NASA Technical Reports Server (NTRS)
Sawin, Charles F.
1999-01-01
The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.
NASA Technical Reports Server (NTRS)
Crouch, Roger
2004-01-01
Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.
NASA's Deep Space Telecommunications Roadmap
NASA Technical Reports Server (NTRS)
Edwards, C., Jr.; Stelzried, C.; Deutsch, L.; Swanson, L.
1998-01-01
This paper will present this roadmap, describe how it will support an increasing mission set while also providing significantly increased science data return, summarize the current state of key Ka-band and optical communications technologies, and identify critical path items in terms of technology developments, demonstrations, and mission users.
Bioastronautics Roadmap: A Risk Reduction Strategy for Human Space Exploration
NASA Technical Reports Server (NTRS)
2005-01-01
The Bioastronautics Critical Path Roadmap is the framework used to identify and assess the risks to crews exposed to the hazardous environments of space. It guides the implementation of research strategies to prevent or reduce those risks. Although the BCPR identifies steps that must be taken to reduce the risks to health and performance that are associated with human space flight, the BCPR is not a "critical path" analysis in the strict engineering sense. The BCPR will evolve to accommodate new information and technology development and will enable NASA to conduct a formal critical path analysis in the future. As a management tool, the BCPR provides information for making informed decisions about research priorities and resource allocation. The outcome-driven nature of the BCPR makes it amenable for assessing the focus, progress and success of the Bioastronautics research and technology program. The BCPR is also a tool for communicating program priorities and progress to the research community and NASA management.
Overview and Status of the Bioastronautics Critical Path Roadmap (BCPR)
NASA Technical Reports Server (NTRS)
Charles, John
2004-01-01
Viewgraphs on the status and overview of the Bioastronautics Critical Path Roadmap (BCPR) are presented. The topics include: 1) BCPR Objectives; 2) BCPR and OBPR Program Management; 3) BCPR Disciplines & Cross-Cutting Areas; 4) Characteristics of BCPR Reference Missions; 5) Bioastronautics Timetable (notional); 6) BCPR Processes Risk Identification, Assessment, and Management; 7) Types of BCPR Risks; 8) Enabling Questions Categories; 9) Risk Mitigation Status; 10) Defining Levels of Accepted Risk; 11) BCPR Integration; 12) BCPR Implementation, Integration, and Validation; 13) BCPR Refinement Schedule; 14) Academy Review; 15) Rating Bioastronautics Risks; 16) Risk Rating Exercises; 17) Human Health Risk Assessment Criteria (examples); 18) A Recent Risk Rating Exercise; 19) Consensus Workshop Background; 20) Consensus Workshop Rating Analysis; 21) Consensus Workshop Selected Preliminary Recommendations; and 22) Access to BCPR Content.
Convertino, Victor A; Cooke, William H
2005-09-01
Occurrence of serious cardiac dysrhythmias and diminished cardiac and vascular function are the primary cardiovascular risks of spaceflight identified in the 2005 NASA Bioastronautics Critical Path Roadmap. A review of the literature was conducted on experimental results and observational data obtained from spaceflight and relevant ground simulation studies that addressed occurrence of cardiac dysrhythmias, cardiac contractile and vascular function, manifestation of asymptomatic cardiovascular disease, orthostatic intolerance, and response to exercise stress. Based on data from astronauts who have flown in space, there is no compelling experimental evidence to support significant occurrence of cardiac dysrhythmias, manifestation of asymptomatic cardiovascular disease, or reduction in myocardial contractile function. Although there are post-spaceflight data that demonstrate lower peripheral resistance in astronauts who become presyncopal compared with non-presyncopal astronauts, it is not clear that these differences are the result of decreased vascular function. However, the evidence of postflight orthostatic intolerance and reduced exercise capacity is well substantiated by both spaceflight and ground experiments. Although attenuation of baroreflex function(s) may contribute to postflight orthostatic instability, a primary mechanism of orthostatic intolerance and reduced exercise capacity is reduced end-diastolic and stroke volume associated with lower blood volumes and consequent cardiac remodeling. Data from the literature on the current population of astronauts support the notion that the primary cardiovascular risks of spaceflight are compromised hemodynamic responses to central hypovolemia resulting in reduced orthostatic tolerance and exercise capacity rather than occurrence of cardiac dysrhythmias, reduced cardiac contractile and vascular function, or manifestation of asymptomatic cardiovascular disease. These observations warrant a critical review and revision of the 2005 Bioastronautics Critical Path Roadmap.
Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Grandy, C.; Natesan, K.
The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treatedmore » separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s, and the remaining critical paths and R&D needs are generally related to the completion of qualification of fuel and structural materials, validation of reactor design codes and methods, and support of the licensing frameworks. The LFR’s technology is instead less-mature compared to the SFR’s, and will be at the engineering demonstration stage by the early 2030s. Key LFR technology development activities will focus on resolving remaining design challenges and demonstrating the viability of systems and components in the integral system, which will be done in parallel with addressing the gaps shared with SFR technology. The approach and timeline presented here assume that, for the first module demonstration, vendors would pursue a two-step licensing process based on 10CFR Part 50.« less
The Critical Path Roadmap Project: Biomedical Risk Reduction for Extended Spaceflight
NASA Technical Reports Server (NTRS)
Charles, John B.; Leveton, Lauren B.
2000-01-01
Human exploration of space requires an understanding of the risks to which crews will be exposed during such missions, and the mitigation of those risks to the fullest extent practical. This becomes a greater imperative as we prepare for interplanetary expeditions involving long periods in weightlessness in transit to and then from the destination (a planet, such as Mars, or perhaps a point in space, such as the Lagrangian point L2), and exposure to the unique environment of the destination itself. We need to know, more definitively, what the risks are to human health, safety, and performance, and how to prevent or counteract them throughout all phases of a long duration mission. The Johnson Space Center's Space and Life Sciences Directorate and the National Space Biomedical Research Institute (NSBRI) have implemented an effort to identify the most critical risks confronting humans on such mission and the types of research and technology efforts required to mitigate and otherwise reduce the probability and severity of those risks. This paper describes the "Critical Path Roadmap Project" to define, assess and prioritize the risks and present the results of the assessment with an emphasis on the research and technology priorities to meet the challenge of long duration human spaceflight mission.
Resolving Risks in Individual Astronauts: A New Paradigm for Critical Path Exposures
NASA Technical Reports Server (NTRS)
Richmond, Robert C.
2005-01-01
The limited number of astronauts available for risk-assessment prevents classic epidemiologic study, and thereby requires alternative approach to assessing risks within individual astronauts exposed to toxic agents identified within the Bioastronautics Critical Path Roadmap (BCPR). Developing a system of noninvasive real-time biodosimetry that provides large datasets for analyses before, during, and after missions for simultaneously determining 1) the kinds of toxic insult, 2) the degree of that insult, both within tissues absorbing that insult, would be usehl for resolving statistically significant risk-assessment in individual astronauts. Therefore, a currently achievable multiparametric paradigm is presented for use in analyzing gene-expression and protein-expression so as to establish predictive outcomes.
NASA Technical Reports Server (NTRS)
Clement, James L., Jr.; Ritsher, Jennifer Boyd
2006-01-01
As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.
A CFD validation roadmap for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1992-01-01
A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.
A CFD validation roadmap for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1993-01-01
A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.
Ten years of the Immune Tolerance Network: an integrated clinical research organization.
Bluestone, Jeffrey A; Krensky, Alan M; Turka, Laurence A; Rotrosen, Daniel; Matthews, Jeffrey B
2010-02-17
The U.S. National Institutes of Health Roadmap and the U.S. Food and Drug Administration's Critical Path Initiative have endorsed the establishment of large academic clinical research networks as part of the solution to the growing divide between increased R&D spending and the lagging number of new drugs making it to market. Clearly, the role of these networks as translational science incubators that complement industry-sponsored programs is laudable and much-needed. However, the path to success for such organizations is less clear. Here, drawing on the experiences of the Immune Tolerance Network, a multidisciplinary clinical research network founded in 1999, we discuss some of the barriers inherent in developing such consortia and offer firsthand insight into the planning, resources, and organizational infrastructure required for a successful research program.
A Comparison of Risk Sensitive Path Planning Methods for Aircraft Emergency Landing
NASA Technical Reports Server (NTRS)
Meuleau, Nicolas; Plaunt, Christian; Smith, David E.; Smith, Tristan
2009-01-01
Determining the best site to land a damaged aircraft presents some interesting challenges for standard path planning techniques. There are multiple possible locations to consider, the space is 3-dimensional with dynamics, the criteria for a good path is determined by overall risk rather than distance or time, and optimization really matters, since an improved path corresponds to greater expected survival rate. We have investigated a number of different path planning methods for solving this problem, including cell decomposition, visibility graphs, probabilistic road maps (PRMs), and local search techniques. In their pure form, none of these techniques have proven to be entirely satisfactory - some are too slow or unpredictable, some produce highly non-optimal paths or do not find certain types of paths, and some do not cope well with the dynamic constraints when controllability is limited. In the end, we are converging towards a hybrid technique that involves seeding a roadmap with a layered visibility graph, using PRM to extend that roadmap, and using local search to further optimize the resulting paths. We describe the techniques we have investigated, report on our experiments with these techniques, and discuss when and why various techniques were unsatisfactory.
Lunar Contour Crafting: A Novel Technique for ISRU-Based Habitat Development
NASA Technical Reports Server (NTRS)
Khoshnevis, Behrokh; Bodiford, Melanie P.; Burks, Kevin H.; Ethridge, Ed; Tucker, Dennis; Kim, Won; Toutanji, Houssam; Fiske, Michael R.
2005-01-01
1. Habitat Structures at MSFC is one element of the In-Situ Fabrication and Repair (ISFR) Program: ISFR develops technologies for fabrication, repair and recycling of tools, parts, and habitats/structures using in-situ resources. ISRU - based habitat structures are considered Class III. 2. Habitat Structure Purpose: Develop Lunar and/or Martian habitat structures for manned missions that maximize the use of in-situ resources to address the following agency topics: bioastronautics critical path roadmap; strategic technical challenges defined in H&RT formulation plan: margins and redundancy; modularity, robotic network, space resource utilization; autonomy, affordable logistics pre-positioning.
The Role of Space Medicine in Management of Risk in Spaceflight
NASA Technical Reports Server (NTRS)
Clark, Jonathan B.
2001-01-01
The purpose of Space Medicine is to ensure mission success by providing quality and comprehensive health care throughout all mission phases to optimize crew health and performance and to prevent negative long-term health consequences. Space flight presents additional hazards and associated risks to crew health, performance, and safety. With an extended human presence in space it is expected that illness and injury will occur on orbit, which may present a significant threat to crew health and performance and to mission success. Maintaining crew health, safety and performance and preventing illness and injury are high priorities necessary for mission success and agency goals. Space flight health care should meet the standards of practice of evidence based clinical medicine. The function of Space Medicine is expected to meet the agency goals as stated in the 1998 NASA Strategic Plan and the priorities established by the Critical Path Roadmap Project. The Critical Path Roadmap Project is an integrated NASA cross-disciplinary strategy to assess, understand, mitigate, and manage the risks associated with long-term exposure to the space flight environment. The evidence based approach to space medicine should be standardized, objective process yielding expected results and establishing clinical practice standards while balancing individual risk with mission (programmatic) risk. The ability to methodically apply available knowledge and expertise to individual and mission health issues will ensure appropriate priorities are assigned and resources are allocated. NASA Space Medicine risk management process is a combined clinical and engineering approach. Competition for weight, power, volume, cost, and crew time must be balanced in making decisions about the care of individual crew with competing agency resources.
Challenges for Product Roadmapping in Inter-company Collaboration
NASA Astrophysics Data System (ADS)
Suomalainen, Tanja; Tihinen, Maarit; Parviainen, Päivi
Product roadmapping is a critical activity in product development, as it provides a link between business aspects and requirements engineering and thus helps to manage a high-level view of the company’s products. Nowadays, inter-company collaboration, such as outsourcing, is a common way of developing software products, as through collaboration, organisations gain advantages, such as flexibility with in-house resources, savings in product development costs and gain a physical presence in important markets. The role of product roadmapping becomes even more critical in collaborative settings, since different companies need to align strategies and work together to create products. In order to support companies in improving their own product roadmapping processes, this paper first gives an overview of product roadmapping and then discusses in detail an empirical study of the current practices in industry. The presented results particularly focus on the most challenging and important activities of product roadmapping in collaboration.
The 2017 Plasma Roadmap: Low temperature plasma science and technology
NASA Astrophysics Data System (ADS)
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; Bruggeman, P. J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J. G.; Favia, P.; Graves, D. B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I. D.; Kortshagen, U.; Kushner, M. J.; Mason, N. J.; Mazouffre, S.; Mededovic Thagard, S.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A. B.; Niemira, B. A.; Oehrlein, G. S.; Petrovic, Z. Lj; Pitchford, L. C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M. M.; van de Sanden, M. C. M.; Vardelle, A.
2017-08-01
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.
CFD validation experiments for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1992-01-01
A roadmap for CFD code validation is introduced. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments could provide new validation data.
NASA Astrophysics Data System (ADS)
Aleina, Sara Cresto; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio
2017-10-01
Exploration technology roadmaps have been developed by ESA in the past few years and the latest edition has been released in 2015. Scope of these technology roadmaps, elaborated in consultation with the different ESA stakeholders (e.g. European Industries and Research Entities), is to provide a powerful tool for strategic, programmatic and technical decisions in support of the European role within an International Space Exploration context. In the context of preparation for possible future European Moon exploration initiatives, the technology roadmaps have been used to highlight the role of technology within Missions, Building Blocks and Operational Capabilities of relevance. In particular, as part of reference missions to the Moon that would fit in the time frame 2020 to 2030, ESA has addressed the definition of lunar surface exploration missions in line with its space exploration strategy, with the common mission goals of returning samples from the Moon and Mars and expanding human presence to these destinations in a step-wise approach. The roadmaps for the procurement of technologies required for the first mission elements of the above strategy have been elaborated through their main building blocks, i.e. Visual navigation, Hazard detection and avoidance; Sample acquisition, processing and containment system; Surface mobility elements; Tele-robotic and autonomous control systems; and Storable propulsion modules and equipment. Technology prioritization methodologies have been developed in support of the ESA Exploration Technology Roadmaps, in order to provide logical and quantitative instruments to verify choices of prioritization that can be carried out based on important, but non-quantitative factors. These methodologies, which are thoroughly described in the first part of the paper, proceed through subsequent steps. First, technology prioritization's criteria are selected; then decision trees are developed to highlight all feasible paths of combination of technology prioritization's criteria and to assess the final achievement of each path, i.e. the cost-effectiveness. The risk associated to each path is also evaluated. In the second part of the paper, these prioritization methodologies have been applied to some of the building blocks of relevance for the mission concepts under evaluation at ESA (such as Tele-robotic and autonomous control systems; Storable propulsion modules and equipment) and the results are presented to highlight the approach for an effective TRL increase. Eventually main conclusions are drawn.
The 2017 Plasma Roadmap: Low temperature plasma science and technology
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; ...
2017-07-14
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The currentmore » state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.« less
The 2017 Plasma Roadmap: Low temperature plasma science and technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The currentmore » state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.« less
Red Hat Enterprise Virtualization - KVM-based infrastructure services at BNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortijo, D.
2011-06-14
Over the past 18 months, BNL has moved a large percentage of its Linux-based servers and services into a Red Hat Enterprise Virtualization (RHEV) environment. This presentation will address our approach to virtualization, critical decision points, and a discussion of our implementation. Specific topics will include an overview of hardware and software requirements, networking, and storage; discussion of the decision of Red Hat solution over competing products (VMWare, Xen, etc); details on some of the features of RHEV - both current and on their roadmap; Review of performance and reliability gains since deployment completion; path forward for RHEV at BNLmore » and caveats and potential problems.« less
NASA Astrophysics Data System (ADS)
Kramer, G. Y.; Lawrence, D. J.; Neal, C. R.; Clark, P. E.; Green, R. O.; Horanyi, M.; Johnson, M. D.; Kelso, R. M.; Sultana, M.; Thompson, D. R.
2016-11-01
A Lunar Capabilities Roadmap (LCR) is required to highlight capabilities critical for science and exploration of the Moon as well as beyond. The LCR will focus mainly on capabilities with examples of specific technologies to satisfy those needs.
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe
2004-01-01
One of the more-serious side effects of extended space flight is an accelerated bone loss [Bioastronautics Critical Path Roadmap, http://research.hq.nasa.gov/code_u/bcpr/index.cfm]. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It shows that an extrapolation of the microgravity induced bone loss rates to longer time scales, such as a 2.5 year round-trip to Mars (6 months out at 0 g, 1.5 year stay on Mars at 0.38 g, 6 months back at 0 g), could severely compromise the skeletal system of such a person.
Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.
Maximova, Tatiana; Plaku, Erion; Shehu, Amarda
2016-07-07
Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves disparate temporal scales. In this paper we present a novel, sampling-based algorithm to compute transition paths. The algorithm exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths at atomistic detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponentsmore » of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)« less
2014-05-01
A Roadmap for Recovery/Decontamination Plan for Critical Infrastructure after CBRN Event Involving Drinking Water Utilities: Scoping Study... Drinking Water Utilities was supported by the Canadian Safety and Security Program (CSSP) which is led by Defence Research and Development Canada’s Centre...after CBRN Event Involving Drinking Water Utilities Scoping Study Prepared by: Vladimir Blinov Konstantin Volchek Emergencies Science and
Evolutionistic or revolutionary paths? A PACS maturity model for strategic situational planning.
van de Wetering, Rogier; Batenburg, Ronald; Lederman, Reeva
2010-07-01
While many hospitals are re-evaluating their current Picture Archiving and Communication System (PACS), few have a mature strategy for PACS deployment. Furthermore, strategies for implementation, strategic and situational planning methods for the evolution of PACS maturity are scarce in the scientific literature. Consequently, in this paper we propose a strategic planning method for PACS deployment. This method builds upon a PACS maturity model (PMM), based on the elaboration of the strategic alignment concept and the maturity growth path concept previously developed in the PACS domain. First, we review the literature on strategic planning for information systems and information technology and PACS maturity. Secondly, the PMM is extended by applying four different strategic perspectives of the Strategic Alignment Framework whereupon two types of growth paths (evolutionistic and revolutionary) are applied that focus on a roadmap for PMM. This roadmap builds a path to get from one level of maturity and evolve to the next. An extended method for PACS strategic planning is developed. This method defines eight distinctive strategies for PACS strategic situational planning that allow decision-makers in hospitals to decide which approach best suits their hospitals' current situation and future ambition and what in principle is needed to evolve through the different maturity levels. The proposed method allows hospitals to strategically plan for PACS maturation. It is situational in that the required investments and activities depend on the alignment between the hospital strategy and the selected growth path. The inclusion of both strategic alignment and maturity growth path concepts make the planning method rigorous, and provide a framework for further empirical research and clinical practice.
Precompetitive Data Sharing as a Catalyst to Address Unmet Needs in Parkinson’s Disease 1
Stephenson, Diane; Hu, Michele T.; Romero, Klaus; Breen, Kieran; Burn, David; Ben-Shlomo, Yoav; Bhattaram, Atul; Isaac, Maria; Venuto, Charles; Kubota, Ken; Little, Max A.; Friend, Stephen; Lovestone, Simon; Morris, Huw R.; Grosset, Donald; Sutherland, Margaret; Gallacher, John; Williams-Gray, Caroline; Bain, Lisa J.; Avilés, Enrique; Marek, Ken; Toga, Arthur W.; Stark, Yafit; Forrest Gordon, Mark; Ford, Steve
2015-01-01
Abstract Parkinson’s disease is a complex heterogeneous disorder with urgent need for disease-modifying therapies. Progress in successful therapeutic approaches for PD will require an unprecedented level of collaboration. At a workshop hosted by Parkinson’s UK and co-organized by Critical Path Institute’s (C-Path) Coalition Against Major Diseases (CAMD) Consortiums, investigators from industry, academia, government and regulatory agencies agreed on the need for sharing of data to enable future success. Government agencies included EMA, FDA, NINDS/NIH and IMI (Innovative Medicines Initiative). Emerging discoveries in new biomarkers and genetic endophenotypes are contributing to our understanding of the underlying pathophysiology of PD. In parallel there is growing recognition that early intervention will be key for successful treatments aimed at disease modification. At present, there is a lack of a comprehensive understanding of disease progression and the many factors that contribute to disease progression heterogeneity. Novel therapeutic targets and trial designs that incorporate existing and new biomarkers to evaluate drug effects independently and in combination are required. The integration of robust clinical data sets is viewed as a powerful approach to hasten medical discovery and therapies, as is being realized across diverse disease conditions employing big data analytics for healthcare. The application of lessons learned from parallel efforts is critical to identify barriers and enable a viable path forward. A roadmap is presented for a regulatory, academic, industry and advocacy driven integrated initiative that aims to facilitate and streamline new drug trials and registrations in Parkinson’s disease. PMID:26406139
The Roadmap presents critical issues and research questions for each theme. For Theme 1, the issues for limiting the harm from materials and process in electronics industry include identifying the chemicals in products, production process, in the extraction of virgin materials, i...
National Algal Biofuels Technology Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, John; Sarisky-Reed, Valerie
The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status ofmore » algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.« less
A path to integration in an academic health science center.
Panko, W. B.; Wilson, W.
1992-01-01
This article describes a networking and integration strategy in use at the University of Michigan Medical Center. This strategy builds upon the existing technology base and is designed to provide a roadmap that will direct short-term development along a productive, long-term path. It offers a way to permit the short-term development of incremental solutions to current problems while at the same time maximizing the likelihood that these incremental efforts can be recycled into a more comprehensive approach. PMID:1336413
Growth and Remodeling in Blood Vessels Studied In Vivo With Fractal Analysis
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.
2003-01-01
Every cell in the human body must reside in close proximity to a blood vessel (within approximately 200 mm) because blood vessels provide the oxygen, metabolite, and fluid exchanges required for cellular existence. The growth and remodeling of blood vessels are required to support the normal physiology of embryonic development, reproductive biology, wound healing and adaptive remodeling to exercise, as well as abnormal tissue change in diseases such as cancer, diabetes, and coronary heart disease. Cardiovascular and hemodynamic (blood flow dynamics) alterations experienced by astronauts during long-term spaceflight, including orthostatic intolerance, fluid shifts in the body, and reduced numbers of red (erythrocyte) and white (immune) blood cells, are identified as risk factors of very high priority in the NASA task force report on risk reduction for human spaceflight, the "Critical Path Roadmap."
Nanotechnology for forest products. Part 2
Theodore Wegner; Phil Jones
2005-01-01
In planning for the Nanotechnology for the Forest products Industry Workshop, we considered many different options for organizing technical focus areas for breakout discussion sessions. We felt the fallowing R&D focus areas provide the best path forward for a nanotechnology roadmap by identifying the underlying science and technology needed: also, they foster...
Lopatina, Elena; Damani, Zaheed; Bohm, Eric; Noseworthy, Tom W; Conner-Spady, Barbara; MacKean, Gail; Simpson, Chris S; Marshall, Deborah A
2017-09-01
Long waiting times for elective services continue to be a challenging issue. Single-entry models (SEMs) are used to increase access to and flow through the healthcare system. This paper provides a roadmap for healthcare decision-makers, managers, physicians, and researchers to guide implementation and management of successful and sustainable SEMs. The roadmap was informed by an inductive qualitative synthesis of the findings from a deliberative process (a symposium on SEMs, with clinicians, researchers, senior policy-makers, healthcare managers, and patient representatives) and focus groups with the symposium participants. SEMs are a promising strategy to improve the management of referrals and represent one approach to reduce waiting times. The SEMs roadmap outlines current knowledge about SEMs and critical success factors for SEMs' implementation and management. This SEM roadmap is intended to help clinicians, decision-makers, managers, and researchers interested in developing new or strengthening existing SEMs. We consider this roadmap to be a living document that will continue to evolve as we learn more about implementing and managing sustainable SEMs. Copyright © 2017 Elsevier B.V. All rights reserved.
Runaas, Lyndsey; Hanauer, David; Maher, Molly; Bischoff, Evan; Fauer, Alex; Hoang, Tiffany; Munaco, Anna; Sankaran, Roshun; Gupta, Rahael; Seyedsalehi, Sajjad; Cohn, Amy; An, Larry; Tewari, Muneesh; Choi, Sung Won
2017-05-01
Health information technology (HIT) has great potential for increasing patient engagement. Pediatric hematopoietic cell transplantation (HCT) is a setting ripe for using HIT but in which little research exists. "BMT Roadmap" is a web-based application that integrates patient-specific information and includes several domains: laboratory results, medications, clinical trial details, photos of the healthcare team, trajectory of transplant process, and discharge checklist. BMT Roadmap was provided to 10 caregivers of patients undergoing first-time HCT. Research assistants performed weekly qualitative interviews throughout the patient's hospitalization and at discharge and day 100 to assess the impact of BMT Roadmap. Rigorous thematic analysis revealed 5 recurrent themes: emotional impact of the HCT process itself; critical importance of communication among patients, caregivers, and healthcare providers; ways in which BMT Roadmap was helpful during inpatient setting; suggestions for improving BMT Roadmap; and other strategies for organization and management of complex healthcare needs that could be incorporated into BMT Roadmap. Caregivers found the tool useful and easy to use, leading them to want even greater access to information. BMT Roadmap was feasible, with no disruption to inpatient care. Although this initial study is limited by the small sample size and single-institution experience, these initial findings are encouraging and support further investigation. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Unmanned Systems Integrated Roadmap FY2011-2036
2011-10-01
neuroscience , and cognition science may lead to the implementation of some of the most critical functionalities of heterogeneous, sensor net...Roadmap FY2011-2036 69 7.4.5.4 Encryption Unmanned systems incorporation of data encryption includes National Security Agency ( NSA ) Type 1 (for...see DODI 4660). Numerous other policies and initiatives are under development within the NSA to significantly streamline the certification processes
Antimicrobial Medication Stability During Space Flight
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Berens, Kurt; Du, Jianping
2004-01-01
The current vision for manned space flight involves lunar and Martian exploration within the next two decades. In order for NASA to achieve these goals, a significant amount of preparation is necessary to assure crew health and safety. A mission critical component of this vision centers around the stability of pharmaceutical preparations contained in the space medicine kits. Evidence suggests that even brief periods of space flight have significant detrimental effects for some pharmaceutical formulations. The effects observed include decreases in physical stability of drug formulations of sufficient magnitude to effect bioavailability. Other formulations exhibit decreases in chemical stability resulting in a loss of potency. Physical or-chemical instability of pharmaceutical formulations i n space medicine kits could render the products ineffective. Of additional concern is the potential for formation of toxic degradation products as a result of the observed product instability. This proposal addresses Question number 11 of Clinical Capabilities in the Critical Path Roadmap. In addition, this proposal will reduce the risks and/or enhance the capabilities of humans exposed to the environments of space flight or an extraterrestrial destination by identifying drugs that may be unstable during spaceflight.
Development priorities for in-space propulsion technologies
NASA Astrophysics Data System (ADS)
Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2013-02-01
During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.
Building a roadmap to biomarker qualification: challenges and opportunities.
Amur, Shashi G; Sanyal, Sarmistha; Chakravarty, Aloka G; Noone, Marianne H; Kaiser, James; McCune, Susan; Buckman-Garner, ShaAvhree Y
2015-01-01
The traditional route for regulatory acceptance of biomarkers in drug development is through submission of biomarker data in drug approval submissions in the context of a single drug development program. The US FDA's Critical Path Initiative called for establishment of a biomarker qualification process to enable progress in the drug development paradigm. In response to this, the Center for Drug Evaluation and Research (CDER) established a Biomarker Qualification Program (BQP) to qualify a biomarker for a specific context of use (COU). The qualified biomarker can then be used in multiple drug development programs for this COU without re-review. Here, we describe some of the features of the BQP and two new initiatives that have the potential to aid biomarker development through early interactions with the FDA. Finally, we discuss some of the feedback the FDA has received from submitters and the BQP's actions to strengthen the program.
A Technology Development Roadmap for a Near-Term Probe-Class X-ray Astrophysics Mission
NASA Technical Reports Server (NTRS)
Daelemans, Gerard J.; Petre, Robert; Bookbinder, Jay; Ptak, Andrew; Smith, Randall
2013-01-01
This document presents a roadmap, including proposed budget and schedule, for maturing the instrumentation needed for an X-ray astrophysics Probe-class mission. The Physics of the Cosmos (PCOS) Program Office was directed to create this roadmap following the December 2012 NASA Astrophysics Implementation Plan (AIP). Definition of this mission is called for in the AIP, with the possibility of selection in 2015 for a start in 2017. The overall mission capabilities and instrument performance requirements were defined in the 2010 Astronomy and Astrophysics Decadal Survey report, New Worlds, New Horizons in Astronomy and Astrophysics (NWNH), in connection with the highly ranked International X-ray Observatory (IXO). In NWNH, recommendations were provided regarding the size of, and instrumentation needed by, the next large X-ray observatory. Specifically, the key instrumental capability would be an X-ray calorimeter spectrometer at the focus of a large mirror with angular resolution of 10 arc seconds (arcsec) or better. If possible, a grating spectrometer should also be incorporated into the instrument complement. In response to these recommendations, four instrumentation technologies are included in this roadmap. Three of these are critical for an X-ray mission designed to address NWNH questions: segmented X-ray mirrors, transition edge sensor calorimeters, and gratings. Two approaches are described for gratings, which represent the least mature technology and thus most in need of a parallel path for risk reduction. Also, while current CCD detectors would likely meet the mission needs for grating spectrum readout, specific improvements are included as an additional approach for achieving the grating system effective area requirement. The technical steps needed for these technologies to attain technology readiness levels (TRL) of 5 and 6 are described, as well as desirable modest risk reduction steps beyond TRL-6. All of the technology development efforts are currently funded through the NASA Physics of the Cosmos (PCOS) Strategic Astrophysics Technology (SAT) program; some through the end of FY13, others though FY14. These technology needs are those identified as critical for a near-term mission and briefly described in the 2012 NASA X-ray Mission Concepts Study. This Technology Development Roadmap (TDR) provides a more complete description of each, updates the status, and describes the steps to mature them. For each technology, a roadmap is presented for attaining TRL-6 by 2020 at the latest, and 2018 for most. The funding required for each technology to attain TRL-5 and TRL-6 is presented and justified through a description of the steps needing completion. The total funding required for these technologies to reach TRL-6 is relatively modest, and is consistent with the planned PCOS SAT funding over the next several years. The approximate annual cost through 2018 is $8M. The total cost for all technologies to be matured is $62M (including funding already awarded for FY13 and FY14). This can be contrasted to the $180M recommended by NWNH for technology development for IXO, primarily for the maturation of the mirror technology. The technology described in Section 3 of this document is exclusively that needed for a near-term Probe-class mission, to start in 2017, or for a mission that can be recommended by the next Decadal survey committee for an immediate start. It is important to note that there are other critical X-ray instrumentation technologies under development that are less mature than the ones discussed here, but are essential for a major X-ray mission that might start in the late 2020s. These technologies, described briefly in Section 4, are more appropriately funded through the Astronomy and Physics Research and Analysis (APRA) program.
A Clean Energy Roadmap: Forging the Path Ahead
ERIC Educational Resources Information Center
Ewing Marion Kauffman Foundation, 2010
2010-01-01
In 2010, the Ewing Marion Kauffman Foundation co-convened three cross-sector summits to develop recommendations for growing energy innovation in the United States. The first summit was held in Washington, D.C., on May 7, 2010, in partnership with the White House. Gallup and the city of Omaha, Nebraska, hosted the second summit on June 16, 2010,…
Graphical Visualization of Human Exploration Capabilities
NASA Technical Reports Server (NTRS)
Rodgers, Erica M.; Williams-Byrd, Julie; Arney, Dale C.; Simon, Matthew A.; Williams, Phillip A.; Barsoum, Christopher; Cowan, Tyler; Larman, Kevin T.; Hay, Jason; Burg, Alex
2016-01-01
NASA's pioneering space strategy will require advanced capabilities to expand the boundaries of human exploration on the Journey to Mars (J2M). The Evolvable Mars Campaign (EMC) architecture serves as a framework to identify critical capabilities that need to be developed and tested in order to enable a range of human exploration destinations and missions. Agency-wide System Maturation Teams (SMT) are responsible for the maturation of these critical exploration capabilities and help formulate, guide and resolve performance gaps associated with the EMC-identified capabilities. Systems Capability Organization Reporting Engine boards (SCOREboards) were developed to integrate the SMT data sets into cohesive human exploration capability stories that can be used to promote dialog and communicate NASA's exploration investments. Each SCOREboard provides a graphical visualization of SMT capability development needs that enable exploration missions, and presents a comprehensive overview of data that outlines a roadmap of system maturation needs critical for the J2M. SCOREboards are generated by a computer program that extracts data from a main repository, sorts the data based on a tiered data reduction structure, and then plots the data according to specified user inputs. The ability to sort and plot varying data categories provides the flexibility to present specific SCOREboard capability roadmaps based on customer requests. This paper presents the development of the SCOREboard computer program and shows multiple complementary, yet different datasets through a unified format designed to facilitate comparison between datasets. Example SCOREboard capability roadmaps are presented followed by a discussion of how the roadmaps are used to: 1) communicate capability developments and readiness of systems for future missions, and 2) influence the definition of NASA's human exploration investment portfolio through capability-driven processes. The paper concludes with a description of planned future work to modify the computer program to include additional data and of alternate capability roadmap formats currently under consideration.
Moore, Bethany; Bone, Eric A
2017-01-01
The concept of triage in healthcare has been around for centuries and continues to be applied today so that scarce resources are allocated according to need. A business impact analysis (BIA) is a form of triage in that it identifies which processes are most critical, which to address first and how to allocate limited resources. On its own, however, the BIA provides only a roadmap of the impacts and interdependencies of an event. When disaster strikes, organisational decision-makers often face difficult decisions with regard to allocating limited resources between multiple 'mission-critical' functions. Applying the concept of triage to business continuity provides those decision-makers navigating a rapidly evolving and unpredictable event with a path that protects the fundamental priorities of the organisation. A business triage methodology aids decision-makers in times of crisis by providing a simplified framework for decision-making based on objective, evidence-based criteria, which is universally accepted and understood. When disaster strikes, the survival of the organisation depends on critical decision-making and quick actions to stabilise the incident. This paper argues that organisations need to supplement BIA processes with a decision-making triage methodology that can be quickly applied during the chaos of an actual event.
A General, Adaptive, Roadmap-Based Algorithm for Protein Motion Computation.
Molloy, Kevin; Shehu, Amarda
2016-03-01
Precious information on protein function can be extracted from a detailed characterization of protein equilibrium dynamics. This remains elusive in wet and dry laboratories, as function-modulating transitions of a protein between functionally-relevant, thermodynamically-stable and meta-stable structural states often span disparate time scales. In this paper we propose a novel, robotics-inspired algorithm that circumvents time-scale challenges by drawing analogies between protein motion and robot motion. The algorithm adapts the popular roadmap-based framework in robot motion computation to handle the more complex protein conformation space and its underlying rugged energy surface. Given known structures representing stable and meta-stable states of a protein, the algorithm yields a time- and energy-prioritized list of transition paths between the structures, with each path represented as a series of conformations. The algorithm balances computational resources between a global search aimed at obtaining a global view of the network of protein conformations and their connectivity and a detailed local search focused on realizing such connections with physically-realistic models. Promising results are presented on a variety of proteins that demonstrate the general utility of the algorithm and its capability to improve the state of the art without employing system-specific insight.
sCO2 Brayton Cycle: Roadmap to sCO2 Power Cycles NE Commercial Applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.
The mission of the Energy Conversion (EC) area of the Advanced Reactor Technology (ART) program is to commercialize the sCO2 Brayton cycle for Advance Reactors and for the Supercritical Transformational Electric Production (STEP) program. The near-term objective of the EC team efforts is to support the development of a commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the first STEP demonstration system with the lowest risk possible. This document details the status of technology, policy and market considerations, documentation of gaps and needs, and outlines the steps necessary for the successful development and deployment of commercial sCO2more » Brayton Power Systems along the path to nuclear reactor applications. Document Control Version Creation Date Revisions Created By Release Date 1.0 2/29/2016 Preliminary Draft Mendez, C. 3/2/2016 2.0 7/29/2016 Preliminaty/Partial Report -- updated Focus Area structure, added commercial path forward Mendez, C. 8/10/16 3.0 5/1/2018 Updated Roadmap supports timeline changes and inclusion of grid qualification goals Mendez, C. 6/6/18« less
Siontorou, Christina G; Batzias, Fragiskos A
2014-03-01
Biosensor technology began in the 1960s to revolutionize instrumentation and measurement. Despite the glucose sensor market success that revolutionized medical diagnostics, and artificial pancreas promise currently the approval stage, the industry is reluctant to capitalize on other relevant university-produced knowledge and innovation. On the other hand, the scientific literature is extensive and persisting, while the number of university-hosted biosensor groups is growing. Considering the limited marketability of biosensors compared to the available research output, the biosensor field has been used by the present authors as a suitable paradigm for developing a methodological combined framework for "roadmapping" university research output in this discipline. This framework adopts the basic principles of the Analytic Hierarchy Process (AHP), replacing the lower level of technology alternatives with internal barriers (drawbacks, limitations, disadvantages), modeled through fault tree analysis (FTA) relying on fuzzy reasoning to count for uncertainty. The proposed methodology is validated retrospectively using ion selective field effect transistor (ISFET) - based biosensors as a case example, and then implemented prospectively membrane biosensors, putting an emphasis on the manufacturability issues. The analysis performed the trajectory of membrane platforms differently than the available market roadmaps that, considering the vast industrial experience in tailoring and handling crystallic forms, suggest the technology path of biomimetic and synthetic materials. The results presented herein indicate that future trajectories lie along with nanotechnology, and especially nanofabrication and nano-bioinformatics, and focused, more on the science-path, that is, on controlling the natural process of self-assembly and the thermodynamics of bioelement-lipid interaction. This retained the nature-derived sensitivity of the biosensor platform, pointing out the differences between the scope of academic research and the market viewpoint.
A Strategy for Origins of Life Research.
Scharf, Caleb; Virgo, Nathaniel; Cleaves, H James; Aono, Masashi; Aubert-Kato, Nathanael; Aydinoglu, Arsev; Barahona, Ana; Barge, Laura M; Benner, Steven A; Biehl, Martin; Brasser, Ramon; Butch, Christopher J; Chandru, Kuhan; Cronin, Leroy; Danielache, Sebastian; Fischer, Jakob; Hernlund, John; Hut, Piet; Ikegami, Takashi; Kimura, Jun; Kobayashi, Kensei; Mariscal, Carlos; McGlynn, Shawn; Menard, Brice; Packard, Norman; Pascal, Robert; Pereto, Juli; Rajamani, Sudha; Sinapayen, Lana; Smith, Eric; Switzer, Christopher; Takai, Ken; Tian, Feng; Ueno, Yuichiro; Voytek, Mary; Witkowski, Olaf; Yabuta, Hikaru
2015-12-01
Contents 1. Introduction 1.1. A workshop and this document 1.2. Framing origins of life science 1.2.1. What do we mean by the origins of life (OoL)? 1.2.2. Defining life 1.2.3. How should we characterize approaches to OoL science? 1.2.4. One path to life or many? 2. A Strategy for Origins of Life Research 2.1. Outcomes-key questions and investigations 2.1.1. Domain 1: Theory 2.1.2. Domain 2: Practice 2.1.3. Domain 3: Process 2.1.4. Domain 4: Future studies 2.2. EON Roadmap 2.3. Relationship to NASA Astrobiology Roadmap and Strategy documents and the European AstRoMap Appendix I Appendix II Supplementary Materials References.
MaRIE theory, modeling and computation roadmap executive summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lookman, Turab
The confluence of MaRIE (Matter-Radiation Interactions in Extreme) and extreme (exascale) computing timelines offers a unique opportunity in co-designing the elements of materials discovery, with theory and high performance computing, itself co-designed by constrained optimization of hardware and software, and experiments. MaRIE's theory, modeling, and computation (TMC) roadmap efforts have paralleled 'MaRIE First Experiments' science activities in the areas of materials dynamics, irradiated materials and complex functional materials in extreme conditions. The documents that follow this executive summary describe in detail for each of these areas the current state of the art, the gaps that exist and the road mapmore » to MaRIE and beyond. Here we integrate the various elements to articulate an overarching theme related to the role and consequences of heterogeneities which manifest as competing states in a complex energy landscape. MaRIE experiments will locate, measure and follow the dynamical evolution of these heterogeneities. Our TMC vision spans the various pillar science and highlights the key theoretical and experimental challenges. We also present a theory, modeling and computation roadmap of the path to and beyond MaRIE in each of the science areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, Nathan; Heaps, Colton; Symko-Davies, Martha
The purpose of this report is to propose a technical roadmap for power supply technology to power the Tactical Assault Light Operator Suit (TALOS), an armored, powered exoskeleton currently in development for U.S. Special Operations Command operators. TALOS' power supply system must meet size targets similar to the size of a large backpack while providing significant electrical power for an entire mission cycle without resupply. This report proposes a staged development path based on three fundamental technical approaches.
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
2003-01-01
This viewgraph presentation discusses the status and goals for the NASA OBPR Physical Science Research Program. The following text was used to summarize the presentation. The OBPR Physical Sciences Research program has been comprehensively reviewed and endorsed by National Research Council. The value and need for the research have been re-affirmed. The research program has been prioritized and resource re-allocations have been carried out through an OBPR-wide process. An increasing emphasis on strategic, mission-oriented research is planned. The program will strive to maintain a balance between strategic and fundamental research. A feasible ISS flight research program fitting within the budgetary and ISS resource envelopes has been formulated for the near term (2003-2007). The current ISS research program will be significantly strengthened starting 2005 by using discipline dedicated research facility racks. A research re-planning effort has been initiated and will include active participation from the research community in the next few months. The research re-planning effort will poise PSR to increase ISS research utilization for a potential enhancement beyond ISS IP Core Complete. The Physical Sciences research program readily integrates the cross-disciplinary requirements of the NASA and OBPR strategic objectives. Each fundamental research thrust will develop a roadmap through technical workshops and Discipline Working Groups (DWGs). Most fundamental research thrusts will involve cross-disciplinary efforts. A Technology Roadmap will guide the Strategic Research for Exploration thrust. The Research Plan will integrate and coordinate fundamental Research Thrusts Roadmaps with the Technology Roadmap. The Technology Roadmap will be developed in coordination with other OBPR programs as well as other Enterprise (R,S,M,N). International Partners will contribute to the roadmaps and through research coordination. The research plan will be vetted with the discipline working groups, the BPRAC subcommittees, and with the BPRAC. Recommendations from NRC past and current committees will be implemented whenever appropriate.Proposed theme element content will be "missionized" around planned content and potential new projects (facilities, modules, initiatives) on approximately a five-year horizon, with the approval of PSRD management. Center/science working group teams will develop descriptions of "mission" objectives, value, and requirements. Purpose is to create a competitive environment for concept development and to stimulate community ownership/advocacy. Proposed theme elements reviewed and approved by PSRD management. Strawman roadmaps for themes developed. Program budget and technology requirements verified. Theme elements are prioritized with the input of advisory groups. Integration into program themes (questions) and required technology investments are defined by science and technology roadmaps. Review and assessment by OBPR management.
Vitamin D deficiency in critically ill children: A roadmap to interventional research
USDA-ARS?s Scientific Manuscript database
Two studies published this month in Pediatrics provide new and unique information regarding the relationship between vitamin D status and critical illnesses in children admitted to PICUs in the United States and Canada. These two studies, from Boston Children's Hospital and six PICUs in Canada, demo...
Weiss, Brian A.; Vogl, Gregory; Helu, Moneer; Qiao, Guixiu; Pellegrino, Joan; Justiniano, Mauricio; Raghunathan, Anand
2017-01-01
The National Institute of Standards and Technology (NIST) hosted the Roadmapping Workshop – Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) in Fall 2014 to discuss the needs and priorities of stakeholders in the PHM4SMS technology area. The workshop brought together over 70 members of the PHM community. The attendees included representatives from small, medium, and large manufacturers; technology developers and integrators; academic researchers; government organizations; trade associations; and standards bodies. The attendees discussed the current and anticipated measurement science challenges to advance PHM methods and techniques for smart manufacturing systems; the associated research and development needed to implement condition monitoring, diagnostic, and prognostic technologies within manufacturing environments; and the priorities to meet the needs of PHM in manufacturing. This paper will summarize the key findings of this workshop, and present some of the critical measurement science challenges and corresponding roadmaps, i.e., suggested courses of action, to advance PHM for manufacturing. Milestones and targeted capabilities will be presented for each roadmap across three areas: PHM Manufacturing Process Techniques; PHM Performance Assessment; and PHM Infrastructure – Hardware, Software, and Integration. An analysis of these roadmaps and crosscutting themes seen across the breakout sessions is also discussed. PMID:28664163
Roadmap for the international, accelerator-based neutrino programme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, J.; de Gouvêa, A.; Duchesneau, D.
