Sample records for critical point separating

  1. Surface representations of two- and three-dimensional fluid flow topology

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  2. Binary Colloidal Alloy Test-3 and 4: Critical Point

    NASA Technical Reports Server (NTRS)

    Weitz, David A.; Lu, Peter J.

    2007-01-01

    Binary Colloidal Alloy Test - 3 and 4: Critical Point (BCAT-3-4-CP) will determine phase separation rates and add needed points to the phase diagram of a model critical fluid system. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.

  3. Model for a Ferromagnetic Quantum Critical Point in a 1D Kondo Lattice

    NASA Astrophysics Data System (ADS)

    Komijani, Yashar; Coleman, Piers

    2018-04-01

    Motivated by recent experiments, we study a quasi-one-dimensional model of a Kondo lattice with ferromagnetic coupling between the spins. Using bosonization and dynamical large-N techniques, we establish the presence of a Fermi liquid and a magnetic phase separated by a local quantum critical point, governed by the Kondo breakdown picture. Thermodynamic properties are studied and a gapless charged mode at the quantum critical point is highlighted.

  4. Assessment of critical-fluid extractions in the process industries

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The potential for critical-fluid extraction as a separation process for improving the productive use of energy in the process industries is assessed. Critical-fluid extraction involves the use of fluids, normally gaseous at ambient conditions, as extraction solvents at temperatures and pressures around the critical point. Equilibrium and kinetic properties in this regime are very favorable for solvent applications, and generally allow major reductions in the energy requirements for separating and purifying chemical component of a mixture.

  5. Davies Critical Point and Tunneling

    NASA Astrophysics Data System (ADS)

    La, Hoseong

    2012-04-01

    From the point of view of tunneling, the physical meaning of the Davies critical point of a second-order phase transition in the black hole thermodynamics is clarified. At the critical point, the nonthermal contribution vanishes so that the black hole radiation is entirely thermal. It separates two phases: one with radiation enhanced by the nonthermal contribution, the other suppressed by the nonthermal contribution. We show this in both charged and rotating black holes. The phase transition is also analyzed in the cases in which emissions of charges and angular momenta are incorporated.

  6. Critical conditions of polymer adsorption and chromatography on non-porous substrates.

    PubMed

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-07-15

    We present a novel thermodynamic theory and Monte Carlo simulation model for adsorption of macromolecules to solid surfaces that is applied for calculating the chain partition during separation on chromatographic columns packed with non-porous particles. We show that similarly to polymer separation on porous substrates, it is possible to attain three chromatographic modes: size exclusion chromatography at very weak or no adsorption, liquid adsorption chromatography when adsorption effects prevail, and liquid chromatography at critical conditions that occurs at the critical point of adsorption. The main attention is paid to the analysis of the critical conditions, at which the retention is chain length independent. The theoretical results are verified with specially designed experiments on isocratic separation of linear polystyrenes on a column packed with non-porous particles at various solvent compositions. Without invoking any adjustable parameters related to the column and particle geometry, we describe quantitatively the observed transition between the size exclusion and adsorption separation regimes upon the variation of solvent composition, with the intermediate mode occurring at a well-defined critical point of adsorption. A relationship is established between the experimental solvent composition and the effective adsorption potential used in model simulations. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Heat capacity anomaly in a self-aggregating system: Triblock copolymer 17R4 in water

    NASA Astrophysics Data System (ADS)

    Dumancas, Lorenzo V.; Simpson, David E.; Jacobs, D. T.

    2015-05-01

    The reverse Pluronic, triblock copolymer 17R4 is formed from poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO): PPO14 - PEO24 - PPO14, where the number of monomers in each block is denoted by the subscripts. In water, 17R4 has a micellization line marking the transition from a unimer network to self-aggregated spherical micelles which is quite near a cloud point curve above which the system separates into copolymer-rich and copolymer-poor liquid phases. The phase separation has an Ising-like, lower consolute critical point with a well-determined critical temperature and composition. We have measured the heat capacity as a function of temperature using an adiabatic calorimeter for three compositions: (1) the critical composition where the anomaly at the critical point is analyzed, (2) a composition much less than the critical composition with a much smaller spike when the cloud point curve is crossed, and (3) a composition near where the micellization line intersects the cloud point curve that only shows micellization. For the critical composition, the heat capacity anomaly very near the critical point is observed for the first time in a Pluronic/water system and is described well as a second-order phase transition resulting from the copolymer-water interaction. For all compositions, the onset of micellization is clear, but the formation of micelles occurs over a broad range of temperatures and never becomes complete because micelles form differently in each phase above the cloud point curve. The integrated heat capacity gives an enthalpy that is smaller than the standard state enthalpy of micellization given by a van't Hoff plot, a typical result for Pluronic systems.

  8. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, Jr., Henry D.

    1993-01-01

    A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  9. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, H.D. Jr.

    1993-04-20

    A process is described for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  10. Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skraba, Primoz; Rosen, Paul; Wang, Bei

    Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with amore » guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. Here, we apply our method to synthetic and simulation datasets to demonstrate its effectiveness.« less

  11. Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion.

    PubMed

    Skraba, Primoz; Rosen, Paul; Wang, Bei; Chen, Guoning; Bhatia, Harsh; Pascucci, Valerio

    2016-02-29

    Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our method to synthetic and simulation datasets to demonstrate its effectiveness.

  12. Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion

    DOE PAGES

    Skraba, Primoz; Rosen, Paul; Wang, Bei; ...

    2016-02-29

    Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with amore » guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. Here, we apply our method to synthetic and simulation datasets to demonstrate its effectiveness.« less

  13. Competition of mesoscales and crossover to theta-point tricriticality in near-critical polymer solutions.

    PubMed

    Anisimov, M A; Kostko, A F; Sengers, J V; Yudin, I K

    2005-10-22

    The approach to asymptotic critical behavior in polymer solutions is governed by a competition between the correlation length of critical fluctuations diverging at the critical point of phase separation and an additional mesoscopic length scale, the radius of gyration. In this paper we present a theory for crossover between two universal regimes: a regime with Ising (fluctuation-induced) asymptotic critical behavior, where the correlation length prevails, and a mean-field tricritical regime with theta-point behavior controlled by the mesoscopic polymer chain. The theory yields a universal scaled description of existing experimental phase-equilibria data and is in excellent agreement with our light-scattering experiments on polystyrene solutions in cyclohexane with polymer molecular weights ranging from 2 x 10(5) up to 11.4 x 10(6). The experiments demonstrate unambiguously that crossover to theta-point tricriticality is controlled by a competition of the two mesoscales. The critical amplitudes deduced from our experiments depend on the polymer molecular weight as predicted by de Gennes [Phys. Lett. 26A, 313 (1968)]. Experimental evidence for the presence of logarithmic corrections to mean-field tricritical theta-point behavior in the molecular-weight dependence of the critical parameters is also presented.

  14. Nonequilibrium phase coexistence and criticality near the second explosion limit of hydrogen combustion

    NASA Astrophysics Data System (ADS)

    Newcomb, Lucas B.; Alaghemandi, Mohammad; Green, Jason R.

    2017-07-01

    While hydrogen is a promising source of clean energy, the safety and optimization of hydrogen technologies rely on controlling ignition through explosion limits: pressure-temperature boundaries separating explosive behavior from comparatively slow burning. Here, we show that the emergent nonequilibrium chemistry of combustible mixtures can exhibit the quantitative features of a phase transition. With stochastic simulations of the chemical kinetics for a model mechanism of hydrogen combustion, we show that the boundaries marking explosive domains of kinetic behavior are nonequilibrium critical points. Near the pressure of the second explosion limit, these critical points terminate the transient coexistence of dynamical phases—one that autoignites and another that progresses slowly. Below the critical point temperature, the chemistry of these phases is indistinguishable. In the large system limit, the pseudo-critical temperature converges to the temperature of the second explosion limit derived from mass-action kinetics.

  15. Measurement of Critical Adsorption of Nitrogen near Its Liquid-vapor Critical Point

    NASA Technical Reports Server (NTRS)

    Chan, Moses

    2003-01-01

    The density profile of a critical fluid near a solid surface is expected to show an universal shape. This is known as critical adsorption. The measurement of this effect, especially close to the critical point, is often obscured by gravity. We were able to separate the gravitational effect from critical adsorption by using two capacitors, one with a large gap and one with a small gap of approximately 2 m. Within the uncertainty in the measurement, our data, which ranges between 10(exp -3) to 2 x 10(exp -6) in reduced temperatures, is consistent with the predicted power law dependence. This work is carried out in collaboration with Rafael Garcia, Sarah Scheidemantel and Klaus Knorr. It is funded by NASA's office of Biological and Physical Researchunder.

  16. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-05-02

    Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.

  17. Wetting Behavior in Colloid-Polymer Mixtures at Different Substrates.

    PubMed

    Wijting, Willem K; Besseling, Nicolaas A M; Cohen Stuart, Martien A

    2003-09-25

    We present experimental observations on wetting phenomena in depletion interaction driven, phase separated colloidal dispersions. The contact angle of the colloidal liquid-gas interface at a solid substrate was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting. The interaction with the substrate was manipulated by modifying the substrate with a polymer. In that case, a transition from partial to complete drying is observed upon approach to the critical point.

  18. Spacelab experiment definition study on phase transition and critical phenomena in fluids: Interim report on experimental justification

    NASA Technical Reports Server (NTRS)

    Moldover, M. R.; Hocken, M. R.; Gammon, R. W.; Sengers, J. V.

    1976-01-01

    Pure fluids and fluid mixtures near critical points are identified and are related to the progress of several disciplines. Consideration is given to thermodynamic properties, transport properties, and the complex nonlinear phenomena which occur when fluids undergo phase transitions in the critical region. The distinction is made between practical limits which may be extended by advances in technology and intrinsic ones which arise from the modification of fluid properties by the earth's gravitational field. The kinds of experiments near critical points which could best exploit the low gravity environment of an orbiting laboratory are identified. These include studies of the index of refraction, constant volume specific heat, and phase separation.

  19. Behavior of an aeroelastic system beyond critical point of instability

    NASA Astrophysics Data System (ADS)

    Sekar, T. Chandra; Agarwal, Ravindra; Mandal, Alakesh Chandra; Kushari, Abhijit

    2017-11-01

    Understanding the behavior of an aeroelastic system beyond the critical point is essential for effective implementation of any active control scheme since the control system design depends on the type of instability (bifurcation) the system encounters. Previous studies had found the aeroelastic system to enter into chaos beyond the point of instability. In the present work, an attempt has been made to carry out an experimental study on an aeroelastic model placed in a wind tunnel, to understand the behavior of aerodynamics around a wing section undergoing classical flutter. Wind speed was increased from zero until the model encountered flutter. Pressure at various locations along the surface of wing and acceleration at multiple points on the wing were measured in real time for the entire duration of experiment. A Leading Edge Separation Bubble (LSB) was observed beyond the critical point. The growing strength of the LSB with increasing wind speed was found to alter the aerodynamic moment acting on the system, which forced the system to enter into a second bifurcation. Based on the nature of the response, the system appears to undergo periodic doubling bifurcation rather than Hopf-bifurcation, resulting in chaotic motion. Eliminating the LSB can help in preventing the system from entering chaos. Any active flow control scheme that can avoid or counter the formation of leading edge separation bubble can be a potential solution to control the classical flutter.

  20. Conditions for extreme sensitivity of protein diffusion in membranes to cell environments

    PubMed Central

    Tserkovnyak, Yaroslav; Nelson, David R.

    2006-01-01

    We study protein diffusion in multicomponent lipid membranes close to a rigid substrate separated by a layer of viscous fluid. The large-distance, long-time asymptotics for Brownian motion are calculated by using a nonlinear stochastic Navier–Stokes equation including the effect of friction with the substrate. The advective nonlinearity, neglected in previous treatments, gives only a small correction to the renormalized viscosity and diffusion coefficient at room temperature. We find, however, that in realistic multicomponent lipid mixtures, close to a critical point for phase separation, protein diffusion acquires a strong power-law dependence on temperature and the distance to the substrate H, making it much more sensitive to cell environment, unlike the logarithmic dependence on H and very small thermal correction away from the critical point. PMID:17008402

  1. Electric field effects on a near-critical fluid in microgravity

    NASA Technical Reports Server (NTRS)

    Zimmerli, G.; Wilkinson, R. A.; Ferrell, R. A.; Hao, H.; Moldover, M. R.

    1994-01-01

    The effects of an electric field on a sample of SF6 fluid in the vicinity of the liquid-vapor critical point is studied. The isothermal increase of the density of a near-critical sample as a function of the applied electric field was measured. In agreement with theory, this electrostriction effect diverges near the critical point as the isothermal compressibility diverges. Also as expected, turning on the electric field in the presence of density gradients can induce flow within the fluid, in a way analogous to turning on gravity. These effects were observed in a microgravity environment by using the Critical Point Facility which flew onboard the Space Shuttle Columbia in July 1994 as part of the Second International Microgravity Laboratory Mission. Both visual and interferometric images of two separate sample cells were obtained by means of video downlink. The interferometric images provided quantitative information about the density distribution throughout the sample. The electric field was generated by applying 500 Volts to a fine wire passing through the critical fluid.

  2. Critical rotational speed model of the rotating roll electrode in corona electrostatic separation for recycling waste printed circuit boards.

    PubMed

    Li, Jia; Lu, Hongzhou; Xu, Zhenming; Zhou, Yaohe

    2008-06-15

    Waste printed circuit board (PCB) is increasing worldwide. The corona electrostatic separation (CES) was an effective and environmental protection way to recycle resource from waste PCBs. The aim of this paper is to analyze the main factor (rotational speed) that affects the efficiency of CES from the point of view of electrostatics and mechanics. A quantitative method for analyzing the affection of rotational speed was studied and the model for separating flat nonmetal particles in waste PCBs was established. The conception of "charging critical rotational speed" and "detaching critical rotational speed" were presented. Experiments with the waste PCBs verified the theoretical model, and the experimental results were in good agreement with the theoretical model. The results indicated that the purity and recycle percentage of materials got a good level when the rotational speed was about 70 rpm and the critical rotational speed of small particles was higher than big particles. The model can guide the definition of operator parameter and the design of CES, which are needed for the development of any new application of the electrostatic separation method.

  3. Nanoporous Materials Can Tune the Critical Point of a Pure Substance

    DOE PAGES

    Braun, Efrem; Chen, Joseph J.; Schnell, Sondre K.; ...

    2015-09-30

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. Lastly, as applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the abilitymore » to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.« less

  4. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.

    PubMed

    Park, Tuson; Ronning, F; Yuan, H Q; Salamon, M B; Movshovich, R; Sarrao, J L; Thompson, J D

    2006-03-02

    With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases. A maximum in the superconducting transition temperature T(c) develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T(c), preventing proof of a magnetic quantum-critical point. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T --> 0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model developed to explain field-induced magnetism in the high-T(c) copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn5.

  5. Strain-induced topological magnon phase transitions: applications to kagome-lattice ferromagnets

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2018-06-01

    A common feature of topological insulators is that they are characterized by topologically invariant quantity such as the Chern number and the index. This quantity distinguishes a nontrivial topological system from a trivial one. A topological phase transition may occur when there are two topologically distinct phases, and it is usually defined by a gap closing point where the topologically invariant quantity is ill-defined. In this paper, we show that the magnon bands in the strained (distorted) kagome-lattice ferromagnets realize an example of a topological magnon phase transition in the realistic parameter regime of the system. When spin–orbit coupling (SOC) is neglected (i.e. no Dzyaloshinskii–Moriya interaction), we show that all three magnon branches are dispersive with no flat band, and there exists a critical point where tilted Dirac and semi-Dirac point coexist in the magnon spectra. The critical point separates two gapless magnon phases as opposed to the usual phase transition. Upon the inclusion of SOC, we realize a topological magnon phase transition point at the critical strain , where D and J denote the perturbative SOC and the Heisenberg spin exchange interaction respectively. It separates two distinct topological magnon phases with different Chern numbers for and for . The associated anomalous thermal Hall conductivity develops an abrupt change at , due to the divergence of the Berry curvature in momentum space. The proposed topological magnon phase transition is experimentally feasible by applying external perturbations such as uniaxial strain or pressure.

  6. Structure of interfaces at phase coexistence. Theory and numerics

    NASA Astrophysics Data System (ADS)

    Delfino, Gesualdo; Selke, Walter; Squarcini, Alessio

    2018-05-01

    We compare results of the exact field theory of phase separation in two dimensions with Monte Carlo simulations for the q-state Potts model with boundary conditions producing an interfacial region separating two pure phases. We confirm in particular the theoretical predictions that below critical temperature the surplus of non-boundary colors appears in drops along a single interface, while for q  >  4 at critical temperature there is formation of two interfaces enclosing a macroscopic disordered layer. These qualitatively different structures of the interfacial region can be discriminated through a measurement at a single point for different system sizes.

  7. Investigation of Turbulent Boundary-Layer Separation Using Laser Velocimetry

    NASA Technical Reports Server (NTRS)

    Modarress, D.; Johnson, D. A.

    1979-01-01

    Boundary-layer measurements realized by laser velocimetry are presented for a Much 2.9, two-dimensional, shock-wave/turbulent boundary-layer interaction containing an extensive region of separated flow. Mean velocity and turbulent intensity profiles were obtained from upstream of the interaction zone to downstream of the mean reattachment point. The superiority of the laser velocimeter technique over pressure sensors in turbulent separated flows is demonstrated by a comparison of the laser velocimeter data with results obtained from local pilot and static pressure measurements for the same flow conditions. The locations of the mean separation and reattachment points as deduced from the mean velocity measurements are compared to oil-now visualization results. Representative velocity probability density functions obtained in the separated now region are also presented. Critical to the success of this investigation were: the use of Bragg cell frequency shifting and artificial seeding of the now with submicron light-scattering particles.

  8. Quantum Multicriticality near the Dirac-Semimetal to Band-Insulator Critical Point in Two Dimensions: A Controlled Ascent from One Dimension

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Foster, Matthew S.

    2018-01-01

    We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the ASM from the AFM and superconducting orders, respectively. Our phase diagram shows an intriguing interplay among CDW, AFM, and s -wave paired states that can be germane for a uniaxially strained optical honeycomb lattice for ultracold fermion atoms, or the organic compound α -(BEDT -TTF )2I3 .

  9. Thermoelastic Analysis of Hyper-X Camera Windows Suddenly Exposed to Mach 7 Stagnation Aerothermal Shock

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Gong, Leslie

    2000-01-01

    To visually record the initial free flight event of the Hyper-X research flight vehicle immediately after separation from the Pegasus(registered) booster rocket, a video camera was mounted on the bulkhead of the adapter through which Hyper-X rides on Pegasus. The video camera was shielded by a protecting camera window made of heat-resistant quartz material. When Hyper-X separates from Pegasus, this camera window will be suddenly exposed to Mach 7 stagnation thermal shock and dynamic pressure loading (aerothermal loading). To examine the structural integrity, thermoelastic analysis was performed, and the stress distributions in the camera windows were calculated. The critical stress point where the tensile stress reaches a maximum value for each camera window was identified, and the maximum tensile stress level at that critical point was found to be considerably lower than the tensile failure stress of the camera window material.

  10. Strain-induced topological magnon phase transitions: applications to kagome-lattice ferromagnets.

    PubMed

    Owerre, S A

    2018-06-20

    A common feature of topological insulators is that they are characterized by topologically invariant quantity such as the Chern number and the [Formula: see text] index. This quantity distinguishes a nontrivial topological system from a trivial one. A topological phase transition may occur when there are two topologically distinct phases, and it is usually defined by a gap closing point where the topologically invariant quantity is ill-defined. In this paper, we show that the magnon bands in the strained (distorted) kagome-lattice ferromagnets realize an example of a topological magnon phase transition in the realistic parameter regime of the system. When spin-orbit coupling (SOC) is neglected (i.e. no Dzyaloshinskii-Moriya interaction), we show that all three magnon branches are dispersive with no flat band, and there exists a critical point where tilted Dirac and semi-Dirac point coexist in the magnon spectra. The critical point separates two gapless magnon phases as opposed to the usual phase transition. Upon the inclusion of SOC, we realize a topological magnon phase transition point at the critical strain [Formula: see text], where D and J denote the perturbative SOC and the Heisenberg spin exchange interaction respectively. It separates two distinct topological magnon phases with different Chern numbers for [Formula: see text] and for [Formula: see text]. The associated anomalous thermal Hall conductivity develops an abrupt change at [Formula: see text], due to the divergence of the Berry curvature in momentum space. The proposed topological magnon phase transition is experimentally feasible by applying external perturbations such as uniaxial strain or pressure.

  11. Cluster geometry and survival probability in systems driven by reaction diffusion dynamics

    NASA Astrophysics Data System (ADS)

    Windus, Alastair; Jensen, Henrik J.

    2008-11-01

    We consider a reaction-diffusion model incorporating the reactions A→phi, A→2A and 2A→3A. Depending on the relative rates for sexual and asexual reproduction of the quantity A, the model exhibits either a continuous or first-order absorbing phase transition to an extinct state. A tricritical point separates the two phase lines. While we comment on this critical behaviour, the main focus of the paper is on the geometry of the population clusters that form. We observe the different cluster structures that arise at criticality for the three different types of critical behaviour and show that there exists a linear relationship for the survival probability against initial cluster size at the tricritical point only.

  12. Hot and cold water as a supercritical solvent

    NASA Astrophysics Data System (ADS)

    Fuentevilla, Daphne Anne

    This dissertation addresses the anomalous properties of water at high temperatures near the vapor-liquid critical point and at low temperatures in the supercooled liquid region. The first part of the dissertation is concerned with the concentration dependence of the critical temperature, density, and pressure of an aqueous sodium chloride solution. Because of the practical importance of an accurate knowledge of critical parameters for industrial, geochemical, and biological applications, an empirical equation for the critical locus of aqueous sodium chloride solutions was adopted in 1999 by the International Association for the Properties of Water and Steam (IAPWS) as a guideline. However, since this original Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride was developed, two new theoretical developments occurred, motivating the first part of this dissertation. Here, I present a theory-based formulation for the critical parameters of aqueous sodium chloride solutions as a proposed replacement for the empirical formulation currently in use. This formulation has been published in the International Journal of Thermophysics and recommended by the Executive Committee of IAPWS for adoption as a Revised Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride. The second part of the dissertation addresses a new concept, considering cold water as a supercritical solvent. Based on the idea of a second, liquid-liquid, critical point in supercooled water, we explore the possibility of supercooled water as a novel supercooled solvent through the thermodynamics of critical phenomena. In 2006, I published a Physical Review letter presenting a parametric scaled equation of state for supercooled-water. Further developments based on this work led to a phenomenological mean-field "two-state" model, clarifying the nature of the phase separation in a polyamorphic single-component liquid. In this dissertation, I modify this two-state model to incorporate solutes. Critical lines emanating from the pure-water critical point show how even small additions of solute may significantly affect the thermodynamic properties and phase behavior of supercooled aqueous solutions. Some solutes, such as glycerol, can prevent spontaneous crystallization, thus making liquid-liquid separation in supercooled water experimentally accessible. This work will help in resolving the question on liquid polyamorphism in supercooled water.

  13. Phase separation in artificial vesicles driven by light and curvature

    NASA Astrophysics Data System (ADS)

    Rinaldin, Melissa; Pomp, Wim; Schmidt, Thomas; Giomi, Luca; Kraft, Daniela; Physics of Life Processes Team; Soft; Bio Mechanics Collaboration; Self-Assembly in Soft Matter Systems Collaboration

    The role of phase-demixing in living cells, leading to the lipid-raft hypothesis, has been extensively studied. Lipid domains of higher lipid chain order are proposed to regulate protein spatial organization. Giant Unilamellar Vesicles provide an artificial model to study phase separation. So far temperature was used to initiate the process. Here we introduce a new methodology based on the induction of phase separation by light. To this aim, the composition of the lipid membrane is varied by photo-oxidation of lipids. The control of the process gained by using light allowed us to observe vesicle shape fluctuations during phase-demixing. The presence of fluctuations near the critical mixing point resembles features of a critical process. We quantitatively analyze these fluctuations using a 2d elastic model, from which we can estimate the material parameters such as bending rigidity and surface tension, demonstrating the non-equilibrium critical behaviour. Finally, I will describe recent attempts toward tuning the membrane composition by controlling the vesicle curvature.

  14. Self-organized criticality in single-neuron excitability

    NASA Astrophysics Data System (ADS)

    Gal, Asaf; Marom, Shimon

    2013-12-01

    We present experimental and theoretical arguments, at the single-neuron level, suggesting that neuronal response fluctuations reflect a process that positions the neuron near a transition point that separates excitable and unexcitable phases. This view is supported by the dynamical properties of the system as observed in experiments on isolated cultured cortical neurons, as well as by a theoretical mapping between the constructs of self-organized criticality and membrane excitability biophysics.

  15. Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails.

    PubMed

    Bedini, Andrea; Owczarek, Aleksander L; Prellberg, Thomas

    2012-07-01

    Trails (bond-avoiding walks) provide an alternative lattice model of polymers to self-avoiding walks, and adding self-interaction at multiply visited sites gives a model of polymer collapse. Recently a two-dimensional model (triangular lattice) where doubly and triply visited sites are given different weights was shown to display a rich phase diagram with first- and second-order collapse separated by a multicritical point. A kinetic growth process of trails (KGTs) was conjectured to map precisely to this multicritical point. Two types of low-temperature phases, a globule phase and a maximally dense phase, were encountered. Here we investigate the collapse properties of a similar extended model of interacting lattice trails on the simple cubic lattice with separate weights for doubly and triply visited sites. Again we find first- and second-order collapse transitions dependent on the relative sizes of the doubly and triply visited energies. However, we find no evidence of a low-temperature maximally dense phase with only the globular phase in existence. Intriguingly, when the ratio of the energies is precisely that which separates the first-order from the second-order regions anomalous finite-size scaling appears. At the finite-size location of the rounded transition clear evidence exists for a first-order transition that persists in the thermodynamic limit. This location moves as the length increases, with its limit apparently at the point that maps to a KGT. However, if one fixes the temperature to sit at exactly this KGT point, then only a critical point can be deduced from the data. The resolution of this apparent contradiction lies in the breaking of crossover scaling and the difference in the shift and transition width (crossover) exponents.

  16. Accurate Determination of the Quasiparticle and Scaling Properties Surrounding the Quantum Critical Point of Disordered Three-Dimensional Dirac Semimetals.

    PubMed

    Fu, Bo; Zhu, Wei; Shi, Qinwei; Li, Qunxiang; Yang, Jinlong; Zhang, Zhenyu

    2017-04-07

    Exploiting the enabling power of the Lanczos method in momentum space, we determine accurately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before, at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is dependent on the disorder strength. More intriguingly, whereas a common power law is also found for the real part of the self-energy before and after the phase transition, a distinctly different behavior is identified at the critical point, characterized by the existence of a nonanalytic logarithmic singularity. This nonanalytical correction serves as the very basis for the unusual power-law behaviors of the quasiparticles and many other physical properties surrounding the quantum critical point. Our approach also allows the ready and reliable determination of the scaling properties of the correlation length and dynamical exponents. We further show that the central findings are valid for both uncorrelated and correlated disorder distributions and should be directly comparable with future experimental observations.

  17. Accurate Determination of the Quasiparticle and Scaling Properties Surrounding the Quantum Critical Point of Disordered Three-dimensional Dirac Semimetals

    DOE PAGES

    Fu, Bo; Zhu, Wei; Shi, Qinwei; ...

    2017-04-03

    Exploiting the enabling power of the Lanczos method in momentum space, we determine accurately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before, at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is dependent on the disorder strength. More intriguingly, whereas a common power law is also found for the real part of the self-energy before and after the phase transition, a distinctly different behaviormore » is identified at the critical point, characterized by the existence of a nonanalytic logarithmic singularity. This nonanalytical correction serves as the very basis for the unusual power-law behaviors of the quasiparticles and many other physical properties surrounding the quantum critical point. Our approach also allows the ready and reliable determination of the scaling properties of the correlation length and dynamical exponents. Furthermore, we show that the central findings are valid for both uncorrelated and correlated disorder distributions and should be directly comparable with future experimental observations.« less

  18. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    NASA Astrophysics Data System (ADS)

    Totsuji, Hiroo

    2008-07-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  19. The role of surface vorticity during unsteady separation

    NASA Astrophysics Data System (ADS)

    Melius, Matthew S.; Mulleners, Karen; Cal, Raúl Bayoán

    2018-04-01

    Unsteady flow separation in rotationally augmented flow fields plays a significant role in a variety of fundamental flows. Through the use of time-resolved particle image velocimetry, vorticity accumulation and vortex shedding during unsteady separation over a three-dimensional airfoil are examined. The results of the study describe the critical role of surface vorticity accumulation during unsteady separation and reattachment. Through evaluation of the unsteady characteristics of the shear layer, it is demonstrated that the buildup and shedding of surface vorticity directly influence the dynamic changes of the separation point location. The quantitative characterization of surface vorticity and shear layer stability enables improved aerodynamic designs and has a broad impact within the field of unsteady fluid dynamics.

  20. Theory of the vortex matter transformations in high-Tc superconductor YBCO.

    PubMed

    Li, Dingping; Rosenstein, Baruch

    2003-04-25

    Flux line lattice in type II superconductors undergoes a transition into a "disordered" phase such as vortex liquid or vortex glass, due to thermal fluctuations and random quenched disorder. We quantitatively describe the competition between the thermal fluctuations and the disorder using the Ginzburg-Landau approach. The following T-H phase diagram of YBCO emerges. There are just two distinct thermodynamical phases, the homogeneous and the crystalline one, separated by a single first order transition line. The line, however, makes a wiggle near the experimentally claimed critical point at 12 T. The "critical point" is reinterpreted as a (noncritical) Kauzmann point in which the latent heat vanishes and the line is parallel to the T axis. The magnetization, the entropy, and the specific heat discontinuities at melting compare well with experiments.

  1. Critical and maximally informative encoding between neural populations in the retina

    PubMed Central

    Kastner, David B.; Baccus, Stephen A.; Sharpee, Tatyana O.

    2015-01-01

    Computation in the brain involves multiple types of neurons, yet the organizing principles for how these neurons work together remain unclear. Information theory has offered explanations for how different types of neurons can maximize the transmitted information by encoding different stimulus features. However, recent experiments indicate that separate neuronal types exist that encode the same filtered version of the stimulus, but then the different cell types signal the presence of that stimulus feature with different thresholds. Here we show that the emergence of these neuronal types can be quantitatively described by the theory of transitions between different phases of matter. The two key parameters that control the separation of neurons into subclasses are the mean and standard deviation (SD) of noise affecting neural responses. The average noise across the neural population plays the role of temperature in the classic theory of phase transitions, whereas the SD is equivalent to pressure or magnetic field, in the case of liquid–gas and magnetic transitions, respectively. Our results account for properties of two recently discovered types of salamander Off retinal ganglion cells, as well as the absence of multiple types of On cells. We further show that, across visual stimulus contrasts, retinal circuits continued to operate near the critical point whose quantitative characteristics matched those expected near a liquid–gas critical point and described by the nearest-neighbor Ising model in three dimensions. By operating near a critical point, neural circuits can maximize information transmission in a given environment while retaining the ability to quickly adapt to a new environment. PMID:25675497

  2. Self-duality in superconductor-insulator quantum phase transitions

    PubMed

    Schakel

    2000-10-30

    It is argued that close to a Coulomb interacting quantum critical point the interaction between two vortices in a disordered superconducting thin film separated by a distance r changes from logarithmic in the mean-field region to 1/r in the region dominated by quantum critical fluctuations. This gives support to the charge-vortex duality picture of the observed reflection symmetry in the current-voltage characteristics on both sides of the transition.

  3. Change of carrier density at the pseudogap critical point of a cuprate superconductor.

    PubMed

    Badoux, S; Tabis, W; Laliberté, F; Grissonnanche, G; Vignolle, B; Vignolles, D; Béard, J; Bonn, D A; Hardy, W N; Liang, R; Doiron-Leyraud, N; Taillefer, Louis; Proust, Cyril

    2016-03-10

    The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.

  4. Deconfined Quantum Critical Points: Symmetries and Dualities

    DOE PAGES

    Wang, Chong; Nahum, Adam; Metlitski, Max A.; ...

    2017-09-22

    The deconfined quantum critical point (QCP), separating the Néel and valence bond solid phases in a 2D antiferromagnet, was proposed as an example of (2+1)D criticality fundamentally different from standard Landau-Ginzburg-Wilson-Fisher criticality. In this work, we present multiple equivalent descriptions of deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low-energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to N f=2 fermionic quantum electrodynamics, which has its own self-duality and hence may have an O(4)×ZT2 symmetry. We propose several dualities for the deconfined QCP with SU(2) spin symmetry whichmore » together make natural the emergence of a previously suggested SO(5) symmetry rotating the Néel and valence bond solid orders. These emergent symmetries are implemented anomalously. The associated infrared theories can also be viewed as surface descriptions of (3+1) D topological paramagnets, giving further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss the possibility of “pseudocritical” behavior for deconfined critical points, and the meaning of the dualities and emergent symmetries in such a scenario.« less

  5. Susceptibility Measurements Near the He-3 Liquid-Gas Critical Point

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin; Zhong, Fang; Hahn, Inseob

    2000-01-01

    An experiment is now being developed to measure both the linear susceptibility and specific heat at constant volume near the liquid-gas critical point of He-3 in a microgravity environment. An electrostriction technique for measuring susceptibility will be described. Initial electrostriction measurements were performed on the ground along the critical isochore in a 0.5 mm high measurement cell filled to within 0.1 % of the critical density. These measurements agreed with the susceptibility determined from pressure-density measurements along isotherms. The critical temperature, T(sub c), determined separately from specific heat and susceptibility measurements was self-consistent. Susceptibility measurements in the range t = T/T(sub c) - 1 > 10(exp -4)were fit to Chi(sup *)(sub T) = Gamma(sup +)t(exp -lambda)(1 + Gamma(sup +)(sub 1)t(sup delta). Best fit parameters for the asymptotic amplitude Gamma(sup +) and the first Wegner amplitude Gamma(sup +)(sub 1) will be presented and compared to previous measurements.

  6. Equilibrium polymerization models of re-entrant self-assembly

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-04-01

    As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.

  7. Non-equilibrium phase transitions in a driven-dissipative system of interacting bosons

    NASA Astrophysics Data System (ADS)

    Young, Jeremy T.; Foss-Feig, Michael; Gorshkov, Alexey V.; Maghrebi, Mohammad F.

    2017-04-01

    Atomic, molecular, and optical systems provide unique opportunities to study simple models of driven-dissipative many-body quantum systems. Typically, one is interested in the resultant steady state, but the non-equilibrium nature of the physics involved presents several problems in understanding its behavior theoretically. Recently, it has been shown that in many of these models, it is possible to map the steady-state phase transitions onto classical equilibrium phase transitions. In the language of Keldysh field theory, this relation typically only becomes apparent after integrating out massive fields near the critical point, leaving behind a single massless field undergoing near-equilibrium dynamics. In this talk, we study a driven-dissipative XXZ bosonic model and discover critical points at which two fields become gapless. Each critical point separates three different possible phases: a uniform phase, an anti-ferromagnetic phase, and a limit cycle phase. Furthermore, a description in terms of an equilibrium phase transition does not seem possible, so the associated phase transitions appear to be inherently non-equilibrium.

  8. Phase separation and emergent structures in an active nematic fluid.

    PubMed

    Putzig, Elias; Baskaran, Aparna

    2014-10-01

    We consider a phenomenological continuum theory for an active nematic fluid and show that there exists a universal, model-independent instability which renders the homogeneous nematic state unstable to order fluctuations. Using numerical and analytic tools we show that, in the vicinity of a critical point, this instability leads to a phase-separated state in which the ordered regions form bands in which the direction of nematic order is perpendicular to the direction of the density gradient. We argue that the underlying mechanism that leads to this phase separation is a universal feature of active fluids of different symmetries.

  9. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a nonrandom aerogel

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Nihat Berker, A.

    1997-02-01

    Superfluidity and phase separation in 3-4He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low 4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel.

  10. Preliminary Report on Mission Design and Operations for Critical Events

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Tumer, Irem

    2005-01-01

    Mission-critical events are defined in the Jet Propulsion Laboratory s Flight Project Practices as those sequences of events which must succeed in order to attain mission goals. These are dependent on the particular operational concept and design reference mission, and are especially important when committing to irreversible events. Critical events include main engine cutoff (MECO) after launch; engine cutoff or parachute deployment on entry, descent, and landing (EDL); orbital insertion; separation of payload from vehicle or separation of booster segments; maintenance of pointing accuracy for power and communication; and deployment of solar arrays and communication antennas. The purpose of this paper is to report on the current practices in handling mission-critical events in design and operations at major NASA spaceflight centers. The scope of this report includes NASA Johnson Space Center (JSC), NASA Goddard Space Flight Center (GSFC), and NASA Jet Propulsion Laboratory (JPL), with staff at each center consulted on their current practices, processes, and procedures.

  11. Another convex combination of product states for the separable Werner state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azuma, Hiroo; Ban, Masashi; CREST, Japan Science and Technology Agency, 1-1-9 Yaesu, Chuo-ku, Tokyo 103-0028

    2006-03-15

    In this paper, we write down the separable Werner state in a two-qubit system explicitly as a convex combination of product states, which is different from the convex combination obtained by Wootters' method. The Werner state in a two-qubit system has a single real parameter and varies from inseparable to separable according to the value of its parameter. We derive a hidden variable model that is induced by our decomposed form for the separable Werner state. From our explicit form of the convex combination of product states, we understand the following: The critical point of the parameter for separability ofmore » the Werner state comes from positivity of local density operators of the qubits.« less

  12. Quantitative characterization of the viscosity of a microemulsion

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Huang, John S.

    1987-01-01

    The viscosity of the three-component microemulsion water/decane/AOT has been measured as a function of temperature and droplet volume fraction. At temperatures well below the phase-separation temperature the viscosity is described by treating the droplets as hard spheres suspended in decane. Upon approaching the two-phase region from low temperature, there is a large (as much as a factor of four) smooth increase of the viscosity which may be related to the percolation-like transition observed in the electrical conductivity. This increase in viscosity is not completely consistent with either a naive electroviscous model or a simple clustering model. The divergence of the viscosity near the critical point (39 C) is superimposed upon the smooth increase. The magnitude and temperature dependence of the critical divergence are similar to that seen near the critical points of binary liquid mixtures.

  13. Casimir interaction of rodlike particles in a two-dimensional critical system.

    PubMed

    Eisenriegler, E; Burkhardt, T W

    2016-09-01

    We consider the fluctuation-induced interaction of two thin, rodlike particles, or "needles," immersed in a two-dimensional critical fluid of Ising symmetry right at the critical point. Conformally mapping the plane containing the needles onto a simpler geometry in which the stress tensor is known, we analyze the force and torque between needles of arbitrary length, separation, and orientation. For infinite and semi-infinite needles we utilize the mapping of the plane bounded by the needles onto the half plane, and for two needles of finite length we use the mapping onto an annulus. For semi-infinite and infinite needles the force is expressed in terms of elementary functions, and we also obtain analytical results for the force and torque between needles of finite length with separation much greater than their length. Evaluating formulas in our approach numerically for several needle geometries and surface universality classes, we study the full crossover from small to large values of the separation to length ratio. In these two limits the numerical results agree with results for infinitely long needles and with predictions of the small-particle operator expansion, respectively.

  14. Language, Metaphor, and Creativity in Discursive Prose.

    ERIC Educational Resources Information Center

    Ross, William T.

    1978-01-01

    Traces the denigration of discursive prose back through the "New Criticism" to Romanticism and Samuel Taylor Coleridge, who saw poetry as special and separate from other rhetoric. Notes that discursive prose can be just as creative and interesting as poetry. Urges composition teachers to shift their point of view accordingly. (RL)

  15. Effects of surface roughness on an adverse-pressure-gradient separating turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Wu, Wen; Piomelli, Ugo; Turbulence Simulation; Modelling Laboratory Team

    2017-11-01

    Separating turbulent boundary layers over smooth and rough flat plates are investigated by large-eddy simulations. A suction-blowing velocity distribution is imposed at the top boundary to produce an adverse-to-favourable pressure gradient and a closed separation bubble. Sandgrain roughness in the fully-rough regime is modelled by an immersed boundary method. In the rough-wall case, streamline detachment occurs earlier and the separation region is substantially larger due to the momentum deficit caused by the roughness. The adverse pressure gradient decreases the form drag and causes a thin reversed-flow region below the roughness crest, so that Cf = 0 does not coincide with the detachment of the flow from the surface. The wake regions behind roughness elements affect the intermittency of the near-wall flow, so that upstream of the detachment point the flow can be reversed half of the time, but its average is positive. The separated shear layer exhibits higher turbulent kinetic energy (TKE); the growth of the TKE there begins earlier relative to the separation point, and the peak TKE occurs close to the separation point. The momentum deficit caused by the roughness, again, plays a critical role in these changes. The authors acknowledge the support from Hydro-Québec and the NSERC Collaborative Research & Development program (CRDPJ 418786-11). The simulations were performed at CAC Queen't site. UP also thanks the support of Canada Research Chair Program.

  16. An Investigation of the Fundamental Cause of Asymmetric Separated Flow

    DTIC Science & Technology

    1992-10-01

    with respect to the geometric symmetry plane as long as the free-stream velocity vector remains in this plane. At angles of attack higher than a ...separation points and sit above the nose near the lee plane of " symmetry ." Below a critical angle of attack, the lee plane is indeed a plane about which...line model was a breakthrough in understanding this phenomenon. Dyer, Fiddes, and Smith (Ref 7) found a bifurcation in the solution to the small

  17. Evaluation of Hydrothermally Synthesized Uranium Dioxide for Novel Semiconductor Applications

    DTIC Science & Technology

    2016-08-29

    after [25]. ..........................30 Figure 11. The critical point of water is 647 K (374 ⁰C, 705 ⁰F) and 218 atm (22.064 MPa, 3200 psia...friends, and colleagues without whom I would not have been able to gather and analyze the data critical to this research. I owe a great deal to the...nuclides of Pu are difficult to separate, any fraction of Pu-240 in a Pu mass will enhance neutron emission. Table 1. The primary decay modes, half

  18. Critical Conditions for Liquid Chromatography of Statistical Copolymers: Functionality Type and Composition Distribution Characterization by UP-LCCC/ESI-MS.

    PubMed

    Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana

    2017-02-07

    Statistical ethylene oxide (EO) and propylene oxide (PO) copolymers of different monomer compositions and different average molar masses additionally containing two kinds of end groups (FTD) were investigated by ultra high pressure liquid chromatography under critical conditions (UP-LCCC) combined with electrospray ionization time-of flight mass spectrometry (ESI-TOF-MS). Theoretical predictions of the existence of a critical adsorption point (CPA) for statistical copolymers with a given chemical and sequence distribution1 could be studied and confirmed. A fundamentally new approach to determine these critical conditions in a copolymer, alongside the inevitable chemical composition distribution (CCD), with mass spectrometric detection, is described. The shift of the critical eluent composition with the monomer composition of the polymers was determined. Due to the broad molar mass distribution (MMD) and the presumed existence of different end group functionalities as well as monomer sequence distribution (MSD), gradient separation only by CCD was not possible. Therefore, isocratic separation conditions at the CPA of definite CCD fractions were developed. Although the various present distributions partly superimposed the separation process, the goal of separation by end group functionality was still achieved on the basis of the additional dimension of ESI-TOF-MS. The existence of HO-H besides the desired allylO-H end group functionalities was confirmed and their amount estimated. Furthermore, indications for a MSD were found by UPLC/MS/MS measurements. This approach offers for the first time the possibility to obtain a fingerprint of a broad distributed statistical copolymer including MMD, FTD, CCD, and MSD.

  19. Universality and Quantum Criticality of the One-Dimensional Spinor Bose Gas

    NASA Astrophysics Data System (ADS)

    PâÅ£u, Ovidiu I.; Klümper, Andreas; Foerster, Angela

    2018-06-01

    We investigate the universal thermodynamics of the two-component one-dimensional Bose gas with contact interactions in the vicinity of the quantum critical point separating the vacuum and the ferromagnetic liquid regime. We find that the quantum critical region belongs to the universality class of the spin-degenerate impenetrable particle gas which, surprisingly, is very different from the single-component case and identify its boundaries with the peaks of the specific heat. In addition, we show that the compressibility Wilson ratio, which quantifies the relative strength of thermal and quantum fluctuations, serves as a good discriminator of the quantum regimes near the quantum critical point. Remarkably, in the Tonks-Girardeau regime, the universal contact develops a pronounced minimum, reflected in a counterintuitive narrowing of the momentum distribution as we increase the temperature. This momentum reconstruction, also present at low and intermediate momenta, signals the transition from the ferromagnetic to the spin-incoherent Luttinger liquid phase and can be detected in current experiments with ultracold atomic gases in optical lattices.

  20. Wetting in a Colloidal Liquid-Gas System

    NASA Astrophysics Data System (ADS)

    Wijting, W. K.; Besseling, N. A.; Stuart, M. A.

    2003-05-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  1. Wetting in a colloidal liquid-gas system.

    PubMed

    Wijting, W K; Besseling, N A M; Stuart, M A Cohen

    2003-05-16

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  2. Separated by Sex: A Critical Look at Single-Sex Education for Girls.

    ERIC Educational Resources Information Center

    Office of Naval Research, Washington, DC. Naval Applications and Analysis Div.

    This report summarizes the discussion and conclusions of an educational roundtable examining the collected research on K-12 single-sex education produced over more than two decades. The one day roundtable generated many points of disagreement and several profound unanswered questions. Nonetheless, there was consensus on a series of statements.…

  3. Renormalization-Group Theory Study of Superfluidity and Phase Separation of Helium Mixtures Immersed in Jungle-Gym Aerogel

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Berker, A. Nihat

    1997-03-01

    Superfluidity and phase separation in ^3He-^4He mixtures immersed in jungle-gym (non-random) aerogel are studied by renormalization-group theory.(Phys. Rev. B, in press (1996)) Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena, and trends with respect to aerogel concentration, are explained by the connectivity and tenuousness of jungle-gym aerogel.

  4. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a nonrandom aerogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatnikova, A.; Berker, A.N.

    1997-02-01

    Superfluidity and phase separation in {sup 3}He-{sup 4}He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low {sup 4}He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel. {copyright} {ital 1997} {ital The American Physical Society}

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, Efrem; Chen, Joseph J.; Schnell, Sondre K.

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. As applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the ability tomore » systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, Efrem; Chen, Joseph J.; Schnell, Sondre K.

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. Lastly, as applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the abilitymore » to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.« less

  7. Identifying the critical point of the weakly first-order itinerant magnet DyCo2 with complementary magnetization and calorimetric measurements

    NASA Astrophysics Data System (ADS)

    Morrison, K.; Dupas, A.; Mudryk, Y.; Pecharsky, V. K.; Gschneidner, K. A.; Caplin, A. D.; Cohen, L. F.

    2013-04-01

    We examine the character of the itinerant magnetic transition of DyCo2 by different calorimetric methods, thereby separating the heat capacity and latent heat contributions to the entropy—allowing direct comparison to other itinerant electron metamagnetic systems. The heat capacity exhibits a large λ-like peak at the ferrimagnetic ordering phase transition, a signature that is remarkably similar to La(Fe,Si)13, where it is attributed to giant spin fluctuations. Using calorimetric measurements, we also determine the point at which the phase transition ceases to be first order: the critical magnetic field, μ0Hcrit = 0.4 ± 0.1 T and temperature Tcrit = 138.5 ± 0.5 K, and we compare these values to those obtained from analysis of magnetization by application of the Shimizu inequality for itinerant electron metamagnetism. Good agreement is found between these independent measurements, thus establishing the phase diagram and critical point with some confidence. In addition, we find that the often-used Banerjee criterion may not be suitable for determination of first order behavior in itinerant magnet systems.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Bo; Zhu, Wei; Shi, Qinwei

    Exploiting the enabling power of the Lanczos method in momentum space, we determine accurately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before, at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is dependent on the disorder strength. More intriguingly, whereas a common power law is also found for the real part of the self-energy before and after the phase transition, a distinctly different behaviormore » is identified at the critical point, characterized by the existence of a nonanalytic logarithmic singularity. This nonanalytical correction serves as the very basis for the unusual power-law behaviors of the quasiparticles and many other physical properties surrounding the quantum critical point. Our approach also allows the ready and reliable determination of the scaling properties of the correlation length and dynamical exponents. Furthermore, we show that the central findings are valid for both uncorrelated and correlated disorder distributions and should be directly comparable with future experimental observations.« less

  9. Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.

    PubMed

    Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua

    2013-09-28

    We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.

  10. Nonequilibrium phase diagram of a one-dimensional quasiperiodic system with a single-particle mobility edge

    NASA Astrophysics Data System (ADS)

    Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas

    2017-11-01

    We investigate and map out the nonequilibrium phase diagram of a generalization of the well known Aubry-André-Harper (AAH) model. This generalized AAH (GAAH) model is known to have a single-particle mobility edge which also has an additional self-dual property akin to that of the critical point of the AAH model. By calculating the population imbalance, we get hints of a rich phase diagram. We also find a fascinating connection between single particle wave functions near the mobility edge of the GAAH model and the wave functions of the critical AAH model. By placing this model far from equilibrium with the aid of two baths, we investigate the open system transport via system size scaling of nonequilibrium steady state (NESS) current, calculated by fully exact nonequilibrium Green's function (NEGF) formalism. The critical point of the AAH model now generalizes to a `critical' line separating regions of ballistic and localized transport. Like the critical point of the AAH model, current scales subdiffusively with system size on the `critical' line (I ˜N-2 ±0.1 ). However, remarkably, the scaling exponent on this line is distinctly different from that obtained for the critical AAH model (where I ˜N-1.4 ±0.05 ). All these results can be understood from the above-mentioned connection between states near the mobility edge of the GAAH model and those of the critical AAH model. A very interesting high temperature nonequilibrium phase diagram of the GAAH model emerges from our calculations.

