficient to develop 1.5 times the limit load factor. (b) The critical landing condition...

  19. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...); or (2) Sufficient to develop 1.5 times the limit load factor. (b) The critical landing condition...

  20. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...); or (2) Sufficient to develop 1.5 times the limit load factor. (b) The critical landing condition...

  1. Temporal and spatial variation of trace elements in atmospheric deposition around the industrial area of Puchuncaví-Ventanas (Chile) and its influence on exceedances of lead and cadmium critical loads in soils.

    PubMed

    Rueda-Holgado, F; Calvo-Blázquez, L; Cereceda-Balic, F; Pinilla-Gil, E

    2016-02-01

    Fractionation of elemental contents in atmospheric samples is useful to evaluate pollution levels for risk assessment and pollution sources assignment. We present here the main results of long-term characterization of atmospheric deposition by using a recently developed atmospheric elemental fractionation sampler (AEFS) for major and trace elements monitoring around an important industrial complex located in Puchuncaví region (Chile). Atmospheric deposition samples were collected during two sampling campaigns (2010 and 2011) at four sampling locations: La Greda (LG), Los Maitenes (LM), Puchuncaví (PU) and Valle Alegre (VA). Sample digestion and ICP-MS gave elements deposition values (Al, As, Ba, Cd, Co, Cu, Fe, K, Mn, Pb, Sb, Ti, V and Zn) in the insoluble fraction of the total atmospheric deposition. Results showed that LG location, the closest location to the industrial complex, was the more polluted sampling site having the highest values for the analyzed elements. PU and LM were the next more polluted and, finally, the lowest elements concentrations were registered at VA. The application of Principal Component Analysis and Cluster Analysis identified industrial, traffic and mineral-crustal factors. We found critical loads exceedances for Pb at all sampling locations in the area affected by the industrial emissions, more significant in LG close to the industrial complex, with a trend to decrease in 2011, whereas no exceedances due to atmospheric deposition were detected for Cd.

  2. Configurational subdiffusion of peptides: A network study

    SciTech Connect

    Neusius, Thomas; Diadone, Isabella; Sokolov, Igor; Smith, Jeremy C

    2011-01-01

    Molecular dynamics (MD) simulation of linear peptides reveals configurational subdiffusion at equilibrium extending from 10-12 to 10-8 s. Rouse chain and continuous-time random walk models of the subdiffusion are critically discussed. Network approaches to analyzing MD simulations are shown to reproduce the time dependence of the subdiffusive mean squared displacement, which is found to arise from the fractal-like geometry of the accessible volume in the configuration space. Convergence properties of the simulation pertaining to the subdiffusive dynamics are characterized and the effect on the subdiffusive properties of representing the solvent explicitly or implicitly is compared. Non-Markovianity and other factors limiting the range of applicability of the network models are examined.

  3. Finite Element Development of Honeycomb Panel Configurations with Improved Transmission Loss

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Palumbo, Daniel L.; Klos, Jacob; Castle, William D.

    2006-01-01

    The higher stiffness-to-mass ratio of a honeycomb panel compared to a homogeneous panel results in a lower acoustic critical frequency. Above the critical frequency the panel flexural wave speed is acoustically fast and the structure becomes a more efficient radiator with associated lower sound transmission loss. Finite element models of honeycomb sandwich structures are presented featuring areas where the core is removed from the radiating face sheet disrupting the supersonic flexural and shear wave speeds that exist in the baseline honeycomb panel. These modified honeycomb panel structures exhibit improved transmission loss for a pre-defined diffuse field sound excitation. The models were validated by the sound transmission loss of honeycomb panels measured in the Structural Acoustic Loads and Transmission (SALT) facility at the NASA Langley Research Center. A honeycomb core panel configuration is presented exhibiting a transmission loss improvement of 3-11 dB compared to a honeycomb baseline panel over a frequency range from 170 Hz to 1000 Hz. The improved transmission loss panel configuration had a 5.1% increase in mass over the baseline honeycomb panel, and approximately twice the deflection when excited by a static force.

  4. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12); (ii) Displacement; (iii) Horsepower; (iv) Full load rpm. (6) Type cooling system, e.g., air...

  5. Air Traffic Sector Configuration Change Frequency

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.; Drew, Michael

    2010-01-01

    A Mixed Integer Linear Programming method is used for creating sectors in Fort Worth, Cleveland, and Los Angeles centers based on several days of good-weather traffic data. The performance of these sectors is studied when they are subjected to traffic data from different days. Additionally, the advantage of using different sector designs at different times of day with varying traffic loads is examined. Specifically, traffic data from 10 days are used for design, and 47 other days are played back to test if the traffic-counts stay below the design values used in creating the partitions. The primary findings of this study are as follows. Sectors created with traffic from good-weather days can be used on other good-weather days. Sector configurations created with two hours of traffic can be used for 6 to 12 hours without exceeding the peak-count requirement. Compared to using a single configuration for the entire day, most of the sector-hour reduction is achieved by using two sector configurations -one during daytime hours and one during nighttime hours.

  6. 14 CFR 23.301 - Loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Loads. 23.301 Section 23.301 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... to determine load intensities and distribution on canard and tandem wing configurations must...

  7. 14 CFR 23.301 - Loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to determine load intensities and distribution on canard and tandem wing configurations must be... must be taken into account. (d) Simplified structural design criteria may be used if they result in design loads not less than those prescribed in §§ 23.331 through 23.521. For airplane...

  8. 14 CFR 23.301 - Loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to determine load intensities and distribution on canard and tandem wing configurations must be... must be taken into account. (d) Simplified structural design criteria may be used if they result in design loads not less than those prescribed in §§ 23.331 through 23.521. For airplane...

  9. 14 CFR 23.301 - Loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to determine load intensities and distribution on canard and tandem wing configurations must be... must be taken into account. (d) Simplified structural design criteria may be used if they result in design loads not less than those prescribed in §§ 23.331 through 23.521. For airplane...

  10. 14 CFR 23.301 - Loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to determine load intensities and distribution on canard and tandem wing configurations must be... must be taken into account. (d) Simplified structural design criteria may be used if they result in design loads not less than those prescribed in §§ 23.331 through 23.521. For airplane...

  11. Multi-Body Analysis of a Tiltrotor Configuration

    NASA Technical Reports Server (NTRS)

    Ghiringhelli, G. L.; Masarati, P.; Mantegazza, P.; Nixon, M. W.

    1997-01-01

    The paper describes the aeroelastic analysis of a tiltrotor configuration. The 1/5 scale wind tunnel semispan model of the V-22 tiltrotor aircraft is considered. The analysis is performed by means of a multi-body code, based on an original formulation. The differential equilibrium problem is stated in terms of first order differential equations. The equilibrium equations of every rigid body are written, together with the definitions of the momenta. The bodies are connected by kinematic constraints, applied in form of Lagrangian multipliers. Deformable components are mainly modelled by means of beam elements, based on an original finite volume formulation. Multi-disciplinar problems can be solved by adding user-defined differential equations. In the presented analysis the equations related to the control of the swash-plate of the model are considered. Advantages of a multi-body aeroelastic code over existing comprehensive rotorcraft codes include the exact modelling of the kinematics of the hub, the detailed modelling of the flexibility of critical hub components, and the possibility to simulate steady flight conditions as well as wind-up and maneuvers. The simulations described in the paper include: 1) the analysis of the aeroelastic stability, with particular regard to the proprotor/pylon instability that is peculiar to tiltrotors, 2) the determination of the dynamic behavior of the system and of the loads due to typical maneuvers, with particular regard to the conversion from helicopter to airplane mode, and 3) the stress evaluation in critical components, such as the pitch links and the conversion downstop spring.

  12. Computational topology for configuration spaces of hard disks.

    PubMed

    Carlsson, Gunnar; Gorham, Jackson; Kahle, Matthew; Mason, Jeremy

    2012-01-01

    We explore the topology of configuration spaces of hard disks experimentally and show that several changes in the topology can already be observed with a small number of particles. The results illustrate a theorem of Baryshnikov, Bubenik, and Kahle that critical points correspond to configurations of disks with balanced mechanical stresses and suggest conjectures about the asymptotic topology as the number of disks tends to infinity.

  13. Equilibrium Configuration of {Phi}{sup 4} Oscillatons

    SciTech Connect

    Valdez-Alvarado, Susana; Urena-Lopez, L. Arturo; Becerril, Ricardo

    2010-07-12

    We search for equilibrium configurations of the (coupled) Einstein-Klein-Gordon equations for the case of a real scalar field endowed with a quartic self-interaction potential. The resulting solutions are the generalizations of the (massive) oscillating soliton stars, the so-called oscillatons. Among other parameters, we estimate the mass curve of the configurations, and determine their critical mass for different values of the quartic interaction.

  14. Configurational entropy of glueball states

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; Braga, Nelson R. F.; da Rocha, Roldão

    2017-02-01

    The configurational entropy of glueball states is calculated using a holographic description. Glueball states are represented by a supergravity dual picture, consisting of a 5-dimensional graviton-dilaton action of a dynamical holographic AdS/QCD model. The configurational entropy is studied as a function of the glueball spin and of the mass, providing information about the stability of the glueball states.

  15. Radiant-interchange Configuration Factors

    NASA Technical Reports Server (NTRS)

    Hamilton, D C :; Morgan, W R

    1952-01-01

    A study is presented of the geometric configuration factors required for computing radiant heat transfer between opaque surfaces separated by a nonabsorbing medium and various methods of determining the configuration factors are discussed. Configuration-factor solutions available in the literature have been checked and the more complicated equations are presented as families of curves. Cases for point, line, and finite-area sources are worked out over a wide range of geometric proportions. These cases include several new configurations involving rectangles, triangles, and cylinders of finite length which are integrated and tabulated. An analysis is presented, in which configuration factors are employed of the radiant heat transfer to the rotor blades of a typical gas turbine under different conditions of temperature and pressure. (author)

  16. Critical behavior of gravitating sphalerons

    NASA Astrophysics Data System (ADS)

    Millward, R. Steven; Hirschmann, Eric W.

    2003-07-01

    We examine the gravitational collapse of sphaleron type configurations in the Einstein-Yang-Mills-Higgs theory. Working in spherical symmetry, we investigate the critical behavior in this model. We provide evidence that for various initial configurations, there can be three different critical transitions between possible end states with different critical solutions sitting on the threshold between these outcomes. In addition, we show that within the dispersive and black hole regimes there are new possible end states: namely, a stable, regular sphaleron and a stable, hairy black hole.

  17. Achieving Integrated FEA Model and Loads Management

    NASA Astrophysics Data System (ADS)

    Lauzon, Dominick; Huf, Brian; Hagstrom, Dustin

    2012-07-01

    Recent developments in enterprise level simulation tools now enable CAE engineers and managers to keep up with today’s accelerating rate in the number and complexity of simulation models. All simulation related activities including Finite Element Models (FEM) variants and their respective results datasets can now be captured and managed. This provides valuable model pedigree from the source geometry referenced in the PDM system, spacecraft design and FEM configurations, external loads, simulation results and internal loads down to key results with the final critical design review and test correlation reports. The process presented in this paper demonstrates how simulation data capture and relationships can be achieved. Moreover, process management from conceptual design to spacecraft final proto-flight tests can now be achieved systematically and efficiently while performing and ensuring model quality, all the way from assembly level down to component level. MSC Software’s SimXpert and SimManager, two commercial off-the-shelf software codes, are used to highlight the benefits of this approach. In addition, an automation process that performs model validation per aerospace engineering best practice standards is also presented.

  18. Physics and Engineering Assessmetns of the K-DEMO Magnet Configuration

    SciTech Connect

    Neilson, George H.; Brown, Thomas

    2014-09-01

    Increased attention is being given now to studies of next-step fusion facilities with nuclear missions. Among these, South Korea's K DEMO is unique in its focus on a high toroidal magnetic field, large major radius, steady-state tokamak design for the core of a facility to test fusion nuclear components in Phase I and, after upgrades, produce 500 MW of electricity in a Phase II. Innovative features of the K DEMO magnet set include the use of two toroidal field (TF) coil winding packs with conductor grading and a machine configuration designed for vertical maintenance. The magnet arrangement features large TF coils and widely spaced poloidal field (PF) coils to accommodate removal of in-vessel components as large modules. Physics and engineering assessments of the pre-conceptual K-DEMO magnet configuration are reported, including: 1) design point and operating space assessment, 2) conductor assessment, and 3) structural assessment. It is found that a reference design point at 6.8 m major radius and 7.4 T toroidal field provides sufficient operating margins for the 500 MWe Phase II mission. Analyses of candidate cable-in-conduit conductors provide predictions of critical current degradation, both in the initial load cycle and an additionally with cyclic loading. A first-pass global analysis of the magnet system found minimal out-of-plane deformations of the TF coil, but an overstress condition in the inner leg of the TF coil. However an analysis taking into account elastic-plastic behavior, frictional sliding, and displacement shows that the structure can safely carry the load. Although the design evolution is still at an early stage, these assessments support the design point choices to date and the expectation that a feasible solution for the high-field K DEMO magnet system can be found.

  19. Effects of partial interlaminar bonding on impact resistance and loaded-hole behavior of graphite/epoxy quasi-isotropic laminates

    NASA Technical Reports Server (NTRS)

    Illg, W.

    1986-01-01

    A partial-bonding interlaminar toughening concept was evaluated for resistance to impact and for behavior of a loaded hole. Perforated Mylar sheets were interleaved between all 24 plies of a graphite/epoxy quasi-isotropic lay-up. Specimens were impacted by aluminum spheres while under tensile or compressive loads. Impact-failure thresholds and residual strengths were obtained. Loaded-hole specimens were tested in three configurations that were critical in bearing, shear, or tension. Partial bonding reduced the tensile and compressive strengths of undamaged specimens by about one-third. For impact, partial bonding did not change the threshold for impact failure under tensile preload. However, under compressive preload, partial bonding caused serious degradation of impact resistance. Partial bonding reduced the maximum load-carrying capacity of all three types of loaded-hole specimens. Overall, partial bonding degraded both impact resistance and bearing strength of holes.

  20. Biomechanical study of different plate configurations for distal humerus osteosynthesis.

    PubMed

    Bogataj, M; Kosel, F; Norris, R; Krkovic, M; Brojan, M

    2015-05-01

    Fractures of the distal humerus are most commonly fixed by open reduction and internal fixation, using plates and screws, either in a locking or in a non-locking construct. Three different plating systems are commonly used in practice. The most important differences between them are in plate orientation, which affects both the rigidity of the osteosynthesis and invasiveness of the surgical procedure. Unfortunately, there is no common agreement between surgeons about which plate configuration brings the best clinical outcome. In this study, we investigate the theoretical rigidity of plate osteosyntheses considering two types of AO/ASIF configurations (90° angle between plates), Mayo clinic (Acumed) configuration (180° between plates) and dorsal fixation of both plates. We also compared the results for cases with and without contact between the bone fragments. In the case of no bone contact, the Mayo clinic plate configuration is found to be the most rigid, followed by both AO/ASIF plate configurations, and the least rigid system is the Korosec plate configuration. On the other hand, no significant differences between all types of fixation configurations are found in cases with contact in-between the bone fragments. Our findings show that this contact is very important and can compensate for the lack of load carrying capacity of the implants. This could therefore incite other implant fixation solutions, leading to less invasive surgical procedures and consequently improved clinical outcome.

  1. Structural Concepts Study of Non-circular Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivel

    1996-01-01

    A preliminary study of structural concepts for noncircular fuselage configurations is presented. For an unconventional flying-wing type aircraft, in which the fuselage is inside the wing, multiple fuselage bays with non-circular sections need to be considered. In a conventional circular fuselage section, internal pressure is carried efficiently by a thin skin via hoop tension. If the section is non-circular, internal pressure loads also induce large bending stresses. The structure must also withstand additional bending and compression loads from aerodynamic and gravitational forces. Flat and vaulted shell structural configurations for such an unconventional, non-circular pressurized fuselage of a large flying-wing were studied. A deep honeycomb sandwich-shell and a ribbed double-wall shell construction were considered. Combinations of these structural concepts were analyzed using both analytical and simple finite element models of isolated sections for a comparative conceptual study. Weight, stress, and deflection results were compared to identify a suitable configuration for detailed analyses. The flat sandwich-shell concept was found preferable to the vaulted shell concept due to its superior buckling stiffness. Vaulted double-skin ribbed shell configurations were found to be superior due to their weight savings, load diffusion, and fail-safe features. The vaulted double-skin ribbed shell structure concept was also analyzed for an integrated wing-fuselage finite element model. Additional problem areas such as wing-fuselage junction and pressure-bearing spar were identified.

  2. Context based configuration management system

    NASA Technical Reports Server (NTRS)

    Gawdiak, Yuri O. (Inventor); Gurram, Mohana M. (Inventor); Maluf, David A. (Inventor); Mederos, Luis A. (Inventor)

    2010-01-01

    A computer-based system for configuring and displaying information on changes in, and present status of, a collection of events associated with a project. Classes of icons for decision events, configurations and feedback mechanisms, and time lines (sequential and/or simultaneous) for related events are displayed. Metadata for each icon in each class is displayed by choosing and activating the corresponding icon. Access control (viewing, reading, writing, editing, deleting, etc.) is optionally imposed for metadata and other displayed information.

  3. Space Station reference configuration description

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The data generated by the Space Station Program Skunk Works over a period of 4 months which supports the definition of a Space Station reference configuration is documented. The data were generated to meet these objectives: (1) provide a focal point for the definition and assessment of program requirements; (2) establish a basis for estimating program cost; and (3) define a reference configuration in sufficient detail to allow its inclusion in the definition phase Request for Proposal (RFP).

  4. Optimized Minimal Inductance Transmission Line Configuration for Z-Pinch Experiments

    SciTech Connect

    Hurricane, O

    2003-10-16

    Successful dynamic Z-pinch experiments generally require good current delivery to the target load. Power flow losses through highly inductive transmission line configurations reduce the current available to the load. In this Brief Report, a variational calculus technique is used to determine the transmission line configuration that produces the least possible inductance and therefore the best possible current delivery for Z-pinch experiments.

  5. Ultrasonic measurement and monitoring of loads in bolts used in structural joints

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper is an overview of work by the author in measuring and monitoring loads in bolts using an ultrasonic extensometer. A number of cases of bolted joints are covered. These include, a clamped joint with clearance fit between the bolt and hole, a clamped joint with bolt in an interference fit with the hole, a flanged joint which allows the flange and bolt to bend; and a shear joint in a clevis and tang configuration. These applications were initially developed for measuring and monitoring preload in National Aeronautics and Space Administration (NASA) Space Shuttle Orbiter critical joints but are also applicable for monitoring loads in other critical bolted joints of structures such as transportation bridges and other aerospace structures. The papers cited here explain how to set-up a model to estimate the ultrasonic load factor and accuracy for the ultrasonic preload application in a clamped joint with clearance fit. The ultrasonic preload application for clamped joint with bolt in an interference fit can also be used to measure diametrical interference between the bolt shank and hole, as well as interference pressure on the bolt shank. Results of simulation and experimental data are given to demonstrate use of ultrasonic measurements in a shear joint. A bolt in a flanged joint experiences both tensile and bending loads. This application involves measurement of bending and tensile preload in a bolt. The ultrasonic beam bends due to bending load on the bolt. Results of a numerical technique to compute the trace of ultrasonic ray are presented.