In line with its terms of reference the ICFA Neutrino Panel has developed a roadmap for the international, accelerator-based neutrino programme. A "roadmap discussion document" was presented in May 2016 taking into account the peer-group-consultation described in the Panel's initial report. The "roadmap discussion document" was used to solicit feedback from the neutrino community---and more broadly, the particle- and astroparticle-physics communities---and the various stakeholders in the programme. The roadmap, the conclusions and recommendations presented in this document take into account the comments received following the publication of the roadmap discussion document. With its roadmap the Panel documents the approved objectivesmore » and milestones of the experiments that are presently in operation or under construction. Approval, construction and exploitation milestones are presented for experiments that are being considered for approval. The timetable proposed by the proponents is presented for experiments that are not yet being considered formally for approval. Based on this information, the evolution of the precision with which the critical parameters governinger the neutrino are known has been evaluated. Branch or decision points have been identified based on the anticipated evolution in precision. The branch or decision points have in turn been used to identify desirable timelines for the neutrino-nucleus cross section and hadro-production measurements that are required to maximise the integrated scientific output of the programme. The branch points have also been used to identify the timeline for the R&D required to take the programme beyond the horizon of the next generation of experiments. The theory and phenomenology programme, including nuclear theory, required to ensure that maximum benefit is derived from the experimental programme is also discussed.« less
A Strategy for Origins of Life Research
Scharf, Caleb; Virgo, Nathaniel; Aono, Masashi; Aubert-Kato, Nathanael; Aydinoglu, Arsev; Barahona, Ana; Barge, Laura M.; Benner, Steven A.; Biehl, Martin; Brasser, Ramon; Butch, Christopher J.; Chandru, Kuhan; Cronin, Leroy; Danielache, Sebastian; Fischer, Jakob; Hernlund, John; Hut, Piet; Ikegami, Takashi; Kimura, Jun; Kobayashi, Kensei; Mariscal, Carlos; McGlynn, Shawn; Menard, Brice; Packard, Norman; Pascal, Robert; Pereto, Juli; Rajamani, Sudha; Sinapayen, Lana; Smith, Eric; Switzer, Christopher; Takai, Ken; Tian, Feng; Ueno, Yuichiro; Voytek, Mary; Witkowski, Olaf; Yabuta, Hikaru
2015-01-01
Contents 1. Introduction 1.1. A workshop and this document 1.2. Framing origins of life science 1.2.1. What do we mean by the origins of life (OoL)? 1.2.2. Defining life 1.2.3. How should we characterize approaches to OoL science? 1.2.4. One path to life or many? 2. A Strategy for Origins of Life Research 2.1. Outcomes—key questions and investigations 2.1.1. Domain 1: Theory 2.1.2. Domain 2: Practice 2.1.3. Domain 3: Process 2.1.4. Domain 4: Future studies 2.2. EON Roadmap 2.3. Relationship to NASA Astrobiology Roadmap and Strategy documents and the European AstRoMap Appendix I Appendix II Supplementary Materials References PMID:26684503
Carbon Dioxide Utilization (CO2U) ICEF Roadmap 2.0. Draft October 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandalow, David; Aines, Roger; Friedmann, Julio
Last year, experts from CO 2 Sciences, Columbia University and Valence Strategic came together to develop a roadmap. That document, Carbon Dioxide Utilization ICEF Roadmap 1.0, released at the UNFCCC Marrakesh Climate Change Conference in 2016, surveyed the commercial and technical landscape of CO 2 conversion and use. The document provided extensive background and analysis and has helped to provide a foundation for additional studies, including this one.This roadmap is meant to complement and expand upon the work of its predecessor. Based in part on a workshop at Columbia University’s Center on Global Energy Policy in July 2017, it exploresmore » three distinct categories of CO 2-based products, the technologies that can be harnessed to convert CO2 to these products, and the associated research and development needs. It also explores the complicated topic of life cycle analysis—critically important when considering the climate impacts of CO 2 conversion and use—as well as policy tools that could be used to promote CO 2-based products.« less
Scientific and technical challenges on the road towards fusion electricity
NASA Astrophysics Data System (ADS)
Donné, A. J. H.; Federici, G.; Litaudon, X.; McDonald, D. C.
2017-10-01
The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a dedicated 14 MeV neutron source is needed. This DEMO Oriented Neutron Source (DONES) is therefore an important facility to support the fusion roadmap.
Spacecraft Onboard Interface Services: Current Status and Roadmap
NASA Astrophysics Data System (ADS)
Prochazka, Marek; Lopez Trescastro, Jorge; Krueger, Sabine
2016-08-01
Spacecraft Onboard Interface Services (SOIS) is a set of CCSDS standards defining communication stack services to interact with hardware equipment onboard spacecraft. In 2014 ESA kicked off three parallel activities to critically review the SOIS standards, use legacy spacecraft flight software (FSW), make it compliant to a preselected subset of SOIS standards and make performance and architecture assessment. As a part of the three parallel activities, led by Airbus DS Toulouse, OHB Bremen and Thales Alenia Space Cannes respectively, it was to provide feedback back to ESA and CCSDS and also to propose a roadmap of transition towards an operational FSW system fully compliant to applicable SOIS standards. The objective of the paper is twofold: Firstly it is to summarise main results of the three parallel activities and secondly, based on the results, to propose a roadmap for the future.
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Hayden, Jeffrey L.
2005-01-01
For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.
NASA Astrophysics Data System (ADS)
Leveton, Lauren B.; Robinson, Judith L.; Charles, John B.
2000-01-01
Human exploration of space requires the ability to understand and mitigate risks to crews exposed to the conditions associated with such missions. This becomes a greater imperative as we prepare for interplanetary expeditions involving humans who will be subjected to long transit periods in microgravity as they travel to a distant planet such as Mars, embark and live on the planet's surface for an extended time, and finally, return to the 1 g environment of Earth. We need to know, more definitively, what the human health, safety, and performance risks are, and how to prevent or counteract them throughout all phases of a long duration mission. The Johnson Space Center's Space and Life Sciences Directorate along with the National Space Biomedical Research Institute (NSBRI) have been engaged in a strategic planning effort that identifies the most critical risks confronting humans who will venture forth on such missions and the types of research and technology efforts required to mitigate and otherwise reduce the probability and/or severity of those risks. This paper describes the unique approach used to define, assess and prioritize the risks and presents the results of the assessment with an emphasis on the research and technology priorities that will help us to meet the challenge of long duration human spaceflight missions. .
NASA Technical Reports Server (NTRS)
Leveton, Lauren B.; Robinson, Judith L.; Charles, John B.
2000-01-01
Human exploration of space requires the ability to understand and mitigate risks to crews exposed to the conditions associated with such missions. This becomes a greater imperative as we prepare for interplanetary expeditions involving humans who will be subjected to long transit periods in microgravity as they travel to a distant planet such as Mars, embark and live on the planet's surface for an extended time, and finally, return to the 1 g environment of Earth. We need to know, more definitively, what the human health, safety, and performance risks are, and how to prevent or counteract them throughout all phases of a long duration mission. The Johnson Space Center's Space and Life Sciences Directorate along with the National Space Biomedical Research Institute (NSBRI) have been engaged in a strategic planning effort that identifies the most critical risks confronting humans who will venture forth on such missions and the types of research and technology efforts required to mitigate and otherwise reduce the probability and/or severity of those risks. This paper describes the unique approach used to define, assess and prioritize the risks and presents the results of the assessment with an emphasis on the research and technology priorities that will help us to meet the challenge of long duration human spaceflight missions.
X-43D Conceptual Design and Feasibility Study
NASA Technical Reports Server (NTRS)
Johnson, Donald B.; Robinson, Jeffrey S.
2005-01-01
NASA s Next Generation Launch Technology (NGLT) Program, in conjunction with the office of the Director of Defense Research and Engineering (DDR&E), developed an integrated hypersonic technology demonstration roadmap. This roadmap is an integral part of the National Aerospace Initiative (NAI), a multi-year, multi-agency cooperative effort to invest in and develop, among other things, hypersonic technologies. This roadmap contains key ground and flight demonstrations required along the path to developing a reusable hypersonic space access system. One of the key flight demonstrations required for systems that will operate in the high Mach number regime is the X-43D. As currently conceived, the X-43D is a Mach 15 flight test vehicle that incorporates a hydrogen-fueled scramjet engine. The purpose of the X-43D is to gather high Mach number flight environment and engine operability information which is difficult, if not impossible, to gather on the ground. During 2003, the NGLT Future Hypersonic Flight Demonstration Office initiated a feasibility study on the X-43D. The objective of the study was to develop a baseline conceptual design, assess its performance, and identify the key technical issues. The study also produced a baseline program plan, schedule, and cost, along with a list of key programmatic risks.
Human System Risk Management for Space Flight
NASA Technical Reports Server (NTRS)
Davis, Jeffrey
2015-01-01
This brief abstract reviews the development of the current day approach to human system risk management for space flight and the development of the critical components of this process over the past few years. The human system risk management process now provides a comprehensive assessment of each human system risk by design reference mission (DRM) and is evaluated not only for mission success but also for long-term health impacts for the astronauts. The discipline of bioastronautics is the study of the biological and medical effects of space flight on humans. In 1997, the Space Life Sciences Directorate (SLSD) initiated the Bioastronautics Roadmap (Roadmap) as the "Critical Path Roadmap", and in 1998 participation in the roadmap was expanded to include the National Space Biomedical Research Institute (NSBRI) and the external community. A total of 55 risks and 250 questions were identified and prioritized and in 2000, the Roadmap was base-lined and put under configuration control. The Roadmap took into account several major advisory committee reviews including the Institute of Medicine (IOM) "Safe Passage: Astronaut care for Exploration Missions", 2001. Subsequently, three collaborating organizations at NASA HQ (Chief Health and Medical Officer, Office of Space Flight and Office of Biological & Physical Research), published the Bioastronautics Strategy in 2003, that identified the human as a "critical subsystem of space flight" and noted that "tolerance limits and safe operating bands must be established" to enable human space flight. These offices also requested a review by the IOM of the Roadmap and that review was published in October 2005 as "A Risk Reduction Strategy for Human Exploration of Space: A Review of NASA's Bioastronautics Roadmap", that noted several strengths and weaknesses of the Roadmap and made several recommendations. In parallel with the development of the Roadmap, the Office of the Chief Health and Medical Officer (OCHMO) began a process in 2004 of evaluating the tolerance limits and safe operating bands called for in the Bioastronautics Strategy. Over the next several years, the concept of the "operating bands" were turned into Space Flight Human System Standards (SFHSS), developed by the technical resources of the SLSD at the NASA Johnson Space Center (JSC). These standards were developed and reviewed at the SLSD and then presented to the OCHMO for acceptance. The first set of standards was published in 2007 as the NASA-STD-3001, Volume 1, Crew Health that elaborated standards for several physiological areas such as cardiovascular, musculoskeletal, radiation exposure and nutrition. Volume 2, Human Factors, Habitability and Human Health was published in 2011, along with development guidance in the Human Integration Design Handbook (HIDH). Taken together, the SFHSS Volumes 1 and 2, and the HIDH replaced the NASA-STD-3000 with new standards and revisions of the older document. Three other changes were also taking place that facilitated the development of the human system risk management approach. In 2005, the life sciences research and development portfolio underwent a comprehensive review through the Exploration Systems Architecture Study (ESAS) that resulted in the reformulation of the Bioastronautics Program into Human Research Program (HRP) that was focused on appropriate mitigation results for high priority human health risks. The baseline HRP budget was established in August 2005. In addition, the OCHMO formulated the Health and Medical Technical Authority (HMTA) in 2006 that established the position of the Chief Medical Officer (CMO) at the NASA JSC along with other key technical disciplines, and the OCHMO became the responsible office for the SFHSS as noted above. The final change was the establishment in 2008 of the Human System Risk Board (HSRB), chaired by the CMO with representation from the HRP, SLSD management and technical experts. The HSRB then began to review all human system risks, established a comprehensive risk management and configuration management plan and data sharing policy. These major developments of standards, the HRP, the HMTA and a forum for review of human system risks (HSRB) facilitated the integration of human research, medical operations, systems engineering and many other disciplines in the comprehensive review of human system risks. The HSRB began a comprehensive review of all potential inflight medical conditions and events and over the course of several reviews consolidated the number of human system risks to 30 where the greatest emphasis is placed for investing program dollars for risk mitigation. The HSRB considers all available evidence from human research, medical operations and occupational surveillance in assessing the risks for appropriate mitigation and future work. All applicable DRMs (low earth orbit 6 and 12 months, deep space sortie for 30 days and 1 year, a one year lunar mission, and a planetary mission for 3 years) are considered as human system risks are modified by the hazards associated with space flight such as microgravity, exposure to radiation, distance from the earth, isolation and a closed environment. Each risk has a summary assessment representing the state of knowledge/evidence base for that risk, the available risk mitigations, traceability to the SFHSS and program requirements, and future work required. These data then can drive coordinated budgets across the HRP, the International Space Station, Crew Health and Safety and Advanced Exploration System budgets. These risk assessments were completed for 6 DRMs in December of 2014 and serve as the baseline for which subsequent research and technology development and crew health care portfolios can be assessed. The HSRB will review each risk at least annually and especially when new information is available that must be considered for effective risk mitigation. The current status of each risk can be reported to program management for operations, budget reviews and general oversight of the human system risk management program.
VERAM - Vision and Roadmap for European Raw Materials
NASA Astrophysics Data System (ADS)
Baumgarten, Wibke; Vashev, Boris
2017-04-01
The overall objective of VERAM project is to produce a Vision and Roadmap for European Raw Materials in 2050 based on raw materials research and innovation (R&I) coordination. Two leading European Technology Platforms (ETPs): ETP SMR (Sustainable Minerals Resources) and FTP (Forest Technology Platform) are joining forces to develop a common vison and roadmap with the support of ECTP (European Construction Technology Platform), represented by UNIVPM, SusChem (ETP for Sustainable Chemistry), represented by Cefic, EuMaT (Advanced Materials ETP), represented by VITO, ERAMIN 2, represented by Research Centre JUELICH and WoodWisdom Network Plus represented by the Agency for Renewable Resources (FNR). This partnership provides VERAM with expertise from downstream applications and additional knowledge on non-biotic and biotic raw materials. The project encourages capacity building as well as transfer of knowledge. It expects to provide an innovation reference point for the European Institute of Innovation & Technology (EIT) Raw Materials (formerly the KIC Raw MatTERS), to coordinate the network involved in the European Innovation Partnership (EIP) on Raw Materials Commitments and relevant proposals funded under Horizon 2020. It provides a platform for identifying gaps and complementarities and enables their bridging. VERAM will be able to advise the European Commission and Member States on future research needs and policies to stimulate innovation and assist in overcoming fragmentation in the implementing the EIP Raw Materials Strategic Implementation Plan. VERAM looks for mutually beneficial information exchange, encourages cross-fertilization between actions undertaken by different raw material industries, and expects to accelerate exploitation of breakthrough innovations. One of the main outcomes of the project is the presentation of a common long term 2050 Vision and Roadmap for relevant raw materials including metals, industrial minerals and aggregates and wood. The Vision and Roadmap have the objective of highlighting the path to achieving the European Commission's ambitious target of 80% reduction in CO2 emissions by 2050.
Paths of convergence for agriculture, health, and wealth.
Dubé, Laurette; Pingali, Prabhu; Webb, Patrick
2012-07-31
This special feature calls for forward thinking around paths of convergence for agriculture, health, and wealth. Such convergence aims for a richer integration of smallholder farmers into national and global agricultural and food systems, health systems, value chains, and markets. The articles identify analytical innovation, where disciplines intersect, and cross-sectoral action where single, linear, and siloed approaches have traditionally dominated. The issues addressed are framed by three main themes: (i) lessons related to agricultural and food market growth since the 1960s; (ii) experiences related to the integration of smallholder agriculture into national and global business agendas; and (iii) insights into convergence-building institutional design and policy, including a review of complexity science methods that can inform such processes. In this introductory article, we first discuss the perspectives generated for more impactful policy and action when these three themes converge. We then push thematic boundaries to elaborate a roadmap for a broader, solution-oriented, and transdisciplinary approach to science, policies, and actions. As the global urban population crosses the 50% mark, both smallholder and nonsmallholder agriculture are keys in forging rural-urban links, where both farm and nonfarm activities contribute to sustainable nutrition security. The roadmaps would harness the power of business to reduce hunger and poverty for millions of families, contribute to a better alignment between human biology and modern lifestyles, and stem the spread of noncommunicable chronic diseases.
Paths of convergence for agriculture, health, and wealth
Dubé, Laurette; Pingali, Prabhu; Webb, Patrick
2012-01-01
This special feature calls for forward thinking around paths of convergence for agriculture, health, and wealth. Such convergence aims for a richer integration of smallholder farmers into national and global agricultural and food systems, health systems, value chains, and markets. The articles identify analytical innovation, where disciplines intersect, and cross-sectoral action where single, linear, and siloed approaches have traditionally dominated. The issues addressed are framed by three main themes: (i) lessons related to agricultural and food market growth since the 1960s; (ii) experiences related to the integration of smallholder agriculture into national and global business agendas; and (iii) insights into convergence-building institutional design and policy, including a review of complexity science methods that can inform such processes. In this introductory article, we first discuss the perspectives generated for more impactful policy and action when these three themes converge. We then push thematic boundaries to elaborate a roadmap for a broader, solution-oriented, and transdisciplinary approach to science, policies, and actions. As the global urban population crosses the 50% mark, both smallholder and nonsmallholder agriculture are keys in forging rural–urban links, where both farm and nonfarm activities contribute to sustainable nutrition security. The roadmaps would harness the power of business to reduce hunger and poverty for millions of families, contribute to a better alignment between human biology and modern lifestyles, and stem the spread of noncommunicable chronic diseases. PMID:22826252
A roadmap for bridging basic and applied research in forensic entomology.
Tomberlin, J K; Mohr, R; Benbow, M E; Tarone, A M; VanLaerhoven, S
2011-01-01
The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.
Scaling Deep Learning Workloads: NVIDIA DGX-1/Pascal and Intel Knights Landing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawande, Nitin A.; Landwehr, Joshua B.; Daily, Jeffrey A.
Deep Learning (DL) algorithms have become ubiquitous in data analytics. As a result, major computing vendors --- including NVIDIA, Intel, AMD and IBM --- have architectural road-maps influenced by DL workloads. Furthermore, several vendors have recently advertised new computing products as accelerating DL workloads. Unfortunately, it is difficult for data scientists to quantify the potential of these different products. This paper provides a performance and power analysis of important DL workloads on two major parallel architectures: NVIDIA DGX-1 (eight Pascal P100 GPUs interconnected with NVLink) and Intel Knights Landing (KNL) CPUs interconnected with Intel Omni-Path. Our evaluation consists of amore » cross section of convolutional neural net workloads: CifarNet, CaffeNet, AlexNet and GoogleNet topologies using the Cifar10 and ImageNet datasets. The workloads are vendor optimized for each architecture. GPUs provide the highest overall raw performance. Our analysis indicates that although GPUs provide the highest overall performance, the gap can close for some convolutional networks; and KNL can be competitive when considering performance/watt. Furthermore, NVLink is critical to GPU scaling.« less
Concepts and challenges in cancer risk prediction for the space radiation environment
NASA Astrophysics Data System (ADS)
Barcellos-Hoff, Mary Helen; Blakely, Eleanor A.; Burma, Sandeep; Fornace, Albert J.; Gerson, Stanton; Hlatky, Lynn; Kirsch, David G.; Luderer, Ulrike; Shay, Jerry; Wang, Ya; Weil, Michael M.
2015-07-01
Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program.
CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences
NASA Technical Reports Server (NTRS)
Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri
2014-01-01
This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.
Scarinci, Isabel C; Moore, Artisha; Benjamin, Regina; Vickers, Selwyn; Shikany, James; Fouad, Mona
2017-02-01
We describe the formulation and implementation of a participatory evaluation plan for three Transdisciplinary Collaborative Centers for Health Disparities Research funded by the National Institute of Minority Health and Health Disparities. Although different in scope of work, all three centers share a common goal of establishing sustainable centers in health disparities science in three priority areas - social determinants of health, men's health research, and health policy research. The logic model guides the process, impact, and outcome evaluation. Emphasis is placed on process evaluation in order to establish a "blue print" that can guide other efforts as well as assure that activities are being implemented as planned. We have learned three major lessons in this process: (1) Significant engagement, participation, and commitment of all involved is critical for the evaluation process; (2) Having a "roadmap" (logic model) and "directions" (evaluation worksheets) are instrumental in getting members from different backgrounds to follow the same path; and (3) Participation of the evaluator in the leadership and core meetings facilitates continuous feedback. Copyright © 2016 Elsevier Ltd. All rights reserved.
CNS Anticancer Drug Discovery and Development Conference White Paper
Levin, Victor A.; Tonge, Peter J.; Gallo, James M.; Birtwistle, Marc R.; Dar, Arvin C.; Iavarone, Antonio; Paddison, Patrick J.; Heffron, Timothy P.; Elmquist, William F.; Lachowicz, Jean E.; Johnson, Ted W.; White, Forest M.; Sul, Joohee; Smith, Quentin R.; Shen, Wang; Sarkaria, Jann N.; Samala, Ramakrishna; Wen, Patrick Y.; Berry, Donald A.; Petter, Russell C.
2015-01-01
Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric “Accelerating Drug Discovery and Development for Brain Tumors,” further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. PMID:26403167
Zero expansion glass ceramic ZERODUR® roadmap for advanced lithography
NASA Astrophysics Data System (ADS)
Westerhoff, Thomas; Jedamzik, Ralf; Hartmann, Peter
2013-04-01
The zero expansion glass ceramic ZERODUR® is a well-established material in microlithography in critical components as wafer- and reticle-stages, mirrors and frames in the stepper positioning and alignment system. The very low coefficient of thermal expansion (CTE) and its extremely high CTE homogeneity are key properties to achieve the tight overlay requirements of advanced lithography processes. SCHOTT is continuously improving critical material properties of ZERODUR® essential for microlithography applications according to a roadmap driven by the ever tighter material specifications broken down from the customer roadmaps. This paper will present the SCHOTT Roadmap for ZERODUR® material property development. In the recent years SCHOTT established a physical model based on structural relaxation to describe the coefficient of thermal expansion's temperature dependence. The model is successfully applied for the new expansion grade ZERODUR® TAILORED introduced to the market in 2012. ZERODUR® TAILORED delivers the lowest thermal expansion of ZERODUR® products at microlithography tool application temperature allowing for higher thermal stability for tighter overlay control in IC production. Data will be reported demonstrating the unique CTE homogeneity of ZERODUR® and its very high reproducibility, a necessary precondition for serial production for microlithography equipment components. New data on the bending strength of ZERODUR® proves its capability to withstand much higher mechanical loads than previously reported. Utilizing a three parameter Weibull distribution it is possible to derive minimum strength values for a given ZERODUR® surface treatment. Consequently the statistical uncertainties of the earlier approach based on a two parameter Weibull distribution have been eliminated. Mechanical fatigue due to stress corrosion was included in a straightforward way. The derived formulae allows calculating life time of ZERODUR® components for a given stress load or the allowable maximum stress for a minimum required life time.
Used fuel extended storage security and safeguards by design roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric Richard; Jones, Robert
2016-05-01
In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. Amore » set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.« less
Effective methodology to derive strategic decisions from ESA exploration technology roadmaps
NASA Astrophysics Data System (ADS)
Cresto Aleina, Sara; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio
2016-09-01
Top priorities in future international space exploration missions regard the achievement of the necessary maturation of enabling technologies, thereby allowing Europe to play a role commensurate with its industrial, operational and scientific capabilities. As part of the actions derived from this commitment, ESA Technology Roadmaps for Exploration represent a powerful tool to prioritise R&D activities in technologies for space exploration and support the preparation of a consistent procurement plan for space exploration technologies in Europe. The roadmaps illustrate not only the technology procurement (to TRL-8) paths for specific missions envisaged in the present timeframe, but also the achievement for Europe of technological milestones enabling operational capabilities and building blocks, essential for current and future Exploration missions. Coordination of requirements and funding sources among all European stakeholders (ESA, EU, National, and Industry) is one of the objectives of these roadmaps, that show also possible application of the technologies beyond space exploration, both at ESA and outside. The present paper describes the activity that supports the work on-going at ESA on the elaboration and update of these roadmaps and related tools, in order to criticise the followed approach and to suggest methodologies of assessment of the Roadmaps, and to derive strategic decision for the advancement of Space Exploration in Europe. After a review of Technology Areas, Missions/Programmes and related building blocks (architectures) and operational capabilities, technology applicability analyses are presented. The aim is to identify if a specific technology is required, applicable or potentially a demonstrator in the building blocks of the proposed mission concepts. In this way, for each technology it is possible to outline one or more specific plans to increase TRL up to the required level. In practice, this translates into two possible solutions: on the one hand, approved mission concepts will be complemented with the required technologies if the latter can be considered as applicable or demo; on the other, if they are neither applicable nor demo, new missions, i.e. technology demonstrators based on multidisciplinary grouping of key technologies, shall be evaluated, so as to proceed through incremental steps. Finally, techniques to determine priorities in technology procurement are identified, and methodologies to rank the required technologies are proposed. In addition, a tool that estimates the percentage of technologies required for the final destination that are implementable in each intermediate destination of the incremental approach is presented.
MEMS and MOEMS for national security applications
NASA Astrophysics Data System (ADS)
Scott, Marion W.
2003-01-01
Major opportunities for microsystem insertion into commercial applications, such as telecommunications and medical prosthesis, are well known. Less well known are applications that ensure the security of our nation, the protection of its armed forces, and the safety of its citizens. Microsystems enable entirely new possibilities to meet National Security needs, which can be classed along three lines: anticipating security needs and threats, deterring the efficacy of identified threats, and defending against the application of these threats. In each of these areas, specific products that are enabled by MEMS and MOEMS are discussed. In the area of anticipating needs and threats, sensored microsystems designed for chem/bio/nuclear threats, and sensors for border and asset protection can significantly secure our borders, ports, and transportation systems. Key features for these applications include adaptive optics and spectroscopic capabilities. Microsystems to monitor soil and water quality can be used to secure critical infrastructure, food safety can be improved by in-situ identification of pathogens, and sensored buildings can ensure the architectural safety of our homes and workplaces. A challenge to commercializing these opportunities, and thus making them available for National Security needs, is developing predictable markets and predictable technology roadmaps. The integrated circuit manufacturing industry provides an example of predictable technology maturation and market insertion, primarily due to the existence of a "unit cell" that allows volume manufacturing. It is not clear that microsystems can follow an analogous path. The possible paths to affordable low-volume production, as well as the prospects of a microsystems unit cell, are discussed.
ERIC Educational Resources Information Center
Simons, Jacob V., Jr.
2017-01-01
The critical path method/program evaluation and review technique method of project scheduling is based on the importance of managing a project's critical path(s). Although a critical path is the longest path through a network, its location in large projects is facilitated by the computation of activity slack. However, logical fallacies in…
Integrity and security in an Ada runtime environment
NASA Technical Reports Server (NTRS)
Bown, Rodney L.
1991-01-01
A review is provided of the Formal Methods group discussions. It was stated that integrity is not a pure mathematical dual of security. The input data is part of the integrity domain. The group provided a roadmap for research. One item of the roadmap and the final position statement are closely related to the space shuttle and space station. The group's position is to use a safe subset of Ada. Examples of safe sets include the Army Secure Operating System and the Penelope Ada verification tool. It is recommended that a conservative attitude is required when writing Ada code for life and property critical systems.
A Roadmap for Educational Research in Pharmacy
Dean, Meredith J.; Mumper, Russell J.; Blouin, Robert A.; Roth, Mary T.
2013-01-01
Educational research must play a critical role in informing practice and policy within pharmacy education. Understanding the educational environment and its impact on students, faculty members, and other stakeholders is imperative for improving outcomes and preparing pharmacy students to meet the needs of 21st century health care. To aid in the design and implementation of meaningful educational research within colleges and schools of pharmacy, this roadmap addresses philosophy and educational language; guidelines for the conduct of educational research; research design, including 4 approaches to defining, collecting, and analyzing educational data; measurement issues; ethical considerations; resources and tools; and the value of educational research in guiding curricular transformation. PMID:24371342
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgar, Thomas W.; Hadley, Mark D.; Manz, David O.
This document provides the methods to secure routable control system communication in the electric sector. The approach of this document yields a long-term vision for a future of secure communication, while also providing near term steps and a roadmap. The requirements for the future secure control system environment were spelled out to provide a final target. Additionally a survey and evaluation of current protocols was used to determine if any existing technology could achieve this goal. In the end a four-step path was described that brought about increasing requirement completion and culminates in the realization of the long term vision.
Fleischhacker, Sheila E; Ballard, Rachel M; Starke-Reed, Pamela E; Galuska, Deborah A; Neuhouser, Marian L
2017-10-01
The Interagency Committee on Human Nutrition Research (ICHNR) is charged with improving the planning, coordination, and communication among federal agencies engaged in nutrition research and with facilitating the development and updating of plans for federal research programs to meet current and future domestic and international needs for nutrition. The ICHNR is co-chaired by the USDA Under Secretary for Research, Education, and Economics and Chief Scientist and the US Department of Health and Human Services Assistant Secretary for Health and is made up of >10 departments and agencies. Once the ICHNR was reassembled after a 10-y hiatus, the ICHNR recognized a need for a written roadmap to identify critical human nutrition research gaps and opportunities. This commentary provides an overview of the process the ICHNR undertook to develop a first-of-its-kind National Nutrition Research Roadmap, which was publicly released on 4 March 2016. The primary audience for the Roadmap is federal science agency leaders, along with relevant program and policy staff who rely on federally supported human nutrition research, in addition to the broader scientific community. The Roadmap is framed around the following 3 questions: 1 ) How can we better understand and define eating patterns to improve and sustain health? 2 ) What can be done to help people choose healthy eating patterns? 3 ) How can we develop and engage innovative methods and systems to accelerate discoveries in human nutrition? Within these 3 questions, 11 topical areas were identified on the basis of the following criteria: population impact, feasibility given current technological capacities, and emerging scientific opportunities. This commentary highlights initial federal and some professional research society efforts to address the Roadmap's research and resource priorities. We conclude by noting examples of early collaborations and partnerships to move human nutrition research forward in the 21st century. © 2017 American Society for Nutrition.
Concepts and challenges in cancer risk prediction for the space radiation environment.
Barcellos-Hoff, Mary Helen; Blakely, Eleanor A; Burma, Sandeep; Fornace, Albert J; Gerson, Stanton; Hlatky, Lynn; Kirsch, David G; Luderer, Ulrike; Shay, Jerry; Wang, Ya; Weil, Michael M
2015-07-01
Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Torres, Luis G.; Kuntz, Alan; Gilbert, Hunter B.; Swaney, Philip J.; Hendrick, Richard J.; Webster, Robert J.; Alterovitz, Ron
2015-01-01
Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot’s shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot’s tip. However, the robot’s unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot’s shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles. PMID:26413381
Torres, Luis G; Kuntz, Alan; Gilbert, Hunter B; Swaney, Philip J; Hendrick, Richard J; Webster, Robert J; Alterovitz, Ron
2015-05-01
Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot's shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot's tip. However, the robot's unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot's shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles.
Simulating Mission Command for Planning and Analysis
2015-06-01
mission plan. 14. SUBJECT TERMS Mission Planning, CPM , PERT, Simulation, DES, Simkit, Triangle Distribution, Critical Path 15. NUMBER OF...Battalion Task Force CO Company CPM Critical Path Method DES Discrete Event Simulation FA BAT Field Artillery Battalion FEL Future Event List FIST...management tools that can be utilized to find the critical path in military projects. These are the Critical Path Method ( CPM ) and the Program Evaluation and
NASA Astrophysics Data System (ADS)
Schlutz, Juergen; Hufenbach, Bernhard; Laurini, Kathy; Spiero, Francois
2016-07-01
Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As ISECG agencies advance their individual planning, they also advance the mission themes and reference architecture of the GER to consolidate common goals, near-term mission scenarios and initial opportunities for collaboration. In this context, particular focus has been given to the Better understanding and further refinement of cislunar infrastructure and potential lunar transportation architecture Interaction with international science communities to identify and articulate the scientific opportunities of the near-term exploration mission themes Coordination and consolidation of interest in lunar polar volatiles prospecting and potential for in-situ resource utilisation Identification and articulation of the benefits from exploration and the technology transfer activities The paper discusses the ongoing roadmapping activity of the ISECG agencies. It provides an insight into the status of the above activities and an outlook towards the evolution of the GER that is currently foreseen in the 2017 timeframe.
Developing the "Lunar Vicinity" Scenario of the Global Exploration Roadmap
NASA Astrophysics Data System (ADS)
Schmidt, G.; Neal, C. R.; Crawford, I. A.; Ehrenfreund, P.
2014-04-01
The Global Exploration Roadmap (GER, [1]) has been developed by the International Space Exploration Coordination Group (ISECG - comprised of 14 space agencies) to define various pathways to getting humans beyond low Earth orbit and eventually to Mars. Such pathways include visiting asteroids or the Moon before going on to Mars. This document has been written at a very high level and many details are still to be determined. However, a number of important papers regarding international space exploration can form a basis for this document (e.g. [2,3]). In this presentation, we focus on developing the "Lunar Vicinity" scenario by adding detail via mapping a number of recent reports/documents into the GER. Precedence for this scenario is given by Szajnfarber et al. [4] who stated "We find that when international partners are considered endogenously, the argument for a "flexible path" approach is weakened substantially. This is because international contributions can make "Moon first" economically feasible". The documents highlighted here are in no way meant to be all encompassing and other documents can and should be added, (e.g., the JAXA Space Exploration Roadmap). This exercise is intended to demonstrate that existing documents can be mapped into the GER despite the major differences in granularity, and that this mapping is a way to promote broader national and international buy-in to the Lunar Vicinity scenario. The documents used here are: the Committee on Space Research (COSPAR) Panel on Exploration report on developing a global space exploration program [5], the Strategic Knowledge Gaps (SKGs) report from the Lunar Exploration Analysis Group (LEAG) [6], the Lunar Exploration Roadmap developed by LEAG [7], the National Research Council report Scientific Context for the Exploration of the Moon (SCEM) [8], the scientific rationale for resuming lunar surface exploration [9], the astrobiological benefits of human space exploration [9,10].
ERIC Educational Resources Information Center
Business Roundtable, 2010
2010-01-01
The United States is at a critical juncture. The deep recession and weak economic recovery have left one in 10 American workers without a job, and the federal budget is driving the country's debt to unprecedented levels. Business Roundtable believes that the nation's business community, the White House and Congress must work together to encourage…
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Ozel, Feryal; Vikhlinin, Alexey
2016-01-01
The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Pape, Yann; Rosseel, Thomas M.
The Joint Department of Energy (DOE)-Electric Power Research Institute (EPRI) Program (Light Water Reactor Sustainability (LWRS) Program–Material Pathway–Concrete and Long-Term Operation (LTO) Program) and US Nuclear Regulatory Commission (NRC) research studies aim at understanding the most prominent degradation modes and their effects on the long-term operation of concrete structures to nuclear power generation. Based on the results of the Expanded Materials Degradation Analysis (EMDA), (NUREG/CR-7153, ORNL/TM-2011/545), irradiated concrete and alkali-silica reaction (ASR)-affected concrete structures are the two prioritized topics of on-going research. This report focuses specifically on the topic of irradiated concrete and summarizes the main accomplishments obtained by thismore » joint program, but also provides an overview of current relevant activities domestically and internationally. Possible paths forward are also suggested to help near-future orientation of this program.« less
Surgical robotics for patient safety in the perioperative environment: realizing the promise.
Fuji Lai; Louw, Deon
2007-06-01
Surgery is at a crossroads of complexity. However, there is a potential path toward patient safety. One such course is to leverage computer and robotic assist techniques in the reduction and interception of error in the perioperative environment. This white paper attempts to facilitate the road toward realizing that promise by outlining a research agenda. The paper will briefly review the current status of surgical robotics and summarize any conclusions that can be reached to date based on existing research. It will then lay out a roadmap for future research to determine how surgical robots should be optimally designed and integrated into the perioperative workflow and process. Successful movement down this path would involve focused efforts and multiagency collaboration to address the research priorities outlined, thereby realizing the full potential of surgical robotics to augment human capabilities, enhance task performance, extend the reach of surgical care, improve health care quality, and ultimately enhance patient safety.
NASA Astrophysics Data System (ADS)
Gaskin, Jessica; Özel, Feryal; Vikhlinin, Alexey
2016-07-01
The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.
Capabilities Roadmap Briefings to the National Research Council
NASA Technical Reports Server (NTRS)
2005-01-01
High energy power and propulsion capability roadmap - general background and introduction. Advanced telescopes and observatories and scientific instruments and sensors capability roadmaps - general background and introduction. Space communications capability roadmap interim review. Robotic access to planetary surface capability roadmap. Human health and support systems capability roadmap progress review.
Roadmap for a Departmental Web Site
ERIC Educational Resources Information Center
Zhang, Guo-Qiang; White, Lee; Hesse, Christopher; Buchner, Marc; Mehregany, Mehran
2005-01-01
Virtually every academic department in an institute of higher education requires Web presence as a critical component of its information technology strategy. The problem of how to leverage the World Wide Web and build effective and useful departmental Web sites seems to have long been solved. Yet browsing academic Web sites from around the world…
Archiving the Source: Pasts and Futures of the Humanities
ERIC Educational Resources Information Center
Davis, Robert A.
2015-01-01
In this essay Robert Davis provides a critical roadmap, which is also a genealogy, for understanding and examining the history of both the humanities and education in them. It relates appraisal of the so-called "crisis" in contemporary teaching of the humanities to a deeper understanding of "crisis" as a condition for periodic…
An Inadvertent Concurrent Replication: Same Roadmap, Different Journey
ERIC Educational Resources Information Center
Lemons, Christopher J.; King, Seth A.; Davidson, Kimberly A.; Berryessa, Teresa L.; Gajjar, Shimul A.; Sacks, Lia H.
2016-01-01
Replication is a critical aspect of scientific inquiry that presents a variety of challenges to researchers, even under the best of conditions. We conducted a review of replication rates in special education journals similar to the review conducted by Makel et al. in this issue. Unknowingly conducting independent reviews allowed for an unexpected…
2012-01-24
Kersey et. al., 1997). There are other types of fiber optic sensors that can be multiplexed such as extrinsic Fabry -Perot interferometers (EFPI), but...census bureau, and outbreak monitoring by the US Centers for Disease Control (CDC). • One approach to data management is replacing conventional
ERIC Educational Resources Information Center
Curcio, Joan L.; And Others
This book provides suggestions for handling important and emotionally charged issues of sexuality in the schools. Six chapters offer information on teenage pregnancy, HIV and Acquired Immune Deficiency Syndrome (AIDS), sexual orientation, sexual harassment, and sex education. The chapters are: (1) "Introduction"; (2) "Searching for Intimacy"…
Sol-Terra - AN Operational Space Weather Forecasting Model Framework
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Lawrence, G.; Pidgeon, A.; Reid, S.; Hapgood, M. A.; Bogdanova, Y.; Byrne, J.; Marsh, M. S.; Jackson, D.; Gibbs, M.
2015-12-01
The SOL-TERRA project is a collaboration between RHEA Tech, the Met Office, and RAL Space funded by the UK Space Agency. The goal of the SOL-TERRA project is to produce a Roadmap for a future coupled Sun-to-Earth operational space weather forecasting system covering domains from the Sun down to the magnetosphere-ionosphere-thermosphere and neutral atmosphere. The first stage of SOL-TERRA is underway and involves reviewing current models that could potentially contribute to such a system. Within a given domain, the various space weather models will be assessed how they could contribute to such a coupled system. This will be done both by reviewing peer reviewed papers, and via direct input from the model developers to provide further insight. Once the models have been reviewed then the optimal set of models for use in support of forecast-based SWE modelling will be selected, and a Roadmap for the implementation of an operational forecast-based SWE modelling framework will be prepared. The Roadmap will address the current modelling capability, knowledge gaps and further work required, and also the implementation and maintenance of the overall architecture and environment that the models will operate within. The SOL-TERRA project will engage with external stakeholders in order to ensure independently that the project remains on track to meet its original objectives. A group of key external stakeholders have been invited to provide their domain-specific expertise in reviewing the SOL-TERRA project at critical stages of Roadmap preparation; namely at the Mid-Term Review, and prior to submission of the Final Report. This stakeholder input will ensure that the SOL-TERRA Roadmap will be enhanced directly through the input of modellers and end-users. The overall goal of the SOL-TERRA project is to develop a Roadmap for an operational forecast-based SWE modelling framework with can be implemented within a larger subsequent activity. The SOL-TERRA project is supported within the UK Space Agency's National Space Technology Programme under contract number RP10G0348A03.
Metrology needs for the semiconductor industry over the next decade
NASA Astrophysics Data System (ADS)
Melliar-Smith, Mark; Diebold, Alain C.
1998-11-01
Metrology will continue to be a key enabler for the development and manufacture of future generations of integrated circuits. During 1997, the Semiconductor Industry Association renewed the National Technology Roadmap for Semiconductors (NTRS) through the 50 nm technology generation and for the first time included a Metrology Roadmap (1). Meeting the needs described in the Metrology Roadmap will be both a technological and financial challenge. In an ideal world, metrology capability would be available at the start of process and tool development, and silicon suppliers would have 450 mm wafer capable metrology tools in time for development of that wafer size. Unfortunately, a majority of the metrology suppliers are small companies that typically can't afford the additional two to three year wait for return on R&D investment. Therefore, the success of the semiconductor industry demands that we expand cooperation between NIST, SEMATECH, the National Labs, SRC, and the entire community. In this paper, we will discuss several critical metrology topics including the role of sensor-based process control, in-line microscopy, focused measurements for transistor and interconnect fabrication, and development needs. Improvements in in-line microscopy must extend existing critical dimension measurements up to 100 nm generations and new methods may be required for sub 100 nm generations. Through development, existing metrology dielectric thickness and dopant dose and junction methods can be extended to 100 nm, but new and possibly in-situ methods are needed beyond 100 nm. Interconnect process control will undergo change before 100 nm due to the introduction of copper metallization, low dielectric constant interlevel dielectrics, and Damascene process flows.
NASA Technical Reports Server (NTRS)
Inman, Thomas
2005-01-01
General Background and Introduction of Capability Roadmaps: Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Technology and Capability Readiness Levels. Relationships Between Roadmaps. Purpose of NRC Review. Capability Roadmap Development (Team Progress to Date).
Positive Emotion Regulation and Psychopathology: A Transdiagnostic Cultural Neuroscience Approach
Hechtman, Lisa A.; Raila, Hannah; Chiao, Joan Y.; Gruber, June
2013-01-01
There is burgeoning interest in the study of positive emotion regulation and psychopathology. Given the significant public health costs and the tremendous variance in national prevalence rates associated with many disorders of positive emotion, it is critical to reach an understanding of how cultural factors, along with biological factors, mutually influence positive emotion regulation. Progress in this domain has been relatively unexplored, however, underscoring the need for an integrative review and empirical roadmap for investigating the cultural neuroscientific contributions to positive emotion disturbance for both affective and clinical science domains. The present paper thus provides a multidisciplinary, cultural neuroscience approach to better understand positive emotion regulation and psychopathology. We conclude with a future roadmap for researchers aimed at harnessing positive emotion and alleviating the burden of mental illness cross-culturally. PMID:24812583
NASA Technical Reports Server (NTRS)
Mueller, Rob
2005-01-01
General Background and Introduction of Capability Roadmaps Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date)
Power Systems for Future Missions: Appendices A-L
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
Selection of power system technology for space applications is typically based on mass, readiness of a particular technology to meet specific mission requirements, and life cycle costs (LCC). The LCC is typically used as a discriminator between competing technologies for a single mission application. All other future applications for a given technology are usually ignored. As a result, development cost of a technology becomes a dominant factor in the LCC comparison. Therefore, it is common for technologies such as DIPS and LMR-CBC to be potentially applicable to a wide range of missions and still lose out in the initial LCC comparison due to high development costs. This collection of appendices (A through L) contains the following power systems technology plans: CBC DIPS Technology Roadmap; PEM PFC Technology Roadmap; NAS Battery Technology Roadmap; PV/RFC Power System Technology Roadmap; PV/NAS Battery Technology Roadmap; Thermionic Reactor Power System Technology Roadmap; SP-100 Power System Technology Roadmap; Dynamic SP-100 Power System Technology Roadmap; Near-Term Solar Dynamic Power System Technology Roadmap; Advanced Solar Dynamic Power System Technology Roadmap; Advanced Stirling Cycle Dynamic Isotope Power System Technology Roadmap; and the ESPPRS (Evolutionary Space Power and Propulsion Requirements System) User's Guide.
ERIC Educational Resources Information Center
Christie, Kathy; Rose, Stephanie
2012-01-01
Reading words and developing larger vocabularies are critical parts of reading proficiency, but these checkpoints do not have significance until young students grasp the meaning behind words. While teachers and the school culture can improve early reading proficiency, legislatures and state education agencies can support such efforts by…
Condition and trends of ecological and economic systems
Harold Bergman; Sidney Draggan
2006-01-01
This Monitoring Science and Technology Symposium was designed to âput it all togetherâ for the achievement of sustainability-related goals. It brought together senior policy makers, resource managers and scientists from many organizations and a wide range of disciplines to design a roadmap for addressing critical needs for unifying monitoring strategies, information...
Transforming Glycoscience: A Roadmap for the Future
Robert Moon
2012-01-01
This report has been reviewed in draft form by persons chosen for their diverse perspectives and technical expertise in accordance with procedures approved by the National Research Councilâs Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making the published report as sound...
Nanotechnology for the forest products industry: vision and technology roadmap
Inc. Atlanta Prepared by Energetics
2005-01-01
Nanotechnology is defined as the manipulation of materials measuring 100 nanometers or less in at least one dimension. Nanotechnology is expected to be a critical driver of global economic growth and development in this century. Already, this broad multi-disciplinary field is providing glimpses of exciting new capabilities, enabling materials, devices, and systems that...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, Betty; Bland, Jesse John
This paper documents the history of the TRU program at Sandia, previous and current activities associated with TRU material and waste, interfaces with other TRU waste generator sites and the Waste Isolation Pilot Plan (WIPP), and paths forward for TRU material and waste. This document is a snapshot in time of the TRU program and should be updated as necessary, or when significant changes have occurred in the Sandia TRU program or in the TRU regulatory environment. This paper should serve as a roadmap to capture past TRU work so that efforts are not repeated and ground is not lostmore » due to future inactivity and personnel changes.« less
NASA Technical Reports Server (NTRS)
Poniatowski, Karen
2005-01-01
Contents include the following: Overview/Introduction. Roadmap Approach/Considerations. Roadmap Timeline/Spirals. Requirements Development. Spaceport/Range Capabilities. Mixed Range Architecture. User Requirements/Customer Considerations. Manifest Considerations. Emerging Launch User Requirements. Capability Breakdown Structure/Assessment. Roadmap Team Observations. Transformational Range Test Concept. Roadmap Team Conclusions. Next Steps.
NASA Technical Reports Server (NTRS)
Crooke, Julie A.