  11. Negative Magnus lift on a rotating sphere at around the critical Reynolds number

    NASA Astrophysics Data System (ADS)

    Muto, Masaya; Tsubokura, Makoto; Oshima, Nobuyuki

    2012-01-01

    Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow was investigated using large-eddy simulation at three Reynolds numbers of 1.0 × 104, 2.0 × 105, and 1.14 × 106. The numerical methods used were first validated on a non-rotating sphere, and the spatial resolution around the sphere was determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed in the vicinity of the critical Reynolds number. The rotating sphere exhibited a positive or negative Magnus effect depending on the Reynolds number and the imposed rotating speed. At Reynolds numbers in the subcritical or supercritical regimes, the direction of the Magnus lift force was independent of the rotational speed. In contrast, the lift force was negative in the critical regime when particular rotating speeds were imposed. This negative Magnus effect was investigated in the context of suppression or promotion of boundary layer transition around the separation point.

  12. Theory of chromatography of partially cyclic polymers: Tadpole-type and manacle-type macromolecules.

    PubMed

    Vakhrushev, Andrey V; Gorbunov, Alexei A

    2016-02-12

    A theory of chromatography is developed for partially cyclic polymers of tadpole- and manacle-shaped topological structures. We present exact equations for the distribution coefficient K at different adsorption interactions; simpler approximate formulae are also derived, relevant to the conditions of size-exclusion, adsorption, and critical chromatography. Theoretical chromatograms of heterogeneous partially cyclic polymers are simulated, and conditions for good separation by topology are predicted. According to the theory, an effective SEC-radius of tadpoles and manacles is mostly determined by the molar mass M, and by the linear-cyclic composition. In the interactive chromatography, the effect of molecular topology on the retention becomes significant. At the critical interaction point, partial dependences K(Mlin) and K(Mring) are qualitatively different: while being almost independent of Mlin, K increases with Mring. This behavior could be realized in critical chromatography-for separation of partially cyclic polymers by the number and molar mass of cyclic elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Solution of semi-flexible self-avoiding trails on a Husimi lattice built with squares

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago J.; Dantas, Wellington G.; Prellberg, Thomas; Stilck, Jürgen F.

    2018-02-01

    We study a model of semi-flexible self-avoiding trails, where the lattice paths are constrained to visit each lattice edge at most once, with configurations weighted by the number of collisions, crossings and bends, on a Husimi lattice built with squares. We find a rich phase diagram with five phases: a non-polymerised phase (NP), low density (P1) and high density (P2) polymerised phases, and, for sufficiently large stiffness, two additional anisotropic (nematic) (AN1 and AN2) polymerised phases within the P1 phase. Moreover, the AN1 phase which shows a broken symmetry with a preferential direction, is separated from the P1 phase by the other nematic AN2 phase. Although this scenario is similar to what was found in our previous calculation on the Bethe lattice, where the AN-P1 transition was discontinuous and critical, the presence of the additional nematic phase between them introduces a qualitative difference. Other details of the phase diagram are that a line of tri-critical points may separate the P1-P2 transition surface into a continuous and a discontinuous portion, and that the same may happen at the NP-P1 transition surface, details of which depend on whether crossings are allowed or forbidden. A critical end-point line is also found in the phase diagram.

  14. Identifying Variability in Mental Models Within and Between Disciplines Caring for the Cardiac Surgical Patient.

    PubMed

    Brown, Evans K H; Harder, Kathleen A; Apostolidou, Ioanna; Wahr, Joyce A; Shook, Douglas C; Farivar, R Saeid; Perry, Tjorvi E; Konia, Mojca R

    2017-07-01

    The cardiac operating room is a complex environment requiring efficient and effective communication between multiple disciplines. The objectives of this study were to identify and rank critical time points during the perioperative care of cardiac surgical patients, and to assess variability in responses, as a correlate of a shared mental model, regarding the importance of these time points between and within disciplines. Using Delphi technique methodology, panelists from 3 institutions were tasked with developing a list of critical time points, which were subsequently assigned to pause point (PP) categories. Panelists then rated these PPs on a 100-point visual analog scale. Descriptive statistics were expressed as percentages, medians, and interquartile ranges (IQRs). We defined low response variability between panelists as an IQR ≤ 20, moderate response variability as an IQR > 20 and ≤ 40, and high response variability as an IQR > 40. Panelists identified a total of 12 PPs. The PPs identified by the highest number of panelists were (1) before surgical incision, (2) before aortic cannulation, (3) before cardiopulmonary bypass (CPB) initiation, (4) before CPB separation, and (5) at time of transfer of care from operating room (OR) to intensive care unit (ICU) staff. There was low variability among panelists' ratings of the PP "before surgical incision," moderate response variability for the PPs "before separation from CPB," "before transfer from OR table to bed," and "at time of transfer of care from OR to ICU staff," and high response variability for the remaining 8 PPs. In addition, the perceived importance of each of these PPs varies between disciplines and between institutions. Cardiac surgical providers recognize distinct critical time points during cardiac surgery. However, there is a high degree of variability within and between disciplines as to the importance of these times, suggesting an absence of a shared mental model among disciplines caring for cardiac surgical patients during the perioperative period. A lack of a shared mental model could be one of the factors contributing to preventable errors in cardiac operating rooms.

  15. Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators

    NASA Astrophysics Data System (ADS)

    Love, Corey T.

    2011-03-01

    Static and dynamic thermomechanical analysis was performed with a dynamic mechanical analyzer (DMA) to identify thermal and mechanical transitions for commercially available polymer separators under mechanical loading. Clear transitions in deformation mode were observed at elevated temperatures. These transitions identified the onset of separator "shutdown" which occurred at temperatures below the polymer melting point. Mechanical loading direction was critical to the overall integrity of the separator. Anisotropic separators (Celgard 2320, 2400 and 2500) were mechanically limited when pulled in tensile in the transverse direction. The anisotropy of these separators is a result of the dry technique used to manufacture the micro-porous membranes. Separators prepared using the wet technique (Entek Gold LP) behaved more uniformly, or biaxially, where all mechanical properties were nearly identical within the separator plane. The information provided by the DMA can also be useful for predicting the long-term durability of polymer separators in lithium-ion batteries exposed to electrolyte (solvent and salt), thermal fluctuations and electrochemical cycling. Small losses in mechanical integrity were observed for separators exposed to the various immersion environments over the 4-week immersion time.

  16. Use of photostress to analyze behavior of an aft skirt test specimen

    NASA Technical Reports Server (NTRS)

    Gambrell, S. C., Jr.

    1994-01-01

    Strains at twenty-one selected points in the critical lower weld region of a aft skirt of a solid rocket booster of the shuttle were measured using photoelastic coatings and stress separator gages. Data were taken at loads of 5, 14, 20, 28, 42, 56, and 70 percent of the design limit load. Results indicate that general yielding occurred in the weld metal and for a short distance outside the fusion boundaries on either side of the weld metal. The fusion boundaries did not yield at the 70 percent load. Slight non-linearity in the load strain curves were observed at several points above the 20 percent load level. Maximum measured strains occurred at points in the forged metal of the holddown post along a line 0.50 inches from the centerline of the weld. Maximum shearing strains within the area covered by the photoelastic coating occurred at points approximately 0.33 inches to the right of the weld centerline near points 6 and 7 and lying along a yellow vertical line extending from just below point 6 to point 11. Photoelastic coatings were shown to be an excellent method to provide the whole field strain distribution in the region of the critical weld and to enhance the overall understanding of the behavior of the welded joint.

  17. Chiral phase transition at finite chemical potential in 2 +1 -flavor soft-wall anti-de Sitter space QCD

    NASA Astrophysics Data System (ADS)

    Bartz, Sean P.; Jacobson, Theodore

    2018-04-01

    The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.

  18. Renormalization group approach to symmetry protected topological phases

    NASA Astrophysics Data System (ADS)

    van Nieuwenburg, Evert P. L.; Schnyder, Andreas P.; Chen, Wei

    2018-04-01

    A defining feature of a symmetry protected topological phase (SPT) in one dimension is the degeneracy of the Schmidt values for any given bipartition. For the system to go through a topological phase transition separating two SPTs, the Schmidt values must either split or cross at the critical point in order to change their degeneracies. A renormalization group (RG) approach based on this splitting or crossing is proposed, through which we obtain an RG flow that identifies the topological phase transitions in the parameter space. Our approach can be implemented numerically in an efficient manner, for example, using the matrix product state formalism, since only the largest first few Schmidt values need to be calculated with sufficient accuracy. Using several concrete models, we demonstrate that the critical points and fixed points of the RG flow coincide with the maxima and minima of the entanglement entropy, respectively, and the method can serve as a numerically efficient tool to analyze interacting SPTs in the parameter space.

  19. Kinetics of diffusional droplet growth in a liquid/liquid two-phase system

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Cain, Judith B.

    1993-01-01

    This report contains experimental results for the interdiffusion coefficient of the system, succinonitrile plus water, at a number of compositions and temperatures in the single phase region of the phase diagram. The concentration and temperature dependence of the measured diffusion coefficient has been analyzed in terms of Landau - Ginzburg theory, which assumes that the Gibb free energy is an analytic function of its variables, and can be expanded in a Taylor series about any point in the phase diagram. At most points in the single phase region this is adequate. Near the consolute point (critical point of solution), however, the free energy is non-analytic, and the Landau - Ginzburg theory fails. The solution to this problem dictates that the Landau - Ginzburg form of the free energy be replaced by Widom scaling functions with irrational values for the scaling exponents. As our measurements of the diffusion coefficient near the critical point reflect this non-analytic character, we are preparing for publication in a refereed journal a separate analysis of some of the data contained herein as well as some additional measurements we have just completed. When published, reprints of this article will be furnished to NASA.

  20. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids

    NASA Astrophysics Data System (ADS)

    Fuentes-Herrera, M.; Moreno-Razo, J. A.; Guzmán, O.; López-Lemus, J.; Ibarra-Tandi, B.

    2016-06-01

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  1. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids.

    PubMed

    Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B

    2016-06-07

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  2. Depinning of the Bragg glass in a point disordered model superconductor.

    PubMed

    Olsson, Peter

    2007-03-02

    We perform simulations of the three-dimensional frustrated anisotropic XY model with point disorder as a model of a type-II superconductor with quenched point pinning in a magnetic field and a weak applied current. Using resistively shunted junction dynamics, we find a critical current I_{c} that separates a creep region with immeasurably low voltage from a region with a voltage V proportional, variant(I-I_{c}) and also identify the mechanism behind this behavior. It also turns out that data at fixed disorder strength may be collapsed by plotting V versus TI, where T is the temperature, though the reason for this behavior as yet not is fully understood.

  3. Reading and Writing Together: A Critical Component of English for Academic Purposes Teaching and Learning

    ERIC Educational Resources Information Center

    Grabe, William; Zhang, Cui

    2013-01-01

    "As Kroll (1993), among others, has pointed out, reading has traditionally been seen as a skill to be taught separately from writing, as well as something students are somehow expected to already know about when they reach the writing course, Teaching reading in a writing course may seem like an odd idea, if not an entirely unnecessary one. It may…

  4. [Anomalous Properties of Water and Aqueous Solutions at Low Temperatures].

    PubMed

    Matsumoto, Masakazu

    2015-01-01

    Water has many anomalous properties below the room temperature. The temperature range overlaps with that of the Earth's atmosphere and also with that natural life forms favor. We review the origin of the anomalous properties of water and aqueous solutions in association with the hypothetical second critical point and liquid-liquid phase separation of water hidden in the supercooled state of liquid water.

  5. Ramp and periodic dynamics across non-Ising critical points

    NASA Astrophysics Data System (ADS)

    Ghosh, Roopayan; Sen, Arnab; Sengupta, K.

    2018-01-01

    We study ramp and periodic dynamics of ultracold bosons in an one-dimensional (1D) optical lattice which supports quantum critical points separating a uniform and a Z3 or Z4 symmetry broken density-wave ground state. Our protocol involves both linear and periodic drives which takes the system from the uniform state to the quantum critical point (for linear drive protocol) or to the ordered state and back (for periodic drive protocols) via controlled variation of a parameter of the system Hamiltonian. We provide exact numerical computation, for finite-size boson chains with L ≤24 using exact diagonalization (ED), of the excitation density D , the wave function overlap F , and the excess energy Q at the end of the drive protocol. For the linear ramp protocol, we identify the range of ramp speeds for which D and Q show Kibble-Zurek scaling. We find, based on numerical analysis with L ≤24 , that such scaling is consistent with that expected from critical exponents of the q -state Potts universality class with q =3 ,4 . For the periodic protocol, we show that the model displays near-perfect dynamical freezing at specific frequencies; at these frequencies D ,Q →0 and |F |→1 . We provide a semi-analytic explanation of such freezing behavior and relate this phenomenon to a many-body version of Stuckelberg interference. We suggest experiments which can test our theory.

  6. Solid-like features in dense vapors near the fluid critical point

    NASA Astrophysics Data System (ADS)

    Ruppeiner, George; Dyjack, Nathan; McAloon, Abigail; Stoops, Jerry

    2017-06-01

    The phase diagram (pressure versus temperature) of the pure fluid is typically envisioned as being featureless apart from the presence of the liquid-vapor coexistence curve terminating at the critical point. However, a number of recent authors have proposed that this simple picture misses important features, such as the Widom line, the Fisher-Widom line, and the Frenkel line. In our paper, we discuss another way of augmenting the pure fluid phase diagram, lines of zero thermodynamic curvature R = 0 separating regimes of fluid solid-like behavior (R > 0) from gas-like or liquid-like behavior (R < 0). We systematically evaluate R for the 121 pure fluids in the NIST/REFPROP (version 9.1) fluid database near the saturated vapor line from the triple point to the critical point. Our specific goal was to identify regions of positive R abutting the saturated vapor line ("feature D"). We found the following: (i) 97/121 of the NIST/REFPROP fluids have feature D. (ii) The presence and character of feature D correlates with molecular complexity, taken to be the number of atoms Q per molecule. (iii) The solid-like properties of feature D might be attributable to a mesoscopic model based on correlations among coordinated spinning molecules, a model that might be testable with computer simulations. (iv) There are a number of correlations between thermodynamic quantities, including the acentric factor ω , but we found little explicit correlation between ω and the shape of a molecule. (v) Feature D seriously constrains the size of the asymptotic fluid critical point regime, possibly resolving a long-standing mystery about why these are so small. (vi) Feature D correlates roughly with regimes of anomalous sound propagation.

  7. Stator hub treatment study

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.; Hilvers, D. E.

    1974-01-01

    The results of an experimental research program to investigate the potential of improving compressor stall margin by the application of hub treatment are presented. Extensive tuft probing showed that the two-stage, 0.5 radius ratio compressor selected for the test was indeed hub critical. Circumferential groove and baffled wide blade angle slot hub treatments under the stators were tested. Performance measurements were made with total and static pressure probes, wall static pressure taps, flow angle measuring instrumentation and hot film anemometers. Stator hub treatment was not found to be effective in improving compressor stall margin by delaying the point of onset of rotating stall or in modifying compressor performance for any of the configurations tested. Extensive regions of separated flow were observed on the suction surface of the stators near the hub. However, the treatment did not delay the point where flow separation in the stator hub region becomes apparent.

  8. Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst

    DOEpatents

    Gorin, Everett

    1981-01-01

    A method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, the method comprising: mixing the feedstock with a heavy naphtha fraction which has an initial boiling point from about 100.degree. to about 160.degree. C. with a boiling point difference between the initial boiling point and the final boiling point of no more than about 50.degree. C. to produce a mixture; thereafter contacting the mixture with partially spent molten metal halide and hydrogen under temperature and pressure conditions so that the temperature is near the critical temperature of the heavy naphtha fraction; separating at least a portion of the heavy naphtha fraction and lighter hydrocarbon fuels from the partially spent molten metal halide, unreacted feedstock and reaction products; thereafter contacting the partially spent molten metal halide, unreacted feedstock and reaction products with hydrogen and fresh molten metal halide in a hydrocracking zone to produce additional lighter hydrocarbon fuels and separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide.

  9. Centrifugal precipitation chromatography

    PubMed Central

    Ito, Yoichiro; Lin, Qi

    2009-01-01

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553

  10. Unsteady forces on a circular cylinder at critical Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, O.; Rodríguez, I.; Borrell, R.; Chiva, J.; Oliva, A.

    2014-12-01

    It is well known that the flow past a circular cylinder at critical Reynolds number combines flow separation, turbulence transition, reattachment of the flow, and further turbulent separation of the boundary layer. The transition to turbulence in the boundary layer causes the delaying of the separation point and an important reduction of the drag force on the cylinder surface known as the drag crisis. In the present work, large-eddy simulations of the flow past a cylinder at Reynolds numbers in the range 2.5 × 105-6.5 × 105 are performed. It is shown how the pressure distribution changes as the Reynolds number increases in an asymmetric manner, occurring first on one side of the cylinder and then on the other side to complete the drop in the drag up to 0.23 at Re = 6.5 × 105. These variations in the pressure profile are accompanied by the presence of a small recirculation bubble, observed as a small plateau in the pressure, and located around ϕ = 105∘ (measured from the stagnation point). This small recirculation bubble anticipated by the experimental measurements is here well captured by the present computations and its position and size measured at every Reynolds number. The changes in the wake configuration as the Reynolds number increases are also shown and their relation to the increase in the vortex shedding frequency is discussed. The power spectra for the velocity fluctuations are computed. The analysis of the resulting spectrum showed the footprint of Kelvin-Helmholtz instabilities in the whole range. It is found that the ratio of these instabilities frequency to the primary vortex shedding frequency matches quite well the scaling proposed by Prasad and Williamson ["The instability of the separated shear layer from a bluff body," Phys. Fluids 8, 1347 (1996); "The instability of the shear layer separating from a bluff body," J. Fluid Mech. 333, 375-492 (1997)] (fKH/fvs ∝ Re0.67).

  11. Disordered artificial spin ices: Avalanches and criticality (invited)

    NASA Astrophysics Data System (ADS)

    Reichhardt, Cynthia J. Olson; Chern, Gia-Wei; Libál, Andras; Reichhardt, Charles

    2015-05-01

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  12. Disordered artificial spin ices: Avalanches and criticality (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in themore » square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chong; Nahum, Adam; Metlitski, Max A.

    The deconfined quantum critical point (QCP), separating the Néel and valence bond solid phases in a 2D antiferromagnet, was proposed as an example of (2+1)D criticality fundamentally different from standard Landau-Ginzburg-Wilson-Fisher criticality. In this work, we present multiple equivalent descriptions of deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low-energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to N f=2 fermionic quantum electrodynamics, which has its own self-duality and hence may have an O(4)×ZT2 symmetry. We propose several dualities for the deconfined QCP with SU(2) spin symmetry whichmore » together make natural the emergence of a previously suggested SO(5) symmetry rotating the Néel and valence bond solid orders. These emergent symmetries are implemented anomalously. The associated infrared theories can also be viewed as surface descriptions of (3+1) D topological paramagnets, giving further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss the possibility of “pseudocritical” behavior for deconfined critical points, and the meaning of the dualities and emergent symmetries in such a scenario.« less

  14. Physics of Colloids in Space (PCS): Microgravity Experiment Completed Operations on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Sankaran, Subramanian

    2003-01-01

    Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.

  15. Formation of ion clusters in the phase separated structures of neutral-charged polymer blends

    NASA Astrophysics Data System (ADS)

    Kwon, Ha-Kyung; Olvera de La Cruz, Monica

    2015-03-01

    Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  16. Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Bossel, H. H.

    1972-01-01

    A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.

  17. Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Moes, Timothy R.

    2004-01-01

    Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

  18. Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Moes, Timothy R.

    2004-01-01

    Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

  19. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).

    PubMed

    Zhao, Ziliang; Li, Qi; Ji, Xiangling; Dimova, Rumiana; Lipowsky, Reinhard; Liu, Yonggang

    2016-06-24

    Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comment on "Spontaneous liquid-liquid phase separation of water".

    PubMed

    Limmer, David T; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014)] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  1. Hyper-X Stage Separation Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Woods, W. C.; Holland, S. D.; DiFulvio, M.

    2000-01-01

    NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system, the vehicle must depend upon some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind tunnel tests to support multi degree of freedom simulation of the separation process. Representative results from each series of tests are presented and issues and concerns during the process and current status will be highlighted.

  2. Hyper-X Stage Separation Wind-Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Woods, William C.; Holland, Scott D.; DiFulvio, Michael

    2001-01-01

    NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system the vehicle must depend on some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind-tunnel tests to support multi-degree-of-freedom simulation of the separation process. Representative results from each series of tests are presented, and issues and concerns during the process and current status are highlighted.

  3. Hyper-X Storage Separation Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Woods, William C.; Holland, Scott D.; Difulvio, Michael

    2000-01-01

    NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow, conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system, the vehicle must depend upon some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind tunnel tests to support multi degree of freedom simulation of the separation process. Representative results from each series of tests are presented and issues and concerns during the process and current status will be highlighted.

  4. Bifurcation Analysis of 1D Steady States of the Bénard Problem in the Long Wavelength Limit

    NASA Astrophysics Data System (ADS)

    Zhou, Chengzhe; Troian, Sandra

    2015-11-01

    We investigate the character and stability of stationary states of the (1 + 1) D evolution equation ∂t h +h3hxxx +h2∂x γ x = 0 describing the motion of an interface h (x , t) separating a thin warm viscous film from a thin cool inviscid layer where γ = γ (h) represents the interfacial tension. The phase diagram corresponding to all positive periodic steady states (PPSS) is specified by two variables - the global extrema of the equilibrum shape and a generalized mechanical interface pressure. The analytic forms describing the PPSS shapes, the minimal period, the average height and the generalized free energy are all confirmed numerically. We find there is at most one non-trivial PPSS for specified period and volume. We also find no stable perturbed PPSS near the critical point for volume conserving perturbations of identical period. A weakly non-linear analysis about the critical point yields bifurcations of the pitchfork-type. For all non-trivial PPSS, we verify the unstable nature of the PPSS by transforming the non-normal operator (resulting from the spatially inhomogeneous PPSS) to normal form, which we then solve by finite element computations.

  5. Estimating Total Heliospheric Magnetic Flux from Single-Point in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Owens, M. J.; Arge, C. N.; Crooker, N. U.; Schwardron, N. A.; Horbury, T. S.

    2008-01-01

    A fraction of the total photospheric magnetic flux opens to the heliosphere to form the interplanetary magnetic field carried by the solar wind. While this open flux is critical to our understanding of the generation and evolution of the solar magnetic field, direct measurements are generally limited to single-point measurements taken in situ by heliospheric spacecraft. An observed latitude invariance in the radial component of the magnetic field suggests that extrapolation from such single-point measurements to total heliospheric magnetic flux is possible. In this study we test this assumption using estimates of total heliospheric flux from well-separated heliospheric spacecraft and conclude that single-point measurements are indeed adequate proxies for the total heliospheric magnetic flux, though care must be taken when comparing flux estimates from data collected at different heliocentric distances.

  6. Quantum spin circulator in Y junctions of Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Buccheri, Francesco; Egger, Reinhold; Pereira, Rodrigo G.; Ramos, Flávia B.

    2018-06-01

    We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1 /2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin-liquid phases.

  7. Solid-liquid critical behavior of water in nanopores.

    PubMed

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-07

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.

  8. Drafting guidelines for occupational exposure to chemicals: the Dutch experience with the assessment of reproductive risks.

    PubMed

    Stijkel, A; van Eijndhoven, J C; Bal, R

    1996-12-01

    The Dutch procedure for standard setting for occupational exposure to chemicals, just like the European Union (EU) procedure, is characterized by an organizational separation between considerations of health on the one side, and of technology, economics, and policy on the other side. Health considerations form the basis for numerical guidelines. These guidelines are next combined with technical-economical considerations. Standards are then proposed, and are finally set by the Ministry of Social Affairs and Employment. An analysis of this procedure might be of relevance to the US, where other procedures are used and criticized. In this article we focus on the first stage of the standard-setting procedure. In this stage, the Dutch Expert Committee on Occupational Standards (DECOS) drafts a criteria document in which a health-based guideline is proposed. The drafting is based on a set of starting points for assessing toxicity. We raise the questions, "Does DECOS limit itself only to health considerations? And if not, what are the consequences of such a situation?" We discuss DECOS' starting points and analyze the relationships between those starting points, and then explore eight criteria documents where DECOS was considering reproductive risks as a possible critical effect. For various reasons, it will be concluded that the starting points leave much interpretative space, and that this space is widened further by the manner in which DECOS utilizes it. This is especially true in situations involving sex-specific risks and uncertainties in knowledge. Consequently, even at the first stage, where health considerations alone are intended to play a role, there is much room for other than health-related factors to influence decision making, although it is unavoidable that some interpretative space will remain. We argue that separating the various types of consideration should not be abandoned. Rather, through adjustments in the starting points and aspects of the procedure, clarity should be guaranteed about the way the interpretative space is being employed.

  9. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  10. Universality class of non-Fermi-liquid behavior in mixed-valence systems

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu

    1996-01-01

    A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper oxides. Using the Abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong-coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed-valence quantum critical point separating two different Fermi-liquid phases, i.e., the Kondo phase and the empty orbital phase. In the mixed-valence quantum critical regime, the local moment is only partially quenched and x-ray edge singularities are generated. Around the quantum critical point, a type of non-Fermi-liquid behavior is predicted with an extra specific heat Cimp~T1/4 and a singular spin susceptibility χimp~T-3/4. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5-x (x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.

  11. Separation processes during binary monotectic alloy production

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1984-01-01

    Observation of microgravity solidification processes indicates that outside of sedimentation, at least two other important effects can separate the phases: critical-point wetting and spreading; and thermal migration of second-phase droplets due to interfacial tension gradients. It is difficult to study these surface tension effects while in a unit gravity field. In order to investigate the processes occurring over a temperature range, i.e., between a consolute point and the monotectic temperature, it is necessary to use a low-gravity environment. The MSFC drop tube (and tower), the ballistic trajectory KC-135 airplane, and the Space Shuttle are ideal facilities to aid formation and testing of hypotheses. Much of the early work in this area focuses on transparent materials so that process dynamics may be studied by optical techniques such as photography for viewing macro-processes; holography for studying diffusional growth; spinodal decomposition and coalescence; ellipsometry for surface wetting and spreading effects; and interferometry and spectroscopy for small-scale spatial resolution of concentration profiles.

  12. Rare-Region-Induced Avoided Quantum Criticality in Disordered Three-Dimensional Dirac and Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Huse, David A.; Das Sarma, S.

    2016-04-01

    We numerically study the effect of short-ranged potential disorder on massless noninteracting three-dimensional Dirac and Weyl fermions, with a focus on the question of the proposed (and extensively theoretically studied) quantum critical point separating semimetal and diffusive-metal phases. We determine the properties of the eigenstates of the disordered Dirac Hamiltonian (H ) and exactly calculate the density of states (DOS) near zero energy, using a combination of Lanczos on H2 and the kernel polynomial method on H . We establish the existence of two distinct types of low-energy eigenstates contributing to the disordered density of states in the weak-disorder semimetal regime. These are (i) typical eigenstates that are well described by linearly dispersing perturbatively dressed Dirac states and (ii) nonperturbative rare eigenstates that are weakly dispersive and quasilocalized in the real-space regions with the largest (and rarest) local random potential. Using twisted boundary conditions, we are able to systematically find and study these two (essentially independent) types of eigenstates. We find that the Dirac states contribute low-energy peaks in the finite-size DOS that arise from the clean eigenstates which shift and broaden in the presence of disorder. On the other hand, we establish that the rare quasilocalized eigenstates contribute a nonzero background DOS which is only weakly energy dependent near zero energy and is exponentially small at weak disorder. We also find that the expected semimetal to diffusive-metal quantum critical point is converted to an avoided quantum criticality that is "rounded out" by nonperturbative effects, with no signs of any singular behavior in the DOS at the energy of the clean Dirac point. However, the crossover effects of the avoided (or hidden) criticality manifest themselves in a so-called quantum critical fan region away from the Dirac energy. We discuss the implications of our results for disordered Dirac and Weyl semimetals, and reconcile the large body of existing numerical work showing quantum criticality with the existence of these nonperturbative effects.

  13. Comment on "Spontaneous liquid-liquid phase separation of water"

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014), 10.1103/PhysRevE.89.020301] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  14. Structure and Chemistry in Halide Lead-Tellurite Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Riley, Brian J.; Lipton, Andrew S.

    2013-02-11

    A series of TeO2-PbO glasses were fabricated with increasing fractions of mixed alkali, alkaline earth, and lanthanide chlorides. The glass and crystal structure was studied with Raman spectroscopy, nuclear magnetic resonance (NMR), X-ray diffraction, and electron microscopy. As the chloride fraction increased, the medium-range order in the glass decreased up to a critical point (~14 mass% of mixed chlorides), above which the glasses became phase-separated. Resulting phases are a TeO2/PbO-rich phase and a crystalline phase rich in alkali chlorides. The 125Te NMR indicates, contrary to previous studies, that Te site distribution did not change with increased concentrations of M+, M2+,more » and M3+ cations, but rather is controlled by the Te/Pb molar ratio. The 207Pb NMR shows that two Pb species exist and their relative concentration changes nearly linearly with addition of the mixed chlorides, indicating that the additives to the TeO2-PbO glass are accommodated by changing the Pb species. The 23Na and 35Cl NMR indicate that Na and Cl are distributed in the single-phase glass phase up to the critical point, and at higher concentrations partition to crystalline phases. Transmission electron microscopy shows that the sample at the critical point contains ~10 nm seed nuclei that increase in size and concentration with exposure to the electron beam.« less

  15. A review of molecular phase separation in binary self-assembled monolayers of thiols on gold surfaces

    NASA Astrophysics Data System (ADS)

    Ong, Quy; Nianias, Nikolaos; Stellacci, Francesco

    2017-09-01

    Binary self-assembled monolayers (SAMs) on gold surfaces have been known to undergo molecular phase separation to various degrees and have been subject to both experimental and theoretical studies. On gold nanoparticles in particular, binary SAMs ligand shells display intriguing morphologies. Consequently, unexpected behaviors of the nanoparticles with respect to their biological, chemical, and interfacial properties have been observed. It is critical that the phase separation of binary SAMs be understood at both molecular and macroscopic level to create, and then manipulate, the useful properties of the functionalized surfaces. We look into the current understanding of molecular phase separation of binary SAMs on gold surfaces, represented by Au(111) flat surfaces and Au nanoparticles, from both theoretical and experimental aspects. We point out shortcomings and describe several research strategies that will address them in the future. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Pule Pileni.

  16. FAST TRACK COMMUNICATION: Gas liquid phase coexistence in a tetrahedral patchy particle model

    NASA Astrophysics Data System (ADS)

    Romano, Flavio; Tartaglia, Piero; Sciortino, Francesco

    2007-08-01

    We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda (1987 Mol. Phys. 61 161). Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favoured, as in the case of particles interacting via short-range attractive spherical potentials. We do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to that from equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in a homogeneous sample driven by bonding as opposed to packing.

  17. Strong enhancement of s -wave superconductivity near a quantum critical point of Ca 3 Ir 4 Sn 13

    DOE PAGES

    Biswas, P. K.; Guguchia, Z.; Khasanov, R.; ...

    2015-11-11

    We repormore » t microscopic studies by muon spin rotation/relaxation as a function of pressure of the Ca 3 Ir 4 Sn 13 and Sr 3Ir 4Sn 13 system displaying superconductivity and a structural phase transition associated with the formation of a charge density wave (CDW). Our findings show a strong enhancement of the superfluid density and a dramatic increase of the pairing strength above a pressure of ≈ 1.6 GPa giving direct evidence of the presence of a quantum critical point separating a superconducting phase coexisting with CDW from a pure superconducting phase. The superconducting order parameter in both phases has the same s-wave symmetry. In spite of the conventional phonon-mediated BCS character of the weakly correlated (Ca 1-xSr x) 3Ir 4Sn 13 system the dependence of the effective superfluid density on the critical temperature puts this compound in the “Uemura” plot close to unconventional superconductors. This system exemplifies that conventional BCS superconductors in the presence of competing orders or multi-band structure can also display characteristics of unconventional superconductors.« less

  18. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    PubMed Central

    Hancu, Gabriel; Simon, Brigitta; Rusu, Aura; Mircia, Eleonora; Gyéresi, Árpád

    2013-01-01

    Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis. PMID:24312804

  19. Electrophoretic separations on paper: Past, present, and future-A review.

    PubMed

    Nanthasurasak, Pavisara; Cabot, Joan Marc; See, Hong Heng; Guijt, Rosanne M; Breadmore, Michael C

    2017-09-08

    Point-of-collection (POC) devices aim for a fast, on-site detection for medical and environmental purposes. In this area, microfluidic Paper-based Analytical Devices (μPADs) have recently gained popularity because these are potentially cheap and environmentally friendly to produce, and easy to use. From an analytical perspective, paper is well known for its use as a substrate for chromatography, but less known for its use in electrophoretic separations. With the recent interest in μPADs, most applications are based on rather simple assays with relatively few applications incorporating an analytical separation. The focus of this review is on paper-based electrophoresis, originating with the key developments in the 1940s and 1950s as well as the recent developments of electrophoretic μPADs, and concluding with a critical discussion of the opportunities and challenges for electrophoretic μPADS in the future. Copyright © 2017. Published by Elsevier B.V.

  20. Phase separation in an exactly solvable model binary solution with three-body interactions and intermolecular bonding.

    PubMed

    Lungu, Radu P; Huckaby, Dale A; Buzatu, Florin D

    2006-02-01

    A model is presented in which the bonds of a honeycomb lattice are covered by rodlike molecules of types AA and BB, molecular ends near a common site having both three-body interactions and orientation-dependent bonding between two A molecular ends and between an A and a B molecular end. Phase diagrams corresponding to the separation into AA-rich and BB-rich phases are calculated exactly. Depending on the relative strengths of the interactions, one of several qualitatively different types of phase diagrams can result, including diagrams containing phenomena such as a double critical point or two separate asymmetric closed loops. The model is essentially a limiting case of a previously considered ternary solution model, and it is equivalent to a two-component system of interacting A and B molecules on the sites of a kagomé lattice.

  1. Perspective: The Asakura Oosawa model: a colloid prototype for bulk and interfacial phase behavior.

    PubMed

    Binder, Kurt; Virnau, Peter; Statt, Antonia

    2014-10-14

    In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of "inverted swan neck"-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.

  2. Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior

    NASA Astrophysics Data System (ADS)

    Binder, Kurt; Virnau, Peter; Statt, Antonia

    2014-10-01

    In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of "inverted swan neck"-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.

  3. Growth and Morphology of Supercritical Fluids Studied in Microgravity on Mir

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2000-01-01

    The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center at Lewis Field and under the guidance of U.S. principal investigator Professor John Hegseth of the University of New Orleans and three French coinvestigators Daniel Beysens, Yves Garrabos, and Carole Chabot. In early 1999, GMSF experiments were operated for 20 days on the Russian Space Station Mir. Mir astronauts performed experiments One through Seven, which spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) to be applied to the sample.

  4. Measuring neuronal avalanches in disordered systems with absorbing states

    NASA Astrophysics Data System (ADS)

    Girardi-Schappo, M.; Tragtenberg, M. H. R.

    2018-04-01

    Power-law-shaped avalanche-size distributions are widely used to probe for critical behavior in many different systems, particularly in neural networks. The definition of avalanche is ambiguous. Usually, theoretical avalanches are defined as the activity between a stimulus and the relaxation to an inactive absorbing state. On the other hand, experimental neuronal avalanches are defined by the activity between consecutive silent states. We claim that the latter definition may be extended to some theoretical models to characterize their power-law avalanches and critical behavior. We study a system in which the separation of driving and relaxation time scales emerges from its structure. We apply both definitions of avalanche to our model. Both yield power-law-distributed avalanches that scale with system size in the critical point as expected. Nevertheless, we find restricted power-law-distributed avalanches outside of the critical region within the experimental procedure, which is not expected by the standard theoretical definition. We remark that these results are dependent on the model details.

  5. Corresponding-states laws for protein solutions.

    PubMed

    Katsonis, Panagiotis; Brandon, Simon; Vekilov, Peter G

    2006-09-07

    The solvent around protein molecules in solutions is structured and this structuring introduces a repulsion in the intermolecular interaction potential at intermediate separations. We use Monte Carlo simulations with isotropic, pair-additive systems interacting with such potentials. We test if the liquid-liquid and liquid-solid phase lines in model protein solutions can be predicted from universal curves and a pair of experimentally determined parameters, as done for atomic and colloid materials using several laws of corresponding states. As predictors, we test three properties at the critical point for liquid-liquid separation: temperature, as in the original van der Waals law, the second virial coefficient, and a modified second virial coefficient, all paired with the critical volume fraction. We find that the van der Waals law is best obeyed and appears more general than its original formulation: A single universal curve describes all tested nonconformal isotropic pair-additive systems. Published experimental data for the liquid-liquid equilibrium for several proteins at various conditions follow a single van der Waals curve. For the solid-liquid equilibrium, we find that no single system property serves as its predictor. We go beyond corresponding-states correlations and put forth semiempirical laws, which allow prediction of the critical temperature and volume fraction solely based on the range of attraction of the intermolecular interaction potential.

  6. Non-equilibrium relaxation in a stochastic lattice Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Chen, Sheng; Täuber, Uwe C.

    2016-04-01

    We employ Monte Carlo simulations to study a stochastic Lotka-Volterra model on a two-dimensional square lattice with periodic boundary conditions. If the (local) prey carrying capacity is finite, there exists an extinction threshold for the predator population that separates a stable active two-species coexistence phase from an inactive state wherein only prey survive. Holding all other rates fixed, we investigate the non-equilibrium relaxation of the predator density in the vicinity of the critical predation rate. As expected, we observe critical slowing-down, i.e., a power law dependence of the relaxation time on the predation rate, and algebraic decay of the predator density at the extinction critical point. The numerically determined critical exponents are in accord with the established values of the directed percolation universality class. Following a sudden predation rate change to its critical value, one finds critical aging for the predator density autocorrelation function that is also governed by universal scaling exponents. This aging scaling signature of the active-to-absorbing state phase transition emerges at significantly earlier times than the stationary critical power laws, and could thus serve as an advanced indicator of the (predator) population’s proximity to its extinction threshold.

  7. Phase Transitions and Scaling in Systems Far from Equilibrium

    NASA Astrophysics Data System (ADS)

    Täuber, Uwe C.

    2017-03-01

    Scaling ideas and renormalization group approaches proved crucial for a deep understanding and classification of critical phenomena in thermal equilibrium. Over the past decades, these powerful conceptual and mathematical tools were extended to continuous phase transitions separating distinct nonequilibrium stationary states in driven classical and quantum systems. In concordance with detailed numerical simulations and laboratory experiments, several prominent dynamical universality classes have emerged that govern large-scale, long-time scaling properties both near and far from thermal equilibrium. These pertain to genuine specific critical points as well as entire parameter space regions for steady states that display generic scale invariance. The exploration of nonstationary relaxation properties and associated physical aging scaling constitutes a complementary potent means to characterize cooperative dynamics in complex out-of-equilibrium systems. This review describes dynamic scaling features through paradigmatic examples that include near-equilibrium critical dynamics, driven lattice gases and growing interfaces, correlation-dominated reaction-diffusion systems, and basic epidemic models.

  8. The nature of the continuous non-equilibrium phase transition of Axelrod's model

    NASA Astrophysics Data System (ADS)

    Peres, Lucas R.; Fontanari, José F.

    2015-09-01

    Axelrod's model in the square lattice with nearest-neighbors interactions exhibits culturally homogeneous as well as culturally fragmented absorbing configurations. In the case in which the agents are characterized by F = 2 cultural features and each feature assumes k states drawn from a Poisson distribution of parameter q, these regimes are separated by a continuous transition at qc = 3.10 +/- 0.02 . Using Monte Carlo simulations and finite-size scaling we show that the mean density of cultural domains μ is an order parameter of the model that vanishes as μ ∼ (q - q_c)^β with β = 0.67 +/- 0.01 at the critical point. In addition, for the correlation length critical exponent we find ν = 1.63 +/- 0.04 and for Fisher's exponent, τ = 1.76 +/- 0.01 . This set of critical exponents places the continuous phase transition of Axelrod's model apart from the known universality classes of non-equilibrium lattice models.

  9. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise

    USGS Publications Warehouse

    Von Damm, Karen L.; Lilley, M.D.; Shanks, Wayne C.; Brockington, M.; Bray, A.M.; O'Grady, K. M.; Olson, E.; Graham, A.; Proskurowski, G.

    2003-01-01

    The discovery of Brandon vent on the southern East Pacific Rise is providing new insights into the controls on midocean ridge hydrothermal vent fluid chemistry. The physical conditions at the time ofsampling (287 bar and 405??C) place the Brandon fluids very close to the critical point of seawater (298 bar and 407??C). This permits in situ study of the effects of near criticalphenomena, which are interpreted to be the primary cause of enhanced transition metal transport in these fluids. Of the five orifices on Brandon sampled, three were venting fluids with less than seawater chlorinity, and two were venting fluids with greater than seawater chlorinity. The liquid phase orifices contain 1.6-1.9 times the chloride content of the vapors. Most other elements, excluding the gases, have this same ratio demonstrating the conservative nature of phase separation and the lack of subsequent water-rock interaction. The vapor and liquid phases vent at the same time from orifices within meters of each other on the Brandon structure. Variations in fluid compositions occur on a time scale of minutes. Our interpretation is that phase separation and segregation must be occurring 'real time' within the sulfide structure itself. Fluids from Brandon therefore provide an unique opportunity to understand in situ phase separation without the overprinting of continued water-rock interaction with the oceanic crust, as well as critical phenomena. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Implementing hygiene monitoring systems in hospital laundries in order to reduce microbial contamination of hospital textiles.

    PubMed

    Fijan, S; Sostar-Turk, S; Cencic, A

    2005-09-01

    As textiles sent to hospital laundries contain many types of pathogenic organisms, it is important that laundering not only has an appropriate cleaning effect but also has a satisfactory disinfecting effect. Critical to this process is the maintenance of an appropriate hygiene level in the clean area of laundries in order to prevent recontamination of textiles from manual handling when ironing, folding, packing etc. The aims of this study were to evaluate the hygienic state of a hospital laundry, to introduce continuous sanitary measures, and to introduce a continuous hygiene monitoring system with an infection control programme. Two systems for evaluating hospital laundry hygiene were combined: HACCP principles (hazard analysis and critical control points) and RAL-GZ 992 standards (quality assurance standard for textile care of hospital laundry). Evaluation of the hygienic state of the hospital laundry was carried out by evaluating the number and types of micro-organisms present at the critical control points throughout the whole laundering process, using RODAC agar plates for surface sampling and the pour plate method for investigating water samples. The initial examination showed that the sanitary condition of the laundry did not reach the required hygiene level. Therefore, fundamental sanitation measures were instituted and the examination was repeated. Results were then satisfactory. The most important critical control point was the chemothermal laundering efficiency of the laundering process. To prevent micro-organisms spreading into the entire clean working area, it is important that, in addition to regular sanitary measures such as cleaning/disinfecting all working areas, technical equipment and storage shelves etc., regular education sessions for laundry employees on proper hand hygiene is undertaken and effective separation of the clean and dirty working areas is achieved.

  11. On the Electron Diffusion Region in Asymmetric Reconnection with a Guide Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.

    2016-01-01

    Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.

  12. [Supercritical and near-critical fluid solvents assisted reaction and separation processes].

    PubMed

    Song, R; Zeng, J; Zhong, B

    2001-11-01

    The tunability of supercritical and near-critical fluid (S/NCF) solvents offers environmental improvements and economic advantages from improved performances and flexibility for separation and reaction processes through density changes or cosolvents. The paper reviews the sustainable reaction and separation processes in S/NCF solvents such as supercritical carbon dioxide and near-critical water.

  13. Tracking gas-liquid coexistence in fluids of charged soft dumbbells.

    PubMed

    Braun, Heiko; Hentschke, Reinhard

    2009-10-01

    The existence of gas-liquid coexistence in dipolar fluids with no other contribution to attractive interaction than dipole-dipole interaction is a basic and open question in the theory of fluids. Recent Monte Carlo work by Camp and co-workers indicates that a fluid of charged hard dumbbells does exhibit gas-liquid (g-l) coexistence. This system has the potential to answer the above fundamental question because the charge-to-charge separation, d , on the dumbbells may be reduced to, at least in principle, yield the dipolar fluid limit. Using the molecular-dynamics technique we present simulation results for the g-l critical point of charged soft dumbbells at fixed dipole moment as function of d . We do find a g-l critical point at finite temperature even at the smallest d value (10;{-4}) . Reversible aggregation appears to play less a role than in related model systems as d becomes small. Consequently attempts to interpret the simulation results using either an extension of Flory's lattice theory for polymer systems, which includes reversible assembly of monomers into chains, or the defect model for reversible networks proposed by Tlusty and Safran are not successful. The overall best qualitative interpretation of the critical parameters is obtained by considering the dumbbells as dipoles immersed in a continuum dielectric.

  14. Signal broadening in the laser Doppler velocimeter.

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Edwards, R. V.; Dunning, J. W., Jr.

    1971-01-01

    Critical review of a recent paper in which Denison, Stevenson, and Fox (1971) discussed the sources of spectral broadening in the laser Doppler velocimeter. It is pointed out that, in their discussion, the above-mentioned authors indicated that the spread in wave vectors of the incident and detected fields and the finite length of time a scattering center stayed in the sample volume each contributed separately and independently to the observed spectral width of the scattered radiation. This statement is termed incorrect, and it is shown that the two effects are one and the same.

  15. Diffusion in jammed particle packs

    NASA Astrophysics Data System (ADS)

    Bolintineanu, Dan S.; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.

    2015-03-01

    Diffusive transport in jammed particle packs is of interest for a number of applications, as well as being a potential indicator of structural properties near the jamming point. To this end, we report stochastic simulations of equilibrium diffusion through monodisperse sphere packs near the jamming point in the limit of a perfectly insulating surrounding medium. The time dependence of various diffusion properties is resolved over several orders of magnitude. Two time regimes of expected Fickian diffusion are observed, separated by an intermediate regime of anomalous diffusion. This intermediate regime grows as the particle volume fraction approaches the critical jamming transition. The diffusion behavior is fully controlled by the extent of the contacts between neighboring particles, which in turn depend on proximity to the jamming point. In particular, the mean first passage time associated with the escape of random walkers between neighboring particles is shown to control both the time to recover Fickian diffusion and the long time diffusivity. Scaling laws are established that relate these quantities to the difference between the actual and critical jamming volume fractions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE- AC04-94AL85000.

  16. Gas-liquid chromatography with a volatile "stationary" liquid phase.

    PubMed

    Wells, P S; Zhou, S; Parcher, J F

    2002-05-01

    A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.

  17. Control over phase separation and nucleation using a laser-tweezing potential

    NASA Astrophysics Data System (ADS)

    Walton, Finlay; Wynne, Klaas

    2018-05-01

    Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid-liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter.

  18. Complete analysis of ensemble inequivalence in the Blume-Emery-Griffiths model

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, V. V.; Ananikian, N. S.; Campa, A.; Ruffo, S.

    2017-12-01

    We study inequivalence of canonical and microcanonical ensembles in the mean-field Blume-Emery-Griffiths model. This generalizes previous results obtained for the Blume-Capel model. The phase diagram strongly depends on the value of the biquadratic exchange interaction K , the additional feature present in the Blume-Emery-Griffiths model. At small values of K , as for the Blume-Capel model, lines of first- and second-order phase transitions between a ferromagnetic and a paramagnetic phase are present, separated by a tricritical point whose location is different in the two ensembles. At higher values of K the phase diagram changes substantially, with the appearance of a triple point in the canonical ensemble, which does not find any correspondence in the microcanonical ensemble. Moreover, one of the first-order lines that starts from the triple point ends in a critical point, whose position in the phase diagram is different in the two ensembles. This line separates two paramagnetic phases characterized by a different value of the quadrupole moment. These features were not previously studied for other models and substantially enrich the landscape of ensemble inequivalence, identifying new aspects that had been discussed in a classification of phase transitions based on singularity theory. Finally, we discuss ergodicity breaking, which is highlighted by the presence of gaps in the accessible values of magnetization at low energies: it also displays new interesting patterns that are not present in the Blume-Capel model.

  19. Two-Point Orientation Discrimination Versus the Traditional Two-Point Test for Tactile Spatial Acuity Assessment

    PubMed Central

    Tong, Jonathan; Mao, Oliver; Goldreich, Daniel

    2013-01-01

    Two-point discrimination is widely used to measure tactile spatial acuity. The validity of the two-point threshold as a spatial acuity measure rests on the assumption that two points can be distinguished from one only when the two points are sufficiently separated to evoke spatially distinguishable foci of neural activity. However, some previous research has challenged this view, suggesting instead that two-point task performance benefits from an unintended non-spatial cue, allowing spuriously good performance at small tip separations. We compared the traditional two-point task to an equally convenient alternative task in which participants attempt to discern the orientation (vertical or horizontal) of two points of contact. We used precision digital readout calipers to administer two-interval forced-choice versions of both tasks to 24 neurologically healthy adults, on the fingertip, finger base, palm, and forearm. We used Bayesian adaptive testing to estimate the participants’ psychometric functions on the two tasks. Traditional two-point performance remained significantly above chance levels even at zero point separation. In contrast, two-point orientation discrimination approached chance as point separation approached zero, as expected for a valid measure of tactile spatial acuity. Traditional two-point performance was so inflated at small point separations that 75%-correct thresholds could be determined on all tested sites for fewer than half of participants. The 95%-correct thresholds on the two tasks were similar, and correlated with receptive field spacing. In keeping with previous critiques, we conclude that the traditional two-point task provides an unintended non-spatial cue, resulting in spuriously good performance at small spatial separations. Unlike two-point discrimination, two-point orientation discrimination rigorously measures tactile spatial acuity. We recommend the use of two-point orientation discrimination for neurological assessment. PMID:24062677

  20. Separated flows near the nose of a body of revolution

    NASA Technical Reports Server (NTRS)

    Lin, S. P.