  6. Ultrasonic Measurement and Monitoring of Loads in Bolts used in Structural Joints

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2015-01-01

    The paper is an overview of work by the author in measuring and monitoring loads in bolts using an ultrasonic extensometer. A number of cases of bolted joints are covered. These include, a clamped joint with clearance fit between the bolt and hole, a clamped joint with the bolt in an interference fit with the hole, a flanged joint which allows the flange and bolt to bend; and a shear joint in a clevis and tang configuration. These applications were initially developed for measuring and monitoring preload in the NASA Space Shuttle Orbiter critical joints but are also applicable for monitoring loads in other critical bolted joints of structures such as transportation bridges and other aerospace structures. The paper explains how to set-up a model to estimate the load factor and accuracy for the ultrasonic preload application in a clamped joint with clearance fit. The ultrasonic preload application for clamped joint with bolt in an interference fit can also be used to measure diametrical interference between the bolt shank and hole; and interference pressure on the bolt shank. Model and experimental data are given to demonstrate use of ultrasonic measurements in a shear joint. A bolt in a flanged joint experiences both tensile and bending loads. This application involves measurement of bending and tensile preload in a bolt. The ultrasonic beam bends due to the bending load on the bolt. A numerical technique to compute the trace of ultrasonic ray is presented.

  7. The ASTRO-1 preliminary design review coupled load analysis

    NASA Technical Reports Server (NTRS)

    Mcghee, D. S.

    1984-01-01

    Results of the ASTRO-1 preliminary design review coupled loads analysis are presented. The M6.0Y Generic Shuttle mathematical models were used. Internal accelerations, interface forces, relative displacements, and net e.g., accelerations were recovered for two ASTRO-1 payloads in a tandem configuration. Twenty-seven load cases were computed and summarized. Load exceedences were found and recommendations made.

  8. Carbohydrate Loading.

    ERIC Educational Resources Information Center

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  9. Turbulent optimization of toroidal configurations

    NASA Astrophysics Data System (ADS)

    Mynick, H.; Xanthopoulos, P.; Faber, B.; Lucia, M.; Rorvig, M.; Talmadge, J. N.

    2014-09-01

    Recent progress in ‘turbulent optimization’ of toroidal configurations is described, using a method recently developed for evolving such configurations to ones having reduced turbulent transport. The method uses the GENE gyrokinetic code to compute the radial heat flux Qgk, and the STELLOPT optimization code with a theory-based ‘proxy’ figure of merit Qpr to stand in for Qgk for computational speed. Improved expressions for Qpr have been developed, involving further geometric quantities beyond those in the original proxy, which can also be used as ‘control knobs’ to reduce Qgk. Use of a global search algorithm has led to the discovery of turbulent-optimized configurations not found by the standard, local algorithm usually employed, as has use of a mapping capability which STELLOPT has been extended to provide, of figures of merit over the search space.

  10. Configurable silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-01

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  11. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  12. Electronic Configuration of Yb Compounds

    SciTech Connect

    Temmerman, W.M.; Szotek, Z.; Svane, A.; Strange, P.; Winter, H.; Delin, A.; Johansson, B.; Eriksson, O.; Fast, L.; Wills, J.M.

    1999-11-01

    The total energy differences between divalent and trivalent configurations of Yb ions in a number of Yb compounds are studied. Two different band theoretical methods, which differ in the treatment of the localized f electrons, are used. The results show that in all Yb compounds the valence energy differences are equal to the energy needed to localize an f electron. These valence energy differences correlate with the number of f electrons hybridizing with the conduction bands in the trivalent configuration. For divalent YbS, the pressure induced f -electron delocalization implies an intermediate valency, as also indicated by experiment. {copyright} {ital 1999} {ital The American Physical Society }

  13. Mapping HIV community viral load: space, power and the government of bodies.

    PubMed

    Gagnon, Marilou; Guta, Adrian

    2012-12-01

    HIV plasma viral load testing has become more than just a clinical tool to monitor treatment response at the individual level. Increasingly, individual HIV plasma viral load testing is being reported to public health agencies and is used to inform epidemiological surveillance and monitor the presence of the virus collectively using techniques to measure 'community viral load'. This article seeks to formulate a critique and propose a novel way of theorizing community viral load. Based on the salient work of Michel Foucault, especially the governmentality literature, this article critically examines the use of community viral load as a new strategy of government. Drawing also on the work of Miller and Rose, this article explores the deployment of 'community' through the re-configuration of space, the problematization of viral concentrations in specific microlocales, and the government (in the Foucauldian sense) of specific bodies which are seen as 'risky', dangerous and therefore, in need of attention. It also examines community viral load as a necessary precondition - forming the 'conditions of possibility' - for the recent shift to high impact prevention tactics that are being scaled up across North America.

  14. Experimental transonic flutter characteristics of supersonic cruise configurations

    NASA Technical Reports Server (NTRS)

    Durham, Michael H.; Cole, Stanley R.; Cazier, F. W., Jr.; Keller, Donald F.; Parker, Ellen C.; Wilkie, W. Keats

    1990-01-01

    The flutter characteristics of a generic arrow-wing supersonic transport configuration are studied. The wing configuration has a 3 percent biconvex airfoil and a leading-edge sweep of 73 deg out to a cranked tip with a 60 deg leading-edge sweep. The ground vibration tests and flutter test procedure are described. The effects of flutter on engine nacelles, fuel loading, wing-mounted vertical fin, wing angle-of-attack, and wing tip mass and stiffness distributions are analyzed. The data reveal that engine nacelles reduce the transonic flutter dynamic pressure by 25-30 percent; fuel loadings decrease dynamic pressures by 25 percent; 4-6 deg wing angles-of-attack cause steep transonic boundaries; and 5-10 percent changes in flutter dynamic pressures are the result of the wing-mounted vertical fin and wing-tip mass and stiffness distributions.

  15. LOADED WAVEGUIDES

    DOEpatents

    Mullett, L.B.; Loach, B.G.; Adams, G.L.

    1958-06-24

    >Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)

  16. Impact of dynamic loads on propulsion integration

    NASA Astrophysics Data System (ADS)

    Seiner, J. M.

    1994-09-01

    Aircraft dynamic loads produced by engine exhaust plumes are examined for a class of military fighter and bomber configurations in model and full scale. The configurations examined are associated with the USAF F-15 and B-1B aircraft, and the US F-18 HARV and ASTOVL programs. The experience gained as a result of these studies is used to formulate a level of understanding concerning this phenomena that could be useful at the preliminary stage of propulsion/airframe design.

  17. JWST ISIM Primary Structure and Kinematic Mount Configuration

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew; Carnahan, Tim; Hendricks, Steve; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz

    2004-01-01

    In this presentation we will review the evolution of the ISIM primary structure tube topology and kinematic mount configuration to the current baseline concept. We will also show optimization procedures used and challenges resulting from complex joints under launch loads. Two additional key ISIM structure challenges of meeting thermal distortion and stability requirements and metal-composite bonded joint survivability at cryogenic temperatures are covered in other presentations.

  18. Thinking Critically about Critical Thinking

    ERIC Educational Resources Information Center

    Mulnix, Jennifer Wilson

    2012-01-01

    As a philosophy professor, one of my central goals is to teach students to think critically. However, one difficulty with determining whether critical thinking can be taught, or even measured, is that there is widespread disagreement over what critical thinking actually is. Here, I reflect on several conceptions of critical thinking, subjecting…

  19. NCCDS configuration management process improvement

    NASA Technical Reports Server (NTRS)

    Shay, Kathy

    1993-01-01

    By concentrating on defining and improving specific Configuration Management (CM) functions, processes, procedures, personnel selection/development, and tools, internal and external customers received improved CM services. Job performance within the section increased in both satisfaction and output. Participation in achieving major improvements has led to the delivery of consistent quality CM products as well as significant decreases in every measured CM metrics category.

  20. Safe Configuration of TLS Connections

    DTIC Science & Technology

    2013-10-16

    Lobster [7] is a DSL for security policy configuration that allows modeling of network flows between security domains. While Lobster provides means...scap.nist.gov/ [7] J. Hurd, et al, “ Lobster : A domain specific language for selinux policies”, Galois internal report, 2008. [8] E. Al-Shaeret, et al, “Network

  1. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  2. Configuration Effects on Liner Performance

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

    2012-01-01

    The acoustic performance of a duct liner depends not only on the intrinsic properties of the liner but also on the configuration of the duct in which it is used. A series of experiments is performed in the NASA Langley Research Center Curved Duct Test Rig (at Mach 0.275) to evaluate the effect of duct configuration on the acoustic performance of single degree of freedom perforate-over-honeycomb liners. The liners form the sidewalls of the duct's test section. Variations of duct configuration include: asymmetric (liner on one side and hard wall opposite) and symmetric (liner on both sides) wall treatment; inlet and exhaust orientation, in which the sound propagates either against or with the flow; and straight and curved flow path. The effect that duct configuration has on the overall acoustic performance, particularly the shift in frequency and magnitude of peak attenuation, is quantified. The redistribution of incident mode content is shown. The liners constitute the side walls of the liner test section and the scatter of incident horizontal order 1 mode by the asymmetric treatment and order 2 mode by the symmetric treatment into order 0 mode is shown. Scatter of order 0 incident modes into higher order modes is also shown. This redistribution of mode content is significant because it indicates that the liner design can be manipulated such that energy is scattered into more highly attenuated modes, thus enhancing liner performance.

  3. A Communication Configuration of AIDS.

    ERIC Educational Resources Information Center

    Hughey, Jim D.

    A study focused on the way that image, knowledge, behavioral intent, and communicative responsiveness are configured for Acquired Immunodeficiency Syndrome (AIDS). The classic model of the adoption process expects that knowledge about a subject will lead to a favorable evaluation of it, which in turn will lead to a decision to act. But the…

  4. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Krall, Nicholas A.; Sieck, Paul E.; Offermann, Dustin T.; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2015-04-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure) is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad's work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β . This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  5. Nonequilibrium dynamics of emergent field configurations

    NASA Astrophysics Data System (ADS)

    Howell, Rafael Cassidy

    The processes by which nonlinear physical systems approach thermal equilibrium is of great importance in many areas of science. Central to this is the mechanism by which energy is transferred between the many degrees of freedom comprising these systems. With this in mind, in this research the nonequilibrium dynamics of nonperturbative fluctuations within Ginzburg-Landau models are investigated. In particular, two questions are addressed. In both cases the system is initially prepared in one of two minima of a double-well potential. First, within the context of a (2 + 1) dimensional field theory, we investigate whether emergent spatio-temporal coherent structures play a dynamcal role in the equilibration of the field. We find that the answer is sensitive to the initial temperature of the system. At low initial temperatures, the dynamics are well approximated with a time-dependent mean-field theory. For higher temperatures, the strong nonlinear coupling between the modes in the field does give rise to the synchronized emergence of coherent spatio-temporal configurations, identified with oscillons. These are long-lived coherent field configurations characterized by their persistent oscillatory behavior at their core. This initial global emergence is seen to be a consequence of resonant behavior in the long wavelength modes in the system. A second question concerns the emergence of disorder in a highly viscous system modeled by a (3 + 1) dimensional field theory. An integro-differential Boltzmann equation is derived to model the thermal nucleation of precursors of one phase within the homogeneous background. The fraction of the volume populated by these precursors is computed as a function of temperature. This model is capable of describing the onset of percolation, characterizing the approach to criticality (i.e. disorder). It also provides a nonperturbative correction to the critical temperature based on the nonequilibrium dynamics of the system.

  6. 14 CFR 23.341 - Gust loads factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... from gusts specified in § 23.333(c). (b) The gust load for a canard or tandem wing configuration must... (slugs/cu.ft.); W/S=Wing loading (p.s.f.) due to the applicable weight of the airplane in the particular load case. W/S=Wing loading (p.s.f.); C=Mean geometric chord (ft.); g=Acceleration due to gravity...

  7. 14 CFR 23.341 - Gust loads factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... from gusts specified in § 23.333(c). (b) The gust load for a canard or tandem wing configuration must... (slugs/cu.ft.); W/S=Wing loading (p.s.f.) due to the applicable weight of the airplane in the particular load case. W/S=Wing loading (p.s.f.); C=Mean geometric chord (ft.); g=Acceleration due to gravity...

  8. 14 CFR 23.341 - Gust loads factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... from gusts specified in § 23.333(c). (b) The gust load for a canard or tandem wing configuration must... (slugs/cu.ft.); W/S=Wing loading (p.s.f.) due to the applicable weight of the airplane in the particular load case. W/S=Wing loading (p.s.f.); C=Mean geometric chord (ft.); g=Acceleration due to gravity...

  9. 14 CFR 23.341 - Gust loads factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... from gusts specified in § 23.333(c). (b) The gust load for a canard or tandem wing configuration must... (slugs/cu.ft.); W/S=Wing loading (p.s.f.) due to the applicable weight of the airplane in the particular load case. W/S=Wing loading (p.s.f.); C=Mean geometric chord (ft.); g=Acceleration due to gravity...

  10. 14 CFR 23.341 - Gust loads factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... from gusts specified in § 23.333(c). (b) The gust load for a canard or tandem wing configuration must... (slugs/cu.ft.); W/S=Wing loading (p.s.f.) due to the applicable weight of the airplane in the particular load case. W/S=Wing loading (p.s.f.); C=Mean geometric chord (ft.); g=Acceleration due to gravity...

  11. Split torque transmission load sharing

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Rashidi, M.; Kish, J. G.

    1992-01-01

    Split torque transmissions are attractive alternatives to conventional planetary designs for helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but have not been used extensively for lack of experience, especially with obtaining proper load sharing. Two split torque designs that use different load sharing methods have been studied. Precise indexing and alignment of the geartrain to produce acceptable load sharing has been demonstrated. An elastomeric torque splitter that has large torsional compliance and damping produces even better load sharing while reducing dynamic transmission error and noise. However, the elastomeric torque splitter as now configured is not capable over the full range of operating conditions of a fielded system. A thrust balancing load sharing device was evaluated. Friction forces that oppose the motion of the balance mechanism are significant. A static analysis suggests increasing the helix angle of the input pinion of the thrust balancing design. Also, dynamic analysis of this design predicts good load sharing and significant torsional response to accumulative pitch errors of the gears.

  12. Critical Care

    MedlinePlus

    Critical care helps people with life-threatening injuries and illnesses. It might treat problems such as complications from surgery, ... attention by a team of specially-trained health care providers. Critical care usually takes place in an ...

  13. Archetypal Criticism.

    ERIC Educational Resources Information Center

    Chesebro, James W.; And Others

    1990-01-01

    Argues that archetypal criticism is a useful way of examining universal, historical, and cross-cultural symbols in classrooms. Identifies essential features of an archetype; outlines operational and critical procedures; illustrates archetypal criticism as applied to the cross as a symbol; and provides a synoptic placement for archetypal criticism…

  14. Gearbox Reliability Collaborative (GRC) Description and Loading

    SciTech Connect

    Oyague, F.

    2011-11-01

    This document describes simulated turbine load cases in accordance to the IEC 61400-1 Ed.3 standard, which is representative of the typical wind turbine design process. The information presented herein is intended to provide a broad understanding of the gearbox reliability collaborative 750kW drivetrain and turbine configuration. In addition, fatigue and ultimate strength drivetrain loads resulting from simulations are presented. This information provides the bases for the analytical work of the gearbox reliability collaborative effort.

  15. Parametric study of a canard-configured transport using conceptual design optimization

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1985-01-01

    Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.

  16. Solar disk sextant optical configuration

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Sofia, S.

    1984-01-01

    In this paper the performance of a plausible configuration for the solar disk sextant, an instrument to be used to monitor the solar diameter, is evaluated. Overall system requirements are evaluated, and tolerable uncertainties are obtained. It is concluded that by using a beam splitting wedge, a folded optics design can be used to measure the solar diameter to an accuracy of 10 to the -6th, despite the greater aberrations present in such optical systems.

  17. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  18. Predictive Modeling of Tokamak Configurations*

    NASA Astrophysics Data System (ADS)

    Casper, T. A.; Lodestro, L. L.; Pearlstein, L. D.; Bulmer, R. H.; Jong, R. A.; Kaiser, T. B.; Moller, J. M.

    2001-10-01

    The Corsica code provides comprehensive toroidal plasma simulation and design capabilities with current applications [1] to tokamak, reversed field pinch (RFP) and spheromak configurations. It calculates fixed and free boundary equilibria coupled to Ohm's law, sources, transport models and MHD stability modules. We are exploring operations scenarios for both the DIII-D and KSTAR tokamaks. We will present simulations of the effects of electron cyclotron heating (ECH) and current drive (ECCD) relevant to the Quiescent Double Barrier (QDB) regime on DIII-D exploring long pulse operation issues. KSTAR simulations using ECH/ECCD in negative central shear configurations explore evolution to steady state while shape evolution studies during current ramp up using a hyper-resistivity model investigate startup scenarios and limitations. Studies of high bootstrap fraction operation stimulated by recent ECH/ECCD experiments on DIIID will also be presented. [1] Pearlstein, L.D., et al, Predictive Modeling of Axisymmetric Toroidal Configurations, 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira, Portugal, June 18-22, 2001. * Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  19. Kinetic stability of field-reversed configurations

    SciTech Connect

    Staudenmeier, J.L.; Hsiao, M.-Y.

    1991-01-01

    The internal tilt mode is considered to be the biggest threat to Field-Reversed Configuration (FRC) global stability. The tilt stability of the FRC is studied using the MHD, Hall MHD, and the Vlasov-fluid (Vlasov ions, cold massless fluid electrons) models. Nonlinear Hall MHD calculations showed that the FRC was stable to the tilt mode when the s value of the FRC was below a critical value that was dependent on plasma length. The critical s value is larger for longer plasma equilibria. The stability of FRC's with toroidal field was studied with a linear initial value MHD code. The calculations showed an axial perturbation wavelength of the most unstable eigenfunction that was consistent with internal probe measurements made on translated FRC's. Linear Vlasov-fluid eigenvalue calculations showed that kinetic ion effects can change both the growth rate and the structure of the eigenfunctions when compared to the corresponding MHD modes. Calculations on short FRC equilibria indicate that MHD is not the appropriate small gyroradius limit of the Vlasov-fluid model because the axial transit time of a thermal ion is approximately equal to an MHD growth time for the tilt mode. Calculations were done using a small number of unstable MHD eigenfunctions as basis functions in order to reduce the dimensionality of the stability problem. The results indicated that this basis set can produce inaccurate growth rates at large value for s for some equilibria.

  20. Dynamic Buckling on Rectangular Plates under Axial Step Load

    NASA Astrophysics Data System (ADS)

    Diao, Bin-Bin; Han, Zhi-Jun; Lu, Guo-Yun

    2016-05-01

    Considering the effects of shear deformation and stress wave, the dynamic buckling governing equations of rectangular plates under axial step load are established. Based on the Rayleigh-Ritz method, the expression of the critical load is got. The relation curve between the critical load and critical length is described by using MATLAB software. In this paper, the influences of thickness, first-order shear deformation (FSD), and the number of modes are discussed.

  1. How Critical Is Critical Thinking?

    ERIC Educational Resources Information Center

    Shaw, Ryan D.

    2014-01-01

    Recent educational discourse is full of references to the value of critical thinking as a 21st-century skill. In music education, critical thinking has been discussed in relation to problem solving and music listening, and some researchers suggest that training in critical thinking can improve students' responses to music. But what exactly is…

  2. Critically Thinking about Critical Thinking

    ERIC Educational Resources Information Center

    Weissberg, Robert

    2013-01-01

    In this article, the author states that "critical thinking" has mesmerized academics across the political spectrum and that even high school students are now being called upon to "think critically." He furthers adds that it is no exaggeration to say that "critical thinking" has quickly evolved into a scholarly…

  3. Critical Thinking vs. Critical Consciousness

    ERIC Educational Resources Information Center

    Doughty, Howard A.