2005-01-01
Contents include the following: General Background and Introduction of Capability Roadmaps "Title." Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
NASA Technical Reports Server (NTRS)
Aikins, Jan
2005-01-01
Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
Electrical comparison of iN7 EUV hybrid and EUV single patterning BEOL metal layers
NASA Astrophysics Data System (ADS)
Larivière, Stéphane; Wilson, Christopher J.; Kutrzeba Kotowska, Bogumila; Versluijs, Janko; Decoster, Stefan; Mao, Ming; van der Veen, Marleen H.; Jourdan, Nicolas; El-Mekki, Zaid; Heylen, Nancy; Kesters, Els; Verdonck, Patrick; Béral, Christophe; Van den Heuvel, Dieter; De Bisschop, Peter; Bekaert, Joost; Blanco, Victor; Ciofi, Ivan; Wan, Danny; Briggs, Basoene; Mallik, Arindam; Hendrickx, Eric; Kim, Ryoung-han; McIntyre, Greg; Ronse, Kurt; Bömmels, Jürgen; Tőkei, Zsolt; Mocuta, Dan
2018-03-01
The semiconductor scaling roadmap shows the continuous node to node scaling to push Moore's law down to the next generations. In that context, the foundry N5 node requires 32nm metal pitch interconnects for the advanced logic Back- End of Line (BEoL). 193immersion usage now requires self-aligned and/or multiple patterning technique combinations to enable such critical dimension. On the other hand, EUV insertion investigation shows that 32nm metal pitch is still a challenge but, related to process flow complexity, presents some clear motivations. Imec has already evaluated on test chip vehicles with different patterning approaches: 193i SAQP (Self-Aligned Quadruple Patterning), LE3 (triple patterning Litho Etch), tone inversion, EUV SE (Single Exposure) with SMO (Source-mask optimization). Following the run path in the technology development for EUV insertion, imec N7 platform (iN7, corresponding node to the foundry N5) is developed for those BEoL layers. In this paper, following technical motivation and development learning, a comparison between the iArF SAQP/EUV block hybrid integration scheme and a single patterning EUV flow is proposed. These two integration patterning options will be finally compared from current morphological and electrical criteria.
Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M.
2014-01-01
A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, via and Investigational New Drug (IND) application, into early phase clinical trials. The roadmap describes four key areas; basic and preclinical research, resource development, translational research and good manufacturing practice (GMP), and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value using a model of the relevant disease. During resource development the appropriate specialists and the required expertise to bring this product into the clinic are identified (e.g., researchers, regulatory specialists, GMP manufacturing staff, clinicians, and clinical trials staff, etc.). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase the plan to translate the research product into a clinical grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States this is done by filing an IND application with the Food and Drug Administration. The NHLBI-funded Production Assistance for Cellular Therapies (PACT) program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five PACT facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly, and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. PMID:25484311
NASA Technical Reports Server (NTRS)
Aikins, Jan
2005-01-01
Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
NASA Technical Reports Server (NTRS)
Camp, Jordan; Conklin, John; Livas, Jeffrey; Klipstein, William; McKenzie, Kirk; Mueller, Guido; Mueller, Juergen; Thorpe, James Ira; Arsenovic, Peter; Baker, John;
2013-01-01
Humankind will detect the first gravitational wave (GW) signals from the Universe in the current decade using ground-based detectors. But the richest trove of astrophysical information lies at lower frequencies in the spectrum only accessible from space. Signals are expected from merging massive black holes throughout cosmic history, from compact stellar remnants orbiting central galactic engines from thousands of close contact binary systems in the Milky Way, and possibly from exotic sources, some not yet imagined. These signals carry essential information not available from electromagnetic observations, and which can be extracted with extraordinary accuracy. For 20 years, NASA, the European Space Agency (ESA), and an international research community have put considerable effort into developing concepts and technologies for a GW mission. Both the 2000 and 2010 decadal surveys endorsed the science and mission concept of the Laser Interferometer Space Antenna (LISA). A partnership of the two agencies defined and analyzed the concept for a decade. The agencies partnered on LISA Pathfinder (LPF), and ESA-led technology demonstration mission, now preparing for a 2015 launch. Extensive technology development has been carried out on the ground. Currently, the evolved Laser Interferometer Space Antenna (eLISA) concept, a LISA-like concept with only two measurement arms, is competing for ESA's L2 opportunity. NASA's Astrophysics Division seeks to be a junior partner if eLISA is selected. If eLISA is not selected, then a LISA-like mission will be a strong contender in the 2020 decadal survey. This Technology Development Roadmap (TDR) builds on the LISA concept development, the LPF technology development, and the U.S. and European ground-based technology development. The eLISA architecture and the architecture of the Mid-sized Space-based Gravitational-wave Observatory (SGO Mid)-a competitive design with three measurement arms from the recent design study for a NASA-led mission after 2020-both use the same technologies. Further, NASA participation in an ESA-led mission would likely augment the eLISA architecture with a third arm to become the SGO Mid architecture. For these reasons, this TDR for a future GW mission applies to both designs and both programmatic paths forward. It is adaptable to the different timelines and roles for an ESA-led or a NASA-led mission, and it is adaptable to available resources. Based on a mature understanding of the interaction between technology and risk, the authors of this TDR have chosen a set of objectives that are more expansive than is usual. The objectives for this roadmap are: (1) reduce technical and development risks and costs; (2) understand and, where possible, relieve system requirements and consequences; (3) increase technical insight into critical technologies; and (4) validate the design at the subsystem level. The emphasis on these objectives, particularly the latter two, is driven by outstanding programmatic decisions, namely whether a future GW mission is ESA-led or NASA-led, and availability of resources. The relative emphasis is best understood in the context of prioritization.
NASA's New Thermal Management Systems Roadmap; Whats in it, What it Means
NASA Technical Reports Server (NTRS)
Swanson, Ted
2016-01-01
In July of 2015 NASA publically released a new set of Technology Area Roadmaps that will be used to help guide future NASA-funded technology development efforts. One of these was the Thermal Management Systems Roadmap, often identified as TA14. This Roadmap identifies the time sequencing and interdependencies of high priority, advanced thermal control technology for the next 5 to 20 years. Available funding limits the development of new technology. The Roadmaps are the first step in the process of prioritizing HQ-supported technology funding. The 2015 Roadmaps are focused on planned mission architectures and needs, as identified in the NRC-led science Decadals and HEOMD's Design Reference Missions. Additionally, the 2015 Roadmaps focus on "applied " R&D as opposed to more basic research. The NASA Mission Directorates were all closely involved in development of 2015 Roadmaps, and an extensive external review was also conducted. This talk will discuss the Technology Roadmaps in general, and then focus on the specific technologies identified for TA 14, Thermal Management Systems.
ERIC Educational Resources Information Center
Rozendaal, Esther; Buijzen, Moniek; Valkenburg, Patti M.
2012-01-01
This study develops and tests a model of children's critical processing of advertising. Within this model, 2 paths to reduced advertising susceptibility (i.e., attitude toward the advertised brand) were hypothesized: a cognitive path and an affective path. The secondary aim was to compare these paths for different thought verbalization processes:…
Dickinson, Paul A; Kesisoglou, Filippos; Flanagan, Talia; Martinez, Marilyn N; Mistry, Hitesh B; Crison, John R; Polli, James E; Cruañes, Maria T; Serajuddin, Abu T M; Müllertz, Anette; Cook, Jack A; Selen, Arzu
2016-11-01
The aim of Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid is to facilitate optimization of clinical performance of drug products. BioRAM strategy relies on therapy-driven drug delivery and follows an integrated systems approach for formulating and addressing critical questions and decision-making (J Pharm Sci. 2014,103(11): 3777-97). In BioRAM, risk is defined as not achieving the intended in vivo drug product performance, and success is assessed by time to decision-making and action. Emphasis on time to decision-making and time to action highlights the value of well-formulated critical questions and well-designed and conducted integrated studies. This commentary describes and illustrates application of the BioRAM Scoring Grid, a companion to the BioRAM strategy, which guides implementation of such an integrated strategy encompassing 12 critical areas and 6 assessment stages. Application of the BioRAM Scoring Grid is illustrated using published literature. Organizational considerations for implementing BioRAM strategy, including the interactions, function, and skillsets of the BioRAM group members, are also reviewed. As a creative and innovative systems approach, we believe that BioRAM is going to have a broad-reaching impact, influencing drug development and leading to unique collaborations influencing how we learn, and leverage and share knowledge. Published by Elsevier Inc.
High Energy Power and Propulsion Capability Roadmap: General Background and Introduction
NASA Technical Reports Server (NTRS)
Bankston, Perry
2005-01-01
Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
Business dynamics of lithography at very low k1 factors
NASA Astrophysics Data System (ADS)
Harrell, Sam; Preil, Moshe E.
1999-07-01
Lithography is the largest capital investment and the largest operating cost component of leading edge semiconductor fabs. In addition, it is the dominant factor in determining the performance of a semiconductor device and is important in determining the yield and thus the economics of a semiconductor circuit. To increase competitiveness and broaden adoption of circuits and the end products in which they are used, there has been and continues to be a dramatic acceleration in the industry roadmap. A critical factor in the acceleration is driving the lithographic images to smaller feature size. There has always been economic tension between the pace of change and the resultant circuit cost. The genius of the semiconductor industry has been in its ability to balance its technology with economic factors and deliver outstanding value to those using the circuits to add value to their end products. The critical question today is whether optical lithography can be successfully and economically extended to maintain and improve the economic benefits of higher complexity circuits. In this paper we will discuss some of these significant tradeoffs required to maintain optically based lithographic progress on the roadmap at acceptable cost.
NASA Technical Reports Server (NTRS)
Skelly, Darin M.
2005-01-01
Viewgraphs on the National Research Council's diaglog to assess progress on NASA's transformational spaceport and range technologies capability roadmap development is presented. The topics include: 1) Agency Goals and Objectives; 2) Strategic Planning Transformation; 3) Advanced Planning Organizational Roles; 4) Public Involvement in Strategic Planning; 5) Strategic Roadmaps; 6) Strategic Roadmaps Schedule; 7) Capability Roadmaps; 8) Capability Charter; 9) Process for Team Selection; 10) Capability Roadmap Development Schedule Overview; 11) Purpose of NRC Review; 12) Technology Readiness Levels; 13) Capability Readiness Levels; 14) Crosswalk Matrix Trans Spaceport & Range; 15) Example linkage to other roadmaps; 16) Capability Readiness Levels Defined; and 17) Crosswalk Matrix Ratings Work In-progress.
NASA Technical Reports Server (NTRS)
Coulter, Dan; Bankston, Perry
2005-01-01
Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
A Suggested Approach for Producing VAMS Air Transportation System Technology Roadmaps
NASA Technical Reports Server (NTRS)
Weathers, Del
2002-01-01
This viewgraph presentation provides an overview on the use of technology 'roadmaps' in order to facilitate the research development of VAMS (Virtual Airspace Modeling and Simulation). These roadmaps are to be produced by each concept team, updated annually, discussed at the technical interchange meetings (TIMs), shared among all VAMS participants, and made available electronically. These concept-specific technology roadmaps will be subsequently blended into an integrated catalog of roadmaps, technical discussions, and research recommendations. A historical example of ATM (Air Traffic Management) research and technology from 1940 to 1999 as shown in a series of 'roadmaps' is also included.
Challenges of image placement and overlay at the 90-nm and 65-nm nodes
NASA Astrophysics Data System (ADS)
Trybula, Walter J.
2003-05-01
The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor supplier community and the manufacturers. INTERNATIONAL SE-MATECH has been leading and supporting efforts to investigate the impact of the tech-nology introduction. This paper examines the issue of manufacturing tolerances available for image placement on adjacent critical levels (overlay) at the 90nm and 65nm technol-ogy nodes. The allowable values from the 2001 release of the ITRS Roadmap are 32nm for the 90nm node, and 23nm for the 65nm node. Even the 130nm node has overlay requirements of only 46nm. Employing tolerances that can be predicted, the impact of existing production/processing tolerance accumulation can provide an indication of the challenges facing the manufacturer in the production of 90nm and 65nm Node devices.
Argillite And Crystalline Disposal Research: Accomplishments And Path-Forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Kevin A.; Jove-Colon, Carlos F.; Wang, Yifeng
The intention of this document is to provide a path-forward for research and development (R&D) for two host rock media-specific (argillite and crystalline) disposal research work packages within the Used Fuel Disposition Campaign (UFDC). The two work packages, Argillite Disposal R&D and Crystalline Disposal R&D, support the achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program. These two work packages cover many of the fundamental technical issues that will have multiple implications to other disposal research work packages by bridging knowledge gaps to support the development of the safetymore » case. The path-forward begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-levelradioactive- waste). The path-forward will be maintained as a living document and will be updated as needed in response to available funding and the progress of multiple R&D tasks in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program. This path forward is developed based on the report of “Used Fuel Disposition Campaign Disposal Research and Development Roadmap (FCR&D-USED- 2011-000065 REV0)” (DOE, 2011). This document delineates the goals and objectives of the UFDC R&D program, needs for generic disposal concept design, and summarizes the prioritization of R&D issues.« less
Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M
2015-04-01
A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, by means of an Investigational New Drug (IND) application, into early-phase clinical trials. The roadmap describes four key areas: basic and preclinical research, resource development, translational research and Good Manufacturing Practice (GMP) and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value with the use of a model of the relevant disease. During resource development, the appropriate specialists and the required expertise to bring this product into the clinic are identified (eg, researchers, regulatory specialists, GMP manufacturing staff, clinicians and clinical trials staff, etc). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase, the plan to translate the research product into a clinical-grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States, this is done by filing an IND application with the Food and Drug Administration. The National Heart, Lung and Blood Institute-funded Production Assistance for Cellular Therapies program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five Production Assistance for Cellular Therapies facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Patterning roadmap: 2017 prospects
NASA Astrophysics Data System (ADS)
Neisser, Mark
2017-06-01
Road mapping of semiconductor chips has been underway for over 20 years, first with the International Technology Roadmap for Semiconductors (ITRS) roadmap and now with the International Roadmap for Devices and Systems (IRDS) roadmap. The original roadmap was mostly driven bottom up and was developed to ensure that the large numbers of semiconductor producers and suppliers had good information to base their research and development on. The current roadmap is generated more top-down, where the customers of semiconductor chips anticipate what will be needed in the future and the roadmap projects what will be needed to fulfill that demand. The More Moore section of the roadmap projects that advanced logic will drive higher-resolution patterning, rather than memory chips. Potential solutions for patterning future logic nodes can be derived as extensions of `next-generation' patterning technologies currently under development. Advanced patterning has made great progress, and two `next-generation' patterning technologies, EUV and nanoimprint lithography, have potential to be in production as early as 2018. The potential adoption of two different next-generation patterning technologies suggests that patterning technology is becoming more specialized. This is good for the industry in that it lowers overall costs, but may lead to slower progress in extending any one patterning technology in the future.
High power density superconducting rotating machines—development status and technology roadmap
NASA Astrophysics Data System (ADS)
Haran, Kiruba S.; Kalsi, Swarn; Arndt, Tabea; Karmaker, Haran; Badcock, Rod; Buckley, Bob; Haugan, Timothy; Izumi, Mitsuru; Loder, David; Bray, James W.; Masson, Philippe; Stautner, Ernst Wolfgang
2017-12-01
Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia.
Unmanned Aircraft Systems Roadmap, 2005-2030
2005-01-01
directly addresses the dangerous mission of attacking or degrading integrated air defense systems. The attributes that make the use of unmanned...meter of reinforced concrete covered by one meter of soil . The Air Force hopes to deploy it by 2007 on the F-15E, followed by deployment on several... degradation from repeated analog-digital-analog conversions. For this reason, multispectral versions of digital focal arrays are critical. Additionally
NASA Technical Reports Server (NTRS)
Regenie, Victoria
2005-01-01
Contents include the following: General Background and Introduction of Capability. Roadmaps for Systems Engineering Cost/Risk Analysis. Agency Objectives. Strategic Planning Transformation. Review Capability Roadmaps and Schedule. Review Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
Human Planetary Landing System (HPLS) Capability Roadmap NRC Progress Review
NASA Technical Reports Server (NTRS)
Manning, Rob; Schmitt, Harrison H.; Graves, Claude
2005-01-01
Capability Roadmap Team. Capability Description, Scope and Capability Breakdown Structure. Benefits of the HPLS. Roadmap Process and Approach. Current State-of-the-Art, Assumptions and Key Requirements. Top Level HPLS Roadmap. Capability Presentations by Leads. Mission Drivers Requirements. "AEDL" System Engineering. Communication & Navigation Systems. Hypersonic Systems. Super to Subsonic Decelerator Systems. Terminal Descent and Landing Systems. A Priori In-Situ Mars Observations. AEDL Analysis, Test and Validation Infrastructure. Capability Technical Challenges. Capability Connection Points to other Roadmaps/Crosswalks. Summary of Top Level Capability. Forward Work.
Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2015-01-01
The objective of this document is to update the NASA roadmap on packaging technologies (initially released in 2007) and to present the current trends toward further reducing size and increasing functionality. Due to the breadth of work being performed in the area of microelectronics packaging, this report presents only a number of key packaging technologies detailed in three industry roadmaps for conventional microelectronics and a more recently introduced roadmap for organic and printed electronics applications. The topics for each category were down-selected by reviewing the 2012 reports of the International Technology Roadmap for Semiconductor (ITRS), the 2013 roadmap reports of the International Electronics Manufacturing Initiative (iNEMI), the 2013 roadmap of association connecting electronics industry (IPC), the Organic Printed Electronics Association (OE-A). The report also summarizes the results of numerous articles and websites specifically discussing the trends in microelectronics packaging technologies.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
...-01] NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Draft... draft version of the NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0... Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Release 2.0) (Draft) for public review and...
Scientific Assessment of NASA's Solar System Exploration Roadmap
NASA Technical Reports Server (NTRS)
1996-01-01
At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.
Flight Avionics Hardware Roadmap
NASA Technical Reports Server (NTRS)
Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt;
2013-01-01
As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.
NASA's Space Launch System: An Enabling Capability for International Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.
2014-01-01
As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.
Physics Careers in the Semiconductor Industry: OK, I'm in, now what?
NASA Astrophysics Data System (ADS)
Larson, Larry
2003-03-01
The role of the physicist working in the Semiconductor Industry differs significantly from those working in a purely academic setting. This talk will give a perspective on these differences by examining these roles in some detail. The first detail is simply ``Why are you employed by your institution?" Physicists in the Semiconductor industry are, in the most basic sense, employed to develop or sustain processes, equipment or devices in order to produce chips for sale. This very basic point colors the goals, objectives and the reward structure for the industrial physicist. I will use examples of mundane and complex physics applications from development work at SEMATECH to compare the industrial approach to my perception of an academic approach. Another important attribute of the industrial career is the strong influence of timeliness on the usefulness of our results. This leads to an emphasis of the working approach on attacking problems as a team, to the strong availability of resources, but also to the aspect that a project can fall away from the critical path and be cancelled. Some of these effects will be described with examples from the International Technology Roadmap for Semiconductors and also from SEMATECH. All in all, working as a physicist in the semiconductor industry is an exciting and rewarding career. Be aware though, that the industry is dynamic and intensive be ready for a ride!
Scrutinizing the epigenetics revolution
Meloni, Maurizio; Testa, Giuseppe
2014-01-01
Epigenetics is one of the most rapidly expanding fields in the life sciences. Its rise is frequently framed as a revolutionary turn that heralds a new epoch both for gene-based epistemology and for the wider discourse on life that pervades knowledge-intensive societies of the molecular age. The fundamentals of this revolution remain however to be scrutinized, and indeed the very contours of what counts as ‘epigenetic' are often blurred. This is reflected also in the mounting discourse on the societal implications of epigenetics, in which vast expectations coexist with significant uncertainty about what aspects of this science are most relevant for politics or policy alike. This is therefore a suitable time to reflect on the directions that social theory could most productively take in the scrutiny of this revolution. Here we take this opportunity in both its scholarly and normative dimension, that is, proposing a roadmap for social theorizing on epigenetics that does not shy away from, and indeed hopefully guides, the framing of its most socially relevant outputs. To this end, we start with an epistemological reappraisal of epigenetic discourse that valorizes the blurring of meanings as a critical asset for the field and privileged analytical entry point. We then propose three paths of investigation. The first looks at the structuring elements of controversies and visions around epigenetics. The second probes the mutual constitution between the epigenetic reordering of living phenomena and the normative settlements that orient individual and collective responsibilities. The third highlights the material import of epigenetics and the molecularization of culture that it mediates. We suggest that these complementary strands provide both an epistemically and socially self-reflective framework to advance the study of epigenetics as a molecular juncture between nature and nurture and thus as the new critical frontier in the social studies of the life sciences. PMID:25484911
Circadian rhythms, sleep, and performance in space.
Mallis, M M; DeRoshia, C W
2005-06-01
Maintaining optimal alertness and neurobehavioral functioning during space operations is critical to enable the National Aeronautics and Space Administration's (NASA's) vision "to extend humanity's reach to the Moon, Mars and beyond" to become a reality. Field data have demonstrated that sleep times and performance of crewmembers can be compromised by extended duty days, irregular work schedules, high workload, and varying environmental factors. This paper documents evidence of significant sleep loss and disruption of circadian rhythms in astronauts and associated performance decrements during several space missions, which demonstrates the need to develop effective countermeasures. Both sleep and circadian disruptions have been identified in the Behavioral Health and Performance (BH&P) area and the Advanced Human Support Technology (AHST) area of NASA's Bioastronautics Critical Path Roadmap. Such disruptions could have serious consequences on the effectiveness, health, and safety of astronaut crews, thus reducing the safety margin and increasing the chances of an accident or incident. These decrements oftentimes can be difficult to detect and counter effectively in restrictive operational environments. NASA is focusing research on the development of optimal sleep/wake schedules and countermeasure timing and application to help mitigate the cumulative effects of sleep and circadian disruption and enhance operational performance. Investing research in humans is one of NASA's building blocks that will allow for both short- and long-duration space missions and help NASA in developing approaches to manage and overcome the human limitations of space travel. In addition to reviewing the current state of knowledge concerning sleep and circadian disruptions during space operations, this paper provides an overview of NASA's broad research goals. Also, NASA-funded research, designed to evaluate the relationships between sleep quality, circadian rhythm stability, and performance proficiency in both ground-based simulations and space mission studies, as described in the 2003 NASA Task Book, will be reviewed.
NOAO and LSST: Illuminating the Path to LSST for All Users
NASA Astrophysics Data System (ADS)
Olsen, Knut A.; Matheson, T.; Ridgway, S. T.; Saha, A.; Lauer, T. R.; NOAO LSST Science Working Group
2013-01-01
As LSST moves toward construction and survey definition, the burden on the user community to begin planning and preparing for the massive data stream grows. In light of the significant challenge and opportunity that LSST now brings, a critical role for a National Observatory will be to advocate for, respond to, and advise the U.S. community on its use of LSST. NOAO intends to establish an LSST Community Science Center to meet these common needs. Such a Center builds on NOAO's leadership in offering survey-style instruments, proposal opportunities, and data management software over the last decade. This leadership has enabled high-impact scientific results, as evidenced by the award of the 2011 Nobel Prize in Physics for the discovery of Dark Energy, which stemmed directly from survey-style observations taken at NOAO. As steps towards creating an LSST Community Science Center, NOAO is 1) supporting the LSST Science Collaborations through membership calls and collaboration meetings; 2) developing the LSST operations simulator, the tool by which the community's scientific goals of are tested against the reality of what LSST's cadence can deliver; 3) embarking on a project to establish metrics for science data quality assessment, which will be critical for establishing faith in LSST results; 4) developing a roadmap and proposal to host and support the capability to help the community manage the expected flood of automated alerts from LSST; and 5) starting a serious discussion of the system capabilities needed for photometric and spectroscopic followup of LSST observations. The fundamental goal is to enable productive, world-class research with LSST by the entire US community-at-large in tight collaboration with the LSST Project, LSST Science Collaborations, and the funding agencies.
Circadian rhythms, sleep, and performance in space
NASA Technical Reports Server (NTRS)
Mallis, M. M.; DeRoshia, C. W.
2005-01-01
Maintaining optimal alertness and neurobehavioral functioning during space operations is critical to enable the National Aeronautics and Space Administration's (NASA's) vision "to extend humanity's reach to the Moon, Mars and beyond" to become a reality. Field data have demonstrated that sleep times and performance of crewmembers can be compromised by extended duty days, irregular work schedules, high workload, and varying environmental factors. This paper documents evidence of significant sleep loss and disruption of circadian rhythms in astronauts and associated performance decrements during several space missions, which demonstrates the need to develop effective countermeasures. Both sleep and circadian disruptions have been identified in the Behavioral Health and Performance (BH&P) area and the Advanced Human Support Technology (AHST) area of NASA's Bioastronautics Critical Path Roadmap. Such disruptions could have serious consequences on the effectiveness, health, and safety of astronaut crews, thus reducing the safety margin and increasing the chances of an accident or incident. These decrements oftentimes can be difficult to detect and counter effectively in restrictive operational environments. NASA is focusing research on the development of optimal sleep/wake schedules and countermeasure timing and application to help mitigate the cumulative effects of sleep and circadian disruption and enhance operational performance. Investing research in humans is one of NASA's building blocks that will allow for both short- and long-duration space missions and help NASA in developing approaches to manage and overcome the human limitations of space travel. In addition to reviewing the current state of knowledge concerning sleep and circadian disruptions during space operations, this paper provides an overview of NASA's broad research goals. Also, NASA-funded research, designed to evaluate the relationships between sleep quality, circadian rhythm stability, and performance proficiency in both ground-based simulations and space mission studies, as described in the 2003 NASA Task Book, will be reviewed.
2016-06-01
Richter-Menge (2009), (b) Source: Jack Cook, Woods Hole Oceanographic Institute. Four forcing mechanisms, as well as the Coriolis force, influence...changing Arctic environment which is critical to personnel safety, effective use of assets, and operational support (Arctic Roadmap 2014). 18 Canada...Navy to pursue continued Arctic presence, and maximize the effectiveness of the military operations assimilated with civilian science (Showstack 2013
Glass ceramic ZERODUR enabling nanometer precision
NASA Astrophysics Data System (ADS)
Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas
2014-03-01
The IC Lithography roadmap foresees manufacturing of devices with critical dimension of < 20 nm. Overlay specification of single digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.
Crossing the chasm: information technology to biomedical informatics.
Fahy, Brenda G; Balke, C William; Umberger, Gloria H; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L; Conigliaro, Joseph
2011-06-01
Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) "Roadmap for Medical Research." The Clinical and Translational Science Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH's translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology platforms of the enterprise clinical operations within academic health centers.This report details one academic health center's transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This article describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts.
Alarm guided critical function and success path monitoring
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1994-01-01
The use of alarm indication on the overview (IPSO) display to initiate diagnosis of challenges to critical functions or unavailability of success paths, and further alarm-based guidance toward ultimate diagnosis.
Sodium Bearing Waste Processing Alternatives Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, James Anthony; Palmer, Brent J; Perry, Keith Joseph
2003-12-01
A multidisciplinary team gathered to develop a BBWI recommendation to DOE-ID on the processing alternatives for the sodium bearing waste in the INTEC Tank Farm. Numerous alternatives were analyzed using a rigorous, systematic approach. The data gathered were evaluated through internal and external peer reviews for consistency and validity. Three alternatives were identified to be top performers: Risk-based Calcination, MACT to WIPP Calcination and Cesium Ion Exchange. A dual-path through early Conceptual design is recommended for MACT to WIPP Calcination and Cesium Ion Exchange since Risk-based Calcination does not require design. If calcination alternatives are not considered based on givingmore » Type of Processing criteria significantly greater weight, the CsIX/TRUEX alternative follows CsIX in ranking. However, since CsIX/TRUEX shares common uncertainties with CsIX, reasonable backups, which follow in ranking, are the TRUEX and UNEX alternatives. Key uncertainties must be evaluated by the decision-makers to choose one final alternative. Those key uncertainties and a path forward for the technology roadmapping of these alternatives is provided.« less
The USET Tribal-FERST Roadmap was developed by the United South and Eastern Tribes (USET), in collaboration with the EPA, as a general roadmap for other tribes to follow and modify as needed fortheir unique applications.
NASA Technical Reports Server (NTRS)
Younes, Badri A.; Schier, James S.
2010-01-01
The SCaN Program has defined an integrated network architecture that fully meets the Administrator s mandate to the Program, and will result in a NASA infrastructure capable of providing the needed and enabling communications services to future space missions. The integrated network architecture will increase SCaN operational efficiency and interoperability through standardization, commonality and technology infusion. It will enable NASA missions requiring advanced communication and tracking capabilities such as: a. Optical communication b. Antenna arraying c. Lunar and Mars Relays d. Integrated network management (service management and network control) and integrated service execution e. Enhanced tracking for navigation f. Space internetworking with DTN and IP g. End-to-end security h. Enhanced security services Moreover, the SCaN Program has created an Integrated Network Roadmap that depicts an orchestrated and coherent evolution path toward the target architecture, encompassing all aspects that concern network assets (i.e., operations and maintenance, sustaining engineering, upgrade efforts, and major development). This roadmap identifies major NASA ADPs, and shows dependencies and drivers among the various planned undertakings and timelines. The roadmap is scalable to accommodate timely adjustments in response to Agency needs, goals, objectives and funding. Future challenges to implementing this architecture include balancing user mission needs, technology development, and the availability of funding within NASA s priorities. Strategies for addressing these challenges are to: define a flexible architecture, update the architecture periodically, use ADPs to evaluate options and determine when to make decisions, and to engage the stakeholders in these evaluations. In addition, the SCaN Program will evaluate and respond to mission need dates for technical and operational capabilities to be provided by the SCaN integrated network. In that regard, the architecture defined in this ADD is scalable to accommodate programmatic and technical changes.
NASA's Space Launch System: One Vehicle, Many Destinations
NASA Technical Reports Server (NTRS)
May, Todd A.; Creech, Stephen D.
2013-01-01
The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit (BEO). Developed with the goals of safety, affordability and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the requirements needed for missions to BEO destinations, and the capability of SLS to meet those requirements and enable those missions. It will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. In addition, this paper will detail SLS's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS provides game-changing mass and volume lift capability that makes it enhancing or enabling for a variety of unprecedented human and robotic missions.
River Protection Project Technology and Innovation Roadmap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, D. S.; Wooley, T. A.; Kelly, S. E.
The Technology and Innovation Roadmap is a planning tool for WRPS management, DOE ORP, DOE EM, and others to understand the risks and technology gaps associated with the RPP mission. The roadmap identifies and prioritizes technical areas that require technology solutions and underscores where timely and appropriate technology development can have the greatest impact to reduce those risks and uncertainties. The roadmap also serves as a tool for determining allocation of resources.
Research & Development Roadmap for Next-Generation Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Sutherland, Timothy; Foley, Kevin
2012-03-01
Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on themore » proposed initiatives.« less
Transforming care: medical practice design and information technology.
Kilo, Charles M
2005-01-01
The transformation of the medical practice is possible today because of the advancement of system design knowledge coupled with innovations in information technology (IT). Examples of such transformed care are present today, and they are creating a roadmap for others. Those efforts are also elucidating critical issues in the use of IT to advance health care quality. Connectivity, electronic integration, and knowledge management are the key functionalities emerging as levers to promote this transformation.
1994-02-01
Wijting , 1976). However, missing critical job elements may lead the J-coefficient to underestimate validity (Mossholder & Arvey, 1984), and variation...should be able to approximate the validity estimates derived empirically. Research on the J-Coefficient (Dickinson & Wijting , 1976) and the SYNVAL project...Measur.ment 8, 71-82. Dickinson, T. L, & Wijting , J. P. Q976). Poiiyvcapturingasaprocedute for synLthetic vraidation. Paper preented at the meeting of the
U.S. Navy Task Force Climate Change
NASA Astrophysics Data System (ADS)
Miller, T.; McBride, B.; St. John, C.
2011-12-01
In May 2009, the Chief of Naval Operations established Task Force Climate Change (TFCC) to develop Navy policy, plans, and recommendations regarding future investments to adapt to the world's changing climate. With a near-term focus on the changing Arctic ocean and consequent increase in access to the region, TFCC has adopted a science-based approach in collaboration with other U.S. government agencies, international partners, industry, and academia. TFCC has developed two roadmaps that provide 5-year action plans for the Navy to address the Arctic and global climate change. Critical elements of both roadmaps are assessments of: (1) current and projected climate change, (2) resulting impacts to Naval missions and infrastructure, and (3) associated risks of not taking adaptation actions that are operationally, environmentally, and ecologically sustainable. Through TFCC, the Navy acknowledges the link between climate change and national security, and engages in extensive outreach and strategic communication to remain informed on the best climate science and promote public understanding and support regarding the Navy's climate change efforts.
Auld, Sara C; Kasmar, Anne G; Dowdy, David W; Mathema, Barun; Gandhi, Neel R; Churchyard, Gavin J; Rustomjee, Roxana; Shah, N Sarita
2017-11-03
High rates of tuberculosis transmission are driving the ongoing global tuberculosis epidemic, and there is a pressing need for research focused on understanding and, ultimately, halting transmission. The ongoing tuberculosis-human immunodeficiency virus (HIV) coepidemic and rising rates of drug-resistant tuberculosis in parts of the world add further urgency to this work. Success in this research will require a concerted, multidisciplinary effort on the part of tuberculosis scientists, clinicians, programs, and funders and must span the research spectrum from biomedical sciences to the social sciences, public health, epidemiology, cost-effectiveness analyses, and operations research. Heterogeneity of tuberculosis disease, both among individual patients and among communities, poses a substantial challenge to efforts to interrupt transmission. As such, it is likely that effective interventions to stop transmission will require a combination of approaches that will vary across different epidemiologic settings. This research roadmap summarizes key gaps in our current understanding of transmission, as laid out in the preceding articles in this series. We also hope that it will be a call to action for the global tuberculosis community to make a sustained commitment to tuberculosis transmission science. Halting transmission today is an essential step on the path to end tuberculosis tomorrow. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Project Scheduling Based on Risk of Gas Transmission Pipe
NASA Astrophysics Data System (ADS)
Silvianita; Nurbaity, A.; Mulyadi, Y.; Suntoyo; Chamelia, D. M.
2018-03-01
The planning of a project has a time limit on which must be completed before or right at a predetermined time. Thus, in a project planning, it is necessary to have scheduling management that is useful for completing a project to achieve maximum results by considering the constraints that will exists. Scheduling management is undertaken to deal with uncertainties and negative impacts of time and cost in project completion. This paper explains about scheduling management in gas transmission pipeline project Gresik-Semarang to find out which scheduling plan is most effectively used in accordance with its risk value. Scheduling management in this paper is assissted by Microsoft Project software to find the critical path of existing project scheduling planning data. Critical path is the longest scheduling path with the fastest completion time. The result is found a critical path on project scheduling with completion time is 152 days. Furthermore, the calculation of risk is done by using House of Risk (HOR) method and it is found that the critical path has a share of 40.98 percent of all causes of the occurence of risk events that will be experienced.
Critical path method applied to research project planning: Fire Economics Evaluation System (FEES)
Earl B. Anderson; R. Stanton Hales
1986-01-01
The critical path method (CPM) of network analysis (a) depicts precedence among the many activities in a project by a network diagram; (b) identifies critical activities by calculating their starting, finishing, and float times; and (c) displays possible schedules by constructing time charts. CPM was applied to the development of the Forest Service's Fire...
NASA Astrophysics Data System (ADS)
Schrijver, Carolus; Kauristie, Kirsti
This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.
NASA Astrophysics Data System (ADS)
Schrijver, Carolus; Kauristie, Kirsti
This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.
NASA Astrophysics Data System (ADS)
Schrijver, Carolus; Kauristie, Kirsti
This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.
U.S. Army unmanned aircraft systems roadmap 2010-2035
DOT National Transportation Integrated Search
2010-01-01
The Unmanned Aircraft System (UAS) Roadmap outlines how the U.S. Army will develop, organize, and employ UAS from 2010 to 2035 across full spectrum operations. The Army UAS Roadmap is nested with the Unmanned Systems (UMS) Initial Capabilities Docume...
Flight Avionics Hardware Roadmap
NASA Technical Reports Server (NTRS)
Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt;
2014-01-01
The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware and software technology roadmaps and investment recommendations center dot Continue monitoring foundational technologies upon which future avionics technologies will be dependent, e.g., RHBD and COTS semiconductor technologies
Crossing the Chasm: Information Technology to Biomedical Informatics
Fahy, Brenda G.; Balke, C. William; Umberger, Gloria H.; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L.; Conigliaro, Joseph
2011-01-01
Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) “Roadmap for Medical Research.” The Clinical and Translational Research Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH’s translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology (IT) platforms of the enterprise clinical operations within academic health centers. This report details one academic health center’s transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This paper describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts. PMID:21383632
Surface Hold Advisor Using Critical Sections
NASA Technical Reports Server (NTRS)
Law, Caleb Hoi Kei (Inventor); Hsiao, Thomas Kun-Lung (Inventor); Mittler, Nathan C. (Inventor); Couluris, George J. (Inventor)
2013-01-01
The Surface Hold Advisor Using Critical Sections is a system and method for providing hold advisories to surface controllers to prevent gridlock and resolve crossing and merging conflicts among vehicles traversing a vertex-edge graph representing a surface traffic network on an airport surface. The Advisor performs pair-wise comparisons of current position and projected path of each vehicle with other surface vehicles to detect conflicts, determine critical sections, and provide hold advisories to traffic controllers recommending vehicles stop at entry points to protected zones around identified critical sections. A critical section defines a segment of the vertex-edge graph where vehicles are in crossing or merging or opposite direction gridlock contention. The Advisor detects critical sections without reference to scheduled, projected or required times along assigned vehicle paths, and generates hold advisories to prevent conflicts without requiring network path direction-of-movement rules and without requiring rerouting, rescheduling or other network optimization solutions.
Leveraging Federal Funding for Longitudinal Data Systems: A Roadmap for States. Fiscal Year 2011
ERIC Educational Resources Information Center
Data Quality Campaign, 2011
2011-01-01
States should use this roadmap to identify and leverage federal funding sources for data-related activities. This roadmap presents such opportunities for FY 2011, and provides guidance on some of the ways the funds may be used.
Idaho National Engineering Laboratory Waste Management Operations Roadmap Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, M.
1992-04-01
At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.
NASA Technical Reports Server (NTRS)
Gaier, James R.; Vangen, Scott; Abel, Phil; Agui, Juan; Buffington, Jesse; Calle, Carlos; Mary, Natalie; Smith, Jonathan Drew; Straka, Sharon; Mugnuolo, Raffaele;
2016-01-01
The International Space Exploration Coordination Group (ISECG) formed two Gap Assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Global Exploration Roadmap (GER) Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion, with this paper addressing the former. The ISECG approved the recommended Gap Assessment teams, and tasked the TWG to formulate the new teams with subject matter experts (SMEs) from the participating agencies. The participating agencies for the Dust Mitigation Gap Assessment Team were ASI, CSA, ESA, JAXA, and NASA. The team was asked to identify and make a presentation on technology gaps related to the GER2 mission scenario (including cislunar and lunar mission themes and long-lead items for human exploration of Mars) at the international level. In addition the team was tasked to produce a gap assessment in the form of a summary report and presentation identifying those GER Critical Technology Needs, including opportunities for international coordination and cooperation in closing the identified gaps. Dust is still a principal limiting factor in returning to the lunar surface for missions of any extended duration. However, viable technology solutions have been identified, but need maturation to be available to support both lunar and Mars missions.
Quantifying tight-gas sandstone permeability via critical path analysis
USDA-ARS?s Scientific Manuscript database
Rock permeability has been actively investigated over the past several decades by the geosciences community. However, its accurate estimation still presents significant technical challenges, especially in spatially complex rocks. In this letter, we apply critical path analysis (CPA) to estimate perm...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Jarrod; Barr, Jonathan L.; Burtner, Edwin R.
A key challenge for research roadmapping in the crisis response and management domain is articulation of a shared vision that describes what the future can and should include. Visioning allows for far-reaching stakeholder engagement that can properly align research with stakeholders needs. Engagement includes feedback from researchers, policy makers, general public, and end-users on technical and non-technical factors. This work articulates a process and framework for the construction and maintenance of a stakeholder-centric research vision and roadmap in the emergency management domain. This novel roadmapping process integrates three pieces: analysis of the research and technology landscape, visioning, and stakeholder engagement.more » Our structured engagement process elicits research foci for the roadmap based on relevance to stakeholder mission, identifies collaborators, and builds consensus around the roadmap priorities. We find that the vision process and vision storyboard helps SMEs conceptualize and discuss a technology's strengths, weaknesses, and alignment with needs« less
Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap
NASA Technical Reports Server (NTRS)
Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)
1998-01-01
Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)
The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering
NASA Technical Reports Server (NTRS)
Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen
2006-01-01
This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.
Implications of path tolerance and path characteristics on critical vehicle manoeuvres
NASA Astrophysics Data System (ADS)
Lundahl, K.; Frisk, E.; Nielsen, L.
2017-12-01
Path planning and path following are core components in safe autonomous driving. Typically, a path planner provides a path with some tolerance on how tightly the path should be followed. Based on that, and other path characteristics, for example, sharpness of curves, a speed profile needs to be assigned so that the vehicle can stay within the given tolerance without going unnecessarily slow. Here, such trajectory planning is based on optimal control formulations where critical cases arise as on-the-limit solutions. The study focuses on heavy commercial vehicles, causing rollover to be of a major concern, due to the relatively high centre of gravity. Several results are obtained on required model complexity depending on path characteristics, for example, quantification of required path tolerance for a simple model to be sufficient, quantification of when yaw inertia needs to be considered in more detail, and how the curvature rate of change interplays with available friction. Overall, in situations where the vehicle is subject to a wide range of driving conditions, from good transport roads to more tricky avoidance manoeuvres, the requirements on the path following will vary. For this, the provided results form a basis for real-time path following.
In-Situ Resource Utilization (ISRU) Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Duke, Michael
2005-01-01
A progress review on In-Situ Resource Utilization (ISRU) capability is presented. The topics include: 1) In-Situ Resource Utilization (ISRU) Capability Roadmap: Level 1; 2) ISRU Emphasized Architecture Overview; 3) ISRU Capability Elements: Level 2 and below; and 4) ISRU Capability Roadmap Wrap-up.
Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),
2017-2030 | Solar Research | NREL Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 This report Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying
The 2017 Plasma Roadmap: Low temperature plasma science and technology
USDA-ARS?s Scientific Manuscript database
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic upd...
NASA Strategic Roadmap Committees Final Roadmaps. Volumes 1 and 2
NASA Technical Reports Server (NTRS)
2005-01-01
Volume 1 contains NASA strategic roadmaps for the following Advanced Planning and Integration Office (APIO) committees: Earth Science and Applications from Space; Sun - Solar System Connection. Volume 2 contains NASA strategic roadmaps for the following APIO committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-like Planets; Universe Exploration, as well as membership rosters and charters for all APIO committees, including those above and the following: Exploration Transportation System; Nuclear Systems; Robotic and Human Lunar Exploration; Aeronautical Technologies; Space Shuttle; International Space Station; Education.
76 FR 41266 - Critical Path Manufacturing Sector Research Initiative (U01)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... under the ``Regulatory Information'' section. The title of the page is ``Research Acquisitions... the Critical Path. Research into methods for laboratory synthesis of molecules that have been designed... accelerated by better design of the facilities where this research is conducted. Creating and making these...
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2015-01-01
This presentation is a NASA Electronic Parts and Packaging (NEPP) Program: Roadmap for FY15 and Beyond. This roadmap provides a snapshot for current plans and collaborations on testing and evaluation of electronics as well as a discussion of the technology selection approach.
Conceptualizing the Critical Path Linked by Teacher Commitment
ERIC Educational Resources Information Center
Sun, Jingping
2015-01-01
Purpose: The purpose of this paper is to propose a critical path through which school leadership travels to students by highlighting the importance of teacher commitment. Design/methodology/approach: Using both meta-analytic and narrative review methods, this paper systematically reviews the evidence in the past 20 years about the…
THE CRITICAL-PATH METHOD OF CONSTRUCTION CONTROL.
ERIC Educational Resources Information Center
DOMBROW, RODGER T.; MAUCHLY, JOHN
THIS DISCUSSION PRESENTS A DEFINITION AND BRIEF DESCRIPTION OF THE CRITICAL-PATH METHOD AS APPLIED TO BUILDING CONSTRUCTION. INTRODUCING REMARKS CONSIDER THE MOST PERTINENT QUESTIONS PERTAINING TO CPM AND THE NEEDS ASSOCIATED WITH MINIMIZING TIME AND COST ON CONSTRUCTION PROJECTS. SPECIFIC DISCUSSION INCLUDES--(1) ADVANTAGES OF NETWORK TECHNIQUES,…
USDA-ARS?s Scientific Manuscript database
Critical path analysis (CPA) is a method for estimating macroscopic transport coefficients of heterogeneous materials that are highly disordered at the micro-scale. Developed originally to model conduction in semiconductors, numerous researchers have noted that CPA might also have relevance to flow ...
EPA Critical Path Science Plan Projects 19, 20 and 21: Human and Bovine Source Detection
The U.S. EPA Critical Path Science Plan Projects are: Project 19: develop novel bovine and human host-specific PCR assays and complete performance evaluation with other published methods. Project 20: Evaluate human-specific assays with water samples impacted with different lev...
National roadmap for research infrastructure
NASA Astrophysics Data System (ADS)
Bonev, Tanyu
In 2010 the Council of Ministers of Republic of Bulgaria passed a National roadmap for research infrastructure (Decision Num. 692 from 21.09.2010). Part of the roadmap is the project called Regional Astronomical Center for Research and Education (RACIO). Distinctive feature of this project is the integration of the existing in the country research and educational organizations in the field of astronomy. The project is a substantial part of the strategy for the development of astronomy in Bulgaria over the next decade. What is the content of this strategis project? How it was possible to include RACIO in the roadmap? Does the national roadmap charmonize with the strategic plans for the development of astronomy in Europe, elaborated by Astronet (http://www.astronet-eu.org/)? These are some of the questions which I try to give answers in this paper.
Gottlieb, Sami L; Deal, Carolyn D; Giersing, Birgitte; Rees, Helen; Bolan, Gail; Johnston, Christine; Timms, Peter; Gray-Owen, Scott D; Jerse, Ann E; Cameron, Caroline E; Moorthy, Vasee S; Kiarie, James; Broutet, Nathalie
2016-06-03
In 2014, the World Health Organization, the US National Institutes of Health, and global technical partners published a comprehensive roadmap for development of new vaccines against sexually transmitted infections (STIs). Since its publication, progress has been made in several roadmap activities: obtaining better epidemiologic data to establish the public health rationale for STI vaccines, modeling the theoretical impact of future vaccines, advancing basic science research, defining preferred product characteristics for first-generation vaccines, and encouraging investment in STI vaccine development. This article reviews these overarching roadmap activities, provides updates on research and development of individual vaccines against herpes simplex virus, Chlamydia trachomatis, Neisseria gonorrhoeae, and Treponema pallidum, and discusses important next steps to advance the global roadmap for STI vaccine development. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidd, M.E.C.