    1986-01-01

    The solution of the Navier-Stokes equations for the problem of cross-flow separataion about a deforming cylinder was achieved by iteration. It was shown that the separation starts at the rear stagnation point and the point of primary separation moves upstram along the cylinder surface. A general method of linear stability analysis for nonparallel external flows was constructed, which consists of representing the eigenfunctions with complete orthogonal sets and forms characteristic equations with the Galerkin method. The method was applied to the Kovasznay flow which is an exact solution of the Navier-Stokes equation. The results show that when the critical parameter is exceeded, there are only a few isolated unstable eigen-frequencies. Another exact solution is shown to be absolutely and monotonically stable with respect to infinitesimal disturbances of all frequencies. The flow is also globally, asymptotically, and monotonically stable in the mean with respect o three-dimensional disturbances. This result forms the sound foundation of rigorous stability analysis for nonparallel flows, and provides an invaluable test ground for future studies of nonparallel flows in which the basic states do not posses exact solutions. The application of this method to the study of the formation of spiral vorticies near the nose of a rotating body of revolution is underway. The same method will be applied to the stability analysis of reversed flow over a plate with suction.

  1. Global Instability on Laminar Separation Bubbles-Revisited

    NASA Technical Reports Server (NTRS)

    Theofilis, Vassilis; Rodriquez, Daniel; Smith, Douglas

    2010-01-01

    In the last 3 years, global linear instability of LSB has been revisited, using state-of-the-art hardware and algorithms. Eigenspectra of LSB flows have been understood and classified in branches of known and newly-discovered eigenmodes. Major achievements: World-largest numerical solutions of global eigenvalue problems are routinely performed. Key aerodynamic phenomena have been explained via critical point theory, applied to our global mode results. Theoretical foundation for control of LSB flows has been laid. Global mode of LSB at the origin of observable phenomena. U-separation on semi-infinite plate. Stall cells on (stalled) airfoil. Receptivity/Sensitivity/AFC feasible (practical?) via: Adjoint EVP solution. Direct/adjoint coupling (the Crete connection). Minor effect of compressibility on global instability in the subsonic compressible regime. Global instability analysis of LSB in realistic supersonic flows apparently quite some way down the horizon.

  2. Surface deformation and shear flow in ligand mediated cell adhesion.

    PubMed

    Sircar, Sarthok; Roberts, Anthony J

    2016-10-01

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically.

  3. Automatic Extraction of Road Markings from Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Ma, H.; Pei, Z.; Wei, Z.; Zhong, R.

    2017-09-01

    Road markings as critical feature in high-defination maps, which are Advanced Driver Assistance System (ADAS) and self-driving technology required, have important functions in providing guidance and information to moving cars. Mobile laser scanning (MLS) system is an effective way to obtain the 3D information of the road surface, including road markings, at highway speeds and at less than traditional survey costs. This paper presents a novel method to automatically extract road markings from MLS point clouds. Ground points are first filtered from raw input point clouds using neighborhood elevation consistency method. The basic assumption of the method is that the road surface is smooth. Points with small elevation-difference between neighborhood are considered to be ground points. Then ground points are partitioned into a set of profiles according to trajectory data. The intensity histogram of points in each profile is generated to find intensity jumps in certain threshold which inversely to laser distance. The separated points are used as seed points to region grow based on intensity so as to obtain road mark of integrity. We use the point cloud template-matching method to refine the road marking candidates via removing the noise clusters with low correlation coefficient. During experiment with a MLS point set of about 2 kilometres in a city center, our method provides a promising solution to the road markings extraction from MLS data.

  4. A data-stream classification system for investigating terrorist threats

    NASA Astrophysics Data System (ADS)

    Schulz, Alexia; Dettman, Joshua; Gottschalk, Jeffrey; Kotson, Michael; Vuksani, Era; Yu, Tamara

    2016-05-01

    The role of cyber forensics in criminal investigations has greatly increased in recent years due to the wealth of data that is collected and available to investigators. Physical forensics has also experienced a data volume and fidelity revolution due to advances in methods for DNA and trace evidence analysis. Key to extracting insight is the ability to correlate across multi-modal data, which depends critically on identifying a touch-point connecting the separate data streams. Separate data sources may be connected because they refer to the same individual, entity or event. In this paper we present a data source classification system tailored to facilitate the investigation of potential terrorist activity. This taxonomy is structured to illuminate the defining characteristics of a particular terrorist effort and designed to guide reporting to decision makers that is complete, concise, and evidence-based. The classification system has been validated and empirically utilized in the forensic analysis of a simulated terrorist activity. Next-generation analysts can use this schema to label and correlate across existing data streams, assess which critical information may be missing from the data, and identify options for collecting additional data streams to fill information gaps.

  5. Quality by Design in the development of hydrophilic interaction liquid chromatography method with gradient elution for the analysis of olanzapine.

    PubMed

    Tumpa, Anja; Stajić, Ana; Jančić-Stojanović, Biljana; Medenica, Mirjana

    2017-02-05

    This paper deals with the development of hydrophilic interaction liquid chromatography (HILIC) method with gradient elution, in accordance with Analytical Quality by Design (AQbD) methodology, for the first time. The method is developed for olanzapine and its seven related substances. Following step by step AQbD methodology, firstly as critical process parameters (CPPs) temperature, starting content of aqueous phase and duration of linear gradient are recognized, and as critical quality attributes (CQAs) separation criterion S of critical pairs of substances are investigated. Rechtschaffen design is used for the creation of models that describe the dependence between CPPs and CQAs. The design space that is obtained at the end is used for choosing the optimal conditions (set point). The method is fully validated at the end to verify the adequacy of the chosen optimal conditions and applied to real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.; Babcock, Robert W.; Murison, Marc A.; Noecker, M. Charles; Phillips, James D.; Schumaker, Bonny L.; Ulvestad, James S.; McKinley, William; Zielinski, Robert J.; Lillie, Charles F.

    1996-01-01

    POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer, as is required when out-of-plane observations are made. An instrument for astrometry, unlike those for imaging, can be compact and yet scientifically productive. The POINTS instrument is compact and therefore requires no deployment of precision structures, has no low-frequency (i.e., under 100 Hz) vibration modes, and is relatively easy to control thermally. Because of its small size and mass, it is easily and quickly repointed between observations. Further, because of the low mass, it can be economically launched into high Earth orbit which, in conjunction with a solar shield, yields nearly unrestricted sky coverage and a stable thermal environment.

  7. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: (i) Critical control points designed to control food hazards that are reasonably likely to occur and could be introduced inside the processing plant environment; and (ii) Critical control points designed... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hazard Analysis and Critical Control Point (HACCP...

  8. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: (i) Critical control points designed to control food hazards that are reasonably likely to occur and could be introduced inside the processing plant environment; and (ii) Critical control points designed... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Hazard Analysis and Critical Control Point (HACCP...

  9. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: (i) Critical control points designed to control food hazards that are reasonably likely to occur and could be introduced inside the processing plant environment; and (ii) Critical control points designed... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Hazard Analysis and Critical Control Point (HACCP...

  10. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: (i) Critical control points designed to control food hazards that are reasonably likely to occur and could be introduced inside the processing plant environment; and (ii) Critical control points designed... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Hazard Analysis and Critical Control Point (HACCP...

  11. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: (i) Critical control points designed to control food hazards that are reasonably likely to occur and could be introduced inside the processing plant environment; and (ii) Critical control points designed... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hazard Analysis and Critical Control Point (HACCP...

  12. Entanglement entropy for the long-range Ising chain in a transverse field.

    PubMed

    Koffel, Thomas; Lewenstein, M; Tagliacozzo, Luca

    2012-12-28

    We consider the Ising model in a transverse field with long-range antiferromagnetic interactions that decay as a power law with their distance. We study both the phase diagram and the entanglement properties as a function of the exponent of the interaction. The phase diagram can be used as a guide for future experiments with trapped ions. We find two gapped phases, one dominated by the transverse field, exhibiting quasi-long-range order, and one dominated by the long-range interaction, with long-range Néel ordered ground states. We determine the location of the quantum critical points separating those two phases. We determine their critical exponents and central charges. In the phase with quasi-long-range order the ground states exhibit exotic corrections to the area law for the entanglement entropy coexisting with gapped entanglement spectra.

  13. Phase transition in the countdown problem

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas; Luque, Bartolo

    2012-07-01

    We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.

  14. Finite temperature quantum critical transport near the Mott transition

    NASA Astrophysics Data System (ADS)

    Terletska, Hanna; Dobrosavljevic, Vladimir

    2010-03-01

    We use Dynamical Mean-Field Theory to study incoherent transport above the critical end-point temperature Tc of the single band Hubbard model at half-filling. By employing an eigenvalue analysis for the free energy functional, we are able to precisely identify the crossover temperature T*(U) separating the Fermi liquid and the Mott insulating regimes. Our calculations demonstrate that a broad parameter range exist around the crossover line, where the family of resistivity curves displays simple scaling behavior. This is interpreted as a manifestation of quantum criticality controlled by the T=0 Mott transition, which is ``interrupted'' by the emergence of the coexistence dome at T < Tc . We argue that in situations where the critical temperature Tc is significantly reduced, so that the coexistence region is reduced or even absent (as in two-band, particle-hole asymmetric models, where this is found even in the clean d->∞ limit [1, 2]), similar critical scaling properties should persist down to much lower temperatures, resembling quantum critical transport similar to that found in a number of experiments [2]. [1] A. Amaricci, G. Sordi, and M. J. Rosenberg, Phys. Rev. Lett. 101, 146403 (2008) [2] A. Camjayi, K. Haule, V. Dobrosavljevic, and G. Kotliar, Nature Physics, 4, 932 (2008)

  15. Thermodynamics of phase formation in the quantum critical metal Sr3Ru2O7

    PubMed Central

    Rost, A. W.; Grigera, S. A.; Bruin, J. A. N.; Perry, R. S.; Tian, D.; Raghu, S.; Kivelson, Steven Allan; Mackenzie, A. P.

    2011-01-01

    The behavior of matter near zero temperature continuous phase transitions, or “quantum critical points” is a central topic of study in condensed matter physics. In fermionic systems, fundamental questions remain unanswered: the nature of the quantum critical regime is unclear because of the apparent breakdown of the concept of the quasiparticle, a cornerstone of existing theories of strongly interacting metals. Even less is known experimentally about the formation of ordered phases from such a quantum critical “soup.” Here, we report a study of the specific heat across the phase diagram of the model system Sr3Ru2O7, which features an anomalous phase whose transport properties are consistent with those of an electronic nematic. We show that this phase, which exists at low temperatures in a narrow range of magnetic fields, forms directly from a quantum critical state, and contains more entropy than mean-field calculations predict. Our results suggest that this extra entropy is due to remnant degrees of freedom from the highly entropic state above Tc. The associated quantum critical point, which is “concealed” by the nematic phase, separates two Fermi liquids, neither of which has an identifiable spontaneously broken symmetry, but which likely differ in the topology of their Fermi surfaces. PMID:21933961

  16. New Comment on Gibbs Density Surface of Fluid Argon: Revised Critical Parameters, L. V. Woodcock, Int. J. Thermophys. (2014) 35, 1770-1784

    NASA Astrophysics Data System (ADS)

    Umirzakov, I. H.

    2018-01-01

    The author comments on an article by Woodcock (Int J Thermophys 35:1770-1784, 2014), who investigates the idea of a critical line instead of a single critical point using the example of argon. In the introduction, Woodcock states that "The Van der Waals critical point does not comply with the Gibbs phase rule. Its existence is based upon a hypothesis rather than a thermodynamic definition". The present comment is a response to the statement by Woodcock. The comment mathematically demonstrates that a critical point is not only based on a hypothesis that is used to define values of two parameters of the Van der Waals equation of state. Instead, the author argues that a critical point is a direct consequence of the thermodynamic phase equilibrium conditions resulting in a single critical point. It is shown that the thermodynamic conditions result in the first and second partial derivatives of pressure with respect to volume at constant temperature at a critical point equal to zero which are usual conditions of an existence of a critical point.

  17. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions

    NASA Astrophysics Data System (ADS)

    Dey, Pankaj; Mishra, Ashok

    2017-05-01

    Climate change and human activity are two major drivers that alter hydrological cycle processes and cause change in spatio-temporal distribution of water availability. Streamflow, the most important component of hydrological cycle undergoes variation which is expected to be influenced by climate change as well as human activities. Since these two affecting conditions are time dependent, having unequal influence, identification of the change point in natural flow regime is of utmost important to separate the individual impact of climate change and human activities on streamflow variability. Subsequently, it is important as well for framing adaptation strategies and policies for regional water resources planning and management. In this paper, a comprehensive review of different approaches used by research community to isolate the impacts of climate change and human activities on streamflow are presented. The important issues pertaining to different approaches, to make rational use of methodology, are discussed so that researcher and policymaker can understand the importance of individual methodology and its use in water resources management. A new approach has also been suggested to select a representative change point under different scenarios of human activities with incorporation of climate variability/change.

  18. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOEpatents

    Roberts, George W.; Tao, John C.

    1985-01-01

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  19. Role of fluctuations in random compressible systems at marginal dimensionality

    NASA Astrophysics Data System (ADS)

    Meissner, G.; Sasvári, L.; Tadić, B.

    1986-07-01

    In a unified treatment we have studied the role of fluctuations in uniaxial random systems at marginal dimensionality d*=4 with the n=1 component order parameter being coupled to elastic degrees of freedom. Depending on the ratio of the nonuniversal parameters of quenched disorder Δ0 and of elastic fluctuations v~0, a first- or second-order phase transition is found to occur, separated by a tricritical point. A complete account of critical properties and of macroscopic as well as of microscopic elastic stability is given for temperatures T>Tc. Universal singularities of thermodynamic functions are determined for t=(T-Tc)/Tc-->0 including the tricritical point: for v~0/Δ0>-2, they are the same as in a rigid random system; for v~0/Δ0=-2, they are different due to lattice compressibility being related, however, to the former by Fisher renormalization. Fluctuation corrections in one-loop approximation have been evaluated in a nonuniversal critical temperature range, tx<

  20. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride)

    PubMed Central

    Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy

    2015-01-01

    In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019

  1. Superconductivity achieved at over liquid nitrogen temperature by (mixed rare earths)-Ba-Cu oxides

    NASA Astrophysics Data System (ADS)

    Kishio, Kohji; Kuwahara, Kazuyuki; Kitazawa, Koichi; Fueki, Kazuo; Nakamura, Osamu

    1987-05-01

    Superconducting oxides were fabricated by reaction of powders of BaCO3, CuO and mixed rare earth (RE) carbonates at compositions expressed as (RE)1Ba2Cu3O(9-y). Two types of incompletely separated raw materials of mixed rare earths, namely, heavy rare earths (HRE) and medium rare earths (MRE), were examined. The zero-resistivity critical temperatures were observed at 92.5 K for the (HRE)-Ba-Cu-O and 85.0 K for the (MRE)-Ba-Cu-O systems, respectively, both of which were well above the boiling point of liquid nitrogen.

  2. Extremal values of the sojourn time

    NASA Astrophysics Data System (ADS)

    Astaburuaga, M. A.; Cortés, V. H.; Duclos, P.

    2010-11-01

    Consider a self-adjoint operator H on a separable Hilbert space \\ {H} with non-trivial absolutely continuous component. We study the general properties of the real-valued functional, \\tau _{H}(\\psi )=\\int _{{\\ R}}|(e^{-itH}\\psi,\\psi )|^2\\,dt, which in quantum mechanics represents the sojourn time (or life time) of an initial state \\psi \\in \\ {H}. We characterize the critical points of the sojourn time, τX, of the operator multiplication by x in L^2({\\ R}), and prove that it attains a global maximum in the unit sphere of the Sobolev space \\ {W}^{1,2}({\\ R}).

  3. New results on water in bulk, nanoconfined, and biological environments

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Kumar, Pradeep; Xu, Limei; Yan, Zhenyu; Mazza, Marco G.; Buldyrev, S. V.; Chen, S.-H.; Mallamace, F.

    2007-12-01

    Water is perhaps the most ubiquitous, and the most essential, of any molecule on earth. Despite decades of research, however, water's puzzling properties are not understood and 63 anomalies that distinguish water from other liquids remain unsolved. We present evidence from experiments and computer simulations supporting the hypothesis that water displays polyamorphism, i.e., water separates into two distinct liquid phases. This concept of a new liquid-liquid critical point is finding application to other liquids as well as water, such as silicon and silica. We also discuss related puzzles, such as the mysterious behavior of water near a biomolecule.

  4. Structural peculiarities and Raman spectra of TeO{sub 2}/WO{sub 3}-based glasses: A fresh look at the problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirgorodsky, Andreie; Colas, Maggy; Smirnov, Mikhael

    2012-06-15

    Ideas currently dominating the field of structural studies of TeO{sub 2}-based glasses are critically considered. A new physically and chemically consistent approach to the constitution of binary TeO{sub 2}-WO{sub 3} glasses is proposed, in which the reasoning coming from the Raman spectra reexamination are correlated with the basic principles of thermodynamics. Separation into two phases is suggested in such glasses. One phase is TeO{sub 2}, and another is Te(WO{sub 4}){sub 2} consisting of tetrahedral [WO{sub 4}]{sup 2-} anions and of Te{sup 4+} cations. Supplementary M{sub n}O{sub k} oxides added to the glasses are found incorporated in the former phase, thusmore » producing solid solutions (for M=Ti, Nb) or tellurite compounds (for M=Nd). - Graphical abstract: Raman scattering spectra of TeO{sub 2}-based glasses with the following compositions (mol%): (a) pure TeO{sub 2}, (b) 85TeO{sub 2}-15WO{sub 3}, (c) 80TeO{sub 2}-15WO{sub 3}-5TiO{sub 2} ,(d) 80TeO{sub 2}-10WO{sub 3}-5TiO{sub 2}-5Nb{sub 2}O{sub 5}, (e) 80TeO{sub 2}-12WO{sub 3}-5TiO{sub 2}-3 Nd{sub 2}O{sub 3}, (f) 80TeO{sub 2}-10WO{sub 3}-5TiO{sub 2}-5Nd{sub 2}O{sub 3}. Highlights: Black-Right-Pointing-Pointer Structural studies of TeO{sub 2}-WO{sub 3} glasses are critically considered. Black-Right-Pointing-Pointer The oxide glass formation is analyzed from Raman spectra and thermodynamic principles. Black-Right-Pointing-Pointer Separation into two phases, TeO{sub 2} and Te(WO{sub 4}){sub 2}, is intrinsic in such glasses. Black-Right-Pointing-Pointer TiO{sub 2} or Nb{sub 2}O{sub 5} addition to TeO{sub 2}-WO{sub 3} glasses leads to produce solid solutions. Black-Right-Pointing-Pointer Nd{sub 2}O{sub 3} addition to TeO{sub 2}-WO{sub 3} glasses leads to produce a tellurite compound.« less

  5. Critical Narrative Analysis: The Interplay of Critical Discourse and Narrative Analyses

    ERIC Educational Resources Information Center

    Souto-Manning, Mariana

    2014-01-01

    In this article, I question the micro-macro separation in discourse analysis, the separation of personal and institutional discourses. I apply a mostly macroanalytic perspective (critical discourse analysis [CDA]) to inform a predominantly microanalytic perspective (analysis of conversational narratives) and vice versa. In the combination of these…

  6. The puzzling unsolved mysteries of liquid water: Some recent progress

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Kumar, P.; Xu, L.; Yan, Z.; Mazza, M. G.; Buldyrev, S. V.; Chen, S.-H.; Mallamace, F.

    2007-12-01

    Water is perhaps the most ubiquitous, and the most essential, of any molecule on earth. Indeed, it defies the imagination of even the most creative science fiction writer to picture what life would be like without water. Despite decades of research, however, water's puzzling properties are not understood and 63 anomalies that distinguish water from other liquids remain unsolved. We introduce some of these unsolved mysteries, and demonstrate recent progress in solving them. We present evidence from experiments and computer simulations supporting the hypothesis that water displays a special transition point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell). The general idea is that when the liquid is near this “tipping point,” it suddenly separates into two distinct liquid phases. This concept of a new critical point is finding application to other liquids as well as water, such as silicon and silica. We also discuss related puzzles, such as the mysterious behavior of water near a protein.

  7. Next generation space interconnect research and development in space communications

    NASA Astrophysics Data System (ADS)

    Collier, Charles Patrick

    2017-11-01

    Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.

  8. Control of finite critical behaviour in a small-scale social system

    NASA Astrophysics Data System (ADS)

    Daniels, Bryan C.; Krakauer, David C.; Flack, Jessica C.

    2017-02-01

    Many adaptive systems sit near a tipping or critical point. For systems near a critical point small changes to component behaviour can induce large-scale changes in aggregate structure and function. Criticality can be adaptive when the environment is changing, but entails reduced robustness through sensitivity. This tradeoff can be resolved when criticality can be tuned. We address the control of finite measures of criticality using data on fight sizes from an animal society model system (Macaca nemestrina, n=48). We find that a heterogeneous, socially organized system, like homogeneous, spatial systems (flocks and schools), sits near a critical point; the contributions individuals make to collective phenomena can be quantified; there is heterogeneity in these contributions; and distance from the critical point (DFC) can be controlled through biologically plausible mechanisms exploiting heterogeneity. We propose two alternative hypotheses for why a system decreases the distance from the critical point.

  9. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow recirculation extends through a mixing plane, however, which for the particular mixing-plane model used is now known to exaggerate the recirculation. In any case, the flow separation has relatively little impact on the computed rotor and FEGV flow fields.

  10. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables.

    PubMed

    Łącki, Mateusz; Damski, Bogdan; Zakrzewski, Jakub

    2016-12-02

    We show that the critical point of the two-dimensional Bose-Hubbard model can be easily found through studies of either on-site atom number fluctuations or the nearest-neighbor two-point correlation function (the expectation value of the tunnelling operator). Our strategy to locate the critical point is based on the observation that the derivatives of these observables with respect to the parameter that drives the superfluid-Mott insulator transition are singular at the critical point in the thermodynamic limit. Performing the quantum Monte Carlo simulations of the two-dimensional Bose-Hubbard model, we show that this technique leads to the accurate determination of the position of its critical point. Our results can be easily extended to the three-dimensional Bose-Hubbard model and different Hubbard-like models. They provide a simple experimentally-relevant way of locating critical points in various cold atomic lattice systems.

  11. Growth and Morphology of Phase Separating Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Beysens, Daniel; Perrot, Francoise; Nikolayev, Vadim; Garrabos, Yves

    1996-01-01

    The scientific objective is to study the relation between the morphology and the growth kinetics of domains during phase separation. We know from previous experiments performed near the critical point of pure fluids and binary liquids that there are two simple growth laws at late times. The 'fast' growth appears when the volumes of the phases are nearly equal and the droplet pattern is interconnected. In this case the size of the droplets grows linearly in time. The 'slow' growth appears when the pattern of droplets embedded in the majority phase is disconnected. In this case the size of the droplets increases in proportion to time to the power 1/3. The volume fraction of the minority phase is a good candidate to determine this change of behavior. All previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme experimental difficulties.

  12. Countercurrent Separation of Natural Products: An Update

    PubMed Central

    2015-01-01

    This work assesses the current instrumentation, method development, and applications in countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC), collectively referred to as countercurrent separation (CCS). The article provides a critical review of the CCS literature from 2007 since our last review (J. Nat. Prod.2008, 71, 1489–1508), with a special emphasis on the applications of CCS in natural products research. The current state of CCS is reviewed in regard to three continuing topics (instrumentation, solvent system development, theory) and three new topics (optimization of parameters, workflow, bioactivity applications). The goals of this review are to deliver the necessary background with references for an up-to-date perspective of CCS, to point out its potential for the natural product scientist, and thereby to induce new applications in natural product chemistry, metabolome, and drug discovery research involving organisms from terrestrial and marine sources. PMID:26177360

  13. Extremely asymmetric phase diagram of homopolymer-monotethered nanoparticles: Competition between chain conformational entropy and particle steric interaction.

    PubMed

    Zhang, Tiancai; Fu, Chao; Yang, Yingzi; Qiu, Feng

    2017-02-07

    The phase behaviors of homopolymer-monotethered nanoparticles (HMNs) in melt are investigated via a theoretical method combining self-consistent field theory for polymers and density functional theory for hard spheres. An extremely asymmetric phase diagram is observed: (i) microphases are only possible for the volume fraction of the tethered polymer f A > 0.35; (ii) in addition to lamellar phase, the system can only self-assemble into various morphologies with a polymer-rich matrix, including gyroid phase, cylindrical phase, and spherical phase. In the frame of this theory, the critical point for HMNs' microphase separation is significantly lower than that of linear diblock copolymers. Furthermore, the characteristic length of microphase-separated structures of HMNs is much smaller than that of linear diblock copolymers with the same molecular weight. Our calculation results on morphologies and characteristic length agree well with recent simulations and experimental observations.

  14. Robustness of critical points in a complex adaptive system: Effects of hedge behavior

    NASA Astrophysics Data System (ADS)

    Liang, Yuan; Huang, Ji-Ping

    2013-08-01

    In our recent papers, we have identified a class of phase transitions in the market-directed resource-allocation game, and found that there exists a critical point at which the phase transitions occur. The critical point is given by a certain resource ratio. Here, by performing computer simulations and theoretical analysis, we report that the critical point is robust against various kinds of human hedge behavior where the numbers of herds and contrarians can be varied widely. This means that the critical point can be independent of the total number of participants composed of normal agents, herds and contrarians, under some conditions. This finding means that the critical points we identified in this complex adaptive system (with adaptive agents) may also be an intensive quantity, similar to those revealed in traditional physical systems (with non-adaptive units).

  15. Elucidating the Ultrafast Dynamics of Photoinduced Charge Separation in Metalloporphyrin-Fullerene Dyads Across the Electromagnetic Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Pápai, M.; Hirsch, A.

    Metalloporphyrins are prominent building blocks in the synthetic toolbox of advanced photodriven molecular devices. When the central ion is paramagnetic, the relaxation pathways within the manifold of excited states are highly intricate so that unravelling the intramolecular energy and electron transfer processes is usually a very complex task. This fact is critically hampering the development of applications based on the enhanced coupling offered by the electronic exchange interaction. In this work, the dynamics of charge separation in a copper porphyrin-fullerene are studied with several complementary spectroscopic tools across the electromagnetic spectrum (from near infra-red to X-ray wavelengths), each of themmore » providing specific diagnostics. Correlating the various rates clearly demonstrates that the lifetime of the photoinduced charge-separated state exceeds by about 10 fold that of the isolated photoexcited CuII porphyrin. As revealed by the spectral modifications in the XANES region, this stabilization is accompanied by a transient change in covalency around the CuII center, which is induced by an enhanced interaction with the C60 moiety. This experimental finding is further confirmed by state-of-the art calculations using DFT and TD-DFT including dispersion effects that explain the electrostatic and structural origins of this interaction, as the CuIIP cation becomes ruffled and approaches closer to the fullerene in the charge-separated state. From a methodological point of view, these results exemplify the potential of multielectron excitation features in transient X-ray spectra as future diagnostics of sub-femtosecond electronic dynamics. From a practical point of view, this work is paving the way for elucidating out-of-equilibrium electron transfer events coupled to magnetic interaction processes on their intrinsic time-scales.« less

  16. On the wake flow of asymmetrically beveled trailing edges

    NASA Astrophysics Data System (ADS)

    Guan, Yaoyi; Pröbsting, Stefan; Stephens, David; Gupta, Abhineet; Morris, Scott C.

    2016-05-01

    Trailing edge and wake flows are of interest for a wide range of applications. Small changes in the design of asymmetrically beveled or semi-rounded trailing edges can result in significant difference in flow features which are relevant for the aerodynamic performance, flow-induced structural vibration and aerodynamically generated sound. The present study describes in detail the flow field characteristics around a family of asymmetrically beveled trailing edges with an enclosed trailing-edge angle of 25° and variable radius of curvature R. The flow fields over the beveled trailing edges are described using data obtained by particle image velocimetry (PIV) experiments. The flow topology for different trailing edges was found to be strongly dependent on the radius of curvature R, with flow separation occurring further downstream as R increases. This variation in the location of flow separation influences the aerodynamic force coefficients, which were evaluated from the PIV data using a control volume approach. Two-point correlations of the in-plane velocity components are considered to assess the structure in the flow field. The analysis shows large-scale coherent motions in the far wake, which are associated with vortex shedding. The wake thickness parameter yf is confirmed as an appropriate length scale to characterize this large-scale roll-up motion in the wake. The development in the very near wake was found to be critically dependent on R. In addition, high-speed PIV measurements provide insight into the spectral characteristics of the turbulent fluctuations. Based on the time-resolved flow field data, the frequency range associated with the shedding of coherent vortex pairs in the wake is identified. By means of time-correlation of the velocity components, turbulent structures are found to convect from the attached or separated shear layers without distinct separation point into the wake.

  17. Absorbing phase transitions in deterministic fixed-energy sandpile models

    NASA Astrophysics Data System (ADS)

    Park, Su-Chan

    2018-03-01

    We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010), 10.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.

  18. Absorbing phase transitions in deterministic fixed-energy sandpile models.

    PubMed

    Park, Su-Chan

    2018-03-01

    We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.

  19. Transport properties of gases and binary liquids near the critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.

    1972-01-01

    A status report is presented on the anomalies observed in the behavior of transport properties near the critical point of gases and binary liquids. The shear viscosity exhibits a weak singularity near the critical point. An analysis is made of the experimental data for those transport properties, thermal conductivity and thermal diffusivity near the gas-liquid critical point and binary diffusion coefficient near the critical mixing point, that determine the critical slowing down of the thermodynamic fluctuations in the order parameter. The asymptotic behavior of the thermal conductivity appears to be closely related to the asymptotic behavior of the correlation length. The experimental data for the thermal conductivity and diffusivity are shown to be in substantial agreement with current theoretical predictions.

  20. Game changer: the topology of creativity.

    PubMed

    de Vaan, Mathijs; Stark, David; Vedres, Balazs

    2015-01-01

    This article examines the sociological factors that explain why some creative teams are able to produce game changers--cultural products that stand out as distinctive while also being critically recognized as outstanding. The authors build on work pointing to structural folding--the network property of a cohesive group whose membership overlaps with that of another cohesive group. They hypothesize that the effects of structural folding on game changing success are especially strong when overlapping groups are cognitively distant. Measuring social distance separately from cognitive distance and distinctiveness independently from critical acclaim, the authors test their hypothesis about structural folding and cognitive diversity by analyzing team reassembly for 12,422 video games and the career histories of 139,727 video game developers. When combined with cognitive distance, structural folding channels and mobilizes a productive tension of rules, roles, and codes that promotes successful innovation. In addition to serving as pipes and prisms, network ties are also the source of tools and tensions.

  1. The Quantum Cheshire Cat effect: Theoretical basis and observational implications

    NASA Astrophysics Data System (ADS)

    Duprey, Q.; Kanjilal, S.; Sinha, U.; Home, D.; Matzkin, A.

    2018-04-01

    The Quantum Cheshire Cat (QCC) is an effect introduced recently within the Weak Measurements framework. The main feature of the QCC effect is that a property of a quantum particle appears to be spatially separated from its position. The status of this effect has however remained unclear, as claims of experimental observation of the QCC have been disputed by strong criticism of the experimental as well as the theoretical aspects of the effect. In this paper we clarify in what precise sense the QCC can be regarded as an unambiguous consequence of the standard quantum mechanical formalism applied to describe quantum pointers weakly coupled to a system. In light of this clarification, the raised criticisms of the QCC effect are rebutted. We further point out that the limitations of the experiments performed to date imply that a loophole-free experimental demonstration of the QCC has not yet been achieved.

  2. Physicochemical processes in embryonic plant tissue during the transition to the state of cold anabiosis and storage at liquid nitrogen temperature

    NASA Astrophysics Data System (ADS)

    Khodko, A. T.; Lysak, Yu. S.

    2017-10-01

    Critical opalescence phenomenon was observed in the cytoplasm of garlic embryonic tissue—meristem—upon cooling in liquid nitrogen vapor, indicating liquid-liquid phase transition in the system. It was established that cells of the meristem tissue survive the cooling-thawing cycle. We suggest that the transition of meristem tissue to the state of anabiosis is mainly due to a drastic slowing of the diffusion in the cytoplasm caused by the passage of the solution through the critical point, followed by the formation of a dispersed system—a highly concentrated emulsion—as a result of a liquid-liquid phase transition. This macrophase separation is characteristic of polymer-solvent systems. We established the regime of cooling down to liquid nitrogen temperature and subsequent thawing in the cryopreservation cycle for the biological object under study, which ensures the preservation of tissue viability.

  3. Why do Cross-Flow Turbines Stall?

    NASA Astrophysics Data System (ADS)

    Cavagnaro, Robert; Strom, Benjamin; Polagye, Brian

    2015-11-01

    Hydrokinetic turbines are prone to instability and stall near their peak operating points under torque control. Understanding the physics of turbine stall may help to mitigate this undesirable occurrence and improve the robustness of torque controllers. A laboratory-scale two-bladed cross-flow turbine operating at a chord-based Reynolds number ~ 3 ×104 is shown to stall at a critical tip-speed ratio. Experiments are conducting bringing the turbine to this critical speed in a recirculating current flume by increasing resistive torque and allowing the rotor to rapidly decelerate while monitoring inflow velocity, torque, and drag. The turbine stalls probabilistically with a distribution generated from hundreds of such events. A machine learning algorithm identifies stall events and indicates the effectiveness of available measurements or combinations of measurements as predictors. Bubble flow visualization and PIV are utilized to observe fluid conditions during stall events including the formation, separation, and advection of leading-edge vortices involved in the stall process.

  4. Helmholtz's Kant revisited (Once more). The all-pervasive nature of Helmholtz's struggle with Kant's Anschauung.

    PubMed

    De Kock, Liesbet

    2016-04-01

    In this analysis, the classical problem of Hermann von Helmholtz's (1821-1894) Kantianism is explored from a particular vantage point, that to my knowledge, has not received the attention it deserves notwithstanding its possible key role in disentangling Helmholtz's relation to Kant's critical project. More particularly, we will focus on Helmholtz's critical engagement with Kant's concept of intuition [Anschauung] and (the related issue of) his dissatisfaction with Kant's doctrinal dualism. In doing so, it soon becomes clear that both (i) crucially mediated Helmholtz's idiosyncratic appropriation and criticism of (certain aspects of) Kant's critical project, and (ii) can be considered as a common denominator in a variety of issues that are usually addressed separately under the general header of (the problem of) Helmholtz's Kantianism. The perspective offered in this analysis can not only shed interesting new light on some interpretive issues that have become commonplace in discussions on Helmholtz's Kantianism, but also offers a particular way of connecting seemingly unrelated dimensions of Helmholtz's engagement with Kant's critical project (e.g. Helmholtz's views on causality and space). Furthermore, it amounts to the rather surprising conclusion that Helmholtz's most drastic revision of Kant's project pertains to his assumption of free will as a formal condition of experience and knowledge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Criticality in third order lovelock gravity and butterfly effect

    NASA Astrophysics Data System (ADS)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study third order Lovelock Gravity in D=7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D=7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D=7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, vB^{E.H}>vB^{E.G.B}>vB^{3rd Lovelock} . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases.

  6. Bio-Oil Separation and Stabilization by Supercritical Fluid Fractionation. 2014 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agblevor, Foster; Petkovic, Lucia; Bennion, Edward

    The objective of this project is to use supercritical fluids to separate and fractionate algal-based bio-oils into stable products that can be subsequently upgraded to produce drop-in renewable fuels. To accomplish this objective, algae was grown and thermochemically converted to bio-oils using hydrothermal liquefaction (HTL), pyrolysis, and catalytic pyrolysis. The bio-oils were separated into an extract and a raffinate using near-critical propane or carbon dioxide. The fractions were then subjected to thermal aging studies to determine if the extraction process had stabilized the products. It was found that the propane extract fraction was twice as stable as the parent catalyticmore » pyrolysis bio-oils as measured by the change in viscosity after two weeks of accelerated aging at 80°C. Further, in-situ NMR aging studies found that the propane extract was chemically more stable than the parent bio-oil. Thus the milestone of stabilizing the product was met. A preliminary design of the extraction plant was prepared. The design was based on a depot scale plant processing 20,000,000 gallons per year of bio-oil. It was estimated that the capital costs for such a plant would be $8,700,000 with an operating cost of $3,500,000 per year. On a per gallon of product cost and a 10% annual rate of return, capital costs would represent $0.06 per gallon and operating costs would amount to $0.20 per gallon. Further, it was found that the energy required to run the process represented 6.2% of the energy available in the bio-oil, meeting the milestone of less than 20%. Life cycle analysis and greenhouse gas (GHG) emission analysis found that the energy for running the critical fluid separation process and the GHG emissions were minor compared to all the inputs to the overall well to pump system. For the well to pump system boundary, energetics in biofuel conversion are typically dominated by energy demands in the growth, dewater, and thermochemical process. Bio-oil stabilization by near critical propane extraction had minimal impact in the overall energetics of the process with NER contributions of 0.03. Based on the LCA, the overall conversion pathways were found to be energy intensive with a NER of about 2.3 and 1.2 for catalytic pyrolysis and HTL, respectively. GHG emissions for the catalytic pyrolysis process were greater than that of petroleum diesel at 210 g CO2 eq compared to 18.9 g CO2 eq. Microalgae bio-oil based diesel with thermochemical conversion through HTL meets renewable fuel standards with favorable emission reductions of -10.8 g CO2 eq. The importance of the outcomes is that the critical fluid extraction and stabilization process improved product stability and did so with minimal energy inputs and processing costs. The LCA and GHG emission calculations point toward the HTL pathway as the more favorable thermochemical route towards upgrading algae to bio-fuels. Since the quality of the HTL oil was significantly lower than that of the catalytic pyrolysis bio-oil, the next steps point toward improving the quality of the HTL oils from algae biomass and focusing the critical fluid stabilization on that bio-oil product.« less

  7. Evaluation of the i-STAT Point-of-Care Analyzer in Critically Ill Adult Patients

    PubMed Central

    Steinfelder-Visscher, Jacoline; Teerenstra, Steven; Klein Gunnewiek, Jacqueline M.T.; Weerwind, Patrick W.

    2008-01-01

    Abstract: Point-of-care analyzers may benefit therapeutic decision making by reducing turn-around-time for samples. This is especially true when biochemical parameters exceed the clinical reference range, in which acute and effective treatment is essential. We therefore evaluated the analytical performance of the i-STAT point-of-care analyzer in two critically ill adult patient populations. During a 3-month period, 48 blood samples from patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and 42 blood samples from non-cardiac patients who needed intensive care treatment were analyzed on both the i-STAT analyzer (CPB and non-CPB mode, respectively) and our laboratory analyzers (RapidLab 865/Sysmex XE-2100 instrument). The agreement analysis for quantitative data was used to compare i-STAT to RapidLab for blood gas/electrolytes and for hematocrit with the Sysmex instrument. Point-of-care electrolytes and blood gases had constant deviation, except for pH, pO2, and hematocrit. A clear linear trend in deviation of i-STAT from RapidLab was noticed for pH during CPB (r = 0.32, p = .03) and for pO2 > 10 kPa during CPB (r = −0.59, p < .0001 when 10 < pO2 <30 kPa) and in the intensive care unit (r = −0.61, p < .001 when 10 < pO2 <30 kPa). In the normal pO2 range (10.6 < pO2 <13.3 kPa), the performance of the i-STAT was comparable to the RapidLab. In contrast to hematocrit measured during CPB, hematocrit using the non-CPB mode in the non-cardiac intensive care population showed an underestimation up to 2.2% (p < .0001) in the hematocrit range below 25% (n = 11) using the i-STAT. The i-STAT analyzer is suitable for point-of-care testing of electrolytes and blood gases in critically ill patients, except for high pO2. However, the discrepancy in hematocrit bias shows that accuracy established in one patient population cannot be automatically extrapolated to other patient populations, thus stressing the need for separate evaluation. PMID:18389666

  8. Are abrupt climate changes predictable?

    NASA Astrophysics Data System (ADS)

    Ditlevsen, Peter

    2013-04-01

    It is taken for granted that the limited predictability in the initial value problem, the weather prediction, and the predictability of the statistics are two distinct problems. Lorenz (1975) dubbed this predictability of the first and the second kind respectively. Predictability of the first kind in a chaotic dynamical system is limited due to the well-known critical dependence on initial conditions. Predictability of the second kind is possible in an ergodic system, where either the dynamics is known and the phase space attractor can be characterized by simulation or the system can be observed for such long times that the statistics can be obtained from temporal averaging, assuming that the attractor does not change in time. For the climate system the distinction between predictability of the first and the second kind is fuzzy. This difficulty in distinction between predictability of the first and of the second kind is related to the lack of scale separation between fast and slow components of the climate system. The non-linear nature of the problem furthermore opens the possibility of multiple attractors, or multiple quasi-steady states. As the ice-core records show, the climate has been jumping between different quasi-stationary climates, stadials and interstadials through the Dansgaard-Oechger events. Such a jump happens very fast when a critical tipping point has been reached. The question is: Can such a tipping point be predicted? This is a new kind of predictability: the third kind. If the tipping point is reached through a bifurcation, where the stability of the system is governed by some control parameter, changing in a predictable way to a critical value, the tipping is predictable. If the sudden jump occurs because internal chaotic fluctuations, noise, push the system across a barrier, the tipping is as unpredictable as the triggering noise. In order to hint at an answer to this question, a careful analysis of the high temporal resolution NGRIP isotope record is presented. The result of the analysis points to a fundamental limitation in predictability of the third kind. Reference: P. D. Ditlevsen and S. Johnsen, "Tipping points: Early warning and wishful thinking", Geophys. Res. Lett., 37, 2010

  9. Efimov-driven phase transitions of the unitary Bose gas.

    PubMed

    Piatecki, Swann; Krauth, Werner

    2014-03-20

    Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.

  10. Hero's journey in bifurcation diagram

    NASA Astrophysics Data System (ADS)

    Monteiro, L. H. A.; Mustaro, P. N.

    2012-06-01

    The hero's journey is a narrative structure identified by several authors in comparative studies on folklore and mythology. This storytelling template presents the stages of inner metamorphosis undergone by the protagonist after being called to an adventure. In a simplified version, this journey is divided into three acts separated by two crucial moments. Here we propose a discrete-time dynamical system for representing the protagonist's evolution. The suffering along the journey is taken as the control parameter of this system. The bifurcation diagram exhibits stationary, periodic and chaotic behaviors. In this diagram, there are transition from fixed point to chaos and transition from limit cycle to fixed point. We found that the values of the control parameter corresponding to these two transitions are in quantitative agreement with the two critical moments of the three-act hero's journey identified in 10 movies appearing in the list of the 200 worldwide highest-grossing films.

  11. Entanglement negativity after a local quantum quench in conformal field theories

    NASA Astrophysics Data System (ADS)

    Wen, Xueda; Chang, Po-Yao; Ryu, Shinsei

    2015-08-01

    We study the time evolution of the entanglement negativity after a local quantum quench in (1 + 1)-dimensional conformal field theories (CFTs), which we introduce by suddenly joining two initially decoupled CFTs at their end points. We calculate the negativity evolution for both adjacent intervals and disjoint intervals explicitly. For two adjacent intervals, the entanglement negativity grows logarithmically in time right after the quench. After developing a plateau-like feature, the entanglement negativity drops to the ground-state value. For the case of two spatially separated intervals, a light-cone behavior is observed in the negativity evolution; in addition, a long-range entanglement, which is independent of the distance between two intervals, can be created. Our results agree with the heuristic picture that quasiparticles, which carry entanglement, are emitted from the joining point and propagate freely through the system. Our analytical results are confirmed by numerical calculations based on a critical harmonic chain.

  12. Electron-hole pairing of Fermi-arc surface states in a Weyl semimetal bilayer

    NASA Astrophysics Data System (ADS)

    Michetti, Paolo; Timm, Carsten

    2017-03-01

    The topological nature of Weyl semimetals (WSMs) is corroborated by the presence of chiral surface states, which connect the projections of the bulk Weyl points by Fermi arcs (FAs). We study a bilayer structure realized by introducing a thin insulating spacer into a bulk WSM. Employing a self-consistent mean-field description of the interlayer Coulomb interaction, we propose that this system can develop an interlayer electron-hole pair condensate. The formation of this excitonic condensate leads to partial gapping of the FA dispersion. We obtain the dependence of the energy gap and the critical temperature on the model parameters, finding, in particular, a linear scaling of these quantities with the separation between the Weyl points in momentum space. A detrimental role is played by the curvature of the FAs, although the pairing persists for moderately small curvature. A signature of the condensate is the modification of the quantum oscillations involving the surface FAs.

  13. Critical point analysis of phase envelope diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy, E-mail: rkusdiantara@s.itb.ac.id

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile,more » dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.« less

  14. Classification of building infrastructure and automatic building footprint delineation using airborne laser swath mapping data

    NASA Astrophysics Data System (ADS)

    Caceres, Jhon

    Three-dimensional (3D) models of urban infrastructure comprise critical data for planners working on problems in wireless communications, environmental monitoring, civil engineering, and urban planning, among other tasks. Photogrammetric methods have been the most common approach to date to extract building models. However, Airborne Laser Swath Mapping (ALSM) observations offer a competitive alternative because they overcome some of the ambiguities that arise when trying to extract 3D information from 2D images. Regardless of the source data, the building extraction process requires segmentation and classification of the data and building identification. In this work, approaches for classifying ALSM data, separating building and tree points, and delineating ALSM footprints from the classified data are described. Digital aerial photographs are used in some cases to verify results, but the objective of this work is to develop methods that can work on ALSM data alone. A robust approach for separating tree and building points in ALSM data is presented. The method is based on supervised learning of the classes (tree vs. building) in a high dimensional feature space that yields good class separability. Features used for classification are based on the generation of local mappings, from three-dimensional space to two-dimensional space, known as "spin images" for each ALSM point to be classified. The method discriminates ALSM returns in compact spaces and even where the classes are very close together or overlapping spatially. A modified algorithm of the Hough Transform is used to orient the spin images, and the spin image parameters are specified such that the mutual information between the spin image pixel values and class labels is maximized. This new approach to ALSM classification allows us to fully exploit the 3D point information in the ALSM data while still achieving good class separability, which has been a difficult trade-off in the past. Supported by the spin image analysis for obtaining an initial classification, an automatic approach for delineating accurate building footprints is presented. The physical fact that laser pulses that happen to strike building edges can produce very different 1st and last return elevations has been long recognized. However, in older generation ALSM systems (<50 kHz pulse rates) such points were too few and far between to delineate building footprints precisely. Furthermore, without the robust separation of nearby trees and vegetation from the buildings, simply extracting ALSM shots where the elevation of the first return was much higher than the elevation of the last return, was not a reliable means of identifying building footprints. However, with the advent of ALSM systems with pulse rates in excess of 100 kHz, and by using spin-imaged based segmentation, it is now possible to extract building edges from the point cloud. A refined classification resulting from incorporating "on-edge" information is developed for obtaining quadrangular footprints. The footprint fitting process involves line generalization, least squares-based clustering and dominant points finding for segmenting individual building edges. In addition, an algorithm for fitting complex footprints using the segmented edges and data inside footprints is also proposed.

  15. Metrics for More than Two Points at Once

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    The conventional definition of a topological metric over a space specifies properties that must be obeyed by any measure of "how separated" two points in that space are. Here it is shown how to extend that definition, and in particular the triangle inequality, to concern arbitrary numbers of points. Such a measure of how separated the points within a collection are can be bootstrapped, to measure "how separated" from each other are two (or more) collections. The measure presented here also allows fractional membership of an element in a collection. This means it directly concerns measures of "how spread out" a probability distribution over a space is. When such a measure is bootstrapped to compare two collections, it allows us to measure how separated two probability distributions are, or more generally, how separated a distribution of distributions is.

  16. Incorporating swirl effects into the coefficient of momentum for separation control

    NASA Astrophysics Data System (ADS)

    Taira, Kunihiko; Munday, Phillip

    2017-11-01

    Addition of swirl in flow control has been known to enhance suppression of separation over airfoils at high angles of attack. Utilizing large eddy simulations, the present open-loop control study examines the influence of wall-normal and angular momentum injections in mitigating separation over a NACA0012 airfoil at α =9° and Re = 23 , 000 . We introduce these swirling jets near the separation point with wall-normal momentum and swirl independently prescribed through velocity boundary conditions. The changes to the flow from control are examined and the corresponding lift enhancement and drag reduction are assessed as a function of the two velocity components. Since the standard coefficient of momentum does not consider swirling effects, we extend its definition to incorporate both the wall-normal momentum and swirl to quantify the overall flow control effectiveness. We are able to observe a trend in lift force enhancement over this single modified coefficient of momentum (that is dependent on the non-dimensional jet velocity ratio and swirl number). Moreover, we are able to identify a critical value for the modified momentum coefficient and categorize controlled flows into separated, transitional, and attached flows. This work was supported by the Air Force Office of Scientific Research (Award Number FA9550-13-1-0183) and the Office of Naval Research (Award Number N00014-16-1-2443).

  17. Phenomenological consequences of enhanced bulk viscosity near the QCD critical point

    DOE PAGES

    Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi

    2017-03-06

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less

  18. Effects of electronic interactions near the topological semimetal-insulator quantum phase transition in two dimensions

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Foster, Matthew

    The quasiparticle dispersion of gapless excitations residing at the quantum critical point (QCP) separating a two dimensional topological Dirac semimetal and a symmetry preserving band insulator, displays distinct power-law dependence with various components of spatial momenta. In this talk first I will review scaling of various thermodynamic and transport quantities at this QCP. Next I will demonstrate that even though such noninteracting QCP is stable against sufficiently weak but generic short-range interaction, the direct transition between the Dirac semimetal and band insulator can either (i) become a fluctuation driven first order transition, or (ii) get eliminated by an intervening broken symmetry phase, with staggered pattern in charge or spin being two prominent candidates, for sufficiently strong interactions. The novel quantum critical phenomena associated with the instability of critical excitations toward the formation of various broken symmetry phases will be discussed. Relevance of our study in strained graphene, black phosphorus, pressured organic compounds and oxide heterostructure will be highlighted. Welch Foundation Grant No. C-1809, NSF CAREER Grant No. DMR-1552327.