    2006-01-01

    This article explores four kinds of critical thinking. The first is found in Socratic dialogues, which employ critical thinking mainly to reveal logical fallacies in common opinions, thus cleansing superior minds of error and leaving philosophers free to contemplate universal verities. The second is critical interpretation (hermeneutics) which…

  4. Study of the dynamic behavior of a bolted joint under heavy loadings

    NASA Astrophysics Data System (ADS)

    Daouk, Sami; Louf, François; Cluzel, Christophe; Dorival, Olivier; Champaney, Laurent; Audebert, Sylvie

    2017-03-01

    In structural dynamics, the quantification of the quality and reliability of numerical models remains a relevant issue. While the behavior of structures such as beams and plates is generally understood, a large number of industrial structures are bolted assemblies of many components with connections that are not well understood. The main reason for this lack of understanding is that the dynamical behavior of the whole assembly depends critically upon joint conditions, especially under heavy loadings. For the purpose of improving our understanding and the development of pertinent models, a dynamic test bed, based on a bolted structure, is designed and modal testing is performed. The configuration of the bolted joint and the level of the loading are the relevant parameters, related to joint conditions, that are considered in this study. The results of the experimental campaign show the variation of the dissipation in a bolted joint and its apparent stiffness as a function of joint conditions.

  5. Shock wave loading of Nickel based superalloy and microstructural features of the compacts

    NASA Astrophysics Data System (ADS)

    Sharma, A. D.; Sharma, A. K.; Thakur, N.

    2015-02-01

    Explosive shock wave loading has been employed to consolidate micro-sized nickel based IN718 superalloy powder. Cylindrical geometry configuring the various critical parameters with optimized detonation pressure has been used to consolidate the powder with desirable means. The thrust on the work is to compact the powder nearer to theoretical density having almost negligible density gradient and without melting the core of the specimen. XRD study indicates that the crystal structure of the post compacts remains the same. Shock wave loading deformed the particles as has been inferred from SEM. The variation in particle size has been measured from Laser Diffraction based Particle Size Analyzer (LDPSA). It is found that this is a rapid fast technique to produce larger and crack free compacts of metal powders without their melting and with less particle size variation.

  6. Dynamic Loads and Structural Criteria Study

    DTIC Science & Technology

    1974-09-01

    intended mission assignment from a practical standpoint, discussing possible bias in the operationa data. The Task IV objective was to identify...critical segments and conditions. Three criteria were used: high loads, high fatigue damage , and high ••’ibration. it II- Unclassified SECURITY...IDENTIFICATION OF CRITICAL SEGMENTS/ CONDITIONS 84 High Structural Loads and Fatigue Damage 84 High Vibration ^0 Causal Factors ^O

  7. Mapping HIV community viral load: space, power and the government of bodies

    PubMed Central

    Gagnon, Marilou; Guta, Adrian

    2012-01-01

    HIV plasma viral load testing has become more than just a clinical tool to monitor treatment response at the individual level. Increasingly, individual HIV plasma viral load testing is being reported to public health agencies and is used to inform epidemiological surveillance and monitor the presence of the virus collectively using techniques to measure ‘community viral load’. This article seeks to formulate a critique and propose a novel way of theorizing community viral load. Based on the salient work of Michel Foucault, especially the governmentality literature, this article critically examines the use of community viral load as a new strategy of government. Drawing also on the work of Miller and Rose, this article explores the deployment of ‘community’ through the re-configuration of space, the problematization of viral concentrations in specific microlocales, and the government (in the Foucauldian sense) of specific bodies which are seen as ‘risky’, dangerous and therefore, in need of attention. It also examines community viral load as a necessary precondition — forming the ‘conditions of possibility’ — for the recent shift to high impact prevention tactics that are being scaled up across North America. PMID:23060688

  8. Loads and Pressures on Axisymmetric Bodies with Cruciform Fins

    NASA Technical Reports Server (NTRS)

    Dillenius, M. F. E.; Smith, C. A.

    1983-01-01

    NSWCDM computer program calculates aerodynamic loading and pressure distributions on supersonic configurations consisting of axisymmetric bodies with cruciform or planar canard and tail fins. Versatile program allows for configuration pitched and rolled, and fins deflected. Tail fins are interdigitated with respect to forward fins.

  9. Methods and apparatus for rotor load control in wind turbines

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2006-08-22

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  10. Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines

    NASA Astrophysics Data System (ADS)

    Luhmann, B.; Cheng, P. W.

    2014-06-01

    A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body

  11. Dimensional regularization in configuration space

    SciTech Connect

    Bollini, C.G. |; Giambiagi, J.J.

    1996-05-01

    Dimensional regularization is introduced in configuration space by Fourier transforming in {nu} dimensions the perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no extra parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regularized causal functions in {ital x} space have {nu}-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant analytic functions of {nu}. Several examples are discussed. {copyright} {ital 1996 The American Physical Society.}

  12. SSF growth concepts and configurations

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.

    1991-01-01

    There are three primary objectives for the Space Station Freedom (SSF) Growth concepts and configuration study task. The first objective is the development of evolutionary SSF concept consistent with user requirements and program constraints. The second primary objective is to ensure the feasibility of the proposed SSF evolution concepts as the systems level. This includes an assessment of SSF evolution flight control analysis, logistics assessment, maintainability, and operational considerations. The final objective is to ensure compatibility of the baseline SSF design with the derived evolution requirements at both the system and element (habitat modules, power generation equipment, etc.) levels.

  13. Electromagnetic configurations of rail guns

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Ostashev, V. E.; Lopyrev, A. N.; Ul'Yanov, A. V.

    1993-06-01

    Some problems associated with the electromagnetic acceleration of macrobodies in a rail gun are examined. An approach to the design of rail gun configurations is proposed, and some basic rail gun schemes are synthesized. The alternative rail gun schemes are compared in terms of electrode potential and stability of the electrode gap with respect to parasitic current shunting. The effect of the ohmic resistance of the electrodes and of the additional magnetization field on the spatial structure of the discharge in the rail gun channel is discussed. A classification of rail gun modifications is presented.

  14. Multiple forearm robotic elbow configuration

    DOEpatents

    Fisher, John J.

    1990-01-01

    A dual forearmed robotic elbow configuration comprises a main arm having a double elbow from which two coplanar forearms depend, two actuators carried in the double elbow for moving the forearms, and separate, independent end effectors, operated by a cable carried from the main arm through the elbow, is attached to the distal end of each forearm. Coiling the cables around the actuators prevents bending or kinking when the forearms are rotated 360 degrees. The end effectors can have similar or different capabilities. Actuator cannisters within the dual elbow are modular for rapid replacement or maintenance. Coarse and fine resolver transducers within the actuators provide accurate position referencing information.

  15. Interface Configuration Experiment: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert; Weislogel, Mark

    1994-01-01

    The Interface Configuration Experiment (ICE) was carried out on USML-1 to investigate liquid-gas interfaces in certain rotationally-symmetric containers having prescribed, mathematically derived shapes. These containers have the property that they admit an entire continuum of distinct equilibrium rotationally-symmetric interfaces for a given liquid volume and contact angle. Furthermore, it can be shown that none of these interfaces can be stable. It was found, after the containers were filled in orbit, that an initial equilibrium interface from the symmetric continuum re-oriented, when perturbed, to a stable interface that was not rotationally symmetric, in accordance with the mathematical theory.

  16. Blank fire configuration for automatic pistol

    DOEpatents

    Teague, Tommy L.

    1990-01-01

    A pistol configured to fire blank cartridges includes a modified barrel with a breech portion connected to an aligned inner sleeve. Around the inner sleeve, there is disposed an outer sleeve having a vent therein through which the cartridge discharges. The breech portion is connected to a barrel anchor to move backward in a slight arc when the pistol is fired. A spring retention rod projects from the barrel anchor and receives a shortened recoil spring therearound which recoil spring has one end abutting a stop on the barrel anchor and the other end in abutment with the end of a spring retaining cup. The spring retaining cup is engaged by a flange projecting from a slide so that when the pistol is fired, the slide moves rearwardly against the compression of the spring to eject the spent cartridge and then moves forwardly under the urging of the spring to load a fresh cartridge into the breech portion. The spring then returns all of the slidable elements to their initial position so that the pistol may again be fired.

  17. Cryogenics Testbed Laboratory Flange Baseline Configuration

    NASA Technical Reports Server (NTRS)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  18. Microscopic Approaches to Nuclear Structure: Configuration Interaction

    SciTech Connect

    Ormand, W E

    2007-09-21

    The configuration interaction (CI) approach to solving the nuclear many-body problem, also known as the interacting shell model, has proven to be powerful tool in understanding the structure of nuclei. The principal criticism of past applications of the shell model is the reliance on empirical tuning to interaction matrix elements. If an accurate description of nuclei far from the valley of stability, where little or no data is available, a more fundamental approach is needed. This starts with recent ab initio approaches with effective interactions in the no-core shell model (NCSM). Using effective-field theory for guidance, fully ab initio descriptions of nuclei up to {sup 16}O with QCD based NN, NNN, and NNNN interactions will be possible within the next five years. An important task is then to determine how to use these NCSM results to develop effective interactions to describe heavier nuclei without the need to resort to an empirical retuning with every model space. Thus, it is likely that more traditional CI applications utilizing direct diagonalization and more fundamental interactions will be applicable to nuclei with perhaps up to one hundred constituents. But, these direct diagonalization CI applications will always be computationally limited due to the rapid increase in the number of configurations with particle number. Very recently, the shifted-contour method has been applied to the Auxiliary-field Monte Carlo approach to the Shell Model (AFMCSM), and preliminary applications exhibit a remarkable taming of the notorious sign problem. If the mitigation of the sign problem holds true, the AFMCSM will offer a method to compute quantum correlations to mean-field applications for just about all nuclei; giving exact results for CI model spaces that can approach 10{sup 20-25}. In these lectures, I will discuss modern applications of CI to the nuclear many-body problem that have the potential to guide nuclear structure theory into the next decade.

  19. Configuration Synthesis and Efficient Motion Programming of Robot Manipulators

    DTIC Science & Technology

    1991-03-15

    Efficient Motion Programming of Robot Manipulators P og DAAL 03-87-K-0041 6. AUTHOR(S) K.C. Gupta 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B...this research was to study the factors which influ- ence the design of robot arms and wrists (configuration synthesis). Another objective was to...develop efficient computational software tools for the manipulation of industrial robots . These software tools were to address the critical problems which

  20. Accelerator driven sub-critical core

    DOEpatents

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  1. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  2. Configurational diffusion of coal macromolecules

    SciTech Connect

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.; Kim, S.; Hwang, D.; Chen, C.C.; Chiou, Z.

    1991-01-01

    The objective of our research was to obtain fundamental information regarding the functional dependence of the diffusion coefficient of coal molecules on the ratio of molecule to pore diameter. That is, the objective of our study was to examine the effect of molecule size and configuration on hindered diffusion of coal macromolecules through as porous medium. To best accomplish this task, we circumvented the complexities of an actual porous catalyst by using a well defined porous matrix with uniform capillaric pores, i.e., a track-etched membrane. In this way, useful information was obtained regarding the relationship of molecular size and configuration on the diffusion rate of coal derived macromolecules through a pore structure with known geometry. Similar studies were performed using a pellet formed of porous alumina, to provide a link between the idealized membranes and the actual complex pore structure of real catalyst extrudates. The fundamental information from our study will be useful toward the tailoring of catalysts to minimize diffusional influences and thereby increase coal conversion and selectivity for desirable products. (VC)

  3. Computational methods for stellerator configurations

    SciTech Connect

    Betancourt, O.

    1992-01-01

    This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings.

  4. Equilibrium Configuration in a Nematic Liquid Crystal Droplet with Homeotropic Anchoring of Finite Strength

    NASA Astrophysics Data System (ADS)

    Kanke, Masaki; Sasaki, Kazuo

    2013-09-01

    Equilibrium configuration of order parameter in a nematic liquid crystal droplet with homeotropic anchoring of finite strength at the surface is studied numerically by using the Landau--de Gennes approach. It is found that a hedgehog-like configuration with a disclination loop of a small radius is stable for strong anchoring while an axial configuration without defect is stable for weak anchoring. A first-order phase transition from one configuration to the other occurs as the strength of the anchoring is varied. The critical anchoring strength turns out to increase almost linearly with the inverse of the droplet radius.

  5. The DEMO wall load challenge

    NASA Astrophysics Data System (ADS)

    Wenninger, R.; Albanese, R.; Ambrosino, R.; Arbeiter, F.; Aubert, J.; Bachmann, C.; Barbato, L.; Barrett, T.; Beckers, M.; Biel, W.; Boccaccini, L.; Carralero, D.; Coster, D.; Eich, T.; Fasoli, A.; Federici, G.; Firdaouss, M.; Graves, J.; Horacek, J.; Kovari, M.; Lanthaler, S.; Loschiavo, V.; Lowry, C.; Lux, H.; Maddaluno, G.; Maviglia, F.; Mitteau, R.; Neu, R.; Pfefferle, D.; Schmid, K.; Siccinio, M.; Sieglin, B.; Silva, C.; Snicker, A.; Subba, F.; Varje, J.; Zohm, H.

    2017-04-01

    For several reasons the challenge to keep the loads to the first wall within engineering limits is substantially higher in DEMO compared to ITER. Therefore the pre-conceptual design development for DEMO that is currently ongoing in Europe needs to be based on load estimates that are derived employing the most recent plasma edge physics knowledge. An initial assessment of the static wall heat load limit in DEMO infers that the steady state peak heat flux limit on the majority of the DEMO first wall should not be assumed to be higher than 1.0 MW m‑2. This compares to an average wall heat load of 0.29 MW m‑2 for the design {\\tt {EU}}{\\tt {~}}{\\tt {DEMO1}}{\\tt {~2015}} assuming a perfect homogeneous distribution. The main part of this publication concentrates on the development of first DEMO estimates for charged particle, radiation, fast particle (all static) and disruption heat loads. Employing an initial engineering wall design with clear optimization potential in combination with parameters for the flat-top phase (x-point configuration), loads up to 7 MW m‑2 (penalty factor for tolerances etc not applied) have been calculated. Assuming a fraction of power radiated from the x-point region between 1/5 and 1/3, peaks of the total power flux density due to radiation of 0.6–0.8 MW m‑2 are found in the outer baffle region. This first review of wall loads, and the associated limits in DEMO clearly underlines a significant challenge that necessitates substantial engineering efforts as well as a considerable consolidation of the associated physics basis.

  6. Critical thinking.

    PubMed

    Price, A; Price, B

    1996-05-01

    Critical thinking is a process applied to midwifery theory, research and experience. It is a positive activity, responsive to context, drawing on negative and positive triggers and emotions to suggest ways of acting in future. Practice-based and reflective midwifery assignments should reflect the midwifery goals of critical thinking. This may require adjustments in assessment criteria and a questioning of standard academic conventions.

  7. Critical Muralism

    ERIC Educational Resources Information Center

    Rosette, Arturo

    2009-01-01

    This study focuses on the development and practices of Critical Muralists--community-educator-artist-leader-activists--and situates these specifically in relation to the Mexican mural tradition of los Tres Grandes and in relation to the history of public art more generally. The study examines how Critical Muralists address artistic and…

  8. Molecular dynamics study on the thermal buckling of carbon nanotubes in the presence of pre-load

    NASA Astrophysics Data System (ADS)

    Mehralian, Fahimeh; Tadi Beni, Yaghoub; Kiani, Yaser

    2017-01-01

    This paper presents a molecular dynamics (MD) study on the thermally induced buckling of pre-compressed carbon nanotubes (CNTs) using AIREBO interatomic potential. CNTs are compressed at a certain ratio of their critical buckling strain and then undergo a uniform temperature rise. In order to evaluate the chirality effects, armchair and zigzag CNTs are investigated. The results demonstrate that critical buckling temperature depends strongly on the geometrical parameters such as chirality, diameter and aspect ratio. The armchair CNTs, due to their bond configuration, show higher resistance to thermal buckling than zigzag ones. Moreover, the buckling mechanism is strongly affected by the length of CNTs. At small aspect ratios, radial limit load shell buckling occurs while by increase in aspect ratio above the critical one different behaviors emerge. Due to the strong thermal oscillation of carbon atoms, increase in temperature changes perfect nanotubes to defective ones.

  9. Critical Transitions in Early Embryonic Aortic Arch Patterning and Hemodynamics

    PubMed Central

    Kowalski, William J.; Dur, Onur; Wang, Yajuan; Patrick, Michael J.; Tinney, Joseph P.; Keller, Bradley B.; Pekkan, Kerem

    2013-01-01

    Transformation from the bilaterally symmetric embryonic aortic arches to the mature great vessels is a complex morphogenetic process, requiring both vasculogenic and angiogenic mechanisms. Early aortic arch development occurs simultaneously with rapid changes in pulsatile blood flow, ventricular function, and downstream impedance in both invertebrate and vertebrate species. These dynamic biomechanical environmental landscapes provide critical epigenetic cues for vascular growth and remodeling. In our previous work, we examined hemodynamic loading and aortic arch growth in the chick embryo at Hamburger-Hamilton stages 18 and 24. We provided the first quantitative correlation between wall shear stress (WSS) and aortic arch diameter in the developing embryo, and observed that these two stages contained different aortic arch patterns with no inter-embryo variation. In the present study, we investigate these biomechanical events in the intermediate stage 21 to determine insights into this critical transition. We performed fluorescent dye microinjections to identify aortic arch patterns and measured diameters using both injection recordings and high-resolution optical coherence tomography. Flow and WSS were quantified with 3D computational fluid dynamics (CFD). Dye injections revealed that the transition in aortic arch pattern is not a uniform process and multiple configurations were documented at stage 21. CFD analysis showed that WSS is substantially elevated compared to both the previous (stage 18) and subsequent (stage 24) developmental time-points. These results demonstrate that acute increases in WSS are followed by a period of vascular remodeling to restore normative hemodynamic loading. Fluctuations in blood flow are one possible mechanism that impacts the timing of events such as aortic arch regression and generation, leading to the variable configurations at stage 21. Aortic arch variations noted during normal rapid vascular remodeling at stage 21 identify a

  10. Preliminary design study of lunar housing configurations

    NASA Technical Reports Server (NTRS)

    Reynolds, K. H.

    1992-01-01

    A preliminary design study assesses various configurations for habitation of the lunar surface. The study assumes an initial 4-man habitation module expandable to a 48-man concept. Through the numerous coupling combinations of identical modules, five basic configuration types are identified. A design model presents each configuration in light of certain issues. The issues include circulation, internal and external spatial characteristics, functional organizations, and future growth potential. The study discusses the attributes, potentials, and unique requirements of each configuration.

  11. Axial-Loading Circumferential Dovetail Turbine-Blade Mount

    NASA Technical Reports Server (NTRS)

    Pierce, Martin J.; Ward, Steven D.; Eskridge, Ronald R.

    1992-01-01

    In new configuration, retaining ring holds base of blades in circumferential dovetail slot. Blades inserted axially via loading slots into circumferential dovetail slot. Ring placed over loading slots and fastened with split ring held by arm of disk. Blades less likely to be shaken loose during operation.

  12. Configurable hot spot fixing system

    NASA Astrophysics Data System (ADS)

    Kajiwara, Masanari; Kobayashi, Sachiko; Mashita, Hiromitsu; Aburada, Ryota; Furuta, Nozomu; Kotani, Toshiya

    2014-03-01

    Hot spot fixing (HSF) method has been used to fix many hot spots automatically. However, conventional HSF based on a biasing based modification is difficult to fix many hot spots under a low-k1 lithography condition. In this paper we proposed a new HSF, called configurable hotspot fixing system. The HSF has two major concepts. One is a new function to utilize vacant space around a hot spot by adding new patterns or extending line end edges around the hot spot. The other is to evaluate many candidates at a time generated by the new functions. We confirmed the proposed HSF improves 73% on the number of fixing hot spots and reduces total fixing time by 50% on a device layout equivalent to 28nm-node. The result shows the proposed HSF is effective for layouts under the low-k1 lithography condition.