1997-02-01
The goal of our work is to provide a high level of confidence that critical software driven event sequences are maintained in the face of hardware failures, malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. The methodology employed here is inspired by previous work in path expressions. This paper discusses the perceived problems, a brief overview of path expressions, the proposed methods, and a discussion of the differences between the proposed methods and traditional path expression usage and implementation.
NASA capabilities roadmap: advanced telescopes and observatories
NASA Technical Reports Server (NTRS)
Feinberg, Lee D.
2005-01-01
The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Hasse, J U; Weingaertner, D E
2016-01-01
As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) 'dynaklim - Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)', the Roadmap 2020 'Regional Climate Adaptation' has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap 'Water Sensitive Urban Design 2020'. With a focus on the process support tool 'KlimaFLEX', one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.
ISECG Global Exploration Roadmap: A Stepwise Approach to Deep Space Exploration
NASA Technical Reports Server (NTRS)
Martinez, Roland; Goodliff, Kandyce; Whitley, Ryan
2013-01-01
In 2011, ISECG released the Global Exploration Roadmap (GER), advancing the "Global Exploration Strategy: The Framework for Coordination" by articulating the perspectives of participating agencies on exploration goals and objectives, mission scenarios, and coordination of exploration preparatory activities. The GER featured a stepwise development and demonstration of capabilities ultimately required for human exploration of Mars. In 2013 the GER was updated to reflect the ongoing evolution of agency's exploration policies and plans, informed by individual agency and coordinated analysis activities that are relevant to various elements of the GER framework as well as coordinated stakeholder engagement activities. For this release of version 2 of the GER in the mid 2013 timeframe, a modified mission scenario is presented, more firmly reflecting the importance of a stepwise evolution of critical capabilities provided by multiple partners necessary for executing increasingly complex missions to multiple destinations and leading to human exploration of Mars. This paper will describe the updated mission scenario, the changes since the release of version 1, the mission themes incorporated into the scenario, and risk reduction for Mars missions provided by exploration at various destinations.
Generating Performance Models for Irregular Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friese, Ryan D.; Tallent, Nathan R.; Vishnu, Abhinav
2017-05-30
Many applications have irregular behavior --- non-uniform input data, input-dependent solvers, irregular memory accesses, unbiased branches --- that cannot be captured using today's automated performance modeling techniques. We describe new hierarchical critical path analyses for the \\Palm model generation tool. To create a model's structure, we capture tasks along representative MPI critical paths. We create a histogram of critical tasks with parameterized task arguments and instance counts. To model each task, we identify hot instruction-level sub-paths and model each sub-path based on data flow, instruction scheduling, and data locality. We describe application models that generate accurate predictions for strong scalingmore » when varying CPU speed, cache speed, memory speed, and architecture. We present results for the Sweep3D neutron transport benchmark; Page Rank on multiple graphs; Support Vector Machine with pruning; and PFLOTRAN's reactive flow/transport solver with domain-induced load imbalance.« less
Kim, Isok
2014-01-01
This study used a path analytic technique to examine associations among critical ethnic awareness, racial discrimination, social support, and depressive symptoms. Using a convenience sample from online survey of Asian American adults (N = 405), the study tested 2 main hypotheses: First, based on the empowerment theory, critical ethnic awareness would be positively associated with racial discrimination experience; and second, based on the social support deterioration model, social support would partially mediate the relationship between racial discrimination and depressive symptoms. The result of the path analysis model showed that the proposed path model was a good fit based on global fit indices, χ²(2) = 4.70, p = .10; root mean square error of approximation = 0.06; comparative fit index = 0.97; Tucker-Lewis index = 0.92; and standardized root mean square residual = 0.03. The examinations of study hypotheses demonstrated that critical ethnic awareness was directly associated (b = .11, p < .05) with the racial discrimination experience, whereas social support had a significant indirect effect (b = .48; bias-corrected 95% confidence interval [0.02, 1.26]) between the racial discrimination experience and depressive symptoms. The proposed path model illustrated that both critical ethnic awareness and social support are important mechanisms for explaining the relationship between racial discrimination and depressive symptoms among this sample of Asian Americans. This study highlights the usefulness of the critical ethnic awareness concept as a way to better understand how Asian Americans might perceive and recognize racial discrimination experiences in relation to its mental health consequences.
Comparative Science and Space Weather Around the Heliosphere
NASA Astrophysics Data System (ADS)
Grande, Manuel; Andre, Nicolas; COSPAR/ILWS Roadmap Team
2016-10-01
Space weather refers to the variable state of the coupled space environment related to changing conditions on the Sun and in the terrestrial atmosphere. The presentation will focus on the critical missing knowledge or observables needed to significantly advance our modelling and forecasting capabilities throughout the solar system putting these in perspective to the recommendations in the recent COSPAR/ILWS roadmap. The COSPAR/ILWS RoadMap focuses on high-priority challenges in key areas of research leading to a better understanding of the space environment and a demonstrable improvement in the provision of timely, reliable information pertinent to effects on civilian space- and ground-based systems, for all stakeholders around the world. The RoadMap prioritizes those advances that can be made on short, intermediate and decadal time scales, identifying gaps and opportunities from a predominantly, but not exclusively, geocentric perspective. While discussion of space weather effects has so far largely been concerned to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an extreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. One initiative is that under Horizon 2020, Europlanet RI will set up a Europlanet Planetary Space Weather Service (PSWS). PSWS will make five entirely new `toolkits' accessible to the research community and to industrial partners planning for space missions: - a General planetary space weather toolkit; Mars (in support of the ESA ExoMars missions to be launched in 2016 and 2018); comets (building on the success of the ESA Rosetta mission); outer planets (in preparation for the ESA JUICE mission to be launched in 2022), as well as a novel "event-diary" toolkit aiming at predicting and detecting planetary events like meteor impacts
Comparative science and space weather around the heliosphere
NASA Astrophysics Data System (ADS)
Grande, Manuel
2016-07-01
Space weather refers to the variable state of the coupled space environment related to changing conditions on the Sun and in the terrestrial atmosphere. The presentation will focus on the critical missing knowledge or observables needed to significantly advance our modelling and forecasting capabilities throughout the solar system putting these in perspective to the recommendations in the recent COSPAR/ILWS roadmap. The COSPAR/ILWS RoadMap focuses on high-priority challenges in key areas of research leading to a better understanding of the space environment and a demonstrable improvement in the provision of timely, reliable information pertinent to effects on civilian space- and ground-based systems, for all stakeholders around the world. The RoadMap prioritizes those advances that can be made on short, intermediate and decadal time scales, identifying gaps and opportunities from a predominantly, but not exclusively, geocentric perspective. While discussion of space weather effects has so far largely been confined to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an extreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. One initiative is that under Horizon 2020, Europlanet RI will set up a Europlanet Planetary Space Weather Service (PSWS). PSWS will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: - a General planetary space weather toolkit; Mars (in support of the ESA ExoMars missions to be launched in 2016 and 2018); comets (building on the success of the ESA Rosetta mission); outer planets (in preparation for the ESA JUICE mission to be launched in 2022), as well as a novel "event-diary" toolkit aiming at predicting and detecting planetary events like meteor impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werling, Eric
This report presents the Building America Research-to-Market Plan (Plan), including the integrated Building America Technology-to-Market Roadmaps (Roadmaps) that will guide Building America’s research, development, and deployment (RD&D) activities over the coming years. The Plan and Roadmaps will be updated as necessary to adapt to research findings and evolving stakeholder needs, and they will reflect input from DOE and stakeholders.
A roadmap towards advanced space weather science to protect society's technological infrastructure
NASA Astrophysics Data System (ADS)
Schrijver, Carolus
As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.
TA-13: Ground and Launch Systems, 2015 NASA Technology Roadmaps
NASA Technical Reports Server (NTRS)
Fox, Jack J.
2015-01-01
This presentation is a summary of new content contained in the 2015 update of Technology Area-13, Ground and Launch Systems technology roadmap beyond the content contained in the 2010 version. Also included are brief assessments of benefits, alignments, challenges, technical risk and reasonableness, sequencing and timing, and time and effort to achieve goals. This presentation is part of overall presentations of new content only for the 2015 update of the 15 NASA Technology Roadmaps that will be conducted in a public forum managed by the National Research Council on September 28-29, 2015. The 15 roadmaps have already been publically released via the STI process.
NASA Strategic Roadmap Summary Report
NASA Technical Reports Server (NTRS)
Wilson, Scott; Bauer, Frank; Stetson, Doug; Robey, Judee; Smith, Eric P.; Capps, Rich; Gould, Dana; Tanner, Mike; Guerra, Lisa; Johnston, Gordon
2005-01-01
In response to the Vision, NASA commissioned strategic and capability roadmap teams to develop the pathways for turning the Vision into a reality. The strategic roadmaps were derived from the Vision for Space Exploration and the Aldrich Commission Report dated June 2004. NASA identified 12 strategic areas for roadmapping. The Agency added a thirteenth area on nuclear systems because the topic affects the entire program portfolio. To ensure long-term public visibility and engagement, NASA established a committee for each of the 13 areas. These committees - made up of prominent members of the scientific and aerospace industry communities and senior government personnel - worked under the Federal Advisory Committee Act. A committee was formed for each of the following program areas: 1) Robotic and Human Lunar Exploration; 2) Robotic and Human Exploration of Mars; 3) Solar System Exploration; 4) Search for Earth-Like Planets; 5) Exploration Transportation System; 6) International Space Station; 7) Space Shuttle; 8) Universe Exploration; 9) Earth Science and Applications from Space; 10) Sun-Solar System Connection; 11) Aeronautical Technologies; 12) Education; 13) Nuclear Systems. This document contains roadmap summaries for 10 of these 13 program areas; The International Space Station, Space Shuttle, and Education are excluded. The completed roadmaps for the following committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-Like Planets; Universe Exploration; Earth Science and Applications from Space; Sun-Solar System Connection are collected in a separate Strategic Roadmaps volume. This document contains memebership rosters and charters for all 13 committees.
Time-Critical Cooperative Path Following of Multiple UAVs: Case Studies
2012-10-30
control algorithm for UAVs in 3D space. Section IV derives a strategy for time-critical cooperative path following of multiple UAVs that relies on the...UAVs in 3D space, in which a fleet of UAVs is tasked to converge to and follow a set of desired feasible paths so as to meet spatial and temporal...cooperative trajectory generation is not addressed in this paper. In fact, it is assumed that a set of desired 3D time trajectories pd,i(td) : R → R3
Cost-Reduction Roadmap Outlines Two Pathways to Meet DOE Residential Solar
Cost Target for 2030 | News | NREL Cost-Reduction Roadmap Outlines Two Pathways to Meet DOE Residential Solar Cost Target for 2030 News Release: Cost-Reduction Roadmap Outlines Two Pathways to Meet DOE Residential Solar Cost Target for 2030 Installing photovoltaics at the time of roof replacement or as part of
Promising roadmap alternatives for the SpaceLiner
NASA Astrophysics Data System (ADS)
Sippel, Martin
2010-06-01
The paper describes the vision and potential roadmap alternatives of an ultrafast intercontinental passenger transport based on a rocket powered two-stage reusable vehicle. An operational scenario and the latest technical lay-out of the configuration's preliminary design including flight performance are described. The question of how the revolutionary ultrafast transport can be realized is addressed by an assessment of the different technological and programmatic roadmap alternatives.
Technology Needs to Support Future Mars Exploration
NASA Technical Reports Server (NTRS)
Nilsen, Erik N.; Baker, John; Lillard, Randolph P.
2013-01-01
The Mars Program Planning Group (MPPG) under the direction of Dr. Orlando Figueroa, was chartered to develop options for a program-level architecture for robotic exploration of Mars consistent with the objective to send humans to Mars in the 2030's. Scientific pathways were defined for future exploration, and multiple architectural options were developed that meet current science goals and support the future human exploration objectives. Integral to the process was the identification of critical technologies which enable the future scientific and human exploration goals. This paper describes the process for technology capabilities identification and examines the critical capability needs identified in the MPPG process. Several critical enabling technologies that have been identified to support the robotic exploration goals and with potential feedforward application to human exploration goals. Potential roadmaps for the development and validation of these technologies are discussed, including options for subscale technology demonstrations of future human exploration technologies on robotic missions.
The OPTICON technology roadmap for optical and infrared astronomy
NASA Astrophysics Data System (ADS)
Cunningham, Colin; Melotte, David; Molster, Frank
2010-07-01
The Key Technology Network (KTN) within the OPTICON programme has been developing a roadmap for the technology needed to meet the challenges of optical and infrared astronomy over the next few years, with particular emphasis on the requirements of Extremely Large Telescopes. The process and methodology so far will be described, along with the most recent roadmap. The roadmap shows the expected progression of ground-based astronomy facilities and the technological developments which will be required to realise these new facilities. The roadmap highlights the key stages in the development of these technologies. In some areas, such as conventional optics, gradual developments in areas such as light-weighting of optics will slowly be adopted into future instruments. In other areas, such as large area IR detectors, more rapid progress can be expected as new processing techniques allow larger and faster arrays. Finally, other areas such as integrated photonics have the potential to revolutionise astronomical instrumentation. Future plans are outlined, in particular our intention to look at longer term development and disruptive technologies.
Collaboration process for integrated social and health care strategy implementation.
Korpela, Jukka; Elfvengren, Kalle; Kaarna, Tanja; Tepponen, Merja; Tuominen, Markku
2012-01-01
To present a collaboration process for creating a roadmap for the implementation of a strategy for integrated health and social care. The developed collaboration process includes multiple phases and uses electronic group decision support system technology (GDSS). A case study done in the South Karelia District of Social and Health Services in Finland during 2010-2011. An expert panel of 13 participants was used in the planning process of the strategy implementation. The participants were interviewed and observed during the case study. As a practical result, a roadmap for integrated health and social care strategy implementation has been developed. The strategic roadmap includes detailed plans of several projects which are needed for successful integration strategy implementation. As an academic result, a collaboration process to create such a roadmap has been developed. The collaboration process and technology seem to suit the planning process well. The participants of the meetings were satisfied with the collaboration process and the GDSS technology. The strategic roadmap was accepted by the participants, which indicates satisfaction with the developed process.
NASA Strategic Roadmap: Origin, Evolution, Structure, and Destiny of the Universe
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2005-01-01
The NASA strategic roadmap on the Origin, Evolution, Structure and Destiny of the Universe is one of 13 roadmaps that outline NASA s approach to implement the vision for space exploration. The roadmap outlines a program to address the questions: What powered the Big Bang? What happens close to a Black Hole? What is Dark Energy? How did the infant universe grow into the galaxies, stars and planets, and set the stage for life? The roadmap builds upon the currently operating and successful missions such as HST, Chandra and Spitzer. The program contains two elements, Beyond Einstein and Pathways to Life, performed in three phases (2005-2015, 2015-2025 and >2025) with priorities set by inputs received from reviews undertaken by the National Academy of Sciences and technology readiness. The program includes the following missions: 2005-2015 GLAST, JWST and LISA; 2015-2025 Constellation-X and a series of Einstein Probes; and >2025 a number of ambitious vision missions which will be prioritized by results from the previous two phases.
Roadmap on semiconductor-cell biointerfaces
NASA Astrophysics Data System (ADS)
Tian, Bozhi; Xu, Shuai; Rogers, John A.; Cestellos-Blanco, Stefano; Yang, Peidong; Carvalho-de-Souza, João L.; Bezanilla, Francisco; Liu, Jia; Bao, Zhenan; Hjort, Martin; Cao, Yuhong; Melosh, Nicholas; Lanzani, Guglielmo; Benfenati, Fabio; Galli, Giulia; Gygi, Francois; Kautz, Rylan; Gorodetsky, Alon A.; Kim, Samuel S.; Lu, Timothy K.; Anikeeva, Polina; Cifra, Michal; Krivosudský, Ondrej; Havelka, Daniel; Jiang, Yuanwen
2018-05-01
This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.
A Roadmap for Thermal Metrology
NASA Astrophysics Data System (ADS)
Bojkovski, J.; Fischer, J.; Machin, G.; Pavese, F.; Peruzzi, A.; Renaot, E.; Tegeler, E.
2009-02-01
A provisional roadmap for thermal metrology was developed in Spring 2006 as part of the EUROMET iMERA activity toward increasing impact from national investment in European metrology R&D. This consisted of two parts: one addressing the influence of thermal metrology on society, industry, and science, and the other specifying the requirements of enabling thermal metrology to serve future needs. The roadmap represents the shared vision of the EUROMET TC Therm committee as to how thermal metrology should develop to meet future requirements over the next 15 years. It is important to stress that these documents are a first attempt to roadmap the whole of thermal metrology and will certainly need regular review and revision to remain relevant and useful to the community they seek to serve. The first part of the roadmap, “Thermal metrology for society, industry, and science,” identifies the main social and economic triggers driving developments in thermal metrology—notably citizen safety and security, new production technologies, environment and global climate change, energy, and health. Stemming from these triggers, key targets are identified that require improved thermal measurements. The second part of the roadmap, “Enabling thermal metrology to serve future needs” identifies another set of triggers, like global trade and interoperability, future needs in transport, and the earth radiation budget. Stemming from these triggers, key targets are identified, such as improved realizations and dissemination of the SI unit the kelvin, anchoring the kelvin to the Boltzmann constant, k B, and calculating thermal properties from first principles. To facilitate these outcomes, the roadmap identifies the technical advances required in thermal measurement standards.
Evaluation of Roadmap to Achieve Energy Delivery Systems Cybersecurity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, Adrian R.
The Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) Cybersecurity for Energy Delivery Systems (CEDS) program is currently evaluating the Roadmap to Achieve Energy Delivery Systems Cybersecurity document that sets a vision and outlines a set of milestones. The milestones are divided into five strategic focus areas that include: 1. Build a Culture of Security; 2. Assess and Monitor Risk; 3. Develop and Implement New Protective Measures to Reduce Risk; 4. Manage Incidents; and 5. Sustain Security Improvements. The most current version of the roadmap was last updated in September of 2016. Sandia National Laboratories (SNL) has beenmore » tasked with revisiting the roadmap to update the current state of energy delivery systems cybersecurity protections. SNL is currently working with previous and current partners to provide feedback on which of the roadmap milestones have been met and to identify any preexisting or new gaps that are not addressed by the roadmap. The specific focus areas SNL was asked to evaluate are: 1. Develop and Implement New Protective Measures to Reduce Risk and 2. Sustain Security Improvements. SNL has formed an Industry Advisory Board (IAB) to assist in answering these questions. The IAB consists of previous partners on past CEDS funded efforts as well as new collaborators that have unique insights into the current state of cybersecurity within energy delivery systems. The IAB includes asset owners, utilities and vendors of control systems. SNL will continue to maintain regular communications with the IAB to provide various perspectives on potential future updates to further improve the breadth of cybersecurity coverage of the roadmap.« less
NASA Technical Reports Server (NTRS)
2003-01-01
Contents include the following: About the roadmap. Summary of key elements. Science objectives. Mission roadmap. Technology. Research and analysis. Education and public outreach. Appendix - Road map framework.
Do-It-Yourself Critical Path Method.
ERIC Educational Resources Information Center
Morris, Edward P., Jr.
This report describes the critical path method (CPM), a system for planning and scheduling work to get the best time-cost combination for any particular job. With the use of diagrams, the report describes how CPM works on a step-by-step basis. CPM uses a network to show which parts of a job must be done and how they would eventually fit together…
Methodology for Constructing a Modernization Roadmap for Air Force Automatic Test Systems
2012-01-01
Constructing a Modernization Roadmap for Air Force Automatic Test Systems Lionel A. Galway , Rachel Rue, James M. Masters, Ben D. Van Roo, Manuel...constructing a modernization roadmap for Air Force automatic test systems / Lionel A. Galway ... [et al.]. p. cm. Includes bibliographical...references. ISBN 978-0-8330-5899-7 (pbk. : alk. paper) 1. United States. Air Force—Weapons systems—Testing. I. Galway , Lionel A., 1950- UG633.M3445
Papadaki, Magdalini
2017-01-01
For the nascent field of advanced therapies, collaboration will be a game-changer, turning scientific progress that was once unimaginable into transformative medical practice. Despite promise for lifelong management and even cure of disease, skepticism remains about the feasibility of their delivery to patients, fueling investment risks. With the potential for long-term effectiveness in need of frequent reassessment, current approaches to predict real-life drug performance bear little relevance, necessitating novel and iterative schemes to monitoring the benefit–risk profiles throughout the life span of advanced therapies. This work explains that reinventing an adoption route for Advanced Therapy Medicinal Products is as much about the scientific and clinical components, as it is about the organizational structures, requiring an unprecedented level of interactions between stakeholders not traditionally connected; from developers and regulators, to payers, patients, and funders. By reflecting on the successes and lessons learned from the growing space of global precompetitive consortia and public–private partnerships, as well as a number of emerging accelerated development pathways, this work aims to inform the foundations for a future roadmap that can smooth the path to approval, reimbursement, and access, while delivering value to all stakeholders. Echoing the growing demands to bring these transformative products to patients, it provides critical insights to enhance our capacity in three fundamental domains: deploying the operational flexibilities offered by the growing space of collaborations, utilizing emerging flexible and accelerated pathways to tackle challenges in quantifying long-term effectiveness, and building the necessary digital and clinical infrastructure for knowledge development. PMID:28611985
Generic hierarchical engine for mask data preparation
NASA Astrophysics Data System (ADS)
Kalus, Christian K.; Roessl, Wolfgang; Schnitker, Uwe; Simecek, Michal
2002-07-01
Electronic layouts are usually flattened on their path from the hierarchical source downstream to the wafer. Mask data preparation has certainly been identified as a severe bottleneck since long. Data volumes are not only doubling every year along the ITRS roadmap. With the advent of optical proximity correction and phase-shifting masks data volumes are escalating up to non-manageable heights. Hierarchical treatment is one of the most powerful means to keep memory and CPU consumption in reasonable ranges. Only recently, however, has this technique acquired more public attention. Mask data preparation is the most critical area calling for a sound infrastructure to reduce the handling problem. Gaining more and more attention though, are other applications such as large area simulation and manufacturing rule checking (MRC). They all would profit from a generic engine capable to efficiently treat hierarchical data. In this paper we will present a generic engine for hierarchical treatment which solves the major problem, steady transitions along cell borders. Several alternatives exist how to walk through the hierarchy tree. They have, to date, not been thoroughly investigated. One is a bottom-up attempt to treat cells starting with the most elementary cells. The other one is a top-down approach which lends itself to creating a new hierarchy tree. In addition, since the variety, degree of hierarchy and quality of layouts extends over a wide range a generic engine has to take intelligent decisions when exploding the hierarchy tree. Several applications will be shown, in particular how far the limits can be pushed with the current hierarchical engine.
Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Wallace, S; Rinder, M
2010-09-01
Secondary lead smelters (SLS) represent an environmentally-challenging industry as they deal with toxic substances posing potential threats to both human and environmental health, consequently, they operate under strict government regulations. Such challenges have resulted in the significant reduction of SLS plants in the last three decades. In addition, the domestic recycling of lead has been on a steep decline in the past 10 years as the amount of lead recovered has remained virtually unchanged while consumption has increased. Therefore, one may wonder whether sustainable development can be achieved among SLS. The primary objective of this study was to determine whether a roadmap for sustainable development can be established for SLS. The following aims were established in support of the study objective: (1) to conduct a systematic review and an analysis of models of sustainable systems with a particular emphasis on SLS; (2) to document the challenges for the U.S. secondary lead smelting industry; and (3) to explore practices and concepts which act as vehicles for SLS on the road to sustainable development. An evidence-based methodology was adopted to achieve the study objective. A comprehensive electronic search was conducted to implement the aforementioned specific aims. Inclusion criteria were established to filter out irrelevant scientific papers and reports. The relevant articles were closely scrutinized and appraised to extract the required information and data for the possible development of a sustainable roadmap. The search process yielded a number of research articles which were utilized in the systematic review. Two types of models emerged: management/business and science/mathematical models. Although the management/business models explored actions to achieve sustainable growth in the industrial enterprise, science/mathematical models attempted to explain the sustainable behaviors and properties aiming at predominantly ecosystem management. As such, there are major disconnects between the science/mathematical and management/business models in terms of aims and goals. Therefore, there is an urgent need to integrate science and business models of sustainability for the industrial enterprises at large and environmentally-challenging industrial sectors in particular. In this paper, we offered examples of practices and concepts which can be used in charting a path towards sustainable development for secondary lead smelters particularly that the waste generated is much greater outside the industrial enterprise than inside. An environmentally-challenging industry such as secondary lead smelters requires a fresh look to chart a path towards sustainable development (i.e., survivability and purposive needs) for all stakeholders (i.e., industrial enterprise, individual stakeholders, and social/ecological systems). Such a path should deal with issues beyond pollution prevention, product stewardship and clean technologies. 2010 Elsevier Ltd. All rights reserved.
Optimizing Department of Defense Acquisition Development Test and Evaluation Scheduling
2015-06-01
CPM Critical Path Method DOD Department of Defense DT&E development test and evaluation EMD engineering and manufacturing development GAMS...these, including the Program Evaluation Review Technique (PERT), the Critical Path Method ( CPM ), and the resource- constrained project-scheduling...problem (RCPSP). These are of particular interest to this thesis as the current scheduling method uses elements of the PERT/ CPM , and the test
CPM (Critical Path Method) as a Curriculum Tool.
ERIC Educational Resources Information Center
Mongerson, M. Duane
This document discusses and illustrates the use of the Critical Path Method (CPM) as a tool for developing curriculum. In so doing a brief review of the evolution of CPM as a management tool developed by E. I. duPont de Nemours Company is presented. It is also noted that CPM is only a method of sequencing learning activities and not an end unto…
ERIC Educational Resources Information Center
Croteau, Jon Derek; Wolk, Holly Gordon
2010-01-01
There are many factors that can influence whether a highly talented staff member will build a career within an institution or use it as a stepping stone. This article defines and explores the notions of developing career paths and succession planning and why they are critical human capital investment strategies in retaining the highest performers…
The Role of GIS and Data Librarians in Cyber-infrastructure Support and Governance
NASA Astrophysics Data System (ADS)
Branch, B. D.
2012-12-01
A governance road-map for cyber-infrastructure in the geosciences will include an intentional librarian core capable of technical skills that include GIS and open source support for data curation that involves all aspects of data life cycle management. Per Executive Order 12906 and other policy; spatial data, literacy, and curation are critical cyber-infrastructure needs in the near future. A formal earth science and space informatics librarian may be an outcome of such development. From e-science to e-research, STEM pipelines need librarians as critical data intermediaries in technical assistance and collaboration efforts with scientists' data and outreach needs. Future training concerns should advocate trans-disciplinary data science and policy skills that will be necessary for data management support and procurement.
Forest Products Industry Technology Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2010-04-01
This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sailer, Anna M., E-mail: anni.sailer@mumc.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Graaf, Rick de, E-mail: r.de.graaf@mumc.nl
PurposeThis study was designed to evaluate the feasibility of endovascular guidance by means of live fluoroscopy fusion with magnetic resonance angiography (MRA) and computed tomography angiography (CTA).MethodsFusion guidance was evaluated in 20 endovascular peripheral artery interventions in 17 patients. Fifteen patients had received preinterventional diagnostic MRA and two patients had undergone CTA. Time for fluoroscopy with MRA/CTA coregistration was recorded. Feasibility of fusion guidance was evaluated according to the following criteria: for every procedure the executing interventional radiologists recorded whether 3D road-mapping provided added value (yes vs. no) and whether PTA and/or stenting could be performed relying on the fusionmore » road-map without need for diagnostic contrast-enhanced angiogram series (CEAS) (yes vs. no). Precision of the fusion road-map was evaluated by recording maximum differences between the position of the vasculature on the virtual CTA/MRA images and conventional angiography.ResultsAverage time needed for image coregistration was 5 ± 2 min. Three-dimensional road-map added value was experienced in 15 procedures in 12 patients. In half of the patients (8/17), intervention was performed relying on the fusion road-map only, without diagnostic CEAS. In two patients, MRA roadmap showed a false-positive lesion. Excluding three patients with inordinate movements, mean difference in position of vasculature on angiography and MRA/CTA road-map was 1.86 ± 0.95 mm, implying that approximately 95 % of differences were between 0 and 3.72 mm (2 ± 1.96 standard deviation).ConclusionsFluoroscopy with MRA/CTA fusion guidance for peripheral artery interventions is feasible. By reducing the number of CEAS, this technology may contribute to enhance procedural safety.« less
Relay Telecommunications for the Coming Decade of Mars Exploration
NASA Technical Reports Server (NTRS)
Edwards, C.; DePaula, R.
2010-01-01
Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.
Hodgetts, Timothy J
2014-06-01
Medicine has historically advanced during conflict, but military medical services have consistently regressed during peace. As over a decade of campaigning in Iraq and Afghanistan draws to a close, securing the legacy of hard won clinical lessons and retaining flexibility to adapt to new patterns of illness and injury during contingency is critical. Central to sustaining exceptional outcomes for future operations and to maintaining the current position of the Defence Medical Services as providers of clinical excellence is retaining the capability to innovate. This capability must extend across the spectrum of clinical innovation-concepts, guidelines, equipment (invention and adoption), curricula (design, assessment and refinement), research and Defence diplomacy. To achieve this requires a strategy, a 'roadmap', with a clear vision, end state and centres of gravity (core strengths that must be protected). The direction for innovation will be guided by emergent analysis of the future character of military medicine. Success will be determined by ensuring the conditions are met to protect and enhance the existing 'winning culture'. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Roadmap for Testing and Validation of Electric Vehicle Communication Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan
Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work bymore » the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Frederick B.; Shalf, John; Mitchell, Alan
This report captures the initial conclusions of the DOE seven National Lab team collaborating on the “Solving the Information Technology Energy Challenge Beyond Moore’s Law” initiative from the DOE Big Idea Summit III held in April of 2016. The seven Labs held a workshop in Albuquerque, NM in late July 2016 and gathered 40 researchers into 5 working groups: 4 groups spanning the levels of the co-design framework shown below, and a 5th working group focused on extending and advancing manufacturing approaches and coupling their constraints to all of the framework levels. These working groups have identified unique capabilities withinmore » the Labs to support the key challenges of this Beyond Moore’s Law Computing (BMC) vision, as well as example first steps and potential roadmaps for technology development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronnebro, Ewa
PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale thatmore » is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.« less
Space Weather - Current Capabilities, Future Requirements, and the Path to Improved Forecasting
NASA Astrophysics Data System (ADS)
Mann, Ian
2016-07-01
We present an overview of Space Weather activities and future opportunities including assessments of current status and capabilities, knowledge gaps, and future directions in relation to both observations and modeling. The review includes input from the scientific community including from SCOSTEP scientific discipline representatives (SDRs), COSPAR Main Scientific Organizers (MSOs), and SCOSTEP/VarSITI leaders. The presentation also draws on results from the recent activities related to the production of the COSPAR-ILWS Space Weather Roadmap "Understanding Space Weather to Shield Society" [Schrijver et al., Advances in Space Research 55, 2745 (2015) http://dx.doi.org/10.1016/j.asr.2015.03.023], from the activities related to the United Nations (UN) Committee on the Peaceful Uses of Outer Space (COPUOS) actions in relation to the Long-term Sustainability of Outer Space (LTS), and most recently from the newly formed and ongoing efforts of the UN COPUOS Expert Group on Space Weather.
The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.
2011-01-01
ER D C TR -0 6- 10 , S up pl em en t 2 Building Information Modeling ( BIM ) Roadmap Supplement 2 – BIM Implementation Plan for Military...release; distribution is unlimited. ERDC TR-06-10, Supplement 2 January 2011 Building Information Modeling ( BIM ) Roadmap Supplement 2 – BIM ...ERDC TR-06-10, Supplement 2 (January 2011) 2 Abstract: Building Information Modeling ( BIM ) technology provides the communities of practice in
Biogas Opportunities Roadmap Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
In support of the Obama Administration's Climate Action Plan, the U.S. Department of Energy, the U.S. Environmental Protection Agency, and U.S. Department of Agriculture jointly released the Biogas Opportunities Roadmap Progress Report, updating the federal government's progress to reduce methane emissions through biogas systems since the Biogas Opportunities Roadmap was completed by the three agencies in July 2014. The report highlights actions taken, outlines challenges and opportunities, and identifies next steps to the growth of a robust biogas industry.
A European Roadmap for Thermophysical Properties Metrology
NASA Astrophysics Data System (ADS)
Filtz, J.-R.; Wu, J.; Stacey, C.; Hollandt, J.; Monte, C.; Hay, B.; Hameury, J.; Villamañan, M. A.; Thurzo-Andras, E.; Sarge, S.
2015-03-01
A roadmap for thermophysical properties metrology was developed in spring 2011 by the Thermophysical Properties Working Group in the EURAMET Technical Committee in charge of Thermometry, Humidity and Moisture, and Thermophysical Properties metrology. This roadmapping process is part of the EURAMET (European Association of National Metrology Institutes) activities aiming to increase impact from national investment in European metrology R&D. The roadmap shows a shared vision of how the development of thermophysical properties metrology should be oriented over the next 15 years to meet future social and economic needs. Since thermophysical properties metrology is a very broad and varied field, the authors have limited this roadmap to the following families of properties: thermal transport properties (thermal conductivity, thermal diffusivity, etc.), radiative properties (emissivity, absorbance, reflectance, and transmittance), caloric quantities (specific heat, enthalpy, etc.), thermodynamic properties (PVT and phase equilibria properties), and temperature-dependent quantities (thermal expansion, compressibility, etc.). This roadmap identifies the main societal and economical triggers that drive developments in thermophysical properties metrology. The key topics considered are energy, environment, advanced manufacturing and processing, public safety, security, and health. Key targets that require improved thermophysical properties measurements are identified in order to address these triggers. Ways are also proposed for defining the necessary skills and the main useful means to be implemented. These proposals will have to be revised as needs and technologies evolve in the future.
5.0 Aerodynamic and Propulsive Decelerator Systems
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Powell, Richard; Masciarelli, James; Brown, Glenn; Witkowski, Al; Guernsey, Carl
2005-01-01
Contents include the following: Introduction. Capability Breakdown Structure. Decelerator Functions. Candidate Solutions. Performance and Technology. Capability State-of-the-Art. Performance Needs. Candidate Configurations. Possible Technology Roadmaps. Capability Roadmaps.
Germany's ECEC Workforce: A Difficult Path to Professionalisation
ERIC Educational Resources Information Center
Rauschenbach, Thomas; Riedel, Birgit
2016-01-01
In a European comparison, the childcare profession in Germany has taken a distinct path of development which is closely interwoven with the history of early childhood education and care (ECEC) in general. Institutional choices critical to this path are the assignment of childcare as part of social welfare, the pursuit of a maternalist tradition in…
NASA Astrophysics Data System (ADS)
Rubinsztein-Dunlop, Halina; Forbes, Andrew; Berry, M. V.; Dennis, M. R.; Andrews, David L.; Mansuripur, Masud; Denz, Cornelia; Alpmann, Christina; Banzer, Peter; Bauer, Thomas; Karimi, Ebrahim; Marrucci, Lorenzo; Padgett, Miles; Ritsch-Marte, Monika; Litchinitser, Natalia M.; Bigelow, Nicholas P.; Rosales-Guzmán, C.; Belmonte, A.; Torres, J. P.; Neely, Tyler W.; Baker, Mark; Gordon, Reuven; Stilgoe, Alexander B.; Romero, Jacquiline; White, Andrew G.; Fickler, Robert; Willner, Alan E.; Xie, Guodong; McMorran, Benjamin; Weiner, Andrew M.
2017-01-01
Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Phil; Feinberg, Lee
2006-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
ILEWG technology roadmap for Moon exploration
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
2008-04-01
We discuss the charter and activities of the International Lunar Exploration Working Group (ILEWG), and give an update from the related ILEWG task groups. We discuss the different rationale and technology roadmap for Moon exploration, as debated in previous ILEWG conferences. The Technology rationale includes: 1) The advancement of instrumentation: 2) Technologies in robotic and human exploration 3) Moon-Mars Exploration can inspire solutions to global Earth sustained development. We finally discuss a possible roadmap for development of technologies necessary for Moon and Mars exploration.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Feinberg, Lee
2007-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Roadmap to Long-Term Monitoring Optimization
This roadmap focuses on optimization of established long-term monitoring programs for groundwater. Tools and techniques discussed concentrate on methods for optimizing the monitoring frequency and spatial (three-dimensional) distribution of wells ...
These Roadmaps identify scientific gaps that inform the National Research Programs in the development of their Strategic Research Action Plans. EPA expects to use this approach to integrate existing research efforts and to identify needed work.
An Interim Report on NASA's Draft Space Technology Roadmaps
NASA Technical Reports Server (NTRS)
2011-01-01
NASA has developed a set of 14 draft roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist (OCT). Each of these roadmaps focuses on a particular technology area (TA). The roadmaps are intended to foster the development of advanced technologies and concepts that address NASA's needs and contribute to other aerospace and national needs. OCT requested that the National Research Council conduct a study to review the draft roadmaps, gather and assess relevant community input, and make recommendations and suggest priorities to inform NASA's decisions as it finalizes its roadmaps. The statement of task states that "based on the results of the community input and its own deliberations, the steering committee will prepare a brief interim report that addresses high-level issues associated with the roadmaps, such as the advisability of modifying the number or technical focus of the draft NASA roadmaps." This interim report, which does not include formal recommendations, addresses that one element of the study charge. NASA requested this interim report so that it would have the opportunity to make an early start in modifying the draft roadmaps based on feedback from the panels and steering committee. The final report will address all other tasks in the statement of task. In particular, the final report will include a prioritization of technologies, will describe in detail the prioritization process and criteria, and will include specific recommendations on a variety of topics, including many of the topics mentioned in this interim report. In developing both this interim report and the final report to come, the steering committee draws on the work of six study panels organized by technical area, loosely following the organization of the 14 roadmaps, as follows: A Panel 1: Propulsion and Power TA01 Launch Propulsion Systems TA02 In-Space Propulsion Technologies TA03 Space Power and Energy Storage Systems TA13 Ground and Launch Systems Processing B Panel 2: Robotics, Communications, and Navigation TA04 Robotics, TeleRobotics, and Autonomous Systems TA05 Communication and Navigation Systems C Panel 3: Instruments and Computing TA08 Science Instruments, Observatories, and Sensor Systems TA11 Modeling, Simulation, Information Technology, and Data Processing D Panel 4: Human Health and Surface Exploration TA06 Human Health, Life Support, and Habitation Systems TA07 Human Exploration Destination Systems E Panel 5: Materials Panel TA10 Nanotechnology TA12 Materials, Structures, Mechanical Systems, and Manufacturing TA14 Thermal Management Systems F Panel 6: Entry, Descent, and Landing Panel TA09 Entry, Descent, and Landing Systems In addition to drawing on the expertise represented on the steering committee and panels, the committee obtained input from each of 14 public workshops held on each of the 14 roadmaps. At these 1-day workshops, invited speakers, guests, and members of the public engaged in discussions on the different technology areas and their value to NASA. Broad community input was also solicited from a public website, where more than 240 public comments were received on the draft roadmaps in response to application of criteria (such as benefit, risk and reasonableness, and alignment with NASA and national goals) that the steering committee established. This interim report reflects the results of deliberations by the steering committee in light of these public inputs as well as additional inputs from the six panels. The steering committee's final report will be completed early in 2012. That report will prioritize the technologies that span the entire scope of the 14 roadmaps and provide additional guidance on crosscutting themes and other relevant topics.
Roadmap for Agriculture Biomass Feedstock Supply in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Richard Hess; Thomas D. Foust; Reed Hoskinson
2003-11-01
The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the researchmore » and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.« less
González-Pier, Eduardo; Barraza-Lloréns, Mariana; Beyeler, Naomi; Jamison, Dean; Knaul, Felicia; Lozano, Rafael; Yamey, Gavin; Sepúlveda, Jaime
2016-10-01
The United Nations Sustainable Development Goal for health (SDG3) poses complex challenges for signatory countries that will require clear roadmaps to set priorities over the next 15 years. Building upon the work of the Commission on Investing in Health and published estimates of feasible global mortality SDG3 targets, we analysed Mexico's mortality to assess the feasibility of reducing premature (0-69 years) mortality and propose a path to meet SDG3. We developed a baseline scenario applying 2010 age-specific and cause-specific mortality rates from the Mexican National Institute of Statistics and Geography (INEGI) to the 2030 UN Population Division (UNPD) population projections. In a second scenario, INEGI age-specific and cause-specific trends in death rates from 2000 to 2014 were projected to 2030 and adjusted to match the UNPD 2030 mortality projections. A third scenario assumed a 40% reduction in premature deaths across all ages and causes. By comparing these scenarios we quantified shortfalls in mortality reductions by age group and cause, and forecasted life expectancy pathways for Mexico to converge to better performing countries. UNPD-projected death rates yield a 25·9% reduction of premature mortality for Mexico. Accelerated reductions in adult mortality are necessary to reach a 40% reduction by 2030. Mortality declines aggregated across all age groups mask uneven gains across health disorders. Injuries, particularly road traffic accidents and homicides, are the main health challenge for young adults (aged 20-49 years) whereas unabated diabetes mortality is the single most important health concern for older adults (aged 50-69 years). Urgent action is now required to control non-communicable diseases and reduce fatal injuries in Mexico, making a 40% reduction in premature mortality by 2030 feasible and putting Mexico back on a track of substantial life expectancy convergence with better performing countries. Our study provides a roadmap for setting national health priorities. Further analysis of the equity implications of following the suggested pathway remains a subject of future research. Mexico's Ministry of Health, University of California, San Francisco, and Bill & Melinda Gates Foundation. Copyright © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Van Dalsem, William; Krishnakumar, Kalmanje Srinivas
2016-01-01
This is a powerpoint presentation that highlights autonomy across the 15 NASA technology roadmaps, including specific examples of projects (past and present) at NASA Ames Research Center. The NASA technology roadmaps are located here: http:www.nasa.govofficesocthomeroadmapsindex.html
Development of the INEEL Site Wide Vadose Zone Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonk, Alan Keith
2001-09-01
The INEEL Vadose Zone Roadmap was developed to identify inadquacies in current knowledge, to assist in contaminant management capabilities relative to the INEEL vadose zone, and to ensure that ongoing and planned Science and Technology developments will meet the risk management challenges facing the INEEL in coming years. The primary objective of the Roadmap is to determine the S&T needs that will facilitate monitoring, characterization, prediction, and assessment activities necessary to support INEEL risk management decisions and to ensure that long-term stewardship of contaminated sites at the INEEL is achieved. The mission of the Roadmap is to insure that themore » long-term S&T strategy is aligned with site programs, that it takes advantage of progress made to date, and that it can assist in meeting the milestones and budgets of operations.« less
Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU)
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Romig, Kris A.; Larson, William E.; Johnson, Robert; Rapp, Don; Johnson, Ken R.; Sacksteder, Kurt; Linne, Diane; Curreri, Peter; Duke, Michael;
2005-01-01
On January 14, 2004, the President of the United States unveiled a new vision for robotic and human exploration of space entitled, "A Renewed Spirit of Discovery". As stated by the President in the Vision for Space Exploration (VSE), NASA must "... implement a sustained and affordable human and robotic program to explore the solar system and beyond " and ".. .develop new technologies and harness the moon's abundant resources to allow manned exploration of more challenging environments." A key to fulfilling the goal of sustained and affordable human and robotic exploration will be the ability to use resources that are available at the site of exploration to "live off the land" instead of bringing everything from Earth, known as In-Situ Resource Utilization (ISRU). ISRU can significantly reduce the mass, cost, and risk of exploration through capabilities such as: mission consumable production (propellants, fuel cell reagents, life support consumables, and feedstock for manufacturing & construction); surface construction (radiation shields, landing pads, walls, habitats, etc.); manufacturing and repair with in-situ resources (spare parts, wires, trusses, integrated systems etc.); and space utilities and power from space resources. On January 27th, 2004 the President's Commission on Implementation of U.S. Space Exploration Policy (Aldridge Committee) was created and its final report was released in June 2004. One of the report's recommendations was to establish special project teams to evaluate enabling technologies, of which "Planetary in situ resource utilization" was one of them. Based on the VSE and the commission's final report, NASA established fifteen Capability Roadmap teams, of which ISRU was one of the teams established. From Oct. 2004 to May 2005 the ISRU Capability Roadmap team examined the capabilities, benefits, architecture and mission implementation strategy, critical decisions, current state-of-the-art (SOA), challenges, technology gaps, and risks of ISRU for future human Moon and Mars exploration. This presentation will provide an overview of the ISRU capability, architecture, and implementation strategy examined by the ISRU Capability Roadmap team, along with a top-level review of ISRU benefits, resources and products of interest, and the current SOA in ISRU processes and systems. The presentation will also highlight the challenges of incorporating ISRU into future missions and the gaps in technologies and capabilities that need to be filled to enable ISRU.
A roadmap for acute care training of frontline Healthcare workers in LMICs.
Shah, Nirupa; Bhagwanjee, Satish; Diaz, Janet; Gopalan, P D; Appiah, John Adabie
2017-10-01
This 10-step roadmap outlines explicit procedures for developing, implementing and evaluating short focused training programs for acute care in low and middle income countries (LMICs). A roadmap is necessary to develop resilient training programs that achieve equivalent outcomes despite regional variability in human capacity and infrastructure. Programs based on the roadmap should address shortfalls in human capacity and access to care in the short term and establish the ground work for health systems strengthening in the long term. The primary targets for acute care training are frontline healthcare workers at the clinic level. The programs will differ from others currently available with respect to the timelines, triage method, therapeutic interventions and potential for secondary prevention. The roadmap encompasses multiple iterative cycles of the Plan-Do-Study-Act framework. Core features are integration of frontline trainees with the referral system while promoting research, quality improvement and evaluation from the bottom-up. Training programs must be evidence based, developed along action timelines and use adaptive training methods. A systems approach is essential because training programs that take cognizance of all factors that influence health care delivery have the potential to produce health systems strengthening (HSS). Copyright © 2017 Elsevier Inc. All rights reserved.
Lunar Surface Systems Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony;
2011-01-01
The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.
Technology Roadmaps for Compound Semiconductors
Bennett, Herbert S.