  19. Nature of non-nuclear (3, -3) π-attractor and π-bonding: Theoretical analysis on π-electron density

    NASA Astrophysics Data System (ADS)

    Lv, Jiao; Yang, Lihua; Sun, Zheng; Meng, Lingpeng; Li, Xiaoyan

    2018-01-01

    Understanding the nature of π-electron density is important to characterize the conjugate π molecular systems. In this work, the π-electron densities of some typical conjugated π molecular systems were separated from their total electron densities; the positions and natures of non-nuclear (3, -3) π-attractors and the π-bond critical points (π-BCPs) are investigated. The calculated results show that for the same element, the position of the π-attractor is constant, regardless of the chemical surroundings. The position of the π-BCP is closer to the atom with the larger electronegativity.

  20. Toward the optimization of control of unsteady separation

    NASA Technical Reports Server (NTRS)

    Shen, S. F.; Xiao, Zheng-Hua

    1992-01-01

    Regardless of our understanding of the complicated physical process, means can always be found to alter the occurrence and development of unsteady separation. To be able to optimize the control of separation, however, requires the identification of the critical aspects to which the intervention may be focused and achieve the desired result with minimum waste of effort. The Lagrangian analysis of unsteady boundary-layer traces the trajectories of individual fluid particles and reveals the 'bad seeds' that, through extreme deformation in the direction normal to the wall, eventually develop into a virtual barrier and cause the ejection of boundary-layer material into the main stream. It follows logically that separation can be triggered or delayed most effectively by targeting these 'bad seeds.' Since they are normally interior points of the boundary layer, attempts to influence them through the boundary conditions are necessarily indirect. Furthermore, as the strategy has to be the modification of the growing process of the 'bad seeds,' whatever may be the intervention scheme, it needs to be strong enough and early enough. In Shen and Wu, examples of how acceleration/deceleration of the two dimensional body, as well as the moving wall of a rotating cylinder, may affect the development of the bad seed toward separation are shown. In fact it was mentioned therein that the results might be the first step for a feasibility study of the control of unsteady separation. Presented are additional results of applying suction to an impulsively started circular cylinder.

  1. The Effect of Column and Eluent Fluorination on the Retention and Separation of non-Fluorinated Amino Acids and Proteins by HPLC

    PubMed Central

    Joyner, Katherine; Wang, Weizhen; Yu, Yihua Bruce

    2011-01-01

    The effect of column and eluent fluorination on the retention and separation of non-fluorinated amino acids and proteins in HPLC is investigated. A side-by-side comparison of fluorocarbon column and eluents (F-column and F-eluents) with their hydrocarbon counterparts (H-column and H-eluents) in the separation of a group of 33 analytes, including 30 amino acids and 3 proteins, is conducted. The H-column and the F-column contain the n-C8H17 group and n-C8F17 group, respectively, in their stationary phases. The H-eluents include ethanol (EtOH) and isopropanol (ISP) while the F-eluents include trifluoroethanol (TFE) and hexafluorosopropanol (HFIP). The 2 columns and 4 eluents generated 8 (column, eluent) pairs that produce 264 retention time data points for the 33 analytes. A statistical analysis of the retention time data reveals that although the H-column is better than the F-column in analyte separation and H-eluents are better than F-eluents in analyte retention, the more critical factor is the proper pairing of column with eluent. Among the conditions explored in this project, optimal retention and separation is achieved when the fluorocarbon column is paired with ethanol, even though TFE is the most polar one among the 4 eluents. This result shows fluorocarbon columns have much potential in chromatographic analysis and separation of non-fluorinated amino acids and proteins. PMID:21318121

  2. Unsteady three-dimensional flow separation

    NASA Technical Reports Server (NTRS)

    Hui, W. H.

    1988-01-01

    A concise mathematical framework is constructed to study the topology of steady 3-D separated flows of an incompressible, or a compressible viscous fluid. Flow separation is defined by the existence of a stream surface which intersects with the body surface. The line of separation is itself a skin-friction line. Flow separation is classified as being either regular or singular, depending respectively on whether the line of separation contains only a finite number of singular points or is a singular line of the skin-friction field. The special cases of 2-D and axisymmetric flow separation are shown to be of singular type. In regular separation it is shown that a line of separation originates from a saddle point of separation of the skin-friction field and ends at nodal points of separation. Unsteady flow separation is defined relative to a coordinate system fixed to the body surface. It is shown that separation of an unsteady 3-D incompressible viscous flow at time t, when viewed from such a frame of reference, is topologically the same as that of the fictitious steady flow obtained by freezing the unsteady flow at the instant t. Examples are given showing effects of various forms of flow unsteadiness on flow separation.

  3. Phenomenologie et caractérisation des supraconducteurs à haute T_c

    NASA Astrophysics Data System (ADS)

    Peyral, P.; Lebeau, C.; Rosenblatt, J.; Burin, J. P.; Raboutou, A.; Pena, Q.; Perrin, C.

    1991-11-01

    Transport properties of high T_c superconductors depend on the microscopic structure of the ideal material and on the mesoscopic characteristics of each sample. From an experimental point of view it is essential to separate their efrects. This can be done by describing quantitatively the resistive transition in zero field as a two-step process : a superconducting intragranular transition and an intergranular coherence transition. Well-known theories of critical fluctuations and Gaussian fluctuations allow us to obtain important characteristic parameters of the intragranular material such as the critical temperature, the normal resistivity and the width of the critical region. Les propriétés de transport des supraconducteurs dépendent à la fois de la structure microscopique du matériau idéal et des caractéristiques mésoscopiques (la granularité) de chaque échantillon. Du point de vue expérimental il est essentiel de pouvoir séparer leurs effet respectifs. Nous parvenons à cette séparation en décrivant quantitativement la transition résistive sous champ nul en deux étapes: supraconductrice intragranulaire et cohérente intergranulaire. Des théories connues des fluctuations critiques et gaussiennes nous permettent alors d'obtenir des paramètres importants pour la caractérisation du matériau intragranulaire, comme sa température critique, sa résistivité normale et la largeur de sa région critique.

  4. Mechanisms of chain adsorption on porous substrates and critical conditions of polymer chromatography.

    PubMed

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-11-01

    Polymer adsorption is a ubiquitous phenomenon with numerous technological and healthcare applications. The mechanisms of polymer adsorption on surfaces and in pores are complex owing to a competition between various entropic and enthalpic factors. Due to adsorption of monomers to the surface, the chain gains in enthalpy yet loses in entropy because of confining effects. This competition leads to the existence of critical conditions of adsorption when enthalpy gain and entropy loss are in balance. The critical conditions are controlled by the confining geometry and effective adsorption energy, which depends on the solvent composition and temperature. This phenomenon has important implications in polymer chromatography, since the retention at the critical point of adsorption (CPA) is chain length independent. However, the mechanisms of polymer adsorption in pores are poorly understood and there is an ongoing discussion in the theoretical literature about the very existence of CPA for polymer adsorption on porous substrates. In this work, we examine the mechanisms of chain adsorption on a model porous substrate using Monte Carlo (MC) simulations. We distinguish three adsorption mechanisms depending on the chain location: on external surface, completely confined in pores, and also partially confined in pores in so-called "flower" conformations. The free energies of different conformations of adsorbed chains are calculated by the incremental gauge cell MC method that allows one to determine the partition coefficient as a function of the adsorption potential, pore size, and chain length. We confirm the existence of the CPA for chain length independent separation on porous substrates, which is explained by the dominant contributions of the chain adsorption at the external surface, in particular in flower conformations. Moreover, we show that the critical conditions for porous and nonporous substrates are identical and depend only on the surface chemistry. The theoretical results are confirmed by comparison with experimental data on chromatographic separation of a series of linear polystyrenes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    PubMed

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  6. Fermion-induced quantum critical points.

    PubMed

    Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong

    2017-08-22

    A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.

  7. Key factors of eddy current separation for recovering aluminum from crushed e-waste.

    PubMed

    Ruan, Jujun; Dong, Lipeng; Zheng, Jie; Zhang, Tao; Huang, Mingzhi; Xu, Zhenming

    2017-02-01

    Recovery of e-waste in China had caused serious pollutions. Eddy current separation is an environment-friendly technology of separating nonferrous metallic particles from crushed e-waste. However, due to complex particle characters, separation efficiency of traditional eddy current separator was low. In production, controllable operation factors of eddy current separation are feeding speed, (ωR-v), and S p . There is little special information about influencing mechanism and critical parameters of these factors in eddy current separation. This paper provided the special information of these key factors in eddy current separation of recovering aluminum particles from crushed waste refrigerator cabinets. Detachment angles increased as the increase of (ωR-v). Separation efficiency increased with the growing of detachment angles. Aluminum particles were completely separated from plastic particles in critical parameters of feeding speed 0.5m/s and detachment angles greater than 6.61deg. S p /S m of aluminum particles in crushed waste refrigerators ranged from 0.08 to 0.51. Separation efficiency increased as the increase of S p /S m . This enlightened us to develop new separator to separate smaller nonferrous metallic particles in e-waste recovery. High feeding speed destroyed separation efficiency. However, greater S p of aluminum particles brought positive impact on separation efficiency. Greater S p could increase critical feeding speed to offer greater throughput of eddy current separation. This paper will guide eddy current separation in production of recovering nonferrous metals from crushed e-waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The location of the second critical point of water

    NASA Astrophysics Data System (ADS)

    Kanno, Hitoshi; Miyata, Kuniharu

    2006-05-01

    Based on the DTA data for homogeneous ice nucleation of emulsified liquid water at low temperatures and high pressures, the location of the second critical point (SCP) of water, which is expected to exist in addition to the normal liquid-vapor critical point, is estimated to be at 145 K < Tc2 < 175 K and Pc2 = ˜200 MPa ( Tc2: second critical temperature, Pc2: second critical pressure). It is shown that SCP is closely associated with the break point of the curve for the homogeneous ice nucleation temperature ( TH) of liquid water and with the transition between low density and high density amorphous solid water (LDA and HDA). Although the existence of SCP has become more realistic, the location seems to be less favorable to the water model of the second-critical-point interpretation.

  9. Critical point relascope sampling for unbiased volume estimation of downed coarse woody debris

    Treesearch

    Jeffrey H. Gove; Michael S. Williams; Mark J. Ducey; Mark J. Ducey

    2005-01-01

    Critical point relascope sampling is developed and shown to be design-unbiased for the estimation of log volume when used with point relascope sampling for downed coarse woody debris. The method is closely related to critical height sampling for standing trees when trees are first sampled with a wedge prism. Three alternative protocols for determining the critical...

  10. Faraday instability in a near-critical fluid under weightlessness.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions.

  11. Development of Optical System for ARGO-M

    NASA Astrophysics Data System (ADS)

    Nah, Jakyoung; Jang, Jung-Guen; Jang, Bi-Ho; Han, In-Woo; Han, Jeong-Yeol; Park, Kwijong; Lim, Hyung-Chul; Yu, Sung-Yeol; Park, Eunseo; Seo, Yoon-Kyung; Moon, Il-Kwon; Choi, Byung-Kyu; Na, Eunjoo; Nam, Uk-Won

    2013-03-01

    ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.

  12. Critical lines for an unequal size of molecules in a binary gas-liquid mixture around the van Laar point using the combination of the Tompa model and the van der Waals equation.

    PubMed

    Gençaslan, Mustafa; Keskin, Mustafa

    2012-02-14

    We combine the modified Tompa model with the van der Waals equation to study critical lines for an unequal size of molecules in a binary gas-liquid mixture around the van Laar point. The van Laar point is coined by Meijer and it is the only point at which the mathematical double point curve is stable. It is the intersection of the tricritical point and the double critical end point. We calculate the critical lines as a function of χ(1) and χ(2), the density of type I molecules and the density of type II molecules for various values of the system parameters; hence the global phase diagrams are presented and discussed in the density-density plane. We also investigate the connectivity of critical lines at the van Laar point and its vicinity and discuss these connections according to the Scott and van Konynenburg classifications. It is also found that the critical lines and phase behavior are extremely sensitive to small modifications in the system parameters. © 2012 American Institute of Physics

  13. The application of hazard analysis and critical control points and risk management in the preparation of anti-cancer drugs.

    PubMed

    Bonan, Brigitte; Martelli, Nicolas; Berhoune, Malik; Maestroni, Marie-Laure; Havard, Laurent; Prognon, Patrice

    2009-02-01

    To apply the Hazard analysis and Critical Control Points method to the preparation of anti-cancer drugs. To identify critical control points in our cancer chemotherapy process and to propose control measures and corrective actions to manage these processes. The Hazard Analysis and Critical Control Points application began in January 2004 in our centralized chemotherapy compounding unit. From October 2004 to August 2005, monitoring of the process nonconformities was performed to assess the method. According to the Hazard Analysis and Critical Control Points method, a multidisciplinary team was formed to describe and assess the cancer chemotherapy process. This team listed all of the critical points and calculated their risk indexes according to their frequency of occurrence, their severity and their detectability. The team defined monitoring, control measures and corrective actions for each identified risk. Finally, over a 10-month period, pharmacists reported each non-conformity of the process in a follow-up document. Our team described 11 steps in the cancer chemotherapy process. The team identified 39 critical control points, including 11 of higher importance with a high-risk index. Over 10 months, 16,647 preparations were performed; 1225 nonconformities were reported during this same period. The Hazard Analysis and Critical Control Points method is relevant when it is used to target a specific process such as the preparation of anti-cancer drugs. This method helped us to focus on the production steps, which can have a critical influence on product quality, and led us to improve our process.

  14. Quantum critical phase with infinite projected entangled paired states

    NASA Astrophysics Data System (ADS)

    Poilblanc, Didier; Mambrini, Matthieu

    2017-07-01

    A classification of SU(2)-invariant projected entangled paired states (PEPS) on the square lattice, based on a unique site tensor, has been recently introduced by Mambrini et al. [M. Mambrini, R. Orús, and D. Poilblanc, Phys. Rev. B 94, 205124 (2016), 10.1103/PhysRevB.94.205124]. It is not clear whether such SU(2)-invariant PEPS can either (i) exhibit long-range magnetic order (such as in the Néel phase) or (ii) describe a genuine quantum critical point (QCP) or quantum critical phase (QCPh) separating two ordered phases. Here, we identify a specific family of SU(2)-invariant PEPS of the classification which provides excellent variational energies for the J1-J2 frustrated Heisenberg model, especially at J2=0.5 , corresponding to the approximate location of the QCP or QCPh separating the Néel phase from a dimerized phase. The PEPS are built from virtual states belonging to the 1/2⊗N⊕0 SU(2) representation, i.e., with N "colors" of virtual spin-1/2 . Using a full-update infinite-PEPS approach directly in the thermodynamic limit, based on the corner transfer matrix renormalization algorithm supplemented by a conjugate gradient optimization scheme, we provide evidence of (i) the absence of magnetic order and of (ii) diverging correlation lengths (i.e., showing no sign of saturation with increasing environment dimension) in both the singlet and triplet channels, when the number of colors N ≥3 . We argue that such a PEPS gives a qualitative description of the QCP or QCPh of the J1-J2 model.

  15. A simple parameter can switch between different weak-noise-induced phenomena in a simple neuron model

    NASA Astrophysics Data System (ADS)

    Yamakou, Marius E.; Jost, Jürgen

    2017-10-01

    In recent years, several, apparently quite different, weak-noise-induced resonance phenomena have been discovered. Here, we show that at least two of them, self-induced stochastic resonance (SISR) and inverse stochastic resonance (ISR), can be related by a simple parameter switch in one of the simplest models, the FitzHugh-Nagumo (FHN) neuron model. We consider a FHN model with a unique fixed point perturbed by synaptic noise. Depending on the stability of this fixed point and whether it is located to either the left or right of the fold point of the critical manifold, two distinct weak-noise-induced phenomena, either SISR or ISR, may emerge. SISR is more robust to parametric perturbations than ISR, and the coherent spike train generated by SISR is more robust than that generated deterministically. ISR also depends on the location of initial conditions and on the time-scale separation parameter of the model equation. Our results could also explain why real biological neurons having similar physiological features and synaptic inputs may encode very different information.

  16. A Demonstration of the Continuous Phase (Second-Order) Transition of a Binary Liquid System in the Region around Its Critical Point

    ERIC Educational Resources Information Center

    Johnson, Michael R.

    2006-01-01

    In most general chemistry and introductory physical chemistry classes, critical point is defined as that temperature-pressure point on a phase diagram where the liquid-gas interface disappears, a phenomenon that generally occurs at relatively high temperatures or high pressures. Two examples are: water, with a critical point at 647 K (critical…

  17. The inevitable journey to being

    PubMed Central

    Russell, Michael J.; Nitschke, Wolfgang; Branscomb, Elbert

    2013-01-01

    Life is evolutionarily the most complex of the emergent symmetry-breaking, macroscopically organized dynamic structures in the Universe. Members of this cascading series of disequilibria-converting systems, or engines in Cottrell's terminology, become ever more complicated—more chemical and less physical—as each engine extracts, exploits and generates ever lower grades of energy and resources in the service of entropy generation. Each one of these engines emerges spontaneously from order created by a particular mother engine or engines, as the disequilibrated potential daughter is driven beyond a critical point. Exothermic serpentinization of ocean crust is life's mother engine. It drives alkaline hydrothermal convection and thereby the spontaneous production of precipitated submarine hydrothermal mounds. Here, the two chemical disequilibria directly causative in the emergence of life spontaneously arose across the mineral precipitate membranes separating the acidulous, nitrate-bearing CO2-rich, Hadean sea from the alkaline and CH4/H2-rich serpentinization-generated effluents. Essential redox gradients—involving hydrothermal CH4 and H2 as electron donors, CO2 and nitrate, nitrite, and ferric iron from the ambient ocean as acceptors—were imposed which functioned as the original ‘carbon-fixing engine’. At the same time, a post-critical-point (milli)voltage pH potential (proton concentration gradient) drove the condensation of orthophosphate to produce a high energy currency: ‘the pyrophosphatase engine’. PMID:23754808

  18. The critical point and two-phase boundary of seawater, 200–500°C

    USGS Publications Warehouse

    Bischoff, James L.; Rosenbauer, Robert J.

    1984-01-01

    The two-phase boundary of seawater was determined by isothermal decompression of fully condensed seawater in the range of 200–500°C. The pressure at which phase separation occurred for each isotherm was determined by a comparison of the refractive index of fluid removed from the top and bottom of the reaction vessel. The critical point was determined to be in the range of 403–406°C, 285–302 bar and was located by the inflection in the two-phase boundary and by the relative volume of fluid and vapor as a function of temperature. The two-phase boundary of 3.2% NaCl solution was found to coincide exactly with that of seawater over the range tested in the present study. The boundary for both is described by a single seventh-order polynomial equation. The two-phase boundary defines the maximum temperature of seawater circulating at depth in the oceanic crust. Thus the boundary puts a limit of about 390°C for seawater circulating near the seafloor at active ocean ridges (2.5 km water depth), and about 465°C at the top of a magma chamber occurring at 2 km below the seafloor.

  19. Design and optimization of integrated gas/condensate plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, C.R.; Wilson, J.L.

    1995-11-01

    An optimized design is demonstrated for combining gas processing and condensate stabilization plants into a single integrated process facility. This integrated design economically provides improved condensate recovery versus use of a simple stabilizer design. A selection matrix showing likely application of this integrated process is presented for use on future designs. Several methods for developing the fluid characterization and for using a process simulator to predict future design compositions are described, which could be useful in other designs. Optimization of flowsheet equipment choices and of design operating pressures and temperatures is demonstrated including the effect of both continuous and discretemore » process equipment size changes. Several similar designs using a turboexpander to provide refrigeration for liquids recovery and stabilizer reflux are described. Operating overthrust and from the P/15-D platform in the Dutch sector of the North Sea has proven these integrated designs are effective. Concerns do remain around operation near or above the critical pressure that should be addressed in future work including providing conservative separator designs, providing sufficient process design safety margin to meet dew point specifications, selecting the most conservative design values of predicted gas dew point and equipment size calculated with different Equations-of-State, and possibly improving the accuracy of PVT calculations in the near critical area.« less

  20. The inevitable journey to being.

    PubMed

    Russell, Michael J; Nitschke, Wolfgang; Branscomb, Elbert

    2013-07-19

    Life is evolutionarily the most complex of the emergent symmetry-breaking, macroscopically organized dynamic structures in the Universe. Members of this cascading series of disequilibria-converting systems, or engines in Cottrell's terminology, become ever more complicated-more chemical and less physical-as each engine extracts, exploits and generates ever lower grades of energy and resources in the service of entropy generation. Each one of these engines emerges spontaneously from order created by a particular mother engine or engines, as the disequilibrated potential daughter is driven beyond a critical point. Exothermic serpentinization of ocean crust is life's mother engine. It drives alkaline hydrothermal convection and thereby the spontaneous production of precipitated submarine hydrothermal mounds. Here, the two chemical disequilibria directly causative in the emergence of life spontaneously arose across the mineral precipitate membranes separating the acidulous, nitrate-bearing CO2-rich, Hadean sea from the alkaline and CH4/H2-rich serpentinization-generated effluents. Essential redox gradients-involving hydrothermal CH4 and H2 as electron donors, CO2 and nitrate, nitrite, and ferric iron from the ambient ocean as acceptors-were imposed which functioned as the original 'carbon-fixing engine'. At the same time, a post-critical-point (milli)voltage pH potential (proton concentration gradient) drove the condensation of orthophosphate to produce a high energy currency: 'the pyrophosphatase engine'.

  1. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.

  2. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes.

    PubMed

    Idris, Alamin; Man, Zakaria; Maulud, Abdulhalim S; Khan, Muhammad Saad

    2017-04-05

    The phase separation behavior of bisphenol-A-polycarbonate (PC), dissolved in N -methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes' performances were tested for their permeance to CO₂, CH₄, and N₂ gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18% and 9.17% decrease in the initial and maximum degradation temperatures, respectively. The ideal CO₂/N₂ and CO₂/CH₄ selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO₂/N₂ and CO₂/CH₄ selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications.

  3. Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2001-01-01

    The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the critical point, so getting heat out of the compressed bubble is observably slow. This gives the appearance of a backward heat flow, or heat flow from a cold surface to a warm fluid.

  4. The appearance, motion, and disappearance of three-dimensional magnetic null points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Nicholas A., E-mail: namurphy@cfa.harvard.edu; Parnell, Clare E.; Haynes, Andrew L.

    2015-10-15

    While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field,more » which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.« less

  5. Homoclinic orbits and critical points of barrier functions

    NASA Astrophysics Data System (ADS)

    Cannarsa, Piermarco; Cheng, Wei

    2015-06-01

    We interpret the close link between the critical points of Mather's barrier functions and minimal homoclinic orbits with respect to the Aubry sets on {{T}}n . We also prove a critical point theorem for barrier functions and the existence of such homoclinic orbits on {{T}}2 as an application.

  6. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae).

    PubMed

    Schoville, Sean D; Slatyer, Rachel A; Bergdahl, James C; Valdez, Glenda A

    2015-07-01

    For many terrestrial species, habitat associations and range size are dependent on physiological limits, which in turn may influence large-scale patterns of species diversity. The temperature range experienced by individuals is considered to shape the breadth of the thermal niche, with species occupying temporally and/or geographically stable climates tolerating a narrow temperature range. High-elevation environments experience large temperature fluctuations, with frequent periods below 0 °C, but Grylloblatta (Grylloblattodea: Grylloblattidae) occupy climatically stable microhabitats within this region. Here we test critical thermal limits and supercooling points for five Grylloblatta populations from across a large geographic area, to examine whether the stable microhabitats of this group are associated with a narrow thermal niche and assess their capacity to tolerate cold conditions. Thermal limits are highly conserved in Grylloblatta, despite substantial genetic divergence among populations spanning 1500 m elevation and being separated by over 500 km. Further, Grylloblatta show exceptionally narrow thermal limits compared to other insect taxa with little capacity to improve cold tolerance via plasticity. In contrast, upper thermal limits were significantly depressed by cold acclimation. Grylloblatta maintain coordinated movement until they freeze, and they die upon freezing. Convergence of the critical thermal minima, supercooling point and lower lethal limits point to adaptation to a cold but, importantly, constant thermal environment. These physiological data provide an explanation for the high endemism and patchy distribution of Grylloblatta, which relies on subterranean retreats to accommodate narrow thermal limits. These retreats are currently buffered from temperature fluctuations by snow cover, and a declining snowpack thus places Grylloblatta at risk of exposure to temperatures beyond its tolerance capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Universal Off-Equilibrium Scaling of Critical Cumulants in the QCD Phase Diagram

    DOE PAGES

    Mukherjee, Swagato; Venugopalan, Raju; Yin, Yi

    2016-11-23

    Exploiting the universality between the QCD critical point and the three-dimensional Ising model, closed form expressions derived for nonequilibrium critical cumulants on the crossover side of the critical point reveal that they can differ in both magnitude and sign from equilibrium expectations. Here, we demonstrate here that key elements of the Kibble-Zurek framework of nonequilibrium phase transitions can be employed to describe the dynamics of these critical cumulants. Lastly, our results suggest that observables sensitive to critical dynamics in heavy-ion collisions should be expressible as universal scaling functions, thereby providing powerful model-independent guidance in searches for the QCD critical point.

  8. Modelling droplet collision outcomes for different substances and viscosities

    NASA Astrophysics Data System (ADS)

    Sommerfeld, Martin; Kuschel, Matthias

    2016-12-01

    The main objective of the present study is the derivation of models describing the outcome of binary droplet collisions for a wide range of dynamic viscosities in the well-known collision maps (i.e. normalised lateral droplet displacement at collision, called impact parameter, versus collision Weber number). Previous studies by Kuschel and Sommerfeld (Exp Fluids 54:1440, 2013) for different solution droplets having a range of solids contents and hence dynamic viscosities (here between 1 and 60 mPa s) revealed that the locations of the triple point (i.e. coincidence of bouncing, stretching separation and coalescence) and the critical Weber number (i.e. condition for the transition from coalescence to separation for head-on collisions) show a clear dependence on dynamic viscosity. In order to extend these findings also to pure liquids and to provide a broader data basis for modelling the viscosity effect, additional binary collision experiments were conducted for different alcohols (viscosity range 1.2-15.9 mPa s) and the FVA1 reference oil at different temperatures (viscosity range 3.0-28.2 mPa s). The droplet size for the series of alcohols was around 365 and 385 µm for the FVA1 reference oil, in each case with fixed diameter ratio at Δ= 1. The relative velocity between the droplets was varied in the range 0.5-3.5 m/s, yielding maximum Weber numbers of around 180. Individual binary droplet collisions with defined conditions were generated by two droplet chains each produced by vibrating orifice droplet generators. For recording droplet motion and the binary collision process with good spatial and temporal resolution high-speed shadow imaging was employed. The results for varied relative velocity and impact angle were assembled in impact parameter-Weber number maps. With increasing dynamic viscosity a characteristic displacement of the regimes for the different collision scenarios was also observed for pure liquids similar to that observed for solutions. This displacement could be described on a physical basis using the similarity number and structure parameter K which was obtained through flow process evaluation and optimal proportioning of momentum and energy by Naue and Bärwolff (Transportprozesse in Fluiden. Deutscher Verlag für Grundstoffindustrie GmbH, Leipzig 1992). Two correlations including the structure parameter K could be derived which describe the location of the triple point and the critical We number. All fluids considered, pure liquids and solutions, are very well fitted by these physically based correlations. The boundary model of Jiang et al. (J Fluid Mech 234:171-190, 1992) for distinguishing between coalescence and stretching separation could be adapted to go through the triple point by the two involved model parameters C a and C b, which were correlated with the relaxation velocity u_{{relax}} = {σ/μ}. Based on the predicted critical Weber number, denoting the onset of reflexive separation, the model of Ashgriz and Poo (J Fluid Mech 221:183-204, 1990) was adapted accordingly. The proper performance of the new generalised models was validated based on the present and previous measurements for a wide range of dynamic viscosities (i.e. 1-60 mPa s) and liquid properties. Although the model for the lower boundary of bouncing (Estrade et al. in J Heat Fluid Flow 20:486-491, 1999) could be adapted through the shape factor, it was found not suitable for the entire range of Weber numbers and viscosities.

  9. An antithetic variate to facilitate upper-stem height measurements for critical height sampling with importance sampling

    Treesearch

    Thomas B. Lynch; Jeffrey H. Gove

    2013-01-01

    Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur...

  10. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.

    PubMed

    Decker, Gifford Z; Thomson, Scott L

    2007-05-01

    The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Swagato; Venugopalan, Raju; Yin, Yi

    Exploiting the universality between the QCD critical point and the three-dimensional Ising model, closed form expressions derived for nonequilibrium critical cumulants on the crossover side of the critical point reveal that they can differ in both magnitude and sign from equilibrium expectations. Here, we demonstrate here that key elements of the Kibble-Zurek framework of nonequilibrium phase transitions can be employed to describe the dynamics of these critical cumulants. Lastly, our results suggest that observables sensitive to critical dynamics in heavy-ion collisions should be expressible as universal scaling functions, thereby providing powerful model-independent guidance in searches for the QCD critical point.

  12. Precipitation phase separation schemes in the Naqu River basin, eastern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Liu, Shaohua; Yan, Denghua; Qin, Tianling; Weng, Baisha; Lu, Yajing; Dong, Guoqiang; Gong, Boya

    2018-01-01

    Precipitation phase has a profound influence on the hydrological processes in the Naqu River basin, eastern Tibetan plateau. However, there are only six meteorological stations with precipitation phase (rainfall/snowfall/sleet) before 1979 within and around the basin. In order to separate snowfall from precipitation, a new separation scheme with S-shaped curve of snowfall proportion as an exponential function of daily mean temperature was developed. The determinations of critical temperatures in the single/two temperature threshold (STT/TTT2) methods were explored accordingly, and the temperature corresponding to the 50 % snowfall proportion (SP50 temperature) is an efficiently critical temperature for the STT, and two critical temperatures in TTT2 can be determined based on the exponential function and SP50 temperature. Then, different separation schemes were evaluated in separating snowfall from precipitation in the Naqu River basin. The results show that the S-shaped curve methods outperform other separation schemes. Although the STT and TTT2 slightly underestimate and overestimate the snowfall when the temperature is higher and colder than SP50 temperature respectively, the monthly and annual separation snowfalls are generally consistent with the observed snowfalls. On the whole, S-shaped curve methods, STT, and TTT2 perform well in separating snowfall from precipitation with the Pearson correlation coefficient of annual separation snowfall above 0.8 and provide possible approaches to separate the snowfall from precipitation for hydrological modelling.

  13. Ares I and Ares I-X Stage Separation Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Niskey, Charles J.

    2011-01-01

    The aerodynamics of the Ares I crew launch vehicle (CLV) and Ares I-X flight test vehicle (FTV) during stage separation was characterized by testing 1%-scale models at the Arnold Engineering Development Center s (AEDC) von Karman Gas Dynamics Facility (VKF) Tunnel A at Mach numbers of 4.5 and 5.5. To fill a large matrix of data points in an efficient manner, an injection system supported the upper stage and a captive trajectory system (CTS) was utilized as a support system for the first stage located downstream of the upper stage. In an overall extremely successful test, this complex experimental setup associated with advanced postprocessing of the wind tunnel data has enabled the construction of a multi-dimensional aerodynamic database for the analysis and simulation of the critical phase of stage separation at high supersonic Mach numbers. Additionally, an extensive set of data from repeated wind tunnel runs was gathered purposefully to ensure that the experimental uncertainty would be accurately quantified in this type of flow where few historical data is available for comparison on this type of vehicle and where Reynolds-averaged Navier-Stokes (RANS) computational simulations remain far from being a reliable source of static aerodynamic data.

  14. Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi 2–δAs 2

    DOE PAGES

    Luo, Yongkang; Ronning, F.; Wakeham, N.; ...

    2015-10-19

    The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi 2–δAs 2 (δ ≈ 0.28) as its antiferromagnetic order is tunedmore » by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 e –/formular unit in CeNi 2–δAs 2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. Here, the small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.« less

  15. Modelling of lateral fold growth and fold linkage: Applications to fold-and-thrust belt tectonics

    NASA Astrophysics Data System (ADS)

    Grasemann, Bernhard; Schmalholz, Stefan

    2013-04-01

    We use a finite element model to investigate the three-dimensional fold growth and interference of two initially isolated fold segments. The most critical parameter, which controls the fold linkage mode, is the phase difference between the laterally growing fold hinge lines: 1) "Linear-linkage" yields a sub-cylindrical fold with a saddle at the location where the two initial folds linked. 2) "Oblique-linkage" produces a curved fold resembling a Type II refold structure. 3) "Oblique-no-linkage" results in two curved folds with fold axes plunging in opposite directions. 4) "Linear-no-linkage" yields a fold train of two separate sub-cylindrical folds with fold axes plunging in opposite directions. The transition from linkage to no-linkage occurs when the fold separation between the initially isolated folds is slightly larger than one half of the low-amplitude fold wavelength. The model results compare well with previously published plasticine analogue models and can be directly applied to the investigation of fold growth history in fold-and-thust belts. An excellent natural example of lateral fold linkage is described from the Zagros fold-and-thrust belt in the Kurdistan Region of Iraq. The fold growth in this region is not controlled by major thrust faults but the shortening of the Paleozoic to Cenozoic passive margin sediments of the Arabian plate occurred mainly by detachment folding. The sub-cylindrical anticlines with hinge-parallel lengths of more than 50 km have not developed from single sub-cylindrical embryonic folds but they have merged from different fold segments that joined laterally during fold amplification and lateral fold growth. Linkage points are marked by geomorphological saddle points which are structurally the lowermost points of antiforms and points of principal curvatures with opposite sign. Linkage points can significantly influence the migration of mineral-rich fluids and hydrocarbons and are therefore of great economic importance.

  16. Metallic quantum critical points with finite BCS couplings

    NASA Astrophysics Data System (ADS)

    Raghu, Srinivas

    The problem of superconductivity near quantum critical points (QCPs) remains a central topic of modern condensed matter physics. In such systems, there is a competition between the enhanced pairing tendency due to the presence of long-range attractive interactions near criticality, and the suppression of superconductivity due to the destruction of Landau quasiparticles. I will describe some recent work that addresses these competing effects in the context of a solvable model of a metallic quantum critical point. I will show that the two effects - namely the enhanced pairing and the destruction of Landau quasiparticles - can offset one another, resulting in stable ''naked'' quantum critical points without superconductivity. However, the resulting quantum critical metal exhibits strong superconducting fluctuations on all length scales. Reference: S.R., Gonzalo Torroba, and Huajia Wang, arXiv1507.06652, PRB(2015).

  17. Critical N = (1, 1) general massive supergravity

    NASA Astrophysics Data System (ADS)

    Deger, Nihat Sadik; Moutsopoulos, George; Rosseel, Jan

    2018-04-01

    In this paper we study the supermultiplet structure of N = (1, 1) General Massive Supergravity at non-critical and critical points of its parameter space. To do this, we first linearize the theory around its maximally supersymmetric AdS3 vacuum and obtain the full linearized Lagrangian including fermionic terms. At generic values, linearized modes can be organized as two massless and 2 massive multiplets where supersymmetry relates them in the standard way. At critical points logarithmic modes appear and we find that in three of such points some of the supersymmetry transformations are non-invertible in logarithmic multiplets. However, in the fourth critical point, there is a massive logarithmic multiplet with invertible supersymmetry transformations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, D.; Colon-Mercado, H.; Krentz, T.

    Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed heremore » suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.« less

  19. 75 FR 8239 - School Food Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... 0584-AD65 School Food Safety Program Based on Hazard Analysis and Critical Control Point Principles... Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP) was published on... of Management and Budget (OMB) cleared the associated information collection requirements (ICR) on...

  20. 77 FR 70724 - Eligibility of the Republic of Korea To Export Poultry Products to the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ...) official controls over condemned product; (8) a Hazard Analysis and Critical Control Point (HACCP) system...) Hazard Analysis and Critical Control Point (HACCP) Systems, (5) Chemical Residue Testing Programs, and (6) Microbiological Testing Programs. FSIS evaluates the information submitted to verify that the critical points in...

  1. Elucidating Environmental Fingerprinting Mechanisms of Unconventional Gas Development through Hydrocarbon Analysis.

    PubMed

    Piotrowski, Paulina K; Weggler, Benedikt A; Yoxtheimer, David A; Kelly, Christina N; Barth-Naftilan, Erica; Saiers, James E; Dorman, Frank L

    2018-04-17

    Hydraulic fracturing is an increasingly common technique for the extraction of natural gas entrapped in shale formations. This technique has been highly criticized due to the possibility of environmental contamination, underscoring the need for method development to identify chemical factors that could be utilized in point-source identification of environmental contamination events. Here, we utilize comprehensive two-dimensional gas chromatography (GC × GC) coupled to high-resolution time-of-flight (HRT) mass spectrometry, which offers a unique instrumental combination allowing for petroleomics hydrocarbon fingerprinting. Four flowback fluids from Marcellus shale gas wells in geographic proximity were analyzed for differentiating factors that could be exploited in environmental forensics investigations of shale gas impacts. Kendrick mass defect (KMD) plots of these flowback fluids illustrated well-to-well differences in heteroatomic substituted hydrocarbons, while GC × GC separations showed variance in cyclic hydrocarbons and polyaromatic hydrocarbons among the four wells. Additionally, generating plots that combine GC × GC separation with KMD established a novel data-rich visualization technique that further differentiated the samples.

  2. Public policy: effective treatment for tobacco disease.

    PubMed

    Scheg, K E

    1996-01-01

    Public policy initiatives offer greater promise than other strategies for reducing the major public health problem of death and disease due to smoking. Three of the most critical public policy areas today are smoke-free environments, youth access, and advertising. While earlier laws separated smokers and nonsmokers into separate sections, the focus now is on smoke-free environments. Various places, however, most notably restaurants, often remain polluted with tobacco smoke and put women at heightened risk of disease and death. Restricting youth access to tobacco products has also gained momentum in the 1990s. The recently proposed Food and Drug Administration regulations designed to reduce smoking by minors by 50% over seven years are the most significant national public policy initiatives ever to address the problem of children smoking. Measures to counter the tobacco industry's massive advertising and promotion campaigns have also increased. The federal government has begun enforcing the prohibition on cigarette advertising on television, and local jurisdictions have restricted tobacco billboards and point-of-sale advertising.

  3. Recent theoretical developments and experimental studies pertinent to vortex flow aerodynamics - With a view towards design

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Luckring, J. M.

    1978-01-01

    A review is presented of recent progress in a research program directed towards the development of an improved vortex-flow technology base. It is pointed out that separation induced vortex-flows from the leading and side edges play an important role in the high angle-of-attack aerodynamic characteristics of a wide range of modern aircraft. In the analysis and design of high-speed aircraft, a detailed knowledge of this type of separation is required, particularly with regard to critical wind loads and the stability and performance at various off-design conditions. A description of analytical methods is presented. The theoretical methods employed are divided into two classes which are dependent upon the underlying aerodynamic assumptions. One conical flow method is considered along with three different nonconical flow methods. Comparisons are conducted between the described methods and available aerodynamic data. Attention is also given to a vortex flow drag study and a vortex flow wing design using suction analogy.

  4. Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules

    NASA Astrophysics Data System (ADS)

    Imai, Hiroshi; Shima, Tomohiro; Sutoh, Kazuo; Walker, Matthew L.; Knight, Peter J.; Kon, Takahide; Burgess, Stan A.

    2015-09-01

    Cytoplasmic dynein is a dimeric AAA+ motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA+ rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour.

  5. Soliton stability in some knot soliton models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, C.; Sanchez-Guillen, J.; Wereszczynski, A.

    2007-02-15

    We study the issue of stability of static solitonlike solutions in some nonlinear field theories which allow for knotted field configurations. Concretely, we investigate the Aratyn-Ferreira-Zimerman model [Phys. Lett. B 456, 162 (1999); Phys. Rev. Lett. 83, 1723 (1999)], based on a Lagrangian quartic in first derivatives with infinitely many conserved currents, for which infinitely many soliton solutions are known analytically. For this model we find that sectors with different (integer) topological charges (Hopf index) are not separated by an infinite energy barrier. Further, if variations which change the topological charge are allowed, then the static solutions are not evenmore » critical points of the energy functional. We also explain why soliton solutions can exist at all, in spite of these facts. In addition, we briefly discuss the Nicole model [J. Phys. G 4, 1363 (1978)], which is based on a sigma-model-type Lagrangian. For the Nicole model we find that different topological sectors are separated by an infinite energy barrier.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less

  7. Critical care in the surgical global period.

    PubMed

    Painter, Julie R

    2013-03-01

    This article explores the rules and regulations from Current Procedural Terminology (CPT) code set and US Medicare and Medicaid Services (Medicare) regarding multiple physicians reporting critical care services during the global period. The article takes into account the critical care definitions, regulations, documentation requirements, and services each provider can report to Medicare. A clinical scenario based on literature supporting the types of complications and care that might typically be included in the post-operative period for a patient who is surgically treated for a type A aortic dissection was analyzed. It was determined that multiple physicians may provide critical care services to a single patient during the global period. The physician who performed the primary procedure cannot report critical care separately unless documentation supporting use of modifier 25 (significant, separately identifiable services) or 24 (unrelated services) supports that critical care is unrelated to the global period. Other physicians may report critical care services separately if specific criteria are met. To report critical care services to Medicare, the patient's condition must meet the Medicare definition of critical care and the physicians should generally represent different specialties providing different aspects of care to the critically ill or injured patient as defined by Medicare. There should be no overlap in time of services provided by each physician. Each physician's documentation should clearly support medical necessity with the diagnosis demonstrating the critical nature of the patients' illness, the total time spent providing critical care, the critical care service provided, and other contributing factors.

  8. Stability and chaos in Kustaanheimo-Stiefel space induced by the Hopf fibration

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Urrutxua, Hodei; Peláez, Jesús

    2016-07-01

    The need for the extra dimension in Kustaanheimo-Stiefel (KS) regularization is explained by the topology of the Hopf fibration, which defines the geometry and structure of KS space. A trajectory in Cartesian space is represented by a four-dimensional manifold called the fundamental manifold. Based on geometric and topological aspects classical concepts of stability are translated to KS language. The separation between manifolds of solutions generalizes the concept of Lyapunov stability. The dimension-raising nature of the fibration transforms fixed points, limit cycles, attractive sets, and Poincaré sections to higher dimensional subspaces. From these concepts chaotic systems are studied. In strongly perturbed problems, the numerical error can break the topological structure of KS space: points in a fibre are no longer transformed to the same point in Cartesian space. An observer in three dimensions will see orbits departing from the same initial conditions but diverging in time. This apparent randomness of the integration can only be understood in four dimensions. The concept of topological stability results in a simple method for estimating the time-scale in which numerical simulations can be trusted. Ideally, all trajectories departing from the same fibre should be KS transformed to a unique trajectory in three-dimensional space, because the fundamental manifold that they constitute is unique. By monitoring how trajectories departing from one fibre separate from the fundamental manifold a critical time, equivalent to the Lyapunov time, is estimated. These concepts are tested on N-body examples: the Pythagorean problem, and an example of field stars interacting with a binary.

  9. School Phobia: A Critical Analysis of the Separation Anxiety Theory and an Alternative Conceptualization.

    ERIC Educational Resources Information Center

    Pilkington, Cynthia L.; Piersel, Wayne C.

    1991-01-01

    Reviews literature on school phobia which reveals predominant view concerning its etiology is separation anxiety theory. Critically analyzes theory on three grounds: methodological problems, lack of generalizability concerning pathological mother-child relationships, and lack of emphasis on external etiological variables. Recommends reexamining…

  10. An integrative review of separation in the context of victimization: consequences and implications for women.

    PubMed

    Walker, Robert; Logan, T K; Jordan, Carol E; Campbell, Jacquelyn C

    2004-04-01

    Given the number of divorces that occur each year as well as the high rates of intimate partner violence, it is critical that divorce/separation and victimization be considered in research and in clinical practice with women. However, the separation/divorce research and victimization research has often been conducted independently, with limited attention to integration. The integration of these two domains is critically important in facilitating the understanding of these issues for women. This article has 5 main purposes: (a) to review the research on the general consequences of separation; (b) to review the research on the consequences of separation when children are involved; (c) to review the research on the consequences of victimization; (d) to integrate the separation and victimization research to examine separation in the context of victimization; and (e) to discuss the implications of separation in the context of victimization for practice and research.

  11. Polymer-induced phase separation and crystallization in immunoglobulin G solutions.

    PubMed

    Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen

    2008-05-28

    We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.

  12. Large effect of columnar defects on the thermodynamic properties of Bi2Sr2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.

    1996-07-01

    The introduction of columnar defects by irradiation with 5.8-GeV Pb ions is shown to affect significantly the reversible magnetic properties of Bi2Sr2CaCu2O8+δ single crystals. Notably, the suppression of superconducting fluctuations on length scales greater than the separation between columns leads to the disappearance of the ``crossing point'' in the critical fluctuation regime. At lower temperatures, the strong modification of the vortex energy due to pinning leads to an important change of the reversible magnetization. The analysis of the latter permits the direct determination of the pinning energy.

  13. Phase diagrams for an evolutionary prisoner's dilemma game on two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Szabó, György; Vukov, Jeromos; Szolnoki, Attila

    2005-10-01

    The effects of payoffs and noise on the maintenance of cooperative behavior are studied in an evolutionary prisoner’s dilemma game with players located on the sites of different two-dimensional lattices. This system exhibits a phase transition from a mixed state of cooperators and defectors to a homogeneous one where only the defectors remain alive. Using Monte Carlo simulations and the generalized mean-field approximations we have determined the phase boundaries (critical points) separating the two phases on the plane of the temperature (noise) and temptation to choose defection. In the zero temperature limit the cooperation can be sustained only for those connectivity structures where three-site clique percolation occurs.

  14. Numerical Simulation of Measurements during the Reactor Physical Startup at Unit 3 of Rostov NPP

    NASA Astrophysics Data System (ADS)

    Tereshonok, V. A.; Kryakvin, L. V.; Pitilimov, V. A.; Karpov, S. A.; Kulikov, V. I.; Zhylmaganbetov, N. M.; Kavun, O. Yu.; Popykin, A. I.; Shevchenko, R. A.; Shevchenko, S. A.; Semenova, T. V.

    2017-12-01

    The results of numerical calculations and measurements of some reactor parameters during the physical startup tests at unit 3 of Rostov NPP are presented. The following parameters are considered: the critical boron acid concentration and the currents from ionization chambers (IC) during the scram system efficiency evaluation. The scram system efficiency was determined using the inverse point kinetics equation with the measured and simulated IC currents. The results of steady-state calculations of relative power distribution and efficiency of the scram system and separate groups of control rods of the control and protection system are also presented. The calculations are performed using several codes, including precision ones.

  15. Flow Structure and Surface Topology on a UCAV Planform

    NASA Astrophysics Data System (ADS)

    Elkhoury, Michel; Yavuz, Metin; Rockwell, Donald

    2003-11-01

    Flow past a X-45 UCAV planform involves the complex generation and interaction of vortices, their breakdown and occurrence of surface separation and stall. A cinema technique of high-image-density particle image velocimetry, in conjunction with dye visualization, allows characterization of the time-averaged and instantaneous states of the flow, in terms of critical points of the near-surface streamlines. These features are related to patterns of surface normal vorticity and velocity fluctuation. Spectral analysis of the naturally occurring unsteadiness of the flow allows definition of the most effective frequencies for small-amplitude perturbation of the wing, which leads to substantial alterations of the aforementioned patterns of flow structure and topology adjacent to the surface.

  16. Buckling of circular cylindrical shells under dynamically applied axial loads

    NASA Technical Reports Server (NTRS)

    Tulk, J. D.

    1972-01-01

    A theoretical and experimental study was made of the buckling characteristics of perfect and imperfect circular cylindrical shells subjected to dynamic axial loading. Experimental data included dynamic buckling loads (124 data points), high speed photographs of buckling mode shapes and observations of the dynamic stability of shells subjected to rapidly applied sub-critical loads. A mathematical model was developed to describe the dynamic behavior of perfect and imperfect shells. This model was based on the Donnell-Von Karman compatibility and equilibrium equations and had a wall deflection function incorporating five separate modes of deflection. Close agreement between theory and experiment was found for both dynamic buckling strength and buckling mode shapes.

  17. Can we approach the gas-liquid critical point using slab simulations of two coexisting phases?

    PubMed

    Goujon, Florent; Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-09-28

    In this paper, we demonstrate that it is possible to approach the gas-liquid critical point of the Lennard-Jones fluid by performing simulations in a slab geometry using a cut-off potential. In the slab simulation geometry, it is essential to apply an accurate tail correction to the potential energy, applied during the course of the simulation, to study the properties of states close to the critical point. Using the Janeček slab-based method developed for two-phase Monte Carlo simulations [J. Janec̆ek, J. Chem. Phys. 131, 6264 (2006)], the coexisting densities and surface tension in the critical region are reported as a function of the cutoff distance in the intermolecular potential. The results obtained using slab simulations are compared with those obtained using grand canonical Monte Carlo simulations of isotropic systems and the finite-size scaling techniques. There is a good agreement between these two approaches. The two-phase simulations can be used in approaching the critical point for temperatures up to 0.97 T C ∗ (T ∗ = 1.26). The critical-point exponents describing the dependence of the density, surface tension, and interfacial thickness on the temperature are calculated near the critical point.

  18. Conditioning of carbonaceous material prior to physical beneficiation

    DOEpatents

    Warzinski, Robert P.; Ruether, John A.

    1987-01-01

    A carbonaceous material such as coal is conditioned by contact with a supercritical fluid prior to physical beneficiation. The solid feed material is contacted with an organic supercritical fluid such as cyclohexane or methanol at temperatures slightly above the critical temperature and pressures of 1 to 4 times the critical pressure. A minor solute fraction is extracted into critical phase and separated from the solid residuum. The residuum is then processed by physical separation such as by froth flotation or specific gravity separation to recover a substantial fraction thereof with reduced ash content. The solute in supercritical phase can be released by pressure reduction and recombined with the low-ash, carbonaceous material.