  13. Configural information in gender categorisation.

    PubMed

    Baudouin, Jean-Yves; Humphreys, Glyn W

    2006-01-01

    The role of configural information in gender categorisation was studied by aligning the top half of one face with the bottom half of another. The two faces had the same or different genders. Experiment 1 shows that participants were slower and made more errors in categorising the gender in either half of these composite faces when the two faces had a different gender, relative to control conditions where the two faces were nonaligned or had the same gender. This result parallels the composite effect for face recognition (Young et al, 1987 Perception 16 747-759) and facial-expression recognition (Calder et al, 2000 Journal of Experimental Psychology: Human Perception and Performance 26 527-551). Similarly to responses to face identity and expression, the composite effect on gender discrimination was disrupted by inverting the faces (experiment 2). Both experiments also show that the composite paradigm is sensitive to general contextual interference in gender categorisation.

  14. Critics and Criticism of Education

    ERIC Educational Resources Information Center

    Ornstein, Allan C.

    1977-01-01

    Radical educational critics, such as Edgar Friedenberg, Paul Goodman, A. S. Neill, John Holt, Jonathan Kozol, Herbert Kohl, James Herndon, and Ivan Illich, have few constructive goals, no strategy for broad change, and a disdain for modernization and compromise. Additionally, these critics, says the author, fail to consider social factors related…

  15. Vertical load capacities of roof truss cross members

    PubMed Central

    Gearhart, David F.; Morsy, Mohamed Khaled

    2016-01-01

    Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cross member is vertical, which is transverse to the longitudinal axis, and therefore the cross member is loaded in the weakest direction. Laboratory tests were conducted to determine the vertical load capacity and deflection of three different types of cross members. Single-point load tests, with the load applied in the center of the specimen and double-point load tests, with a span of 2.4 m, were conducted. For the single-point load configuration, the yield of the 25 mm solid bar cross member was nominally 98 kN of vertical load, achieved at 42 cm of deflection. For cable cross members, yield was not achieved even after 45 cm of deflection. Peak vertical loads were about 89 kN for 17 mm cables and 67 kN for the 15 mm cables. For the double-point load configurations, the 25 mm solid bar cross members yielded at 150 kN of vertical load and 25 cm of deflection. At 25 cm of deflection individual cable strands started breaking at 133 and 111 kN of vertical load for the 17 and 15 mm cable cross members respectively. PMID:27547484

  16. Vertical load capacities of roof truss cross members.

    PubMed

    Gearhart, David F; Morsy, Mohamed Khaled

    2016-05-01

    Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cross member is vertical, which is transverse to the longitudinal axis, and therefore the cross member is loaded in the weakest direction. Laboratory tests were conducted to determine the vertical load capacity and deflection of three different types of cross members. Single-point load tests, with the load applied in the center of the specimen and double-point load tests, with a span of 2.4 m, were conducted. For the single-point load configuration, the yield of the 25 mm solid bar cross member was nominally 98 kN of vertical load, achieved at 42 cm of deflection. For cable cross members, yield was not achieved even after 45 cm of deflection. Peak vertical loads were about 89 kN for 17 mm cables and 67 kN for the 15 mm cables. For the double-point load configurations, the 25 mm solid bar cross members yielded at 150 kN of vertical load and 25 cm of deflection. At 25 cm of deflection individual cable strands started breaking at 133 and 111 kN of vertical load for the 17 and 15 mm cable cross members respectively.

  17. Systems and methods for providing power to a load based upon a control strategy

    DOEpatents

    Perisic, Milun; Lawrence, Christopher P; Ransom, Ray M; Kajouke, Lateef A

    2014-11-04

    Systems and methods are provided for an electrical system. The electrical system, for example, includes a first load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage through the interface and to provide a voltage and current to the first load. The controller may be further configured to, receive information on a second load electrically connected to the voltage source, determine an amount of reactive current to return to the voltage source such that a current drawn by the electrical system and the second load from the voltage source is substantially real, and provide the determined reactive current to the voltage source.

  18. Critical Careers.

    ERIC Educational Resources Information Center

    Bowles, Roger A.

    2001-01-01

    Reports the critical shortage of qualified equipment technicians, especially in biomedical equipment. Cites the importance of encouraging careers in this field and describes a source of occupational information. (SK)

  19. Magnetic configuration flexibility of snowflake divertor for HL-2M [Analysis of snowflake divertor configurations for HL-2M

    DOE PAGES

    Zheng, G. Y.; Xu, X. Q.; Ryutov, D. D.; ...

    2014-07-09

    HL-2M (Li, 2013 [1]) is a tokamak device that is under construction. Based on the magnetic coils design of HL-2M, four kinds of divertor configurations are calculated by CORSICA code (Pearlstein et al., 2001 [2]) with the same main plasma parameters, which are standard divertor, exact snowflake divertor, snowflake-plus divertor and snowflake-minus divertor configurations. The potential properties of these divertors are analyzed and presented in this paper: low poloidal field area around X-point, connection length from outside mid-plane to the primary X-point, target plate design and magnetic field shear. The results show that the snowflake configurations not only can reducemore » the heat load at divertor target plates, but also may improve the magneto-hydrodynamic stability by stronger magnetic shear at the edge. Furthermore, a new divertor configuration, named “tripod divertor”, is designed by adjusting the positions of the two X-points according to plasma parameters and magnetic coils current of HL-2M.« less

  20. Magnetic configuration flexibility of snowflake divertor for HL-2M [Analysis of snowflake divertor configurations for HL-2M

    SciTech Connect

    Zheng, G. Y.; Xu, X. Q.; Ryutov, D. D.; Pan, Y. D.; Xia, T. Y.

    2014-07-09

    HL-2M (Li, 2013 [1]) is a tokamak device that is under construction. Based on the magnetic coils design of HL-2M, four kinds of divertor configurations are calculated by CORSICA code (Pearlstein et al., 2001 [2]) with the same main plasma parameters, which are standard divertor, exact snowflake divertor, snowflake-plus divertor and snowflake-minus divertor configurations. The potential properties of these divertors are analyzed and presented in this paper: low poloidal field area around X-point, connection length from outside mid-plane to the primary X-point, target plate design and magnetic field shear. The results show that the snowflake configurations not only can reduce the heat load at divertor target plates, but also may improve the magneto-hydrodynamic stability by stronger magnetic shear at the edge. Furthermore, a new divertor configuration, named “tripod divertor”, is designed by adjusting the positions of the two X-points according to plasma parameters and magnetic coils current of HL-2M.

  1. LDA optical setup using holographic imaging configuration

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Nirala, A. K.

    2015-11-01

    This paper describes one of the possible ways for improving fringe quality at LDA measuring volume using a holographic imaging configuration consisting of a single hololens. For its comparative study with a conventional imaging configuration, a complete characterization of fringes formed at the measurement volume by both the configuration is presented. Results indicate the qualitative as well as quantitative improvement of the fringes formed at measurement volume by the holographic imaging configuration. Hence it is concluded that use of holographic imaging configuration for making LDA optical setup is a better choice than the conventional one.

  2. Measurement and analysis of critical CTOA for an aluminum alloy sheet

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.; Newman, J. C., Jr.; Bigelow, C. A.

    1993-01-01

    The stable tearing behavior of thin sheets of 2024-T3 aluminum alloy was investigated for middle crack tension, M(T), and compact tension, C(T), specimens. The surface crack-tip opening angle (CTOA), applied loads, crack extension, and local displacements were measured. A critical CTOA fracture criterion was incorporated into a two-dimensional, elastic plastic finite element code and used to simulate the experimental fracture behavior. The CTOA measurements and observations of the fracture surfaces have shown that large values for surface CTOA were observed for small crack extensions (less than the sheet thickness); substantial tunneling of the crack was associated with small crack extensions; crack tunneling in the M(T) specimen was less than that observed in the C(T) configuration; for larger crack extensions, the measured CTOA values were determined to be approximately 6 degrees for both the M(T) and C(T) configuration; and for larger crack extensions, crack tunneling remained constant. The two-dimensional finite element predictions of fracture behavior assumed a constant critical CTOA value of 6 degrees and accounted for local crack tip constraint with a plane strain core of elements ahead of the crack tip. The plane strain core extended 5 mm above the crack plane. The simulations were within +/- 4 percent of the maximum applied load for the C(T) tests within 2 percent for the M(T) tests.

  3. Recent Load Calibrations Experience with the YF-12 Airplane

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Kuhl, A. E.

    1978-01-01

    The use of calibrated strain gages to measure wing loads on the YF-12A airplane is discussed as well as structural configurations relative to the thermal environment and resulting thermal stresses. A thermal calibration of the YF-12A is described to illustrate how contaminating thermal effects can be removed from loads equations. The relationship between ground load calibrations and flight measurements is examined for possible errors, and an analytical approach to accommodate such errors is presented.

  4. An approximation method for configuration optimization of trusses

    NASA Technical Reports Server (NTRS)

    Hansen, Scott R.; Vanderplaats, Garret N.

    1988-01-01

    Two- and three-dimensional elastic trusses are designed for minimum weight by varying the areas of the members and the location of the joints. Constraints on member stresses and Euler buckling are imposed and multiple static loading conditions are considered. The method presented here utilizes an approximate structural analysis based on first order Taylor series expansions of the member forces. A numerical optimizer minimizes the weight of the truss using information from the approximate structural analysis. Comparisons with results from other methods are made. It is shown that the method of forming an approximate structural analysis based on linearized member forces leads to a highly efficient method of truss configuration optimization.

  5. PRD components of an EBR-II configuration

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    The linear components of the power reactivity decrement (PRD) for a heterogeneous loading (run 93A) of Experimental Breeder Reactor II (EBR-II) have been calculated using the EBRPOCO program together with an addition to the program, RODCO, which accounts for effects of axial positionings of control rods. The program calculates detailed axially delineated contributions of the components of the PRD for every subassembly of the reactor configuration. The sum of these contributions is subtracted from the corresponding measured PRD value to give the nonlinear (subassembly-bowing) component.

  6. Study of an efficient long-range Mach 2.7 supersonic transport configuration concept

    NASA Technical Reports Server (NTRS)

    Gall, P. D.

    1985-01-01

    A long range Mach 2.7 supersonic transport configuration concept was studied utilizing linear theory methods. The configuration was sized to carry 290 passengers 6,000 nautical miles nonstop. The final configuration has a maximum takeoff gross weight of 687,200 pounds, a wing loading of 69.8 lbf/sq.ft. and a thrust weight ratio of .278. The most significant result is that a significantly improved trimmed maximum lift drag ratio of 11.04 can be obtained for a supersonic transport at Mach 2.62 and 55,000 feet.

  7. The Effects of a Lower Body Exoskeleton Load Carriage Assistive Device on Oxygen Consumption and Kinematics During Walking with Loads

    DTIC Science & Technology

    2006-11-01

    analyze the associated gait biomechanics . Ten Army enlisted men participated in the study. Oxygen consumption (VO2) and gait biomechanics were...measured while Soldiers walked at 4.83 km/h and 0% grade under three realistic load weight configurations that were comprised of Army clothing and...increases users’ metabolic cost while carrying various loads and alters their gait biomechanics compared to conventional load carriage using a backpack

  8. Stormwater Pollutant Control from Critical Source Areas

    EPA Science Inventory

    Critical source areas include: vehicular maintenance facilities, parking lots and bus terminals, junk and lumber yards, industrial storage facilities, loading docks and refueling areas, manufacturing sites, etc. Addressing pollutant runoff from these areas is an important compon...

  9. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  10. Configurational forces in solid nanostructures

    SciTech Connect

    Zhigang Suo

    2006-06-12

    The DOE grant (DE-FG02-99ER45787) to Princeton University, entitled Configurational Forces in Solid Nanostructures, was intended to cover the four-year period from September 1999 to September 2003. Effective 1 July 2003, the PI will relocate from Princeton to join the Harvard faculty. Princeton University will submit the Final Financial Report, the Final Property Report, and the Final Patent Report. The expenditures to date are $261,513 with %8,487 remaining of the awarded amount of $320,000. Harvard University will submit a request for the remaining amount. This Final Technical Report covers from the period between September 1999 to June 2003. Three Ph.D. students, Wei Lu, Yanfei Gao and Wei Hong, admitted to Princeton in the fall of 1998, 1999, 2002, respectively, have been dedicated to this project. Wei Lu earned his Ph.D. in August 2001, and is now an assistant professor at The University of Michigan, Ann Arbor. Yanfei Gao earned his Ph.D. in February 2003, and is now a post-doc at Brown University. The amount of funding covers one student at a time. All three students received first-year fellowships from Princeton University. In the Mechanical and Aerospace Engineering Department, to fulfill a doctoral degree requirement, every student serves as a teaching assistant for three semesters, for which the student is partially paid by the University.

  11. Magnetic field configurations on thruster performance in accordance with ion beam characteristics in cylindrical Hall thruster plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Holak; Choe, Wonho; Lim, Youbong; Lee, Seunghun; Park, Sanghoo

    2017-03-01

    Magnetic field configuration is critical in Hall thrusters for achieving high performance, particularly in thrust, specific impulse, efficiency, etc. Ion beam features are also significantly influenced by magnetic field configurations. In two typical magnetic field configurations (i.e., co-current and counter-current configurations) of a cylindrical Hall thruster, ion beam characteristics are compared in relation to multiply charged ions. Our study shows that the co-current configuration brings about high ion current (or low electron current), high ionization rate, and small plume angle that lead to high thruster performance.

  12. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations under Flexure Loads

    NASA Technical Reports Server (NTRS)

    Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and facesheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  13. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    NASA Technical Reports Server (NTRS)

    Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. Fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a strength reduction of 10 percent due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  14. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    NASA Technical Reports Server (NTRS)

    Nordendale, Nikolas A.; Goyal, Vinay K.; Lundgren, Eric C.; Patel, Dhruv N.; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth N.

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  15. Evaluating the effects of loading parameters on single-crystal slip in tantalum using molecular mechanics

    NASA Astrophysics Data System (ADS)

    Alleman, Coleman; Ghosh, Somnath; Luscher, D. J.; Bronkhorst, Curt A.

    2014-01-01

    This study is aimed at developing a physics-based crystal plasticity finite element model for body-centred cubic (BCC) metals, through the introduction of atomic-level deformation information from molecular dynamics (MD) investigations of dislocation motion at the onset of plastic flow. In this study, three critical variables governing crystal plasticity mediated by dislocation motion are considered. MD simulations are first performed across a range of finite temperatures up to 600K to quantify the temperature dependence of critical stress required for slip initiation. An important feature of slip in BCC metals is that it is not solely dependent on the Schmid law measure of resolved shear stress, commonly employed in crystal plasticity models. The configuration of a screw dislocation and its subsequent motion is studied under different load orientations to quantify these non-Schmid effects. Finally, the influence of strain rates on thermal activation is studied by inducing higher stresses during activation at higher applied strain rates. Functional dependence of the critical resolved shear stress on temperature, loading orientation and strain rate is determined from the MD simulation results. The functional forms are derived from the thermal activation mechanisms that govern the plastic behaviour and quantification of relevant deformation variables. The resulting physics-based rate-dependent crystal plasticity model is implemented in a crystal plasticity finite element code. Uniaxial simulations reveal orientation-dependent tension-compression asymmetry of yield that more accurately represents single-crystal experimental results than standard models.

  16. Enhancement and suppression in the visual field under perceptual load.

    PubMed

    Parks, Nathan A; Beck, Diane M; Kramer, Arthur F

    2013-01-01

    The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task-greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs) in conjunction with time-domain event-related potentials (ERPs) to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG) was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2, 6, or 11°) during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3 Hz) was attenuated under high perceptual load (relative to low load) at the most proximal (2°) eccentricity but not at more eccentric locations (6 or 11°). Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.

  17. Lexical Configuration and Lexical Engagement: When Adults Learn New Words

    PubMed Central

    Leach, Laura; Samuel, Arthur G.

    2007-01-01

    People know thousands of words in their native language, and each of these words must be learned at some time in the person's lifetime. A large number of these words will be learned when the person is an adult, reflecting the fact that the mental lexicon is continuously changing. We explore how new words get added to the mental lexicon, and provide empirical support for a theoretical distinction between what we call lexical configuration and lexical engagement. Lexical configuration is the set of factual knowledge associated with a word (e.g., the word's sound, spelling, meaning, or syntactic role). Almost all previous research on word learning has focused on this aspect. However it is also critical to understand the process by which a word becomes capable of lexical engagement – the ways in which a lexical entry dynamically interacts with other lexical entries, and with sublexical representations. For example, lexical entries compete with each other during word recognition (inhibition within the lexical level), and they also support the activation of their constituents (top-down lexical-phonemic facilitation, and lexically-based perceptual learning). We systematically vary the learning conditions for new words, and use separate measures of lexical configuration and engagement. Several surprising dissociations in behavior demonstrate the importance of the theoretical distinction between configuration and engagement. PMID:17367775

  18. Configurable Middleware-Level Intrusion Detection for Embedded Systems

    SciTech Connect

    Naess, Eivind; Frincke, Deborah A.; McKinnon, A. D.; Bakken, David E.

    2005-06-20

    Embedded systems have become integral parts of a diverse range of systems from automobiles to critical infrastructure applications such as gas and electric power distribution. Unfortunately, research on computer security in general and intrusion detection in particular, has not kept pace. Furthermore, embedded systems, by their very nature, are application specific and therefore frameworks for developing application-specific intrusion detection systems for distributed embedded systems must be researched, designed, and implemented. In this paper, we present a configurable middleware-based intrusion detection framework. In particular, this paper presents a system model and a concrete implementation of a highly configurable intrusion detection framework that is integrated into MicroQoSCORBA, a highly configurable middleware framework developed for embedded systems. By exploiting the application-specific logic available to a middleware framework (e.g., object interfaces and method signatures), our integrated framework is able to autogenerate application-specific intrusion detection systems. Next, a set of configurable intrusion detection mechanisms suitable for embedded systems is presented. A performance evaluation of these mechanisms, run on two hardware platforms, is presented at the end of the paper.

  19. High speed research system study. Advanced flight deck configuration effects

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability.

  20. Critical Schwinger pair production. II. Universality in the deeply critical regime

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Torgrimsson, Greger

    2017-01-01

    We study electron-positron pair production by spatially inhomogeneous electric fields. Depending on the localization of the field, a critical point (critical surface) exists in the space of field configurations where the pair production probability vanishes. Near criticality, pair production exhibits universal properties similar to those of continuous phase transitions. We extend results previously obtained in the semiclassical (weak-field) critical regime to the deeply critical regime for arbitrary peak field strength. In this regime, we find an enhanced universality, featuring a unique critical exponent β =3 for all sufficiently localized fields. For a large class of field profiles, we also compute the nonuniversal amplitudes.

  1. High transonic speed transport aircraft study. [aerodynamic characteristics of single-fuselage, yawed-wing configuration

    NASA Technical Reports Server (NTRS)

    Kulfan, R. M.; Neumann, F. D.; Nisbet, J. W.; Mulally, A. R.; Murakami, J. K.; Noble, E. C.; Mcbarron, J. P.; Stalter, J. L.; Gimmestad, D. W.; Sussman, M. B.

    1973-01-01

    An initial design study of high-transonic-speed transport aircraft has been completed. Five different design concepts were developed. These included fixed swept wing, variable-sweep wing, delta wing, double-fuselage yawed-wing, and single-fuselage yawed-wing aircraft. The boomless supersonic design objectives of range=5560 Km (3000 nmi), payload-18 143 kg (40 000lb), Mach=1.2, and FAR Part 36 aircraft noise levels were achieved by the single-fuselage yawed-wing configuration with a gross weight of 211 828 Kg (467 000 lb). A noise level of 15 EPNdB below FAR Part 36 requirements was obtained with a gross weight increase to 226 796 Kg (500 000 lb). Although wing aeroelastic divergence was a primary design consideration for the yawed-wing concepts, the graphite-epoxy wings of this study were designed by critical gust and maneuver loads rather than by divergence requirements. The transonic nacelle drag is shown to be very sensitive to the nacelle installation. A six-degree-of-freedom dynamic stability analysis indicated that the control coordination and stability augmentation system would require more development than for a symmetrical airplane but is entirely feasible. A three-phase development plan is recommended to establish the full potential of the yawed-wing concept.