2000-01-01
The roles cited for compound semiconductors in public versions of existing technology roadmaps from the National Electronics Manufacturing Initiative, Inc., Optoelectronics Industry Development Association, Microelectronics Advanced Research Initiative on Optoelectronic Interconnects, and Optoelectronics Industry and Technology Development Association (OITDA) are discussed and compared within the context of trends in the Si CMOS industry. In particular, the extent to which these technology roadmaps treat compound semiconductors at the materials processing and device levels will be presented for specific applications. For example, OITDA’s Optical Communications Technology Roadmap directly connects the information demand of delivering 100 Mbit/s to the home to the requirement of producing 200 GHz heterojunction bipolar transistors with 30 nm bases and InP high electron mobility transistors with 100 nm gates. Some general actions for progress towards the proposed International Technology Roadmap for Compound Semiconductors (ITRCS) and methods for determining the value of an ITRCS will be suggested. But, in the final analysis, the value added by an ITRCS will depend on how industry leaders respond. The technical challenges and economic opportunities of delivering high quality digital video to consumers provide concrete examples of where the above actions and methods could be applied. PMID:27551615
OBPR Free Flyer draft roadmap overview
NASA Technical Reports Server (NTRS)
Israelsson, Ulf
2005-01-01
OBPR Free Flyer Roadmap Purpose is to describe the OBPR research which is enabled by a free flying spacecraft capability To illustrate how research performed on free flying spacecrafts complement current and planned OBPR ISS activities.
Cyber S&T Priority Steering Council Research Roadmap
2011-11-08
Priority Steering Council Research Roadmap for the National Defense Industrial Association Disruptive Technologies Conference 8 November 2011...AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the NDIA Disruptive Technologies Conference
INTEGRATED ENVIRONMENTAL STRATEGIES HANDBOOK
Chapter 1: Introduction, Background, Roadmap: History and motivation behind IES, historical background, where the program is going, roadmap (brief paragraphs explaining content of each chapter and possibly the audience sector who will benefit from reading the chapter). Chapt...
Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Antonsson, Erik; Gombosi, Tamas
2005-01-01
Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.
Teaching as a Political Act: Critical Pedagogy in Library Instruction
ERIC Educational Resources Information Center
Fritch, Melia Erin
2018-01-01
This article establishes a theoretical framework for critical library instruction (and thereby critical information literacy) that is built upon critical feminist theory, critical race theory, and engaged pedagogy, among others. Using the ideas and work of theorists to create a path linking the ideas of critical analyses together, the author…
Europe Unveils 20-Year Plan for Brilliant Future in Astronomy
NASA Astrophysics Data System (ADS)
2008-11-01
Astronomy is enjoying a golden age of fundamental, exciting discoveries. Europe is at the forefront, thanks to 50 years of progress in cooperation. To remain ahead over the next two to three decades, Europe must prioritise and coordinate the investment of its financial and human resources even more closely. The ASTRONET network, backed by the entire European scientific community, supported by the European Commission, and coordinated by the CNRS, today presents its Roadmap for a brilliant future for European astronomy. ESO's European Extremely Large Telescope is ranked as one of two top-priority large ground-based projects. Astronet and the E-ELT ESO PR Photo 43a/08 The E-ELT Europe is a leader in astronomy today, with the world's most successful optical observatory, ESO's Very Large Telescope, and cutting-edge facilities in radio astronomy and in space. In an unprecedented effort demonstrating the potential of European scientific cooperation, all of European astronomy is now joining forces to define the scientific challenges for the future and construct a common plan to address them in a cost-effective manner. In 2007, a top-level Science Vision was prepared to assess the most burning scientific questions over the next quarter century, ranging from dark energy to life on other planets. European astronomy now presents its Infrastructure Roadmap, a comprehensive 20-year plan to coordinate national and community investments to meet these challenges in a cost-effective manner. The Roadmap not only prioritises the necessary new frontline research facilities from radio telescopes to planetary probes, in space and on the ground, but also considers such key issues as existing facilities, human resources, ICT infrastructure, education and outreach, and cost -- of operations as well as construction. This bold new initiative -- ASTRONET -- was created by the major European funding agencies with support from the European Commission and is coordinated by the National Institute for Earth Sciences and Astronomy (INSU) of the CNRS. To build consensus on priorities in a very diverse community, the Science Vision and Roadmap were developed in an open process involving intensive interaction with the community through large open meetings and feedback via e-mail and the web. The result is a plan now backed by astronomers in 28 Member and Associated States of the EU, with over 500 million inhabitants. Over 60 selected experts from across Europe contributed to the construction of the ASTRONET Roadmap, ensuring that European astronomy has the tools to compete successfully in answering the challenges of the Science Vision. They identified and prioritised a set of new facilities to observe the Universe from radio waves to gamma rays, to open up new ways of probing the cosmos, such as gravitational waves, and to advance in the exploration of our Solar System. In the process, they considered all the elements needed by a successful scientific enterprise, from global-scale cooperation on the largest mega-project to the need for training and recruiting skilled young scientists and engineers. One of two top-priority large ground-based projects is ESO's European Extremely Large Telescope. Its 42-metre diameter mirror will make the E-ELT the largest optical/near-infrared telescope in the world -- "the biggest eye on the sky". The science to be done with the E-ELT is extremely exciting and includes studies of exoplanets and discs, galaxy formation and dark energy. ESO Director General Tim de Zeeuw says: "The top ranking of the E-ELT in the Roadmap is a strong endorsement from the European astronomical community. This flagship project will indisputably raise the European scientific, technological and industrial profile". Among other recommendations, the Roadmap considers how to maximise the future scientific impact of existing facilities in a cost-effective manner. It also identifies a need for better access to state-of-the art computing and laboratory facilities, and for a stronger involvement of European high-tech industry in the development of future facilities. Moreover, success depends critically upon an adequate supply of qualified scientists, and of engineers in fields ranging from IT to optics. Finally, the Roadmap proposes a series of measures to enhance the public understanding of astronomy as a means to boost recruitment in science and technology in schools and universities across Europe. Europe currently spends approximately €2 billion a year on astronomy in the broadest sense. Implementing the ASTRONET Roadmap will require a funding increase of around 20% -- less than €1 per year per European citizen. Global cooperation will be needed -- and is being planned -- for several of the largest projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ardani, K.; Seif, D.; Margolis, R.
2013-08-01
The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).
Strategic Directions in Heliophysics Research Related to Weakly Ionized Plasmas
NASA Technical Reports Server (NTRS)
Spann, James F.
2010-01-01
In 2009, the Heliophysics Division of NASA published its triennial roadmap entitled "Heliophysics; the solar and space physics of a new era." In this document contains a science priority that is recommended that will serve as input into the recently initiated NRC Heliophysics Decadal Survey. The 2009 roadmap includes several science targets recommendations that are directly related to weakly ionized plasmas, including on entitled "Ion-Neutral Coupling in the Atmosphere." This talk will be a brief overview of the roadmap with particular focus on the science targets relevant to weakly ionized plasmas.
Developing Your Evaluation Plans: A Critical Component of Public Health Program Infrastructure.
Lavinghouze, S Rene; Snyder, Kimberly
A program's infrastructure is often cited as critical to public health success. The Component Model of Infrastructure (CMI) identifies evaluation as essential under the core component of engaged data. An evaluation plan is a written document that describes how to monitor and evaluate a program, as well as how to use evaluation results for program improvement and decision making. The evaluation plan clarifies how to describe what the program did, how it worked, and why outcomes matter. We use the Centers for Disease Control and Prevention's (CDC) "Framework for Program Evaluation in Public Health" as a guide for developing an evaluation plan. Just as using a roadmap facilitates progress on a long journey, a well-written evaluation plan can clarify the direction your evaluation takes and facilitate achievement of the evaluation's objectives.
Tran, Duy Phu; Pham, Thuy Thi Thanh; Wolfrum, Bernhard; Offenhäusser, Andreas; Thierry, Benjamin
2018-05-11
Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs' promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology.
EURO-CARES as Roadmap for a European Sample Curation Facility
NASA Astrophysics Data System (ADS)
Brucato, J. R.; Russell, S.; Smith, C.; Hutzler, A.; Meneghin, A.; Aléon, J.; Bennett, A.; Berthoud, L.; Bridges, J.; Debaille, V.; Ferrière, L.; Folco, L.; Foucher, F.; Franchi, I.; Gounelle, M.; Grady, M.; Leuko, S.; Longobardo, A.; Palomba, E.; Pottage, T.; Rettberg, P.; Vrublevskis, J.; Westall, F.; Zipfel, J.; Euro-Cares Team
2018-04-01
EURO-CARES is a three-year multinational project funded under the European Commission Horizon2020 research program to develop a roadmap for a European Extraterrestrial Sample Curation Facility for samples returned from solar system missions.
Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2006-04-01
The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.
Unmanned Aircraft Systems Roadmap 2005-2030
DOT National Transportation Integrated Search
2005-01-01
This document presents the Department of Defense's (DoD) roadmap for developing and employing unmanned aircraft systems over the next 25 years (2005 to 2030). It describes the missions identified by theater warfighters to which systems could be appli...
MAPSIT and a Roadmap for Lunar and Planetary Spatial Data Infrastructure
NASA Astrophysics Data System (ADS)
Radebaugh, J.; Archinal, B.; Beyer, R.; DellaGiustina, D.; Fassett, C.; Gaddis, L.; Hagerty, J.; Hare, T.; Laura, J.; Lawrence, S. J.; Mazarico, E.; Naß, A.; Patthoff, A.; Skinner, J.; Sutton, S.; Thomson, B. J.; Williams, D.
2017-10-01
We describe MAPSIT, and the development of a roadmap for lunar and planetary SDI, based on previous relevant documents and community input, and consider how to best advance lunar science, exploration, and commercial development.
EV Charging Infrastructure Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, Donald; Garetson, Thomas; Francfort, Jim
2016-08-01
As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumesmore » that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge« less
NASA Astrophysics Data System (ADS)
Stockman, Mark I.; Kneipp, Katrin; Bozhevolnyi, Sergey I.; Saha, Soham; Dutta, Aveek; Ndukaife, Justus; Kinsey, Nathaniel; Reddy, Harsha; Guler, Urcan; Shalaev, Vladimir M.; Boltasseva, Alexandra; Gholipour, Behrad; Krishnamoorthy, Harish N. S.; MacDonald, Kevin F.; Soci, Cesare; Zheludev, Nikolay I.; Savinov, Vassili; Singh, Ranjan; Groß, Petra; Lienau, Christoph; Vadai, Michal; Solomon, Michelle L.; Barton, David R., III; Lawrence, Mark; Dionne, Jennifer A.; Boriskina, Svetlana V.; Esteban, Ruben; Aizpurua, Javier; Zhang, Xiang; Yang, Sui; Wang, Danqing; Wang, Weijia; Odom, Teri W.; Accanto, Nicolò; de Roque, Pablo M.; Hancu, Ion M.; Piatkowski, Lukasz; van Hulst, Niek F.; Kling, Matthias F.
2018-04-01
Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons—elementary polar excitations bound to surfaces and interfaces of good nanostructured metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects, such as quantum plasmonics based on the quantum-mechanical properties of both the underlying materials and the plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists, as well as applied scientists and engineers.
The WHF Roadmap for Reducing CV Morbidity and Mortality Through Prevention and Control of RHD.
Palafox, Benjamin; Mocumbi, Ana Olga; Kumar, R Krishna; Ali, Sulafa K M; Kennedy, Elizabeth; Haileamlak, Abraham; Watkins, David; Petricca, Kadia; Wyber, Rosemary; Timeon, Patrick; Mwangi, Jeremiah
2017-03-01
Rheumatic heart disease (RHD) is a preventable non-communicable condition that disproportionately affects the world's poorest and most vulnerable. The World Heart Federation Roadmap for improved RHD control is a resource designed to help a variety of stakeholders raise the profile of RHD nationally and globally, and provide a framework to guide and support the strengthening of national, regional and global RHD control efforts. The Roadmap identifies the barriers that limit access to and uptake of proven interventions for the prevention and control of RHD. It also highlights a variety of established and promising solutions that may be used to overcome these barriers. As a general guide, the Roadmap is meant to serve as the foundation for the development of tailored plans of action to improve RHD control in specific contexts. Copyright © 2016 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.
NASA's Launch Propulsion Systems Technology Roadmap
NASA Technical Reports Server (NTRS)
McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.
2012-01-01
Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.
1975-06-01
ORGANIZATION NAME AND ADDRESS Carnegie-Mellon University Computer Science Dept Pittsburgh, Pa 15213 II. CONTROLLING OFFICE NAMF AND ADDRESS...programmer. Example 1. A communciation between two procasses is initiated by declaring a buffer which can hold a message whose interpretation is Known...words, the functions named in a path are automatically embedded in a critical region specific for that path.) The computation of the next state in
2016-01-01
accomplish a patch- management mission while securing a critical path. As a first proof of concept a simulation with a network of 10 nodes and 4...software-agility walk of the “PERFORMANCE Each Threat Managed ” tree is slightly more complex than the network -agility walk. The original design of the...CyFiA was tested to accomplish a patch- management mission while securing a critical path. As a first proof of concept a simulation with a network of 10
The effects of narrow and elevated path walking on aperture crossing.
Hackney, Amy L; Cinelli, Michael E; Denomme, Luke T; Frank, James S
2015-06-01
The study investigated the impact that action capabilities have on identifying possibilities for action, particularly how postural threat influences the passability of apertures. To do this, the ability to maintain balance was challenged by manipulating the level of postural threat while walking. First, participants walked along a 7m path and passed through two vertical obstacles spaced 1.1-1.5×the shoulder width apart during normal walking. Next, postural threat was manipulated by having participants complete the task either walking on a narrow, ground level path or on an elevated/narrow path. Despite a decrease in walking speed as well as an increase in trunk sway in both the narrow and elevated/narrow walking conditions, the passability of apertures was only affected when the consequence of instability was greatest. In the elevated/narrow walking condition, individuals maintained a larger critical point (rotated their shoulders for larger aperture widths) compared to normal walking. However, this effect was not observed for the narrow path walking suggesting that the level of postural threat was not enough to impose similar changes to the critical point. Therefore, it appears that manipulating action capabilities by increasing postural threat does indeed influence aperture crossing behavior, however the consequence associated with instability must be high before both gait characteristics and the critical point are affected. Copyright © 2015 Elsevier B.V. All rights reserved.
An Evolved International Lunar Decade Global Exploration Roadmap
NASA Astrophysics Data System (ADS)
Dunlop, D.; Holder, K.
2015-10-01
An Evolved Global Exploration Roadmap (GER) reflecting a proposed International Lunar Decade is presented by an NSS chapter to address many of the omissions and new prospective commercial mission developments since the 2013 edition of the ISECG GER.
Saleh, Shadi S; Alameddine, Mohamad S; Natafgi, Nabil M; Mataria, Awad; Sabri, Belgacem; Nasher, Jamal; Zeiton, Moez; Ahmad, Shaimaa; Siddiqi, Sameen
2014-01-25
The constitutions of many countries in the Arab world clearly highlight the role of governments in guaranteeing provision of health care as a right for all citizens. However, citizens still have inequitable health-care systems. One component of such inequity relates to restricted financial access to health-care services. The recent uprisings in the Arab world, commonly referred to as the Arab spring, created a sociopolitical momentum that should be used to achieve universal health coverage (UHC). At present, many countries of the Arab spring are considering health coverage as a priority in dialogues for new constitutions and national policy agendas. UHC is also the focus of advocacy campaigns of a number of non-governmental organisations and media outlets. As part of the health in the Arab world Series in The Lancet, this report has three overarching objectives. First, we present selected experiences of other countries that had similar social and political changes, and how these events affected their path towards UHC. Second, we present a brief overview of the development of health-care systems in the Arab world with regard to health-care coverage and financing, with a focus on Egypt, Libya, Tunisia, and Yemen. Third, we aim to integrate historical lessons with present contexts in a roadmap for action that addresses the challenges and opportunities for progression towards UHC. Copyright © 2014 Elsevier Ltd. All rights reserved.
ExMC Work Prioritization Process
NASA Technical Reports Server (NTRS)
Simon, Matthew
2015-01-01
Last year, NASA's Human Research Program (HRP) introduced the concept of a "Path to Risk Reduction" (PRR), which will provide a roadmap that shows how the work being done within each HRP element can be mapped to reducing or closing exploration risks. Efforts are currently underway within the Exploration Medical Capability (ExMC) Element to develop a structured, repeatable process for prioritizing work utilizing decision analysis techniques and risk estimation tools. The goal of this effort is to ensure that the work done within the element maximizes risk reduction for future exploration missions in a quantifiable way and better aligns with the intent and content of the Path to Risk Reduction. The Integrated Medical Model (IMM) will be used to identify those conditions that are major contributors of medical risk for a given design reference mission. For each of these conditions, potential prevention, screening, diagnosis, and treatment methods will be identified. ExMC will then aim to prioritize its potential investments in these mitigation methods based upon their potential for risk reduction and other factors such as vehicle performance impacts, near term schedule needs, duplication with external efforts, and cost. This presentation will describe the process developed to perform this prioritization and inform investment discussions in future element planning efforts. It will also provide an overview of the required input information, types of process participants, figures of merit, and the expected outputs of the process.
ERIC Educational Resources Information Center
Formica, Piero
2014-01-01
In this article Piero Formica examines the difference between incremental and revolutionary innovation, distinguishing between the constrained "path finders" and the unconstrained "path creators". He argues that an acceptance of "ignorance" and a willingness to venture into the unknown are critical elements in…
Cell Science and Cell Biology Research at MSFC: Summary
NASA Technical Reports Server (NTRS)
2003-01-01
The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.
Mars Surface Environmental Issues
NASA Technical Reports Server (NTRS)
Charles, John
2002-01-01
Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the health and safety of future human explorers.
Sides, Marian B; Vernikos, Joan; Convertino, Victor A; Stepanek, Jan; Tripp, Lloyd D; Draeger, Jorg; Hargens, Alan R; Kourtidou-Papadeli, Chrysoula; Pavy-LeTraon, Anne; Russomano, Thais; Wong, Julielynn Y; Buccello, Regina R; Lee, Peter H; Nangalia, Vishal; Saary, M Joan
2005-09-01
Long-duration space missions, as well as emerging civilian tourist space travel activities, prompted review and assessment of data available to date focusing on cardiovascular risk and available risk mitigation strategies. The goal was the creation of tools for risk priority assessments taking into account the probability of the occurrence of an adverse cardiovascular event and available and published literature from spaceflight data as well as available risk mitigation strategies. An international group of scientists convened in Bellagio, Italy, in 2004 under the auspices of the Aerospace Medical Association to review available literature for cardiac risks identified in the Bioastronautics Critical Path Roadmap (versions 2000, 2004). This effort led to the creation of a priority assessment framework to allow for an objective assessment of the hazard, probability of its occurrence, mission impact, and available risk mitigation measures. Spaceflight data are presented regarding evidence/ no evidence of cardiac dysrhythmias, cardiovascular disease, and cardiac function as well as orthostatic intolerance, exercise capacity, and peripheral resistance in presyncopal astronauts compared to non-presyncopal astronauts. Assessment of the priority of different countermeasures was achieved with a tabular framework with focus on probability of occurrence, mission impact, compliance, practicality, and effectiveness of countermeasures. Special operational settings and circumstances related to sensitive portions of any mission and the impact of environmental influences on mission effectiveness are addressed. The need for development of diagnostic tools, techniques, and countermeasure devices, food preparation, preservation technologies and medication, as well as an infrastructure to support these operations are stressed. Selected countermeasure options, including artificial gravity and pharmacological countermeasures need to be systematically evaluated and validated in flight, especially after long-duration exposures. Data need to be collected regarding the emerging field of suborbital and orbital civilian space travel, to allow for sound risk assessment.
The biopharmaceutics risk assessment roadmap for optimizing clinical drug product performance.
Selen, Arzu; Dickinson, Paul A; Müllertz, Anette; Crison, John R; Mistry, Hitesh B; Cruañes, Maria T; Martinez, Marilyn N; Lennernäs, Hans; Wigal, Tim L; Swinney, David C; Polli, James E; Serajuddin, Abu T M; Cook, Jack A; Dressman, Jennifer B
2014-11-01
The biopharmaceutics risk assessment roadmap (BioRAM) optimizes drug product development and performance by using therapy-driven target drug delivery profiles as a framework to achieve the desired therapeutic outcome. Hence, clinical relevance is directly built into early formulation development. Biopharmaceutics tools are used to identify and address potential challenges to optimize the drug product for patient benefit. For illustration, BioRAM is applied to four relatively common therapy-driven drug delivery scenarios: rapid therapeutic onset, multiphasic delivery, delayed therapeutic onset, and maintenance of target exposure. BioRAM considers the therapeutic target with the drug substance characteristics and enables collection of critical knowledge for development of a dosage form that can perform consistently for meeting the patient's needs. Accordingly, the key factors are identified and in vitro, in vivo, and in silico modeling and simulation techniques are used to elucidate the optimal drug delivery rate and pattern. BioRAM enables (1) feasibility assessment for the dosage form, (2) development and conduct of appropriate "learning and confirming" studies, (3) transparency in decision-making, (4) assurance of drug product quality during lifecycle management, and (5) development of robust linkages between the desired clinical outcome and the necessary product quality attributes for inclusion in the quality target product profile. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
An ontology of and roadmap for mHealth research.
Cameron, Joshua D; Ramaprasad, Arkalgud; Syn, Thant
2017-04-01
Mobile health or mHealth research has been growing exponentially in recent years. However, the research on mHealth has been ad-hoc and selective without a clear definition of the mHealth domain. Without a roadmap for research we may not realize the full potential of mHealth. In this paper, we present an ontological framework to define the mHealth domain and illuminate a roadmap. We present an ontology of mHealth. The ontology is developed by systematically deconstructing the domain into its primary dimensions and elements. We map the extent research on mHealth in 2014 onto the ontology and highlight the bright, light, and blind/blank spots which represent the emphasis of mHealth research. The emphases of mHealth research in 2014 are very uneven. There are a few bright spots and many light spots. The research predominantly focuses on individuals' use of mobile devices and applications to capture or obtain health-related data mostly to improve quality of care through mobile intervention. We argue that the emphases can be balanced in the roadmap for mHealth research. The ontological mapping plays an integral role in developing and maintaining the roadmap which can be updated periodically to continuously assess and guide mHealth research. Copyright © 2017 Elsevier B.V. All rights reserved.
The Critical Path Institute's approach to precompetitive sharing and advancing regulatory science.
Woosley, R L; Myers, R T; Goodsaid, F
2010-05-01
Many successful large industries, such as computer-chip manufacturers, the cable television industry, and high-definition television developers,(1) have established successful precompetitive collaborations focusing on standards, applied science, and technology that advance the field for all stakeholders and benefit the public.(2) The pharmaceutical industry, however, has a well-earned reputation for fierce competition and did not demonstrate willingness to share data or knowledge until the US Food and Drug Administration (FDA) launched the Critical Path Initiative in 2004 (ref. 3).
EPA Nitrogen and Co-Pollutant Roadmap
Cross-media, integrated, multi-disciplinary approach to sustainably manage reactive nitrogen and co-pollutant loadings to air and water to reduce adverse impacts on the environment and human health. The goal of the Roadmap is to develop a common understanding of the Agency's rese...
NASA Technical Reports Server (NTRS)
2012-01-01
Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.
2009-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.
2011-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program.
National Rocket Propulsion Materials Plan: A NASA, Department of Defense, and Industry Partnership
NASA Technical Reports Server (NTRS)
Clinton, Raymond G., Jr.; Munafo, Paul M. (Technical Monitor)
2001-01-01
NASA, Department of Defense, and rocket propulsion industry representatives are working together to create a national rocket propulsion materials development roadmap. This "living document" will facilitate collaboration among the partners, leveraging of resources, and will be a highly effective tool for technology development planning. The structuring of the roadmap, and development plan, which will combine the significant efforts of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Program, and NASA's Integrated Space Transportation Plan (ISTP), is being lead by the IHPRPT Materials Working Group (IMWG). The IHPRPT Program is a joint DoD, NASA, and industry effort to dramatically improve the nation's rocket propulsion capabilities. This phased program is structured with increasingly challenging goals focused on performance, reliability, and cost to effectively double rocket propulsion capabilities by 2010. The IHPRPT program is focused on three propulsion application areas: Boost and Orbit Transfer (both liquid rocket engines and solid rocket motors), Tactical, and Spacecraft. Critical to the success of this initiative is the development and application of advanced materials, processes, and manufacturing technologies. NASA's ISTP is a comprehensive strategy focusing on the aggressive safety, reliability, and affordability goals for future space transportation systems established by the agency. Key elements of this plan are the 2 nd and 3 d Generation Reusable Launch Vehicles (RLV). The affordability and safety goals of these generational systems are, respectively, 10X cheaper and 100X safer by 2010, and 100X cheaper and 10,000X safer by 2025. Accomplishment of these goals requires dramatic and sustained breakthroughs, particularly in the development and the application of advanced material systems. The presentation will provide an overview of the IHPRPT materials initiatives, NASA's 2nd and 3 rd Generation RLV propulsion materials projects, and the approach for the development of the national rocket propulsion materials roadmap.
Paving the critical path: how can clinical pharmacology help achieve the vision?
Lesko, L J
2007-02-01
It has been almost 3 years since the launch of the FDA critical path initiative following the publication of the paper "Innovation or Stagnation: Challenges and Opportunities on the Critical Path of New Medical Product Development." The initiative was intended to create an urgency with the drug development enterprise to address the so-called "productivity problem" in modern drug development. Clinical pharmacologists are strategically aligned with solutions designed to reduce late phase clinical trial failures to show adequate efficacy and/or safety. This article reviews some of the ways that clinical pharmacologists can lead and implement change in the drug development process. It includes a discussion of model-based, semi-mechanistic drug development, drug/disease models that facilitate informed clinical trial designs and optimal dosing, the qualification process and criteria for new biomarkers and surrogate endpoints, approaches to streamlining clinical trials and new types of interaction between industry and FDA such as the end-of-phase 2A and voluntary genomic data submission meetings respectively.
NASA Technical Reports Server (NTRS)
Moore, Alan; Evetts, Simon; Feiveson, Alan; Lee, Stuart; McCleary, Frank; Platts, Steven
2009-01-01
NASA's Human Research Program Integrated Research Plan (HRP-47065) serves as a road-map identifying critically needed information for future space flight operations (Lunar, Martian). VO2max (often termed aerobic capacity) reflects the maximum rate at which oxygen can be taken up and utilized by the body during exercise. Lack of in-flight and immediate postflight VO2max measurements was one area identified as a concern. The risk associated with not knowing this information is: Unnecessary Operational Limitations due to Inaccurate Assessment of Cardiovascular Performance (HRP-47065).
ATAC Process Proof of Concept Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bri Rolston; Sarah Freeman
Researchers at INL with funding from the Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) evaluated a novel approach for near real-time consumption of threat intelligence. Demonstration testing in an industry environment supported the development of this new process to assist the electric sector in securing their critical networks. This report provides the reader with an understanding of the methods used during this proof of concept project. The processes and templates were further advanced with an industry partner during an onsite assessment. This report concludes with lessons learned and a roadmap for final development of these materialsmore » for use by industry.« less
Clinical approach to Parkinson's disease: features, diagnosis, and principles of management.
Massano, João; Bhatia, Kailash P
2012-06-01
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The condition causes a heavy burden both on those affected, as well as their families. Accurate diagnosis is critical and remains founded on clinical grounds as no specific diagnostic test is available so far. The clinical picture of PD is typical in many instances; however, features distinguishing it from other disorders should be thoroughly sought. Monogenic forms of PD also have some distinctive characteristics in many cases. This text is a roadmap to accurate diagnosis in PD, as it approaches clinical features, diagnostic methodology, and leading differential diagnoses. Therapeutic issues are also briefly discussed.
Damage Detection Sensor System for Aerospace and Multiple Applications
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy L.; Lane, John; Medelius, Pedro
2017-01-01
NASA has identified structural health monitoring and damage detection and verification as critical needs in multiple technology roadmaps. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The damage detection system has been successfully demonstrated in a harsh environment and remote integration tested over 1000 miles apart. Multiple applications includes: Spacecraft and Aircraft; Inflatable, Deployable and Expandable Structures; Space Debris Monitoring; Space Habitats; Military Shelters; Solar Arrays, Smart Garments and Wearables, Extravehicular activity (EVA) suits; Critical Hardware Enclosures; Embedded Composite Structures; and Flexible Hybrid Printed Electronics and Systems. For better implementation and infusion into more flexible architectures, important and improved designs in advancing embedded software and GUI interface, and increasing flexibility, modularity, and configurable capabilities of the system are currently being carried out.
Wolfrum, Bernhard; Thierry, Benjamin
2018-01-01
Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs’ promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology. PMID:29751688
Synthesis-Spectroscopy Roadmap Problems: Discovering Organic Chemistry
ERIC Educational Resources Information Center
Kurth, Laurie L.; Kurth, Mark J.
2014-01-01
Organic chemistry problems that interrelate and integrate synthesis with spectroscopy are presented. These synthesis-spectroscopy roadmap (SSR) problems uniquely engage second-year undergraduate organic chemistry students in the personal discovery of organic chemistry. SSR problems counter the memorize-or-bust strategy that many students tend to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, Eric J.; Mone, Christopher D.; DeMeo, Edgar
IIn March 2015, the U.S. Department of Energy (DOE) released Wind Vision: A New Era for Wind Power in the United States (DOE 2015), which explores a scenario in which wind provides 10 percent of U.S. electricity in 2020, 20 percent in 2030, and 35 percent in 2050. The Wind Vision report also includes a roadmap of recommended actions aimed at pursuit of the vision and its underlying wind-deployment scenario. The roadmap was compiled by the Wind Vision project team, which included representatives from the industrial, electric-power, government-laboratory, academic, environmental-stewardship, regulatory, and permitting stakeholder groups. The roadmap describes high-level activitiesmore » suitable for all sectors with a stake in wind power and energy development. It is intended to be a 'living document,' and DOE expects to engage the wind community from time to time to track progress.« less
The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025
NASA Astrophysics Data System (ADS)
Fellous, Jean-Louis
2016-07-01
The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international cooperation.
Clinical care paths: a role for finance in clinical decision-making.
Abrams, Michael N; Cummings, Simone; Hage, Dana
2012-12-01
Care paths map the critical actions and decision points across a patient's course of medical treatment; their purpose is to guide physicians in the delivery of high-quality care while reducing care costs by avoiding services that do not contribute meaningfully to positive outcomes. Each care path development initiative should be led by a respected physician champion, whose specialty is in the area of the care episode being mapped, with the support of a clinician project manager. Once the care path has been developed and implemented, the finance leader's role begins in earnest with the tracking of financial and clinical data against care paths.
Thomson, Nicholas; Riley, Diane; Bergenstrom, Anne; Carpenter, Jenae; Zelitchenko, Alex
2016-01-01
Between September 2012 and December 2015, a series of national and regional consultations, aimed at resolving a persistent dynamic of conflict between law enforcement agencies (LEAs) and civil society organizations (CSOs) working on issues of access to HIV services in high-priority countries for people who use drugs have been organized by the HIV/AIDS Section of the United Nations Office on Drugs and Crime, the Joint United Nations Programme on HIV/AIDS, the Law Enforcement and HIV Network (LEAHN) and other international organizations. The aim of these consultations has been to understand, at a national and regional level, the key points of tension between police and CSOs and how to overcome these tensions to enhance access to and uptake of services by key populations, including people who inject drugs, sex workers, men who have sex with men and transgenders. This commentary briefly describes the methods, process, content and key outcomes of these consultations held across diverse number of countries and regions, including Africa, South East Asia, South Asia, Central Asia, Eastern Europe and Latin America. While the context varies, this paper highlights that there are commonalities that drive a persistent dynamic of conflict and therefore also common methods for resolution of conflict and forging partnerships. Both policing and CSOs have key sectoral responsibilities and reform agendas to implement to ensure that as an individual agency they are able to meet their obligations as partners in the HIV response. Using the key outcomes of discussions and recommendations from these consultations and drawing on existing literature, the objective of this paper is to present a preliminary model that roadmaps the critical path from resolution of conflict to partnership between LEAs and CSOs. This paper seeks to highlight that critical resources are required to support ongoing development and harnessing of partnerships between LEAs and CSOs and argues that these resources should not just come from global HIV funding mechanisms but should be part of a more mainstreamed security sector reform agenda that understands the mutual benefits that programming for human rights-based policing reform would have on HIV, development and security.
Thomson, Nicholas; Riley, Diane; Bergenstrom, Anne; Carpenter, Jenae; Zelitchenko, Alex
2016-01-01
Introduction Between September 2012 and December 2015, a series of national and regional consultations, aimed at resolving a persistent dynamic of conflict between law enforcement agencies (LEAs) and civil society organizations (CSOs) working on issues of access to HIV services in high-priority countries for people who use drugs have been organized by the HIV/AIDS Section of the United Nations Office on Drugs and Crime, the Joint United Nations Programme on HIV/AIDS, the Law Enforcement and HIV Network (LEAHN) and other international organizations. The aim of these consultations has been to understand, at a national and regional level, the key points of tension between police and CSOs and how to overcome these tensions to enhance access to and uptake of services by key populations, including people who inject drugs, sex workers, men who have sex with men and transgenders. This commentary briefly describes the methods, process, content and key outcomes of these consultations held across diverse number of countries and regions, including Africa, South East Asia, South Asia, Central Asia, Eastern Europe and Latin America. Discussion While the context varies, this paper highlights that there are commonalities that drive a persistent dynamic of conflict and therefore also common methods for resolution of conflict and forging partnerships. Both policing and CSOs have key sectoral responsibilities and reform agendas to implement to ensure that as an individual agency they are able to meet their obligations as partners in the HIV response. Using the key outcomes of discussions and recommendations from these consultations and drawing on existing literature, the objective of this paper is to present a preliminary model that roadmaps the critical path from resolution of conflict to partnership between LEAs and CSOs. Conclusions This paper seeks to highlight that critical resources are required to support ongoing development and harnessing of partnerships between LEAs and CSOs and argues that these resources should not just come from global HIV funding mechanisms but should be part of a more mainstreamed security sector reform agenda that understands the mutual benefits that programming for human rights–based policing reform would have on HIV, development and security. PMID:27435718
Memory characteristics of ring-shaped ceramic superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeoka, A.; Hasunuma, M.; Sakaiya, S.
1989-03-01
For the practical application of ceramic superconductors, the authors investigated the residual magnetic field characteristics of ring-shaped ceramic superconductors in a Y-Ba-Cu-O system with high Tc. The residual magnetic field of a ring with asymmetric current paths, supplied by external currents, appeared when one of the branch currents was above the critical current. The residual magnetic field saturated when both brach currents exceeded the critical current of the ring and showed hysteresis-like characteristics. The saturated magnetic field is subject to the critical current of the ring. A superconducting ring with asymmetric current paths suggests a simple and quite new persistent-currentmore » type memory device.« less
76 FR 11308 - Aviation Noise Impacts Roadmap Annual Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... impacts. The purpose of the meeting is to update and advance our collective scientific knowledge of the... Aviation Administration (FAA), National Aeronautics and Space Administration (NASA), Department of Defense... knowledge gaps and future research activities. The intent of the Roadmap is to define systematic, focused...
The Risk Assessment in the 21st Century (RISK21): Roadmap and Matrix
The RISK21 integrated evaluation strategy is a problem formulation-based exposure-driven risk assessment roadmap that takes advantage of existing information to graphically represent the intersection of exposure and toxicity data on a highly visual matrix. This paper describes i...
Materials Technical Team Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2013-08-01
Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.
Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li
2016-01-01
A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.
Development of DEMO-FNS tokamak for fusion and hybrid technologies
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.
2015-07-01
The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.
ISU Team Project: An Integral View on Space Debris Mitigation and Removal
NASA Astrophysics Data System (ADS)
Maier, Philipp; Ricote Navarro, Carmon; Jehn, Rudiger; Gini, Andrea; Faure, Pauline; Adriaensen, Maarten; Datta, Iman; Hilbich, Daniel; Jacimovic, Aleksandar; Jacques, Lionel; Penent, Guilhem; Sinn, Thomas; Shioi, Hiroaki
2013-08-01
The issue of space debris poses challenges not only in technical, but also legal, political and economic dimensions. A sustainable solution needs to take into account all of them. This paper investigates such a potential solution in a multidisciplinary approach. To this end, it addresses the effectiveness of the existing debris mitigation guidelines, and identifies technical improvements for mitigation. It continues examining technical concepts for debris removal and performing proper cost-benefit trade-offs. The results of new simulations to assess the damage cost caused by space debris are presented. Based on these findings, an organizational framework and political recommendations are developed which will enable a sustainable use of space starting in 2020. The findings are compiled into a roadmap, which outlines 1) a path to the full adherence to debris mitigation guidelines and 2) the removal of ten large pieces of debris per year by a dedicated international organization, including expected expenditures necessary for its implementation.
A technology path to tactical agent-based modeling
NASA Astrophysics Data System (ADS)
James, Alex; Hanratty, Timothy P.
2017-05-01
Wargaming is a process of thinking through and visualizing events that could occur during a possible course of action. Over the past 200 years, wargaming has matured into a set of formalized processes. One area of growing interest is the application of agent-based modeling. Agent-based modeling and its additional supporting technologies has potential to introduce a third-generation wargaming capability to the Army, creating a positive overmatch decision-making capability. In its simplest form, agent-based modeling is a computational technique that helps the modeler understand and simulate how the "whole of a system" responds to change over time. It provides a decentralized method of looking at situations where individual agents are instantiated within an environment, interact with each other, and empowered to make their own decisions. However, this technology is not without its own risks and limitations. This paper explores a technology roadmap, identifying research topics that could realize agent-based modeling within a tactical wargaming context.
Three Critical Tasks America's Disadvantaged Face on Their Path to College.
ERIC Educational Resources Information Center
Cabrera, Alberto F.; La Nasa, Steven M.
2000-01-01
Using data from the National Educational Longitudinal Study of 1988, examines the wide disparity of college-choice activities between socioeconomic groups. In order to highlight this disparity, analyzes three tasks that all students must complete on their path to college. (Author/EV)
Sensors for process control Focus Team report
NASA Astrophysics Data System (ADS)
At the Semiconductor Technology Workshop, held in November 1992, the Semiconductor Industry Association (SIA) convened 179 semiconductor technology experts to assess the 15-year outlook for the semiconductor manufacturing industry. The output of the Workshop, a document entitled 'Semiconductor Technology: Workshop Working Group Reports,' contained an overall roadmap for the technology characteristics envisioned in integrated circuits (IC's) for the period 1992-2007. In addition, the document contained individual roadmaps for numerous key areas in IC manufacturing, such as film deposition, thermal processing, manufacturing systems, exposure technology, etc. The SIA Report did not contain a separate roadmap for contamination free manufacturing (CFM). A key component of CFM for the next 15 years is the use of sensors for (1) defect reduction, (2) improved product quality, (3) improved yield, (4) improved tool utilization through contamination reduction, and (5) real time process control in semiconductor fabrication. The objective of this Focus Team is to generate a Sensors for Process Control Roadmap. Implicit in this objective is the identification of gaps in current sensor technology so that research and development activity in the sensor industry can be stimulated to develop sensor systems capable of meeting the projected roadmap needs. Sensor performance features of interest include detection limit, specificity, sensitivity, ease of installation and maintenance, range, response time, accuracy, precision, ease and frequency of calibration, degree of automation, and adaptability to in-line process control applications.
Roadmap for In-Space Propulsion Technology
NASA Technical Reports Server (NTRS)
Meyer, Michael; Johnson, Les; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2012-01-01
NASA has created a roadmap for the development of advanced in-space propulsion technologies for the NASA Office of the Chief Technologist (OCT). This roadmap was drafted by a team of subject matter experts from within the Agency and then independently evaluated, integrated and prioritized by a National Research Council (NRC) panel. The roadmap describes a portfolio of in-space propulsion technologies that could meet future space science and exploration needs, and shows their traceability to potential future missions. Mission applications range from small satellites and robotic deep space exploration to space stations and human missions to Mars. Development of technologies within the area of in-space propulsion will result in technical solutions with improvements in thrust, specific impulse (Isp), power, specific mass (or specific power), volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability, durability, and of course, cost. These types of improvements will yield decreased transit times, increased payload mass, safer spacecraft, and decreased costs. In some instances, development of technologies within this area will result in mission-enabling breakthroughs that will revolutionize space exploration. There is no single propulsion technology that will benefit all missions or mission types. The requirements for in-space propulsion vary widely according to their intended application. This paper provides an updated summary of the In-Space Propulsion Systems technology area roadmap incorporating the recommendations of the NRC.
Stress path dependent hydromechanical behaviour of heterogeneous carbonate rock
NASA Astrophysics Data System (ADS)
Gland, N.; Dautriat, J.; Dimanov, A.; Raphanel, J.
2010-06-01
The influence of stress paths, representative of reservoir conditions, on the hydromechanical behavior of a moderately heterogeneous carbonate has been investigated. Multiscale structural heterogeneities, common for instance in carbonate rocks, can strongly alter the mechanical response and significantly influence the evolution of flow properties with stress. Using a triaxial cell, the permeability evolutions during compression and the effects of brittle (fracture) and plastic (pore collapse) deformations at yield, were measured. A strong scattering was observed on the mechanical response both in term of compressibility and failure threshold. Using the porosity scaling predicted by an adapted effective medium theory (based on crack growth under Hertzian contact), we have rescaled the critical pressures by the normalized porosity deviation. This procedure reduces efficiently the scattering, revealing in the framework of proportional stress path loading, a linear relation between the critical pressures and the stress path parameter through all the deformation regimes. It leads to a new formulation for the critical state envelope in the 'mean stress, deviatoric stress' diagram. The attractive feature of this new yield envelope formulation relies on the fact that only the two most common different mechanical tests 'Uniaxial Compression' and 'Hydrostatic Compression', are needed to define entirely the yield envelope. Volumic strains and normalized permeabilities are finally mapped in the stresses diagram and correlated.
Roadmap for Developing of Brokering as a Component of EarthCube
NASA Astrophysics Data System (ADS)
Pearlman, J.; Khalsa, S. S.; Browdy, S.; Duerr, R. E.; Nativi, S.; Parsons, M. A.; Pearlman, F.; Robinson, E. M.
2012-12-01
The goal of NSF's EarthCube is to create a sustainable infrastructure that enables the sharing of all geosciences data, information, and knowledge in an open, transparent and inclusive manner. Key to achieving the EarthCube vision is establishing a process that will guide the evolution of the infrastructure through community engagement and appropriate investment so that the infrastructure is embraced and utilized by the entire geosciences community. In this presentation we describe a roadmap, developed through the EarthCube Brokering Concept Award, for an evolutionary process of infrastructure and interoperability development. All geoscience communities already have, to a greater or lesser degree, elements of an information infrastructure in place. These elements include resources such as data archives, catalogs, and portals as well as vocabularies, data models, protocols, best practices and other community conventions. What is necessary now is a process for consolidating these diverse infrastructure elements into an overall infrastructure that provides easy discovery, access and utilization of resources across disciplinary boundaries. This process of consolidation will be achieved by creating "interfaces," what we call "brokers," between systems. Brokers connect disparate systems without imposing new burdens upon those systems, and enable the infrastructure to adjust to new technical developments and scientific requirements as they emerge. Robust cyberinfrastructure will arise only when social, organizational, and cultural issues are resolved in tandem with the creation of technology-based services. This is best done through use-case-driven requirements and agile, iterative development methods. It is important to start by solving real (not hypothetical) information access and use problems via small pilot projects that develop capabilities targeted to specific communities. These pilots can then grow into larger prototypes addressing intercommunity problems working towards a full-scale socio-technical infrastructure vision. Brokering, as a critical capability for connecting systems, evolves over time through more connections and increased functionality. This adaptive process allows for continual evaluation as to how well science-driven use cases are being met. Several NSF infrastructure projects are underway and beginning to shape the next generation of information sharing. There is a near term, and possibly unique, opportunity to increase the impact and interconnectivity of these projects, and further improve science research collaboration through brokering. Brokering has been demonstrated to be an essential part of a robust, adaptive infrastructure, but critical questions of governance and detailed implementation remain. Our roadmap proposes the expansion of brokering pilots into fully operational prototypes that work with the broader science and informatics communities to answer these questions, connect existing and emerging systems, and evolve the EarthCube infrastructure.
Finding Out Critical Points For Real-Time Path Planning
NASA Astrophysics Data System (ADS)
Chen, Wei
1989-03-01
Path planning for a mobile robot is a classic topic, but the path planning under real-time environment is a different issue. The system sources including sampling time, processing time, processes communicating time, and memory space are very limited for this type of application. This paper presents a method which abstracts the world representation from the sensory data and makes the decision as to which point will be a potentially critical point to span the world map by using incomplete knowledge about physical world and heuristic rule. Without any previous knowledge or map of the workspace, the robot will determine the world map by roving through the workspace. The computational complexity for building and searching such a map is not more than O( n2 ) The find-path problem is well-known in robotics. Given an object with an initial location and orientation, a goal location and orientation, and a set of obstacles located in space, the problem is to find a continuous path for the object from the initial position to the goal position which avoids collisions with obstacles along the way. There are a lot of methods to find a collision-free path in given environment. Techniques for solving this problem can be classified into three approaches: 1) the configuration space approach [1],[2],[3] which represents the polygonal obstacles by vertices in a graph. The idea is to determine those parts of the free space which a reference point of the moving object can occupy without colliding with any obstacles. A path is then found for the reference point through this truly free space. Dealing with rotations turns out to be a major difficulty with the approach, requiring complex geometric algorithms which are computationally expensive. 2) the direct representation of the free space using basic shape primitives such as convex polygons [4] and overlapping generalized cones [5]. 3) the combination of technique 1 and 2 [6] by which the space is divided into the primary convex region, overlap region and obstacle region, then obstacle boundaries with attribute values are represented by the vertices of the hypergraph. The primary convex region and overlap region are represented by hyperedges, the centroids of overlap form the critical points. The difficulty is generating segment graph and estimating of minimum path width. The all techniques mentioned above need previous knowledge about the world to make path planning and the computational cost is not low. They are not available in an unknow and uncertain environment. Due to limited system resources such as CPU time, memory size and knowledge about the special application in an intelligent system (such as mobile robot), it is necessary to use algorithms that provide the good decision which is feasible with the available resources in real time rather than the best answer that could be achieved in unlimited time with unlimited resources. A real-time path planner should meet following requirements: - Quickly abstract the representation of the world from the sensory data without any previous knowledge about the robot environment. - Easily update the world model to spell out the global-path map and to reflect changes in the robot environment. - Must make a decision of where the robot must go and which direction the range sensor should point to in real time with limited resources. The method presented here assumes that the data from range sensors has been processed by signal process unite. The path planner will guide the scan of range sensor, find critical points, make decision where the robot should go and which point is poten- tial critical point, generate the path map and monitor the robot moves to the given point. The program runs recursively until the goal is reached or the whole workspace is roved through.
Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC
NASA Technical Reports Server (NTRS)
2005-01-01
This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.
Roadmap for Navy Family Research.
1980-08-01
of methodological limitations, including: small, often non -representative or narrowly defined samples; inadequate statistical controls, inadequate...1-1 1.2 Overview of the Research Roadmap ..................... 1-2 2. Methodology ...the Office of Naval Research by the Westinghouse Public Applied Systems Division, and is designed to provide the Navy with a systematic framework for
DOT National Transportation Integrated Search
2001-08-01
This roadmap explains how your community can join forces with the nationwide network of Clean Cities to increase the use of alternative fuels and alternative fuel vehicles (AFVs). You will learn how the U.S. Department of Energy (DOE) can help your c...
Leveraging Our Expertise To Inform International RE Roadmaps | Energy
energy targets to support Mexico's renewable energy goal. NREL and its Mexico partners developed the institutions need to take to determine how the electricity infrastructure and systems must change to accommodate high levels of renewables. The roadmap focuses on analysis methodologies-including grid expansion
Human Health and Support Systems Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Grounds, Dennis; Boehm, Al
2005-01-01
The Human Health and Support Systems Capability Roadmap focuses on research and technology development and demonstration required to ensure the health, habitation, safety, and effectiveness of crews in and beyond low Earth orbit. It contains three distinct sub-capabilities: Human Health and Performance. Life Support and Habitats. Extra-Vehicular Activity.
Roadmap to Measuring Distance Education Instructional Design Competencies
ERIC Educational Resources Information Center
Dooley, Kim E.; Lindner, James R.; Telg, Ricky W.; Irani, Tracy; Moore, Lori; Lundy, Lisa
2007-01-01
This study was designed to measure instructional design competencies as a result of participation in a 9-month Web-based training program called "Roadmap to Effective Distance Education Instructional Design." The researchers used a self-assessment pre- and posttest to determine participant initial and final competence in 12 areas: adult…
Roadmapping towards Sustainability Proficiency in Engineering Education
ERIC Educational Resources Information Center
Rodriguez-Andara, Alejandro; Río-Belver, Rosa María; Rodríguez-Salvador, Marisela; Lezama-Nicolás, René
2018-01-01
Purpose: The purpose of this paper is to deliver a roadmap that displays pathways to develop sustainability skills in the engineering curricula. Design/methodology/approach: The selected approach to enrich engineering students with sustainability skills was active learning methodologies. First, a survey was carried out on a sample of 189 students…
Six Tips for Successful IEP Meetings
ERIC Educational Resources Information Center
Diliberto, Jennifer A.; Brewer, Denise
2012-01-01
Individuals with Disabilities Education Improvement Act (IDEIA, 2004) mandates that each student with a disability has an individualized education program (IEP). The IEP serves as the curriculum roadmap for special education services. In order to generate a clear roadmap, full team communication is necessary. The purpose of this paper is to…
An Imaging Roadmap for Biology Education: From Nanoparticles to Whole Organisms
ERIC Educational Resources Information Center
Kelley, Daniel J.; Davidson, Richard J.; Nelson, David L.
2008-01-01
Imaging techniques provide ways of knowing structure and function in biology at different scales. The multidisciplinary nature and rapid advancement of imaging sciences requires imaging education to begin early in the biology curriculum. Guided by the National Institutes of Health (NIH) Roadmap initiatives, we incorporated a nanoimaging, molecular…
Science Instruments and Sensors Capability Roadmap: NRC Dialogue
NASA Technical Reports Server (NTRS)
Barney, Rich; Zuber, Maria
2005-01-01
The Science Instruments and Sensors roadmaps include capabilities associated with the collection, detection, conversion, and processing of scientific data required to answer compelling science questions driven by the Vision for Space Exploration and The New Age of Exploration (NASA's Direction for 2005 & Beyond). Viewgraphs on these instruments and sensors are presented.
Review of the Semiconductor Industry and Technology Roadmap.
ERIC Educational Resources Information Center
Kumar, Sameer; Krenner, Nicole
2002-01-01
Points out that the semiconductor industry is extremely competitive and requires ongoing technological advances to improve performance while reducing costs to remain competitive and how essential it is to gain an understanding of important facets of the industry. Provides an overview of the initial and current semiconductor technology roadmap that…
NASA Astrophysics Data System (ADS)
Sander, D.; Valenzuela, S. O.; Makarov, D.; Marrows, C. H.; Fullerton, E. E.; Fischer, P.; McCord, J.; Vavassori, P.; Mangin, S.; Pirro, P.; Hillebrands, B.; Kent, A. D.; Jungwirth, T.; Gutfleisch, O.; Kim, C. G.; Berger, A.
2017-09-01
Building upon the success and relevance of the 2014 Magnetism Roadmap, this 2017 Magnetism Roadmap edition follows a similar general layout, even if its focus is naturally shifted, and a different group of experts and, thus, viewpoints are being collected and presented. More importantly, key developments have changed the research landscape in very relevant ways, so that a novel view onto some of the most crucial developments is warranted, and thus, this 2017 Magnetism Roadmap article is a timely endeavour. The change in landscape is hereby not exclusively scientific, but also reflects the magnetism related industrial application portfolio. Specifically, Hard Disk Drive technology, which still dominates digital storage and will continue to do so for many years, if not decades, has now limited its footprint in the scientific and research community, whereas significantly growing interest in magnetism and magnetic materials in relation to energy applications is noticeable, and other technological fields are emerging as well. Also, more and more work is occurring in which complex topologies of magnetically ordered states are being explored, hereby aiming at a technological utilization of the very theoretical concepts that were recognised by the 2016 Nobel Prize in Physics. Given this somewhat shifted scenario, it seemed appropriate to select topics for this Roadmap article that represent the three core pillars of magnetism, namely magnetic materials, magnetic phenomena and associated characterization techniques, as well as applications of magnetism. While many of the contributions in this Roadmap have clearly overlapping relevance in all three fields, their relative focus is mostly associated to one of the three pillars. In this way, the interconnecting roles of having suitable magnetic materials, understanding (and being able to characterize) the underlying physics of their behaviour and utilizing them for applications and devices is well illustrated, thus giving an accurate snapshot of the world of magnetism in 2017. The article consists of 14 sections, each written by an expert in the field and addressing a specific subject on two pages. Evidently, the depth at which each contribution can describe the subject matter is limited and a full review of their statuses, advances, challenges and perspectives cannot be fully accomplished. Also, magnetism, as a vibrant research field, is too diverse, so that a number of areas will not be adequately represented here, leaving space for further Roadmap editions in the future. However, this 2017 Magnetism Roadmap article can provide a frame that will enable the reader to judge where each subject and magnetism research field stands overall today and which directions it might take in the foreseeable future. The first material focused pillar of the 2017 Magnetism Roadmap contains five articles, which address the questions of atomic scale confinement, 2D, curved and topological magnetic materials, as well as materials exhibiting unconventional magnetic phase transitions. The second pillar also has five contributions, which are devoted to advances in magnetic characterization, magneto-optics and magneto-plasmonics, ultrafast magnetization dynamics and magnonic transport. The final and application focused pillar has four contributions, which present non-volatile memory technology, antiferromagnetic spintronics, as well as magnet technology for energy and bio-related applications. As a whole, the 2017 Magnetism Roadmap article, just as with its 2014 predecessor, is intended to act as a reference point and guideline for emerging research directions in modern magnetism.
NASA Astrophysics Data System (ADS)
Javidi, Bahram; Carnicer, Artur; Yamaguchi, Masahiro; Nomura, Takanori; Pérez-Cabré, Elisabet; Millán, María S.; Nishchal, Naveen K.; Torroba, Roberto; Fredy Barrera, John; He, Wenqi; Peng, Xiang; Stern, Adrian; Rivenson, Yair; Alfalou, A.; Brosseau, C.; Guo, Changliang; Sheridan, John T.; Situ, Guohai; Naruse, Makoto; Matsumoto, Tsutomu; Juvells, Ignasi; Tajahuerce, Enrique; Lancis, Jesús; Chen, Wen; Chen, Xudong; Pinkse, Pepijn W. H.; Mosk, Allard P.; Markman, Adam
2016-08-01
Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.
Reply to "Comment on `Particle path through a nested Mach-Zehnder interferometer' "
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2017-06-01
The correctness of the consistent histories analysis of weakly interacting probes, related to the path of a particle, is maintained against the criticisms in the Comment, and against the alternative approach described there, which receives no support from standard (textbook) quantum mechanics.
Sociological Theory and Youth Aspiration Research: A Critical Overview.
ERIC Educational Resources Information Center
Picou, J. Steven; Wells, Richard H.
Reviewing sociological theories relative to youth aspiration research, the following thesis was presented: "pre-path analysis aspiration research was characterized by a person-centered, middle-range functionalist approach which eventually shifted to a person-centered, functionalist-system approach with the introduction of the path model…
VERAM, for a sustainable and competitive future for EU Raw Materials
NASA Astrophysics Data System (ADS)
Mobili, A.; Tittarelli, F.; Revel, G. M.; Wall, P.
2018-03-01
The project, VERAM “Vision and Roadmap for European Raw Materials”, aims to deliver a mapping of on-going initiatives on non-food, non-energy raw materials (including metals, industrial minerals, aggregates and wood) at European, Member State, and regional levels both from the Research and Innovation (R&I), industry, and policy perspectives. Moreover, based on a comprehensive gap analysis, VERAM will propose a common long term 2050 Vision and Roadmap in coordination and cooperation with all stakeholders across the value chain. For the first time, two European Technology Platforms (ETPs) together with their corresponding European Research Area Networks (ERA-NETs) are joining forces to develop a common roadmap.
Progress along the E-ELT instrumentation roadmap
NASA Astrophysics Data System (ADS)
Ramsay, Suzanne; Casali, Mark; Cirasuolo, Michele; Egner, Sebastian; Gray, Peter; Gonzáles Herrera, Juan Carlos; Hammersley, Peter; Haupt, Christoph; Ives, Derek; Jochum, Lieselotte; Kasper, Markus; Kerber, Florian; Lewis, Steffan; Mainieri, Vincenzo; Manescau, Antonio; Marchetti, Enrico; Oberti, Sylvain; Padovani, Paolo; Schmid, Christian; Schimpelsberger, Johannes; Siebenmorgen, Ralf; Szecsenyi, Orsolya; Tamai, Roberto; Vernet, Joël.
2016-08-01
A suite of seven instruments and associated AO systems have been planned as the "E-ELT Instrumentation Roadmap". Following the E-ELT project approval in December 2014, rapid progress has been made in organising and signing the agreements for construction with European universities and institutes. Three instruments (HARMONI, MICADO and METIS) and one MCAO module (MAORY) have now been approved for construction. In addition, Phase-A studies have begun for the next two instruments - a multi-object spectrograph and high-resolution spectrograph. Technology development is also ongoing in preparation for the final instrument in the roadmap, the planetary camera and spectrograph. We present a summary of the status and capabilities of this first set of instruments for the E-ELT.
Fundamental Physics Changes in Response to Evolving NASA Needs
NASA Technical Reports Server (NTRS)
Israelsson, Ulf
2003-01-01
To continue growing as a discipline, we need to establish a new vision of where we are going that is consistent with today s physics, NASA s strategic plan, and the new OBPR direction. 1998 Roadmap focused exclusively on Physics, and did not worry about boundaries between OBPR and OSS. Updated Roadmap: Must incorporate some strategic research activities to be fully responsive to the current OBPR direction. Must capture the imagination of OBPR leadership, OMB, and Congress. Must delineate OBPR from the "beyond Einstein" program in OSS. Must address relevancy to Society explicitly. Status of the Roadmap development will be discussed after lunch today. Seeking community inputs and endorsement. Draft update targeted for June, final in August.
Search Path Mapping: A Versatile Approach for Visualizing Problem-Solving Behavior.
ERIC Educational Resources Information Center
Stevens, Ronald H.
1991-01-01
Computer-based problem-solving examinations in immunology generate graphic representations of students' search paths, allowing evaluation of how organized and focused their knowledge is, how well their organization relates to critical concepts in immunology, where major misconceptions exist, and whether proper knowledge links exist between content…
ERIC Educational Resources Information Center
Mumovic, Ana
2015-01-01
The paper studies and illuminates Jovan Skerlic's social function and "criticism anatomy" in his "History of Serbian Literature." The object of analysis is the act and actors of Skerlic's engaged criticism and method relying on facts. It is the path taken a hundred years later by Serbian criticism and literature as culture and…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
...-1659-01] Request for Comments on NIST Special Publication 500-293, US Government Cloud Computing... Publication 500-293, US Government Cloud Computing Technology Roadmap, Release 1.0 (Draft). This document is... (USG) agencies to accelerate their adoption of cloud computing. The roadmap has been developed through...
Space Communications Capability Roadmap Interim Review
NASA Technical Reports Server (NTRS)
Spearing, Robert; Regan, Michael
2005-01-01
Contents include the following: Identify the need for a robust communications and navigation architecture for the success of exploration and science missions. Describe an approach for specifying architecture alternatives and analyzing them. Establish a top level architecture based on a network of networks. Identify key enabling technologies. Synthesize capability, architecture and technology into an initial capability roadmap.
FY2009-2034 Unmanned Systems Integrated Roadmap
2009-04-20
FY2009–2034 Unmanned Systems Integrated Roadmap Page i Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...56 A.1.7 XM-156 Class I ...60 A.1.11 Improved Gnat Extended Range ( I -Gnat-ER) “Warrior Alpha” / Extended Range/Multi- purpose (ER/MP) Block
The Idaho National Engineering & Environmental Lab (INEEL) was charged by DOE EM to develop a complex-wide science and technology roadmap for the characterization, modeling and simulation of the fate and transport of contamination in the vadose zone. Various types of hazardous, r...
Virtual Learning and Instructional Tools: Perfecting the Weekly Roadmap
ERIC Educational Resources Information Center
Cicco, Gina
2015-01-01
This article will provide details on the importance of providing structure within an online graduate counseling course in the form of a weekly roadmap tool. There are various instructional tools that may be useful in providing students with differing levels of structure, to meet their learning style preferences for structural stimuli (Cicco,…
Occurrence, Genotoxicity, and Carcinogenicity of Emerging Disinfection By-products in Drinking Water: A Review and Roadmap for Research
Summary of Paper
What is study?
This is the first review of the 30 year's research effort on the occurrence, genotoxicity,...
NASA Technical Reports Server (NTRS)
Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.;
2003-01-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.
The NASA Astrobiology Roadmap.
Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W
2003-01-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.
The NASA Astrobiology Roadmap.
Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M
2008-08-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.
An Airborne Communications Roadmap for the U.S. Federal Air Marshal Service: Overview and Status
NASA Technical Reports Server (NTRS)
Martzaklis, Konstantinos S.
2007-01-01
Following the events of September 11, 2001, the responsibilities, operations and numbers of the U.S. Federal Air Marshal Service (FAMS) wer e greatly expanded. With this expansion, new critical research and te chnology needs were identified, including the need for air to ground telecommunications capabilities. To address this need, the FAMS has cr eated a working group to develop, deploy and enhance aviation communi cations with respect to security and law enforcement. This paper presents the working group's progress to date in generating a FAMS air-gro und communications roadmap identifying expected communications servic es, technology maturity, and technology gaps over a timeline. The paper includes a communications preliminary requirements summary and syst em performance characteristics needed to meet identified operational needs. The system engineering process utilized is presented beginning with the identification of users, their operational needs and relevant constraints. The operational needs are translated to desired airbor ne communications services. System technical performance requirements associated with the identified services are summarized. In addition, notional communications architectures addressing the requirements are presented. Finally, future plans to identify and assess potential ca ndidate systems and their associated technical architectures, gaps and barriers to implementation are discussed. The paper addresses the cu rrent, near term (within 5 years) and far term (10 years) timeframes for such an airborne communications system.
Web-based Academic Roadmaps for Careers in the Geosciences
NASA Astrophysics Data System (ADS)
Murray, D. P.; Veeger, A. I.; Grossman-Garber, D.
2007-12-01
To a greater extent than most science programs, geology is underrepresented in K-12 curricula and the media. Thus potential majors have scant knowledge of academic requirements and career trajectories, and their idea of what geologists do--if they have one at all--is outdated. We have addressed these concerns by developing a dynamic, web-based academic roadmap for current and prospective students, their families, and others who are contemplating careers in the geosciences. The goals of this visually attractive "educational pathway" are to not only improve student recruitment and retention, but to empower student learning by creating better communication and advising tools that can render our undergraduate program transparent for learners and their families. Although we have developed academic roadmaps for four environmental and life science programs at the University of Rhode Island, we focus here on the roadmap for the geosciences, which illustrates educational pathways along the academic and early-career continuum for current and potential (i.e., high school) students who are considering the earth sciences. In essence, the Geosciences Academic Roadmap is a "one-stop'" portal to the discipline. It includes user- friendly information about our curriculum, outcomes (which at URI are tightly linked to performance in courses and the major), extracurricular activities (e.g., field camp, internships), careers, graduate programs, and training. In the presentation of this material extensive use is made of streaming video, interviews with students and earth scientists, and links to other relevant sites. Moreover, through the use of "Hot Topics", particular attention is made to insure that examples of geoscience activities are not only of relevance to today's students, but show geologists using the modern methods of the discipline in exciting ways. Although this is a "work-in-progress", evaluation of the sites, by high school through graduate students, has been strongly positive. Our presentation will include a demonstration of the Academic Roadmap, and a template that can be used by other geoscience departments to easily design websites.
Rosenthal, Mariana; Anderson, Katey; Tengelsen, Leslie; Carter, Kris; Hahn, Christine; Ball, Christopher
2017-08-24
The Right Size Roadmap was developed by the Association of Public Health Laboratories and the Centers for Disease Control and Prevention to improve influenza virologic surveillance efficiency. Guidelines were provided to state health departments regarding representativeness and statistical estimates of specimen numbers needed for seasonal influenza situational awareness, rare or novel influenza virus detection, and rare or novel influenza virus investigation. The aim of this study was to compare Roadmap sampling recommendations with Idaho's influenza virologic surveillance to determine implementation feasibility. We calculated the proportion of medically attended influenza-like illness (MA-ILI) from Idaho's influenza-like illness surveillance among outpatients during October 2008 to May 2014, applied data to Roadmap-provided sample size calculators, and compared calculations with actual numbers of specimens tested for influenza by the Idaho Bureau of Laboratories (IBL). We assessed representativeness among patients' tested specimens to census estimates by age, sex, and health district residence. Among outpatients surveilled, Idaho's mean annual proportion of MA-ILI was 2.30% (20,834/905,818) during a 5-year period. Thus, according to Roadmap recommendations, Idaho needs to collect 128 specimens from MA-ILI patients/week for situational awareness, 1496 influenza-positive specimens/week for detection of a rare or novel influenza virus at 0.2% prevalence, and after detection, 478 specimens/week to confirm true prevalence is ≤2% of influenza-positive samples. The mean number of respiratory specimens Idaho tested for influenza/week, excluding the 2009-2010 influenza season, ranged from 6 to 24. Various influenza virus types and subtypes were collected and specimen submission sources were representative in terms of geographic distribution, patient age range and sex, and disease severity. Insufficient numbers of respiratory specimens are submitted to IBL for influenza laboratory testing. Increased specimen submission would facilitate meeting Roadmap sample size recommendations. ©Mariana Rosenthal, Katey Anderson, Leslie Tengelsen, Kris Carter, Christine Hahn, Christopher Ball. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 24.08.2017.
2017-01-01
Background The Right Size Roadmap was developed by the Association of Public Health Laboratories and the Centers for Disease Control and Prevention to improve influenza virologic surveillance efficiency. Guidelines were provided to state health departments regarding representativeness and statistical estimates of specimen numbers needed for seasonal influenza situational awareness, rare or novel influenza virus detection, and rare or novel influenza virus investigation. Objective The aim of this study was to compare Roadmap sampling recommendations with Idaho’s influenza virologic surveillance to determine implementation feasibility. Methods We calculated the proportion of medically attended influenza-like illness (MA-ILI) from Idaho’s influenza-like illness surveillance among outpatients during October 2008 to May 2014, applied data to Roadmap-provided sample size calculators, and compared calculations with actual numbers of specimens tested for influenza by the Idaho Bureau of Laboratories (IBL). We assessed representativeness among patients’ tested specimens to census estimates by age, sex, and health district residence. Results Among outpatients surveilled, Idaho’s mean annual proportion of MA-ILI was 2.30% (20,834/905,818) during a 5-year period. Thus, according to Roadmap recommendations, Idaho needs to collect 128 specimens from MA-ILI patients/week for situational awareness, 1496 influenza-positive specimens/week for detection of a rare or novel influenza virus at 0.2% prevalence, and after detection, 478 specimens/week to confirm true prevalence is ≤2% of influenza-positive samples. The mean number of respiratory specimens Idaho tested for influenza/week, excluding the 2009-2010 influenza season, ranged from 6 to 24. Various influenza virus types and subtypes were collected and specimen submission sources were representative in terms of geographic distribution, patient age range and sex, and disease severity. Conclusions Insufficient numbers of respiratory specimens are submitted to IBL for influenza laboratory testing. Increased specimen submission would facilitate meeting Roadmap sample size recommendations. PMID:28838883
Cooperative path planning for multi-USV based on improved artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Cao, Lu; Chen, Qiwei
2018-03-01
Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for multiple unmanned surface vehicle (multi-USV), an improved artificial bee colony (I-ABC) algorithm were proposed to solve the model of cooperative path planning for multi-USV. First the Voronoi diagram of battle field space is conceived to generate the optimal area of USVs paths. Then the chaotic searching algorithm is used to initialize the collection of paths, which is regard as foods of the ABC algorithm. With the limited data, the initial collection can search the optimal area of paths perfectly. Finally simulations of the multi-USV path planning under various threats have been carried out. Simulation results verify that the I-ABC algorithm can improve the diversity of nectar source and the convergence rate of algorithm. It can increase the adaptability of dynamic battlefield and unexpected threats for USV.
A Roadmap for HEP Software and Computing R&D for the 2020s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves, Antonio Augusto, Jr; et al.
Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to preparemore » for this software upgrade.« less
Organization Readiness and ERP Implementation in Albaha University
NASA Astrophysics Data System (ADS)
Alaqeel, K.; Shakkah, M. S.; Rahmat, R. F.; Alfageeh, A.; Budiarto, R.
2017-04-01
This work studies the correlation between the organizational readiness in Albaha University and the respective Critical Success Factors with regards to the Enterprise Resource Planning (ERP) implementation. The study also considers some suggestions to improve the ABU’s ERP systems and roadmap towards the self -development strategy and to reduce vendor-dependency. A survey regarding ERP to the end-users, experts and developers in Albaha University was conducted. The analysis of the results in this work confirmed with the results of an existing work. The four significance success factors: Project Management, Business Process Re-engineering, System Integration, and Training and Education are recommended to be adopted to assure the smooth adoption of ERP at Albaha University.
Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon
2017-07-25
Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.
Teacher Quality Roadmap: Improving Policies and Practices in the Miami-Dade County Public Schools
ERIC Educational Resources Information Center
National Council on Teacher Quality, 2012
2012-01-01
In partnership with the Urban League of Greater Miami, the National Council on Teacher Quality (NCTQ) released "Teacher Quality Roadmap: Improving Policies and Practices in Miami," an in-depth study of the work rules Miami-Dade teachers. This look at the state of teacher policies in Miami-Dade County Public Schools explores the…
Roadmap to Guide U.S. Photovoltaics Industry in 21st Century
industry wants them to have it. Solar-cell manufacturers and suppliers see photovoltaics (PV) producing at Roadmap to Guide U.S. Photovoltaics Industry in 21st Century Solar energy will provide emergency Douglas Golden, Colo., Jan. 20, 2000 - Americans want clean solar electricity. The U.S. photovoltaics
ERIC Educational Resources Information Center
Veliyath, Rajaram; Adams, Janet S.
2005-01-01
The course syllabus is a contract between instructor and students, a schedule of course assignments and activities, and a roadmap delineating objectives and checkpoints in the course. It is also a planning and reference tool for both students and instructor, and it models professors' expectations for their students. This study investigated whether…
Going Further: A Roadmap to the Works of the ACCLAIM Research Initiative. Working Paper No. 42
ERIC Educational Resources Information Center
Wilson, Zach; Howley, Craig
2012-01-01
"Going Further" presents a roadmap to the works of the ACCLAIM (Appalachian Collaborative Center for Learning, Assessment, and Instruction in Mathematics) Research Initiative, the research effort of one the Centers for Learning and Teaching (CLTs) created with a grant (2001-2005) from the National Science Foundation. The Center began…
Reducing Energy Burden with Solar: Colorado's Strategy and Roadmap for
-income residents suffer from a high energy burden, which can force these residents to choose between . The report concludes with a roadmap other states might consider when developing their own low-income states might learn from the state's experience when they design their own programs. The report concludes
NASA Technology Area 1: Launch Propulsion Systems
NASA Technical Reports Server (NTRS)
McConnaughey, Paul; Femminineo, Mark; Koelfgen, Syri; Lepsch, Roger; Ryan, Richard M.; Taylor, Steven A.
2011-01-01
This slide presentation reviews the technology advancements plans for the NASA Technology Area 1, Launch Propulsion Systems Technology Area (LPSTA). The draft roadmap reviews various propulsion system technologies that will be developed during the next 25 + years. This roadmap will be reviewed by the National Research Council which will issue a final report, that will include findings and recommendations.
ERIC Educational Resources Information Center
Fox, Lise; Veguilla, Myrna; Perez Binder, Denise
2014-01-01
The Technical Assistance Center on Social Emotional Intervention for Young Children (TACSEI) Roadmap on "Data Decision-Making and Program-Wide Implementation of the Pyramid Model" provides programs with guidance on how to collect and use data to ensure the implementation of the Pyramid Model with fidelity and decision-making that…
U.S. Department of Energy Office of Indian Energy Policy and Programs: Strategic Roadmap 2025
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy Office of Indian Energy Policy and Programs Strategic Roadmap 2025 outlines strategic target areas and tactical actions to ensure the Office remains aligned with its congressional mandates and DOE goals, and that it can be responsive to changing conditions in Indian Country and the nation.
Defining the role of silvicultural research in the Northeastern Forest Experiment Station
Chris Nowak; Susan Stout; John Brissette; Laura Kenefic; Gary Miller; Bill Leak; Dan Yaussy; Tom Schuler; Kurt Gottschalk
1997-01-01
Research planning in the Northeastern Forest Experiment Station has followed a grass roots model for more than two years-ROADMAP, a research and development management plan. The goals for research within ROADMAP include understanding, protecting, managing, and utilizing forest ecosystems. There are nine research themes set to help achieve these goals, each with a set...
The technology roadmap for plant/crop-based renewable resources 2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, J.
1999-02-22
The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hitmore » the vision target of a fivefold increase in renewable resource use by 2020.« less
The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1999-02-01
The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hitmore » the vision target of a fivefold increase in renewable resource use by 2020.« less
NASA Technical Reports Server (NTRS)
McNeal, Curtis I., Jr.; Anderson, William
1999-01-01
NASA's current focus on technology roadmaps as a tool for guiding investment decisions leads naturally to a discussion of NASA's roadmap for peroxide propulsion system development. NASA's new Second Generation Space Transportation System roadmap calls for an integrated Reusable Upper-Stage (RUS) engine technology demonstration in the FY03/FY04 time period. Preceding this integrated demonstration are several years of component developments and subsystem technology demonstrations. NASA and the Air Force took the first steps at developing focused upper stage technologies with the initiation of the Upper Stage Flight Experiment with Orbital Sciences in December 1997. A review of this program's peroxide propulsion development is a useful first step in establishing the peroxide propulsion pathway that could lead to a RUS demonstration in 2004.
A roadmap to effective urban climate change adaptation
NASA Astrophysics Data System (ADS)
Setiadi, R.
2018-03-01
This paper outlines a roadmap to effective urban climate change adaptation built from our practical understanding of the evidence and effects of climate change and the preparation of climate change adaptation strategies and plans. This roadmap aims to drive research in achieving fruitful knowledge and solution-based achievable recommendations in adapting to climate change in urban areas with effective and systematic manner. This paper underscores the importance of the interplay between local government initiatives and a national government for effective adaptation to climate change and takes into account the policy process and politics. This paper argues that effective urban climate change adaptation has a contribution to build urban resilience and helps the achievement of national government goals and targets in climate change adaptation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stukel, Laura; Hoen, Ben; Adomatis, Sandra
Capturing the Sun: A Roadmap for Navigating Data-Access Challenges and Auto-Populating Solar Home Sales Listings supports a vision of solar photovoltaic (PV) advocates and real estate advocates evolving together to make information about solar homes more accessible to home buyers and sellers and to simplify the process when these homes are resold. The Roadmap is based on a concept in the real estate industry known as automatic population of fields. Auto-population (also called auto-pop in the industry) is the technology that allows data aggregated by an outside industry to be matched automatically with home sale listings in a multiple listingmore » service (MLS).« less
2013-03-01
Ciência e a Tecnologia . References [1] Kaminer, I., Pascoal, A.M., Hallberg, E., and Silvestreo, C., “Trajectory Tracking for Autonomous Vehicles: An...for publication). [53] Cichella, V., Xargay, E., Dobrokhodov, V., Kaminer, I., Pascoal, A. M., and Hovakimyan, N., “Geometric 3D Path-Following
ERIC Educational Resources Information Center
Blasco, Pablo Gonzalez; Moreto, Graziela; Blasco, Mariluz González; Levites, Marcelo Rozenfeld; Janaudis, Marco Aurelio
2015-01-01
Learning through aesthetics--in which cinema is included--stimulates learner reflection. As emotions play key roles in learning attitudes and changing behavior, teachers must impact learners affective domain. Since feelings exist before concepts, the affective path is a critical path to the rational process of learning. Cinema is the audiovisual…
Wells Fargo Innovation Incubator (IN²) | NREL
Incubator (IN2) is now a $30 million program supporting innovative technologies and innovators. IN2 is buildings portfolio of Wells Fargo to help companies derisk technologies and ease their path to market companies' technologies to help them meet critical validation milestones on the path to market. Companies
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... with the Critical Path Institute (C-Path) and the Pharmaceutical Research and Manufacturers of America. Its purpose is to discuss, debate, and build consensus among stakeholders in the pharmaceutical... philanthropic support from the southern Arizona community, Science Foundation Arizona, and FDA. The...
ERIC Educational Resources Information Center
Maxfield, Nathan D.; Lyon, Justine M.; Silliman, Elaine R.
2009-01-01
Bailey and Ferreira (2003) hypothesized and reported behavioral evidence that disfluencies (filled and silent pauses) undesirably affect sentence processing when they appear before disambiguating verbs in Garden Path (GP) sentences. Disfluencies here cause the parser to "linger" on, and apparently accept as correct, an erroneous parse. Critically,…
ERIC Educational Resources Information Center
Mason Heinrichs, Kim R.
2016-01-01
Universities claim that improved critical thinking ability is an educational outcome for their graduates, but they seldom create a path for students to achieve that outcome. In this practitioner action research study, the author created a job aid, entitled "Critical Thinking as a Differentiator for Distinguished Performance," to help…
The European Hematology Association Roadmap for European Hematology Research: a consensus document.
Engert, Andreas; Balduini, Carlo; Brand, Anneke; Coiffier, Bertrand; Cordonnier, Catherine; Döhner, Hartmut; de Wit, Thom Duyvené; Eichinger, Sabine; Fibbe, Willem; Green, Tony; de Haas, Fleur; Iolascon, Achille; Jaffredo, Thierry; Rodeghiero, Francesco; Salles, Gilles; Schuringa, Jan Jacob
2016-02-01
The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Copyright© Ferrata Storti Foundation.
Comparative Effectiveness Research: A Roadmap for Physical Activity and Lifestyle
Jakicic, John M.; Sox, Harold; Blair, Steven N.; Bensink, Mark; Johnson, William G.; King, Abby C.; Lee, I-Min; Nahum-Shani, Inbal; Sallis, James F.; Sallis, Robert E.; Craft, Lynette; Whitehead, James R.; Ainsworth, Barbara E.
2017-01-01
Purpose Comparative Effectiveness Research (CER) is designed to support informed decision making at both the individual, population, and policy levels. The American College of Sports Medicine and partners convened a conference with the focus of building an agenda for CER within the context of physical activity and non-pharmacological lifestyle approaches in the prevention and treatment of chronic disease. This report summarizes the conference content and consensus recommendations that culminated in a CER Roadmap for Physical Activity and Lifestyle approaches to reducing the risk of chronic disease. Methods This conference focused on presentations and discussion around the following topic areas: 1) defining CER, 2) identifying the current funding climate to support CER, 3) summarizing methods for conducting CER, and 4) identifying CER opportunities for physical activity. Results This conference resulted in consensus recommendations to adopt a CER Roadmap for Physical Activity and Lifestyle approaches to reducing the risk of chronic disease. In general, this roadmap provides a systematic framework by which CER for physical activity can move from a planning phase, to a phase of engagement in CER related to lifestyle factors with particular emphasis on physical activity, to a societal change phase that results in changes in policy, practice, and health. Conclusions It is recommended that physical activity researchers and healthcare providers use the roadmap developed from this conference as a method to systematically engage in and apply CER to the promotion of physical activity as a key lifestyle behavior that can be effective at impacting a variety of health-related outcomes. PMID:25426735
The European Hematology Association Roadmap for European Hematology Research: a consensus document
Engert, Andreas; Balduini, Carlo; Brand, Anneke; Coiffier, Bertrand; Cordonnier, Catherine; Döhner, Hartmut; de Wit, Thom Duyvené; Eichinger, Sabine; Fibbe, Willem; Green, Tony; de Haas, Fleur; Iolascon, Achille; Jaffredo, Thierry; Rodeghiero, Francesco; Salles, Gilles; Schuringa, Jan Jacob
2016-01-01
The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. PMID:26819058
Linking Six Sigma to simulation: a new roadmap to improve the quality of patient care.
Celano, Giovanni; Costa, Antonio; Fichera, Sergio; Tringali, Giuseppe
2012-01-01
Improving the quality of patient care is a challenge that calls for a multidisciplinary approach, embedding a broad spectrum of knowledge and involving healthcare professionals from diverse backgrounds. The purpose of this paper is to present an innovative approach that implements discrete-event simulation (DES) as a decision-supporting tool in the management of Six Sigma quality improvement projects. A roadmap is designed to assist quality practitioners and health care professionals in the design and successful implementation of simulation models within the define-measure-analyse-design-verify (DMADV) or define-measure-analyse-improve-control (DMAIC) Six Sigma procedures. A case regarding the reorganisation of the flow of emergency patients affected by vertigo symptoms was developed in a large town hospital as a preliminary test of the roadmap. The positive feedback from professionals carrying out the project looks promising and encourages further roadmap testing in other clinical settings. The roadmap is a structured procedure that people involved in quality improvement can implement to manage projects based on the analysis and comparison of alternative scenarios. The role of Six Sigma philosophy in improvement of the quality of healthcare services is recognised both by researchers and by quality practitioners; discrete-event simulation models are commonly used to improve the key performance measures of patient care delivery. The two approaches are seldom referenced and implemented together; however, they could be successfully integrated to carry out quality improvement programs. This paper proposes an innovative approach to bridge the gap and enrich the Six Sigma toolbox of quality improvement procedures with DES.
NASA Astrophysics Data System (ADS)
Pradhan, Moumita; Pradhan, Dinesh; Bandyopadhyay, G.
2010-10-01
Fuzzy System has demonstrated their ability to solve different kinds of problem in various application domains. There is an increasing interest to apply fuzzy concept to improve tasks of any system. Here case study of a thermal power plant is considered. Existing time estimation represents time to complete tasks. Applying fuzzy linear approach it becomes clear that after each confidence level least time is taken to complete tasks. As time schedule is less than less amount of cost is needed. Objective of this paper is to show how one system becomes more efficient in applying Fuzzy Linear approach. In this paper we want to optimize the time estimation to perform all tasks in appropriate time schedules. For the case study, optimistic time (to), pessimistic time (tp), most likely time(tm) is considered as data collected from thermal power plant. These time estimates help to calculate expected time(te) which represents time to complete particular task to considering all happenings. Using project evaluation and review technique (PERT) and critical path method (CPM) concept critical path duration (CPD) of this project is calculated. This tells that the probability of fifty percent of the total tasks can be completed in fifty days. Using critical path duration and standard deviation of the critical path, total completion of project can be completed easily after applying normal distribution. Using trapezoidal rule from four time estimates (to, tm, tp, te), we can calculate defuzzyfied value of time estimates. For range of fuzzy, we consider four confidence interval level say 0.4, 0.6, 0.8,1. From our study, it is seen that time estimates at confidence level between 0.4 and 0.8 gives the better result compared to other confidence levels.
Leading from the Front of the Classroom: A Roadmap to Teacher Leadership That Works
ERIC Educational Resources Information Center
Aspen Institute, 2014
2014-01-01
In this paper, Leading Educators and the Aspen Institute propose a roadmap to empower teachers to lead from the front of the classroom. This paper outlines key phases that system administrators will need to consider as they build teacher leadership systems that address their highest priorities. For each phase, the Aspen Institute offers a…
ERIC Educational Resources Information Center
Castro, Helio; Putnik, Goran D.; Shah, Vaibhav
2012-01-01
Purpose: The aim of this paper is to analyze international and national research and development (R&D) programs and roadmaps for the manufacturing sector, presenting how agile and lean manufacturing models are addressed in these programs. Design/methodology/approach: In this review, several manufacturing research and development programs and…
ERIC Educational Resources Information Center
Data Quality Campaign, 2014
2014-01-01
High school feedback reports let school and district leaders know where their students go after graduation and how well they are prepared for college and beyond. This roadmap discusses the seven key focus areas the Data Quality Campaign (DQC) recommends states work on to ensure quality implementation of high school feedback reports.
Reducing Human Radiation Risks on Deep Space Missions
2017-09-01
Roadmap (2016). .........................................................108 Figure 53. Risk Assessment for Acute Radiation Syndrome Due to SPEs...Risk of Acute Radiation Syndromes Due to Solar Particle Events Figure 53 highlights the fact that acute radiation syndrome is a short-term risk...acceptable for long-term missions. Figure 53. Risk Assessment for Acute Radiation Syndrome Due to SPEs. Source: NASA Human Research Roadmap (2016
ERIC Educational Resources Information Center
Data Quality Campaign, 2014
2014-01-01
State licensure polices are meant to provide teacher preparation programs with direction about the skills teachers need to be qualified to teach, including skills to use data. This roadmap discusses the 10 key data use skills that states can include in a licensure policy with a quality focus on effective data use.
ERIC Educational Resources Information Center
Data Quality Campaign, 2016
2016-01-01
Every state can create secure, robust linkages between early childhood and K-12 data systems, and effectively use the information from these linkages to implement initiatives to support programs and children, answer key policy questions, and be transparent about how the state's early childhood investments prepare students for success in school and…
NASA Astrophysics Data System (ADS)
Corbisier, Christopher
2005-09-01
Research in Europe, as documented by an FHWA/AASHTO European Scan Tour held in May 2004, and recent activity in Arizona and California, has fostered much interest in ``quiet pavements.'' On September 14-16, 2004, an FHWA sponsored Roadmap to Quieter Highways workshop was held at Purdue University. Participants were from the disciplines of pavement, safety, and noise from FHWA, State departments of transportation, industry (paving associations, general contractors, tire, and vehicle manufacturers), and academia. After several breakout sessions in the areas of policy, construction, maintenance, analysis (measurement and prediction), research, and design, the group had identified the knowledge gaps and developed a plan to fill those gaps. Several activities have been implemented based on the Roadmap to Quieter Highways. An Expert Task Group was formed to provide a draft provisional standard for the measurement methodologies, e.g., source, wayside, pavement absorption. A Tire/Pavement 101 workshop is being developed to educate pavement practitioners in noise concepts and noise practitioners in pavement concepts. A Tire/Pavement Noise clearinghouse is being developed as a one-stop location for all current tire/pavement noise or quiet pavement activities. Several research studies have been started and a second workshop will be held in 2006 to assess progress of the Roadmap.
NASA Capability Roadmaps Executive Summary
NASA Technical Reports Server (NTRS)
Willcoxon, Rita; Thronson, Harley; Varsi, Guilio; Mueller, Robert; Regenie, Victoria; Inman, Tom; Crooke, Julie; Coulter, Dan
2005-01-01
This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps.
Software-based data path for raster-scanned multi-beam mask lithography
NASA Astrophysics Data System (ADS)
Rajagopalan, Archana; Agarwal, Ankita; Buck, Peter; Geller, Paul; Hamaker, H. Christopher; Rao, Nagswara
2016-10-01
According to the 2013 SEMATECH Mask Industry Survey,i roughly half of all photomasks are produced using laser mask pattern generator ("LMPG") lithography. LMPG lithography can be used for all layers at mature technology nodes, and for many non-critical and semi-critical masks at advanced nodes. The extensive use of multi-patterning at the 14-nm node significantly increases the number of critical mask layers, and the transition in wafer lithography from positive tone resist to negative tone resist at the 14-nm design node enables the switch from advanced binary masks back to attenuated phase shifting masks that require second level writes to remove unwanted chrome. LMPG lithography is typically used for second level writes due to its high productivity, absence of charging effects, and versatile non-actinic alignment capability. As multi-patterning use expands from double to triple patterning and beyond, the number of LMPG second level writes increases correspondingly. The desire to reserve the limited capacity of advanced electron beam writers for use when essential is another factor driving the demand for LMPG capacity. The increasing demand for cost-effective productivity has kept most of the laser mask writers ever manufactured running in production, sometimes long past their projected lifespan, and new writers continue to be built based on hardware developed some years ago.ii The data path is a case in point. While state-ofthe- art when first introduced, hardware-based data path systems are difficult to modify or add new features to meet the changing requirements of the market. As data volumes increase, design styles change, and new uses are found for laser writers, it is useful to consider a replacement for this critical subsystem. The availability of low-cost, high-performance, distributed computer systems combined with highly scalable EDA software lends itself well to creating an advanced data path system. EDA software, in routine production today, scales well to hundreds or even thousands of CPU-cores, offering the potential for virtually unlimited capacity. Features available in EDA software such as sizing, scaling, tone reversal, OPC, MPC, rasterization, and others are easily adapted to the requirements of a data path system. This paper presents the motivation, requirements, design and performance of an advanced, scalable software data path system suitable to support multi-beam laser mask lithography.
NASA's Space Launch System: One Vehicle, Many Destinations
NASA Technical Reports Server (NTRS)
May, Todd A.; Creech, Stephen D.
2013-01-01
The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust launch capability to deliver sustainable solutions for space exploration.
NASA Astrophysics Data System (ADS)
Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani
2018-01-01
In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.
The 2016 oxide electronic materials and oxide interfaces roadmap
NASA Astrophysics Data System (ADS)
Lorenz, M.; Ramachandra Rao, M. S.; Venkatesan, T.; Fortunato, E.; Barquinha, P.; Branquinho, R.; Salgueiro, D.; Martins, R.; Carlos, E.; Liu, A.; Shan, F. K.; Grundmann, M.; Boschker, H.; Mukherjee, J.; Priyadarshini, M.; DasGupta, N.; Rogers, D. J.; Teherani, F. H.; Sandana, E. V.; Bove, P.; Rietwyk, K.; Zaban, A.; Veziridis, A.; Weidenkaff, A.; Muralidhar, M.; Murakami, M.; Abel, S.; Fompeyrine, J.; Zuniga-Perez, J.; Ramesh, R.; Spaldin, N. A.; Ostanin, S.; Borisov, V.; Mertig, I.; Lazenka, V.; Srinivasan, G.; Prellier, W.; Uchida, M.; Kawasaki, M.; Pentcheva, R.; Gegenwart, P.; Miletto Granozio, F.; Fontcuberta, J.; Pryds, N.