  19. End point of a first-order phase transition in many-flavor lattice QCD at finite temperature and density.

    PubMed

    Ejiri, Shinji; Yamada, Norikazu

    2013-04-26

    Towards the feasibility study of the electroweak baryogenesis in realistic technicolor scenario, we investigate the phase structure of (2+N(f))-flavor QCD, where the mass of two flavors is fixed to a small value and the others are heavy. For the baryogenesis, an appearance of a first-order phase transition at finite temperature is a necessary condition. Using a set of configurations of two-flavor lattice QCD and applying the reweighting method, the effective potential defined by the probability distribution function of the plaquette is calculated in the presence of additional many heavy flavors. Through the shape of the effective potential, we determine the critical mass of heavy flavors separating the first-order and crossover regions and find it to become larger with N(f). We moreover study the critical line at finite density and the first-order region is found to become wider as increasing the chemical potential. Possible applications to real (2+1)-flavor QCD are discussed.

  20. Dynamics of the quantum search and quench-induced first-order phase transitions.

    PubMed

    Coulamy, Ivan B; Saguia, Andreia; Sarandy, Marcelo S

    2017-02-01

    We investigate the excitation dynamics at a first-order quantum phase transition (QPT). More specifically, we consider the quench-induced QPT in the quantum search algorithm, which aims at finding out a marked element in an unstructured list. We begin by deriving the exact dynamics of the model, which is shown to obey a Riccati differential equation. Then, we discuss the probabilities of success by adopting either global or local adiabaticity strategies. Moreover, we determine the disturbance of the quantum criticality as a function of the system size. In particular, we show that the critical point exponentially converges to its thermodynamic limit even in a fast evolution regime, which is characterized by both entanglement QPT estimators and the Schmidt gap. The excitation pattern is manifested in terms of quantum domain walls separated by kinks. The kink density is then shown to follow an exponential scaling as a function of the evolution speed, which can be interpreted as a Kibble-Zurek mechanism for first-order QPTs.

  1. Simple views on critical binary liquid mixtures in porous glass

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Socol, S. M.; Lacelle, S.

    2000-01-01

    A simple scenario, different from previous attempts, is proposed to resolve the problem of the slow phase separation dynamics of binary liquid mixtures confined in porous Vycor glass. We demonstrate that simply mutual diffusion, renormalized by critical composition fluctuations and geometrical hindrance of the porous glass, accounts for the slow phase separation kinetics. Capillary invasion studies of porous Vycor glass by the critical isobutyric acid-water mixture, close to the consolute solution temperature, corroborate our analysis.

  2. Microgravity

    NASA Image and Video Library

    2001-01-24

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.

  3. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    NASA Astrophysics Data System (ADS)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  4. Improving STEM Education and Workforce Development by the Inclusion of Research Experiences in the Curriculum at SWC

    DTIC Science & Technology

    2016-06-08

    server environment. While the college’s two Cisco blade -servers are located in separate buildings, these 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...college’s two Cisco blade -servers are located in separate buildings, these units now work as one unit. Critical databases and software packages are...server environment. While the college’s two Cisco blade -servers are located in separate buildings, these units now work as one unit. Critical

  5. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Coexistence Curve of Perfluoromethylcyclohexane-Isopropyl Alcohol

    NASA Technical Reports Server (NTRS)

    Jacobs, D. T.; Kuhl, D. E.; Selby, C. E.

    1996-01-01

    The coexistence curve of the binary fluid mixture perfluoromethylcyclohexane-isopropyl alcohol was determined by precisely measuring the refractive index both above and below its upper critical consolute point. Sixty-seven two-phase data points were obtained over a wide range of reduced temperatures, 10(exp -5) less than t less than 2.5 x 10(exp -1), to determine the location of the critical point: critical temperature=89.901 C, and critical composition = 62.2% by volume perfluoromethylcyclohexane. These data were analyzed to determine the critical exponent 8 close to the critical point, the amplitude B, and the anomaly in the diameter. The volume-fraction coexistence curve is found to be as symmetric as any composition like variable. Correction to scaling is investigated as well as the need for a crossover theory. A model is proposed that describes the asymptotic approach to zero of the effective exponent Beta, which allows an estimation of the temperature regime free of crossover effects.

  7. Analysis of potential genotoxic impurities in rabeprazole active pharmaceutical ingredient via Liquid Chromatography-tandem Mass Spectrometry, following quality-by-design principles for method development.

    PubMed

    Iliou, Katerina; Malenović, Anđelija; Loukas, Yannis L; Dotsikas, Yannis

    2018-02-05

    A novel Liquid Chromatography-tandem mass spectrometry (LC-MS/MS) method is presented for the quantitative determination of two potential genotoxic impurities (PGIs) in rabeprazole active pharmaceutical ingredient (API). In order to overcome the analytical challenges in the trace analysis of PGIs, a development procedure supported by Quality-by-Design (QbD) principles was evaluated. The efficient separation between rabeprazole and the two PGIs in the shortest analysis time was set as the defined analytical target profile (ATP) and to this purpose utilization of a switching valve allowed the flow to be sent to waste when rabeprazole was eluted. The selected critical quality attributes (CQAs) were the separation criterion s between the critical peak pair and the capacity factor k of the last eluted compound. The effect of the following critical process parameters (CPPs) on the CQAs was studied: %ACN content, the pH and the concentration of the buffer salt in the mobile phase, as well as the stationary phase of the analytical column. D-Optimal design was implemented to set the plan of experiments with UV detector. In order to define the design space, Monte Carlo simulations with 5000 iterations were performed. Acceptance criteria were met for C 8 column (50×4mm, 5μm) , and the region having probability π≥95% to achieve satisfactory values of all defined CQAs was computed. The working point was selected with the mobile phase consisting ‎of ACN, ammonium formate 11mM at a ratio 31/69v/v with pH=6,8 for the water phase. The LC protocol was transferred to LC-MS/MS and validated according to ICH guidelines. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Universal relations between non-Gaussian fluctuations in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Deng, Jian; Kohyama, Hiroaki; Labun, Lance

    2017-01-01

    We show that universality near a critical end point implies a characteristic relation between third- and fourth-order baryon susceptibilities χ3 and χ4, resulting in a banana-shaped loop when χ4 is plotted as a function of χ3 along a freeze-out line. This result relies only on the derivative relation between χ3 and χ4, the enhancement of the correlation length and the scaling symmetry near a critical point, and the freeze-out line near the critical point not too parallel to the μB axis. Including the individual enhancements of χ3 and χ4 near a critical point, these features may be a consistent set of observations supporting the interpretation of baryon fluctuation data as arising from criticality.

  9. Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension

    DOE PAGES

    Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang

    2017-05-31

    In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less

  10. Cost Benefit Analysis of the Installation of a Wind Turbine on a Naval Ship

    DTIC Science & Technology

    2010-09-01

    the ship is going to perform its mission. This area is known in advance and, according to data from meteorological stations, wind power potential and...the wind speed and the point of separation are revealed. Separation occurs about 50 degrees of the bow [1]. Separation and turbulence, however...positioned away from and before the separation point. 4 In summary, a wind turbine should be installed at the upper deck at the bow, before and as

  11. New type of quantum criticality in the pyrochlore iridates

    DOE PAGES

    Savary, Lucile; Moon, Eun -Gook; Balents, Leon

    2014-11-13

    Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase transitions—quantum critical points—in conducting materials. Quantum criticality is implicated in non-Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here, we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations, and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for this quantum critical point by renormalization group techniques and show that electrons andmore » antiferromagnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way. This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial quantum critical point with gapless fermions in three dimensions.« less

  12. Verification of Numerical Programs: From Real Numbers to Floating Point Numbers

    NASA Technical Reports Server (NTRS)

    Goodloe, Alwyn E.; Munoz, Cesar; Kirchner, Florent; Correnson, Loiec

    2013-01-01

    Numerical algorithms lie at the heart of many safety-critical aerospace systems. The complexity and hybrid nature of these systems often requires the use of interactive theorem provers to verify that these algorithms are logically correct. Usually, proofs involving numerical computations are conducted in the infinitely precise realm of the field of real numbers. However, numerical computations in these algorithms are often implemented using floating point numbers. The use of a finite representation of real numbers introduces uncertainties as to whether the properties veri ed in the theoretical setting hold in practice. This short paper describes work in progress aimed at addressing these concerns. Given a formally proven algorithm, written in the Program Verification System (PVS), the Frama-C suite of tools is used to identify sufficient conditions and verify that under such conditions the rounding errors arising in a C implementation of the algorithm do not affect its correctness. The technique is illustrated using an algorithm for detecting loss of separation among aircraft.

  13. Proton decay of 73Rb

    NASA Astrophysics Data System (ADS)

    Rogers, Andrew; Anderson, C.; Barney, J.; Estee, J.; Lynch, W. G.; Manfredi, J.; Setiawan, H.; Showalter, R. H.; Sweany, S.; Tangwancharoen, S.; Tsang, M. B.; Winkelbauer, J. R.; Brown, K. W.; Elson, J. M.; Pruitt, C.; Sobotka, L. G.; Chajecki, Z.; Lee, J.

    2017-09-01

    Properties of nuclei beyond the proton drip-line are important for mass models, nuclear structure, and astrophysics. Weakly-bound or proton-unbound nuclei near the rp-process waiting points, such as the unbound Tz = -1/2 nucleus 73Rb, play a critical role in constraining calculations and observations of type I x-ray bursts. For instance, the rp process is greatly slowed near 72Kr (N = Z) due to its relatively long β-decay half life and inhibited proton capture. This waiting point, however, may be bypassed by sequential 2p-capture through 73Rb -a reaction which is sensitive to the 73Rb proton separation energy, Sp. Using invariant-mass spectroscopy, we have performed an experiment at NSCL to measure the decay of 73Rb ->p+72Kr in an attempt to directly determine Sp (73Rb) . Analysis of reconstructed proton-emission spectra and decay signatures will be discussed. This work is supported by the U.S. DOE Office of Nuclear Physics, Award No. DE-FG02-94ER40848.

  14. Determination Of Slitting Criterion Parameter During The Multi Slit Rolling Process

    NASA Astrophysics Data System (ADS)

    Stefanik, Andrzej; Mróz, Sebastian; Szota, Piotr; Dyja, Henryk

    2007-05-01

    The rolling of rods with slitting of the strip calls for the use of special mathematical models that would allow for the separating of metal. A theoretical analysis of the effect of the gap of slitting rollers on the process of band slitting during the rolling of 20 mm and 16 mm-diameter ribbed rods rolled according to the two-strand technology was carried out within this study. For the numerical modeling of strip slitting the Forge3® computer program was applied. The strip slitting in the simulation is implemented by the algorithm of removing elements in which the critical value of the normalized Cockroft - Latham criterion has been exceeded. To determine the value of the criterion the inverse method was applied. Distance between a point, where crack begins, and point of contact metal with the slitting rollers was the parameter for analysis. Power and rolling torque during slit rolling were presented. Distribution and change of the stress in strand while slitting were presented.

  15. Multiscale deformation of a liquid surface in interaction with a nanoprobe

    NASA Astrophysics Data System (ADS)

    Ledesma-Alonso, R.; Tordjeman, P.; Legendre, D.

    2012-06-01

    The interaction between a nanoprobe and a liquid surface is studied. The surface deformation depends on physical and geometric parameters, which are depicted by employing three dimensionless parameters: Bond number Bo, modified Hamaker number Ha, and dimensionless separation distance D*. The evolution of the deformation is described by a strongly nonlinear partial differential equation, which is solved by means of numerical methods. The dynamic analysis of the liquid profile points out the existence of a critical distance Dmin*, below which the irreversible wetting process of the nanoprobe happens. For D*≥Dmin*, the numerical results show the existence of two deformation profiles, one stable and another unstable from the energetic point of view. Different deformation length-scales, characterizing the stable liquid equilibrium interface, define the near- and the far-field deformation zones, where self-similar profiles are found. Finally, our results allow us to provide simple relationships between the parameters, which leads to determine the optimal conditions when performing atomic force microscope measurements over liquids.

  16. The spectrum of a vertex model and related spin one chain sitting in a genus five curve

    NASA Astrophysics Data System (ADS)

    Martins, M. J.

    2017-11-01

    We derive the transfer matrix eigenvalues of a three-state vertex model whose weights are based on a R-matrix not of difference form with spectral parameters lying on a genus five curve. We have shown that the basic building blocks for both the transfer matrix eigenvalues and Bethe equations can be expressed in terms of meromorphic functions on an elliptic curve. We discuss the properties of an underlying spin one chain originated from a particular choice of the R-matrix second spectral parameter. We present numerical and analytical evidences that the respective low-energy excitations can be gapped or massless depending on the strength of the interaction coupling. In the massive phase we provide analytical and numerical evidences in favor of an exact expression for the lowest energy gap. We point out that the critical point separating these two distinct physical regimes coincides with the one in which the weights geometry degenerate into union of genus one curves.

  17. Anisotropy Changes of a Fluorescent Probe during the Micellar Growth and Clouding of a Nonionic Detergent.

    PubMed

    Komaromy-Hiller; von Wandruszka R

    1996-01-15

    The effects of temperature and Triton X-114 (TX-114) concentration on the fluorescence anisotropy of perylene were investigated before and after detergent clouding. The measured anisotropy values were used to estimate the microviscosity of the micellar interior. In the lower detergent concentration range, an anisotropy maximum was observed at the critical micelle concentration (CMC), while the values decreased in the range immediately above the CMC. This was ascribed to the micellar volume increase, which, in the case of TX-114, was not accompanied by a more ordered internal environment. A gradual decrease of anisotropy and microviscosity with increasing temperature below the cloud point was observed. At the cloud point, no abrupt changes were found to occur. Compared to detergents with more flexible hydrophobic moieties, TX-114 micelles have a relatively ordered micellar interior indicated by the microviscosity and calculated fusion energy values. In the separated micellar phase formed after clouding, the probe anisotropy increased as water was eliminated at higher temperatures.

  18. Tunable dielectric response, resistive switching, and unconventional transport in SrTiO3

    NASA Astrophysics Data System (ADS)

    Mikheev, Evgeny

    The first section of this thesis discusses integration of SR TiO3 grown by molecular beam epitaxy (MBE) in vertical device structures. One target application is as a tunable dielectric. Parallel plate capacitors based on epitaxial Pt(001) bottom electrodes and (Ba,Sr)TiO 3 dielectric layers grown by MBE are demonstrated. Optimization of structural quality of the vertical stack is shown to produce very low dielectric loss combined with very high tunability of the dielectric constant by DC bias. This results in considerable improvement of common figures of merit for varactor performance in comparison to previous reports. Another target application for transition metals oxides is in resistive switching memories, which are based on the hysteretic current-voltage response observed in many oxide-based Schottky junctions and capacitors. A study on the role of metal/oxide interface quality is presented. In particular, the use of epitaxial Pt(001) as Schottky contacts to Nb:SRTiO 3 is shown to suppress resistive switching hysteresis by eliminating unintentional contributions to interface capacitance. Such uncontrolled factors are discussed as a probable root cause for poor reproducibility in resistive switching memories, currently a ubiquitous challenge in the field. Potential routes towards stabilizing reproducible switching through intentional control of defect densities in high-quality structures are discussed, including a proof of concept demonstration using Schottky junctions incorporating intentionally non-stoichiometric SRTiO3 interlayers grown by MBE. The second section of this thesis is concerned with unconventional electronic transport in SRTiO3. A systematic description of scattering mechanisms will be presented for three related material systems: uniformly-doped SRTiO3, two-dimensional electron liquids (2DEL) at SRTiO3/RTiO 3 interfaces (R = Gd, Sm) and confined 2DELs in RTiO3/SRTiO3/ RTiO3 quantum wells. In particular, the prevalence of a well-defined T2 scattering rate in doped SRTiO3 will be discussed as being incompatible with its traditional assignment as electron-electron scattering in a Fermi liquid. In the case of ultrathin SRTiO3 quantum wells bound by RTiO3, evidence will be presented for the existence of a quantum critical point. This refers to a quantum phase transition at zero temperature towards an ordered phase in SRTiO 3. This transition is driven by increasing confinement of the 2DEL, with a critical point located at the 5 SrO layer thickness of SRTiO 3. It is manifested in anomalous temperature exponents of the power law resistivity. Additionally, a well-defined trend for the separation of the Hall and longitudinal scattering rates will be presented, analogously to a similar effect observed in the normal state of high-Tc superconductors. In particular, a unique pattern of residual scattering separation was documented, consistent with a quantum critical correction to the Hall lifetime that is divergent at the quantum critical point.

  19. Critical indices for reversible gamma-alpha phase transformation in metallic cerium

    NASA Astrophysics Data System (ADS)

    Soldatova, E. D.; Tkachenko, T. B.

    1980-08-01

    Critical indices for cerium have been determined within the framework of the pseudobinary solution theory along the phase equilibrium curve, the critical isotherm, and the critical isobar. The results obtained verify the validity of relationships proposed by Rushbrook (1963), Griffiths (1965), and Coopersmith (1968). It is concluded that reversible gamma-alpha transformation in metallic cerium is a critical-type transformation, and cerium has a critical point on the phase diagram similar to the critical point of the liquid-vapor system.

  20. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes

    PubMed Central

    Idris, Alamin; Man, Zakaria; Maulud, Abdulhalim S.; Khan, Muhammad Saad

    2017-01-01

    The phase separation behavior of bisphenol-A-polycarbonate (PC), dissolved in N-methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes’ performances were tested for their permeance to CO2, CH4, and N2 gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18% and 9.17% decrease in the initial and maximum degradation temperatures, respectively. The ideal CO2/N2 and CO2/CH4 selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO2/N2 and CO2/CH4 selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications. PMID:28379173

  1. FAST TRACK COMMUNICATION: Ground-state fidelity and entanglement entropy for the quantum three-state Potts model in one spatial dimension

    NASA Astrophysics Data System (ADS)

    Dai, Yan-Wei; Hu, Bing-Quan; Zhao, Jian-Hui; Zhou, Huan-Qiang

    2010-09-01

    The ground-state fidelity per lattice site is computed for the quantum three-state Potts model in a transverse magnetic field on an infinite-size lattice in one spatial dimension in terms of the infinite matrix product state algorithm. It is found that, on the one hand, a pinch point is identified on the fidelity surface around the critical point, and on the other hand, the ground-state fidelity per lattice site exhibits bifurcations at pseudo critical points for different values of the truncation dimension, which in turn approach the critical point as the truncation dimension becomes large. This implies that the ground-state fidelity per lattice site enables us to capture spontaneous symmetry breaking when the control parameter crosses the critical value. In addition, a finite-entanglement scaling of the von Neumann entropy is performed with respect to the truncation dimension, resulting in a precise determination of the central charge at the critical point. Finally, we compute the transverse magnetization, from which the critical exponent β is extracted from the numerical data.

  2. Nonequilibrium Phase Transitions and a Nonequilibrium Critical Point from Anti-de Sitter Space and Conformal Field Theory Correspondence

    NASA Astrophysics Data System (ADS)

    Nakamura, Shin

    2012-09-01

    We find novel phase transitions and critical phenomena that occur only outside the linear-response regime of current-driven nonequilibrium states. We consider the strongly interacting (3+1)-dimensional N=4 large-Nc SU(Nc) supersymmetric Yang-Mills theory with a single flavor of fundamental N=2 hypermultiplet as a microscopic theory. We compute its nonlinear nonballistic quark-charge conductivity by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals. The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical points.

  3. Stepwise positional-orientational order and the multicritical-multistructural global phase diagram of the s=3/2 Ising model from renormalization-group theory.

    PubMed

    Yunus, Çağın; Renklioğlu, Başak; Keskin, Mustafa; Berker, A Nihat

    2016-06-01

    The spin-3/2 Ising model, with nearest-neighbor interactions only, is the prototypical system with two different ordering species, with concentrations regulated by a chemical potential. Its global phase diagram, obtained in d=3 by renormalization-group theory in the Migdal-Kadanoff approximation or equivalently as an exact solution of a d=3 hierarchical lattice, with flows subtended by 40 different fixed points, presents a very rich structure containing eight different ordered and disordered phases, with more than 14 different types of phase diagrams in temperature and chemical potential. It exhibits phases with orientational and/or positional order. It also exhibits quintuple phase transition reentrances. Universality of critical exponents is conserved across different renormalization-group flow basins via redundant fixed points. One of the phase diagrams contains a plastic crystal sequence, with positional and orientational ordering encountered consecutively as temperature is lowered. The global phase diagram also contains double critical points, first-order and critical lines between two ordered phases, critical end points, usual and unusual (inverted) bicritical points, tricritical points, multiple tetracritical points, and zero-temperature criticality and bicriticality. The four-state Potts permutation-symmetric subspace is contained in this model.

  4. Architecture Study on Telemetry Coverage for Immediate Post-Separation Phase

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.; Kellogg, Kent H.; Stocklin, Frank J.; Zillig, David J.; Fielhauer, Karl B.

    2008-01-01

    This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed.This paper presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. This study is a collaboration effort between Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), and Applied Physics Laboratory (APL). After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed. The main results of this study are as follows: 1) At low altitude (< 10000 km) when most post-separation critical operations are executed, Earth-based network (e.g. Deep Space Network (DSN)) can only provide limited coverage, whereas space-based network (e.g. Space Network (SN)) can provide continuous coverage. 2) Commercial-off-the-shelf SN compatible transmitters are available for small satellite applications. In this paper we present the detailed coverage analysis of Earth-based and Space-based networks. We identify the key functional and performance requirements of the architecture, and describe the proposed selection criteria of the spacecraft transmitter. We conclude the paper with a proposed forward plan.

  5. A look back on how far to walk: Systematic review and meta-analysis of physical access to skilled care for childbirth in Sub-Saharan Africa

    PubMed Central

    2017-01-01

    Objectives To (i) summarize the methods undertaken to measure physical accessibility as the spatial separation between women and health services, and (ii) establish the extent to which distance to skilled care for childbirth affects utilization in Sub-Saharan Africa. Method We defined spatial separation as the distance/travel time between women and skilled care services. The use of skilled care at birth referred to either the location or attendant of childbirth. The main criterion for inclusion was any quantification of the relationship between spatial separation and use of skilled care at birth. The approaches undertaken to measure distance/travel time were summarized in a narrative format. We obtained pooled adjusted odds ratios (aOR) from studies that controlled for financial means, education and (perceived) need of care in a meta-analysis. Results 57 articles were included (40 studied distance and 25 travel time), in which distance/travel time were found predominately self-reported or estimated in a geographic information system based on geographic coordinates. Approaches of distance/travel time measurement were generally poorly detailed, especially for self-reported data. Crucial features such as start point of origin and the mode of transportation for travel time were most often unspecified. Meta-analysis showed that increased distance to maternity care had an inverse association with utilization (n = 10, pooled aOR = 0.90/1km, 95%CI = 0.85–0.94). Distance from a hospital for rural women showed an even more pronounced effect on utilization (n = 2, pooled aOR = 0.58/1km increase, 95%CI = 0.31,1.09). The effect of spatial separation appears to level off beyond critical point when utilization was generally low. Conclusion Although the reporting and measurements of spatial separation in low-resource settings needs further development, we found evidence that a lack of geographic access impedes use. Utilization is conditioned on access, researchers and policy makers should therefore prioritize quality data for the evidence-base to ensure that women everywhere have the potential to access obstetric care. PMID:28910302

  6. Rapid variations in fluid chemistry constrain hydrothermal phase separation at the Main Endeavour Field

    NASA Astrophysics Data System (ADS)