  2. Metrics for measuring distances in configuration spaces

    SciTech Connect

    Sadeghi, Ali Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-11-14

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices.

  3. Autoclave nuclear criticality safety analysis

    SciTech Connect

    D`Aquila, D.M.; Tayloe, R.W. Jr.

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  4. Criticality measurements for SNM accountability

    SciTech Connect

    Bohman, J.; Martin, E.R.; Butterfield, K.; Paternoster, R.

    1998-03-01

    Based on extensive operating experience with the Godiva IV fast metal burst assembly at Los Alamos National Laboratory, the authors were able to create data plots for reactivity worths of standard configurations at various temperatures and room return locations. These plots show that the material uncertainties in criticality measurements are within {+-} 20 grams out of the 65.4 kilogram HEU Godiva core. This is superior to active neutron well coincidence counter (AWCC) measurements. The criticality measurements have the additional advantage of not requiring disassembly of the reactor. No disassembly means the measurement takes less time--it can be done during each operation--and there is less dose to measurement personnel.

  5. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin walled, 2.54-cm (1-in.) diameter tubular specimens of T300/934 graphite/epoxy were fabricated and fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0/90)S and (+ or - 45)S; all tubes contained a 0.48-cm (3/16-in.) diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on the Hill plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  6. Loads for pulsed power cylindrical implosion experiments

    SciTech Connect

    Anderson, W.E.; Armijo, E.V.; Barthell, B.L.; Bartos, J.J.; Bush, H.; Foreman, L.R.; Garcia, F.P.; Gobby, P.L.; Gomez, V.M.; Gurule, V.A.

    1994-07-01

    Pulse power can be used to generate high energy density conditions in convergent hollow cylindrical geometry through the use of appropriate electrode configuration and cylindrical loads. Cylindrically symmetric experiments are conducted with the Pegasus-H inductive store, capacitor energized pulse power facility at Los Alamos using both precision machined cylindrical liner loads and low mass vapor deposited cylindrical foil loads. The liner experiments investigate solid density hydrodynamic topics. Foil loads vaporize from Joule heating to generate an imploding cylindrical plasma which can be used to simulate some fluxes associated with fusion energy processes. Similar experiments are conducted with {open_quotes}Procyon{close_quotes} inductive store pulse power assemblies energized by explosively driven magnetic flux compression.

  7. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin-walled, 2.54-cm diameter tubular specimens of graphite/epoxy were fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0-90)s and (+ or- 45)s; each tube contained a 0.48-cm diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  8. Core Strength: Investigating Two Possible Configurations of the NGVLA

    NASA Astrophysics Data System (ADS)

    Mason, Brian S.; Carilli, Chris Luke; Murphy, Eric J.; Butler, Bryan J.

    2017-01-01

    The Next Generation VLA (NGVLA) aims to provide a revolutionary increase in cm-wavelength collecting area and sensitivity, while at the same time providing excellent image fidelity over a wide range of spatial scales. Most radio interferometers feature movable antennas, facilitating reconfiguration of the telescope for different science goals. In order to reduce costs, current designs of the NGVLA assume most or all of the antennas have fixed locations. The choice of array configuration is thus of key importance to address the diverse range of science cases the community wishes to pursue. One important trade-off is long baselines (for resolution) vs short baselines (for accurate imaging of resolved structures).We consider the performance of a 300 element array of 18-meter antennas extending to 150km radius with with two different core-concentrations: 20% vs. 40% of the antennas in a 0.6km radius core. In neither case is the naturally weighted beam suited to high fidelity imaging at full resolution. We consider two performance metrics: (i) the noise penalty due to visibility weighting that is required to achieve both high angular resolution and high fidelity imaging, relative to natural weighting; and (ii) the mapping speed for large scale structures of the compact core. Initial analysis suggests that the (Jy/bm) noise penalty to achieve both high angular resolution and a reasonably behaved PSF is a factor 1.9 and 2.4, for the 20% and 40% core, respectively. In terms of core mapping speed, the 40% core ngVLA configuration has a mapping speed a factor 2.8 faster than the most compact ALMA configuration (ALMA-out01), and a factor 13 times faster than the ALMA-out09 configuration. The 1" resolution of ALMA-out09 at 90 GHz has been deemed critical for studying the ISM of nearby galaxies (Leroy et al 2016, ngVLA memo. 6); in terms of ALMA Cycle 4 configurations, these two reference ALMA configurations are closest to C40-1 and C40-4. The same factors for the 20% core

  9. Integrative application of active controls (IAAC) technology to an advanced subsonic transport project. Initial act configuration design study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The performance and economic benefits of a constrained application of Active Controls Technology (ACT) are identified, and the approach to airplane design is established for subsequent steps leading to the development of a less constrained final ACT configuration. The active controls configurations are measured against a conventional baseline configuration, a state-of-the-art transport, to determine whether the performance and economic changes resulting from ACT merit proceeding with the project. The technology established by the conventional baseline configuration was held constant except for the addition of ACT. The wing, with the same planform, was moved forward on the initial ACT configuration to move the loading range aft relative to the wing mean aerodynamic chord. Wing trailing-edge surfaces and surface controls also were reconfigured for load alleviation and structural stabilization.

  10. Systems and methods for providing power to a load based upon a control strategy

    DOEpatents

    Perisic, Milun; Kajouke, Lateef A; Ransom, Ray M

    2013-12-24

    Systems and methods are provided for an electrical system. The electrical system includes a load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage from the voltage source through the interface and to provide a voltage and current to the load. Wherein, when the controller is in a constant voltage mode, the controller provides a constant voltage to the load, when the controller is in a constant current mode, the controller provides a constant current to the load, and when the controller is in a constant power mode, the controller provides a constant power to the load.

  11. International Space Station Configuration Analysis and Integration

    NASA Technical Reports Server (NTRS)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  12. Peltier Current Leads with conical configuration

    NASA Astrophysics Data System (ADS)

    Hakimi, I.; Nikulshin, Y.; Wolfus, S.; Yeshurun, Y.

    2016-04-01

    Current leads in cryogenic systems are a major heat source which eventually affects the entire system. It has been shown in recent years that Peltier elements are useful in reducing incoming heat into the cold system. In this article we present a new tapered cone-like configuration of the Peltier Current Leads which increases the power saving. This configuration is compared to the standard cylindrical configuration utilizing advanced ANSYS simulations. The simulations show an additional power saving of 4% when using the tapered lead configuration.

  13. Configurable Multi-Purpose Processor

    NASA Technical Reports Server (NTRS)

    Valencia, J. Emilio; Forney, Chirstopher; Morrison, Robert; Birr, Richard

    2010-01-01

    Advancements in technology have allowed the miniaturization of systems used in aerospace vehicles. This technology is driven by the need for next-generation systems that provide reliable, responsive, and cost-effective range operations while providing increased capabilities such as simultaneous mission support, increased launch trajectories, improved launch, and landing opportunities, etc. Leveraging the newest technologies, the command and telemetry processor (CTP) concept provides for a compact, flexible, and integrated solution for flight command and telemetry systems and range systems. The CTP is a relatively small circuit board that serves as a processing platform for high dynamic, high vibration environments. The CTP can be reconfigured and reprogrammed, allowing it to be adapted for many different applications. The design is centered around a configurable field-programmable gate array (FPGA) device that contains numerous logic cells that can be used to implement traditional integrated circuits. The FPGA contains two PowerPC processors running the Vx-Works real-time operating system and are used to execute software programs specific to each application. The CTP was designed and developed specifically to provide telemetry functions; namely, the command processing, telemetry processing, and GPS metric tracking of a flight vehicle. However, it can be used as a general-purpose processor board to perform numerous functions implemented in either hardware or software using the FPGA s processors and/or logic cells. Functionally, the CTP was designed for range safety applications where it would ultimately become part of a vehicle s flight termination system. Consequently, the major functions of the CTP are to perform the forward link command processing, GPS metric tracking, return link telemetry data processing, error detection and correction, data encryption/ decryption, and initiate flight termination action commands. Also, the CTP had to be designed to survive and

  14. A new adaptive configuration of PID type fuzzy logic controller.

    PubMed

    Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed

    2015-05-01

    In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time.

  15. Serial CSTR digester configuration for improving biogas production from manure.

    PubMed

    Boe, Kanokwan; Angelidaki, Irini

    2009-01-01

    A new configuration of manure digesters for improving biogas production has been investigated in laboratory scale. A single thermophilic continuous-flow stirred tank reactor (CSTR) operated with a hydraulic retention time (HRT) of 15 days was compared to a serial CSTR configuration with volume distribution ratio of 80/20 and 90/10, and total HRT of 15 days. The results showed that the serial CSTR could obtain 11% higher biogas yield compared to the single CSTR. The increased biogas yield in the serial CSTR was mainly from the second reactor, which accounted for 16% and 12% of total biogas yield in the 90/10 and 80/20 configuration, respectively. VFA concentration in the serial CSTR was high in the first reactor but very low in the second reactor. The results from organic pulse load test showed that the second reactor in serial CSTR helped utilizing VFA produced from overloading in the first reactor, which improved the effluent quality and conversion efficiency of the serial CSTR.

  16. Structural Configuration Analysis of Crew Exploration Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.

    2006-01-01

    Structural configuration modeling and finite element analysis of crew exploration vehicle (CEV) concepts are presented. In the structural configuration design approach, parametric solid models of the pressurized shell and tanks are developed. The CEV internal cabin pressure is same as in the International Space Station (ISS) to enable docking with the ISS without an intermediate airlock. Effects of this internal pressure load on the stress distribution, factor of safety, mass and deflections are investigated. Uniform 7 mm thick skin shell, 5 mm thick shell with ribs and frames, and isogrid skin construction options are investigated. From this limited study, the isogrid construction appears to provide most strength/mass ratio. Initial finite element analysis results on the service module tanks are also presented. These rapid finite element analyses, stress and factor of safety distribution results are presented as a part of lessons learned and to build up a structural mass estimation and sizing database for future technology support. This rapid structural analysis process may also facilitate better definition of the vehicles and components for rapid prototyping. However, these structural analysis results are highly conceptual and exploratory in nature and do not reflect current configuration designs being conducted at the program level by NASA and industry.

  17. Intelligent electrical outlet for collective load control

    DOEpatents

    Lentine, Anthony L.; Ford, Justin R.; Spires, Shannon V.; Goldsmith, Steven Y.

    2015-10-27

    Various technologies described herein pertain to an electrical outlet that autonomously manages loads in a microgrid. The electrical outlet can provide autonomous load control in response to variations in electrical power generation supply in the microgrid. The electrical outlet includes a receptacle, a sensor operably coupled to the receptacle, and an actuator configured to selectively actuate the receptacle. The sensor measures electrical parameters at the receptacle. Further, a processor autonomously controls the actuator based at least in part on the electrical parameters measured at the receptacle, electrical parameters from one or more disparate electrical outlets in the microgrid, and a supply of generated electric power in the microgrid at a given time.

  18. Critical Information at Critical Moments

    ERIC Educational Resources Information Center

    Fierman, Ben; Thrower, Raymond H., Jr.

    2011-01-01

    On a daily basis, administrators are reminded of the potential, perhaps the likelihood, of violence or natural crises on their campuses. Comprehensive studies have been conducted and point to recommendations and best practices for planning, preparing, responding to, and recovering from critical incidents. The International Association of Campus…

  19. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Walton, James T.; Mcguire, Melissa L.

    1992-01-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.

  20. Structural dynamics model and response of the deployable reference configuration space station

    NASA Technical Reports Server (NTRS)

    Housner, J. M.

    1985-01-01

    The analytical models and results of a structural dynamics investigation of the reference initial operation and evolutionary configurations of the nine foot bay space station are presented. This investigation was carried out between April and August 1984 as part of a team effort to define a reference configuration for the first U.S. manned space station. The results presented herein serve as a guide, a point of departure and a standard for future NASA and contractor studies leading to the design of the Space Station. The reference initial operation configuration of the nine foot bay station was found to be very flexible, with its lowest mode between 0.096 and 0.138 Hertz depending on station attachments. However, for the transient load cases which were then available, internal member loads had positive margins of safety and preliminary results indicate that laboratory experiments which require quiescent conditions can be satisfied down to the order of 0.0001 g's.

  1. Disruptions, loads, and dynamic response of ITER

    SciTech Connect

    Nelson, B.; Riemer, B.; Sayer, R.; Strickler, D.; Barabaschi, P.; Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.

    1995-12-31

    Plasma disruptions and the resulting electromagnetic loads are critical to the design of the vacuum vessel and in-vessel components of the International Thermonuclear Experimental Reactor (ITER). This paper describes the status of plasma disruption simulations and related analysis, including the dynamic response of the vacuum vessel and in-vessel components, stresses and deflections in the vacuum vessel, and reaction loads in the support structures.

  2. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  3. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  4. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  5. 40 CFR 610.41 - Test configurations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Test configurations. 610.41 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.41 Test configurations. (a) In order to measure the effectiveness of a retrofit device at least two,...

  6. Configuration-Control Scheme Copes With Singularities

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Colbaugh, Richard D.

    1993-01-01

    Improved configuration-control scheme for robotic manipulator having redundant degrees of freedom suppresses large joint velocities near singularities, at expense of small trajectory errors. Provides means to enforce order of priority of tasks assigned to robot. Basic concept of configuration control of redundant robot described in "Increasing The Dexterity Of Redundant Robots" (NPO-17801).

  7. Existence Regions of Shock Wave Triple Configurations

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Chernyshev, Mikhail V.

    2016-01-01

    The aim of the research is to create the classification for shock wave triple configurations and their existence regions of various types: type 1, type 2, type 3. Analytical solutions for limit Mach numbers and passing shock intensity that define existence region of every type of triple configuration have been acquired. The ratios that conjugate…

  8. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller configuration. 35.2 Section 35.2 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all...

  9. System for Configuring Modular Telemetry Transponders

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A system for configuring telemetry transponder cards uses a database of error checking protocol data structures, each containing data to implement at least one CCSDS protocol algorithm. Using a user interface, a user selects at least one telemetry specific error checking protocol from the database. A compiler configures an FPGA with the data from the data structures to implement the error checking protocol.

  10. Structure Preserving Anonymization of Router Configuration Data

    DTIC Science & Technology

    2009-04-01

    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 3, APRIL 2009 349 Structure Preserving Anonymization of Router Configuration Data...exploited by competitors and attackers. This paper describes a method for anonymizing router config- uration files by removing all information that...networking researchers. Anonymizing configuration files has unusual requirements, including preserving relationships between elements of data, anonymizing

  11. Marking up lattice QCD configurations and ensembles

    SciTech Connect

    P.Coddington; B.Joo; C.M.Maynard; D.Pleiter; T.Yoshie

    2007-10-01

    QCDml is an XML-based markup language designed for sharing QCD configurations and ensembles world-wide via the International Lattice Data Grid (ILDG). Based on the latest release, we present key ingredients of the QCDml in order to provide some starting points for colleagues in this community to markup valuable configurations and submit them to the ILDG.

  12. Resolvability and the Tetrahedral Configuration of Carbon.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1983-01-01

    Discusses evidence for the tetrahedral configuration of the carbon atom, indicating that three symmetrical configurations are theoretically possible for coordination number four. Includes table indicating that resolvability of compounds of type CR'R"R"'R"" is a necessary but not sufficient condition for proving tetrahedral…

  13. When One Configuration Is Not Enough

    ERIC Educational Resources Information Center

    McMillin, David R.

    2008-01-01

    For most molecules molecular orbital theory predicts a ground-state electronic configuration that is useful for rationalizing relative bond lengths, magnetic properties, and so forth. However, when electron correlation is a dominant consideration, the ground-state configuration may provide a poor representation of the system. In such cases,…

  14. Evolution of the Configuration Database Design

    SciTech Connect

    Salnikov, A

    2006-04-19

    The BABAR experiment at SLAC successfully collects physics data since 1999. One of the major parts of its on-line system is the configuration database which provides other parts of the system with the configuration data necessary for data taking. Originally the configuration database was implemented in the Objectivity/DB ODBMS. Recently BABAR performed a successful migration of its event store from Objectivity/DB to ROOT and this prompted a complete phase-out of the Objectivity/DB in all other BABAR databases. It required the complete redesign of the configuration database to hide any implementation details and to support multiple storage technologies. In this paper we describe the process of the migration of the configuration database, its new design, implementation strategy and details.

  15. CFD Simulations of Tiltrotor Configurations in Hover

    NASA Technical Reports Server (NTRS)

    Potsdam, Mark a.; Strawn, Roger C.

    2002-01-01

    Navier-Stokes computational fluid dynamics calculations are presented for isolated, half-span, and full-span V-22 tiltrotor hover configurations. These computational results extend the validity of CFD hover methodology beyond conventional rotorcraft applications to tiltrotor configurations. Computed steady-state, isolated rotor performance agrees well with experimental measurements, showing little sensitivity to grid resolution. However, blade-vortex interaction flowfield details are sensitive to numerical dissipation and are more difficult to model accurately. Time-dependent, dynamic, half- and full-span installed configurations show sensitivities in performance to the tiltrotor fountain flow. As such, the full-span configuration exhibits higher rotor performance and lower airframe download than the half-span configuration. Half-span rotor installation trends match available half-span data, and airframe downloads are reasonably well predicted. Overall, the CFD solutions provide a wealth of flowfield details that can be used to analyze and improve tiltrotor aerodynamic performance.

  16. Configuration Management Plan for K Basins

    SciTech Connect

    Weir, W.R.; Laney, T.

    1995-01-27

    This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, {open_quotes}Guide for Operational Configuration Management Program{close_quotes}.

  17. The effect of electrode configuration on arcjet performance

    NASA Technical Reports Server (NTRS)

    Curran, Frank M.; Manzella, David H.

    1989-01-01

    A radiation cooled, segmented anode was tested in a low power (1 kW class) arcjet thruster in order to study the current distribution in the attachment region of the nozzle of the thruster. The nozzle was composed of five segments insulated from one another with boron nitride spacers and matched the critical dimensions of nozzles commonly used in previous testing. The anode was configured so that the current could be collected across any combination of the segments and the potential difference between the cathode and each of the segments was monitored during testing.

  18. Modeling and Simulation of a Helicopter Slung Load Stabilization Device

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Ehlers, George E.

    2002-01-01

    This paper addresses the problem of simulation and stabilization of the yaw motions of a cargo container slung load. The study configuration is a UH-60 helicopter carrying a 6ft x 6 ft x 8 ft CONEX container. This load is limited to 60 KIAS in operations and flight testing indicates that it starts spinning in hover and that spin rate increases with airspeed. The simulation reproduced the load yaw motions seen in the flight data after augmenting the load model with terms representing unsteady load yaw moment effects acting to reinforce load oscillations, and augmenting the hook model to include yaw resistance at the hook. The use of a vertical fin to stabilize the load is considered. Results indicate that the CONEX airspeed can be extended to 110 kts using a 3x5 ft fin.

  19. Structural dynamics and attitude control study of early manned capability space station configurations

    NASA Technical Reports Server (NTRS)

    Ayers, J. Kirk; Cirillo, William M.; Giesy, Daniel P.; Hitchcock, Jay C.; Kaszubowski, Martin J.; Raney, J. Philip

    1987-01-01

    A study was performed to determine the vibration and attitude control characteristics of critical space station configurations featuring early manned capability during buildup from initial user support through the operations capability reference station. Five configurations were selected and were examined thus determining the changes that are likely to occur in the characteristics of the system as the station progresses from a single boom structure to a mature, dual keel, operations capability reference station. Both 9 foot and 5 meter truss bay sizes were investigated. All configurations analyzed were stable; however, the 5 meter truss bay size structure exhibited superior stability characteristics.