2016-11-01
Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on ‘oxide electronic materials and oxide interfaces’. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action ‘towards oxide-based electronics’ which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements. Guest editors: M S Ramachandra Rao and Michael Lorenz
Jiang, Yun; Sereika, Susan M; DeVito Dabbs, Annette; Handler, Steven M; Schlenk, Elizabeth A
2016-10-01
Lung transplant recipients (LTR) experience problems recognizing and reporting critical condition changes during their daily health self-monitoring. Pocket PATH(®), a mobile health application, was designed to provide automatic feedback messages to LTR to guide decisions for detecting and reporting critical values of health indicators. To examine the degree to which LTR followed decision support messages to report recorded critical values, and to explore predictors of appropriately following technology decision support by reporting critical values during the first year after transplantation. A cross-sectional correlational study was conducted to analyze existing data from 96 LTR who used the Pocket PATH for daily health self-monitoring. When a critical value is entered, the device automatically generated a feedback message to guide LTR about when and what to report to their transplant coordinators. Their socio-demographics and clinical characteristics were obtained before discharge. Their use of Pocket PATH for health self-monitoring during 12 months was categorized as low (≤25% of days), moderate (>25% to ≤75% of days), and high (>75% of days) use. Following technology decision support was defined by the total number of critical feedback messages appropriately handled divided by the total number of critical feedback messages generated. This variable was dichotomized by whether or not all (100%) feedback messages were appropriately followed. Binary logistic regression was used to explore predictors of appropriately following decision support. Of the 96 participants, 53 had at least 1 critical feedback message generated during 12 months. Of these 53 participants, the average message response rate was 90% and 33 (62%) followed 100% decision support. LTR who moderately used Pocket PATH (n=23) were less likely to follow technology decision support than the high (odds ratio [OR]=0.11, p=0.02) and low (OR=0.04, p=0.02) use groups. The odds of following decision support were reduced in LTR whose income met basic needs (OR=0.01, p=0.01) or who had longer hospital stays (OR=0.94, p=0.004). A significant interaction was found between gender and past technology experience (OR=0.21, p=0.03), suggesting that with increased past technology experience, the odds of following decision support to report all critical values decreased in men but increased in women. The majority of LTR responded appropriately to mobile technology-based decision support for reporting recorded critical values. Appropriately following technology decision support was associated with gender, income, experience with technology, length of hospital stay, and frequency of use of technology for self-monitoring. Clinicians should monitor LTR, who are at risk for poor reporting of recorded critical values, more vigilantly even when LTR are provided with mobile technology decision support. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Qi; Al-Shaer, Ehab; Chatterjee, Samrat
The Infrastructure Distributed Denial of Service (IDDoS) attacks continue to be one of the most devastating challenges facing cyber systems. The new generation of IDDoS attacks exploit the inherent weakness of cyber infrastructure including deterministic nature of routes, skew distribution of flows, and Internet ossification to discover the network critical links and launch highly stealthy flooding attacks that are not observable at the victim end. In this paper, first, we propose a new metric to quantitatively measure the potential susceptibility of any arbitrary target server or domain to stealthy IDDoS attacks, and es- timate the impact of such susceptibility onmore » enterprises. Second, we develop a proactive route mutation technique to minimize the susceptibility to these attacks by dynamically changing the flow paths periodically to invalidate the adversary knowledge about the network and avoid targeted critical links. Our proposed approach actively changes these network paths while satisfying security and qualify of service requirements. We present an integrated approach of proactive route mutation that combines both infrastructure-based mutation that is based on reconfiguration of switches and routers, and middle-box approach that uses an overlay of end-point proxies to construct a virtual network path free of critical links to reach a destination. We implemented the proactive path mutation technique on a Software Defined Network using the OpendDaylight controller to demonstrate a feasible deployment of this approach. Our evaluation validates the correctness, effectiveness, and scalability of the proposed approaches.« less
Controlling Low-Rate Signal Path Microdischarge for an Ultra-Low-Background Proportional Counter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, Emily K.; Aalseth, Craig E.; Bonicalzi, Ricco
2013-05-01
ABSTRACT Pacific Northwest National Laboratory (PNNL) has developed an ultra-low-background proportional counter (ULBPC) made of high purity copper. These detectors are part of an ultra-low-background counting system (ULBCS) in the newly constructed shallow underground laboratory at PNNL (at a depth of ~30 meters water-equivalent). To control backgrounds, the current preamplifier electronics are located outside the ULBCS shielding. Thus the signal from the detector travels through ~1 meter of cable and is potentially susceptible to high voltage microdischarge and other sources of electronic noise. Based on initial successful tests, commercial cables and connectors were used for this critical signal path. Subsequentmore » testing across different batches of commercial cables and connectors, however, showed unwanted (but still low) rates of microdischarge noise. To control this noise source, two approaches were pursued: first, to carefully validate cables, connectors, and other commercial components in this critical signal path, making modifications where necessary; second, to develop a custom low-noise, low-background preamplifier that can be integrated with the ULBPC and thus remove most commercial components from the critical signal path. This integrated preamplifier approach is based on the Amptek A250 low-noise charge-integrating preamplifier module. The initial microdischarge signals observed are presented and characterized according to the suspected source. Each of the approaches for mitigation is described, and the results from both are compared with each other and with the original performance seen with commercial cables and connectors.« less
An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer.
Lorenzo, Enery; Camacho-Caceres, Katia; Ropelewski, Alexander J; Rosas, Juan; Ortiz-Mojer, Michael; Perez-Marty, Lynn; Irizarry, Juan; Gonzalez, Valerie; Rodríguez, Jesús A; Cabrera-Rios, Mauricio; Isaza, Clara
2015-06-01
Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High-throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.
A New Security Paradigm for Anti-Counterfeiting: Guidelines and an Implementation Roadmap
NASA Astrophysics Data System (ADS)
Lehtonen, Mikko
Product counterfeitingand piracy continue to plague brand and trademark owners across industry sectors. This chapter analyses the reasons for ineffectiveness of past technical anti-counterfeitingstrategies and formulates managerial guidelines for effective use of RFID in anti-counterfeiting. An implementation roadmap toward secure authentication of products tagged with EPC Gen-2 tags is proposed and possible supply chain locations for product checks are discussed.
A Roadmap for Cybersecurity Research
2009-11-01
Compile and compare existing studies relating to the insider threat. (Detect) �� Develop data collection mechanisms and collect data. (Detect...for capturing provenance. The model aims to make it easier for provenance to be exchanged between systems, to support development of provenance... It is the opinion of those involved in creating this research roadmap that government-funded research and development (R&D) must play an increasing
The ASTRONET Infrastructure Roadmap: A Twenty Year Strategy for European Astronomy
NASA Astrophysics Data System (ADS)
Bode, M.; Monnet, G.
2008-12-01
The process followed by ASTRONET to build a long-term strategy for European astronomy is presented. The main conclusions and priorities given in the recently unveiled report on the Infrastructure Roadmap for the next 20 years, following the establishment of a Science Vision last year, are summarised. These reports together hopefully represent a blueprint for a bright future for European astronomy.
NASA Technical Reports Server (NTRS)
Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert
2011-01-01
At present, NASA has considered a number of future human space exploration mission concepts . Yet, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents a roadmap for development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed by NASA subject matter experts. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capabilities needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs will, in many cases, directly benefit the ISS operational capability, benefit the Multi-Purpose Crew Vehicle (MPCV), and guide long-term technology investments for longer duration missions The final product of this paper is an agreed-to ECLSS roadmap detailing ground and flight testing to support the three mission scenarios previously mentioned. This information will also be used to develop the integrated NASA budget submit in January 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodhouse, Michael; Jones-Albertus, Rebecca; Feldman, David
2016-05-01
Although tremendous progress has been made in reducing the cost of PV systems, additional LCOE reductions of 40%–50% between 2015 and 2020 will be required to reach the SunShot Initiative’s targets (see Woodhouse et al. 2016). Understanding the tradeoffs between installed prices and other PV system characteristics—such as module efficiency, module degradation rate, and system lifetime—are vital. For example, with 29%-efficient modules and high reliability (a 50-year lifetime and a 0.2%/year module degradation rate), a residential PV system could achieve the SunShot LCOE goal with modules priced at almost $1.20/W. But change the lifetime to 10 years and the degradationmore » rate to 2%/year, and the system would need those very high-efficiency modules at zero cost to achieve the same LCOE. Although these examples are extreme, they serve to illustrate the wide range of technological combinations that could help drive PV toward the LCOE goals. SunShot’s PV roadmaps illustrate specific potential pathways to the target cost reductions.« less
NOAA's operational path forward: Developing the Coyote UASonde
NASA Astrophysics Data System (ADS)
Cione, J.; Twining, K.; Silah, M.; Brescia, T.; Kalina, E.; Farber, A.; Troudt, C.; Ghanooni, A.; Baker, B.; Dumas, E. J.; Hock, T. F.; Smith, J.; French, J.; Fairall, C. W.; deBoer, G.; Bland, G.
2016-12-01
Since 2009, NOAA has shown an interest in using the air-deployed Coyote Unmanned Aircraft System (UAS) for low-altitude hurricane reconnaissance. In September of 2014, NOAA conducted two successful missions into Hurricane Edouard using this innovative observing tool. Since then, NOAA has continued to invest time and resources into the Coyote platform. These efforts include plans to release up to 7 additional Coyote UAS into tropical cyclones using NOAA's P-3 Hurricane Hunter manned aircraft in 2016. A longer-term goal for this multi-institutional partnership will be to modify the existing UAS design such that the next generation platform will be capable of conducting routine observations in direct support of a wide array of NOAA operations that extend beyond hurricane surveillance. The vision for this potentially transformative platform, dubbed the Coyote UASonde, will be to heavily leverage NOAA's existing capabilities, incorporate significant upgrades to the existing payload and employ an expert navigation and data communication system that utilizes artificial intelligence. A brief summary of Coyote successes to date as well as a future roadmap that leads NOAA towards an operationally-viable Coyote UASonde will be presented.
Destination bioeconomy - The path towards a smarter, more sustainable future.
Dupont-Inglis, Joanna; Borg, Agnes
2018-01-25
Five years following the publication of the EU Bioeconomy Strategy, this article discusses the state of play of the bioeconomy in Europe. Placing specific focus on Industrial Biotech, it outlines ten pragmatic recommendations from BIO-TIC [BIO-TIC, A roadmap to a thriving industrial biotechnology sector in Europe, 2015], an EU FP7 funded project completed in 2015 and coordinated by EuropaBio, comprehensively examining the hurdles to the development of a bioeconomy in Europe, enabled by industrial biotech. These include improving opportunities for feedstock producers within the bioeconomy; investigating the scope for using novel biomass; developing a workforce which can maintain Europe's competitiveness in industrial biotechnology; introducing a long-term, stable and transparent policy and incentive framework to promote the bioeconomy; improving public perception and awareness of industrial biotechnology and bio-based products; identifying, leveraging and building upon EU capabilities for pilot and demonstration facilities; promoting the use of co-products from processing; improving the bioconversion and downstream processing steps; improving access to financing for large-scale biorefinery projects; developing stronger relationships between conventional and non-conventional players. Copyright © 2017. Published by Elsevier B.V.
Interactive-rate Motion Planning for Concentric Tube Robots.
Torres, Luis G; Baykal, Cenk; Alterovitz, Ron
2014-05-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient's anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method's high speed enables a user to continuously and freely move the robot's tip while the motion planner ensures that the robot's shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device's shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot's tip through the environment while the robot automatically avoids collisions with the anatomical obstacles.
Rapid Cost Assessment of Space Mission Concepts Through Application of Complexity-Based Cost Indices
NASA Technical Reports Server (NTRS)
Peterson, Craig E.; Cutts, James; Balint, Tibor; Hall, James B.
2008-01-01
This slide presentation reviews the development of a rapid cost assessment models for evaluation of exploration missions through the application of complexity based cost indices. In Fall of 2004, NASA began developing 13 documents, known as "strategic roadmaps," intended to outline a strategy for space exploration over the next 30 years. The Third Strategic Roadmap, The Strategic Roadmap for Solar System Exploration, focused on strategy for robotic exploration of the Solar System. Development of the Strategic Roadmap for Solar System Exploration led to the investigation of a large variety of missions. However, the necessity of planning around scientific inquiry and budgetary constraints made it necessary for the roadmap development team to evaluate potential missions not only for scientific return but also cost. Performing detailed cost studies for each of the large number of missions was impractical given the time constraints involved and lack of detailed mission studies; so a method of rapid cost assessment was developed by us to allow preliminary analysis. It has been noted that there is a strong correlation between complexity and cost and schedule of planetary missions. While these correlations were made after missions had been built and flown (successfully or otherwise), it seemed likely that a similar approach could provide at least some relative cost ranking. Cost estimation relationships (CERs) have been developed based on subsystem design choices. These CERs required more detailed information than available, forcing the team to adopt a more high level approach. Costing by analogy has been developed for small satellites, however, planetary exploration missions provide such varying spacecraft requirements that there is a lack of adequately comparable missions that can be used for analogy.
Roadmap on optical energy conversion
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang
2016-07-01
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.
Roadmap to achieve 25% hypertension control in Africa by 2025
Dzudie, Anastase; Kingue, Samuel; Dzudie, Anastase; Sliwa, Karen; Mayosi, Bongani; Dzudie, Anastase; Sliwa, Karen; Rayner, Brian; Ojji, Dike; Schutte, Aletta E; Twagirumukiza, Marc; Damasceno, Albertino; Ba, Seringe Abdou; Kane, Abdoul; Kramoh, Euloge; Kacou, Jean Baptiste Anzouan; Onwubere, Basden; Cornick, Ruth; Anisiuba, Benedict; Mocumbi, Ana Olga; Ogola, Elijah; Awad, Mohamed; Nel, George; Otieno, Harun; Toure, Ali Ibrahim; Kengne, Andre Pascal; Perel, Pablo; Adler, Alm; Poulter, Neil
2017-01-01
Summary Background and aim: The Pan-African Society of Cardiology (PASCAR) has identified hypertension as the highest area of priority for action to reduce heart disease and stroke on the continent. The aim of this PASCAR roadmap on hypertension was to develop practical guidance on how to implement strategies that translate existing knowledge into effective action and improve detection, treatment and control of hypertension and cardiovascular health in sub-Saharan Africa (SSA) by the year 2025. Methods: Development of this roadmap started with the creation of a consortium of experts with leadership skills in hypertension. In 2014, experts in different fields, including physicians and non-physicians, were invited to join. Via faceto- face meetings and teleconferences, the consortium made a situation analysis, set a goal, identified roadblocks and solutions to the management of hypertension and customised the World Heart Federation roadmap to Africa. Results: Hypertension is a major crisis on the continent but very few randomised, controlled trials have been conducted on its management. Also, only 25.8% of the countries have developed or adopted guidelines for the management of hypertension. Other major roadblocks are either government and health-system related or healthcare professional or patient related. The PASCAR hypertension task force identified a 10-point action plan to be implemented by African ministries of health to achieve 25% control of hypertension in Africa by 2025. Conclusions: Hypertension affects millions of people in SSA and if left untreated, is a major cause of heart disease and stroke. Very few SSA countries have a clear hypertension policy. This PASCAR roadmap identifies practical and effective solutions that would improve detection, treatment and control of hypertension on the continent and could be implemented as is or adapted to specific national settings. PMID:28906541
World Health Organization Public Health Model: A Roadmap for Palliative Care Development.
Callaway, Mary V; Connor, Stephen R; Foley, Kathleen M
2018-02-01
The Open Society Foundation's International Palliative Care Initiative (IPCI) began to support palliative care development in Central and Eastern Europe and the Former Soviet Union in 1999. Twenty-five country representatives were invited to discuss the need for palliative care in their countries and to identify key areas that should be addressed to improve the care of adults and children with life-limiting illnesses. As a public health concern, progress in palliative care requires integration into health policy, education and training of health care professionals, availability of essential pain relieving medications, and health care services. IPCI created the Palliative Care Roadmap to serve as a model for government and/or nongovernment organizations to use to frame the necessary elements and steps for palliative care integration. The roadmap includes the creation of multiple Ministry of Health-approved working groups to address: palliative care inclusion in national health policy, legislation, and finance; availability of essential palliative care medications, especially oral opioids; education and training of health care professionals; and the implementation of palliative care services at home or in inpatient settings for adults and children. Each working group is tasked with developing a pathway with multiple signposts as indicators of progress made. The roadmap may be entered at different signposts depending upon the state of palliative care development in the country. The progress of the working groups often takes place simultaneously but at variable rates. Based on our experience, the IPCI Roadmap is one possible framework for palliative care development in resource constrained countries but requires both health care professional engagement and political will for progress to be made. Copyright © 2017. Published by Elsevier Inc.
Isotope Geochemistry for Comparative Planetology of Exoplanets
NASA Technical Reports Server (NTRS)
Mandt, K. E.; Atreya, S.; Luspay-Kuti, A.; Mousis, O.; Simon, A.; Hofstadter, M. D.
2017-01-01
Isotope geochemistry has played a critical role in understanding processes at work in and the history of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with the formation and evolution of exoplanet systems. The roadmap for comparative planetology of the origins and workings of exoplanets involves isotopic geochemistry efforts in three areas: (1) technology development to expand observations of the isotopic composition of solar system bodies and expand observations to isotopic composition of exoplanet atmospheres; (2) theoretical modeling of how isotopes fractionate and the role they play in evolution of exoplanetary systems, atmospheres, surfaces and interiors; and (3) laboratory studies to constrain isotopic fractionation due to processes at work throughout the solar system.
Does technology acceleration equate to mask cost acceleration?
NASA Astrophysics Data System (ADS)
Trybula, Walter J.; Grenon, Brian J.
2003-06-01
The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor sup-plier community and the manufacturers. INTERNATIONAL SEMATECH has revaluated the projected cost of advanced technology masks. Building on the methodology developed in 1996 for mask costs, this work provided a critical review of mask yields and factors relating to the manufacture of photolithography masks. The impact of the yields provided insight into the learning curve for leading edge mask manufac-turing. The projected mask set cost was surprising, and the ability to provide first and second year cost estimates provided additional information on technology introduction. From this information, the impact of technology acceleration can be added to the projected yields to evaluate the impact on mask costs.
Contact patterning strategies for 32nm and 28nm technology
NASA Astrophysics Data System (ADS)
Morgenfeld, Bradley; Stobert, Ian; An, Ju j.; Kanai, Hideki; Chen, Norman; Aminpur, Massud; Brodsky, Colin; Thomas, Alan
2011-04-01
As 193 nm immersion lithography is extended indefinitely to sustain technology roadmaps, there is increasing pressure to contain escalating lithography costs by identifying patterning solutions that can minimize the use of multiple-pass processes. Contact patterning for the 32/28 nm technology nodes has been greatly facilitated by just-in-time introduction of new process enablers that allow the simultaneous support of flexible foundry-oriented ground rules alongside highperformance technology, while also migrating to a single-pass patterning process. The incorporation of device based performance metrics along with rigorous patterning and structural variability studies were critical in the evaluation of material innovation for improved resolution and CD shrink along with novel data preparation flows utilizing aggressive strategies for SRAF insertion and retargeting.
NASA Technical Reports Server (NTRS)
Thronson, Harley; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah
2014-01-01
We suggest that the International Space Station be used to examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." To this end, controlled experiments that build upon and complement ground-based analog field studies will be critical for assessing the effects of different latencies (0 to 500 milliseconds), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.
Shapiro, Casey; Moberg-Parker, Jordan; Toma, Shannon; Ayon, Carlos; Zimmerman, Hilary; Roth-Johnson, Elizabeth A.; Hancock, Stephen P.; Levis-Fitzgerald, Marc; Sanders, Erin R.
2015-01-01
This four-year study describes the assessment of a bifurcated laboratory curriculum designed to provide upper-division undergraduate majors in two life science departments meaningful exposure to authentic research. The timing is critical as it provides a pathway for both directly admitted and transfer students to enter research. To fulfill their degree requirements, all majors complete one of two paths in the laboratory program. One path immerses students in scientific discovery experienced through team research projects (course-based undergraduate research experiences, or CUREs) and the other path through a mentored, independent research project (apprentice-based research experiences, or AREs). The bifurcated laboratory curriculum was structured using backwards design to help all students, irrespective of path, achieve specific learning outcomes. Over 1,000 undergraduates enrolled in the curriculum. Self-report survey results indicate that there were no significant differences in affective gains by path. Students conveyed which aspects of the curriculum were critical to their learning and development of research-oriented skills. Students’ interests in biology increased upon completion of the curriculum, inspiring a subset of CURE participants to subsequently pursue further research. A rubric-guided performance evaluation, employed to directly measure learning, revealed differences in learning gains for CURE versus ARE participants, with evidence suggesting a CURE can reduce the achievement gap between high-performing students and their peers. PMID:26751568
NASA Astrophysics Data System (ADS)
Bressan, José Divo; Liewald, Mathias; Drotleff, Klaus
2017-10-01
Forming limit strain curves of conventional aluminium alloy AA6014 sheets after loading with non-linear strain paths are presented and compared with D-Bressan macroscopic model of sheet metal rupture by critical shear stress criterion. AA6014 exhibits good formability at room temperature and, thus, is mainly employed in car body external parts by manufacturing at room temperature. According to Weber et al., experimental bi-linear strain paths were carried out in specimens with 1mm thickness by pre-stretching in uniaxial and biaxial directions up to 5%, 10% and 20% strain levels before performing Nakajima testing experiments to obtain the forming limit strain curves, FLCs. In addition, FLCs of AA6014 were predicted by employing D-Bressan critical shear stress criterion for bi-linear strain path and comparisons with the experimental FLCs were analyzed and discussed. In order to obtain the material coefficients of plastic anisotropy, strain and strain rate hardening behavior and calibrate the D-Bressan model, tensile tests, two different strain rate on specimens cut at 0°, 45° and 90° to the rolling direction and also bulge test were carried out at room temperature. The correlation of experimental bi-linear strain path FLCs is reasonably good with the predicted limit strains from D-Bressan model, assuming equivalent pre-strain calculated by Hill 1979 yield criterion.
ABLEPathPlanner library for Umbra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oppel III, Fred J; Xavier, Patrick G.; Gottlieb, Eric Joseph
Umbra contains a flexible, modular path planner that is used to simulate complex entity behaviors moving within 3D terrain environments that include buildings, barriers, roads, bridges, fences, and a variety of other terrain features (water, vegetation, slope, etc…). The path planning algorithm is a critical component required to execute these tactical behaviors to provide realistic entity movement and provide efficient system computing performance.
Mark D. Nelson; Sean Healey; W. Keith Moser; J.G. Masek; Warren Cohen
2011-01-01
We assessed the consistency across space and time of spatially explicit models of forest presence and biomass in southern Missouri, USA, for adjacent, partially overlapping satellite image Path/Rows, and for coincident satellite images from the same Path/Row acquired in different years. Such consistency in satellite image-based classification and estimation is critical...
A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution.
de Boer, Hugo Jan; Eppinga, Maarten B; Wassen, Martin J; Dekker, Stefan C
2012-01-01
The revolutionary rise of broad-leaved (flowering) angiosperm plant species during the Cretaceous initiated a global ecological transformation towards modern biodiversity. Still, the mechanisms involved in this angiosperm radiation remain enigmatic. Here we show that the period of rapid angiosperm evolution initiated after the leaf interior (post venous) transport path length for water was reduced beyond the leaf interior transport path length for CO2 at a critical leaf vein density of 2.5-5 mm mm(-2). Data and our modelling approaches indicate that surpassing this critical vein density was a pivotal moment in leaf evolution that enabled evolving angiosperms to profit from developing leaves with more and smaller stomata in terms of higher carbon returns from equal water loss. Surpassing the critical vein density may therefore have facilitated evolving angiosperms to develop leaves with higher gas exchange capacities required to adapt to the Cretaceous CO2 decline and outcompete previously dominant coniferous species in the upper canopy.
Critical Care Organizations: Business of Critical Care and Value/Performance Building.
Leung, Sharon; Gregg, Sara R; Coopersmith, Craig M; Layon, A Joseph; Oropello, John; Brown, Daniel R; Pastores, Stephen M; Kvetan, Vladimir
2018-01-01
New, value-based regulations and reimbursement structures are creating historic care management challenges, thinning the margins and threatening the viability of hospitals and health systems. The Society of Critical Care Medicine convened a taskforce of Academic Leaders in Critical Care Medicine on February 22, 2016, during the 45th Critical Care Congress to develop a toolkit drawing on the experience of successful leaders of critical care organizations in North America for advancing critical care organizations (Appendix 1). The goal of this article was to provide a roadmap and call attention to key factors that adult critical care medicine leadership in both academic and nonacademic setting should consider when planning for value-based care. Relevant medical literature was accessed through a literature search. Material published by federal health agencies and other specialty organizations was also reviewed. Collaboratively and iteratively, taskforce members corresponded by electronic mail and held monthly conference calls to finalize this report. The business and value/performance critical care organization building section comprised of leaders of critical care organizations with expertise in critical care administration, healthcare management, and clinical practice. Two phases of critical care organizations care integration are described: "horizontal," within the system and regionalization of care as an initial phase, and "vertical," with a post-ICU and postacute care continuum as a succeeding phase. The tools required for the clinical and financial transformation are provided, including the essential prerequisites of forming a critical care organization; the manner in which a critical care organization can help manage transformational domains is considered. Lastly, how to achieve organizational health system support for critical care organization implementation is discussed. A critical care organization that incorporates functional clinical horizontal and vertical integration for ICU patients and survivors, aligns strategy and operations with those of the parent health system, and encompasses knowledge on finance and risk will be better positioned to succeed in the value-based world.
Innovative Technologies for Global Space Exploration
NASA Technical Reports Server (NTRS)
Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.
2012-01-01
Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Whitley, Ryan; Klem, Mark D.; Johnson, Wesley; Alexander, Leslie; D'Aversa, Emanuela; Ruault, Jean-Marc; Manfletti, Chiara; Caruana, Jean-Noel; Ueno, Hiroshi;
2016-01-01
As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion. LOx/Methane propulsion systems are enabling for future human missions Mars by significantly reducing the landed mass of the Mars ascent stage through the use of in-situ propellant production, for improving common fluids for life support, power and propulion thus allowing for diverse redundancy, for eliminating the corrosive and toxic propellants thereby improving surface operations and resusabilty, and for inceasing the performance of propulsion systems. The goals and objectives of the international team are to determine the gaps in technology that must be closed for LOx/Methane to be used in human exploration missions in cis-lunar, lunar, and Mars mission applications. An emphasis is placed on near term lunar lander applications with extensibility to Mars. Each agency provided a status of the substantial amount of Lox/Methane propulsion system development to date and their inputs on the gaps in the technology that are remaining. The gaps, which are now opportunities for collaboration, are then discussed.
Giuliano, Anna R.; Nyitray, Alan G.; Kreimer, Aimée R.; Pierce Campbell, Christine M.; Goodman, Marc T.; Sudenga, Staci L.; Monsonego, Joseph; Franceschi, Silvia
2014-01-01
Human papillomaviruses (HPVs) cause cancer at multiple anatomic sites in men and women, including cervical, oropharyngeal, anal, vulvar, and vaginal cancers in women and oropharyngeal, anal, and penile cancers in men. In this EUROGIN 2014 roadmap, differences in HPV-related cancer and infection burden by gender and anatomic site are reviewed. The proportion of cancers attributable to HPV varies by anatomic site, with nearly 100% of cervical, 88% of anal, and less than 50% of lower genital tract and oropharyngeal cancers attributable to HPV, depending on world region and prevalence of tobacco use. Often mirroring cancer incidence rates, HPV prevalence and infection natural history varies by gender and anatomic site of infection. Oral HPV infection is rare and significantly differs by gender; yet HPV-related cancer incidence at this site is several-fold higher than at either the anal canal or penile epithelium. HPV seroprevalence is significantly higher among women compared to men, likely explaining the differences in age-specific HPV prevalence and incidence patterns observed by gender. Correspondingly, among heterosexual partners, HPV transmission appears higher from women to men. More research is needed to characterize HPV natural history at each anatomic site where HPV causes cancer in men and women, information that is critical to inform the basic science of HPV natural history and the development of future infection and cancer prevention efforts. PMID:25043222
Giuliano, Anna R; Nyitray, Alan G; Kreimer, Aimée R; Pierce Campbell, Christine M; Goodman, Marc T; Sudenga, Staci L; Monsonego, Joseph; Franceschi, Silvia
2015-06-15
Human papillomaviruses (HPVs) cause cancer at multiple anatomic sites in men and women, including cervical, oropharyngeal, anal, vulvar and vaginal cancers in women and oropharyngeal, anal and penile cancers in men. In this EUROGIN 2014 roadmap, differences in HPV-related cancer and infection burden by gender and anatomic site are reviewed. The proportion of cancers attributable to HPV varies by anatomic site, with nearly 100% of cervical, 88% of anal and <50% of lower genital tract and oropharyngeal cancers attributable to HPV, depending on world region and prevalence of tobacco use. Often, mirroring cancer incidence rates, HPV prevalence and infection natural history varies by gender and anatomic site of infection. Oral HPV infection is rare and significantly differs by gender; yet, HPV-related cancer incidence at this site is several-fold higher than at either the anal canal or the penile epithelium. HPV seroprevalence is significantly higher among women compared to men, likely explaining the differences in age-specific HPV prevalence and incidence patterns observed by gender. Correspondingly, among heterosexual partners, HPV transmission appears higher from women to men. More research is needed to characterize HPV natural history at each anatomic site where HPV causes cancer in men and women, information that is critical to inform the basic science of HPV natural history and the development of future infection and cancer prevention efforts. © 2014 UICC.
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-06-01
There are two roadmaps of accomplishing exhibition electronic-commerce innovation and development. The first roadmap is that the exhibition organizers should seek mutual benefit cooperation with professional electronic-commerce platform of correspondent area with exhibition projects, thus help exhibitors realize their market object. The second roadmap is to promote innovation and development of electronic-commerce (Business-to-Customer) between both exhibitors and purchasers. Exhibition electronic-commerce must focus on innovative development in the following functions: market research and information service; advertising and business negotiation; online trading and online payment. With the aid of electronic-commerce, exhibition enterprise could have distinctive strengths such as transactions with virtualization, transparency, high efficiency and low cost, enhancing market link during enterprise research and development, promoting the efficiency of internal team collaboration and the individuation of external service, and optimizing resource allocation.
Proposed roadmap for overcoming legal and financial obstacles to carbon capture and sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Wendy; Chohen, Leah; Kostakidis-Lianos, Leah
Many existing proposals either lack sufficient concreteness to make carbon capture and geological sequestration (CCGS) operational or fail to focus on a comprehensive, long term framework for its regulation, thus failing to account adequately for the urgency of the issue, the need to develop immediate experience with large scale demonstration projects, or the financial and other incentives required to launch early demonstration projects. We aim to help fill this void by proposing a roadmap to commercial deployment of CCGS in the United States.This roadmap focuses on the legal and financial incentives necessary for rapid demonstration of geological sequestration in themore » absence of national restrictions on CO2 emissions. It weaves together existing federal programs and financing opportunities into a set of recommendations for achieving commercial viability of geological sequestration.« less
Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
NASA Astrophysics Data System (ADS)
Ferrari, Andrea C.; Bonaccorso, Francesco; Fal'Ko, Vladimir; Novoselov, Konstantin S.; Roche, Stephan; Bøggild, Peter; Borini, Stefano; Koppens, Frank H. L.; Palermo, Vincenzo; Pugno, Nicola; Garrido, José A.; Sordan, Roman; Bianco, Alberto; Ballerini, Laura; Prato, Maurizio; Lidorikis, Elefterios; Kivioja, Jani; Marinelli, Claudio; Ryhänen, Tapani; Morpurgo, Alberto; Coleman, Jonathan N.; Nicolosi, Valeria; Colombo, Luigi; Fert, Albert; Garcia-Hernandez, Mar; Bachtold, Adrian; Schneider, Grégory F.; Guinea, Francisco; Dekker, Cees; Barbone, Matteo; Sun, Zhipei; Galiotis, Costas; Grigorenko, Alexander N.; Konstantatos, Gerasimos; Kis, Andras; Katsnelson, Mikhail; Vandersypen, Lieven; Loiseau, Annick; Morandi, Vittorio; Neumaier, Daniel; Treossi, Emanuele; Pellegrini, Vittorio; Polini, Marco; Tredicucci, Alessandro; Williams, Gareth M.; Hee Hong, Byung; Ahn, Jong-Hyun; Min Kim, Jong; Zirath, Herbert; van Wees, Bart J.; van der Zant, Herre; Occhipinti, Luigi; Di Matteo, Andrea; Kinloch, Ian A.; Seyller, Thomas; Quesnel, Etienne; Feng, Xinliang; Teo, Ken; Rupesinghe, Nalin; Hakonen, Pertti; Neil, Simon R. T.; Tannock, Quentin; Löfwander, Tomas; Kinaret, Jari
2015-03-01
We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
NASA Astrophysics Technology Needs
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2012-01-01
July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.
2007 Precision Strike PEO Summer Forum - Joint Perspectives on Precision Engagement
2007-07-11
Status,” Colonel Richard Justice, USAF—Commander of the Miniature Munitions Systems Group (MMSG), Eglin Air Force Base “Unmanned Systems (UAS) Roadmap...Role in the Roadmap Implementation Methods & Processes Working Group Issues delineated in Implementation Plan form basis for JTEM methodology...Test and Evaluation JMETC – Joint Mission Environment Test Capability WG – Working Group DOT&E AT&L DOT&E Unclassified 5 Background: JTEM Problem
Operational Resiliency Management: An Introduction to the Resiliency Engineering Framework
2006-09-20
Maturity Model Integration (CMMI) . 5 © 2006 Carnegie Mellon University y FRB Bus Con Conference 2006 Managing Today’s Operational Risk Challenges ...Bus Con Conference 2006 A model is needed to. . . Identify and prioritize risk exposures Define a process improvement roadmap Measure and facilitate...University y FRB Bus Con Conference 2006 Why use a “model” approach? Provides an operational risk roadmap Vendor-neutral, standardized, unbiased
ERIC Educational Resources Information Center
Darrow, Rob; Friend, Bruce; Powell, Allison
2013-01-01
This roadmap was designed to provide guidance to the New York City Department of Education (NYCDOE) school administrators in implementing blended learning programs in their own schools. Over the 2012-13 school year, the International Association for K-12 Online Learning (iNACOL) worked with 8 NYCDOE Lab Schools, each with its own blended learning…
U.S. Geological Survey Unmanned Aircraft Systems (UAS) Roadmap 2014
Cress, Jill J.; Hutt, Michael E.; Sloan, Jeff L.; Bauer, Mark A.; Feller, Mark R.; Goplen, Susan E.
2015-01-01
This Roadmap provides operational procedures and lessons learned from completed proof-of-concept UAS missions in areas such as wildlife management, resource monitoring, and public land inspections. This information provides not only an implementation framework but can also help increase the awareness by resource managers, scientists, and others of the ability of UAS technology to advance data quality, improve personnel safety, and reduce data acquisition costs.
2012-11-01
Building Information Modeling ( BIM ...12-2, Supplement 2 November 2012 The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling ( BIM ) Supplement 2 – BIM ...39180 ERDC SR-12-2, Supplement 2 (November 2012) ii Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac-
2012-11-01
Building Information Modeling ( BIM ...12-2, Supplement 1 November 2012 The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling ( BIM ) Supplement 1 – BIM ...ERDC SR-12-2, Supplement 1 (November 2012) ii Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac- ceptance throughout
Considering new methodologies in strategies for safety assessment of foods and food ingredients.
Blaauboer, Bas J; Boobis, Alan R; Bradford, Bobbie; Cockburn, Andrew; Constable, Anne; Daneshian, Mardas; Edwards, Gareth; Garthoff, Jossie A; Jeffery, Brett; Krul, Cyrille; Schuermans, Jeroen
2016-05-01
Toxicology and safety assessment are changing and require new strategies for evaluating risk that are less depending on apical toxicity endpoints in animal models and relying more on knowledge of the mechanism of toxicity. This manuscript describes a number of developments that could contribute to this change and implement this in a stepwise roadmap that can be applied for the evaluation of food and food ingredients. The roadmap was evaluated in four case studies by using literature and existing data. This preliminary evaluation was shown to be useful. However, this experience should be extended by including examples where experimental work needs to be included. To further implement these new insights in toxicology and safety assessment for the area of food and food ingredients, the recommendation is that stakeholders take action in addressing gaps in our knowledge, e.g. with regard to the applicability of the roadmap for mixtures and food matrices. Further development of the threshold of toxicological concern is needed, as well as cooperation with other sectors where similar schemes are under development. Moreover, a more comprehensive evaluation of the roadmap, also including the identification of the need for in vitro experimental work is recommended. Copyright © 2016 ILSI Europe. Published by Elsevier Ltd.. All rights reserved.
Accurate and reproducible functional maps in 127 human cell types via 2D genome segmentation
Hardison, Ross C.
2017-01-01
Abstract The Roadmap Epigenomics Consortium has published whole-genome functional annotation maps in 127 human cell types by integrating data from studies of multiple epigenetic marks. These maps have been widely used for studying gene regulation in cell type-specific contexts and predicting the functional impact of DNA mutations on disease. Here, we present a new map of functional elements produced by applying a method called IDEAS on the same data. The method has several unique advantages and outperforms existing methods, including that used by the Roadmap Epigenomics Consortium. Using five categories of independent experimental datasets, we compared the IDEAS and Roadmap Epigenomics maps. While the overall concordance between the two maps is high, the maps differ substantially in the prediction details and in their consistency of annotation of a given genomic position across cell types. The annotation from IDEAS is uniformly more accurate than the Roadmap Epigenomics annotation and the improvement is substantial based on several criteria. We further introduce a pipeline that improves the reproducibility of functional annotation maps. Thus, we provide a high-quality map of candidate functional regions across 127 human cell types and compare the quality of different annotation methods in order to facilitate biomedical research in epigenomics. PMID:28973456
AstRoMap European Astrobiology Roadmap
Horneck, Gerda; Westall, Frances; Grenfell, John Lee; Martin, William F.; Gomez, Felipe; Leuko, Stefan; Lee, Natuschka; Onofri, Silvano; Tsiganis, Kleomenis; Saladino, Raffaele; Pilat-Lohinger, Elke; Palomba, Ernesto; Harrison, Jesse; Rull, Fernando; Muller, Christian; Strazzulla, Giovanni; Brucato, John R.; Rettberg, Petra; Capria, Maria Teresa
2016-01-01
Abstract The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems• Research Topic 2: Origins of Organic Compounds in Space• Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life• Research Topic 4: Life and Habitability• Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system. Key Words: Astrobiology roadmap—Europe—Origin and evolution of life—Habitability—Life detection—Life in extreme environments. Astrobiology 16, 201–243. PMID:27003862
NASA Astrophysics Data System (ADS)
Chorover, Jon; Derry, Louis A.; McDowell, William H.
2017-11-01
Critical zone science seeks to develop mechanistic theories that describe critical zone structure, function, and long-term evolution. One postulate is that hydrogeochemical controls on critical zone evolution can be inferred from solute discharges measured down-gradient of reactive flow paths. These flow paths have variable lengths, interfacial compositions, and residence times, and their mixing is reflected in concentration-discharge (C-Q) relations. Motivation for this special section originates from a U.S. Critical Zone Observatories workshop that was held at the University of New Hampshire, 20-22 July 2015. The workshop focused on resolving mechanistic CZ controls over surface water chemical dynamics across the full range of lithogenic (e.g., nonhydrolyzing and hydrolyzing cations and oxyanions) and bioactive solutes (e.g., organic and inorganic forms of C, N, P, and S), including dissolved and colloidal species that may cooccur for a given element. Papers submitted to this special section on "concentration-discharge relations in the critical zone" include those from authors who attended the workshop, as well as others who responded to the open solicitation. Submissions were invited that utilized information pertaining to internal, integrated catchment function (relations between hydrology, biogeochemistry, and landscape structure) to help illuminate controls on observed C-Q relations.
NASA Astrophysics Data System (ADS)
Horneck, G.; Humex Team
ESA has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis was laid on human health and performance care as well as Advanced Life Support Developments including Bioregenerative Life Support Systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the Life Sciences and Life Support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of Advanced Life Support Developments and to pro-pose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as test-beds in preparation for human exploratory missions and to develop a test plan for ground and ISS campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. Two scenarios for a Mars mission were selected: (i) with a 30 days stay on Mars, and (ii) with about 500 days stay on Mars. The impact on human health, perform-ance and well being has been investigated from the view point of (i) the effects of microgravity (during space travel), reduced gravity (on Mars) and abrupt gravity changes (during launch and landing), (ii) the effects of cosmic radiation including solar particle events, (iii) psychological issues as well as general health care. Coun-termeasures as well as necessary research using ground-based testbeds and/or the ISS have been defined. The need for highly intelligent autonomous diagnostic and therapy systems was emphasized. Advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential especially for the long-term Mars scenario. The considerations have been incorpo-rated into a roadmap for a future European strategy in human health issues for a potential European participation in a cooperative international exploration of our solar system by humans. Ref. Horneck et al, 2003, HUMEX, study on the Survivability and Adaptation of Humans to Long-Duration Exploratory Missions, ESA SP 1264
HUMEX, a study on the survivability and adaptation of humans to long- duration exploratory missions
NASA Astrophysics Data System (ADS)
Horneck, G.
ESA has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis was laid on human health and performance care as well as Advanced Life Support Developments including Bioregenerative Life Support Systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the Life Sciences and Life Support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of Advanced Life Support Developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and ISS campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. A lunar base at the south pole where constant sunlight and potential water ice deposits could be assumed was selected as the moon scenario. the impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground- based testbeds and/or the ISS have been defined. The need for highly intelligent autonomous diagnostic and therapy systems was considered as a driver also for terrestrial applications. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnistic systems become essential especially for the long-term Mars scenario. A roadmap for a future European strategy leading to a potential European participation in a cooperative human exploratory mission, either to the Moon or to Mars, was produced. Ref. Horneck et al. HUMEX, study on the Survivability and Adaptation of Humans to Long-Duration Exploratory Missions, ESA SP (in press)
Back pain in space and post-flight spine injury: Mechanisms and countermeasure development
NASA Astrophysics Data System (ADS)
Sayson, Jojo V.; Lotz, Jeffrey; Parazynski, Scott; Hargens, Alan R.
2013-05-01
During spaceflight many astronauts experience moderate to severe lumbar pain and deconditioning of paraspinal muscles. There is also a significant incidence of herniated nucleus pulposus (HNP) in astronauts post-flight being most prevalent in cervical discs. Relief of in-flight lumbar back pain is facilitated by assuming a knee-to-chest position. The pathogenesis of lumbar back pain during spaceflight is most likely discogenic and somatic referred (from the sinuvertebral nerves) due to supra-physiologic swelling of the lumbar intervertebral discs (IVDs) due to removal of gravitational compressive loads in microgravity. The knee-to-chest position may reduce lumbar back pain by redistributing stresses through compressive loading to the IVDs, possibly reducing disc volume by fluid outflow across IVD endplates. IVD stress redistribution may reduce Type IV mechanoreceptor nerve impulse propagation in the annulus fibrosus and vertebral endplate resulting in centrally mediated pain inhibition during spinal flexion. Countermeasures for lumbar back pain may include in-flight use of: (1) an axial compression harness to prevent excessive IVD expansion and spinal column elongation; (2) the use of an adjustable pulley exercise developed to prevent atrophy of spine muscle stabilisers; and (3) other exercises that provide Earth-like annular stress with low-load repetitive active spine rotation movements. The overall objective of these countermeasures is to promote IVD health and to prevent degenerative changes that may lead to HNPs post-flight. In response to "NASA's Critical Path Roadmap Risks and Questions" regarding disc injury and higher incidence of HNPs after space flight (Integrated Research Plan Gap-B4), future studies will incorporate pre- and post-flight imaging of International Space Station long-duration crew members to investigate mechanisms of lumbar back pain as well as degeneration and damage to spinal structures. Quantitative results on morphological, biochemical, metabolic, and kinematic spinal changes in the lumbar spine may aid further development of countermeasures to prevent lumbar back pain in microgravity and reduce the incidence of HNPs post-flight.
Twenty-Five Year Site Plan FY2013 - FY2037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, William H.
2012-07-12
Los Alamos National Laboratory (the Laboratory) is the nation's premier national security science laboratory. Its mission is to develop and apply science and technology to ensure the safety, security, and reliability of the United States (U.S.) nuclear stockpile; reduce the threat of weapons of mass destruction, proliferation, and terrorism; and solve national problems in defense, energy, and the environment. The fiscal year (FY) 2013-2037 Twenty-Five Year Site Plan (TYSP) is a vital component for planning to meet the National Nuclear Security Administration (NNSA) commitment to ensure the U.S. has a safe, secure, and reliable nuclear deterrent. The Laboratory also usesmore » the TYSP as an integrated planning tool to guide development of an efficient and responsive infrastructure that effectively supports the Laboratory's missions and workforce. Emphasizing the Laboratory's core capabilities, this TYSP reflects the Laboratory's role as a prominent contributor to NNSA missions through its programs and campaigns. The Laboratory is aligned with Nuclear Security Enterprise (NSE) modernization activities outlined in the NNSA Strategic Plan (May 2011) which include: (1) ensuring laboratory plutonium space effectively supports pit manufacturing and enterprise-wide special nuclear materials consolidation; (2) constructing the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRR-NF); (3) establishing shared user facilities to more cost effectively manage high-value, experimental, computational and production capabilities; and (4) modernizing enduring facilities while reducing the excess facility footprint. Th is TYSP is viewed by the Laboratory as a vital planning tool to develop an effi cient and responsive infrastructure. Long range facility and infrastructure development planning are critical to assure sustainment and modernization. Out-year re-investment is essential for sustaining existing facilities, and will be re-evaluated on an annual basis. At the same time, major modernization projects will require new line-item funding. This document is, in essence, a roadmap that defines a path forward for the Laboratory to modernize, streamline, consolidate, and sustain its infrastructure to meet its national security mission.« less
The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterling, John; Davidovich, Ted; Cory, Karlynn
2015-09-01
This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the utility in the best position for addressing solar in the future. Solar growth and the emergence of new technologies will change the electric utility of tomorrow. Although not every utility, region, or market will change in the same way or magnitude, developing a path forward will be needed to reach the Electric System of the Future in the coming decades. In this report, a series of potential future states are identified that could result in drastically different energy mixesmore » and profiles: 1) Business as Usual, 2) Low Carbon, Centralized Generation, 3) Rapid Distributed Energy Resource Growth, 4) Interactivity of Both the Grid and Demand, and 5) Grid or Load Defection. Complicating this process are a series of emerging disruptions; decisions or events that will cause the electric sector to change. Understanding and preparing for these items is critical for the transformation to any of the future states to be successful. Predicting which future state will predominate 15 years from now is not possible; however, utilities still will need to look ahead and try to anticipate how factors will impact their planning, operations, and business models. In order to dig into the potential transformations facing the utility industry, the authors conducted a series of utility interviews, held a working session at a major industry solar conference, and conducted a quantitative survey. To focus conversations, the authors leveraged the Rapid Distributed Energy Resource (DER) Growth future to draw out how utilities would have to adapt from current processes and procedures in order to manage and thrive in that new environment. Distributed solar was investigated specifically, and could serve as a proxy resource for all distributed generation (DG). It can also provide the foundation for all DERs.« less
A unified framework for managing provenance information in translational research
2011-01-01
Background A critical aspect of the NIH Translational Research roadmap, which seeks to accelerate the delivery of "bench-side" discoveries to patient's "bedside," is the management of the provenance metadata that keeps track of the origin and history of data resources as they traverse the path from the bench to the bedside and back. A comprehensive provenance framework is essential for researchers to verify the quality of data, reproduce scientific results published in peer-reviewed literature, validate scientific process, and associate trust value with data and results. Traditional approaches to provenance management have focused on only partial sections of the translational research life cycle and they do not incorporate "domain semantics", which is essential to support domain-specific querying and analysis by scientists. Results We identify a common set of challenges in managing provenance information across the pre-publication and post-publication phases of data in the translational research lifecycle. We define the semantic provenance framework (SPF), underpinned by the Provenir upper-level provenance ontology, to address these challenges in the four stages of provenance metadata: (a) Provenance collection - during data generation (b) Provenance representation - to support interoperability, reasoning, and incorporate domain semantics (c) Provenance storage and propagation - to allow efficient storage and seamless propagation of provenance as the data is transferred across applications (d) Provenance query - to support queries with increasing complexity over large data size and also support knowledge discovery applications We apply the SPF to two exemplar translational research projects, namely the Semantic Problem Solving Environment for Trypanosoma cruzi (T.cruzi SPSE) and the Biomedical Knowledge Repository (BKR) project, to demonstrate its effectiveness. Conclusions The SPF provides a unified framework to effectively manage provenance of translational research data during pre and post-publication phases. This framework is underpinned by an upper-level provenance ontology called Provenir that is extended to create domain-specific provenance ontologies to facilitate provenance interoperability, seamless propagation of provenance, automated querying, and analysis. PMID:22126369
A path integral approach to the full Dicke model with dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Aparicio Alcalde, M.; Stephany, J.; Svaiter, N. F.