    Love, Brooke; Lilley, Marvin; Butterfield, David; Olson, Eric; Larson, Benjamin

    2017-02-01

    Previous work at the Main Endeavour Field (MEF) has shown that chloride concentration in high-temperature vent fluids has not exceeded 510 mmol/kg (94% of seawater), which is consistent with brine condensation and loss at depth, followed by upward flow of a vapor phase toward the seafloor. Magmatic and seismic events have been shown to affect fluid temperature and composition and these effects help narrow the possibilities for sub-surface processes. However, chloride-temperature data alone are insufficient to determine details of phase separation in the upflow zone. Here we use variation in chloride and gas content in a set of fluid samples collected over several days from one sulfide chimney structure in the MEF to constrain processes of mixing and phase separation. The combination of gas (primarily magmatic CO2 and seawater-derived Ar) and chloride data, indicate that neither variation in the amount of brine lost, nor mixing of the vapor phase produced at depth with variable quantities of (i) brine or (ii) altered gas rich seawater that has not undergone phase separation, can explain the co-variation of gas and chloride content. The gas-chloride data require additional phase separation of the ascending vapor-like fluid. Mixing and gas partitioning calculations show that near-critical temperature and pressure conditions can produce the fluid compositions observed at Sully vent as a vapor-liquid conjugate pair or as vapor-liquid pair with some remixing, and that the gas partition coefficients implied agree with theoretically predicted values.Plain Language SummaryWhen the chemistry of fluids from deep sea hot springs changes over a short time span, it allows us to narrow down the conditions and processes that created those fluids. This gives us a better idea what is happening under the seafloor where the water is interacting with hot rocks and minerals, boiling, and taking on the character it will have when it emerges at the seafloor. Gasses like argon can be especially helpful here. We found that the fluids we sampled must have been formed by multiple boiling (phase separation) events, and that one of these would have to be close to the critical point of these fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999AcSpe..54..251S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999AcSpe..54..251S"><span>Organised surfactant assemblies in analytical atomic spectrometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanz-Medel, Alfredo; Fernandez de la Campa, Maria del Rosario; Gonzalez, Elisa Blanco; Fernandez-Sanchez, Maria Luisa</p> <p>1999-02-01</p> <p>The use of surfactant-based organised assemblies in analytical atomic spectroscopy is extensively and critically reviewed along three main lines: first, the ability of organised media to enhance detection of atomic spectroscopic methods by favourable manipulation of physical and chemical properties of the sample solution second, the extension of separation mechanisms by resorting to organised media and third a discussion of synergistic combinations of liquid chromatography separations and atomic detectors via the use of vesicular mobile phases. Changes in physical properties of sample solutions aspirated in atomic spectrometry by addition of surfactants can be advantageously used in at least four different ways: (i) to improve nebulisation efficiency; (ii) to enhance wettability of solid surfaces used for atomisation; (iii) to improve compatibility between aqueous and organic phases; and (iv) to achieve good dispersion of small particles in "slurry" techniques. Controversial results and statements published so far are critically discussed. The ability of surfactant-based organised assemblies, such as micelles and vesicles, to organise reactants at the molecular level has also been applied to enhance the characteristics of chemical generation of volalite species of metals and semi-metals (e.g., hydride or ethylide generation of As, Pb, Cd, Se, Sn, and cold vapour Hg generation) used in atomic methods. Enhancements in efficiency/transport of volatile species, increases in the reaction kinetics, stabilisation of some unstable species and changes in the selectivity of the reactions by surfactants are dealt with. Non-chromatographic cloud-point separations to design pre-concentration procedures with subsequent metal determination by atomic methods are addressed along with chromatographic separations of expanded scope by addition of surfactants to the conventional aqueous mobile phases of reversed-phase high-performance liquid chromatography. Finally, the synergistic effect of using vesicles to improve both the separation capabilities of reversed-phase HPLC and the detectability of atomic detectors by on-line vesicular hydride generation is described. In particular, the possible separation mechanisms responsible for micellar and vesicular mobile phases in reversed-phase chromatographies are analysed and compared. The possible effect of modification of stationary phases by monomers of the surfactants should also be taken into account. The application of such on-line couplings to develop new hybrid approaches to tackle modern problems of trace element speciation for As, Hg, Se, and Cd completes this revision of the present interface between analytical atomic spectroscopy and surfactant-based organised assemblies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24397398','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24397398"><span>Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boutilier, Michael S H; Sun, Chengzhen; O'Hern, Sean C; Au, Harold; Hadjiconstantinou, Nicolas G; Karnik, Rohit</p> <p>2014-01-28</p> <p>Gas transport through intrinsic defects and tears is a critical yet poorly understood phenomenon in graphene membranes for gas separation. We report that independent stacking of graphene layers on a porous support exponentially decreases flow through defects. On the basis of experimental results, we develop a gas transport model that elucidates the separate contributions of tears and intrinsic defects on gas leakage through these membranes. The model shows that the pore size of the porous support and its permeance critically affect the separation behavior, and reveals the parameter space where gas separation can be achieved regardless of the presence of nonselective defects, even for single-layer membranes. The results provide a framework for understanding gas transport in graphene membranes and guide the design of practical, selectively permeable graphene membranes for gas separation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ExFl...51..123S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ExFl...51..123S"><span>Measurement of flow separation in a human vocal folds model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Šidlof, Petr; Doaré, Olivier; Cadot, Olivier; Chaigne, Antoine</p> <p>2011-07-01</p> <p>The paper provides experimental data on flow separation from a model of the human vocal folds. Data were measured on a four times scaled physical model, where one vocal fold was fixed and the other oscillated due to fluid-structure interaction. The vocal folds were fabricated from silicone rubber and placed on elastic support in the wall of a transparent wind tunnel. A PIV system was used to visualize the flow fields immediately downstream of the glottis and to measure the velocity fields. From the visualizations, the position of the flow separation point was evaluated using a semiautomatic procedure and plotted for different airflow velocities. The separation point position was quantified relative to the orifice width separately for the left and right vocal folds to account for flow asymmetry. The results indicate that the flow separation point remains close to the narrowest cross-section during most of the vocal fold vibration cycle, but moves significantly further downstream shortly prior to and after glottal closure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol2/pdf/CFR-2013-title21-vol2-sec123-6.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol2/pdf/CFR-2013-title21-vol2-sec123-6.pdf"><span>21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol2/pdf/CFR-2011-title21-vol2-sec123-6.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol2/pdf/CFR-2011-title21-vol2-sec123-6.pdf"><span>21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol2/pdf/CFR-2014-title21-vol2-sec123-6.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol2/pdf/CFR-2014-title21-vol2-sec123-6.pdf"><span>21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=educational+AND+movies&id=EJ1054827','ERIC'); return false;" href="https://eric.ed.gov/?q=educational+AND+movies&id=EJ1054827"><span>Powerpoint: An Overused Technology Deserving of Criticism, but Indispensable</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hopper, Keith B.; Waugh, Jonathan B.</p> <p>2014-01-01</p> <p>PowerPoint is roundly reviled and ridiculed, yet this technology enjoys universal popularity. This article reviews the criticisms of PowerPoint and its peer technologies, describes its affordances and advantages, and suggests innovative PowerPoint applications in instruction. Beyond garden-variety applications of PowerPoint, it may also be used to…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23464163','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23464163"><span>Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shin, Homin; Schweizer, Kenneth S</p> <p>2013-02-28</p> <p>We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MARJ33010S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MARJ33010S"><span>Coordinated encoding between cell types in the retina: insights from the theory of phase transitions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharpee, Tatyana</p> <p>2015-03-01</p> <p>In this talk I will describe how the emergence of some types of neurons in the brain can be quantitatively described by the theory of transitions between different phases of matter. The two key parameters that control the separation of neurons into subclasses are the mean and standard deviation of noise levels among neurons in the population. The mean noise level plays the role of temperature in the classic theory of phase transitions, whereas the standard deviation is equivalent to pressure, in the case of liquid-gas transitions, or to magnetic field for magnetic transitions. Our results account for properties of two recently discovered types of salamander OFF retinal ganglion cells, as well as the absence of multiple types of ON cells. We further show that, across visual stimulus contrasts, retinal circuits continued to operate near the critical point whose quantitative characteristics matched those expected near a liquid-gas critical point and described by the nearest-neighbor Ising model in three dimensions. Because the retina needs to operate under changing stimulus conditions, the observed parameters of cell types corresponded to metastable states in the region between the spinodal line and the line describing maximally informative solutions. Such properties of neural circuits can maximize information transmission in a given environment while retaining the ability to quickly adapt to a new environment. NSF CAREER award 1254123 and NIH R01EY019493</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970016834&hterms=topology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtopology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970016834&hterms=topology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtopology"><span>Topology of Flow Separation on Three-Dimensional Bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chapman, Gary T.; Yates, Leslie A.</p> <p>1991-01-01</p> <p>In recent years there has been extensive research on three-dimensional flow separation. There are two different approaches: the phenomenological approach and a mathematical approach using topology. These two approaches are reviewed briefly and the shortcomings of some of the past works are discussed. A comprehensive approach applicable to incompressible and compressible steady-state flows as well as incompressible unsteady flow is then presented. The approach is similar to earlier topological approaches to separation but is more complete and in some cases adds more emphasis to certain points than in the past. To assist in the classification of various types of flow, nomenclature is introduced to describe the skin-friction portraits on the surface. This method of classification is then demonstrated on several categories of flow to illustrate particular points as well as the diversity of flow separation. The categories include attached, two-dimensional separation and three different types of simple, three-dimensional primary separation, secondary separation, and compound separation. Hypothetical experiments are utilized to illustrate the topological terminology and its role in characterizing these flows. These hypothetical experiments use colored oil injected onto the surface at singular points in the skin-friction portrait. Actual flow-visualization information, if available, is used to corroborate the hypothetical examples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22617126-conductivity-metal-vapors-critical-point','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22617126-conductivity-metal-vapors-critical-point"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khomkin, A. L., E-mail: alhomkin@mail.ru; Shumikhin, A. S.</p> <p></p> <p>The conductivity of metal vapors at the critical point and near it has been considered. The liquid-metal conductivity originates in this region. The thermodynamic parameters of the critical point, the density of conduction electrons, and the conductivities of various metal vapors have been calculated within the unified approach. It has been proposed to consider the conductivity at the critical point—critical conductivity—as the fourth critical parameter in addition to the density, temperature, and pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhLA..331..110B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhLA..331..110B"><span>Exact renormalization group equation for the Lifshitz critical point</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bervillier, C.</p> <p>2004-10-01</p> <p>An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA200992','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA200992"><span>Noise and Sonic Boom Impact Technology. BOOMAP2 Computer Program for Sonic Boom Research. Volume 3. Program Maintenance Manual</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-08-01</p> <p>the spline coefficients are calculated. 2.2.3.3 GETSEG GETSEG divides the flight into segments where the points are above the critical Mach number. The...first two and the last two points of a segment can be below critical , which is done in order to improve the spline interpolation. There can also be...subcritical points in the track; however, there can be at most only 5.5 seconds between critical points. If there is a 4.5 4 second gap between data</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3358829','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3358829"><span>Order parameter fluctuations at a buried quantum critical point</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Feng, Yejun; Wang, Jiyang; Jaramillo, R.; van Wezel, Jasper; Haravifard, S.; Srajer, G.; Liu, Y.; Xu, Z.-A.; Littlewood, P. B.; Rosenbaum, T. F.</p> <p>2012-01-01</p> <p>Quantum criticality is a central concept in condensed matter physics, but the direct observation of quantum critical fluctuations has remained elusive. Here we present an X-ray diffraction study of the charge density wave (CDW) in 2H-NbSe2 at high pressure and low temperature, where we observe a broad regime of order parameter fluctuations that are controlled by proximity to a quantum critical point. X-rays can track the CDW despite the fact that the quantum critical regime is shrouded inside a superconducting phase; and in contrast to transport probes, allow direct measurement of the critical fluctuations of the charge order. Concurrent measurements of the crystal lattice point to a critical transition that is continuous in nature. Our results confirm the long-standing expectations of enhanced quantum fluctuations in low-dimensional systems, and may help to constrain theories of the quantum critical Fermi surface. PMID:22529348</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/248113-criticality-safety-strategy-analysis-summary-fuel-cycle-facility-electrorefiner-argonne-national-laboratory-west','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/248113-criticality-safety-strategy-analysis-summary-fuel-cycle-facility-electrorefiner-argonne-national-laboratory-west"><span>Criticality safety strategy and analysis summary for the fuel cycle facility electrorefiner at Argonne National Laboratory West</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mariani, R.D.; Benedict, R.W.; Lell, R.M.</p> <p>1996-05-01</p> <p>As part of the termination activities of Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West, the spent metallic fuel from EBR-II will be treated in the fuel cycle facility (FCF). A key component of the spent-fuel treatment process in the FCF is the electrorefiner (ER) in which the actinide metals are separated from the active metal fission products and the reactive bond sodium. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt, and refined uranium or uranium/plutonium products are deposited at cathodes. The criticality safety strategy and analysis for the ANLmore » West FCF ER is summarized. The FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. To show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOEs) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOEs, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that will verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750003989','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750003989"><span>Status of flow separation prediction in liquid propellant rocket nozzles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmucker, R. H.</p> <p>1974-01-01</p> <p>Flow separation which plays an important role in the design of a rocket engine nozzle is discussed. For a given ambient pressure, the condition of no flow separation limits the area ratio and, therefore, the vacuum performance. Avoidance of performance loss due to area ratio limitation requires a correct prediction of the flow separation conditions. To provide a better understanding of the flow separation process, the principal behavior of flow separation in a supersonic overexpanded rocket nozzle is described. The hot firing separation tests from various sources are summarized, and the applicability and accuracy of the measurements are described. A comparison of the different data points allows an evaluation of the parameters that affect flow separation. The pertinent flow separation predicting methods, which are divided into theoretical and empirical correlations, are summarized and the numerical results are compared with the experimental points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec167-452.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec167-452.pdf"><span>33 CFR 167.452 - In the Santa Barbara Channel: Between Point Conception and Point Arguello.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>....452 In the Santa Barbara Channel: Between Point Conception and Point Arguello. (a) A separation zone... 120°30.16′ W. 34°18.90′ N 120°30.96′ W. 34°25.70′ N 120°51.81′ W. 34°23.75′ N 120°52.51′ W. (b) A traffic lane for westbound traffic is established between the separation zone and a line connecting the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec167-452.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec167-452.pdf"><span>33 CFR 167.452 - In the Santa Barbara Channel: Between Point Conception and Point Arguello.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>....452 In the Santa Barbara Channel: Between Point Conception and Point Arguello. (a) A separation zone... 120°30.16′ W. 34°18.90′ N 120°30.96′ W. 34°25.70′ N 120°51.81′ W. 34°23.75′ N 120°52.51′ W. (b) A traffic lane for westbound traffic is established between the separation zone and a line connecting the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec167-452.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec167-452.pdf"><span>33 CFR 167.452 - In the Santa Barbara Channel: Between Point Conception and Point Arguello.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>....452 In the Santa Barbara Channel: Between Point Conception and Point Arguello. (a) A separation zone... 120°30.16′ W. 34°18.90′ N 120°30.96′ W. 34°25.70′ N 120°51.81′ W. 34°23.75′ N 120°52.51′ W. (b) A traffic lane for westbound traffic is established between the separation zone and a line connecting the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec167-452.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec167-452.pdf"><span>33 CFR 167.452 - In the Santa Barbara Channel: Between Point Conception and Point Arguello.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>....452 In the Santa Barbara Channel: Between Point Conception and Point Arguello. (a) A separation zone... 120°30.16′ W. 34°18.90′ N 120°30.96′ W. 34°25.70′ N 120°51.81′ W. 34°23.75′ N 120°52.51′ W. (b) A traffic lane for westbound traffic is established between the separation zone and a line connecting the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec167-452.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec167-452.pdf"><span>33 CFR 167.452 - In the Santa Barbara Channel: Between Point Conception and Point Arguello.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>....452 In the Santa Barbara Channel: Between Point Conception and Point Arguello. (a) A separation zone... 120°30.16′ W. 34°18.90′ N 120°30.96′ W. 34°25.70′ N 120°51.81′ W. 34°23.75′ N 120°52.51′ W. (b) A traffic lane for westbound traffic is established between the separation zone and a line connecting the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....9372G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....9372G"><span>Assessing criticality in seismicity by entropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goltz, C.</p> <p>2003-04-01</p> <p>There is an ongoing discussion whether the Earth's crust is in a critical state and whether this state is permanent or intermittent. Intermittent criticality would allow specification of time-dependent hazard in principle. Analysis of a spatio-temporally evolving synthetic critical point phenomenon and of real seismicity using configurational entropy shows that the method is a suitable approach for the characterisation of critical point dynamics. Results obtained rather support the notion of intermittent criticality in earthquakes. Statistical significance of the findings is assessed by the method of surrogate data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97d2609B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97d2609B"><span>Phase separation of self-propelled ballistic particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruss, Isaac R.; Glotzer, Sharon C.</p> <p>2018-04-01</p> <p>Self-propelled particles phase-separate into coexisting dense and dilute regions above a critical density. The statistical nature of their stochastic motion lends itself to various theories that predict the onset of phase separation. However, these theories are ill-equipped to describe such behavior when noise becomes negligible. To overcome this limitation, we present a predictive model that relies on two density-dependent timescales: τF, the mean time particles spend between collisions; and τC, the mean lifetime of a collision. We show that only when τF<τC do collisions last long enough to develop a growing cluster and initiate phase separation. Using both analytical calculations and active particle simulations, we measure these timescales and determine the critical density for phase separation in both two and three dimensions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910000545&hterms=gas+liquid&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgas%2Bliquid','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910000545&hterms=gas+liquid&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgas%2Bliquid"><span>Separation Of Liquid And Gas In Zero Gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Howard, Frank S.; Fraser, Wilson S.</p> <p>1991-01-01</p> <p>Pair of reports describe scheme for separating liquid from gas so liquid could be pumped. Designed to operate in absence of gravitation. Jet of liquid, gas, or liquid/gas mixture fed circumferentially into cylindrical tank filled with liquid/gas mixture. Jet starts liquid swirling. Swirling motion centrifugally separates liquid from gas. Liquid then pumped from tank at point approximately diametrically opposite point of injection of jet. Vortex phase separator replaces such devices as bladders and screens. Requires no components inside tank. Pumps for gas and liquid outside tank and easily accessible for maintenance and repairs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24730825','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24730825"><span>Critical behavior of a quantum chain with four-spin interactions in the presence of longitudinal and transverse magnetic fields.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boechat, B; Florencio, J; Saguia, A; de Alcantara Bonfim, O F</p> <p>2014-03-01</p> <p>We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of phases and the existence of multicritical points in the system. We identify phases with both ferromagnetic and antiferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like spins followed by another cluster of opposite like spins. The quantum phases in the model are found to be separated by either first- or second-order transition lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1014539','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1014539"><span>System for reactivating catalysts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.</p> <p>2010-03-02</p> <p>A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040161259','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040161259"><span>Fluid Physics and Transport Phenomena in a Simulated Reduced Gravity Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lipa, J.</p> <p>2004-01-01</p> <p>We describe a ground-based apparatus that allows the cancellation of gravity on a fluid using magnetic forces. The present system was designed for liquid oxygen studies over the range 0.001 - 5 g s. This fluid is an essential component of any flight mission using substantial amounts of liquid propellant, especially manned missions. The apparatus has been used to reduce the hydrostatic compression near the oxygen critical point and to demonstrate inverted phase separation. It could also be used to study pool boiling and two-phase heat transfer in Martian, Lunar or near-zero gravity, as well as phenomena such as Marangoni flow and convective instabilities. These studies would contribute directly to the reliability and optimization of the Moon and Mars flight programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8672642','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8672642"><span>[Violence and sexism in television cartoons for children. Analysis of the contents].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prieto Rodríguez, M A; March Cerdá, J C; Argente del Castillo, A</p> <p>1996-04-15</p> <p>To detect features of violence and sexism in cartoons in the children's programmes of Spanish television companies. Analysis of the content of cartoons broadcast by TV-1, TV-2, Canal Sur, Antena 3 and Tele 5 during one week. The programmes recorded were viewed by two independent observers, first separately and then together. All those scenes with violent contents or sexist messages were noted. The main findings were: a) violent contents were very common; b) roles and jobs linked to gender were found; c) advertising accompanied and was inserted within children's programming. The points identified show the need for both school and family to encourage children to develop a critical attitude to the messages they receive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvD..93j4049M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvD..93j4049M"><span>On the monogamy of holographic n -partite information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mirabi, S.; Tanhayi, M. Reza; Vazirian, R.</p> <p>2016-05-01</p> <p>We investigate the monogamy of holographic n -partite information for a system consisting of n disjoint parallel strips with the same width and separation in AdS and AdS black brane geometries. More precisely, we study the sign of this quantity, e.g., for n =4 , 5, in various dimensions and for different parameters. Our results show that for quantum field theories with holographic duals, the holographic 4-partite information is always positive, and the sign of holographic 5-partite information is found to be negative in the dual strongly coupled 1 +1 dimensional conformal field theory. This latter result indicates that the holographic 4-partite information is monogamous. We also find the critical points corresponding to the possible phase transitions of these quantities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H53I..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H53I..07S"><span>Quantifying geomorphic controls on riparian forest dynamics using a linked physical-biological model: implications for river corridor conservation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stella, J. C.; Harper, E. B.; Fremier, A. K.; Hayden, M. K.; Battles, J. J.</p> <p>2009-12-01</p> <p>In high-order alluvial river systems, physical factors of flooding and channel migration are particularly important drivers of riparian forest dynamics because they regulate habitat creation, resource fluxes of water, nutrients and light that are critical for growth, and mortality from fluvial disturbance. Predicting vegetation composition and dynamics at individual sites in this setting is challenging, both because of the stochastic nature of the flood regime and the spatial variability of flood events. Ecological models that correlate environmental factors with species’ occurrence and abundance (e.g., ’niche models’) often work well in infrequently-disturbed upland habitats, but are less useful in river corridors and other dynamic zones where environmental conditions fluctuate greatly and selection pressures on disturbance-adapted organisms are complex. In an effort to help conserve critical riparian forest habitat along the middle Sacramento River, CA, we are taking a mechanistic approach to quantify linkages between fluvial and biotic processes for Fremont cottonwood (Populus fremontii), a keystone pioneer tree in dryland rivers ecosystems of the U.S. Southwest. To predict the corridor-wide population effects of projected changes to the disturbance regime from flow regulation, climate change, and landscape modifications, we have coupled a physical model of channel meandering with a patch-based population model that incorporates the climatic, hydrologic, and topographic factors critical for tree recruitment and survival. We employed these linked simulations to study the relative influence of the two most critical habitat types--point bars and abandoned channels--in sustaining the corridor-wide cottonwood population over a 175-year period. The physical model uses discharge data and channel planform to predict the spatial distribution of new habitat patches; the population model runs on top of this physical template to track tree colonization and survival on each patch. Model parameters of tree life-history traits (e.g., dispersal timing) and hydrogeomorphic processes (e.g., sedimentation rate) were determined by field and experimental studies, and aerial LIDAR, with separate range of values for point bar versus floodplain habitats. In most runs, abandoned channels were colonized one third as frequently as point bars, but supported much larger forest patches when colonization was successful (from 15-99% of forest area, depending on point bar success). Independent evaluation of aerial photos confirm that cottonwood forest stands associated with abandoned channels were less frequent (38% of all stands) but more extensive (53% of all forest area) relative to those caused by migrating point bars. Results indicate that changes to the rate and scale of river migration, and particularly channel abandonment, from human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest dynamics, with consequences for the community of organisms that depend on this habitat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25349417','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25349417"><span>Multiple patterns of polymer gels in microspheres due to the interplay among phase separation, wetting, and gelation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yanagisawa, Miho; Nigorikawa, Shinpei; Sakaue, Takahiro; Fujiwara, Kei; Tokita, Masayuki</p> <p>2014-11-11</p> <p>We report the spontaneous patterning of polymer microgels by confining a polymer blend within microspheres. A poly(ethylene glycol) (PEG) and gelatin solution was confined inside water-in-oil (W/O) microdroplets coated with a layer of zwitterionic lipids: dioleoylphosphatidylethanolamine (PE) and dioleoylphosphatidylcholine (PC). The droplet confinement affected the kinetics of the phase separation, wetting, and gelation after a temperature quench, which determined the final microgel pattern. The gelatin-rich phase completely wetted to the PE membrane and formed a hollow microcapsule as a stable state in the PE droplets. Gelation during phase separation varied the relation between the droplet size and thickness of the capsule wall. In the case of the PC droplets, phase separation was completed only for the smaller droplets, wherein the microgel partially wetted the PC membrane and had a hemisphere shape. In addition, the temperature decrease below the gelation point increased the interfacial tension between the PEG/gelatin phases and triggered a dewetting transition. Interestingly, the accompanying shape deformation to minimize the interfacial area was only observed for the smaller PC droplets. The critical size decreased as the gelatin concentration increased, indicating the role of the gel elasticity as an inhibitor of the deformation. Furthermore, variously patterned microgels with spherically asymmetric shapes, such as discs and stars, were produced as kinetically trapped states by regulating the incubation time, polymer composition, and droplet size. These findings demonstrate a way to regulate the complex shapes of microgels using the interplay among phase separation, wetting, and gelation of confined polymer blends in microdroplets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Herbert+AND+Marcuse&id=EJ664052','ERIC'); return false;" href="https://eric.ed.gov/?q=Herbert+AND+Marcuse&id=EJ664052"><span>A Critical Theory Perspective on Accelerated Learning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Brookfield, Stephen D.</p> <p>2003-01-01</p> <p>Critically analyzes accelerated learning using concepts from Herbert Marcuse (rebellious subjectivity) and Erich Fromm (automaton conformity). Concludes that, by providing distance and separation, accelerated learning has more potential to stimulate critical autonomous thought. (SK)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22622203-frequency-independent-approach-calculate-physical-optics-radiations-quadratic-concave-phase-variations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22622203-frequency-independent-approach-calculate-physical-optics-radiations-quadratic-concave-phase-variations"><span>Frequency-independent approach to calculate physical optics radiations with the quadratic concave phase variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wu, Yu Mao, E-mail: yumaowu@fudan.edu.cn; Teng, Si Jia, E-mail: sjteng12@fudan.edu.cn</p> <p></p> <p>In this work, we develop the numerical steepest descent path (NSDP) method to calculate the physical optics (PO) radiations with the quadratic concave phase variations. With the surface integral equation method, the physical optics (PO) scattered fields are formulated and further reduced to the surface integrals. The high frequency physical critical points contributions, including the stationary phase points, the boundary resonance points and the vertex points are comprehensively studied via the proposed NSDP method. The key contributions of this work are twofold. One is that together with the PO integrals taking the quadratic parabolic and hyperbolic phase terms, this workmore » makes the NSDP theory be complete for treating the PO integrals with quadratic phase variations. Another is that, in order to illustrate the transition effect of the high frequency physical critical points, in this work, we consider and further extend the NSDP method to calculate the PO integrals with the coalescence of the high frequency critical points. Numerical results for the highly oscillatory PO integral with the coalescence of the critical points are given to verify the efficiency of the proposed NSDP method. The NSDP method could achieve the frequency independent computational workload and error controllable accuracy in all the numerical experiments, especially for the case of the coalescence of the high frequency critical points.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..MARM48003L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..MARM48003L"><span>Mott criticality and multiferroicity in organic κ-(BEDT-TTF)2X salts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lang, Michael</p> <p>2014-03-01</p> <p>Layered organic charge-transfer (CT) salts of the κ-(BEDT-TTF)2X family show a wealth of electronic phases resulting from the interplay of strong electron-electron correlations, reduced dimensions and magnetic frustration. Of particular interest has been the bandwidth-controlled Mott transition, separating an antiferromagnetic (afm) insulating state from a correlated metallic and superconducting state. Whereas the hydrogenated X = Cu[N(CN)2]Br salt is located on the metallic side, the deuterated variant, denoted κ-D8, is situated in splitting distance to the Mott transition, enabling the s-shaped transition line TMI to be crossed via temperature sweeps. The talk will address the following aspects: 1) Thermal expansion measurements on single crystalline κ-D8 reveal discontinuous changes of the lattice parameters on crossing the Mott transition line and a huge anomaly close to the second-order critical end point of TMI. By elaborating on a scaling theory, we found that (i) the latter effect is a consequence of an almost divergence of the Grüneisen parameter Γ at the finite- T critical end point, and (ii) that the expansivity data of are in excellent agreement with the Mott criticality lying within the 2D Ising universality class, at variance with results from conductivity measurements. Thermal expansion measurements under Helium-gas pressure are underway for providing thermodynamic information at variable pressure. 2) Surprisingly, for the isostructural X = Cu[N(CN)2]Cl salt, located close to the Mott transition on the insulating side, we found that besides the well-established afm order at TN ~ 27 K, the system also reveals a ferroelectric transition at TFE, making this material the first multiferroic CT salt. Most remarkably, the measurements reveal TFE ~TN , suggesting a close interrelation between both types of ferroic order. Work was supported by Deutsche Forschungsgemeinschaft through the Collaborative Research Centers TRR 49 and TRR 80.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18764141','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18764141"><span>Defect production in nonlinear quench across a quantum critical point.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sen, Diptiman; Sengupta, K; Mondal, Shreyoshi</p> <p>2008-07-04</p> <p>We show that the defect density n, for a slow nonlinear power-law quench with a rate tau(-1) and an exponent alpha>0, which takes the system through a critical point characterized by correlation length and dynamical critical exponents nu and z, scales as n approximately tau(-alphanud/(alphaznu+1)) [n approximately (alphag((alpha-1)/alpha)/tau)(nud/(znu+1))] if the quench takes the system across the critical point at time t=0 [t=t(0) not = 0], where g is a nonuniversal constant and d is the system dimension. These scaling laws constitute the first theoretical results for defect production in nonlinear quenches across quantum critical points and reproduce their well-known counterpart for a linear quench (alpha=1) as a special case. We supplement our results with numerical studies of well-known models and suggest experiments to test our theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JChPh.144v4501W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JChPh.144v4501W"><span>Corresponding-states behavior of a dipolar model fluid with variable dispersion interactions and its relevance to the anomalies of hydrogen fluoride</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weiss, Volker C.; Leroy, Frédéric</p> <p>2016-06-01</p> <p>More than two decades ago, the elusiveness of a liquid-vapor equilibrium and a corresponding critical point in simulations of the supposedly simple model of dipolar hard spheres came as a surprise to many liquid matter theorists. van Leeuwen and Smit [Phys. Rev. Lett. 71, 3991 (1993)] showed that a minimum of attractive dispersion interactions among the dipolar particles may be needed to observe regular fluid behavior. Here, we adopt their approach and use an only slightly modified model, in which the original point dipole is replaced by a dipole moment produced by charges that are separated in space, to study the influence of dispersion interactions of variable strength on the coexistence and interfacial properties of a polar fluid. The thermophysical properties are discussed in terms of Guggenheim's corresponding-states approach. In this way, the coexistence curve, the critical compressibility factor, the surface tension, Guggenheim's ratio, and modifications of Guldberg's and Trouton's rules (related to the vapor pressure and the enthalpy of vaporization) are analyzed. As the importance of dispersion is decreased, a crossover from simple-fluid behavior to that characteristic of strongly dipolar systems takes place; for some properties, this transition is monotonic, but for others it occurs non-monotonically. For strongly dipolar systems, the reduced surface tension is very low, whereas Guggenheim's ratio and Guldberg's ratio are found to be high. The critical compressibility factor is smaller, and the coexistence curve is wider and more skewed than for simple fluids. For very weak dispersion, liquid-vapor equilibrium is still observable, but the interfacial tension is extremely low and may, eventually, vanish marking the end of the existence of a liquid phase. We discuss the implications of our findings for real fluids, in particular, for hydrogen fluoride.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28968676','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28968676"><span>Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Shelley H; Bobb, Jennifer F; Lee, Kyu Ha; Gennings, Chris; Claus Henn, Birgit; Bellinger, David; Austin, Christine; Schnaas, Lourdes; Tellez-Rojo, Martha M; Hu, Howard; Wright, Robert O; Arora, Manish; Coull, Brent A</p> <p>2018-07-01</p> <p>The impact of neurotoxic chemical mixtures on children's health is a critical public health concern. It is well known that during early life, toxic exposures may impact cognitive function during critical time intervals of increased vulnerability, known as windows of susceptibility. Knowledge on time windows of susceptibility can help inform treatment and prevention strategies, as chemical mixtures may affect a developmental process that is operating at a specific life phase. There are several statistical challenges in estimating the health effects of time-varying exposures to multi-pollutant mixtures, such as: multi-collinearity among the exposures both within time points and across time points, and complex exposure-response relationships. To address these concerns, we develop a flexible statistical method, called lagged kernel machine regression (LKMR). LKMR identifies critical exposure windows of chemical mixtures, and accounts for complex non-linear and non-additive effects of the mixture at any given exposure window. Specifically, LKMR estimates how the effects of a mixture of exposures change with the exposure time window using a Bayesian formulation of a grouped, fused lasso penalty within a kernel machine regression (KMR) framework. A simulation study demonstrates the performance of LKMR under realistic exposure-response scenarios, and demonstrates large gains over approaches that consider each time window separately, particularly when serial correlation among the time-varying exposures is high. Furthermore, LKMR demonstrates gains over another approach that inputs all time-specific chemical concentrations together into a single KMR. We apply LKMR to estimate associations between neurodevelopment and metal mixtures in Early Life Exposures in Mexico and Neurotoxicology, a prospective cohort study of child health in Mexico City.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhRvE..82e6326U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhRvE..82e6326U"><span>Structures in magnetohydrodynamic turbulence: Detection and scaling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uritsky, V. M.; Pouquet, A.; Rosenberg, D.; Mininni, P. D.; Donovan, E. F.</p> <p>2010-11-01</p> <p>We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 15363 points and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X -point configuration embedded in three dimensions, the so-called Orszag-Tang vortex, or an Arn’old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic-field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of intermittency in terms of propagation of local instabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995cam..book..149H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995cam..book..149H"><span>Coherent-Anomaly Method in Critical Phenomena. III.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Xiao; Katori, Makoto; Suzuki, Masuo</p> <p></p> <p>Two kinds of systematic mean-field transfer-matrix methods are formulated in the 2-dimensional Ising spin system, by introducing Weiss-like and Bethe-like approximations. All the critical exponents as well as the true critical point can be estimated in these methods following the CAM procedure. The numerical results of the above system are Tc* = 2.271 (J/kB), γ=γ' ≃ 1.749, β≃0.131 and δ ≃ 15.1. The specific heat is confirmed to be continuous and to have a logarithmic divergence at the true critical point, i.e., α=α'=0. Thus, the finite-degree-of-approximation scaling ansatz is shown to be correct and very powerful in practical estimations of the critical exponents as well as the true critical point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19856211','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19856211"><span>Criticality in a non-equilibrium, driven system: charged colloidal rods (fd-viruses) in electric fields.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kang, K; Dhont, J K G</p> <p>2009-11-01</p> <p>Experiments on suspensions of charged colloidal rods (fd-virus particles) in external electric fields are performed, which show that a non-equilibrium critical point can be identified. Several transition lines of field-induced phases and states meet at this point and it is shown that there is a length- and time-scale which diverge at the non-equilibrium critical point. The off-critical and critical behavior is characterized, with both power law and logarithmic divergencies. These experiments show that analogous features of the classical, critical divergence of correlation lengths and relaxation times in equilibrium systems are also exhibited by driven systems that are far out of equilibrium, related to phases/states that do not exist in the absence of the external field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10696E..0SW','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10696E..0SW"><span>An adhered-particle analysis system based on concave points</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Wencheng; Guan, Fengnian; Feng, Lin</p> <p>2018-04-01</p> <p>Particles adhered together will influence the image analysis in computer vision system. In this paper, a method based on concave point is designed. First, corner detection algorithm is adopted to obtain a rough estimation of potential concave points after image segmentation. Then, it computes the area ratio of the candidates to accurately localize the final separation points. Finally, it uses the separation points of each particle and the neighboring pixels to estimate the original particles before adhesion and provides estimated profile images. The experimental results have shown that this approach can provide good results that match the human visual cognitive mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820016291','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820016291"><span>Three-dimensional separation and reattachment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peake, D. J.; Tobak, M.</p> <p>1982-01-01</p> <p>The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16863117','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16863117"><span>Energy of the quasi-free electron in supercritical krypton near the critical point.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Luxi; Evans, C M; Findley, G L</p> <p>2005-12-01</p> <p>Field ionization measurements of high-n CH(3)I and C(2)H(5)I Rydberg states doped into krypton are presented as a function of krypton number density along the critical isotherm. These data exhibit a decrease in the krypton-induced shift of the dopant ionization energy near the critical point. This change in shift is modeled to within +/-0.2% of experiment using a theory that accounts for the polarization of krypton by the dopant ion, the polarization of krypton by the quasi-free electron that arises from field ionization of the dopant, and the zero point kinetic energy of the free electron. The overall decrease in the shift of the dopant ionization energy near the critical point of krypton, which is a factor of 2 larger than that observed in argon, is dominated by the increase in the zero point kinetic energy of the quasi-free electron.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014256','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014256"><span>Pressure-composition relations for coexisting gases and liquids and the critical points in the system NaCl-H2O at 450, 475, and 500°C</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rosenbauer, Robert J.; Bischoff, James L.</p> <p>1987-01-01</p> <p>Pressure-temperature-composition (P, T, x) relations for the co-existing vapor and liquid phases in the system NaCl-H2O were determined experimentally at 450, 475, and 500°C. Data for each isotherm includeP-x relations near the critical point and extend to the three-phase assemblage vapor-liquid-halite on the vapor side. On the liquid side the P-x data range from the critical point to the room-temperature halite saturation point (~25 wt.% NaCl). Critical pressures were calculated from measured pressures and compositions and classical theory. The results generally support the few data points of Urusova (1974, 1975) and Ölander and Liander (1950) but differ markedly from the extensive data of Sourirajan andKennedy (1962).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27763526','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27763526"><span>Analytical Enantio-Separation of Linagliptin in Linagliptin and Metformin HCl Dosage Forms by Applying Two-Level Factorial Design.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jadhav, Sushant B; Mane, Rahul M; Narayanan, Kalyanraman L; Bhosale, Popatrao N</p> <p>2016-10-17</p> <p>A novel, stability indicating, reverse phase high-performance liquid chromatography (RP-HPLC) method was developed to determine the S -isomer of linagliptin (LGP) in linagliptin and metformin hydrochloride (MET HCl) tablets (LGP-MET HCl) by implementing design of experiment (DoE), i.e., two-level, full factorial design (2³ + 3 centre points = 11 experiments) to understand the critical method parameters (CMP) and its relation with the critical method attribute (CMA), and to ensure robustness of the method. The separation of the S -isomer, LGP and MET HCl in the presence of their impurities was achieved on Chiralpak ® IA-3 ( Amylose tris (3, 5-dimethylphenylcarbamate ), immobilized on 3 µm silica gel) stationary phase (250 × 4.6 mm, 3 µm) using isocratic elution and detector wavelength at 225 nm with a flow rate of 0.5 mL·min -1 , an injection volume of 10 µL with a sample cooler (5 °C) and column oven temperature of 25 °C. Ethanol:Methanol:Monoethanolamine (EtOH:MeOH:MEA) in the ratio of 60:40:0.2 v / v / v was used as a mobile phase. The developed method was validated in accordance with international council for harmonisation (ICH) guidelines and was applied for the estimation of the S -isomer of LGP in LGP-MET HCl tablets. The same method also can be extended for the estimation of the S -isomer in LGP dosage forms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MSSP...50..526L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MSSP...50..526L"><span>Analysis of separation test for automatic brake adjuster based on linear radon transformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, Zai; Jiang, Wensong; Guo, Bin; Fan, Weijun; Lu, Yi</p> <p>2015-01-01</p> <p>The linear Radon transformation is applied to extract inflection points for online test system under the noise conditions. The linear Radon transformation has a strong ability of anti-noise and anti-interference by fitting the online test curve in several parts, which makes it easy to handle consecutive inflection points. We applied the linear Radon transformation to the separation test system to solve the separating clearance of automatic brake adjuster. The experimental results show that the feature point extraction error of the gradient maximum optimal method is approximately equal to ±0.100, while the feature point extraction error of linear Radon transformation method can reach to ±0.010, which has a lower error than the former one. In addition, the linear Radon transformation is robust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/879332','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/879332"><span>Highly Selective Membranes For The Separation Of Organic Vapors Using Super-Glassy Polymers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Pinnau, Ingo; Lokhandwala, Kaaeid; Nguyen, Phuong; Segelke, Scott</p> <p>1997-11-18</p> <p>A process for separating hydrocarbon gases of low boiling point, particularly methane, ethane and ethylene, from nitrogen. The process is performed using a membrane made from a super-glassy material. The gases to be separated are mixed with a condensable gas, such as a C.sub.3+ hydrocarbon. In the presence of the condensable gas, improved selectivity for the low-boiling-point hydrocarbon gas over nitrogen is achieved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770000169&hterms=Separation+Techniques&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSeparation%2BTechniques','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770000169&hterms=Separation+Techniques&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSeparation%2BTechniques"><span>Radioactive-gas separation technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Haney, R.; King, K. J.; Nellis, D. O.; Nisson, R. S.; Robling, P.; Womack, W.</p> <p>1977-01-01</p> <p>Cryogenic technique recovers gases inexpensively. Method uses differences in vapor pressures, melting points, and boiling points of components in gaseous mixture. Series of temperature and pressure variations converts gases independently to solid and liquid states, thereby simplifying separation. Apparatus uses readily available cryogen and does not require expensive refrigeration equipment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22522036-steady-general-relativistic-magnetohydrodynamic-inflow-outflow-solution-along-large-scale-magnetic-fields-thread-rotating-black-hole','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22522036-steady-general-relativistic-magnetohydrodynamic-inflow-outflow-solution-along-large-scale-magnetic-fields-thread-rotating-black-hole"><span>STEADY GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC INFLOW/OUTFLOW SOLUTION ALONG LARGE-SCALE MAGNETIC FIELDS THAT THREAD A ROTATING BLACK HOLE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pu, Hung-Yi; Nakamura, Masanori; Hirotani, Kouichi</p> <p>2015-03-01</p> <p>General relativistic magnetohydrodynamic (GRMHD) flows along magnetic fields threading a black hole can be divided into inflow and outflow parts, according to the result of the competition between the black hole gravity and magneto-centrifugal forces along the field line. Here we present the first self-consistent, semi-analytical solution for a cold, Poynting flux–dominated (PFD) GRMHD flow, which passes all four critical (inner and outer, Alfvén, and fast magnetosonic) points along a parabolic streamline. By assuming that the dominating (electromagnetic) component of the energy flux per flux tube is conserved at the surface where the inflow and outflow are separated, the outflowmore » part of the solution can be constrained by the inflow part. The semi-analytical method can provide fiducial and complementary solutions for GRMHD simulations around the rotating black hole, given that the black hole spin, global streamline, and magnetizaion (i.e., a mass loading at the inflow/outflow separation) are prescribed. For reference, we demonstrate a self-consistent result with the work by McKinney in a quantitative level.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvE..92a2710S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvE..92a2710S"><span>Inherently unstable networks collapse to a critical point</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sheinman, M.; Sharma, A.; Alvarado, J.; Koenderink, G. H.; MacKintosh, F. C.</p> <p>2015-07-01</p> <p>Nonequilibrium systems that are driven or drive themselves towards a critical point have been studied for almost three decades. Here we present a minimalist example of such a system, motivated by experiments on collapsing active elastic networks. Our model of an unstable elastic network exhibits a collapse towards a critical point from any macroscopically connected initial configuration. Taking into account steric interactions within the network, the model qualitatively and quantitatively reproduces results of the experiments on collapsing active gels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1953d0009K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1953d0009K"><span>Critical behavior in the system cyclopentanone + water + secondary butyl alcohol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krishna, U. Santhi; Unni, P. K. Madhavan</p> <p>2018-05-01</p> <p>We report detailed measurements of coexistence surface in the ternary system cylcopentanone + water + secondary butyl alcohol. The coexistence surface is seen to have an unusual tunnel like feature and is a potential system in which special critical points such as the Quadruple Critical Point (QCP) could be studied. Analysis of coexistence curves indicates that the system shows 3D-Ising like critical behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.774a2019C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.774a2019C"><span>Pseudo-critical point in anomalous phase diagrams of simple plasma models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chigvintsev, A. Yu; Iosilevskiy, I. L.; Noginova, L. Yu</p> <p>2016-11-01</p> <p>Anomalous phase diagrams in subclass of simplified (“non-associative”) Coulomb models is under discussion. The common feature of this subclass is absence on definition of individual correlations for charges of opposite sign. It is e.g. modified OCP of ions on uniformly compressible background of ideal Fermi-gas of electrons OCP(∼), or a superposition of two non-ideal OCP(∼) models of ions and electrons etc. In contrast to the ordinary OCP model on non-compressible (“rigid”) background OCP(#) two new phase transitions with upper critical point, boiling and sublimation, appear in OCP(∼) phase diagram in addition to the well-known Wigner crystallization. The point is that the topology of phase diagram in OCP(∼) becomes anomalous at high enough value of ionic charge number Z. Namely, the only one unified crystal- fluid phase transition without critical point exists as continuous superposition of melting and sublimation in OCP(∼) at the interval (Z 1 < Z < Z 2). The most remarkable is appearance of pseudo-critical points at both boundary values Z = Z 1 ≈ 35.5 and Z = Z 2 ≈ 40.0. It should be stressed that critical isotherm is exactly cubic in both these pseudo-critical points. In this study we have improved our previous calculations and utilized more complicated model components equation of state provided by Chabrier and Potekhin (1998 Phys. Rev. E 58 4941).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22448238','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22448238"><span>Evolution of opinions on social networks in the presence of competing committed groups.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K; Korniss, Gyorgy</p> <p>2012-01-01</p> <p>Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions A and B, and constituting fractions pA and pB of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space (pA,pB) consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3308977','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3308977"><span>Evolution of Opinions on Social Networks in the Presence of Competing Committed Groups</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K.; Korniss, Gyorgy</p> <p>2012-01-01</p> <p>Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions and , and constituting fractions and of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point. PMID:22448238</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AAS...22913805T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AAS...22913805T"><span>How Mathematics Describes Life</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teklu, Abraham</p> <p>2017-01-01</p> <p>The circle of life is something we have all heard of from somewhere, but we don't usually try to calculate it. For some time we have been working on analyzing a predator-prey model to better understand how mathematics can describe life, in particular the interaction between two different species. The model we are analyzing is called the Holling-Tanner model, and it cannot be solved analytically. The Holling-Tanner model is a very common model in population dynamics because it is a simple descriptor of how predators and prey interact. The model is a system of two differential equations. The model is not specific to any particular set of species and so it can describe predator-prey species ranging from lions and zebras to white blood cells and infections. One thing all these systems have in common are critical points. A critical point is a value for both populations that keeps both populations constant. It is important because at this point the differential equations are equal to zero. For this model there are two critical points, a predator free critical point and a coexistence critical point. Most of the analysis we did is on the coexistence critical point because the predator free critical point is always unstable and frankly less interesting than the coexistence critical point. What we did is consider two regimes for the differential equations, large B and small B. B, A, and C are parameters in the differential equations that control the system where B measures how responsive the predators are to change in the population, A represents predation of the prey, and C represents the satiation point of the prey population. For the large B case we were able to approximate the system of differential equations by a single scalar equation. For the small B case we were able to predict the limit cycle. The limit cycle is a process of the predator and prey populations growing and shrinking periodically. This model has a limit cycle in the regime of small B, that we solved for numerically. With some assumptions to reduce the differential equations we were able to create a system of equations and unknowns to predict the behavior of the limit cycle for small B.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22617421-one-norm-geometric-quantum-discord-critical-point-estimation-xy-spin-chain','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22617421-one-norm-geometric-quantum-discord-critical-point-estimation-xy-spin-chain"><span>One-norm geometric quantum discord and critical point estimation in the XY spin chain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com</p> <p>2016-11-15</p> <p>In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparingmore » with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApSS..421..905F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApSS..421..905F"><span>Temperature dependence of the interband critical points of bulk Ge and strained Ge on Si</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernando, Nalin S.; Nunley, T. Nathan; Ghosh, Ayana; Nelson, Cayla M.; Cooke, Jacqueline A.; Medina, Amber A.; Zollner, Stefan; Xu, Chi; Menendez, Jose; Kouvetakis, John</p> <p>2017-11-01</p> <p>Epitaxial Ge layers on a Si substrate experience a tensile biaxial stress due to the difference between the thermal expansion coefficients of the Ge epilayer and the Si substrate, which can be measured using asymmetric X-ray diffraction reciprocal space maps. This stress depends on temperature and affects the band structure, interband critical points, and optical spectra. This manuscripts reports careful measurements of the temperature dependence of the dielectric function and the interband critical point parameters of bulk Ge and Ge epilayers on Si using spectroscopic ellipsometry from 80 to 780 K and from 0.8 to 6.5 eV. The authors find a temperature-dependent redshift of the E1 and E1 + Δ1 critical points in Ge on Si (relative to bulk Ge). This redshift can be described well with a model based on thermal expansion coefficients, continuum elasticity theory, and the deformation potential theory for interband transitions. The interband transitions leading to E0‧ and E2 critical points have lower symmetry and therefore are not affected by the stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22448390','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22448390"><span>Microwave high performance liquid chromatography with UV-visible detection. Application to vitamins determination.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Terol, Amanda; Maestre, Salvador E; Prats, Soledad; Todolí, José L</p> <p>2012-05-07</p> <p>The present work describes the first attempt to use microwave reversed phase high performance liquid chromatography (MW-HPLC) to carry out the separation of organic compounds. Biotin and riboflavin were selected for the characterization of the new separation technique. Additional vitamins (nicotinamide, pyridoxine and thiamine) were used as reference compounds. In order to perform the separation, a chromatographic column was placed inside a domestic microwave oven in a hanging position. The column particular location was an extremely critical point, since it precluded the actual power absorbed by the sample. In order to avoid magnetron damage, a heat well (i.e., water vessels) was used. Vitamins were detected using a UV-VIS detector. Results obtained showed that the application of microwave radiation, even at low power levels, gave rise to a significant modification in the characteristics of the chromatograms. It was found that retention times for biotin and riboflavin shortened as the power increased. Furthermore, the peak shape also changed, with the modification being more significant for the former vitamin than for the latter one. Furthermore, sensitivity also increased as the column was exposed to the action of microwave. Comparatively speaking, MW-HPLC was more efficient in terms of compound separation than when performed at room temperature or thermostatted at 45 °C HPLC. This was likely due to the combined action of a moderate and quick heating of the mobile phase with an increase in the analytes diffusivity caused by the radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4398549','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4398549"><span>Real-Time Visualization of Joint Cavitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rowe, Lindsay</p> <p>2015-01-01</p> <p>Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking. PMID:25875374</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868791','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868791"><span>Oil/gas collector/separator for underwater oil leaks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Henning, Carl D.</p> <p>1993-01-01</p> <p>An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011100','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011100"><span>Streak camera based SLR receiver for two color atmospheric measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Varghese, Thomas K.; Clarke, Christopher; Oldham, Thomas; Selden, Michael</p> <p>1993-01-01</p> <p>To realize accurate two-color differential measurements, an image digitizing system with variable spatial resolution was designed, built, and integrated to a photon-counting picosecond streak camera, yielding a temporal scan resolution better than 300 femtosecond/pixel. The streak camera is configured to operate with 3 spatial channels; two of these support green (532 nm) and uv (355 nm) while the third accommodates reference pulses (764 nm) for real-time calibration. Critical parameters affecting differential timing accuracy such as pulse width and shape, number of received photons, streak camera/imaging system nonlinearities, dynamic range, and noise characteristics were investigated to optimize the system for accurate differential delay measurements. The streak camera output image consists of three image fields, each field is 1024 pixels along the time axis and 16 pixels across the spatial axis. Each of the image fields may be independently positioned across the spatial axis. Two of the image fields are used for the two wavelengths used in the experiment; the third window measures the temporal separation of a pair of diode laser pulses which verify the streak camera sweep speed for each data frame. The sum of the 16 pixel intensities across each of the 1024 temporal positions for the three data windows is used to extract the three waveforms. The waveform data is processed using an iterative three-point running average filter (10 to 30 iterations are used) to remove high-frequency structure. The pulse pair separations are determined using the half-max and centroid type analysis. Rigorous experimental verification has demonstrated that this simplified process provides the best measurement accuracy. To calibrate the receiver system sweep, two laser pulses with precisely known temporal separation are scanned along the full length of the sweep axis. The experimental measurements are then modeled using polynomial regression to obtain a best fit to the data. Data aggregation using normal point approach has provided accurate data fitting techniques and is found to be much more convenient than using the full rate single shot data. The systematic errors from this model have been found to be less than 3 ps for normal points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=adsorption&pg=2&id=EJ877793','ERIC'); return false;" href="https://eric.ed.gov/?q=adsorption&pg=2&id=EJ877793"><span>Separations: A Short History and a Cloudy Crystal Ball</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wankat, Phil</p> <p>2009-01-01</p> <p>Separations have played a major role in the history of chemical engineering and will continue to be important. Since separations have always been a major cost item in the process industries, they have always been a critical key to successful commercialization. First, while reviewing the history of separation processes we will observe that many…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890010949','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890010949"><span>Critical fluid light scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gammon, Robert W.</p> <p>1988-01-01</p> <p>The objective is to measure the decay rates of critical density fluctuations in a simple fluid (xenon) very near its liquid-vapor critical point using laser light scattering and photon correlation spectroscopy. Such experiments were severely limited on Earth by the presence of gravity which causes large density gradients in the sample when the compressibility diverges approaching the critical point. The goal is to measure fluctuation decay rates at least two decades closer to the critical point than is possible on earth, with a resolution of 3 microK. This will require loading the sample to 0.1 percent of the critical density and taking data as close as 100 microK to the critical temperature. The minimum mission time of 100 hours will allow a complete range of temperature points to be covered, limited by the thermal response of the sample. Other technical problems have to be addressed such as multiple scattering and the effect of wetting layers. The experiment entails measurement of the scattering intensity fluctuation decay rate at two angles for each temperature and simultaneously recording the scattering intensities and sample turbidity (from the transmission). The analyzed intensity and turbidity data gives the correlation length at each temperature and locates the critical temperature. The fluctuation decay rate data from these measurements will provide a severe test of the generalized hydrodynamic theories of transport coefficients in the critical regions. When compared to equivalent data from binary liquid critical mixtures they will test the universality of critical dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23215206','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23215206"><span>Mott metal-insulator transition on compressible lattices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zacharias, Mario; Bartosch, Lorenz; Garst, Markus</p> <p>2012-10-26</p> <p>The critical properties of the finite temperature Mott end point are drastically altered by a coupling to crystal elasticity, i.e., whenever it is amenable to pressure tuning. Similar as for critical piezoelectric ferroelectrics, the Ising criticality of the electronic system is preempted by an isostructural instability, and long-range shear forces suppress microscopic fluctuations. As a result, the end point is governed by Landau criticality. Its hallmark is, thus, a breakdown of Hooke's law of elasticity with a nonlinear strain-stress relation characterized by a mean-field exponent. Based on a quantitative estimate, we predict critical elasticity to dominate the temperature range ΔT*/T(c)≃8%, close to the Mott end point of κ-(BEDT-TTF)(2)X.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050186686&hterms=phi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dphi','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050186686&hterms=phi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dphi"><span>Theoretical Analysis of Thermodynamic Measurements near a Liquid-Gas Critical Point</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barmatz, M.; Zhong, Fang; Hahn, Inseob</p> <p>2003-01-01</p> <p>Over the years, many ground-based studies have been performed near liquid-gas critical points to elucidate the expected divergences in thermodynamic quantities. The unambiguous interpretation of these studies very near the critical point is hindered by a gravity-induced density stratification. However, these ground-based measurements can give insight into the crossover behavior between the asymptotic critical region near the transition and the mean field region farther away. We have completed a detailed analysis of heat capacity, susceptibility and coexistence curve measurements near the He-3 liquid-gas critical point using the minimal-subtraction renormalization (MSR) scheme within the phi(exp 4) model. This MSR scheme, using only two adjustable parameters, provides a reasonable global fit to all of these experimental measurements in the gravity-free region out to a reduced temperature of |t| approx. 2x10(exp -2). Recently this approach has also been applied to the earlier microgravity measurements of Haupt and Straub in SF(sub 6) with surprising results. The conclusions drawn from the MSR analyses will be presented. Measurements in the gravity-affected region closer to the He-3 critical point have also been analyzed using the recent crossover parametric model (CPM) of the equation-of-state. The results of fitting heat capacity measurements to the CPM model along the He-3 critical isochore in the gravity-affected region will also be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJT....35..865D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJT....35..865D"><span>An Improved Computational Method for the Calculation of Mixture Liquid-Vapor Critical Points</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dimitrakopoulos, Panagiotis; Jia, Wenlong; Li, Changjun</p> <p>2014-05-01</p> <p>Knowledge of critical points is important to determine the phase behavior of a mixture. This work proposes a reliable and accurate method in order to locate the liquid-vapor critical point of a given mixture. The theoretical model is developed from the rigorous definition of critical points, based on the SRK equation of state (SRK EoS) or alternatively, on the PR EoS. In order to solve the resulting system of nonlinear equations, an improved method is introduced into an existing Newton-Raphson algorithm, which can calculate all the variables simultaneously in each iteration step. The improvements mainly focus on the derivatives of the Jacobian matrix, on the convergence criteria, and on the damping coefficient. As a result, all equations and related conditions required for the computation of the scheme are illustrated in this paper. Finally, experimental data for the critical points of 44 mixtures are adopted in order to validate the method. For the SRK EoS, average absolute errors of the predicted critical-pressure and critical-temperature values are 123.82 kPa and 3.11 K, respectively, whereas the commercial software package Calsep PVTSIM's prediction errors are 131.02 kPa and 3.24 K. For the PR EoS, the two above mentioned average absolute errors are 129.32 kPa and 2.45 K, while the PVTSIM's errors are 137.24 kPa and 2.55 K, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..MARB41002W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..MARB41002W"><span>Magnetic-field induced quantum critical points of valence transition in Ce- and Yb-based heavy fermions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques</p> <p>2009-03-01</p> <p>Valence instability and its critical fluctuations have attracted much attention recently in the heavy-electron systems. Valence fluctuations are essentially charge fluctuations, and it is highly non-trivial how the quantum critical point (QCP) as well as the critical end point is controlled by the magnetic field. To clarify this fundamental issue, we have studied the mechanism of how the critical points of the first-order valence transitions are controlled by the magnetic field [1]. We show that the critical temperature is suppressed to be the QCP by the magnetic field and unexpectedly the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be a cooperative phenomenon of Zeeman effect and Kondo effect, which creates a distinct energy scale from the Kondo temperature. This mechanism explains a peculiar magnetic response in CeIrIn5 and metamagnetic transition in YbXCu4 for X=In as well as a sharp contrast between X=Ag and Cd. We present the novel phenomena under the magnetic field to discuss significance of the proximity of the critical points of the first-order valence transition. [1] S. Watanabe et al. PRL100, (2008) 236401.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987JPSJ...56.3865H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987JPSJ...56.3865H"><span>Coherent-Anomaly Method in Critical Phenomena. III. Mean-Field Transfer-Matrix Method in the 2D Ising Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Xiao; Katori, Makoto; Suzuki, Masuo</p> <p>1987-11-01</p> <p>Two kinds of systematic mean-field transfer-matrix methods are formulated in the 2-dimensional Ising spin system, by introducing Weiss-like and Bethe-like approximations. All the critical exponents as well as the true critical point can be estimated in these methods following the CAM procedure. The numerical results of the above system are Tc*≃2.271 (J/kB), γ{=}γ'≃1.749, β≃0.131 and δ≃15.1. The specific heat is confirmd to be continuous and to have a logarithmic divergence at the true critical point, i.e., α{=}α'{=}0. Thus, the finite-degree-of-approximation scaling ansatz is shown to be correct and very powerful in practical estimations of the critical exponents as well as the true critical point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810006453','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810006453"><span>Aerodynamic side-force alleviator means</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rao, D. M. (Inventor)</p> <p>1980-01-01</p> <p>An apparatus for alleviating high angle of attack side force on slender pointed cylindrical forebodies such as fighter aircraft, missiles and the like is described. A symmetrical pair of helical separation trips was employed to disrupt the leeside vortices normally attained. The symmetrical pair of trips starts at either a common point or at space points on the upper surface of the forebody and extends along separate helical paths along the circumference of the forebody.