  20. Optimized Loading for Particle-in-cell Gyrokinetic Simulations

    SciTech Connect

    J.L.V. Lewandowski

    2004-05-13

    The problem of particle loading in particle-in-cell gyrokinetic simulations is addressed using a quadratic optimization algorithm. Optimized loading in configuration space dramatically reduces the short wavelength modes in the electrostatic potential that are partly responsible for the non-conservation of total energy; further, the long wavelength modes are resolved with good accuracy. As a result, the conservation of energy for the optimized loading is much better that the conservation of energy for the random loading. The method is valid for any geometry and can be coupled to optimization algorithms in velocity space.

  1. Edge plasma control using an LID configuration on CHS

    SciTech Connect

    Masuzaki, S.; Komori, A.; Morisaki, T.

    1997-07-01

    A Local Island Divertor (LID) has been proposed to enhance energy confinement through neutral particle control. For the case of the Large Helical Device (LHD), the separatrix of an m/n = 1/1 magnetic island, formed at the edge region, will be utilized as a divertor configuration. The divertor head is inserted in the island, and the island separatrix provides connection between the edge plasma region surrounding the core plasma and the back plate of the divertor head through the field lines. The particle flux and associated heat flux from the core plasma strike the back plate of the divertor head, and thus particle recycling is localized in this region. A pumping duct covers the divertor head to form a closed divertor system for efficient particle exhaust. The advantages of the LID are ease of hydrogen pumping because of the localized particle recycling and avoidance of the high heat load that would be localized on the leading edge of the divertor head. With efficient pumping, the neutral pressure in the edge plasma region will be reduced, and hence the edge plasma temperature will be higher, hopefully leading to a better core confinement region. A LID configuration experiment was done on the Compact Helical System (CHS) to confirm the effect of the LID. The typical effects of the LID configuration on the core plasma are reduction of the line averaged density to a half, and small or no reduction of the stored energy. In this contribution, the experimental results which were obtained in edge plasma control experiments with the LID configuration in the CHS are presented.

  2. Numerical calibration of the stable poisson loaded specimen

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, Dave N.

    1992-01-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-Curve determination. The crack mouth opening displacements (CMOD's) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMOD's, and crack displacement profiles are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length, thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  3. Analytical stress intensity solution for the stable Poisson loaded specimen

    NASA Astrophysics Data System (ADS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, David N.

    1993-04-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-curve determination. The crack mouth opening displacements (CMOD's) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMOD's, and crack displacement profiles, are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  4. Numerical calibration of the stable poisson loaded specimen

    NASA Astrophysics Data System (ADS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, Dave N.

    1992-10-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-Curve determination. The crack mouth opening displacements (CMOD's) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMOD's, and crack displacement profiles are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length, thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  5. Analytical stress intensity solution for the Stable Poisson Loaded specimen

    NASA Astrophysics Data System (ADS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, David N.

    1993-04-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-curve determination. The crack mouth opening displacements (CMODs) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMODs, and crack displacement profiles, are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  6. Parasitic load control system for exhaust temperature control

    DOEpatents

    Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.

    2009-04-28

    A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.

  7. Analytical stress intensity solution for the Stable Poisson Loaded specimen

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, David N.

    1993-01-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-curve determination. The crack mouth opening displacements (CMODs) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMODs, and crack displacement profiles, are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  8. [Critical incidents].

    PubMed

    Scheidegger, D

    2005-03-01

    In medicine real severe mishaps are rare. On the other hand critical incidents are frequent. Anonymous critical incident reporting systems allow us to learn from these mishaps. This learning process will make our daily clinical work safer Unfortunately, before these systems can be used efficiently our professional culture has to be changed. Everyone in medicine has to admit that errors do occur to see the need for an open discussion. If we really want to learn from errors, we cannot punish the individual, who reported his or her mistake. The interest is primarily in what has happened and why it has happened and not who has committed this mistake. The cause for critical incidents in medicine is in over 80% the human factor Poor communication, work under enormous stress, conflicts and hierarchies are the main cause. This has been known for many years, therefore have already 15 years ago high-tech industries, like e.g. aviation, started to invest in special courses on team training. Medicine is a typical profession were until now only the individual performance decided about the professional career Communication, conflict management, stress management, decision making, risk management, team and team resource management were subjects that have never been taught during our preor postgraduate education. These points are the most important ones for an optimal teamwork. A multimodular course designed together with Swissair (Human Aspect Development medical, HADmedical) helps to cover, as in aviation, the soft factor and behavioural education in medicine and to prepare professionals in health care to work as a real team.

  9. Combined mechanical loading of composite tubes

    NASA Technical Reports Server (NTRS)

    Derstine, Mark S.; Pindera, Marek-Jerzy; Bowles, David E.

    1988-01-01

    An analytical/experimental investigation was performed to study the effect of material nonlinearities on the response of composite tubes subjected to combined axial and torsional loading. The effect of residual stresses on subsequent mechanical response was included in the investigation. Experiments were performed on P75/934 graphite-epoxy tubes with a stacking sequence of (15/0/ + or - 10/0/ -15), using pure torsion and combined axial/torsional loading. In the presence of residual stresses, the analytical model predicted a reduction in the initial shear modulus. Experimentally, coupling between axial loading and shear strain was observed in laminated tubes under combined loading. The phenomenon was predicted by the nonlinear analytical model. The experimentally observed linear limit of the global shear response was found to correspond to the analytically predicted first ply failure. Further, the failure of the tubes was found to be path dependent above a critical load level.

  10. Recent Loads Calibration Experience With a Delta Wing Airplane

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.; Kuhl, Albert E.

    1977-01-01

    Aircraft which are designed for supersonic and hypersonic flight are evolving with delta wing configurations. An integral part of the evolution of all new aircraft is the flight test phase. Included in the flight test phase is an effort to identify and evaluate the loads environment of the aircraft. The most effective way of examining the loads environment is to utilize calibrated strain gages to provide load magnitudes. Using strain gage data to accomplish this has turned out to be anything but a straightforward task. The delta wing configuration has turned out to be a very difficult type of wing structure to calibrate. Elevated structural temperatures result in thermal effects which contaminate strain gage data being used to deduce flight loads. The concept of thermally calibrating a strain gage system is an approach to solving this problem. This paper will address how these problems were approached on a program directed toward measuring loads on the wing of a large, flexible supersonic aircraft. Structural configurations typical of high-speed delta wing aircraft will be examined. The temperature environment will be examined to see how it induces thermal stresses which subsequently cause errors in loads equations used to deduce the flight loads.

  11. Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers

    NASA Astrophysics Data System (ADS)

    Tsuji, Hideto; Noda, Soma; Kimura, Takayuki; Sobue, Tadashi; Arakawa, Yuki

    2017-03-01

    D-configured poly(D-lactic acid) (D-PLA) and poly(D-2-hydroxy-3-methylbutanoic acid) (D-P2H3MB) crystallized separately into their homo-crystallites when crystallized by precipitation or solvent evaporation, whereas incorporation of L-configured poly(L-2-hydroxybutanoic acid) (L-P2HB) in D-configured D-PLA and D-P2H3MB induced co-crystallization or ternary stereocomplex formation between D-configured D-PLA and D-P2H3MB and L-configured L-P2HB. However, incorporation of D-configured poly(D-2-hydroxybutanoic acid) (D-P2HB) in D-configured D-PLA and D-P2H3MB did not cause co-crystallization between D-configured D-PLA and D-P2H3MB and D-configured D-P2HB but separate crystallization of each polymer occurred. These findings strongly suggest that an optically active polymer (L-configured or D-configured polymer) like unsubstituted or substituted optically active poly(lactic acid)s can act as “a configurational or helical molecular glue” for two oppositely configured optically active polymers (two D-configured polymers or two L-configured polymers) to allow their co-crystallization. The increased degree of freedom in polymer combination is expected to assist to pave the way for designing polymeric composites having a wide variety of physical properties, biodegradation rate and behavior in the case of biodegradable polymers.

  12. Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers.

    PubMed

    Tsuji, Hideto; Noda, Soma; Kimura, Takayuki; Sobue, Tadashi; Arakawa, Yuki

    2017-03-24

    D-configured poly(D-lactic acid) (D-PLA) and poly(D-2-hydroxy-3-methylbutanoic acid) (D-P2H3MB) crystallized separately into their homo-crystallites when crystallized by precipitation or solvent evaporation, whereas incorporation of L-configured poly(L-2-hydroxybutanoic acid) (L-P2HB) in D-configured D-PLA and D-P2H3MB induced co-crystallization or ternary stereocomplex formation between D-configured D-PLA and D-P2H3MB and L-configured L-P2HB. However, incorporation of D-configured poly(D-2-hydroxybutanoic acid) (D-P2HB) in D-configured D-PLA and D-P2H3MB did not cause co-crystallization between D-configured D-PLA and D-P2H3MB and D-configured D-P2HB but separate crystallization of each polymer occurred. These findings strongly suggest that an optically active polymer (L-configured or D-configured polymer) like unsubstituted or substituted optically active poly(lactic acid)s can act as "a configurational or helical molecular glue" for two oppositely configured optically active polymers (two D-configured polymers or two L-configured polymers) to allow their co-crystallization. The increased degree of freedom in polymer combination is expected to assist to pave the way for designing polymeric composites having a wide variety of physical properties, biodegradation rate and behavior in the case of biodegradable polymers.

  13. Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers

    PubMed Central

    Tsuji, Hideto; Noda, Soma; Kimura, Takayuki; Sobue, Tadashi; Arakawa, Yuki

    2017-01-01

    D-configured poly(D-lactic acid) (D-PLA) and poly(D-2-hydroxy-3-methylbutanoic acid) (D-P2H3MB) crystallized separately into their homo-crystallites when crystallized by precipitation or solvent evaporation, whereas incorporation of L-configured poly(L-2-hydroxybutanoic acid) (L-P2HB) in D-configured D-PLA and D-P2H3MB induced co-crystallization or ternary stereocomplex formation between D-configured D-PLA and D-P2H3MB and L-configured L-P2HB. However, incorporation of D-configured poly(D-2-hydroxybutanoic acid) (D-P2HB) in D-configured D-PLA and D-P2H3MB did not cause co-crystallization between D-configured D-PLA and D-P2H3MB and D-configured D-P2HB but separate crystallization of each polymer occurred. These findings strongly suggest that an optically active polymer (L-configured or D-configured polymer) like unsubstituted or substituted optically active poly(lactic acid)s can act as “a configurational or helical molecular glue” for two oppositely configured optically active polymers (two D-configured polymers or two L-configured polymers) to allow their co-crystallization. The increased degree of freedom in polymer combination is expected to assist to pave the way for designing polymeric composites having a wide variety of physical properties, biodegradation rate and behavior in the case of biodegradable polymers. PMID:28338051

  14. Configuration effects on satellite charging response

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.

    1980-01-01

    The response of various spacecraft configurations to a charging environment in sunlight was studied using the NASA Charging Analyzer Program code. The configuration features geometry, type of stabilization, and overall size. Results indicate that sunlight charging response is dominated by differential charging effects. Shaded insulation charges negatively result in the formation of potential barriers which suppress photoelectron emission from sunlit surfaces. Sunlight charging occurs relatively slowly: with 30 minutes of charging simulations, in none of the configurations modeled did the most negative surface cell reach half its equilibrium potential in eclipse.

  15. Triple configuration coexistence in {sup 44}S

    SciTech Connect

    Santiago-Gonzalez, D.; Wiedenhoever, I.; Abramkina, V.; Avila, M. L.; Cottle, P. D.; Kemper, K. W.; Rojas, A.; Volya, A.; Baugher, T.; Brown, B. A.; Gade, A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Meharchand, R.; Bazin, D.; Weisshaar, D.; Simpson, E. C.; Tostevin, J. A.

    2011-06-15

    The neutron-rich N=28 nucleus {sup 44}S was studied using the two-proton knockout reaction from {sup 46}Ar at intermediate beam energy. We report the observation of four new excited states, one of which is a strongly prolate deformed 4{sup +} state, as indicated by a shell-model calculation. Its deformation originates in a neutron configuration which is fundamentally different from the ''intruder'' configuration responsible for the ground-state deformation. Consequently, we do not have three coexisting shapes in {sup 44}S, but three coexisting configurations, corresponding to zero-, one-, and two-neutron particle-hole excitations.

  16. PDSS configuration control plan and procedures

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The payload development support system (PDSS) configuration control plan and procedures are presented. These plans and procedures establish the process for maintaining configuration control of the PDSS system, especially the Spacelab experiment interface device's (SEID) RAU, HRM, and PDI interface simulations and the PDSS ECOS DEP Services simulation. The plans and procedures as specified are designed to provide a simplified but complete configuration control process. The intent is to require a minimum amount of paperwork but provide total traceability of PDSS during experiment test activities.

  17. Benchmarking criticality safety calculations with subcritical experiments

    SciTech Connect

    Mihalczo, J.T.

    1984-06-01

    Calculation of the neutron multiplication factor at delayed criticality may be necessary for benchmarking calculations but it may not be sufficient. The use of subcritical experiments to benchmark criticality safety calculations could result in substantial savings in fuel material costs for experiments. In some cases subcritical configurations could be used to benchmark calculations where sufficient fuel to achieve delayed criticality is not available. By performing a variety of measurements with subcritical configurations, much detailed information can be obtained which can be compared directly with calculations. This paper discusses several measurements that can be performed with subcritical assemblies and presents examples that include comparisons between calculation and experiment where possible. Where not, examples from critical experiments have been used but the measurement methods could also be used for subcritical experiments.

  18. A configural dominant account of contextual cueing: Configural cues are stronger than colour cues.

    PubMed

    Kunar, Melina A; John, Rebecca; Sweetman, Hollie

    2014-01-01

    Previous work has shown that reaction times to find a target in displays that have been repeated are faster than those for displays that have never been seen before. This learning effect, termed "contextual cueing" (CC), has been shown using contexts such as the configuration of the distractors in the display and the background colour. However, it is not clear how these two contexts interact to facilitate search. We investigated this here by comparing the strengths of these two cues when they appeared together. In Experiment 1, participants searched for a target that was cued by both colour and distractor configural cues, compared with when the target was only predicted by configural information. The results showed that the addition of a colour cue did not increase contextual cueing. In Experiment 2, participants searched for a target that was cued by both colour and distractor configuration compared with when the target was only cued by colour. The results showed that adding a predictive configural cue led to a stronger CC benefit. Experiments 3 and 4 tested the disruptive effects of removing either a learned colour cue or a learned configural cue and whether there was cue competition when colour and configural cues were presented together. Removing the configural cue was more disruptive to CC than removing colour, and configural learning was shown to overshadow the learning of colour cues. The data support a configural dominant account of CC, where configural cues act as the stronger cue in comparison to colour when they are presented together.

  19. Risk management for operations of the LANL Critical Experiments Facility

    SciTech Connect

    Paternoster, R.; Butterfield, K.

    1998-12-31

    The Los Alamos Critical Experiments Facility (LACEF) currently operates two burst reactors (Godiva-IV and Skua), one solution assembly [the Solution High-Energy Burst Assembly (SHEBA)], two fast-spectrum benchmark assemblies (Flattop and Big Ten), and five general-purpose remote assembly machines that may be configured with nuclear materials and assembled by remote control. Special nuclear materials storage vaults support these and other operations at the site. With this diverse set of operations, several approaches are possible in the analysis and management of risk. The most conservative approach would be to write a safety analysis report (SAR) for each assembly and experiment. A more cost-effective approach is to analyze the probability and consequences of several classes of operations representative of operations on each critical assembly machine and envelope the bounding case accidents. Although the neutron physics of these machines varies widely, the operations performed at LACEF fall into four operational modes: steady-state mode, approach-to-critical mode, prompt burst mode, and nuclear material operations, which can include critical assembly fuel loading. The operational sequences of each mode are very nearly identical, whether operated on one assembly machine or another. The use of an envelope approach to accident analysis is facilitated by the use of classes of operations and the use of bounding case consequence analysis. A simple fault tree analysis of operational modes helps resolve which operations are sensitive to human error and which are initiated by hardware of software failures. Where possible, these errors and failures are blocked by TSR LCOs. Future work will determine the probability of accidents with various initiators.

  20. The Effect of Load Position on Biomechanical and Physiological Measures during a Short Duration March

    DTIC Science & Technology

    2001-05-01

    completed subjective evaluations of the load location after each loaded trial. The questionnaire asked about overall acceptability, balance, thermal comfort , load... thermal comfort when marching Results The results of this study are summarized in Table 2. Oxygen consumption levels across load distributions were not...acceptable in 7 out of 8 categories that were examined. The alternate configuration ranked most acceptable in all categories except thermal comfort , where

  1. CICADA -- Configurable Instrument Control and Data Acquisition

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Roberts, William H.; Sebo, Kim M.

    CICADA (Young et al. 1997) is a multi-process, distributed application for the control of astronomical data acquisition systems. It comprises elements that control the operation of, and data flow from CCD camera systems; and the operation of telescope instrument control systems. CICADA can be used to dynamically configure support for astronomical instruments that can be made up of multiple cameras and multiple instrument controllers. Each camera is described by a hierarchy of parts that are each individually configured and linked together. Most of CICADA is written in C++ and much of the configurability of CICADA comes from the use of inheritance and polymorphism. An example of a multiple part instrument configuration -- a wide field imager (WFI) -- is described here. WFI, presently under construction, is made up of eight 2k x 4k CCDs with dual SDSU II controllers and will be used at Siding Spring's ANU 40in and AAO 3.9m telescopes.

  2. Shuttle Liquid Fly Back Booster Configuration Options

    NASA Technical Reports Server (NTRS)

    Healy, Thomas J., Jr.

    1998-01-01

    This paper surveys the basic configuration options available to a Liquid Fly Back Booster (LFBB), integrated with the Space Shuttle system. The background of the development of the LFBB concept is given. The influence of the main booster engine (BME) installations and the fly back engine (FBE) installation on the aerodynamic configurations are also discussed. Limits on the LFBB configuration design space imposed by the existing Shuttle flight and ground elements are also described. The objective of the paper is to put the constrains and design space for an LFBB in perspective. The object of the work is to define LFBB configurations that significantly improve safety, operability, reliability and performance of the Shuttle system and dramatically lower operations costs.

  3. Habitat Demonstration Unit - Deep Space Habitat Configuration

    NASA Video Gallery

    This animated video shows the process of transporting, assembling and testing the Habitat Demonstration Unit - Deep Space Habitat (HDU DSH) configuration, which will be deployed during the 2011 Des...

  4. Status Configurations, Military Service and Higher Education

    PubMed Central

    Wang, Lin; Elder, Glen H.; Spence, Naomi J.

    2012-01-01

    The U.S. Armed Forces offer educational and training benefits as incentives for service. This study investigates the influence of status configurations on military enlistment and their link to greater educational opportunity. Three statuses (socioeconomic status of origin, cognitive ability and academic performance) have particular relevance for life course options. We hypothesize that young men with inconsistent statuses are more likely to enlist than men with consistent status profiles, and that military service improves access to college for certain configurations. Analyses of the National Longitudinal Study of Adolescent Health (Add Health) show (1. that several status configurations markedly increased the likelihood of military enlistment and (2. within status configurations, recruits were generally more likely to enroll in higher education than nonveterans, with associate degrees being more likely. PMID:24511161

  5. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  6. Molecular Electronic Terms and Molecular Orbital Configurations.

    ERIC Educational Resources Information Center

    Mazo, R. M.

    1990-01-01

    Discussed are the molecular electronic terms which can arise from a given electronic configuration. Considered are simple cases, molecular states, direct products, closed shells, and open shells. Two examples are provided. (CW)

  7. Space shuttle configuration accounting functional design specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

  8. Load sensing system

    DOEpatents

    Sohns, Carl W.; Nodine, Robert N.; Wallace, Steven Allen

    1999-01-01

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

  9. Application of measurement configuration optimization for accurate metrology of sub-wavelength dimensions in multilayer gratings using optical scatterometry.