2011-12-01
We consider the full Dicke spin-boson model composed by a single bosonic mode and an ensemble of N identical two-level atoms with different couplings for the resonant and anti-resonant interaction terms, and incorporate a dipole-dipole interaction between the atoms. Assuming that the system is in thermal equilibrium with a reservoir at temperature β-1, we compute the free energy in the thermodynamic limit N → ∞ in the saddle-point approximation to the path integral and determine the critical temperature for the super-radiant phase transition. In the zero temperature limit, we recover the critical coupling of the quantum phase transition, presented in the literature.
Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System experiment
NASA Technical Reports Server (NTRS)
Dixon, T. H.; Wolf, S. Kornreich
1990-01-01
Wet tropospheric path delay can be a major error source for Global Positioning System (GPS) geodetic experiments. Strategies for minimizing this error are investigted using data from CASA Uno, the first major GPS experiment in Central and South America, where wet path delays may be both high and variable. Wet path delay calibration using water vapor radiometers (WVRs) and residual delay estimation is compared with strategies where the entire wet path delay is estimated stochastically without prior calibration, using data from a 270-km test baseline in Costa Rica. Both approaches yield centimeter-level baseline repeatability and similar tropospheric estimates, suggesting that WVR calibration is not critical for obtaining high precision results with GPS in the CASA region.
On the Distribution of Free Path Lengthsfor the Periodic Lorentz Gas
NASA Astrophysics Data System (ADS)
Bourgain, Jean; Golse, François; Wennberg, Bernt
Consider the domain
Transport processes in biomedical systems: a roadmap for future research directions.
Schmid-Schönbein, Geert W; Diller, Kenneth R
2005-09-01
A workshop was convened at Bethesda, Maryland on May 5 and 6, 2004 under the sponsorship of the NSF and NIH with the objectives of identifying emerging intellectual opportunities and applications in biotransport sciences and of guiding future research in the field. Approximately 50 leading researchers in the fields of fluid, heat, and mass biotransport were presented forward-looking perspectives and discussed how to synthesize broad cross-disciplinary areas: this defined guidelines for a roadmap document. Applications were presented in the context of disease analysis and diagnosis, therapy and prevention, and for physiologic and engineered living systems. The roadmap prioritizes specific research thrusts that reflect projected impacts on intellectuals, medical, and biological advances. Several overarching themes emerged. Most central is the expanded integration of fundamental transport sciences into the understanding of living systems and the great potential of patient specific modeling in designing a broad array of medical procedures.
Engineering Effort Needed to Design Spacecraft with Radiation Constraints
NASA Technical Reports Server (NTRS)
Singleterry, Robert C., Jr.
2005-01-01
A roadmap is articulated that describes what is needed to allow designers, to include researchers, management, and engineers, to investigate, design, build, test, and fly spacecraft that meet the mission requirements yet, be as low cost as possible. This roadmap describes seven levels of tool fidelity and application: 1) Mission Speculation, 2) Management Overview, 3) Mission Design, 4) Detailed Design, 5) Simulation and Training, 6) Operations, and 7) Research. The interfaces and output are described in top-level detail along with the transport engines needed, and deficiencies are noted. This roadmap, if implemented, will allow Multidisciplinary Optimization (MDO) ideas to incorporate radiation concerns. Also, as NASA moves towards Simulation Based Acquisition (SBA), these tools will facilitate the appropriate spending of government money. Most of the tools needed to serve these levels do not exist or exist in pieces and need to be integrated to create the tool.
Technology Area Roadmap for In Space Propulsion Technologies
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny
2010-01-01
This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.
Mission Assurance Modeling and Simulation: A Cyber Security Roadmap
NASA Technical Reports Server (NTRS)
Gendron, Gerald; Roberts, David; Poole, Donold; Aquino, Anna
2012-01-01
This paper proposes a cyber security modeling and simulation roadmap to enhance mission assurance governance and establish risk reduction processes within constrained budgets. The term mission assurance stems from risk management work by Carnegie Mellon's Software Engineering Institute in the late 19905. By 2010, the Defense Information Systems Agency revised its cyber strategy and established the Program Executive Officer-Mission Assurance. This highlights a shift from simply protecting data to balancing risk and begins a necessary dialogue to establish a cyber security roadmap. The Military Operations Research Society has recommended a cyber community of practice, recognizing there are too few professionals having both cyber and analytic experience. The authors characterize the limited body of knowledge in this symbiotic relationship. This paper identifies operational and research requirements for mission assurance M&S supporting defense and homeland security. M&S techniques are needed for enterprise oversight of cyber investments, test and evaluation, policy, training, and analysis.
Environmental Control and Life Support (ECLS) Integrated Roadmap Development
NASA Technical Reports Server (NTRS)
Metcalf, Jordan L.; Carrasquillo, Robyn; Bagdigian, Bob; Peterson, Laurie
2011-01-01
This white paper documents a roadmap for development of Environmental Control and Life Support (ECLS) Systems (ECLSS) capabilities required to enable beyond-Low Earth Orbit (LEO) Exploration missions. In many cases, the execution of this Exploration-based roadmap will directly benefit International Space Station (ISS) operational capability by resolving known issues and/or improving overall system reliability. In addition, many of the resulting products will be applicable across multiple Exploration elements such as Multi-Purpose Crew Vehicle (MPCV), Multi-Mission Space Exploration Vehicle (MMSEV), Deep Space Habitat (DSH), and Landers. Within the ECLS community, this white paper will be a unifying tool that will improve coordination of resources, common hardware, and technologies. It will help to align efforts to focus on the highest priority needs that will produce life support systems for future human exploration missions that will simply run in the background, requiring minimal crew interaction.
Comprehensive Smart Grid Planning in a Regulated Utility Environment
NASA Astrophysics Data System (ADS)
Turner, Matthew; Liao, Yuan; Du, Yan
2015-06-01
This paper presents the tools and exercises used during the Kentucky Smart Grid Roadmap Initiative in a collaborative electric grid planning process involving state regulators, public utilities, academic institutions, and private interest groups. The mandate of the initiative was to assess the existing condition of smart grid deployments in Kentucky, to enhance understanding of smart grid concepts by stakeholders, and to develop a roadmap for the deployment of smart grid technologies by the jurisdictional utilities of Kentucky. Through involvement of many important stakeholder groups, the resultant Smart Grid Deployment Roadmap proposes an aggressive yet achievable strategy and timetable designed to promote enhanced availability, security, efficiency, reliability, affordability, sustainability and safety of the electricity supply throughout the state while maintaining Kentucky's nationally competitive electricity rates. The models and methods developed for this exercise can be utilized as a systematic process for the planning of coordinated smart grid deployments.
Velocity Inversion In Cylindrical Couette Gas Flows
NASA Astrophysics Data System (ADS)
Dongari, Nishanth; Barber, Robert W.; Emerson, David R.; Zhang, Yonghao; Reese, Jason M.
2012-05-01
We investigate a power-law probability distribution function to describe the mean free path of rarefied gas molecules in non-planar geometries. A new curvature-dependent model is derived by taking into account the boundary-limiting effects on the molecular mean free path for surfaces with both convex and concave curvatures. In comparison to a planar wall, we find that the mean free path for a convex surface is higher at the wall and exhibits a sharper gradient within the Knudsen layer. In contrast, a concave wall exhibits a lower mean free path near the surface and the gradients in the Knudsen layer are shallower. The Navier-Stokes constitutive relations and velocity-slip boundary conditions are modified based on a power-law scaling to describe the mean free path, in accordance with the kinetic theory of gases, i.e. transport properties can be described in terms of the mean free path. Velocity profiles for isothermal cylindrical Couette flow are obtained using the power-law model. We demonstrate that our model is more accurate than the classical slip solution, especially in the transition regime, and we are able to capture important non-linear trends associated with the non-equilibrium physics of the Knudsen layer. In addition, we establish a new criterion for the critical accommodation coefficient that leads to the non-intuitive phenomena of velocity-inversion. Our results are compared with conventional hydrodynamic models and direct simulation Monte Carlo data. The power-law model predicts that the critical accommodation coefficient is significantly lower than that calculated using the classical slip solution and is in good agreement with available DSMC data. Our proposed constitutive scaling for non-planar surfaces is based on simple physical arguments and can be readily implemented in conventional fluid dynamics codes for arbitrary geometric configurations.
Channel Modelling and Performance of Non-Line-of-Sight Ultraviolet Scattering Communications
2012-01-01
Avalanche photodiode (APD) detectors are also rapidly being developed [6, 7]. These device advances have inspired recent research in LED-based short...response and path loss results for outdoor NLOS UV communication channels in Section 3. The impulse response modelling describes UV pulse broadening via...Both the impulse response and path loss are critical to communication system design and performance assessment. Although pulse broadening creates inter
Roadmap to Secure Control Systems in the Water Sector
2008-03-01
solutions for ICS security. The purposes of this roadmap are as follows: • Define a consensus-based framework that articulates strategies of owners and...each failure is manageable in itself • Be used as ransomware 400,000 persons, and was estimated by the Center for Disease Control (CDC) to cost a total...and focused efforts. The water sector has developed and will pursue a set of strategic goals articulating these ambitions. These goals will help
Technology Interdependency Roadmaps for Space Operations
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1995-01-01
The requirements for Space Technology are outlined in terms of NASA Strategic Plan. The national emphasis on economic revitalization is described along with the environmental changes needed for the new direction. Space Technology Interdependency (STI) is elaborated in terms of its impact on national priority on science, education, and economy. Some suggested approaches to strengthening STI are outlined. Finally, examples of Technology Roadmaps for Space Operations area are included to illustrate the value of STI for national cohesiveness and economic revitalization.
Design Through Analysis (DTA) roadmap vision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blacker, Teddy Dean; Adams, Charles R.; Hoffman, Edward L.
2004-10-01
The Design through Analysis Realization Team (DART) will provide analysts with a complete toolset that reduces the time to create, generate, analyze, and manage the data generated in a computational analysis. The toolset will be both easy to learn and easy to use. The DART Roadmap Vision provides for progressive improvements that will reduce the Design through Analysis (DTA) cycle time by 90-percent over a three-year period while improving both the quality and accountability of the analyses.
Pittenger, Amy L; Copeland, Debra A; Lacroix, Matthew M; Masuda, Quamrun N; Mbi, Peter; Medina, Melissa S; Miller, Susan M; Stolte, Scott K; Plaza, Cecilia M
2017-06-01
The purpose of this report is to: 1) Identify linkages across the EPA statements, Center for the Advancement of Pharmacy Education 2013 Educational Outcomes (CAPE 2013) and the Joint Commission of Pharmacy Practitioners' Pharmacist Patient Care Process (PPCP); 2) Provide ways EPA statements can be used to communicate core skills that are part of the entry-level pharmacist identity; 3) Suggest a potential roadmap for AACP members on how to implement EPA statements.
Extended charge banking model of dual path shocks for implantable cardioverter defibrillators
Dosdall, Derek J; Sweeney, James D
2008-01-01
Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561
[Model-based biofuels system analysis: a review].
Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin
2011-03-01
Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.
Ares Project Technology Assessment: Approach and Tools
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Tyson, Richard
2010-01-01
Technology assessments provide a status of the development maturity of specific technologies. Along with benefit analysis, the risks the project assumes can be quantified. Normally due to budget constraints, the competing technologies are prioritized and decisions are made which ones to fund. A detailed technology development plan is produced for the selected technologies to provide a roadmap to reach the desired maturity by the project s critical design review. Technology assessments can be conducted for both technology only tasks or for product development programs. This paper is primarily biased toward the product development programs. The paper discusses the Ares Project s approach to technology assessment. System benefit analysis, risk assessment, technology prioritization, and technology readiness assessment are addressed. A description of the technology readiness level tool being used is provided.
False Starts and Breakthroughs: Senior Thesis Research as a Critical Learning Process
ERIC Educational Resources Information Center
Schaus, Margaret; Snyder, Terry
2018-01-01
Every senior at Haverford College writes a thesis or its equivalent, conducting independent research with guidance from faculty and librarians. Students critically engage in investigative work in archives, field studies, and labs. In this article, librarians explore the way anthropology and history thesis writers do research to define paths toward…
Teaching Note: When a "Feminist Approach" Is Too Narrow
ERIC Educational Resources Information Center
Bondestam, Fredrik
2011-01-01
For feminist literary critics and teachers writing about and teaching literature "after feminism," the path is potentially treacherous. Feminist literary criticism, if it is applied too narrowly and used to reject complex literary texts that do not uphold an imagined feminist standard of "positive images" of women, can end up undermining other…
Converging Paths: Creativity Research and Educational Practice
ERIC Educational Resources Information Center
Hanson, Michael Hanchett
2014-01-01
Education has long been a central issue for creativity research, and the integration of creativity and education has remained a goal and controversy. In spite of over sixty years of trying to bring creativity into education, education is often criticized for not teaching creative thinking, while also criticized from other quarters for not meeting…
Retrieving Immortal Questions, Initiating Immortal Conversations
ERIC Educational Resources Information Center
Duarte, Eduardo M.
2012-01-01
In his presidential address, which is included in this collection of papers, Kip Kline suggests that the time has arrived to redirect the work of philosophy of education away from the path of critical theory, and thus to depart from what he described as the discourse of "parrhesia." The author takes Kline's critique of critical philosophy of…
ERIC Educational Resources Information Center
Phan, Huy Phuong
2009-01-01
Research exploring students' academic learning has recently amalgamated different motivational theories within one conceptual framework. The inclusion of achievement goals, self-efficacy, deep processing and critical thinking has been cited in a number of studies. This article discusses two empirical studies that examined these four theoretical…
Structural factoring approach for analyzing stochastic networks
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
NASA Astrophysics Data System (ADS)
Goodrich, J. P.; Zona, D.; Gioli, B.; Murphy, P.; Burba, G. G.; Oechel, W. C.
2015-12-01
Expanding eddy covariance measurements of CO2 and CH4 fluxes in the Arctic is critical for refining the global C budget. Continuous measurements are particularly challenging because of the remote locations, low power availability, and extreme weather conditions. The necessity for tailoring instrumentation at different sites further complicates the interpretation of results and may add uncertainty to estimates of annual CO2 budgets. We investigated the influence of different sensor combinations on FCO2, latent heat (LE), and FCH4, and assessed the differences in annual FCO2 estimated with different instrumentation at the same sites. Using data from four sites across the North Slope of Alaska, we resolved FCO2 and FCH4 to within 5% using different combinations of open- and closed-path gas analyzers and within 10% using heated and non-heated anemometers. A continuously heated anemometer increased data coverage relative to non-heated anemometers while resulting in comparable annual FCO2, despite over-estimating sensible heat fluxes by 15%. We also implemented an intermittent heating strategy whereby activation only when ice or snow blockage of the transducers was detected. This resulted in comparable data coverage (~ 60%) to the continuously heated anemometer, while avoiding potential over-estimation of sensible heat and gas fluxes. We found good agreement in FCO2 and FCH4 from two closed-path and one open-path gas analyzer, despite the need for large spectral corrections of closed-path fluxes and density and temperature corrections to open-path sensors. However, data coverage was generally greater when using closed-path, especially during cold seasons (36-40% vs 10-14% for the open path), when fluxes from Arctic regions are particularly uncertain and potentially critical to annual C budgets. Measurement of Arctic LE remains a challenge due to strong attenuation along sample tubes, even when heated, that could not be accounted for with spectral corrections.
NASA Technology Area 07: Human Exploration Destination Systems Roadmap
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth objects (NEOs), which > 95% are asteroidal bodies, Phobos, Deimos, Mars, and beyond. The HEDS technology roadmap will strategically guide NASA and other U.S. Government agency technology investments that will result in capabilities enabling human exploration missions to diverse destinations generating high returns on investments.
A molecular fragment cheminformatics roadmap for mesoscopic simulation.
Truszkowski, Andreas; Daniel, Mirco; Kuhn, Hubert; Neumann, Stefan; Steinbeck, Christoph; Zielesny, Achim; Epple, Matthias
2014-12-01
Mesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application. The molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted f SMILES) with connected molecular fragments to represent a molecular structure. The f SMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software. Mesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and conceptual usage hurdles. Molecular Fragment Cheminformatics may be regarded as a crucial accelerator to propagate MFD and similar mesoscopic simulation techniques in the molecular sciences. Graphical abstractA molecular fragment cheminformatics roadmap for mesoscopic simulation.
Zhang, Qiu; Kong, De-yu; Li, Chun-jian; Chen, Bo; Jia, En-zhi; Chen, Lei-Lei; Jia, Qing-zhe; Dai, Zhen-hua; Zhu, Tian-tian; Chen, Jun; Liu, Jie; Zhu, Tie-bing; Yang, Zhi-jian; Cao, Ke-jiang
2013-02-01
To evaluate the feasibility, efficacy and safety of the percutaneous coronary intervention (PCI)guided by computed tomography (CT) coronary angiography derived roadmap and magnetic navigation system (MNS). During June 2011 and May 2012, thirty consecutive patients receiving elective PCI were enrolled, coronary artery disease was primarily diagnosed by dual-source CT coronary angiography (DSCT-CA) at outpatient clinic and successively proved by coronary artery angiography in the hospital. Target vessels from pre-procedure DSCT-CA were transferred to the magnetic navigation system, and consequently edited, reconstructed, and projected onto the live fluoroscopic screen as roadmap. Parameters including characters of the target lesions, time, contrast volume, radiation dosage for guidewire crossing, and complications of the procedure were recorded. Thirty patients with 36 lesions were recruited and intervened by PCI. Among the target lesions, sixteen were classified as type A, 11 as type B1, 8 as type B2, 1 as type C. The average length of the target lesions was (22.0 ± 9.8) mm, and the average stenosis of the target lesions was (81.3 ± 10.3)%. Under the guidance of CT roadmap and MNS, 36 target lesions were crossed by the magnetic guidewires, with a lesion crossing ratio of 100%. The time of placement of the magnetic guidewires was 92.5 (56.6 - 131.3) seconds. The contrast volume and the radiation dosage for guidewire placement were 0.0 (0.0 - 3.0) ml and 235.0 (123.5 - 395.1) µGym(2)/36.5 (21.3 - 67.8) mGy, respectively. Guidewires were successfully placed in 21 (58.3%) lesions without contrast agent. All enrolled vessels were successfully treated, and there were no MNS associated complications. It is feasible, effective and safe to initiate PCI under the guidance of CT derived roadmap and MNS. This method might be helpful for the guidewire placement in the treatment of total occlusions.
NASA Technical Reports Server (NTRS)
Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie
2012-01-01
NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap development process, findings, and recommendation
Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turteltaub, K W; Hartman-Siantar, C; Easterly, C
2005-10-03
A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus ofmore » gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology today, promising emerging technologies and references for further reading.« less
Roadmap on optical energy conversion
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; ...
2016-06-24
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in themore » optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. As a result, it is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.« less
What’s God got to do with it? Engaging African American faith-based institutions in HIV prevention
Nunn, Amy; Cornwall, Alexandra; Thomas, Gladys; Waller, Pastor Alyn; Friend, Rafiyq; Broadnax, Pastor Jay; Flanigan, Timothy
2013-01-01
African Americans are disproportionately infected and affected by HIV/AIDS. Although faith-based institutions play critical leadership roles in the African American community, the faith-based response to HIV/AIDS has historically been lacking. We explore recent successful strategies of a citywide HIV/AIDS awareness and testing campaign developed in partnership with 40 African American faith-based institutions in Philadelphia, Pennsylvania, a city with some of the United State’s highest HIV infection rates. Drawing on important lessons from the campaign and subsequent efforts to sustain the campaign’s momentum with a citywide HIV testing, treatment and awareness program, we provide a roadmap for engaging African American faith communities in HIV prevention that include partnering with faith leaders; engaging the media to raise awareness, destigmatising HIV/AIDS and encouraging HIV testing; and conducting educational and HIV testing events at houses of worship. African American faith based institutions have a critical role to play in raising awareness about the HIV/AIDS epidemic and for reducing racial disparities in HIV infection. PMID:23379422
Water: A Critical Material Enabling Space Exploration
NASA Technical Reports Server (NTRS)
Pickering, Karen D.
2014-01-01
Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.
Sczyrba, Alexander; Hofmann, Peter; Belmann, Peter; Koslicki, David; Janssen, Stefan; Dröge, Johannes; Gregor, Ivan; Majda, Stephan; Fiedler, Jessika; Dahms, Eik; Bremges, Andreas; Fritz, Adrian; Garrido-Oter, Ruben; Jørgensen, Tue Sparholt; Shapiro, Nicole; Blood, Philip D.; Gurevich, Alexey; Bai, Yang; Turaev, Dmitrij; DeMaere, Matthew Z.; Chikhi, Rayan; Nagarajan, Niranjan; Quince, Christopher; Meyer, Fernando; Balvočiūtė, Monika; Hansen, Lars Hestbjerg; Sørensen, Søren J.; Chia, Burton K. H.; Denis, Bertrand; Froula, Jeff L.; Wang, Zhong; Egan, Robert; Kang, Dongwan Don; Cook, Jeffrey J.; Deltel, Charles; Beckstette, Michael; Lemaitre, Claire; Peterlongo, Pierre; Rizk, Guillaume; Lavenier, Dominique; Wu, Yu-Wei; Singer, Steven W.; Jain, Chirag; Strous, Marc; Klingenberg, Heiner; Meinicke, Peter; Barton, Michael; Lingner, Thomas; Lin, Hsin-Hung; Liao, Yu-Chieh; Silva, Genivaldo Gueiros Z.; Cuevas, Daniel A.; Edwards, Robert A.; Saha, Surya; Piro, Vitor C.; Renard, Bernhard Y.; Pop, Mihai; Klenk, Hans-Peter; Göker, Markus; Kyrpides, Nikos C.; Woyke, Tanja; Vorholt, Julia A.; Schulze-Lefert, Paul; Rubin, Edward M.; Darling, Aaron E.; Rattei, Thomas; McHardy, Alice C.
2018-01-01
In metagenome analysis, computational methods for assembly, taxonomic profiling and binning are key components facilitating downstream biological data interpretation. However, a lack of consensus about benchmarking datasets and evaluation metrics complicates proper performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on datasets of unprecedented complexity and realism. Benchmark metagenomes were generated from ~700 newly sequenced microorganisms and ~600 novel viruses and plasmids, including genomes with varying degrees of relatedness to each other and to publicly available ones and representing common experimental setups. Across all datasets, assembly and genome binning programs performed well for species represented by individual genomes, while performance was substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below the family level. Parameter settings substantially impacted performances, underscoring the importance of program reproducibility. While highlighting current challenges in computational metagenomics, the CAMI results provide a roadmap for software selection to answer specific research questions. PMID:28967888
A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems
NASA Technical Reports Server (NTRS)
Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai Frank; Stoelting, Paul; Curran, Simon
2009-01-01
Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.
Relationship between total quality management, critical paths, and outcomes management.
Lynn, P A
1996-09-01
Total quality management (TQM), clinical paths, and outcomes management are high-profile strategies in today's health care environment. Each strategy is distinct, yet there are interrelationships among them. TQM supports a customer-focused organizational culture, providing tools and techniques to identify and solve problems. Clinical paths are tools for enhancing patient care coordination and for identifying system-wide and patient population specific issues. Outcomes management is an integrated system for measuring the results in patient populations over time. There is a recent shift in outcomes measurement towards expanding both the nature of the outcomes examined and the timeframes in which they are studied.
Fundamental changes to EPA's research enterprise: the path forward.
Anastas, Paul T
2012-01-17
Environmental protection in the United States has reached a critical juncture. It has become clear that to address the complex and interrelated environmental challenges we face, we must augment our traditional approaches. The scientific community must build upon its deep understanding of risk assessment, risk management, and reductionism with tools, technologies, insights and approaches to pursue sustainability. The U.S. Environmental Protection Agency (EPA) has recognized this need for systemic change by implementing a new research paradigm called "The Path Forward." This paper outlines the principles of the Path Forward and the actions taken since 2010 to align EPA's research efforts with the goal of sustainability.
Critique of Coleman's Theory of the Vanishing Cosmological Constant
NASA Astrophysics Data System (ADS)
Susskind, Leonard
In these lectures I would like to review some of the criticisms to the Coleman worm-hole theory of the vanishing cosmological constant. In particular, I would like to focus on the most fundamental assumption that the path integral over topologies defines a probability for the cosmological constant which has the form EXP(A) with A being the Baum-Hawking-Coleman saddle point. Coleman argues that the euclideam path integral over all geometries may be dominated by special configurations which consist of large smooth "spheres" connected by any number of narrow wormholes. Formally summing up such configurations gives a very divergent expression for the path integral…
2013-04-25
Room 2A534, 1155 Defense Pentagon, Washington, DC 20301-1155 1. DOCUMENTDESCruPTION a . TYPE b. TITLE Acoustical Engineering Controls and Estimated...Return on Investment for DoD Selected Report Hil!h Noise Sources: A Roadmap for Future Noise Control in Acquisition c. PAGE COUNT d. SUBJECT AREA...175 Acoustical Engineering - Noise Control - Acquisition 2. AUTHOR/SPEAKER a . NAME (Last, First, Middlo Initial) b. RANK c. TITLE Erdman, Joy GS-15
Electronic Combat Roadmap for Space.
1988-04-01
studies which are required to obtain the necessary data to create that roadmap. vii MO Chapter One INTRODUCTION This paper begins the effort to create an...zstems Information Study T 4ke the effort on threat sytmthe :,ope of the task call-ed for in Chapter Six In this area is also largs-e. Again, as a...firs-t step, a survey-level project should be done. This onp will Frobably be mcre difficult than. the one oln threat syteT because in a lot of cases
NASA In-Situ Resource Utilization Project-and Seals Challenges
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt; Linne, Diane
2006-01-01
A viewgraph presentation on NASA's In-Situ Resource Utilization Project and Seals Challenges is shown. The topics include: 1) What Are Space Resources?; 2) Space Resource Utilization for Exploration; 3) ISRU Enables Affordable, Sustainable & Flexible Exploration; 4) Propellant from the Moon Could Revolutionize Space Transportation; 5) NASA ISRU Capability Roadmap Study, 2005; 6) Timeline for ISRU Capability Implementation; 7) Lunar ISRU Implementation Approach; 8) ISRU Technical-to-Mission Capability Roadmap; 9) ISRU Resources & Products of Interest; and 10) Challenging Seals Requirements for ISRU.
2003-07-01
Centric Architecture Office ( NCAO ) should develop an RF communications/network management technology roadmap. The roadmap should serve two purposes: a...Centric Architecture Office ( NCAO ) chartered with integrating diverse DoD efforts to provide technical alternatives to the current form of radio...American people as a cornerstone of DoD’s leadership of the public trust in this area. The NCAO should be consolidated from ongoing NII, JTRS JPO and DDR
Xu, Li; Zhang, Kun; Wang, Jin
2014-01-01
We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell type switchings) from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect transdifferentiation with an initial dedifferentiation-reversion (reprogramming) to a pluripotent cell state. Each cell type is quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node bifurcation. Our model showed good agreements with the experiments. It provides a general framework to explore the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation. PMID:25133589
Global Surgery 2030: a roadmap for high income country actors.
Ng-Kamstra, Joshua S; Greenberg, Sarah L M; Abdullah, Fizan; Amado, Vanda; Anderson, Geoffrey A; Cossa, Matchecane; Costas-Chavarri, Ainhoa; Davies, Justine; Debas, Haile T; Dyer, George S M; Erdene, Sarnai; Farmer, Paul E; Gaumnitz, Amber; Hagander, Lars; Haider, Adil; Leather, Andrew J M; Lin, Yihan; Marten, Robert; Marvin, Jeffrey T; McClain, Craig D; Meara, John G; Meheš, Mira; Mock, Charles; Mukhopadhyay, Swagoto; Orgoi, Sergelen; Prestero, Timothy; Price, Raymond R; Raykar, Nakul P; Riesel, Johanna N; Riviello, Robert; Rudy, Stephen M; Saluja, Saurabh; Sullivan, Richard; Tarpley, John L; Taylor, Robert H; Telemaque, Louis-Franck; Toma, Gabriel; Varghese, Asha; Walker, Melanie; Yamey, Gavin; Shrime, Mark G
2016-01-01
The Millennium Development Goals have ended and the Sustainable Development Goals have begun, marking a shift in the global health landscape. The frame of reference has changed from a focus on 8 development priorities to an expansive set of 17 interrelated goals intended to improve the well-being of all people. In this time of change, several groups, including the Lancet Commission on Global Surgery, have brought a critical problem to the fore: 5 billion people lack access to safe, affordable surgical and anaesthesia care when needed. The magnitude of this problem and the world's new focus on strengthening health systems mandate reimagined roles for and renewed commitments from high income country actors in global surgery. To discuss the way forward, on 6 May 2015, the Commission held its North American launch event in Boston, Massachusetts. Panels of experts outlined the current state of knowledge and agreed on the roles of surgical colleges and academic medical centres; trainees and training programmes; academia; global health funders; the biomedical devices industry, and news media and advocacy organisations in building sustainable, resilient surgical systems. This paper summarises these discussions and serves as a consensus statement providing practical advice to these groups. It traces a common policy agenda between major actors and provides a roadmap for maximising benefit to surgical patients worldwide. To close the access gap by 2030, individuals and organisations must work collectively, interprofessionally and globally. High income country actors must abandon colonial narratives and work alongside low and middle income country partners to build the surgical systems of the future.
Global Surgery 2030: a roadmap for high income country actors
Greenberg, Sarah L M; Abdullah, Fizan; Amado, Vanda; Anderson, Geoffrey A; Cossa, Matchecane; Costas-Chavarri, Ainhoa; Davies, Justine; Debas, Haile T; Dyer, George S M; Erdene, Sarnai; Farmer, Paul E; Gaumnitz, Amber; Hagander, Lars; Haider, Adil; Leather, Andrew J M; Lin, Yihan; Marten, Robert; Marvin, Jeffrey T; McClain, Craig D; Meara, John G; Meheš, Mira; Mock, Charles; Mukhopadhyay, Swagoto; Orgoi, Sergelen; Prestero, Timothy; Price, Raymond R; Raykar, Nakul P; Riesel, Johanna N; Riviello, Robert; Rudy, Stephen M; Saluja, Saurabh; Sullivan, Richard; Tarpley, John L; Taylor, Robert H; Telemaque, Louis-Franck; Toma, Gabriel; Varghese, Asha; Walker, Melanie; Yamey, Gavin; Shrime, Mark G
2016-01-01
The Millennium Development Goals have ended and the Sustainable Development Goals have begun, marking a shift in the global health landscape. The frame of reference has changed from a focus on 8 development priorities to an expansive set of 17 interrelated goals intended to improve the well-being of all people. In this time of change, several groups, including the Lancet Commission on Global Surgery, have brought a critical problem to the fore: 5 billion people lack access to safe, affordable surgical and anaesthesia care when needed. The magnitude of this problem and the world's new focus on strengthening health systems mandate reimagined roles for and renewed commitments from high income country actors in global surgery. To discuss the way forward, on 6 May 2015, the Commission held its North American launch event in Boston, Massachusetts. Panels of experts outlined the current state of knowledge and agreed on the roles of surgical colleges and academic medical centres; trainees and training programmes; academia; global health funders; the biomedical devices industry, and news media and advocacy organisations in building sustainable, resilient surgical systems. This paper summarises these discussions and serves as a consensus statement providing practical advice to these groups. It traces a common policy agenda between major actors and provides a roadmap for maximising benefit to surgical patients worldwide. To close the access gap by 2030, individuals and organisations must work collectively, interprofessionally and globally. High income country actors must abandon colonial narratives and work alongside low and middle income country partners to build the surgical systems of the future. PMID:28588908
Strategy for D/He-3 fusion development
NASA Technical Reports Server (NTRS)
Santarius, John F.
1988-01-01
It is concluded that Deuterium/Helium-3 fusion faces a more difficult physics development path but an easier technology development path than does Deuterium/Tritium. Early D/He-3 tests in next generation D/T fusion experiments might provide a valuable D/He-3 proof-of-principle at modest cost. At least one high leverage alternate concept should be vigorously pursued. Space applications of D/He-3 fusion are critically important to large scale development.
Point-of-care technology: integration for improved delivery of care.
Gregory, Debbie; Buckner, Martha
2014-01-01
The growing complexity of technology, equipment, and devices involved in patient care delivery can be staggering and overwhelming. Technology is intended to be a tool to help clinicians, but it can also be a frustrating hindrance if not thoughtfully planned and strategically aligned. Critical care nurses are key partners in the collaborations needed to improve safety and quality through health information technology (IT). Nurses must advocate for systems that are interoperable and adapted to the context of care experiences. The involvement and collaboration between clinicians, information technology specialists, biomedical engineers, and vendors has never been more relevant and applicable. Working together strategically with a shared vision can effectively provide a seamless clinical workflow, maximize technology investments, and ultimately improve patient care delivery and outcomes. Developing a strategic integrated clinical and IT roadmap is a critical component of today's health care environment. How can technology strategy be aligned from the executive suite to the bedside caregiver? What is the model for using clinical workflows to drive technology adoption? How can the voice of the critical care nurse strengthen this process? How can success be assured from the initial assessment and selection of technology to a sustainable support model? What is the vendor's role as a strategic partner and "co-caregiver"?
Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie; Mireles, Omar
2012-01-01
A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).
WEAMR — A Weighted Energy Aware Multipath Reliable Routing Mechanism for Hotline-Based WSNs
Tufail, Ali; Qamar, Arslan; Khan, Adil Mehmood; Baig, Waleed Akram; Kim, Ki-Hyung
2013-01-01
Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs. PMID:23669714
WEAMR-a weighted energy aware multipath reliable routing mechanism for hotline-based WSNs.
Tufail, Ali; Qamar, Arslan; Khan, Adil Mehmood; Baig, Waleed Akram; Kim, Ki-Hyung
2013-05-13
Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs.
Off-highway vehicle technology roadmap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2002-02-07
The off-highway sector is under increasing pressure to reduce operating costs (including fuel costs) and to reduce emissions. Recognizing this, the Society of Automotive Engineers and the U.S. Department of Energy (DOE) convened a workshop in April 2001 (ANL 2001) to (1) determine the interest of the off-highway sector (consisting of agriculture, construction, surface mining, inland marine) in crafting a shared vision of off-highway, heavy machines of the future and (2) identify critical research and development (R&D) needs for minimizing off-highway vehicle emissions while cost-effectively maintaining or enhancing system performance. The workshop also enabled government and industry participants to exchangemore » information. During the workshop, it became clear that the challenges facing the heavy, surface-based off-highway sector can be addressed in three major machine categories: (1) engine/aftertreatment and fuels/lubes, (2) machine systems, and (3) thermal management. Working groups convened to address these topical areas. The status of off-highway technologies was determined, critical technical barriers to achieving future emission standards were identified, and strategies and technologies for reducing fuel consumption were discussed. Priority areas for R&D were identified. Given the apparent success of the discussions at the workshop, several participants from industry agreed to help in the formation of a joint industry/government ''roadmap'' team. The U.S. Department of Energy's Office of Heavy Vehicle Technologies has an extensive role in researching ways to make heavy-duty trucks and trains more efficient, with respect to both fuel usage and air emissions. The workshop participants felt that a joint industry/government research program that addresses the unique needs of the off-highway sector would complement the current research program for highway vehicles. With industry expertise, in-kind contributions, and federal government funding (coupled with the resources at the DOE's national laboratories), an effective program can be planned and executed. This document outlines potential technology R&D pathways to greatly reduce emissions from the off-highway sector and yet greatly reduce fuel costs cost-effectively and safely. The status of technology, technical targets, barriers, and technical approaches toward R&D are presented. Program schedule and milestones are included.« less
Solar Sail Roadmap Mission GN and C Challenges
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.
2005-01-01
The NASA In-Space Propulsion program is funding development work for solar sails to enhance future scientific opportunities. Key to this effort are scientific solar sail roadmap missions identified by peer review. The two near-term missions of interest are L1 Diamond and Solar Polar Imager. Additionally, the New Millennium Program is sponsoring the Space Technology 9 (ST9) demonstration mission. Solar sails are one of five technologies competing for the ST9 flight demonstration. Two candidate solar sail missions have been identified for a potential ST9 flight. All the roadmap missions and candidate flight demonstration missions face various GN&C challenges. A variety of efforts are underway to address these challenges. These include control actuator design and testing, low thrust optimization studies, attitude control system design and modeling, control-structure interaction studies, trajectory control design, and solar radiation pressure model development. Here we survey the various efforts underway and identify a few of specific recent interest and focus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.
2012-09-14
The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineeringmore » Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.
2012-09-01
Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S.more » Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).« less
A systems engineering approach to AIS accreditation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, L.M.; Hunteman, W.J.
1994-04-01
The systems engineering model provides the vehicle for communication between the developer and the customer by presenting system facts and demonstrating the system in an organized form. The same model provides implementors with views of the system`s function and capability. The authors contend that the process of obtaining accreditation for a classified Automated Information System (AIS) adheres to the typical systems engineering model. The accreditation process is modeled as a ``roadmap`` with the customer represented by the Designed Accrediting Authority. The ``roadmap`` model reduces the amount of accreditation knowledge required of an AIS developer and maximizes the effectiveness of participationmore » in the accreditation process by making the understanding of accreditation a natural consequence of applying the model. This paper identifies ten ``destinations`` on the ``road`` to accreditation. The significance of each ``destination`` is explained, as are the potential consequences of its exclusion. The ``roadmap,`` which has been applied to a range of information systems throughout the DOE community, establishes a paradigm for the certification and accreditation of classified AISs.« less
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Tung, Ramona H.; Lee, Charles H.
2003-01-01
In this paper, we describe the development roadmap and discuss the various challenges of an evolvable and extensible multi-mission telecom planning and analysis framework. Our long-term goal is to develop a set of powerful flexible telecommunications analysis tools that can be easily adapted to different missions while maintain the common Deep Space Communication requirements. The ability of re-using the DSN ground models and the common software utilities in our adaptations has contributed significantly to our development efforts measured in terms of consistency, accuracy, and minimal effort redundancy, which can translate into shorter development time and major cost savings for the individual missions. In our roadmap, we will address the design principles, technical achievements and the associated challenges for following telecom analysis tools (i) Telecom Forecaster Predictor - TFP (ii) Unified Telecom Predictor - UTP (iii) Generalized Telecom Predictor - GTP (iv) Generic TFP (v) Web-based TFP (vi) Application Program Interface - API (vii) Mars Relay Network Planning Tool - MRNPT.
NASA Astrophysics Data System (ADS)
Hertz, P.
2003-03-01
The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trost, Alan L.
The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) has developed a research and development (R&D) roadmap for its research, development, and demonstration (RD&D) activities to ensure nuclear energy remains a compelling and viable energy option for the U.S. The roadmap defines NE RD&D activities and objectives that address the challenges to research, develop and demonstrate options to the current U.S commercial fuel cycle to enable the safe, secure, economic, and sustainable expansion of nuclear energy, while minimizing proliferation and terrorism risks expanding the use of nuclear power. The roadmap enables the development of technologies and other solutionsmore » that can improve the reliability, sustain the safety, and extend the life of current reactors. In addition, it will help to develop improvements in the affordability of the new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals.« less
NASA Technical Reports Server (NTRS)
Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad
2016-01-01
NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.
A Critical Investigation of Advanced Placement U.S. History Textbooks
ERIC Educational Resources Information Center
Cramer, Gregory J.
2012-01-01
This dissertation critically investigates how Advanced Placement (AP) U.S. History textbooks portray key events in Latino/a history. The investigation is made in light of claims made by the College Board, the ACLU, scholars, and federal and state governments that the Advanced Placement program is the path to educational equity for Latino/a…
Exploring Critical Factors of Self Concept among High Income Community College Graduates
ERIC Educational Resources Information Center
Rasul, Mohamad Sattar; Nor, Ahmad Rosli Mohd; Amat, Salleh; Rauf, Rose Amnah Abdul
2015-01-01
This study was undertaken to explore the critical factors influencing the self-concept of community college graduates in the development of their careers. Individuals with a positive self-concept are often associated with a good career choices and a well-panned career development path. Hence community college students should be girded with a…
Commentary: Youth Are Critical to Stemming the Worldwide Tide of Chronic Disease
ERIC Educational Resources Information Center
Baldwin, Wendy
2013-01-01
Adolescence is a critical developmental stage and an opportunity to set a positive course for future health and well-being. Adolescence may be the "last best chance" to address some of the behaviors that can have significant repercussions for an individual's health trajectory, specifically the path to noncommunicable diseases (NCDs). Why should…
Untrodden Paths: A Critical Conversation about Wilder Places in Outdoor Education
ERIC Educational Resources Information Center
Straker, Jo; Potter, Tom G.; Irwin, David
2017-01-01
This paper asks, what is the outdoors, and challenges conceptions of the role the outdoors play in education. It critically examines why a better understanding of the outdoors is important to outdoor education, how wilder places are essential to education, and how learning generated from these places can be translated into sustainable thinking and…
NASA Astrophysics Data System (ADS)
Yang, Bo; Li, Xiao-Teng; Chen, Wei; Liu, Jian; Chen, Xiao-Song
2016-10-01
Self-questioning mechanism which is similar to single spin-flip of Ising model in statistical physics is introduced into spatial evolutionary game model. We propose a game model with altruistic to spiteful preferences via weighted sums of own and opponent's payoffs. This game model can be transformed into Ising model with an external field. Both interaction between spins and the external field are determined by the elements of payoff matrix and the preference parameter. In the case of perfect rationality at zero social temperature, this game model has three different phases which are entirely cooperative phase, entirely non-cooperative phase and mixed phase. In the investigations of the game model with Monte Carlo simulation, two paths of payoff and preference parameters are taken. In one path, the system undergoes a discontinuous transition from cooperative phase to non-cooperative phase with the change of preference parameter. In another path, two continuous transitions appear one after another when system changes from cooperative phase to non-cooperative phase with the prefenrence parameter. The critical exponents v, β, and γ of two continuous phase transitions are estimated by the finite-size scaling analysis. Both continuous phase transitions have the same critical exponents and they belong to the same universality class as the two-dimensional Ising model. Supported by the National Natural Science Foundation of China under Grant Nos. 11121403 and 11504384
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Allan Ray
1987-05-01
Increases in high speed hardware have mandated studies in software techniques to exploit the parallel capabilities. This thesis examines the effects a run-time scheduler has on a multiprocessor. The model consists of directed, acyclic graphs, generated from serial FORTRAN benchmark programs by the parallel compiler Parafrase. A multitasked, multiprogrammed environment is created. Dependencies are generated by the compiler. Tasks are bidimensional, i.e., they may specify both time and processor requests. Processor requests may be folded into execution time by the scheduler. The graphs may arrive at arbitrary time intervals. The general case is NP-hard, thus, a variety of heuristics aremore » examined by a simulator. Multiprogramming demonstrates a greater need for a run-time scheduler than does monoprogramming for a variety of reasons, e.g., greater stress on the processors, a larger number of independent control paths, more variety in the task parameters, etc. The dynamic critical path series of algorithms perform well. Dynamic critical volume did not add much. Unfortunately, dynamic critical path maximizes turnaround time as well as throughput. Two schedulers are presented which balance throughput and turnaround time. The first requires classification of jobs by type; the second requires selection of a ratio value which is dependent upon system parameters. 45 refs., 19 figs., 20 tabs.« less
Wall, Stephen P; Lee, David C; Frangos, Spiros G; Sethi, Monica; Heyer, Jessica H; Ayoung-Chee, Patricia; DiMaggio, Charles J
2016-01-01
We conducted individual and ecologic analyses of prospectively collected data from 839 injured bicyclists who collided with motorized vehicles and presented to Bellevue Hospital, an urban Level-1 trauma center in New York City, from December 2008 to August 2014. Variables included demographics, scene information, rider behaviors, bicycle route availability, and whether the collision occurred before the road segment was converted to a bicycle route. We used negative binomial modeling to assess the risk of injury occurrence following bicycle path or lane implementation. We dichotomized U.S. National Trauma Data Bank Injury Severity Scores (ISS) into none/mild (0-8) versus moderate, severe, or critical (>8) and used adjusted multivariable logistic regression to model the association of ISS with collision proximity to sharrows (i.e., bicycle lanes designated for sharing with cars), painted bicycle lanes, or physically protected paths. Negative binomial modeling of monthly counts, while adjusting for pedestrian activity, revealed that physically protected paths were associated with 23% fewer injuries. Painted bicycle lanes reduced injury risk by nearly 90% (IDR 0.09, 95% CI 0.02-0.33). Holding all else equal, compared to no bicycle route, a bicycle injury nearby sharrows was nearly twice as likely to be moderate, severe, or critical (adjusted odds ratio 1.94; 95% confidence interval (CI) 0.91-4.15). Painted bicycle lanes and physically protected paths were 1.52 (95% CI 0.85-2.71) and 1.66 (95% CI 0.85-3.22) times as likely to be associated with more than mild injury respectively.
Establishment of the roadmap for chlorination process development for zirconium recovery and recycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, E.D.; Del Cul, G.D.; Spencer, B.B.
Process development studies are being conducted to recover, purify, and reuse the zirconium (about 98.5% by mass) in used nuclear fuel (UNF) zirconium alloy cladding. Feasibility studies began in FY 2010 using empty cladding hulls that were left after fuel dissolution or after oxidation to a finely divided oxide powder (voloxidation). In FY 2012, two industrial teams (AREVA and Shaw-Westinghouse) were contracted by the Department of Energy Office of Nuclear Energy (NE) to provide technical assistance to the project. In FY 2013, the NE Fuel Cycle Research and Development Program requested development of a technology development roadmap to guide futuremore » work. The first step in the roadmap development was to assess the starting point, that is, the current state of the technology and the end goal. Based on previous test results, future work is to be focused on first using chlorine as the chlorinating agent and secondly on the use of a process design that utilizes a chlorination reactor and dual ZrCl{sub 4} product salt condensers. The likely need for a secondary purification step was recognized. Completion of feasibility testing required an experiment on the chemical decladding flowsheet option. This was done during April 2013. The roadmap for process development will continue through process chemistry optimization studies, the chlorinated reactor design configuration, product salt condensers, and the off-gas trapping of tritium or other volatile fission products from the off-gas stream. (authors)« less