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1455288-ecosystem-thresholds-tipping-points-critical-transitions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1455288-ecosystem-thresholds-tipping-points-critical-transitions"><span>Ecosystem thresholds, tipping points, and critical transitions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Munson, Seth M.; Reed, Sasha C.; Peñuelas, Josep</p> <p></p> <p>Terrestrial ecosystems in a time of change: thresholds, tipping points, and critical transitions; an organized session at the American Geophysical Union Fall Meeting in New Orleans, Louisiana, USA, December 2017</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000004903&hterms=intervention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dintervention','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000004903&hterms=intervention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dintervention"><span>Performance Modeling of a Pilot in a Free Flight Mode. 1; A Free Flight Self-Separation Cancellations Due to the Requirement for Procedural Intervention</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ntuen, Celestine A.</p> <p>1999-01-01</p> <p>Developments are being made that allow pilots to have more flexibility over the control of their aircraft. This new concept is called Free Flight. Free Flight strives to move the current air traffic system into an age where space technology is used to its fullest potential. Self-separation is one part of the Free Flight system. Self-separation provides pilots the opportunity to choose their own route to reach a specified destination provided that they maintain the 'minimum required separation distance between airplanes. In the event that pilots are unable to maintain separation, controllers will need to have the aircraft separation authority passed back to them. This situation is known as a procedural intervention point. This project attempted to examine and diagnose those particular situations in an effort to avoid reaching a procedural intervention point in the near future. Crews that reached procedural intervention points were compared with crews that made similar maneuver types in the same scenario, but did not reach procedural intervention points. Results showed that there were no significant differences between crews in a high-density acute angle flight conditions. However, significant differences in maneuver times, following the detection of an intruder aircraft and following the time the intruder aircraft came into view, were found in a low-density, acute angle scenario.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3295327','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3295327"><span>Critical quasiparticle theory applied to heavy fermion metals near an antiferromagnetic quantum phase transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Abrahams, Elihu; Wölfle, Peter</p> <p>2012-01-01</p> <p>We use the recently developed critical quasiparticle theory to derive the scaling behavior associated with a quantum critical point in a correlated metal. This is applied to the magnetic-field induced quantum critical point observed in YbRh2Si2, for which we also derive the critical behavior of the specific heat, resistivity, thermopower, magnetization and susceptibility, the Grüneisen coefficient, and the thermal expansion coefficient. The theory accounts very well for the available experimental results. PMID:22331893</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...122c5707K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...122c5707K"><span>Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kosyak, V.; Postnikov, A. V.; Scragg, J.; Scarpulla, M. A.; Platzer-Björkman, C.</p> <p>2017-07-01</p> <p>Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of (" separators="|VCu --ZnC u + ) complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like ZnC u + antisites are involved in the formation of (" separators="|VCu --ZnC u + ) complex making CuZ n - dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20843413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20843413"><span>Turning off the spigot: reducing drug-resistant tuberculosis transmission in resource-limited settings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nardell, E; Dharmadhikari, A</p> <p>2010-10-01</p> <p>Ongoing transmission and re-infection, primarily in congregate settings, is a key factor fueling the global multidrug-resistant/extensively drug-resistant tuberculosis (MDR/XDR-TB) epidemic, especially in association with the human immunodeficiency virus. Even as efforts to broadly implement conventional TB transmission control measures begin, current strategies may be incompletely effective under the overcrowded conditions extant in high-burden, resource-limited settings. Longstanding evidence suggesting that TB patients on effective therapy rapidly become non-infectious and that unsuspected, untreated TB cases account for the most transmission makes a strong case for the implementation of rapid point-of-care diagnostics coupled with fully supervised effective treatment. Among the most important decisions affecting transmission, the choice of an MDR-TB treatment model that includes community-based treatment may offer important advantages over hospital or clinic-based care, not only in cost and effectiveness, but also in transmission control. In the community, too, rapid identification of infectious cases, especially drug-resistant cases, followed by effective, fully supervised treatment, is critical to stopping transmission. Among the conventional interventions available, we present a simple triage and separation strategy, point out that separation is intimately linked to the design and engineering of clinical space and call attention to the pros and cons of natural ventilation, simple mechanical ventilation systems, germicidal ultraviolet air disinfection, fit-tested respirators on health care workers and short-term use of masks on patients before treatment is initiated.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3709569','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3709569"><span>Turning off the spigot: reducing drug-resistant tuberculosis transmission in resource-limited settings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nardell, E.; Dharmadhikari, A.</p> <p>2013-01-01</p> <p>SUMMARY Ongoing transmission and re-infection, primarily in congregate settings, is a key factor fueling the global multidrug-resistant/extensively drug-resistant tuberculosis (MDR/XDR-TB) epidemic, especially in association with the human immunodeficiency virus. Even as efforts to broadly implement conventional TB transmission control measures begin, current strategies may be incompletely effective under the overcrowded conditions extant in high-burden, resource-limited settings. Longstanding evidence suggesting that TB patients on effective therapy rapidly become non-infectious and that unsuspected, untreated TB cases account for the most transmission makes a strong case for the implementation of rapid point-of-care diagnostics coupled with fully supervised effective treatment. Among the most important decisions affecting transmission, the choice of an MDR-TB treatment model that includes community-based treatment may offer important advantages over hospital or clinic-based care, not only in cost and effectiveness, but also in transmission control. In the community, too, rapid identification of infectious cases, especially drug-resistant cases, followed by effective, fully supervised treatment, is critical to stopping transmission. Among the conventional interventions available, we present a simple triage and separation strategy, point out that separation is intimately linked to the design and engineering of clinical space and call attention to the pros and cons of natural ventilation, simple mechanical ventilation systems, germicidal ultraviolet air disinfection, fit-tested respirators on health care workers and short-term use of masks on patients before treatment is initiated. PMID:20843413</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120s8102A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120s8102A"><span>Critical Point in Self-Organized Tissue Growth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aguilar-Hidalgo, Daniel; Werner, Steffen; Wartlick, Ortrud; González-Gaitán, Marcos; Friedrich, Benjamin M.; Jülicher, Frank</p> <p>2018-05-01</p> <p>We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We apply this theory to the biological model system of the developing wing of the fruit fly Drosophila melanogaster and quantitatively identify signatures of the critical point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhyS...80f5502S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhyS...80f5502S"><span>Dusty plasma ring model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sheridan, T. E.</p> <p>2009-12-01</p> <p>A model of a dusty plasma (Yukawa) ring is presented. We consider n identical particles confined in a two-dimensional (2D) annular potential well and interacting through a Debye (i.e. Yukawa or screened Coulomb) potential. Equilibrium configurations are computed versus n, the Debye shielding parameter and the trap radius. When the particle separation exceeds a critical value the particles form a 1D chain with a ring topology. Below the critical separation the zigzag instability gives a 2D configuration. Computed critical separations are shown to agree well with a theoretical prediction for the zigzag threshold. Normal mode spectra for 1D rings are computed and found to be in excellent agreement with the longitudinal and transverse dispersion relations for unbounded straight chains. When the longitudinal and transverse dispersion relations intersect we observe a resonance due to the finite curvature of the ring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARP17010T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARP17010T"><span>Noise-induced creation and annihilation of dissipative solitons (DS) in a passively mode-locked laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teamir, Tesfay; Elahi, Parviz; Makey, Ghaith; Fatih, Ilday</p> <p></p> <p>Passive mode-locking, resulting in self-organized formation of femtoseconds-long laser pulses, constitutes a far-from-equilibrium steady state. Mode-locking is not only important for laser technology, but also of fundamental interest for broad class of systems. Despite numerous studies on their nonlinear dynamics, there is little understanding of the transitions that intrinsic noise can induce. We show that transitions between single-DS and multi-DS states can be triggered. Near critical points, DS states are observed to repeatedly exchange energy among themselves, form DS clusters with varying or vibrating temporal separation, often followed by random transformations among different states. This critical behavior appears to be caused by soliton-soliton or soliton-generated dispersive wave interactions. Irrespective of the specifics of the state, the measured noise level of the laser starts at a moderate value, is then reduced, as the DS's energy is increased. Further increases in power (nonlinearity) drives it towards a noisy critical state, where creation or annihilation of pulses occurs just before a new steady state is formed. These noise-induced transitions between steady states can shed light on the thermodynamics of far-from-equilibrium systems. TàBITAK (113F319) and ERC CoG (617521).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSMTE..05.3108A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSMTE..05.3108A"><span>Inhomogeneous field theory inside the arctic circle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allegra, Nicolas; Dubail, Jérôme; Stéphan, Jean-Marie; Viti, Jacopo</p> <p>2016-05-01</p> <p>Motivated by quantum quenches in spin chains, a one-dimensional toy-model of fermionic particles evolving in imaginary-time from a domain-wall initial state is solved. The main interest of this toy-model is that it exhibits the arctic circle phenomenon, namely a spatial phase separation between a critically fluctuating region and a frozen region. Large-scale correlations inside the critical region are expressed in terms of correlators in a (euclidean) two-dimensional massless Dirac field theory. It is observed that this theory is inhomogenous: the metric is position-dependent, so it is in fact a Dirac theory in curved space. The technique used to solve the toy-model is then extended to deal with the transfer matrices of other models: dimers on the honeycomb and square lattice, and the six-vertex model at the free fermion point (Δ =0 ). In all cases, explicit expressions are given for the long-range correlations in the critical region, as well as for the underlying Dirac action. Although the setup developed here is heavily based on fermionic observables, the results can be translated into the language of height configurations and of the gaussian free field, via bosonization. Correlations close to the phase boundary and the generic appearance of Airy processes in all these models are also briefly revisited in the appendix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21635031','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21635031"><span>Phase diagram and critical end point for strongly interacting quarks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qin, Si-xue; Chang, Lei; Chen, Huan; Liu, Yu-xin; Roberts, Craig D</p> <p>2011-04-29</p> <p>We introduce a method based on chiral susceptibility, which enables one to draw a phase diagram in the chemical-potential-temperature plane for strongly interacting quarks whose interactions are described by any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. We locate a critical end point at (μ(E),T(E))∼(1.0,0.9)T(c), where T(c) is the critical temperature for chiral-symmetry restoration at μ=0, and find that a domain of phase coexistence opens at the critical end point whose area increases as a confinement length scale grows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSP...169..265R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSP...169..265R"><span>Dynamics of Nearest-Neighbour Competitions on Graphs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rador, Tonguç</p> <p>2017-10-01</p> <p>Considering a collection of agents representing the vertices of a graph endowed with integer points, we study the asymptotic dynamics of the rate of the increase of their points according to a very simple rule: we randomly pick an an edge from the graph which unambiguously defines two agents we give a point the the agent with larger point with probability p and to the lagger with probability q such that p+q=1. The model we present is the most general version of the nearest-neighbour competition model introduced by Ben-Naim, Vazquez and Redner. We show that the model combines aspects of hyperbolic partial differential equations—as that of a conservation law—graph colouring and hyperplane arrangements. We discuss the properties of the model for general graphs but we confine in depth study to d-dimensional tori. We present a detailed study for the ring graph, which includes a chemical potential approximation to calculate all its statistics that gives rather accurate results. The two-dimensional torus, not studied in depth as the ring, is shown to possess critical behaviour in that the asymptotic speeds arrange themselves in two-coloured islands separated by borders of three other colours and the size of the islands obey power law distribution. We also show that in the large d limit the d-dimensional torus shows inverse sine law for the distribution of asymptotic speeds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JSMTE..09..027J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JSMTE..09..027J"><span>Infinite-disorder critical points of models with stretched exponential interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Juhász, Róbert</p> <p>2014-09-01</p> <p>We show that an interaction decaying as a stretched exponential function of distance, J(l)˜ e-cl^a , is able to alter the universality class of short-range systems having an infinite-disorder critical point. To do so, we study the low-energy properties of the random transverse-field Ising chain with the above form of interaction by a strong-disorder renormalization group (SDRG) approach. We find that the critical behavior of the model is controlled by infinite-disorder fixed points different from those of the short-range model if 0 < a < 1/2. In this range, the critical exponents calculated analytically by a simplified SDRG scheme are found to vary with a, while, for a > 1/2, the model belongs to the same universality class as its short-range variant. The entanglement entropy of a block of size L increases logarithmically with L at the critical point but, unlike the short-range model, the prefactor is dependent on disorder in the range 0 < a < 1/2. Numerical results obtained by an improved SDRG scheme are found to be in agreement with the analytical predictions. The same fixed points are expected to describe the critical behavior of, among others, the random contact process with stretched exponentially decaying activation rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT....54...81W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT....54...81W"><span>Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt</p> <p>2018-01-01</p> <p>This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002SPIE.4724..108H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002SPIE.4724..108H"><span>EAGLE: relay mirror technology development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.</p> <p>2002-06-01</p> <p>EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040034803','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040034803"><span>Discussion of Priorities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>The Microgravity Science Division identifies four priority ratings for microgravity research and technology issues: 1) Critical; 2) Severely Limiting; 3) Enhancements; 4) Communication. Reduced gravity instabilities are critical, while severely limiting issues include phase separation, phase change, and flow through components. Enhancements are listed for passive phase separation and phase change. This viewgraph presentation also classifies microgravity issues as spaceflight, ground-based, or other for the time periods 2003-2008, 2009-2015, and beyond.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA494290','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA494290"><span>Desktop Systems for Manufacturing Carbon Nanotube Films by Chemical Vapor Deposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-06-01</p> <p>existing low cost tube furnace designs limit the researcher’s ability to fully separate critical reaction parameters such as temperature and flow...Often heated using an external resistive heater coil, a typical configuration, shown in Figure 4, might place a tube made of a non- reactive ...researcher’s ability to fully separate critical parameters such as temperature and flow profiles. Additionally, the use of heating elements external to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/940741','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/940741"><span>Gravity Duals of Lifshitz-Like Fixed Points</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Liu, Xiao</p> <p>2008-11-05</p> <p>We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t {yields} {lambda}{sup z}t, x {yields} {lambda}x; we focus on the case with z = 2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arisemore » at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987uta..rept.....D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987uta..rept.....D"><span>Physical mechanisms in shock-induced turbulent separated flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dolling, D. S.</p> <p>1987-12-01</p> <p>It has been demonstrated that the flow downstream of the moving shock is separated and that the foot of the shock is effectively the instantaneous separation point. The shock induced turbulent separation is an intermittant process and the separation line indicated by surface tracer methods, such as kerosene-lampblack, is a downstream boundary of a region of intermittent separation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvX...6d1050B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvX...6d1050B"><span>Quantum Critical Higgs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bellazzini, Brando; Csáki, Csaba; Hubisz, Jay; Lee, Seung J.; Serra, Javi; Terning, John</p> <p>2016-10-01</p> <p>The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However, light scalars can appear in condensed matter systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper, we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in anti-de Sitter space. For both of these models, we consider the processes g g →Z Z and g g →h h , which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MMTB...47.1080G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MMTB...47.1080G"><span>Separation of Iron Phase and P-Bearing Slag Phase from Gaseous-Reduced, High-Phosphorous Oolitic Iron Ore at 1473 K (1200 °C) by Super Gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Jintao; Zhong, Yiwei; Guo, Lei; Guo, Zhancheng</p> <p>2016-04-01</p> <p>In situ observation on the morphology evolution and phosphorous migration of gaseous-reduced, high-phosphorous oolitic iron ore during the melting process was carried out with a high-temperature confocal scanning laser microscope. The results showed that 1473 K (1200 °C) was a critical temperature at which the gangue minerals started to form into the slag phase while the iron grains remained in a solid state; in addition, the phosphorus remained in the slag phase. Since the separation of iron grains and P-bearing slag was not achieved at the low temperature under the conventional conditions, separate experiments of the iron phase and the P-bearing slag phase from gaseous-reduced, high-phosphorous oolitic iron ore at 1473 K (1200 °C) by super gravity were carried out in this study. Based on the iron-slag separation by super gravity, phosphorus was removed effectively from the iron phase at the temperature below the melting point of iron. Iron grains moved along the super-gravity direction, joined, and concentrated as the iron phase on the filter, whereas the slag phase containing apatite crystals broke through the barriers of the iron grains and went through the filter. Consequently, increasing the gravity coefficient was definitely beneficial for the separation of the P-bearing slag phase from the iron phase. With the gravity coefficient of G = 1200, the mass fractions of separated slag and iron phases were close to their respective theoretical values, and the mass fraction of MFe in the separated iron phase was up to 98.09 wt pct and that of P was decreased to 0.083 wt pct. The recovery of MFe in the iron phase and that of P in the slag phase were up to 99.19 and 95.83 pct, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10182999','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10182999"><span>Criticality safety strategy for the Fuel Cycle Facility electrorefiner at Argonne National Laboratory, West</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mariani, R.D.; Benedict, R.W.; Lell, R.M.</p> <p>1993-09-01</p> <p>The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutoniummore » products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19277374','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19277374"><span>Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Jing-fu; Liu, Rui; Yin, Yong-guang; Jiang, Gui-bin</p> <p>2009-03-28</p> <p>Capable of preserving the sizes and shapes of nanomaterials during the phase transferring, Triton X-114 based cloud point extraction provides a general, simple, and cost-effective route for reversible concentration/separation or dispersion of various nanomaterials in the aqueous phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1349709-impact-resonance-decays-critical-point-signals-net-proton-fluctuations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1349709-impact-resonance-decays-critical-point-signals-net-proton-fluctuations"><span>Impact of resonance decays on critical point signals in net-proton fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bluhm, Marcus; Nahrgang, Marlene; Bass, Steffen A.; ...</p> <p>2017-04-03</p> <p>The non-monotonic beam energy dependence of the higher cumulants of net-proton fluctuations is a widely studied signature of the conjectured presence of a critical point in the QCD phase diagram. In this work we study the effect of resonance decays on critical fluctuations. We show that resonance effects reduce the signatures of critical fluctuations, but that for reasonable parameter choices critical effects in the net-proton cumulants survive. The relative role of resonance decays has a weak dependence on the order of the cumulants studied with a slightly stronger suppression of critical effects for higher-order cumulants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850012808','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850012808"><span>Flight-measured laminar boundary-layer transition phenomena including stability theory analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Obara, C. J.; Holmes, B. J.</p> <p>1985-01-01</p> <p>Flight experiments were conducted on a single-engine turboprop aircraft fitted with a 92-in-chord, 3-ft-span natural laminar flow glove at glove section lift coefficients from 0.15 to 1.10. The boundary-layer transition measurement methods used included sublimating chemicals and surface hot-film sensors. Transition occurred downstream of the minimum pressure point. Hot-film sensors provided a well-defined indication of laminar, laminar-separation, transitional, and turbulent boundary layers. Theoretical calculations of the boundary-layer parameters provided close agreement between the predicted laminar-separation point and the measured transition location. Tollmien-Schlichting (T-S) wave growth n-factors between 15 and 17 were calculated at the predicted point of laminar separation. These results suggest that for many practical airplane cruise conditions, laminar separation (as opposed to T-S instability) is the major cause of transition in predominantly two-dimensional flows.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29758740','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29758740"><span>Duality and the universality class of the three-state Potts antiferromagnet on plane quadrangulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lv, Jian-Ping; Deng, Youjin; Jacobsen, Jesper Lykke; Salas, Jesús; Sokal, Alan D</p> <p>2018-04-01</p> <p>We provide a criterion based on graph duality to predict whether the three-state Potts antiferromagnet on a plane quadrangulation has a zero- or finite-temperature critical point, and its universality class. The former case occurs for quadrangulations of self-dual type, and the zero-temperature critical point has central charge c=1. The latter case occurs for quadrangulations of non-self-dual type, and the critical point belongs to the universality class of the three-state Potts ferromagnet. We have tested this criterion against high-precision computations on four lattices of each type, with very good agreement. We have also found that the Wang-Swendsen-Kotecký algorithm has no critical slowing-down in the former case, and critical slowing-down in the latter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JLTP..191..123K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JLTP..191..123K"><span>Conductivity of Weakly Disordered Metals Close to a "Ferromagnetic" Quantum Critical Point</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kastrinakis, George</p> <p>2018-05-01</p> <p>We calculate analytically the conductivity of weakly disordered metals close to a "ferromagnetic" quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential V(q,ω ), due to critical fluctuations, is peaked at zero momentum q=0. Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the T^2 term for small a.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97d0104L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97d0104L"><span>Duality and the universality class of the three-state Potts antiferromagnet on plane quadrangulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lv, Jian-Ping; Deng, Youjin; Jacobsen, Jesper Lykke; Salas, Jesús; Sokal, Alan D.</p> <p>2018-04-01</p> <p>We provide a criterion based on graph duality to predict whether the three-state Potts antiferromagnet on a plane quadrangulation has a zero- or finite-temperature critical point, and its universality class. The former case occurs for quadrangulations of self-dual type, and the zero-temperature critical point has central charge c =1 . The latter case occurs for quadrangulations of non-self-dual type, and the critical point belongs to the universality class of the three-state Potts ferromagnet. We have tested this criterion against high-precision computations on four lattices of each type, with very good agreement. We have also found that the Wang-Swendsen-Kotecký algorithm has no critical slowing-down in the former case, and critical slowing-down in the latter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JChPh.123l4512R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JChPh.123l4512R"><span>On the universal behavior of some thermodynamic properties along the whole liquid-vapor coexistence curve</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Román, F. L.; White, J. A.; Velasco, S.; Mulero, A.</p> <p>2005-09-01</p> <p>When thermodynamic properties of a pure substance are transformed to reduced form by using both critical- and triple-point values, the corresponding experimental data along the whole liquid-vapor coexistence curve can be correlated with a very simple analytical expression that interpolates between the behavior near the triple and the critical points. The leading terms of this expression contain only two parameters: the critical exponent and the slope at the triple point. For a given thermodynamic property, the critical exponent has a universal character but the slope at the triple point can vary significantly from one substance to another. However, for certain thermodynamic properties including the difference of coexisting densities, the enthalpy of vaporization, and the surface tension of the saturated liquid, one finds that the slope at the triple point also has a nearly universal value for a wide class of fluids. These thermodynamic properties thus show a corresponding apparently universal behavior along the whole coexistence curve.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090039472&hterms=kellogg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dkellogg','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090039472&hterms=kellogg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dkellogg"><span>Architecture Study on Telemetry Coverage for Immediate Post-Separation Phase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cheung, Kar-Ming; Lee, Charles; Kellogg, Kent; Stocklin, Frank; Zillig, David; Fielhauer, Karl</p> <p>2008-01-01</p> <p>This document is the viewgraphs that accompanies a paper that presents the preliminary results of an architecture study that provides continuous telemetry coverage for NASA missions for immediate post-separation phase. After launch when the spacecraft separated from the upper stage, the spacecraft typically executes a number of mission-critical operations prior to the deployment of solar panels and the activation of the primary communication subsystem. JPL, GSFC, and APL have similar design principle statements that require continuous coverage of mission-critical telemetry during the immediate post-separation phase. To conform to these design principles, an architecture that consists of a separate spacecraft transmitter and a robust communication network capable of tracking the spacecraft signals is needed. The main results of this study are as follows: 1) At low altitude (< 10000 km) when most post-separation critical operations are executed, Earth-based network (e.g. Deep Space Network (DSN)) can only provide limited coverage, whereas space-based network (e.g. Space Network (SN)) can provide continuous coverage. 2) Commercial-off-the-shelf SN compatible transmitters are available for small satellite applications. In this paper we present the detailed coverage analysis of Earth-based and Space-based networks. We identify the key functional and performance requirements of the architecture, and describe the proposed selection criteria of the spacecraft transmitter. We conclude the paper with a proposed forward plan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090008373&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dxenon','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090008373&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dxenon"><span>Shear Thinning Near the Critical Point of Xenon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.; Yao, Minwu</p> <p>2008-01-01</p> <p>We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(exp -3) < gamma-dot tau < 700, where gamma-dot tau is the shear rate scaled by the relaxation time tau of critical fluctuations. The measurements had a temperature resolution of 0.01 mK and were conducted in microgravity aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity. The viscometer measured the drag on a delicate nickel screen as it oscillated in the xenon at amplitudes 3 mu,m < chi (sub 0) >430 mu, and frequencies 1 Hz < omega/2 pi < 5 Hz. To separate shear thinning from other nonlinearities, we computed the ratio of the viscous force on the screen at gamma-dot tau to the force at gamma-dot tau approximates 0: C(sub gamma) is identical with F(chi(sub 0), omega tau, gamma-dot tau )/F)(chi(sub 0, omega tau, 0). At low frequencies, (omega tau)(exp 2) < gamma-dot tau, C(sub gamma) depends only on gamma-dot tau, as predicted by dynamic critical scaling. At high frequencies, (omega tau)(exp 2) > gamma-dot tau, C(sub gamma) depends also on both x(sub 0) and omega. The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma-dot)/eta(0)=[1+A(sub gamma)|gamma-dot tau|](exp - chi(sub eta)/3+chi(sub eta)), where chi(sub eta) =0.069 is the critical exponent for viscosity and mode-coupling theory predicts A(sub gamma) =0.121. For xenon we find A(sub gamma) =0.137 +/- 0.029, in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature T(sub c) were independent of the cooling rate (both above and below T(sub c) and these data were symmetric about T(sub c) to within a temperature scale factor. The scale factors for the magnitude of the oscillator s response differed from those for the oscillator's phase; this suggests that the surface tension of the two-phase domains affected the drag on the screen below T(sub c).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002sspk.rept...71B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002sspk.rept...71B"><span>Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.</p> <p>2002-12-01</p> <p>Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030011402&hterms=desserts&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddesserts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030011402&hterms=desserts&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddesserts"><span>Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.; Motil, Susan M. (Technical Monitor)</p> <p>2002-01-01</p> <p>Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22587085','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22587085"><span>Two liquid states of matter: a dynamic line on a phase diagram.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brazhkin, V V; Fomin, Yu D; Lyapin, A G; Ryzhov, V N; Trachenko, K</p> <p>2012-03-01</p> <p>It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "nonrigid" liquids. Rigid to nonrigid transition corresponds to the condition τ≈τ(0), where τ is the liquid relaxation time and τ(0) is the minimal period of transverse quasiharmonic waves. This condition defines a new dynamic crossover line on the phase diagram and corresponds to the loss of shear stiffness of a liquid at all available frequencies and, consequently, to the qualitative change in many important liquid properties. We analyze this line theoretically as well as in real and model fluids and show that the transition corresponds to the disappearance of high-frequency sound, to the disappearance of roton minima, qualitative changes in the temperature dependencies of sound velocity, diffusion, viscous flow, and thermal conductivity, an increase in particle thermal speed to half the speed of sound, and a reduction in the constant volume specific heat to 2k(B) per particle. In contrast to the Widom line that exists near the critical point only, the new dynamic line is universal: It separates two liquid states at arbitrarily high pressure and temperature and exists in systems where liquid-gas transition and the critical point are absent altogether. We propose to call the new dynamic line on the phase diagram "Frenkel line".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990111738','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990111738"><span>The Geophysical Fluid Flow Cell Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.</p> <p>1999-01-01</p> <p>The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120t6403O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120t6403O"><span>Lattice Supersymmetry and Order-Disorder Coexistence in the Tricritical Ising Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Brien, Edward; Fendley, Paul</p> <p>2018-05-01</p> <p>We introduce and analyze a quantum spin or Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit but also manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10608E..0JY','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10608E..0JY"><span>Infrared images target detection based on background modeling in the discrete cosine domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, Han; Pei, Jihong</p> <p>2018-02-01</p> <p>Background modeling is the critical technology to detect the moving target for video surveillance. Most background modeling techniques are aimed at land monitoring and operated in the spatial domain. A background establishment becomes difficult when the scene is a complex fluctuating sea surface. In this paper, the background stability and separability between target are analyzed deeply in the discrete cosine transform (DCT) domain, on this basis, we propose a background modeling method. The proposed method models each frequency point as a single Gaussian model to represent background, and the target is extracted by suppressing the background coefficients. Experimental results show that our approach can establish an accurate background model for seawater, and the detection results outperform other background modeling methods in the spatial domain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1245960','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1245960"><span>Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.</p> <p>2008-08-05</p> <p>A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22280608-morphology-evolution-strain-compensated-multiple-quantum-well-structures','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22280608-morphology-evolution-strain-compensated-multiple-quantum-well-structures"><span>Morphology evolution in strain-compensated multiple quantum well structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ledentsov, N. N., E-mail: nikolay.ledentsov@v-i-systems.com; Shchukin, V. A.; Rouvimov, S.</p> <p>2014-01-20</p> <p>Morphology evolution in (In,Ga)As-Ga(As,P) strain-compensated multilayer structures is studied. The effects of nanoscale interface corrugation and phase separation are evident after the third period of the multilayer structure and become more pronounced with each new stack until the sixth period. Then, the interface stabilizes pointing to the formation of strain-balanced equilibrium interface structure. The epitaxial structure remains defect-free up to the maximum number (twenty) of periods studied. In a structure with a high lattice mismatch between the neighboring layers, In{sub 0.40}Ga{sub 0.60}As/GaAs{sub 0.85}P{sub 0.15}, clusters of dislocations are revealed already in the third period. The observed phenomena are critical formore » proper engineering of optoelectronic devices.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22472070-critical-points-metal-vapors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22472070-critical-points-metal-vapors"><span>Critical points of metal vapors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khomkin, A. L., E-mail: alhomkin@mail.ru; Shumikhin, A. S.</p> <p>2015-09-15</p> <p>A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for mostmore » metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29074981','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29074981"><span>Reducing the critical particle diameter in (highly) asymmetric sieve-based lateral displacement devices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dijkshoorn, J P; Schutyser, M A I; Sebris, M; Boom, R M; Wagterveld, R M</p> <p>2017-10-26</p> <p>Deterministic lateral displacement technology was originally developed in the realm of microfluidics, but has potential for larger scale separation as well. In our previous studies, we proposed a sieve-based lateral displacement device inspired on the principle of deterministic lateral displacement. The advantages of this new device is that it gives a lower pressure drop, lower risk of particle accumulation, higher throughput and is simpler to manufacture. However, until now this device has only been investigated for its separation of large particles of around 785 µm diameter. To separate smaller particles, we investigate several design parameters for their influence on the critical particle diameter. In a dimensionless evaluation, device designs with different geometry and dimensions were compared. It was found that sieve-based lateral displacement devices are able to displace particles due to the crucial role of the flow profile, despite of their unusual and asymmetric design. These results demonstrate the possibility to actively steer the velocity profile in order to reduce the critical diameter in deterministic lateral displacement devices, which makes this separation principle more accessible for large-scale, high throughput applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=AUTHORSHIP+AND+GENDER&pg=2&id=EJ894405','ERIC'); return false;" href="https://eric.ed.gov/?q=AUTHORSHIP+AND+GENDER&pg=2&id=EJ894405"><span>Critical Literacy: Examining the Juxtaposition of Issue, Author, and Self</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lapp, Diane; Fisher, Douglas</p> <p>2010-01-01</p> <p>Critical literacy is the practice of evaluating information, insights, and perspectives through an analysis of power, culture, class, and gender. A critical perspective suggests that the meaning within a text cannot be separated from the historical, political, personal, and social contexts in which it was written. Being critically literate,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17614690','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17614690"><span>Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dobson, Ian; Carreras, Benjamin A; Lynch, Vickie E; Newman, David E</p> <p>2007-06-01</p> <p>We give an overview of a complex systems approach to large blackouts of electric power transmission systems caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics and dynamics of series of blackouts with approximate global models. Blackout data from several countries suggest that the frequency of large blackouts is governed by a power law. The power law makes the risk of large blackouts consequential and is consistent with the power system being a complex system designed and operated near a critical point. Power system overall loading or stress relative to operating limits is a key factor affecting the risk of cascading failure. Power system blackout models and abstract models of cascading failure show critical points with power law behavior as load is increased. To explain why the power system is operated near these critical points and inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near a critical point and confirm this idea using a power system model. The slow evolution of the power system is driven by a steady increase in electric loading, economic pressures to maximize the use of the grid, and the engineering responses to blackouts that upgrade the system. Mitigation of blackout risk should account for dynamical effects in complex self-organized critical systems. For example, some methods of suppressing small blackouts could ultimately increase the risk of large blackouts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873207','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873207"><span>Null test fourier domain alignment technique for phase-shifting point diffraction interferometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Naulleau, Patrick; Goldberg, Kenneth Alan</p> <p>2000-01-01</p> <p>Alignment technique for calibrating a phase-shifting point diffraction interferometer involves three independent steps where the first two steps independently align the image points and pinholes in rotation and separation to a fixed reference coordinate system, e.g, CCD. Once the two sub-elements have been properly aligned to the reference in two parameters (separation and orientation), the third step is to align the two sub-element coordinate systems to each other in the two remaining parameters (x,y) using standard methods of locating the pinholes relative to some easy to find reference point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1424923','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1424923"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang</p> <p></p> <p>In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22908240','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22908240"><span>Stability of dense liquid carbon dioxide.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boates, Brian; Teweldeberhan, Amanuel M; Bonev, Stanimir A</p> <p>2012-09-11</p> <p>We present ab initio calculations of the phase diagram of liquid CO(2) and its melting curve over a wide range of pressure and temperature conditions, including those relevant to the Earth. Several distinct liquid phases are predicted up to 200 GPa and 10,000 K based on their structural and electronic characteristics. We provide evidence for a first-order liquid-liquid phase transition with a critical point near 48 GPa and 3,200 K that intersects the mantle geotherm; a liquid-liquid-solid triple point is predicted near 45 GPa and 1,850 K. Unlike known first-order transitions between thermodynamically stable liquids, the coexistence of molecular and polymeric CO(2) phases predicted here is not accompanied by metallization. The absence of an electrical anomaly would be unique among known liquid-liquid transitions. Furthermore, the previously suggested phase separation of CO(2) into its constituent elements at lower mantle conditions is examined by evaluating their Gibbs free energies. We find that liquid CO(2) does not decompose into carbon and oxygen up to at least 200 GPa and 10,000 K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100042358','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100042358"><span>Independent Peer Review of Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) Structural Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Raju, Ivatury S.; Larsen, Curtis E.; Pellicciotti, Joseph W.</p> <p>2010-01-01</p> <p>Glenn Research Center Chief Engineer's Office requested an independent review of the structural analysis and modeling of the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) to be conducted by the NASA Engineering and Safety Center (NESC). At this time, the IGA had completed its critical design review (CDR). The assessment was to be a peer review of the NEi-NASTRAN1 model of the APS Antenna, and not a peer review of the design and the analysis that had been completed by the GRC team for CDR. Thus, only a limited amount of information was provided on the structural analysis. However, the NESC team had difficulty separating analysis concerns from modeling issues. The team studied the NASTRAN model, but did not fully investigate how the model was used by the CoNNeCT Project and how the Project was interpreting the results. The team's findings, observations, and NESC recommendations are contained in this report.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvE..92c2101O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvE..92c2101O"><span>Transfer-matrix study of a hard-square lattice gas with two kinds of particles and density anomaly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliveira, Tiago J.; Stilck, Jürgen F.</p> <p>2015-09-01</p> <p>Using transfer matrix and finite-size scaling methods, we study the thermodynamic behavior of a lattice gas with two kinds of particles on the square lattice. Only excluded volume interactions are considered, so that the model is athermal. Large particles exclude the site they occupy and its four first neighbors, while small particles exclude only their site. Two thermodynamic phases are found: a disordered phase where large particles occupy both sublattices with the same probability and an ordered phase where one of the two sublattices is preferentially occupied by them. The transition between these phases is continuous at small concentrations of the small particles and discontinuous at larger concentrations, both transitions are separated by a tricritical point. Estimates of the central charge suggest that the critical line is in the Ising universality class, while the tricritical point has tricritical Ising (Blume-Emery-Griffiths) exponents. The isobaric curves of the total density as functions of the fugacity of small or large particles display a minimum in the disordered phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23829026','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23829026"><span>The impact of visual scanning in the laparoscopic environment after engaging in strain coping.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Klein, Martina I; DeLucia, Patricia R; Olmstead, Ryan</p> <p>2013-06-01</p> <p>We aimed to determine whether visual scanning has a detrimental impact on the monitoring of critical signals and the performance of a concurrent laparoscopic training task after participants engaged in Hockey's strain coping. Strain coping refers to straining cognitive (attentional) resources joined with latent decrements (i.e., stress). DeLucia and Betts (2008) reported that monitoring critical signals degraded performance of a laparoscopic peg-reversal task compared with no monitoring. However, performance did not differ between displays in which critical signals were shown on split screens (less visual scanning) and separated displays (more visual scanning). We hypothesized that effects of scanning may occur after prolonged strain coping. Using a between-subjects design, we had undergraduates perform a laparoscopic training task that induced strain coping. Then they performed a laparoscopic peg-reversal task while monitoring critical signals with a split-screen or separated display. We administered the NASA-Task Load Index (TLX) and Dundee Stress State Questionnaire (DSSQ) to assess strain coping. The TLX and DSSQ profiles indicated that participants engaged in strain coping. Monitoring critical signals resulted in slowed peg-reversal performance compared with no monitoring. Separated displays degraded critical-signal monitoring compared with split-screen displays. After novice observers experience strain coping, visual scanning can impair the detection of critical signals. Results suggest that the design and arrangement of displays in the operating room must incorporate the attentional limitations of the surgeon. Designs that induce visual scanning may impair monitoring of critical information at least in novices. Presenting displays closely in space may be beneficial.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22012111-membrane-contactor-separator-advanced-ozone-membrane-reactor-treatment-recalcitrant-organic-pollutants-water','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22012111-membrane-contactor-separator-advanced-ozone-membrane-reactor-treatment-recalcitrant-organic-pollutants-water"><span>Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chan, Wai Kit, E-mail: kekyeung@ust.hk; Joueet, Justine; Heng, Samuel</p> <p></p> <p>An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface chargesmore » from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987IREdu..33..419A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987IREdu..33..419A"><span>Feminist theory and the study of gender and education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Acker, Sandra</p> <p>1987-12-01</p> <p>This paper considers the three main Western feminist theoretical frameworks — liberal, socialist and radical — and their educational applications. Examples of studies using each approach are discussed. Liberal feminists writing about education use concepts of equal opportunities, socialization, sex roles and discrimination. Their strategies involve altering socialization practices, changing attitudes and making use of relevant legislation. Critics of the liberal school point to conceptual limitations and the liberal reluctance to confront power and patriarchy. Socialist feminists analyze the role of the school in the perpetuation of gender divisions under capitalism. Major concepts are socio-cultural reproduction and to a lesser extent acceptance of and resistance to gender-based patterns of behaviour. So far socialist-feminist educational writing is mainly theoretical rather than practical and has therefore been criticized for its over-determinism and insufficient empiric foundation. Radical feminists in education have concentrated mainly on the male monopolization of knowledge and culture and on sexual politics in schools. Strategies involve putting women's and girls' concerns first, through separate-sex groups when necessary. Critics argue that radical feminism tends towards biological reductionism, description rather than explanation and also contains methodological weaknesses. Mutual criticism of perspectives seems less destructive in educational writing than in some other categories of feminist scholarship. All the theoretical frameworks are subject to the same pressures including the oppressive power of structures, the resilience of individuals, and the tension between universality (how women are the same) and diversity (how women differ on attributes like class and race).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865424','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865424"><span>Cyclone separator having boundary layer turbulence control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Krishna, Coimbatore R.; Milau, Julius S.</p> <p>1985-01-01</p> <p>A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TMP...194..148T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TMP...194..148T"><span>Supercritical Anomalies and the Widom Line for the Isostructural Phase Transition in Solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tareyeva, E. E.; Fomin, Yu. D.; Tsiok, E. N.; Ryzhov, V. N.</p> <p>2018-01-01</p> <p>The representation of the Widom line as a line of maximums of the correlation length and a whole set of thermodynamic response functions above the critical point were introduced to describe anomalies observed in water above the hypothetical critical point of the liquid-liquid transition. The supercritical region for the gas-liquid transition was also described later in terms of the Widom line. It is natural to assume that an analogue of the Widom line also exists in the supercritical region for the first-order isostructural transition in crystals, which ends at a critical point. We use a simple semiphenomenological model, close in spirit the van der Waals theory, to study the properties of the new Widom line. We calculate the thermodynamic response functions above the critical point of the isostructural transition and find their maximums determining the Widom line position.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20499975','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20499975"><span>Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kanno, H; Kajiwara, K; Miyata, K</p> <p>2010-05-21</p> <p>Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)<-100 degrees C (P(c2): pressure of SCP, T(c2): temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R<or=15) at high pressures and low temperatures (<-90 degrees C). The pressure dependence of the two T(H) curves for DMSO solutions of R=10 and 12 indicates that the two phase-separated components in the DMSO solution of R=10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JChPh.132s4503K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JChPh.132s4503K"><span>Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanno, H.; Kajiwara, K.; Miyata, K.</p> <p>2010-05-01</p> <p>Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DFD.E7003N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DFD.E7003N"><span>Dehydration induced phase transitions in a microfluidic droplet array for the separation of biomolecules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nelson, Chris; Anna, Shelley</p> <p>2013-11-01</p> <p>Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce phase transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe phase transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-phase system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two phases form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two phase systems are able to selectively separate a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip separation and concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhRvB..87l5146H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhRvB..87l5146H"><span>Quantum criticality and first-order transitions in the extended periodic Anderson model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hagymási, I.; Itai, K.; Sólyom, J.</p> <p>2013-03-01</p> <p>We investigate the behavior of the periodic Anderson model in the presence of d-f Coulomb interaction (Udf) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of Udf and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility and investigate how the position of the QCP depends on the other parameters of the Hamiltonian. For larger values of Udf, the Kondo regime is bounded by two first-order transitions. These first-order transitions merge into a triple point at a certain value of Udf. For even larger Udf valence skipping occurs. Although the other methods do not give a critical point, they support this scenario.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ALCOHOLISM+AND+CHRONIC&pg=5&id=EJ778224','ERIC'); return false;" href="https://eric.ed.gov/?q=ALCOHOLISM+AND+CHRONIC&pg=5&id=EJ778224"><span>Gone but Not Forgotten: Children's Experiences with Attachment, Separation, and Loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Branch, Mary Louise; Brinson, Sabrina A.</p> <p>2007-01-01</p> <p>Attachment, separation, and loss are critical life events for many young children. This article discusses prevalent factors of separation and loss and their potential harmful effects on development. Also, books and resources geared for children are suggested to help early childhood professionals facilitate resolution with affected children and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980200976','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980200976"><span>Experimental Study of Saddle Point of Attachment in Laminar Juncture Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coon, Michael D.; Tobak, Murray</p> <p>1995-01-01</p> <p>An experimental study of laminar horseshoe vortex flows upstream of a cylinder/flat plate juncture has been conducted to verify the existence of saddle-point-of-attachment topologies. In the classical depiction of this flowfield, a saddle point of separation exists on the flat plate upstream of the cylinder, and the boundary layer separates from the surface. Recent computations have indicated that the topology may actually involve a saddle point of attachment on the surface and additional singular points in the flow. Laser light sheet flow visualizations have been performed on the symmetry plane and crossflow planes to identify the saddle-point-of-attachment flowfields. The visualizations reveal that saddle-point-of-attachment topologies occur over a range of Reynolds numbers in both single and multiple vortex regimes. An analysis of the flow topologies is presented that describes the existence and evolution of the singular points in the flowfield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910058985&hterms=LUNG+SIMULATION&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DLUNG%2BSIMULATION','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910058985&hterms=LUNG+SIMULATION&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DLUNG%2BSIMULATION"><span>Computation of saddle point of attachment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hung, Ching-Mao; Sung, Chao-Ho; Chen, Chung-Lung</p> <p>1991-01-01</p> <p>Low-speed flows over a cylinder mounted on a flat plate are studied numerically in order to confirm the existence of a saddle point of attachment in the flow before an obstacle, to analyze the flow characteristics near the saddle point theoretically, and to address the significance of the saddle point of attachment to the construction of external flow structures, the interpretation of experimental surface oil-flow patterns, and the theoretical definition of three-dimensional flow separation. Two numerical codes, one for an incompressible flow and another for a compressible flow, are used for various Mach numbers, Reynolds numbers, grid sizes, and numbers of grid points. It is pointed out that the potential presence of a saddle point of attachment means that a line of 'oil accumulation' from both sides of a skin-friction line emanating outward from a saddle point can be either a line of separation or a line of attachment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=theory+AND+mind&pg=2&id=EJ1057108','ERIC'); return false;" href="https://eric.ed.gov/?q=theory+AND+mind&pg=2&id=EJ1057108"><span>Theory of Mind and Sensitivity to Teacher and Peer Criticism among Japanese Children</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mizokawa, Ai</p> <p>2015-01-01</p> <p>This study investigated sensitivity to teacher and peer criticism among 89 Japanese 6-year-olds and examined the connection between sensitivity to criticism and first-order and second-order theory of mind separately. Participants completed a common test battery that included tasks assessing sensitivity to criticism (teacher or peer condition), the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850002737','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850002737"><span>Critical point wetting drop tower experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.</p> <p>1984-01-01</p> <p>Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1045827','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1045827"><span>Critical Mass: Is Female Marine Attrition Higher in Non-Traditional Military Occupational Specialties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-03-01</p> <p>quantitative study, does not include interviews or survey data, and focuses on whether critical mass is a factor in explaining female Marine attrition...any variety of reasons. Pregnancy or childbirth and being the surviving family member were the only two separation reasons due to family matters. The...includes reasons such as “attend civilian school,” “ early release program special- separation,” “ early retirement” and “force shaping.” These reasons</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000SeScT..15.1022A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000SeScT..15.1022A"><span>Substrate spacing and thin-film yield in chemical bath deposition of semiconductor thin films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arias-Carbajal Reádigos, A.; García, V. M.; Gomezdaza, O.; Campos, J.; Nair, M. T. S.; Nair, P. K.</p> <p>2000-11-01</p> <p>Thin-film yield in the chemical bath deposition technique is studied as a function of separation between substrates in batch production. Based on a mathematical model, it is proposed and experimentally verified in the case of CdS thin films that the film thickness reaches an asymptotic maximum with increase in substrate separation. It is shown that at a separation less than 1 mm between substrates the yield, i.e. percentage in moles of a soluble cadmium salt deposited as a thin film of CdS, can exceed 50%. This behaviour is explained on the basis of the existence of a critical layer of solution near the substrate, within which the relevant ionic species have a higher probability of interacting with the thin-film layer than of contributing to precipitate formation. The critical layer depends on the solution composition and the temperature of the bath as well as the duration of deposition. An effective value for the critical layer thickness has been defined as half the substrate separation at which 90% of the maximum film thickness for the particular bath composition, bath temperature and duration of deposition is obtained. In the case of CdS thin films studied as an example, the critical layer is found to extend from 0.5 to 2.5 mm from the substrate surface, depending on the deposition conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IJE....99..995F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IJE....99..995F"><span>Floating-point scaling technique for sources separation automatic gain control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fermas, A.; Belouchrani, A.; Ait-Mohamed, O.</p> <p>2012-07-01</p> <p>Based on the floating-point representation and taking advantage of scaling factor indetermination in blind source separation (BSS) processing, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an automatic gain control in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division-free BSS algorithm with two inputs, two outputs. The proposed technique is computationally cheaper and efficient for a hardware implementation compared to the Euclidean normalisation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24468239','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24468239"><span>A critical overview of non-aqueous capillary electrophoresis. Part I: mobility and separation selectivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kenndler, Ernst</p> <p>2014-03-28</p> <p>This two-part review critically gives an overview on the theoretical and practical advances in non-aqueous capillary electrophoresis (NACE) achieved over the recent five years. Part I starts out by reviewing the aspects relevant to electromigration in organic solvents and evaluates potential advantages of the latter in comparison to aqueous solvent systems. The crucial role of solubility for the species involved in CE - analytes and back ground electrolyte constituents - is discussed both for ionic and neutral compounds. The impact of organic solvents on the electrophoretic and electroosmotic mobility and on the ionization (pKa values) of weak acids and bases is highlighted. Special emphasis is placed on methanol, acetonitrile and mixtures of these solvents, being the most frequent employed media for NACE applications. In addition, also solvents less commonly used in NACE will be covered, including other alcohols, amides (formamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylacetamide), propylene carbonate, dimethylsulphoxide, and nitromethane. The discussions address the consequences of dramatic pKa shifts frequently seen for weak acids and bases, and the important contributions of medium-specific electroosmotic flow (EOF) to electromigration in nonaqueous media. Important for NACE, the role of the water content on pKa and mobility is analyzed. Finally, association phenomena rather specific to nonaqueous solvents (ion pairing, homo- and heteroconjugation) will be addressed, along with their potential advantages for the development of NACE separation protocols. It is pointed out that this review is not intended as a listing of all papers that have been published on NACE in the period mentioned above. It rather deals with general aspects of migration and selectivity in organic solvent systems, and discusses - critically - examples from the literature with particular interest to the topic. An analog discussion about the role of the solvent on efficiency will be presented in Part II. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyB..536..483T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyB..536..483T"><span>Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.</p> <p>2018-05-01</p> <p>Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our recent studies on the compound LaCrGe3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change of order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18335920','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18335920"><span>An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Bin; Kim, Hyunmi; Keasler, Samuel J; Nellas, Ricky B</p> <p>2008-04-03</p> <p>The aggregation-volume-bias Monte Carlo based simulation technique, which has led to our recent success in vapor-liquid nucleation research, was extended to the study of crystal nucleation processes. In contrast to conventional bulk-phase techniques, this method deals with crystal nucleation events in cluster systems. This approach was applied to the crystal nucleation of Lennard-Jonesium under a wide range of undercooling conditions from 35% to 13% below the triple point. It was found that crystal nucleation in these model clusters proceeds initially via a vapor-liquid like aggregation followed by the formation of crystals inside the aggregates. The separation of these two stages of nucleation is distinct except at deeper undercooling conditions where the crystal nucleation barrier was found to diminish. The simulation results obtained for these two nucleation steps are separately compared to the classical nucleation theory (CNT). For the vapor-liquid nucleation step, the CNT was shown to provide a reasonable description of the critical cluster size but overestimate the barrier heights, consistent with previous simulation studies. On the contrary, for the crystal nucleation step, nearly perfect agreement with the barrier heights was found between the simulations and the CNT. For the critical cluster size, the comparison is more difficult as the simulation data were found to be sensitive to the definition of the solid cluster, but a stringent criterion and lower undercooling conditions generally lead to results closer with the CNT. Additional simulations at undercooling conditions of 40% or above indicate a nearly barrierless transition from the liquid to crystalline-like structure for sufficiently large clusters, which leads to further departure of the barrier height predicted by the CNT from the simulation data for the aggregation step. This is consistent with the latest experimental results on argon that show an unusually large underestimation of the nucleation rate by the CNT toward deep undercooling conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHEP...02..080M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHEP...02..080M"><span>Extremal black holes, Stueckelberg scalars and phase transitions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marrani, Alessio; Miskovic, Olivera; Leon, Paula Quezada</p> <p>2018-02-01</p> <p>We calculate the entropy of a static extremal black hole in 4D gravity, non-linearly coupled to a massive Stueckelberg scalar. We find that the scalar field does not allow the black hole to be magnetically charged. We also show that the system can exhibit a phase transition due to electric charge variations. For spherical and hyperbolic horizons, the critical point exists only in presence of a cosmological constant, and if the scalar is massive and non-linearly coupled to electromagnetic field. On one side of the critical point, two extremal solutions coexist: Reissner-Nordström (A)dS black hole and the charged hairy (A)dS black hole, while on the other side of the critical point the black hole does not have hair. A near-critical analysis reveals that the hairy black hole has larger entropy, thus giving rise to a zero temperature phase transition. This is characterized by a discontinuous second derivative of the entropy with respect to the electric charge at the critical point. The results obtained here are analytical and based on the entropy function formalism and the second law of thermodynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23739056','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23739056"><span>Exploring the utility of measures of critical thinking dispositions and professional behavior development in an audiology education program.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ng, Stella L; Bartlett, Doreen J; Lucy, S Deborah</p> <p>2013-05-01</p> <p>Discussions about professional behaviors are growing increasingly prevalent across health professions, especially as a central component to education programs. A strong critical thinking disposition, paired with critical consciousness, may provide future health professionals with a foundation for solving challenging practice problems through the application of sound technical skill and scientific knowledge without sacrificing sensitive, empathic, client-centered practice. In this article, we describe an approach to monitoring student development of critical thinking dispositions and key professional behaviors as a way to inform faculty members' and clinical supervisors' support of students and ongoing curriculum development. We designed this exploratory study to describe the trajectory of change for a cohort of audiology students' critical thinking dispositions (measured by the California Critical Thinking Disposition Inventory: [CCTDI]) and professional behaviors (using the Comprehensive Professional Behaviors Development Log-Audiology [CPBDL-A]) in an audiology program. Implications for the CCTDI and CPBDL-A in audiology entry-to-practice curricula and professional development will be discussed. This exploratory study involved a cohort of audiology students, studied over a two-year period, using a one-group repeated measures design. Eighteen audiology students (two male and 16 female), began the study. At the third and final data collection point, 15 students completed the CCTDI, and nine students completed the CPBDL-A. The CCTDI and CPBDL-A were each completed at three time points: at the beginning, at the middle, and near the end of the audiology education program. Data are presented descriptively in box plots to examine the trends of development for each critical thinking disposition dimension and each key professional behavior as well as for an overall critical thinking disposition score. For the CCTDI, there was a general downward trend from time point 1 to time point 2 and a general upward trend from time point 2 to time point 3. Students demonstrated upward trends from the initial to final time point for their self-assessed development of professional behaviors as indicated on the CPBDL-A. The CCTDI and CPBDL-A can be used by audiology education programs as mechanisms for inspiring, fostering, and monitoring the development of critical thinking dispositions and key professional behaviors in students. Feedback and mentoring about dispositions and behaviors in conjunction with completion of these measures is recommended for inspiring and fostering these key professional attributes. American Academy of Audiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29229821','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29229821"><span>Critical dynamics in population vaccinating behavior.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pananos, A Demetri; Bury, Thomas M; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P; Nyhan, Brendan; Salathé, Marcel; Bauch, Chris T</p> <p>2017-12-26</p> <p>Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena-special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles-mumps-rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014-2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior-disease systems, the population responds to the outbreak by moving away from the tipping point, causing "critical speeding up" whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. Copyright © 2017 the Author(s). Published by PNAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5748162','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5748162"><span>Critical dynamics in population vaccinating behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pananos, A. Demetri; Bury, Thomas M.; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P.; Nyhan, Brendan; Bauch, Chris T.</p> <p>2017-01-01</p> <p>Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena—special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles–mumps–rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014–2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior–disease systems, the population responds to the outbreak by moving away from the tipping point, causing “critical speeding up” whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. PMID:29229821</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720017171','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720017171"><span>Space tug propulsion system failure mode, effects and criticality analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boyd, J. W.; Hardison, E. P.; Heard, C. B.; Orourke, J. C.; Osborne, F.; Wakefield, L. T.</p> <p>1972-01-01</p> <p>For purposes of the study, the propulsion system was considered as consisting of the following: (1) main engine system, (2) auxiliary propulsion system, (3) pneumatic system, (4) hydrogen feed, fill, drain and vent system, (5) oxygen feed, fill, drain and vent system, and (6) helium reentry purge system. Each component was critically examined to identify possible failure modes and the subsequent effect on mission success. Each space tug mission consists of three phases: launch to separation from shuttle, separation to redocking, and redocking to landing. The analysis considered the results of failure of a component during each phase of the mission. After the failure modes of each component were tabulated, those components whose failure would result in possible or certain loss of mission or inability to return the Tug to ground were identified as critical components and a criticality number determined for each. The criticality number of a component denotes the number of mission failures in one million missions due to the loss of that component. A total of 68 components were identified as critical with criticality numbers ranging from 1 to 2990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0100142&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0100142&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon"><span>Critical Viscosity of Xenon investigators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2001-01-01</p> <p>Dr. Dr. Robert F. Berg (right), principal investigator and Dr. Micheal R. Moldover (left), co-investigator, for the Critical Viscosity of Xenon (CVX/CVX-2) experiment. They are with the National Institutes of Standards and Technology, Gaithersburg, MD. The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of chemicals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=jasmine&pg=2&id=EJ1116681','ERIC'); return false;" href="https://eric.ed.gov/?q=jasmine&pg=2&id=EJ1116681"><span>Diffraction as a Method of Critical Policy Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ulmer, Jasmine B.</p> <p>2016-01-01</p> <p>Recent developments in critical policy analysis have occurred alongside the new materialisms in qualitative research. These lines of scholarship have unfolded along two separate, but related, tracks. In particular, the new materialist method of "diffraction" aligns with many elements of critical policy analysis. Both involve critical…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=performance&pg=3&id=EJ1170249','ERIC'); return false;" href="https://eric.ed.gov/?q=performance&pg=3&id=EJ1170249"><span>Is Critical Thinking a Mediator Variable of Student Performance in School?