    PubMed

    Zhu, Jinlong; Shi, Yating; Goddard, Lynford L; Liu, Shiyuan

    2016-09-01

    Critical dimension measurement accuracy in optical scatterometry relies not only on the systematic noise level of instruments and the reliability of forward modeling algorithms, but also heavily on the measurement configuration. To construct a set of potentially high-accuracy configurations, we apply a general measurement configuration optimization method based on error propagation theory and singular value decomposition, by which the measurement accuracy is approximated as a function of a pseudo Jacobian with respect to the measurement configurations. Simulations and experiments for the optical metrology of a sub-wavelength deep-etched multilayer grating establish the feasibility of the proposed method.

  10. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  11. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  12. Nonlinear dynamics behavior analysis of the spatial configuration of a tendril-bearing plant

    NASA Astrophysics Data System (ADS)

    Feng, Jingjing; Zhang, Qichang; Wang, Wei; Hao, Shuying

    2017-03-01

    Tendril-bearing plants appear to have a spiraling shape when tendrils climb along a support during growth. The growth characteristics of a tendril-bearer can be simplified to a model of a thin elastic rod with a cylindrical constraint. In this paper, the connection between some typical configuration characteristics of tendrils and complex nonlinear dynamic behavior are qualitatively analyzed. The space configuration problem of tendrils can be explained through the study of the nonlinear dynamic behavior of the thin elastic rod system equation. In this study, the complex non-Z2 symmetric critical orbits in the system equation under critical parameters were presented. A new function transformation method that can effectively maintain the critical orbit properties was proposed, and a new nonlinear differential equations system containing complex nonlinear terms can been obtained to describe the cross section position and direction of a rod during climbing. Numerical simulation revealed that the new system can describe the configuration of a rod with reasonable accuracy. To adequately explain the growing regulation of the rod shape, the critical orbit and configuration of rod are connected in a direct way. The high precision analytical expressions of these complex non-Z2 symmetric critical orbits are obtained by introducing a suitable analytical method, and then these expressions are used to draw the corresponding three-dimensional configuration figures of an elastic thin rod. Combined with actual tendrils on a live plant, the space configuration of the winding knots of tendril is explained by the concept of heteroclinic orbit from the perspective of nonlinear dynamics, and correctness of the theoretical analysis was verified. This theoretical analysis method could also be effectively applied to other similar slender structures.

  13. Centaur Standard Shroud (CSS) static ultimate load structural tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A series of tests were conducted on the jettisonable metallic shroud used on the Titan/Centaur launch vehicle to verify its structural capabilities and to evaluate its structural interaction with the Centaur stage. A flight configured shroud and the interfacing Titan/Centaur structural assemblies were subjected to tests consisting of combinations of applied axial and shear loads to design ultimate values, including a set of tests on thermal conditions and two dynamic response tests to verify the analytical stiffness model. The strength capabilities were demonstrated at ultimate (125 percent of design limit) loads. It was also verified that the spring rate of the flight configured shroud-to-Centaur forward structural deflections of the specimen became nonlinear, as expected, above limit load values. This test series qualification program verified that the Titan/Centaur shroud and the Centaur and Titan interface components are qualified structurally at design ultimate loads.

  14. Missions and Mobility Configurations for RED HORSE

    DTIC Science & Technology

    1988-04-01

    use in other research reports or educational pursuits contingent upon the following stipulations: - Reproduction rights do not extend to any copyrighted...MOBILITY CONFIGURATIONS FOR RED HORSE AUTHOR(S) MAJOR JAMES T. RYBURN, USAF FACULTY ADVISOR LT COL ROBERT L. PETERS, ACSC/3823 STUS SPONSOR COL ROBERT J...Classification) MISSIONS AND MOBILITY CONFIGURATIONS FOR RED HORSE 12. PERSONAL AUTHOR(S) Ryburn, James T., Maj or, USAF 13a. TYPE OF REPORT J13b. TIME

  15. Continuous Security and Configuration Monitoring of HPC Clusters

    SciTech Connect

    Garcia-Lomeli, H. D.; Bertsch, A. D.; Fox, D. M.

    2015-05-08

    Continuous security and configuration monitoring of information systems has been a time consuming and laborious task for system administrators at the High Performance Computing (HPC) center. Prior to this project, system administrators had to manually check the settings of thousands of nodes, which required a significant number of hours rendering the old process ineffective and inefficient. This paper explains the application of Splunk Enterprise, a software agent, and a reporting tool in the development of a user application interface to track and report on critical system updates and security compliance status of HPC Clusters. In conjunction with other configuration management systems, the reporting tool is to provide continuous situational awareness to system administrators of the compliance state of information systems. Our approach consisted of the development, testing, and deployment of an agent to collect any arbitrary information across a massively distributed computing center, and organize that information into a human-readable format. Using Splunk Enterprise, this raw data was then gathered into a central repository and indexed for search, analysis, and correlation. Following acquisition and accumulation, the reporting tool generated and presented actionable information by filtering the data according to command line parameters passed at run time. Preliminary data showed results for over six thousand nodes. Further research and expansion of this tool could lead to the development of a series of agents to gather and report critical system parameters. However, in order to make use of the flexibility and resourcefulness of the reporting tool the agent must conform to specifications set forth in this paper. This project has simplified the way system administrators gather, analyze, and report on the configuration and security state of HPC clusters, maintaining ongoing situational awareness. Rather than querying each cluster independently, compliance checking

  16. Intranet approach to the GTC configuration management

    NASA Astrophysics Data System (ADS)

    Medina, Alvaro

    1998-08-01

    Due to its size and complexity the GTC Project represents a challenge for configuration management. On the one hand there is a need to record and store the enormous amount of configuration documentation generated during the different phases of the project (technical specifications, engineering drawings, interface control documents, acceptance tests, etc.), so that it can be easily accessed on-line by an Project Office member. Moreover, this documentation has to be properly related to the different configuration elements and interfaces composing the GTC's Product Tree. On the other hand, the need arises to simplify all the configuration control procedures established by System Engineering and their associated work flow (document and baseline approval, configuration change requests and evaluation, approval or rejection of those changes, etc.). Intranet technology has proven to be an excellent and innovative tool for satisfying both needs in an integrated manner. This integrated philosophy of the GTC intranet application helps each member of the Project Office fulfill his or her own responsibilities, reduces paper work and minimizes errors. It also assists in locating and accessing any configuration information with a single tool (any standard Internet navigator) regardless of the original format of such information. This paper presents the main features of this intranet application, as well as the intended future extension to other management disciplines (project management, quality management, etc.).

  17. A systems engineering analysis of three-point and four-point wind turbine drivetrain configurations

    DOE PAGES

    Guo, Yi; Parsons, Tyler; Dykes, Katherine; ...

    2016-08-24

    This study compares the impact of drivetrain configuration on the mass and capital cost of a series of wind turbines ranging from 1.5 MW to 5.0 MW power ratings for both land-based and offshore applications. The analysis is performed with a new physics-based drivetrain analysis and sizing tool, Drive Systems Engineering (DriveSE), which is part of the Wind-Plant Integrated System Design & Engineering Model. DriveSE uses physics-based relationships to size all major drivetrain components according to given rotor loads simulated based on International Electrotechnical Commission design load cases. The model's sensitivity to input loads that contain a high degree ofmore » variability was analyzed. Aeroelastic simulations are used to calculate the rotor forces and moments imposed on the drivetrain for each turbine design. DriveSE is then used to size all of the major drivetrain components for each turbine for both three-point and four-point configurations. The simulation results quantify the trade-offs in mass and component costs for the different configurations. On average, a 16.7% decrease in total nacelle mass can be achieved when using a three-point drivetrain configuration, resulting in a 3.5% reduction in turbine capital cost. This analysis is driven by extreme loads and does not consider fatigue. Thus, the effects of configuration choices on reliability and serviceability are not captured. Furthermore, a first order estimate of the sizing, dimensioning and costing of major drivetrain components are made which can be used in larger system studies which consider trade-offs between subsystems such as the rotor, drivetrain and tower.« less

  18. A systems engineering analysis of three-point and four-point wind turbine drivetrain configurations

    SciTech Connect

    Guo, Yi; Parsons, Tyler; Dykes, Katherine; King, Ryan N.

    2016-08-24

    This study compares the impact of drivetrain configuration on the mass and capital cost of a series of wind turbines ranging from 1.5 MW to 5.0 MW power ratings for both land-based and offshore applications. The analysis is performed with a new physics-based drivetrain analysis and sizing tool, Drive Systems Engineering (DriveSE), which is part of the Wind-Plant Integrated System Design & Engineering Model. DriveSE uses physics-based relationships to size all major drivetrain components according to given rotor loads simulated based on International Electrotechnical Commission design load cases. The model's sensitivity to input loads that contain a high degree of variability was analyzed. Aeroelastic simulations are used to calculate the rotor forces and moments imposed on the drivetrain for each turbine design. DriveSE is then used to size all of the major drivetrain components for each turbine for both three-point and four-point configurations. The simulation results quantify the trade-offs in mass and component costs for the different configurations. On average, a 16.7% decrease in total nacelle mass can be achieved when using a three-point drivetrain configuration, resulting in a 3.5% reduction in turbine capital cost. This analysis is driven by extreme loads and does not consider fatigue. Thus, the effects of configuration choices on reliability and serviceability are not captured. Furthermore, a first order estimate of the sizing, dimensioning and costing of major drivetrain components are made which can be used in larger system studies which consider trade-offs between subsystems such as the rotor, drivetrain and tower.

  19. Mechanical Loading for Peripheral Nerve Stabilization and Regeneration

    DTIC Science & Technology

    2012-10-01

    design, nerves are readily lengthened, but the device configuration is not amenable to reattachment (i.e., there is nowhere for outgrowing axons to...Award Number: W81XWH-10-1-0773 TITLE: Mechanical Loading for Peripheral Nerve Stabilization and...TITLE AND SUBTITLE Mechanical Loading for Peripheral Nerve Stabilization and Regeneration 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-10

  20. Experimental and analytical investigations of sleeved pipeline configurations

    SciTech Connect

    Hart, J.D.; Powell, G.H.; Rinawi, A.K.

    1995-12-31

    A series of buckling experiments has been conducted on 60 foot long 48-inch diameter sleeved pipe specimens at Southwest Research Institute in San Antonio, Texas. The tests included the application of internal pressure and axial force to simulate fully restrained conditions, followed by the application of four-point bending loads up to and beyond wrinkling of the specimens. The results from the first two of these tests are presented together with results from analytical correlation studies in which the tests were simulated using beam bending models. The comparisons show close agreement between the analyses and the experiments, provided that (a) anisotropy of the steel properties is accounted for and (b) a special wrinkling segment is included in the bending models. It is concluded that the analytical approach can be used with a substantial degree of confidence to analyze pipeline configurations up to the point of incipient wrinkling.

  1. Kinematic functions for redundancy resolution using configuration control

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1994-01-01

    The invention fulfills new goals for redundancy resolution based on manipulator dynamics and end-effector characteristics. These goals are accomplished by employing the recently developed configuration control approach. Redundancy resolution is achieved by controlling the joint inertia matrix of the end-effector mass matrix that affect the inertial torques or by reducing the joint torques due to gravity loading and payload. The manipulator mechanical-advantage and velocity-ratio are also used as performance measures to be improved by proper utilization of redundancy. Furthermore, end-effector compliance, sensitivity, and impulsive force at impact are introduced as redundancy resolution criteria. The new goals for redundancy resolution allow a more efficient utilization of the redundant joints based on the desired task requirements.

  2. Response of long shallow cylindrical panels to radial line loads

    NASA Technical Reports Server (NTRS)

    Johnson, E. R.; Hyer, M. W.; Carper, D. M.

    1984-01-01

    The large displacement static response of shallow orthotropic panels subjected to lateral loading is examined both theoretically and experimentally. The panels are circular cylindrical open shells which are also thin and long. The straight edges are simply supported at a fixed distance apart, and the curved edges are free. The lateral load is a spatially uniform line load acting along the generator direction of the cylinder, and is directed radially inward toward the center of curvature. The load induces a circumferential thrust, and the panel can, and does, snap-through to an inverted configuration at the buckling load. The effect of load position on the response is also examined. The test panels discussed in the paper are /(90/0)3/S graphite-epoxy laminates. Nominal dimensions are a radius of 60 in., a thickness of 0.060 in., and an arc length of 12 in. Very good agreement between theory and experiment is achieved.

  3. Learjet Model 55 Wing Analysis with Landing Loads

    NASA Technical Reports Server (NTRS)

    Boroughs, R. R.

    1985-01-01

    The NASTRAN analysis was used to determine the impact of new landing loads on the Learjet Model 55 wing. These new landing loads were the result of a performance improvement effort to increase the landing weight of the aircraft to 18,000 lbs. from 17,000 lbs. and extend the life of the tires and brakes by incorporating larger tires and heavy duty brakes. Landing loads for the original 17,000 lb. airplane landing configuration were applied to the full airplane NASTRAN model. The analytical results were correlated with the strain gage data from the original landing load static tests. The landing loads for the 18,000 lb. airplane were applied to the full airplane NASTRAN model, and a comparison was made with the original Model 55 data. The results of this comparison enable Learjet to determine the difference in stress distribution in the wing due to these two different sets of landing loads.

  4. Civil applications of high-speed rotorcraft and powered-lift aircraft configurations

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1987-01-01

    Advanced subsonic vertical and short takeoff and landing (V/STOL) aircraft configurations offer new transportation options for civil applications. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, V/STOL aircraft, and short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for relieving congestion in high population-density regions and providing transportation opportunities for low population-density regions.

  5. Civil applications of high speed rotorcraft and powered lift aircraft configurations

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1988-01-01

    Advanced subsonic vertical and short takeoff and landing (V/STOL) aircraft configurations offer new transportation options for civil applications. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, V/STOL aircraft, and short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for relieving congestion in high population-density regions and providing transportation opportunities for low population-density regions.

  6. V/STOL aircraft configurations and opportunities in the Pacific Basin

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1988-01-01

    Advanced aircraft configurations offer new transportation options for the Pacific Basin. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, subsonic vertical and short takeoff and landing (V/STOL) aircraft, and subsonic short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for satisfying many of the transportation requirements of the Pacific Basin; as such, they could revolutionize short-haul transportation in that region.

  7. V/STOL aircraft configurations and opportunities in the Pacific Basin

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1987-01-01

    Advanced aircraft configurations offer new transportation options for the Pacific Basin. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, subsonic vertical and short takeoff and landing (V/STOL) aircraft, and subsonic short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for satisfying many of the transportation requirements of the Pacific Basin; as such, they could revolutionize short-haul transportation in that region.

  8. Load Model Data Tool

    SciTech Connect

    David Chassin, Pavel Etingov

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to be provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.

  9. Load Induced Blindness

    PubMed Central

    Macdonald, James S. P.; Lavie, Nilli

    2008-01-01

    Although the perceptual load theory of attention has stimulated a great deal of research, evidence for the role of perceptual load in determining perception has typically relied on indirect measures that infer perception from distractor effects on reaction times or neural activity (see N. Lavie, 2005d`) was consistently reduced with high, compared to low, perceptual load but was unaffected by the level of working memory load. Because alternative accounts in terms of expectation, memory, response bias, and goal-neglect due to the more strenuous high load task were ruled out, these experiments clearly demonstrate that high perceptual load determines conscious perception, impairing the ability to merely detect the presence of a stimulus—a phenomenon of load induced blindness. PMID:18823196

  10. Prehension synergies and control with referent hand configurations

    PubMed Central

    Friedman, Jason; Kim, Sun Wook; Feldman, Anatol G.; Zatsiorsky, Vladimir M.

    2010-01-01

    We used the framework of the equilibrium-point hypothesis (in its updated form based on the notion of referent configuration) to investigate the multi-digit synergies at two levels of a hypothetical hierarchy involved in prehensile actions. Synergies were analyzed at the thumb–virtual finger (VF) level (VF is an imaginary digit with the mechanical action equivalent to that of the four actual fingers) and at the individual finger level. The subjects performed very quick vertical movements of a handle into a target. A load could be attached off-center to provide a pronation or supination torque. In a few trials, the handle was unexpectedly fixed to the table and the digits slipped off the sensors. In such trials, the hand stopped at a higher vertical position and rotated into pronation or supination depending on the expected torque. The aperture showed non-monotonic changes with a large, fast decrease and further increase, ending up with a smaller distance between the thumb and the fingers as compared to unperturbed trials. Multi-digit synergies were quantified using indices of co-variation between digit forces and moments of force across unperturbed trials. Prior to the lifting action, high synergy indices were observed at the individual finger level while modest indices were observed at the thumb–VF level. During the lifting action, the synergies at the individual finger level disappeared while the synergy indices became higher at the thumb–VF level. The results support the basic premise that, within a given task, setting a referent configuration may be described with a few referent values of variables that influence the equilibrium state, to which the system is attracted. Moreover, the referent configuration hypothesis can help interpret the data related to the trade-off between synergies at different hierarchical levels. PMID:20033397

  11. Structural configuration study for an acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Biaobiao

    A continuous structure has several response characteristics that make it a candidate for a sensor used to locate an acoustic source. Primary goals in developing such a sensor structure are to ensure that the response is rich enough to provide information about the impinging acoustic wave and to detect the direction of travel without being too sensitive to background noise. As such, there are several factors that must be examined with regard to sensor configuration and measurement requirements. This dissertation describes a set of studies that examine various configuration requirements for such a sensor. Some of the parameters of interest include the size, or aperture of the structure, boundary conditions, material properties, and thickness. The response of the structure to transient sinusoidal wave excitations will be examined analytically. The time-domain response of an Euler-Bernoulli beam excited by a traveling sinusoidal excitation is obtained based on modal superposition and verified by using a finite element method. Then, an approach using simple basis functions will be applied to achieve the goal of more efficient response and force identification. The moving force is identified in the time domain by extending previous inverse approaches. The Tikhonov regularization technique provides bounds to the ill-conditioned results in the identification problem. Both simulated displacement and velocity are considered for use in the inverse. To evaluate the method and examine various configurations, simulations with different numbers of sinusoidal half-cycles exciting the sensor structure are studied. Various levels of random noise are also added to the simulated displacements and velocities responses in order to study the effect of noise in moving wave load identification. Such a new approach in acoustic sensing has applications in the areas of security and disaster recovery.

  12. Configuration management issues and objectives for a real-time research flight test support facility

    NASA Technical Reports Server (NTRS)

    Yergensen, Stephen; Rhea, Donald C.

    1988-01-01

    Presented are some of the critical issues and objectives pertaining to configuration management for the NASA Western Aeronautical Test Range (WATR) of Ames Research Center. The primary mission of the WATR is to provide a capability for the conduct of aeronautical research flight test through real-time processing and display, tracking, and communications systems. In providing this capability, the WATR must maintain and enforce a configuration management plan which is independent of, but complimentary to, various research flight test project configuration management systems. A primary WATR objective is the continued development of generic research flight test project support capability, wherein the reliability of WATR support provided to all project users is a constant priority. Therefore, the processing of configuration change requests for specific research flight test project requirements must be evaluated within a perspective that maintains this primary objective.

  13. Impaired Spatial and Non-Spatial Configural Learning in Patients with Hippocampal Pathology

    ERIC Educational Resources Information Center

    Kumaran, Dharshan; Hassabis, Demis; Spiers, Hugo J.; Vann, Seralynne D.; Vargha-Khadem, Faraneh; Maguire, Eleanor A.

    2007-01-01

    The hippocampus has been proposed to play a critical role in memory through its unique ability to bind together the disparate elements of an experience. This hypothesis has been widely examined in rodents using a class of tasks known as "configural" or "non-linear", where outcomes are determined by specific combinations of elements, rather than…

  14. Analysis of HIF-1 inhibition by manassantin A and analogues with modified tetrahydrofuran configurations

    PubMed Central

    Kasper, Amanda C.; Moon, Eui Jung; Hu, Xiangqian; Park, Yongho; Wooten, Ceshea M.; Kim, Hyoungsu; Yang, Weitao; Dewhirst, Mark W.; Hong, Jiyong

    2009-01-01

    We have shown that manassantin A downregulated the HIF-1α expression and inhibited the secretion of VEGF. We have also demonstrated that the 2,3-cis-3,4-trans-4,5-cis-configuration of the tetrahydrofuran is critical to the HIF-1 inhibition of manassantin A. PMID:19423348

  15. Analysis of HIF-1 inhibition by manassantin A and analogues with modified tetrahydrofuran configurations.

    PubMed

    Kasper, Amanda C; Moon, Eui Jung; Hu, Xiangqian; Park, Yongho; Wooten, Ceshea M; Kim, Hyoungsu; Yang, Weitao; Dewhirst, Mark W; Hong, Jiyong

    2009-07-15

    We have shown that manassantin A downregulated the HIF-1alpha expression and inhibited the secretion of VEGF. We have also demonstrated that the 2,3-cis-3,4-trans-4,5-cis-configuration of the tetrahydrofuran is critical to the HIF-1 inhibition of manassantin A.

  16. Mechanical Predictors of Discomfort during Load Carriage

    PubMed Central

    Wettenschwiler, Patrick D.; Lorenzetti, Silvio; Stämpfli, Rolf; Rossi, René M.; Ferguson, Stephen J.; Annaheim, Simon

    2015-01-01

    Discomfort during load carriage is a major issue for activities using backpacks (e.g. infantry maneuvers, children carrying school supplies, or outdoor sports). It is currently unclear which mechanical parameters are responsible for subjectively perceived discomfort. The aim of this study was to identify objectively measured mechanical predictors of discomfort during load carriage. We compared twelve different configurations of a typical load carriage system, a commercially available backpack with a hip belt. The pressure distribution under the hip belt and the shoulder strap, as well as the tensile force in the strap and the relative motion of the backpack were measured. Multiple linear regression analyses were conducted to investigate possible predictors of discomfort. The results demonstrate that static peak pressure, or alternatively, static strap force is a significant (p<0.001) predictor of discomfort during load carriage in the shoulder and hip region, accounting for 85% or more of the variation in discomfort. As an additional finding, we discovered that the regression coefficients of these predictors are significantly smaller for the hip than for the shoulder region. As static peak pressure is measured directly on the body, it is less dependent on the type of load carriage system than static strap force. Therefore, static peak pressure is well suited as a generally applicable, objective mechanical parameter for the optimization of load carriage system design. Alternatively, when limited to load carriage systems of the type backpack with hip belt, static strap force is the most valuable predictor of discomfort. The regionally differing regression coefficients of both predictors imply that the hip region is significantly more tolerant than the shoulder region. In order to minimize discomfort, users should be encouraged to shift load from the shoulders to the hip region wherever possible, at the same time likely decreasing the risk of low back pain or injury

  17. A delta configured auxiliary resonant snubber inverter

    SciTech Connect

    Lai, J.S.; Young, R.W.; Ott, G.W. Jr.; McKeever, J.W.; Peng, F.Z. |

    1995-09-01

    A delta ({Delta}) configured auxiliary resonant snubber inverter is developed to overcome the voltage floating problem in a wye (Y) configured resonant snubber inverter. The proposed inverter is to connect auxiliary resonant branches between phase outputs to avoid a floating point voltage which may cause over-voltage failure of the auxiliary switches. Each auxiliary branch consists of a resonant inductor and a reverse blocking auxiliary switch. Instead of using an anti-paralleled diode to allow resonant current to flow in the reverse direction, as in the Y-configured version, the resonant branch in the {Delta}-configured version must block the negative voltage, typically done by a series diode. This paper shows single-phase and three-phase versions of {Delta}-configured resonant snubber inverters and describes in detail the operating principle of a single-phase version. The extended three-phase version is proposed with non-adjacent state space vector modulation. For hardware implementation, a single-phase 1-kW unit and a three-phase 100-kW unit were built to prove the concept. Experimental results show the superiority of the proposed topology.

  18. Configuring Airspace Sectors with Approximate Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  19. Holistic processing does not require configural variability

    PubMed Central

    Richler, Jennifer J.; Palmeri, Thomas J.; Gauthier, Isabel

    2016-01-01

    Using the Garner speeded classification task, Amishav and Kimchi (2010) found that participants could selectively attend to face features: Classifying faces based on the shape of the eyes was not influenced by task-irrelevant variation in the shape of the mouth, and vice versa. This result contrasts with a large body of work using another selective attention task, the composite task, in which participants are unable to selectively attend to face parts: Same/different judgments for one half of a composite face are influenced by the same/different status of the task-irrelevant half of that composite face. In Amishav and Kimchi, faces all shared a common configuration of face features. By contrast, configuration is typically never controlled in the composite task. We asked whether failures of selective attention observed in the composite task are caused by faces varying in both features and configuration. In two experiments, we found that participants exhibited failures of selective attention to face parts in the composite task even when configuration was held constant, which is inconsistent with Amishav and Kimchi’s conclusion that face features can be processed independently unless configuration varies. Although both measure failures of selective attention, the Garner task and composite task appear to measure different mechanisms involved in holistic face perception. PMID:25367141

  20. Configural processing in face recognition in schizophrenia

    PubMed Central

    Schwartz, Barbara L.; Marvel, Cherie L.; Drapalski, Amy; Rosse, Richard B.; Deutsch, Stephen I.

    2006-01-01

    Introduction. There is currently substantial literature to suggest that patients with schizophrenia are impaired on many face-processing tasks. This study investigated the specific effects of configural changes on face recognition in groups of schizophrenia patients. Methods. In Experiment 1, participants identified facial expressions in upright faces and in faces inverted from their upright orientation. Experiments 2 and 3 examined recognition memory for faces and other non-face objects presented in upright and inverted orientations. Experiment 4 explored recognition of facial identity in composite images where the top half of one face was fused to the bottom half of another face to form a new face configuration. Results. In each experiment, the configural change had the same effect on face recognition for the schizophenia patients as it did for control participants. Recognising inverted faces was more difficult than recognising upright faces, with a disproportionate effect of inversion on faces relative to other objects. Recognition of facial identity in face-halves was interfered with by the formation of a new face configuration. Conclusion. Collectively, these results suggest that people with schizophrenia rely on configural information to recognise photographs of faces. PMID:16528403

  1. Critical Branches and Lucky Loads in Control-Independence Architectures

    ERIC Educational Resources Information Center

    Malik, Kshitiz

    2009-01-01

    Branch mispredicts have a first-order impact on the performance of integer applications. Control Independence (CI) architectures aim to overlap the penalties of mispredicted branches with useful execution by spawning control-independent work as separate threads. Although control independent, such threads may consume register and memory values…

  2. Non-Markovian State-Dependent Networks in Critical Loading

    DTIC Science & Technology

    2013-01-23

    orthant. We give an application to generalised Jackson networks with state-dependent rates. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...process is a continuous-path reflected process on the nonnegative orthant. We give an application to generalised Jackson networks with state-dependent...We give an application to generalised Jackson networks with state-dependent rates. Keywords: State-dependent networks, non-Markovian networks

  3. Distracted and confused?: selective attention under load.

    PubMed

    Lavie, Nilli

    2005-02-01

    The ability to remain focused on goal-relevant stimuli in the presence of potentially interfering distractors is crucial for any coherent cognitive function. However, simply instructing people to ignore goal-irrelevant stimuli is not sufficient for preventing their processing. Recent research reveals that distractor processing depends critically on the level and type of load involved in the processing of goal-relevant information. Whereas high perceptual load can eliminate distractor processing, high load on "frontal" cognitive control processes increases distractor processing. These findings provide a resolution to the long-standing early and late selection debate within a load theory of attention that accommodates behavioural and neuroimaging data within a framework that integrates attention research with executive function.

  4. Peering inside the granular bed: illuminating feedbacks between bed-load transport and bed-structure evolution

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Jerolmack, D. J.; Martin, R. L.

    2013-12-01

    The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and

  5. Ideal magnetohydrodynamic stability of the spheromak configuration

    SciTech Connect

    Jardin, S.C.

    1982-01-19

    Results are presented of a parametric study of the ideal magnetohydrodynamic stability properties of the spheromak, or compact torus, configuration. In the absence of a nearby conducting wall, the spheromak is always unstable to at least one current driven mode. With a conducting wall at the surface, the spheromak can be unstable to current driven modes if the current is too peaked, i.e., q/sub o/(R/a) less than or equal to 2/3, or if the shear is too low at the origin. The Mercier criterion sets an upper limit on the pressure gradient everywhere, but configurations that are everywhere Mercier stable can be unstable to pressure driven low-n modes. Stable toroidal configurations exist with a spherical wall separated by half a minor radius, and with ..beta../sub theta/ = 30%.

  6. Comparing Methods for Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Lai, Chok Fung

    2011-01-01

    This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.

  7. Omnidirectional Structured Light in a Flexible Configuration

    PubMed Central

    Paniagua, Carmen; Puig, Luis; Guerrero, José J.

    2013-01-01

    Structured light is a perception method that allows us to obtain 3D information from images of the scene by projecting synthetic features with a light emitter. Traditionally, this method considers a rigid configuration, where the position and orientation of the light emitter with respect to the camera are known and calibrated beforehand. In this paper we propose a new omnidirectional structured light system in flexible configuration, which overcomes the rigidness of the traditional structured light systems. We propose the use of an omnidirectional camera combined with a conic pattern light, i.e., the 3D information of the conic in the space. This reconstruction considers the recovery of the depth and orientation of the scene surface where the conic pattern is projected. One application of our proposed structured light system in flexible configuration consists of a wearable omnicamera with a low-cost laser in hand for visual impaired personal assistance. PMID:24129024

  8. Oblique wing transonic transport configuration development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Studies of transport aircraft designed for boom-free supersonic flight show the variable sweep oblique wing to be the most efficient configuration for flight at low supersonic speeds. Use of this concept leads to a configuration that is lighter, quieter, and more fuel efficient than symmetric aircraft designed for the same mission. Aerodynamic structural, weight, aeroelastic and flight control studies show the oblique wing concept to be technically feasible. Investigations are reported for wing planform and thickness, pivot design and weight estimation, engine cycle (bypass ratio), and climb, descent and reserve fuel. Results are incorporated into a final configuration. Performance, weight, and balance characteristics are evaluated. Flight control requirements are reviewed, and areas in which further research is needed are identified.

  9. Fiber optic configurations for local area networks

    NASA Technical Reports Server (NTRS)

    Nassehi, M. M.; Tobagi, F. A.; Marhic, M. E.

    1985-01-01

    A number of fiber optic configurations for a new class of demand assignment multiple-access local area networks requiring a physical ordering among stations are proposed. In such networks, the data transmission and linear-ordering functions may be distinguished and be provided by separate data and control subnetworks. The configurations proposed for the data subnetwork are based on the linear, star, and tree topologies. To provide the linear-ordering function, the control subnetwork must always have a linear unidirectional bus structure. Due to the reciprocity and excess loss of optical couplers, the number of stations that can be accommodated on a linear fiber optic bus is severely limited. Two techniques are proposed to overcome this limitation. For each of the data and control subnetwork configurations, the maximum number of stations as a function of the power margin, for both reciprocal and nonreciprocal couplers, is computed.

  10. Strategy Guideline. Accurate Heating and Cooling Load Calculations

    SciTech Connect

    Burdick, Arlan

    2011-06-01

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  11. Strategy Guideline: Accurate Heating and Cooling Load Calculations

    SciTech Connect

    Burdick, A.

    2011-06-01

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  12. Mississippi River nitrate loads from high frequency sensor measurements and regression-based load estimation.

    PubMed

    Pellerin, Brian A; Bergamaschi, Brian A; Gilliom, Robert J; Crawford, Charles G; Saraceno, JohnFranco; Frederick, C Paul; Downing, Bryan D; Murphy, Jennifer C

    2014-11-04

    Accurately quantifying nitrate (NO3-) loading from the Mississippi River is important for predicting summer hypoxia in the Gulf of Mexico and targeting nutrient reduction within the basin. Loads have historically been modeled with regression-based techniques, but recent advances with high frequency NO3- sensors allowed us to evaluate model performance relative to measured loads in the lower Mississippi River. Patterns in NO3- concentrations and loads were observed at daily to annual time steps, with considerable variability in concentration-discharge relationships over the two year study. Differences were particularly accentuated during the 2012 drought and 2013 flood, which resulted in anomalously high NO3- concentrations consistent with a large flush of stored NO3- from soil. The comparison between measured loads and modeled loads (LOADEST, Composite Method, WRTDS) showed underestimates of only 3.5% across the entire study period, but much larger differences at shorter time steps. Absolute differences in loads were typically greatest in the spring and early summer critical to Gulf hypoxia formation, with the largest differences (underestimates) for all models during the flood period of 2013. In additional to improving the accuracy and precision of monthly loads, high frequency NO3- measurements offer additional benefits not available with regression-based or other load estimation techniques.

  13. Mississippi River nitrate loads from high frequency sensor measurements and regression-based load estimation

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.; Gilliom, Robert J.; Crawford, Charles G.; Saraceno, John F.; Frederick, C. Paul; Downing, Bryan D.; Murphy, Jennifer C.

    2014-01-01

    Accurately quantifying nitrate (NO3–) loading from the Mississippi River is important for predicting summer hypoxia in the Gulf of Mexico and targeting nutrient reduction within the basin. Loads have historically been modeled with regression-based techniques, but recent advances with high frequency NO3– sensors allowed us to evaluate model performance relative to measured loads in the lower Mississippi River. Patterns in NO3– concentrations and loads were observed at daily to annual time steps, with considerable variability in concentration-discharge relationships over the two year study. Differences were particularly accentuated during the 2012 drought and 2013 flood, which resulted in anomalously high NO3– concentrations consistent with a large flush of stored NO3– from soil. The comparison between measured loads and modeled loads (LOADEST, Composite Method, WRTDS) showed underestimates of only 3.5% across the entire study period, but much larger differences at shorter time steps. Absolute differences in loads were typically greatest in the spring and early summer critical to Gulf hypoxia formation, with the largest differences (underestimates) for all models during the flood period of 2013. In additional to improving the accuracy and precision of monthly loads, high frequency NO3– measurements offer additional benefits not available with regression-based or other load estimation techniques.

  14. ARES I-X USS Fracture Analysis Loads Spectra Development

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis; Mackey, Alden

    2008-01-01

    This report describes the development of a set of bounding load spectra for the ARES I-X launch vehicle. These load spectra are used in the determination of the critical initial flaw size (CIFS) of the welds in the ARES I-X upper stage simulator (USS).

  15. Analyzing the Effects of Climate and Thermal Configuration on Community Energy Storage Systems (Presentation)

    SciTech Connect

    Neubauer, J.; Pesaran, A.; Coleman, D.; Chen, D.

    2013-10-01

    Community energy storage (CES) has been proposed to mitigate the high variation in output from renewable sources and reduce peak load on the electrical grid. Thousands of these systems may be distributed around the grid to provide benefits to local distribution circuits and to the grid as a whole when aggregated. CES must be low cost to purchase and install and also largely maintenance free through more than 10 years of service life to be acceptable to most utilities.Achieving the required system life time is a major uncertainty for lithium-ion batteries. The lifetime and immediate system performance of batteries can change drastically with battery temperature, which is a strong function of system packaging, local climate, electrical duty cycle, and other factors. In other Li-ion applications, this problem is solved via air or liquid heating and cooling systems that may need occasional maintenance throughout their service life. CES requires a maintenance-free thermal management system providing protection from environmental conditions while rejecting heat from a moderate electrical duty cycle. Thus, the development of an effective, low-cost, zero-maintenance thermal management system poses a challenge critical to the success of CES. NREL and Southern California Edison have collaborated to evaluate the long-term effectiveness of various CES thermal configurations in multiple climates by building a model of CES based on collected test data, integrating it with an NREL-developed Li-ion degradation model, and applying CES electrical duty cycles and historic location-specific meteorological data to forecast battery thermal response and degradation through a 10-year service life.

  16. Attainment of a stable, fully detached plasma state in innovative divertor configurations

    NASA Astrophysics Data System (ADS)

    Umansky, Maxim

    2016-10-01

    The heat load on plasma facing components is a critical engineering constraint for future tokamaks, which has stimulated the community to consider innovative magnetic divertor geometries for future high power devices. Present-day advanced divertor scenarios generally rely on partially detached regimes, also planned for ITER; a fully detached state would usually lead to MARFE and degradation of core confinement. Modeling reveals that novel magnetic geometries can have a major impact on plasma detachment and power handling. Using the UEDGE tokamak edge transport model for configurations with tightly baffled long divertor legs, extended radially, or vertically, we find stable, fully detached divertor operation. Including a secondary X-point in the outer leg volume extends the attainment of a stable detached state to the highest power. As the input power is reduced to a threshold value, the outer leg transitions to a fully detached state with the detachment front localized at the secondary X-point or in the leg volume; reducing the power further results in the detachment front steady-state location shifting upstream. As the power is reduced, the detachment front eventually moves to the primary X-point, which sets the lower power limit for the range of stable operation. Still, for a long-legged divertor, a fully detached, stable divertor regime is maintained over an order-of-magnitude variation in exhaust power. In contrast, a standard divertor has a much smaller detachment operational window. These results suggest that stable fully detached divertor operation can be realized in tokamaks with extended divertor legs.

  17. Truck loading positions for maximum live load girder moment in skewed integral bridges

    NASA Astrophysics Data System (ADS)

    Yalcin, O. Fatih

    2015-12-01

    In this study, the effect of the longitudinal and transverse truck positions on the distribution of live load moment among the girders of skewed integral abutment bridges (SIBs) is investigated. For this purpose, three dimensional finite element models (FEMs) of several single-span SIBs are built and analyzed. In the analyses, bridges with various skew angles under all possible single and double truck loading positions both in longitudinal and transverse directions are considered. An automated analysis procedure managed by a visual basic program is developed to obtain the structural models and apply the wheel loads of trucks. The finite element analyses (FEA) results are then used to find the most critical loading cases of single truck and adjacent two trucks for the live load moment in the girders of SIBs. The results revealed that, the trucks should be placed nearby the midline of the bridge deck in a diagonal manner.

  18. Impact of sampling strategy on stream load estimates in till landscape of the Midwest

    USGS Publications Warehouse

    Vidon, P.; Hubbard, L.E.; Soyeux, E.

    2009-01-01

    Accurately estimating various solute loads in streams during storms is critical to accurately determine maximum daily loads for regulatory purposes. This study investigates the impact of sampling strategy on solute load estimates in streams in the US Midwest. Three different solute types (nitrate, magnesium, and dissolved organic carbon (DOC)) and three sampling strategies are assessed. Regardless of the method, the average error on nitrate loads is higher than for magnesium or DOC loads, and all three methods generally underestimate DOC loads and overestimate magnesium loads. Increasing sampling frequency only slightly improves the accuracy of solute load estimates but generally improves the precision of load calculations. This type of investigation is critical for water management and environmental assessment so error on solute load calculations can be taken into account by landscape managers, and sampling strategies optimized as a function of monitoring objectives. ?? 2008 Springer Science+Business Media B.V.

  19. Phalange Tactile Load Cell

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor); Griffith, Bryan Kristian (Inventor)

    2010-01-01

    A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.

  20. Improved Interference configuration for structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Houkai; Wei, Shibiao; Wu, Xiaojing; Yang, Yong; Zhang, Yuquan; Du, Luping; Liu, Jun; Zhu, Siwei; Yuan, Xiaocong

    2017-02-01

    We present an improved structured illumination configuration for structured illumination microscopy (SIM) based on spatial light modulator. Precise phase shifts and rotation of illumination fringes can be dynamically controlled using a spatial light modulator. The method is different from the conventional illumination configuration that are based on interference of ±1 diffractive order light. The experimental setup requires less optical elements making it compact, reliable, and suitable for integration. The method has been applied in the standing-wave total internal reflection fluorescent microscopy. High lateral resolution of sub-100 nm was achieved in single directional resolution enhancement experiments.