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Walter, Christel; Walter, Paul</p> <p>2018-01-01</p> <p>The study explores the influences of critical thinking and interests on students' performance at school. The tested students attended German grammar schools ("Gymnasien"). Separate regression analyses showed the expected moderate positive influences of critical thinking and interests on school performance. But analyzed simultaneously,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18783771','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18783771"><span>Analytical phase diagrams for colloids and non-adsorbing polymer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fleer, Gerard J; Tuinier, Remco</p> <p>2008-11-04</p> <p>We review the free-volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20 (1992) 559] for the phase behavior of colloids in the presence of non-adsorbing polymer and we extend this theory in several aspects: (i) We take the solvent into account as a separate component and show that the natural thermodynamic parameter for the polymer properties is the insertion work Pi(v), where Pi is the osmotic pressure of the (external) polymer solution and v the volume of a colloid particle. (ii) Curvature effects are included along the lines of Aarts et al. [J. Phys.: Condens. Matt. 14 (2002) 7551] but we find accurate simple power laws which simplify the mathematical procedure considerably. (iii) We find analytical forms for the first, second, and third derivatives of the grand potential, needed for the calculation of the colloid chemical potential, the pressure, gas-liquid critical points and the critical endpoint (cep), where the (stable) critical line ends and then coincides with the triple point. This cep determines the boundary condition for a stable liquid. We first apply these modifications to the so-called colloid limit, where the size ratio q(R)=R/a between the radius of gyration R of the polymer and the particle radius a is small. In this limit the binodal polymer concentrations are below overlap: the depletion thickness delta is nearly equal to R, and Pi can be approximated by the ideal (van't Hoff) law Pi=Pi(0)=phi/N, where phi is the polymer volume fraction and N the number of segments per chain. The results are close to those of the original Lekkerkerker theory. However, our analysis enables very simple analytical expressions for the polymer and colloid concentrations in the critical and triple points and along the binodals as a function of q(R). Also the position of the cep is found analytically. In order to make the model applicable to higher size ratio's q(R) (including the so-called protein limit where q(R)>1) further extensions are needed. We introduce the size ratio q=delta/a, where the depletion thickness delta is no longer of order R. In the protein limit the binodal concentrations are above overlap. In such semidilute solutions delta approximately xi, where the De Gennes blob size (correlation length) xi scales as xi approximately phi(-gamma), with gamma=0.77 for good solvents and gamma=1 for a theta solvent. In this limit Pi=Pi(sd) approximately phi(3gamma). We now apply the following additional modifications: With these latter two modifications we obtain again a fully analytical model with simple equations for critical and triple points as a function of q(R). In the protein limit the binodal polymer concentrations scale as q(R)(1/gamma), and phase diagrams phiq(R)(-1/gamma) versus the colloid concentration eta become universal (i.e., independent of the size ratio q(R)). The predictions of this generalized free-volume theory (GFVT) are in excellent agreement with experiment and with computer simulations, not only for the colloid limit but also for the protein limit (and the crossover between these limits). The q(R)(1/gamma) scaling is accurately reproduced by both simulations and other theoretical models. The liquid window is the region between phi(c) (critical point) and phi(t) (triple point). In terms of the ratio phi(t)/phi(c) the liquid window extends from 1 in the cep (here phi(t)-phi(c)=0) to 2.2 in the protein limit. Hence, the liquid window is narrow: it covers at most a factor 2.2 in (external) polymer concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920023775','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920023775"><span>Obstacle avoidance for redundant robots using configuration control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Seraji, Homayoun (Inventor); Colbaugh, Richard D. (Inventor); Glass, Kristin L. (Inventor)</p> <p>1992-01-01</p> <p>A redundant robot control scheme is provided for avoiding obstacles in a workspace during the motion of an end effector along a preselected trajectory by stopping motion of the critical point on the robot closest to the obstacle when the distance between is reduced to a predetermined sphere of influence surrounding the obstacle. Algorithms are provided for conveniently determining the critical point and critical distance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1346741','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1346741"><span>A Physicochemical Method for Separating Rare Earths: Addressing an Impending Shortfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schelter, Eric</p> <p>2017-03-14</p> <p>There are currently zero operating suppliers of critical rare earth elements La–Lu, Sc, Y (REs), in the western hemisphere. REs are critical materials due to their importance in clean energy and defense applications, including permanent magnets in wind turbines and phosphors in energy efficient lighting. It is not economically viable to produce pure REs in the U.S. given current separations technology. REs production is dominated by suppliers in the People’s Republic of China (PRC) because of their capacity in liquid­liquid solvent extraction (SX) used to purify mixtures. Weak environmental regulations in the PRC also contribute to a competitive advantage. SXmore » is a cost, time, solvent and waste intensive process but is highly optimized and scalable. The low efficiency of SX derives from the small thermodynamic differences in solvation enthalpy between the RE3+ cations. To foster stable domestic RE production there is a critical need for fundamentally new REs chemistry that contributes to disruptive technologies in RE separations. The overall goal of this project was to develop new thermodynamic bases, and apply them, for the solution separation of rare earth metals. We have developed the chemistry of rare earth metals: La–Lu, Sc and Y, with redox active ligands. Our hypothesis for the project was that electron­hole coupling in complexes of certain lanthanide metals with redox active ligands can be used to manifest chemical distinctiveness and affect separations. We also developed separations based on unique solution equilibria from tailored ligands.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JChPh.10910914P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JChPh.10910914P"><span>Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Potoff, Jeffrey J.; Panagiotopoulos, Athanassios Z.</p> <p>1998-12-01</p> <p>Monte Carlo simulations in the grand canonical ensemble were used to obtain liquid-vapor coexistence curves and critical points of the pure fluid and a binary mixture of Lennard-Jones particles. Critical parameters were obtained from mixed-field finite-size scaling analysis and subcritical coexistence data from histogram reweighting methods. The critical parameters of the untruncated Lennard-Jones potential were obtained as Tc*=1.3120±0.0007, ρc*=0.316±0.001 and pc*=0.1279±0.0006. Our results for the critical temperature and pressure are not in agreement with the recent study of Caillol [J. Chem. Phys. 109, 4885 (1998)] on a four-dimensional hypersphere. Mixture parameters were ɛ1=2ɛ2 and σ1=σ2, with Lorentz-Berthelot combining rules for the unlike-pair interactions. We determined the critical point at T*=1.0 and pressure-composition diagrams at three temperatures. Our results have much smaller statistical uncertainties relative to comparable Gibbs ensemble simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22609023-mathematical-modelling-beam-under-axial-compression-force-applied-any-point-buckling-problem','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22609023-mathematical-modelling-beam-under-axial-compression-force-applied-any-point-buckling-problem"><span>Mathematical modelling of the beam under axial compression force applied at any point – the buckling problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Magnucka-Blandzi, Ewa</p> <p></p> <p>The study is devoted to stability of simply supported beam under axial compression. The beam is subjected to an axial load located at any point along the axis of the beam. The buckling problem has been desribed and solved mathematically. Critical loads have been calculated. In the particular case, the Euler’s buckling load is obtained. Explicit solutions are given. The values of critical loads are collected in tables and shown in figure. The relation between the point of the load application and the critical load is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvB..93n0203Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvB..93n0203Z"><span>Phase behavior of metastable liquid silicon at negative pressure: Ab initio molecular dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, G.; Yu, Y. J.; Yan, J. L.; Ding, M. C.; Zhao, X. G.; Wang, H. Y.</p> <p>2016-04-01</p> <p>Extensive first-principle molecular dynamics simulations are performed to study the phase behavior of metastable liquid Si at negative pressure. Our results show that the high-density liquid (HDL) and HDL-vapor spinodals indeed form a continuous reentrant curve and the liquid-liquid critical point seems to just coincide with its minimum. The line of density maxima also has a strong tendency to pass through this minimum. The phase behaviour of metastable liquid Si therefore tends to be a critical-point-free scenario rather than a second-critical-point one based on SW potential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17026083','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17026083"><span>Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fradkin, Eduardo; Moore, Joel E</p> <p>2006-08-04</p> <p>The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97i4204B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97i4204B"><span>Criticality of the random field Ising model in and out of equilibrium: A nonperturbative functional renormalization group description</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balog, Ivan; Tarjus, Gilles; Tissier, Matthieu</p> <p>2018-03-01</p> <p>We show that, contrary to previous suggestions based on computer simulations or erroneous theoretical treatments, the critical points of the random-field Ising model out of equilibrium, when quasistatically changing the applied source at zero temperature, and in equilibrium are not in the same universality class below some critical dimension dD R≈5.1 . We demonstrate this by implementing a nonperturbative functional renormalization group for the associated dynamical field theory. Above dD R, the avalanches, which characterize the evolution of the system at zero temperature, become irrelevant at large distance, and hysteresis and equilibrium critical points are then controlled by the same fixed point. We explain how to use computer simulation and finite-size scaling to check the correspondence between in and out of equilibrium criticality in a far less ambiguous way than done so far.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT........83S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT........83S"><span>Modelling the crystallization of the globular proteins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shiryayev, Andrey S.</p> <p></p> <p>Crystallization of globular proteins has become a very important subject in recent yearn. However there is still no understanding of the particular conditions that lead to the crystallization. Since nucleation of a crystalline droplet is the critical step toward the formation of the solid phase from the supersaturated solution, this is the focus of current studies. In this work we use different approaches to investigate the collective behavior of a system of globular proteins. Especially we focused on the models which have a metastable critical point, because this reflects the properties of solutions of globular proteins. The first approach is a continuum model of globular proteins. This model was first presented by Talanquer and Oxtoby and is based on the van der Waals theory. The model can have either a stable or a metastable critical point. For the system with the metastable critical point we studied the behavior of the free energy barrier to nucleation; we found that along particular pathways the barrier to nucleation has a minimim around the critical point. As well, the number of molecules in the critical cluster was found to diverge as one approaches the critical point, though most of the molecules are in the fluid tail of the droplet. Our results are an extension of earlier work [17, 7]. The properties of the solvent affect the behavior of the solution. In our second approach, we proposed a model that takes into account the contribution of the solvent free energy to the free energy of the globular proteins. We show that one can map the phase diagram of a repulsive hard core plus attractive square well interacting system to the same system particles in the solvent environment. In particular we show that this leads to phase diagrams with upper critical points, lower critical points and even closed loops with both upper and lower critical points, similar to the one found before [10]. For systems with interaction different from the square well, in the presence of the solvent this mapping procedure can be a first approximation to understand the phase diagram. The final part of this work is dedicated to the behavior of sickle hemoglobin. While the fluid behavior of the HbS molecules can be approximately explained by the uniform interparticle potential, this model fails to describe the polymerization process and the particular structure of fibers. We develop an anisotropic "patchy" model to describe some features of the HbS polymerization process. To determine the degree of polymerization of the system a "patchy" order parameter was defined. Monte Carlo simulations for the simple two-patch model was performed and reveal the possibility of obtaining chains that can be considered as one dimensional crystals.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=health+AND+physics&pg=3&id=EJ1104281','ERIC'); return false;" href="https://eric.ed.gov/?q=health+AND+physics&pg=3&id=EJ1104281"><span>Escaping Oppositional Thinking in the Teaching of Pleasure "and" Danger in Sexuality Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Cameron-Lewis, Vanessa</p> <p>2016-01-01</p> <p>Sexuality education and preventative sexual abuse education are often taught as separate subjects in secondary schools. This paper extends the argument against this separation by highlighting flaws in the logic that manifests this separation. Diffracting critical sexuality education theory with the monist logic of new materialism, I rethink…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title50-vol10/pdf/CFR-2013-title50-vol10-sec226-207.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title50-vol10/pdf/CFR-2013-title50-vol10-sec226-207.pdf"><span>50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... the 200 meter isobath to 36°18′46″ N./122°4′43″ W. then east to the point of origin at Point Sur. (ii... east to the point of origin at Cape Blanco. (3) Critical habitat extends to a water depth of 80 meters... element essential for conservation of leatherback turtles is the occurrence of prey species, primarily...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title50-vol10/pdf/CFR-2012-title50-vol10-sec226-207.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title50-vol10/pdf/CFR-2012-title50-vol10-sec226-207.pdf"><span>50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... the 200 meter isobath to 36°18′46″ N./122°4′43″ W. then east to the point of origin at Point Sur. (ii... east to the point of origin at Cape Blanco. (3) Critical habitat extends to a water depth of 80 meters... element essential for conservation of leatherback turtles is the occurrence of prey species, primarily...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title50-vol10/pdf/CFR-2014-title50-vol10-sec226-207.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title50-vol10/pdf/CFR-2014-title50-vol10-sec226-207.pdf"><span>50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... the 200 meter isobath to 36°18′46″ N./122°4′43″ W. then east to the point of origin at Point Sur. (ii... east to the point of origin at Cape Blanco. (3) Critical habitat extends to a water depth of 80 meters... element essential for conservation of leatherback turtles is the occurrence of prey species, primarily...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970000372','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970000372"><span>Nonlinear Dynamics and Nucleation Kinetics in Near-Critical Liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Patashinski, Alexander Z.; Ratner, Mark A.; Pines, Vladimir</p> <p>1996-01-01</p> <p>The objective of our study is to model the nonlinear behavior of a near-critical liquid following a rapid change of the temperature and/or other thermodynamic parameters (pressure, external electric or gravitational field). The thermodynamic critical point is manifested by large, strongly correlated fluctuations of the order parameter (particle density in liquid-gas systems, concentration in binary solutions) in the critical range of scales. The largest critical length scale is the correlation radius r(sub c). According to the scaling theory, r(sub c) increases as r(sub c) = r(sub 0)epsilon(exp -alpha) when the nondimensional distance epsilon = (T - T(sub c))/T(sub c) to the critical point decreases. The normal gravity alters the nature of correlated long-range fluctuations when one reaches epsilon approximately equal to 10(exp -5), and correspondingly the relaxation time, tau(r(sub c)), is approximately equal to 10(exp -3) seconds; this time is short when compared to the typical experimental time. Close to the critical point, a rapid, relatively small temperature change may perturb the thermodynamic equilibrium on many scales. The critical fluctuations have a hierarchical structure, and the relaxation involves many length and time scales. Above the critical point, in the one-phase region, we consider the relaxation of the liquid following a sudden temperature change that simultaneously violates the equilibrium on many scales. Below T(sub c), a non-equilibrium state may include a distribution of small scale phase droplets; we consider the relaxation of such a droplet following a temperature change that has made the phase of the matrix stable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970025752&hterms=Separation+Techniques&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DSeparation%2BTechniques','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970025752&hterms=Separation+Techniques&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DSeparation%2BTechniques"><span>HIREGS observations of the Galactic center and Galactic plane: Separation of the diffuse Galactic hard X-ray continuum from the point source spectra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.</p> <p>1997-01-01</p> <p>The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27543122','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27543122"><span>Parents and nurses balancing parent-infant closeness and separation: a qualitative study of NICU nurses' perceptions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feeley, Nancy; Genest, Christine; Niela-Vilén, Hannakaisa; Charbonneau, Lyne; Axelin, Anna</p> <p>2016-08-20</p> <p>When a newborn requires neonatal intensive care unit (NICU) hospitalization, parent and infant experience an unusual often prolonged separation. This critical care environment poses challenges to parent-infant closeness. Parents desire physical contact and holding and touching are particularly important. Evidence shows that visitation, holding, talking, and skin to skin contact are associated with better outcomes for infants and parents during hospitalization and beyond. Thus, it would be important to understand closeness in this context. The purpose of this study was to explore from nurses' perspective, what do parents and nurses do to promote parent-infant closeness or provoke separation. Qualitative methods were utilized to attain an understanding of closeness and separation. Following ethics approval, purposive sampling was used to recruit nurses with varying experience working different shifts in NICUs in two countries. Nurses were loaned a smartphone over one work shift to record their thoughts and perceptions of events that occurred or experiences they had that they considered to be closeness or separation between parents and their hospitalized infant. Sample size was determined by saturation (18 Canada, 19 Finland). Audio recordings were subjected to inductive thematic analysis. Team meetings were held to discuss emerging codes, refine categories, and confirm these reflected data from both sites. One overarching theme was elaborated. Balancing closeness and separation was the major theme. Both parents and nurses engaged in actions to optimize closeness. They sought closeness by acting autonomously in infant caregiving, assuming decision-making for their infant, seeking information or skills, and establishing a connection in the face of separation. Parents balanced their desire for closeness with other competing demands, such as their own needs. Nurses balanced infant care needs and ability to handle stimulation with the need for closeness with parents. Nurses undertook varied actions to facilitate closeness. Parent, infant and NICU-related factors influenced closeness. Consequences, both positive and negative, arose for parents, infants, and nurses. Findings point to actions that nurses undertake to promote closeness and help parents cope with separation including: promoting parent decision-making, organizing care to facilitate closeness, and supporting parent caregiving.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26352781','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26352781"><span>Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria</p> <p>2015-10-15</p> <p>Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970000371','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970000371"><span>Turbidity of a Binary Fluid Mixture: Determining Eta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacobs, Donald T.</p> <p>1996-01-01</p> <p>A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1959e0014K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1959e0014K"><span>Separation control on the wing by jet actuators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karyakin, O. M.; Nalivaiko, A. G.; Ustinov, M. V.; Flaxman, Ja. Sh.</p> <p>2018-05-01</p> <p>Use of jet actuators to eliminate flow separation is experimentally investigated on a straight wing with a NACA 0012 airfoil. It is shown that under the influence of synthetic jets the size of separation zone greatly reduces and the flow separation point displaces downstream. In addition, lift coefficient increases by more than 10%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA199109','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA199109"><span>Joint Logistics Commanders’ Workshop on Post Deployment Software Support (PDSS) for Mission-Critical Computer Software. Volume 2. Workshop Proceedings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-06-01</p> <p>exist for the same item, as opposed to separate budget and fund codes for separate but related items. Multiple pro- cedures and fund codes can oe used...funds. If some funds are marked for multiple years and others must be obligated or outlaid witnin one year, contracting for PDSS tasks must be partitioned...Experience: PDSS requires both varied experience factors in multiple dis- ciplines and the sustaining of a critical mass of experience factors and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/40277240-analytic-description-critical-point-nuclei-spherical-axially-deformed-shape-phase-transition','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/40277240-analytic-description-critical-point-nuclei-spherical-axially-deformed-shape-phase-transition"><span>Analytic Description of Critical Point Nuclei in a Spherical-Axially Deformed Shape Phase Transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Iachello, F.</p> <p>2001-07-30</p> <p>An approximate solution at the critical point of the spherical to axially deformed shape phase transition in nuclei is presented. The eigenvalues of the Hamiltonian are expressed in terms of zeros of Bessel functions of irrational order.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22131078-review-critical-factors-sea-implementation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22131078-review-critical-factors-sea-implementation"><span>Review of critical factors for SEA implementation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang Jie, E-mail: jasmine@plan.aau.dk; Christensen, Per; Kornov, Lone</p> <p></p> <p>The implementation process involved in translating Strategic Environmental Assessment (SEA) intention into action is vital to an effective SEA. Many factors influence implementation and thus the effectiveness of an SEA. Empirical studies have identified and documented some factors influencing the implementation of an SEA. This research is fragmented, however, and it is still not clear what are the most critical factors of effective SEA performance, and how these relate to different stages of the implementation process or other contextual circumstances. The paper takes its point of departure in implementation theory. Firstly, we introduce implementation theory, and then use it inmore » practice to establish a more comprehensive model related to the stages in the implementation process. Secondly, we identify the critical factors in order to see how they are related to the different stages of SEA or are more general in character. Finally we map the different critical factors and how they influence the overall results of an SEA. Based on a literature review, we present a comprehensive picture of the critical factors and where they are found in the process. We conclude that most of the critical factors identified are of a more general character influencing the SEA process as such, while only one out of four of these factors relates to the specific stages of the SEA. Based on this mapping we can sketch a picture of the totality of critical factors. In this study 266 notions of critical factors were identified. Seen at the level of notions of critical factors, only 24% of these relate to specific stages while for 76% the critical factors are of a more general nature. These critical factors interact in complex ways and appear in different combinations in different stages of the implementation process so tracing the cause and effect is difficult. The pervasiveness of contextual and general factors also clearly suggests that there is no single way to put SEA into practice. The paper identifies some of the critical factors for effective SEA implementation, but further research is still needed to conclude which factors are more critical than others, just as the contingencies on which they depend are not easy to unravel. - Highlights: Black-Right-Pointing-Pointer The research on critical factors influencing SEA implementation is fragmented. Black-Right-Pointing-Pointer The critical factors are used to discuss 'hot-spots' in the implementation process. Black-Right-Pointing-Pointer Critical factors are just as broad as the concept of effectiveness. Black-Right-Pointing-Pointer Both stage and general factors are relevant in explaining the effectiveness of SEA.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28596591','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28596591"><span>Widom Lines in Binary Mixtures of Supercritical Fluids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias</p> <p>2017-06-08</p> <p>Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97b3608W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97b3608W"><span>Energy barriers between metastable states in first-order quantum phase transitions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wald, Sascha; Timpanaro, André M.; Cormick, Cecilia; Landi, Gabriel T.</p> <p>2018-02-01</p> <p>A system of neutral atoms trapped in an optical lattice and dispersively coupled to the field of an optical cavity can realize a variation of the Bose-Hubbard model with infinite-range interactions. This model exhibits a first-order quantum phase transition between a Mott insulator and a charge density wave, with spontaneous symmetry breaking between even and odd sites, as was recently observed experimentally [Landig et al., Nature (London) 532, 476 (2016), 10.1038/nature17409]. In the present paper, we approach the analysis of this transition using a variational model which allows us to establish the notion of an energy barrier separating the two phases. Using a discrete WKB method, we then show that the local tunneling of atoms between adjacent sites lowers this energy barrier and hence facilitates the transition. Within our simplified description, we are thus able to augment the phase diagram of the model with information concerning the height of the barrier separating the metastable minima from the global minimum in each phase, which is an essential aspect for the understanding of the reconfiguration dynamics induced by a quench across a quantum critical point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830005116','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830005116"><span>Turbulence effect on crossflow around a circular cylinder at subcritical Reynolds numbers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sadeh, W. Z.; Saharon, D. B.</p> <p>1982-01-01</p> <p>An investigation of the effect of freestream turbulence on the flow around a smooth circular cylinder at subcritical Reynolds numbers from 5.2 x 10 to the 4th power to 2.09 x 10 to the 5th power was conducted. Measurements show that the interaction of incident turbulence with the initial laminar boundary layer: (1) modifies the characteristics of the mean surface pressure distribution; (2) induces an aft shift in the separation point ranging from 5 to 50 beyond the laminar separation angle of 80 degrees; and, (3) reduces the mean drag coefficient to values between 97 and 46% of its nearly constant laminar counterpart. The extent of these changes depends on the particular Reynolds number background turbulence combination. These results demonstrate that a boundary-layer flow similar to that found in critical, supercritical and/or transcritical flow regimes is induced by turbulence at subcritical Reynolds numbers and, hence, the effect of turbulence is equivalent to an effective increase in the Reynolds number. The change in the nature and properties of the boundary layer in the subcritical regime, consequent upon the penetration of turbulence into it, is in agreement with the model proposed by the vorticity-amplification theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvE..90b2711K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvE..90b2711K"><span>Dynamical mechanism of antifreeze proteins to prevent ice growth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kutschan, B.; Morawetz, K.; Thoms, S.</p> <p>2014-08-01</p> <p>The fascinating ability of algae, insects, and fishes to survive at temperatures below normal freezing is realized by antifreeze proteins (AFPs). These are surface-active molecules and interact with the diffusive water-ice interface thus preventing complete solidification. We propose a dynamical mechanism on how these proteins inhibit the freezing of water. We apply a Ginzburg-Landau-type approach to describe the phase separation in the two-component system (ice, AFP). The free-energy density involves two fields: one for the ice phase with a low AFP concentration and one for liquid water with a high AFP concentration. The time evolution of the ice reveals microstructures resulting from phase separation in the presence of AFPs. We observed a faster clustering of pre-ice structure connected to a locking of grain size by the action of AFP, which is an essentially dynamical process. The adsorption of additional water molecules is inhibited and the further growth of ice grains stopped. The interfacial energy between ice and water is lowered allowing the AFPs to form smaller critical ice nuclei. Similar to a hysteresis in magnetic materials we observe a thermodynamic hysteresis leading to a nonlinear density dependence of the freezing point depression in agreement with the experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880006386','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880006386"><span>Calculation of symmetric and asymmetric vortex seperation on cones and tangent ogives based on discrete vortex models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chin, S.; Lan, C. Edward</p> <p>1988-01-01</p> <p>An inviscid discrete vortex model, with newly derived expressions for the tangential velocity imposed at the separation points, is used to investigate the symmetric and asymmetric vortex separation on cones and tangent ogives. The circumferential locations of separation are taken from experimental data. Based on a slender body theory, the resulting simultaneous nonlinear algebraic equations in a cross-flow plane are solved with Broyden's modified Newton-Raphson method. Total force coefficients are obtained through momentum principle with new expressions for nonconical flow. It is shown through the method of function deflation that multiple solutions exist at large enough angles of attack, even with symmetric separation points. These additional solutions are asymmetric in vortex separation and produce side force coefficients which agree well with data for cones and tangent ogives.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22311002-intrinsic-low-pass-filtering-improves-signal-noise-ratio-critical-point-flexure-biosensors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22311002-intrinsic-low-pass-filtering-improves-signal-noise-ratio-critical-point-flexure-biosensors"><span>Intrinsic low pass filtering improves signal-to-noise ratio in critical-point flexure biosensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jain, Ankit; Alam, Muhammad Ashraful, E-mail: alam@purdue.edu</p> <p>2014-08-25</p> <p>A flexure biosensor consists of a suspended beam and a fixed bottom electrode. The adsorption of the target biomolecules on the beam changes its stiffness and results in change of beam's deflection. It is now well established that the sensitivity of sensor is maximized close to the pull-in instability point, where effective stiffness of the beam vanishes. The question: “Do the signal-to-noise ratio (SNR) and the limit-of-detection (LOD) also improve close to the instability point?”, however remains unanswered. In this article, we systematically analyze the noise response to evaluate SNR and establish LOD of critical-point flexure sensors. We find thatmore » a flexure sensor acts like an effective low pass filter close to the instability point due to its relatively small resonance frequency, and rejects high frequency noise, leading to improved SNR and LOD. We believe that our conclusions should establish the uniqueness and the technological relevance of critical-point biosensors.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2607494','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2607494"><span>Critical Events in the Lives of Interns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Graham, Mark; Schmidt, Hilary; Stern, David T.; Miller, Steven Z.</p> <p>2008-01-01</p> <p>BACKGROUND Early residency is a crucial time in the professional development of physicians. As interns assume primary care for their patients, they take on new responsibilities. The events they find memorable during this time could provide us with insight into their developing professional identities. OBJECTIVE To evaluate the most critical events in the lives of interns. PARTICIPANTS Forty-one internal medicine residents at one program participated in a two-day retreat in the fall of their first year. Each resident provided a written description of a recent high point, low point, and patient conflict. MEASUREMENTS We used a variant of grounded theory to analyze these critical incidents and determine the underlying themes of early internship. Independent inter-rater agreement of >90% was achieved for the coding of excerpts. MAIN RESULTS The 123 critical incidents were clustered into 23 categories. The categories were further organized into six themes: confidence, life balance, connections, emotional responses, managing expectations, and facilitating teamwork. High points were primarily in the themes of confidence and connections. Low points were dispersed more generally throughout the conceptual framework. Conflicts with patients were about negotiating the expectations inherent in the physician–patient relationship. CONCLUSION The high points, low points, and conflicts reported by early residents provide us with a glimpse into the lives of interns. The themes we have identified reflect critical challenges interns face the development of their professional identity. Program directors could use this process and conceptual framework to guide the development and promotion of residents’ emerging professional identities. PMID:18972091</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1394813-ferromagnetic-quantum-criticality-new-aspects-from-phase-diagram-lacrge3','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1394813-ferromagnetic-quantum-criticality-new-aspects-from-phase-diagram-lacrge3"><span>Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.</p> <p></p> <p>Some Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our earlier studies on the compound LaCrGe 3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change ofmore » order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28516143','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28516143"><span>Change-point analysis data of neonatal diffusion tensor MRI in preterm and term-born infants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi</p> <p>2017-06-01</p> <p>The data presented in this article are related to the research article entitled "Mapping the Critical Gestational Age at Birth that Alters Brain Development in Preterm-born Infants using Multi-Modal MRI" (Wu et al., 2017) [1]. Brain immaturity at birth poses critical neurological risks in the preterm-born infants. We used a novel change-point model to analyze the critical gestational age at birth (GAB) that could affect postnatal development, based on diffusion tensor MRI (DTI) acquired from 43 preterm and 43 term-born infants in 126 brain regions. In the corresponding research article, we presented change-point analysis of fractional anisotropy (FA) and mean diffusivities (MD) measurements in these infants. In this article, we offered the relative changes of axonal and radial diffusivities (AD and RD) in relation to the change of FA and FA-based change-points, and we also provided the AD- and RD-based change-point results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394813-ferromagnetic-quantum-criticality-new-aspects-from-phase-diagram-lacrge3','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394813-ferromagnetic-quantum-criticality-new-aspects-from-phase-diagram-lacrge3"><span>Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; ...</p> <p>2017-08-25</p> <p>Some Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our earlier studies on the compound LaCrGe 3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change ofmore » order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050192125','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050192125"><span>Viscosity of Xenon Examined in Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.</p> <p>1999-01-01</p> <p>Why does water flow faster than honey? The short answer, that honey has a greater viscosity, merely rephrases the question. The fundamental answer is that viscosity originates in the interactions between a fluid s molecules. These interactions are so complicated that, except for low-density gases, the viscosity of a fluid cannot be accurately predicted. Progress in understanding viscosity has been made by studying moderately dense gases and, more recently, fluids near the critical point. Modern theories predict a universal behavior for all pure fluids near the liquid-vapor critical point, and they relate the increase in viscosity to spontaneous fluctuations in density near this point. The Critical Viscosity of Xenon (CVX) experiment tested these theories with unprecedented precision when it flew aboard the Space Shuttle Discovery (STS-85) in August 1997. Near the critical point, xenon is a billion times more compressible than water, yet it has about the same density. Because the fluid is so "soft," it collapses under its own weight when exposed to the force of Earth s gravity - much like a very soft spring. Because the CVX experiment is conducted in microgravity, it achieves a very uniform fluid density even very close to the critical point. At the heart of the CVX experiment is a novel viscometer built around a small nickel screen. An oscillating electric field forces the screen to oscillate between pairs of electrodes. Viscosity, which dampens the oscillations, can be calculated by measuring the screen motion and the force applied to the screen. So that the fluid s delicate state near the critical point will not be disrupted, the screen oscillations are set to be both slow and small.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3..607H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3..607H"><span>a Threshold-Free Filtering Algorithm for Airborne LIDAR Point Clouds Based on Expectation-Maximization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hui, Z.; Cheng, P.; Ziggah, Y. Y.; Nie, Y.</p> <p>2018-04-01</p> <p>Filtering is a key step for most applications of airborne LiDAR point clouds. Although lots of filtering algorithms have been put forward in recent years, most of them suffer from parameters setting or thresholds adjusting, which will be time-consuming and reduce the degree of automation of the algorithm. To overcome this problem, this paper proposed a threshold-free filtering algorithm based on expectation-maximization. The proposed algorithm is developed based on an assumption that point clouds are seen as a mixture of Gaussian models. The separation of ground points and non-ground points from point clouds can be replaced as a separation of a mixed Gaussian model. Expectation-maximization (EM) is applied for realizing the separation. EM is used to calculate maximum likelihood estimates of the mixture parameters. Using the estimated parameters, the likelihoods of each point belonging to ground or object can be computed. After several iterations, point clouds can be labelled as the component with a larger likelihood. Furthermore, intensity information was also utilized to optimize the filtering results acquired using the EM method. The proposed algorithm was tested using two different datasets used in practice. Experimental results showed that the proposed method can filter non-ground points effectively. To quantitatively evaluate the proposed method, this paper adopted the dataset provided by the ISPRS for the test. The proposed algorithm can obtain a 4.48 % total error which is much lower than most of the eight classical filtering algorithms reported by the ISPRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22170836','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22170836"><span>Economic viability and critical influencing factors assessment of black water and grey water source-separation sanitation system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thibodeau, C; Monette, F; Glaus, M; Laflamme, C B</p> <p>2011-01-01</p> <p>The black water and grey water source-separation sanitation system aims at efficient use of energy (biogas), water and nutrients but currently lacks evidence of economic viability to be considered a credible alternative to the conventional system. This study intends to demonstrate economic viability, identify main cost contributors and assess critical influencing factors. A technico-economic model was built based on a new neighbourhood in a Canadian context. Three implementation scales of source-separation system are defined: 500, 5,000 and 50,000 inhabitants. The results show that the source-separation system is 33% to 118% more costly than the conventional system, with the larger cost differential obtained by lower source-separation system implementation scales. A sensitivity analysis demonstrates that vacuum toilet flow reduction from 1.0 to 0.25 L/flush decreases source-separation system cost between 23 and 27%. It also shows that high resource costs can be beneficial or unfavourable to the source-separation system depending on whether the vacuum toilet flow is low or normal. Therefore, the future of this configuration of the source-separation system lies mainly in vacuum toilet flow reduction or the introduction of new efficient effluent volume reduction processes (e.g. reverse osmosis).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29036532','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29036532"><span>Behavioral pattern separation and its link to the neural mechanisms of fear generalization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lange, Iris; Goossens, Liesbet; Michielse, Stijn; Bakker, Jindra; Lissek, Shmuel; Papalini, Silvia; Verhagen, Simone; Leibold, Nicole; Marcelis, Machteld; Wichers, Marieke; Lieverse, Ritsaert; van Os, Jim; van Amelsvoort, Therese; Schruers, Koen</p> <p>2017-11-01</p> <p>Fear generalization is a prominent feature of anxiety disorders and post-traumatic stress disorder (PTSD). It is defined as enhanced fear responding to a stimulus that bears similarities, but is not identical to a threatening stimulus. Pattern separation, a hippocampal-dependent process, is critical for stimulus discrimination; it transforms similar experiences or events into non-overlapping representations. This study is the first in humans to investigate the extent to which fear generalization relies on behavioral pattern separation abilities. Participants (N = 46) completed a behavioral task taxing pattern separation, and a neuroimaging fear conditioning and generalization paradigm. Results show an association between lower behavioral pattern separation performance and increased generalization in shock expectancy scores, but not in fear ratings. Furthermore, lower behavioral pattern separation was associated with diminished recruitment of the subcallosal cortex during presentation of generalization stimuli. This region showed functional connectivity with the orbitofrontal cortex and ventromedial prefrontal cortex. Together, the data provide novel experimental evidence that pattern separation is related to generalization of threat expectancies, and reduced fear inhibition processes in frontal regions. Deficient pattern separation may be critical in overgeneralization and therefore may contribute to the pathophysiology of anxiety disorders and PTSD. © The Author (2017). Published by Oxford University Press.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860017205','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860017205"><span>Nickel-hydrogen separator development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gonzalez-Sanabria, O. D.</p> <p>1986-01-01</p> <p>The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. These separators and their characteristics were previously discussed. A program was established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23320693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23320693"><span>Molecular dynamics simulations of diffusion and clustering along critical isotherms of medium-chain n-alkanes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mutoru, J W; Smith, W; O'Hern, C S; Firoozabadi, A</p> <p>2013-01-14</p> <p>Understanding the transport properties of molecular fluids in the critical region is important for a number of industrial and natural systems. In the literature, there are conflicting reports on the behavior of the self diffusion coefficient D(s) in the critical region of single-component molecular systems. For example, D(s) could decrease to zero, reach a maximum, or remain unchanged and finite at the critical point. Moreover, there is no molecular-scale understanding of the behavior of diffusion coefficients in molecular fluids in the critical regime. We perform extensive molecular dynamics simulations in the critical region of single-component fluids composed of medium-chain n-alkanes-n-pentane, n-decane, and n-dodecane-that interact via anisotropic united-atom potentials. For each system, we calculate D(s), and average molecular cluster sizes κ(cl) and numbers N(cl) at various cluster lifetimes τ, as a function of density ρ in the range 0.2ρ(c) ≤ ρ ≤ 2.0ρ(c) at the critical temperature T(c). We find that D(s) decreases with increasing ρ but remains finite at the critical point. Moreover, for any given τ < 1.2 × 10(-12) s, κ(cl) increases with increasing ρ but is also finite at the critical point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006APS..MAR.W5002V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006APS..MAR.W5002V"><span>The Richard T. Cox Lecture: Liquid State as an Occasional Result of Competing Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voronel, Alexander</p> <p>2006-03-01</p> <p>Now it is even strange to think that in the early 50-ies the second order transitions and the liquid -- vapor critical point were considered as different fields of physics. In the USSR this lack of understanding (as everything in the USSR) had also a political dimension. Being a graduate of Kharkov University (domain of L.Landau) I was inclined to work in a framework of Landau-theory of the critical point. Having carefully analysed the published experimental data I discovered that the scattering of the data in the vicinities of both critical points and phase transitions was much higher than the implemented equipment had allowed [1]. For me it was a true sign of wrong conditions of measurements. As a result I had adjusted my experiment to the specific condition of the critical point. We worked together with the group of students of Kharkov University who had shared my enthusiasm. When we were already on a halfway of our own measurements I was deeply impressed by the excellent result of M.J.Buckingham and W.M. Fairbank on the λ-point of Helium [2]. Their achievement had turned our own measurements into a sort of experimen-tum crucis: should one expect a singularity also in the critical point or shouldn't? Experimental data on isochoric heat capacity near the critical point looked really similar (but not identical) to the singularity near the λ-transition. Both found their common ground in lattice models of different kinds [3]. The scaling concept was suggested to explain the universal features of both phenomena originated from developing fluctuations [4]. Our work was noticed first by C.Domb and M.Fisher in England. Michael was especially persistent in his demands that the Sovjet authorities would allow us a free communication. He produced a sort of frustration in their bureaurocratic heads. But it was great to feel not to be condemned for an eternal isolation in the USSR. All this development (now international) has opened way to express the properties of all liquids (including mixtures) in the vicinities of the singular points by the universal functions of reduced coordinates [5]. But the very existence of the critical point (and the liquid state itself) is in fact not an universal property of matter [6]. The freezing is depen-dent on a symmetry of packing and on a form of a potential well. It means the lower limit of the liquid state cannot be universal. However, if the freezing is somehow avoided the metastable critical point may be achieved instead [7]. And the universal features of the critical phenomena may be observed there again. Literature: [1] A. Voronel, M. Gitterman, Zh. Exp. Teor. Fiz. 39, 1162 (1960). M.Bagatsky, A.Voronel, V.Gusak., Zh. Exp. Teor. Fiz. 43, 728 (1962). See also a review: A. Voronel ``Thermal measurements and Critical Phenomena in Liquids.'' in PHASE TRANSITIONS AND CRITICAL PHENOMENA, vol. 5B, ed. by C.DOMB & M.S.GREEN, 1976, Academic Press, London, New York, San Francisco. [2] M.J.Buckingham, W.M.Fairbank in 111,60, ``PROGRESS IN LOW TEMPERATURE PHYSICS''(ed. by C.J.Gorter) North-Holland Pub.Co., Amsterdam, 1961. [3] M.E.Fisher,''The Nature of Critical Points'', University of Colorado Press, Boulder, 1965; [4] A.Patashinsky,V.Pokrovsky, Sov.Phys.JETP,23,292,(1966); L.P.Kadanov, Physics, 2,263, (1966) [5] M.E.Fisher, Phys.Rev.,176, 257, (1968); M.A.Anisimov, A.V.Voronel, E.E.Gorodetsky, Zh.Exp.Teor.Fiz.,60,1117, (1971) [6] H.J.Hagen,D.Frenkel,H.Lekkerkerker, Nature, 365, 425, (1993); D.Frenkel, Physica, A 263, 26, (1999). G.Vliegenthardt, H.Lekkerkerker, Physica, A 263, 378, (1999). [7] O.Mishima,H.E.Stanley, Nature, 392, 164, (1998).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhRvE..76f1126O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhRvE..76f1126O"><span>Thermoacoustic effects in supercritical fluids near the critical point: Resonance, piston effect, and acoustic emission and reflection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Onuki, Akira</p> <p>2007-12-01</p> <p>We present a general theory of thermoacoustic phenomena in one phase states of one-component fluids. Singular behavior is predicted in supercritical fluids near the critical point. In a one-dimensional geometry we start with linearized hydrodynamic equations taking into account the effects of heat conduction in the boundary walls and the bulk viscosity. We introduce a coefficient Z(ω) characterizing reflection of sound with frequency ω at the boundary in a rigid cell. As applications, we examine acoustic eigenmodes, response to time-dependent perturbations, and sound emission and reflection. Resonance and rapid adiabatic changes are noteworthy. In these processes, the role of the thermal diffusion layers is enhanced near the critical point because of the strong critical divergence of the thermal expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MPLB...3250147B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MPLB...3250147B"><span>Hamiltonian mean-field model: effect of temporal perturbation in coupling matrix</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhadra, Nivedita; Patra, Soumen K.</p> <p>2018-05-01</p> <p>The Hamiltonian mean-field (HMF) model is a system of fully coupled rotators which exhibits a second-order phase transition at some critical energy in its canonical ensemble. We investigate the case where the interaction between the rotors is governed by a time-dependent coupling matrix. Our numerical study reveals a shift in the critical point due to the temporal modulation. The shift in the critical point is shown to be independent of the modulation frequency above some threshold value, whereas the impact of the amplitude of modulation is dominant. In the microcanonical ensemble, the system with constant coupling reaches a quasi-stationary state (QSS) at an energy near the critical point. Our result indicates that the QSS subsists in presence of such temporal modulation of the coupling parameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17155547','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17155547"><span>Experimental evidence of the vapor recoil mechanism in the boiling crisis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nikolayev, V S; Chatain, D; Garrabos, Y; Beysens, D</p> <p>2006-11-03</p> <p>Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29494365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29494365"><span>Point-of-Care Ultrasonography in Emergency and Critical Care Medicine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Leon; Malek, Tony</p> <p></p> <p>To stabilize critically ill patients, emergency and critical care medicine providers often require rapid diagnosis and intervention. The demand for a safe, timely diagnostic device, alongside technological innovation, led to the advent of point-of-care ultrasonography (POCUS). POCUS allows the provider to gain invaluable clinical information with a high level of accuracy, leading to better clinical decision-making and improvements in patient safety. We have outlined the history of POCUS adaptation in emergency and critical care medicine and various clinical applications of POCUS described in literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1851b0024H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1851b0024H"><span>Stability analysis of wall driven nanofluid flow through a tube</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hossain, M. Mainul; Khan, M. A. H.</p> <p>2017-06-01</p> <p>Wall driven incompressible viscous fluid flow with nanoparticles through a tube is considered where two different nanofluids (Cu-water, SiO2-water) are used separately. Flow becomes gradually unstable due to movement of wall and existence of nanoparticles. However, Reynolds number, volume fraction and density ratio are responsible for flow instability. The mathematical model of the problem is constructed and solved by means of series solution method. Special type Hermite-Padé approximation method is used to improve the series solution. The critical point for Reynolds number, volume fraction and density ratio are determined and described using approximation technique and bifurcation diagram for both nanofluids. Moreover, Interaction between these three numbers and their effect on velocity profile are discussed. To indicate the nanofluid which is more effective for flow stability is our major concerned.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26067452','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26067452"><span>Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P</p> <p>2015-06-11</p> <p>Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4490403','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4490403"><span>Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.</p> <p>2015-01-01</p> <p>Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28442270','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28442270"><span>Interpretation of physiological indicators of motivation: Caveats and recommendations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richter, Michael; Slade, Kate</p> <p>2017-09-01</p> <p>Motivation scientists employing physiological measures to gather information about motivation-related states are at risk of committing two fundamental errors: overstating the inferences that can be drawn from their physiological measures and circular reasoning. We critically discuss two complementary approaches, Cacioppo and colleagues' model of psychophysiological relations and construct validation theory, to highlight the conditions under which these errors are committed and provide guidance on how to avoid them. In particular, we demonstrate that the direct inference from changes in a physiological measure to changes in a motivation-related state requires the demonstration that the measure is not related to other relevant psychological states. We also point out that circular reasoning can be avoided by separating the definition of the motivation-related state from the hypotheses that are empirically tested. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29412210','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29412210"><span>Aerogel materials with periodic structures imprinted with cellulose nanocrystals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Yi-Tao; Dai, Yiling; Nguyen, Thanh-Dinh; Hamad, Wadood Y; MacLachlan, Mark J</p> <p>2018-02-22</p> <p>Novel aerogel materials with periodic structures derived from chiral nematic liquid crystalline cellulose nanocrystals (CNCs) are reported. The liquid crystalline structure of phase-separated CNCs is locked by a simple solvent exchange method or silica condensation. Both cellulose and silica/cellulose aerogel materials were obtained after critical point drying, and subsequent calcination of the silica/cellulose composite afforded a silica aerogel with periodic order. Gas adsorption and electron microscopy studies revealed that these materials have high surface areas and a unique chiral nematic structure imparted from the helicoidal CNC template. This is a new, scalable approach to aerogel materials with highly anisotropic structures. The high porosity and periodic, chiral features of these new materials may make them suitable for applications that require anisotropic properties or as hard templates for the construction of other ordered aerogels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25871064','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25871064"><span>Towards a thermodynamics of active matter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Takatori, S C; Brady, J F</p> <p>2015-03-01</p> <p>Self-propulsion allows living systems to display self-organization and unusual phase behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises, however, as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhRvB..67q2404C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhRvB..67q2404C"><span>Ground state of a Heisenberg chain with next-nearest-neighbor bond alternation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capriotti, Luca; Becca, Federico; Sorella, Sandro; Parola, Alberto</p> <p>2003-05-01</p> <p>We investigate the ground-state properties of the spin-half J1-J2 Heisenberg chain with a next-nearest-neighbor spin-Peierls dimerization using conformal field theory and Lanczos exact diagonalizations. In agreement with the results of a recent bosonization analysis by Sarkar and Sen [Phys. Rev. B 65, 172408 (2002)], we find that for small frustration (J2/J1) the system is in a Luttinger spin-fluid phase, with gapless excitations, and a finite spin-wave velocity. In the regime of strong frustration the ground state is spontaneously dimerized and the bond alternation reduces the triplet gap, leading to a slight enhancement of the critical point separating the Luttinger phase from the gapped one. An accurate determination of the phase boundary is obtained numerically from the study of the excitation spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870030829&hterms=asbestos&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dasbestos','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870030829&hterms=asbestos&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dasbestos"><span>Nickel-hydrogen separator development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gonzalez-Sanabria, O. D.</p> <p>1986-01-01</p> <p>The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. A program has been established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JSMTE..06..003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JSMTE..06..003H"><span>Collapsing lattice animals and lattice trees in two dimensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, Hsiao-Ping; Grassberger, Peter</p> <p>2005-06-01</p> <p>We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the collapsed phase, we have some evidence for its existence and rough location, but no precise estimates of critical exponents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770059500&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWind%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770059500&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWind%2Benergy"><span>Momentum and energy transport by waves in the solar atmosphere and solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacques, S. A.</p> <p>1977-01-01</p> <p>The fluid equations for the solar wind are presented in a form which includes the momentum and energy flux of waves in a general and consistent way. The concept of conservation of wave action is introduced and is used to derive expressions for the wave energy density as a function of heliocentric distance. The explicit form of the terms due to waves in both the momentum and energy equations are given for radially propagating acoustic, Alfven, and fast mode waves. The effect of waves as a source of momentum is explored by examining the critical points of the momentum equation for isothermal spherically symmetric flow. We find that the principal effect of waves on the solutions is to bring the critical point closer to the sun's surface and to increase the Mach number at the critical point. When a simple model of dissipation is included for acoustic waves, in some cases there are multiple critical points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12096898','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12096898"><span>Pure F-actin networks are distorted and branched by steps in the critical-point drying method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Resch, Guenter P; Goldie, Kenneth N; Hoenger, Andreas; Small, J Victor</p> <p>2002-03-01</p> <p>Elucidation of the ultrastructural organization of actin networks is crucial for understanding the molecular mechanisms underlying actin-based motility. Results obtained from cytoskeletons and actin comets prepared by the critical-point procedure, followed by rotary shadowing, support recent models incorporating actin filament branching as a main feature of lamellipodia and pathogen propulsion. Since actin branches were not evident in earlier images obtained by negative staining, we explored how these differences arise. Accordingly, we have followed the structural fate of dense networks of pure actin filaments subjected to steps of the critical-point drying protocol. The filament networks have been visualized in parallel by both cryo-electron microscopy and negative staining. Our results demonstrate the selective creation of branches and other artificial structures in pure F-actin networks by the critical-point procedure and challenge the reliability of this method for preserving the detailed organization of actin assemblies that drive motility. (c) 2002 Elsevier Science (USA).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24476090','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24476090"><span>Selective free radical reactions using supercritical carbon dioxide.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar</p> <p>2014-02-12</p> <p>We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770024055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770024055"><span>Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Simoneau, R. J.</p> <p>1977-01-01</p> <p>Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679686-critical-points-cosmic-velocity-field-uncertainties-value-hubble-constant','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679686-critical-points-cosmic-velocity-field-uncertainties-value-hubble-constant"><span>Critical points of the cosmic velocity field and the uncertainties in the value of the Hubble constant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Hao; Naselsky, Pavel; Mohayaee, Roya, E-mail: liuhao@nbi.dk, E-mail: roya@iap.fr, E-mail: naselsky@nbi.dk</p> <p>2016-06-01</p> <p>The existence of critical points for the peculiar velocity field is a natural feature of the correlated vector field. These points appear at the junctions of velocity domains with different orientations of their averaged velocity vectors. Since peculiar velocities are the important cause of the scatter in the Hubble expansion rate, we propose that a more precise determination of the Hubble constant can be made by restricting analysis to a subsample of observational data containing only the zones around the critical points of the peculiar velocity field, associated with voids and saddle points. On large-scales the critical points, where themore » first derivative of the gravitational potential vanishes, can easily be identified using the density field and classified by the behavior of the Hessian of the gravitational potential. We use high-resolution N-body simulations to show that these regions are stable in time and hence are excellent tracers of the initial conditions. Furthermore, we show that the variance of the Hubble flow can be substantially minimized by restricting observations to the subsample of such regions of vanishing velocity instead of aiming at increasing the statistics by averaging indiscriminately using the full data sets, as is the common approach.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97d1117J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97d1117J"><span>Compatible orders and fermion-induced emergent symmetry in Dirac systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janssen, Lukas; Herbut, Igor F.; Scherer, Michael M.</p> <p>2018-01-01</p> <p>We study the quantum multicritical point in a (2+1)-dimensional Dirac system between the semimetallic phase and two ordered phases that are characterized by anticommuting mass terms with O (N1) and O (N2) symmetries, respectively. Using ɛ expansion around the upper critical space-time dimension of four, we demonstrate the existence of a stable renormalization-group fixed point, enabling a direct and continuous transition between the two ordered phases directly at the multicritical point. This point is found to be characterized by an emergent O (N1+N2) symmetry for arbitrary values of N1 and N2 and fermion flavor numbers Nf as long as the corresponding representation of the Clifford algebra exists. Small O (N ) -breaking perturbations near the chiral O (N ) fixed point are therefore irrelevant. This result can be traced back to the presence of gapless Dirac degrees of freedom at criticality, and it is in clear contrast to the purely bosonic O (N ) fixed point, which is stable only when N <3 . As a by-product, we obtain predictions for the critical behavior of the chiral O (N ) universality classes for arbitrary N and fermion flavor number Nf. Implications for critical Weyl and Dirac systems in 3+1 dimensions are also briefly discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001037','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001037"><span>Precision Pointing for the Wide-Field Infrared Survey Telescope (WFIRST)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stoneking, Eric; Hsu, Oscar; Welter, Gary</p> <p>2017-01-01</p> <p>The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to ad-dress the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the GNC subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001038','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001038"><span>Precision Pointing for the Wide-Field Infrared Survey Telescope(WFIRST)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stoneking, Eric T.; Hsu, Oscar C.; Welter, Gary</p> <p>2017-01-01</p> <p>The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to address the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the Guidance, Navigation, and Control (GNC) subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930092083','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930092083"><span>Investigation of Separation of the Turbulent Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schubauer, G B; Klebanoff, P S</p> <p>1951-01-01</p> <p>An investigation was conducted on a turbulent boundary layer near a smooth surface with pressure gradients sufficient to cause flow separation. The reynolds number was high, but the speeds were entirely within the incompressible flow range. The investigation consisted of measurements of mean flow, three components of turbulence intensity, turbulent shearing stress, and correlations between two fluctuation components at a point and between the same component of different points. The results are given in the form of tables and graphs. The discussion deals first with separation and then with the more fundamental question of basic concepts of turbulent flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJT....35..914N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJT....35..914N"><span>Determination of Critical Parameters Based on the Intensity of Transmitted Light Around Gas-Liquid Interface: Critical Parameters of CO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakayama, Masaki; Katano, Hiroaki; Sato, Haruki</p> <p>2014-05-01</p> <p>A precise determination of the critical temperature and density for technically important fluids would be possible on the basis of the digital image for the visual observation of the phase boundary in the vicinity of the critical point since the sensitivity and resolution are higher than those of naked eyes. In addition, the digital image can avoid the personal uncertainty of an observer. A strong density gradient occurs in a sample cell at the critical point due to gravity. It was carefully assessed to determine the critical density, where the density profile in the sample cell can be observed from the luminance profile of a digital image. The density-gradient profile becomes symmetric at the critical point. One of the best fluids, whose thermodynamic properties have been measured with the highest reliability among technically important fluids, would be carbon dioxide. In order to confirm the reliability of the proposed method, the critical temperature and density of carbon dioxide were determined using the digital image. The critical temperature and density values of carbon dioxide are ( and ( kg m, respectively. The critical temperature and density values agree with the existing best values within estimated uncertainties. The reliability of the method was confirmed. The critical pressure, 7.3795 MPa, corresponding to the determined critical temperature of 304.143 K is also proposed. A new set of parameters for the vapor-pressure equation is also provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15267695','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15267695"><span>Scaling behavior of nonisothermal phase separation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rüllmann, Max; Alig, Ingo</p> <p>2004-04-22</p> <p>The phase separation process in a critical mixture of polydimethylsiloxane and polyethylmethylsiloxane (PDMS/PEMS, a system with an upper critical solution temperature) was investigated by time-resolved light scattering during continuous quenches from the one-phase into the two-phase region. Continuous quenches were realized by cooling ramps with different cooling rates kappa. Phase separation kinetics is studied by means of the temporal evolution of the scattering vector qm and the intensity Im at the scattering peak. The curves qm(t) for different cooling rates can be shifted onto a single mastercurve. The curves Im(t) show similar behavior. As shift factors, a characteristic length Lc and a characteristic time tc are introduced. Both characteristic quantities depend on the cooling rate through power laws: Lc approximately kappa(-delta) and tc approximately kappa(-rho). Scaling behavior in isothermal critical demixing is well known. There the temporal evolutions of qm and Im for different quench depths DeltaT can be scaled with the correlation length xi and the interdiffusion coefficient D, both depending on DeltaT through critical power laws. We show in this paper that the cooling rate scaling in nonisothermal demixing is a consequence of the quench depth scaling in the isothermal case. The exponents delta and rho are related to the critical exponents nu and nu* of xi and D, respectively. The structure growth during nonisothermal demixing can be described with a semiempirical model based on the hydrodynamic coarsening mechanism well known in the isothermal case. In very late stages of nonisothermal phase separation a secondary scattering maximum appears. This is due to secondary demixing. We explain the onset of secondary demixing by a competition between interdiffusion and coarsening. (c) 2004 American Institute of Physics</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JPhA...46V5204K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JPhA...46V5204K"><span>Elliptic Euler-Poisson-Darboux equation, critical points and integrable systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konopelchenko, B. G.; Ortenzi, G.</p> <p>2013-12-01</p> <p>The structure and properties of families of critical points for classes of functions W(z,{\\overline{z}}) obeying the elliptic Euler-Poisson-Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(\\beta ,{\\overline{\\beta }};1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19427820','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19427820"><span>[Powdered infant formulae preparation guide for hospitals based on Hazard Analysis and Critical Control Points (HACCP) principles].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vargas-Leguás, H; Rodríguez Garrido, V; Lorite Cuenca, R; Pérez-Portabella, C; Redecillas Ferreiro, S; Campins Martí, M</p> <p>2009-06-01</p> <p>This guide for the preparation of powdered infant formulae in hospital environments is a collaborative work between several hospital services and is based on national and European regulations, international experts meetings and the recommendations of scientific societies. This guide also uses the Hazard Analysis and Critical Control Point principles proposed by Codex Alimentarius and emphasises effective verifying measures, microbiological controls of the process and the corrective actions when monitoring indicates that a critical control point is not under control. It is a dynamic guide and specifies the evaluation procedures that allow it to be constantly adapted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23829753','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23829753"><span>Quasiparticle mass enhancement close to the quantum critical point in BaFe2(As(1-x)P(x))2.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walmsley, P; Putzke, C; Malone, L; Guillamón, I; Vignolles, D; Proust, C; Badoux, S; Coldea, A I; Watson, M D; Kasahara, S; Mizukami, Y; Shibauchi, T; Matsuda, Y; Carrington, A</p> <p>2013-06-21</p> <p>We report a combined study of the specific heat and de Haas-van Alphen effect in the iron-pnictide superconductor BaFe2(As(1-x)P(x))2. Our data when combined with results for the magnetic penetration depth give compelling evidence for the existence of a quantum critical point close to x=0.30 which affects the majority of the Fermi surface by enhancing the quasiparticle mass. The results show that the sharp peak in the inverse superfluid density seen in this system results from a strong increase in the quasiparticle mass at the quantum critical point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhRvD..62h4017P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhRvD..62h4017P"><span>Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillips, Nicholas G.; Hu, B. L.</p> <p>2000-10-01</p> <p>We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that, contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universes, and for examining the design feasibility of real-life ``time machines.'' For the Minkowski vacuum we find that the ratio of the variance to the mean-squared, calculated from the coincidence limit, is identical to the value of the Casimir case at the same limit for spatial point separation while identical to the value of a hot flat space result with a temporal point separation. We analyze the origin of divergences in the fluctuations of the energy density and discuss choices in formulating a procedure for their removal, thus raising new questions about the uniqueness and even the very meaning of regularization of the energy momentum tensor for quantum fields in curved or even flat spacetimes when spacetime is viewed as having an extended structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PApGe.tmp..225R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PApGe.tmp..225R"><span>Experimental Study of Thermal Field Evolution in the Short-Impending Stage Before Earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Yaqiong; Ma, Jin; Liu, Peixun; Chen, Shunyun</p> <p>2017-08-01</p> <p>Phenomena at critical points are vital for identifying the short-impending stage prior to earthquakes. The peak stress is a critical point when stress is converted from predominantly accumulation to predominantly release. We call the duration between the peak stress and instability "the meta-instability stage", which refers to the short-impending stage of earthquakes. The meta-instability stage consists of a steady releasing quasi-static stage and an accelerated releasing quasi-dynamic stage. The turning point of the above two stages is the remaining critical point. To identify the two critical points in the field, it is necessary to study the characteristic phenomena of various physical fields in the meta-instability stage in the laboratory, and the strain and displacement variations were studied. Considering that stress and relative displacement can be detected by thermal variations and peculiarities in the full-field observations, we employed a cooled thermal infrared imaging system to record thermal variations in the meta-instability stage of stick slip events generated along a simulated, precut planer strike slip fault in a granodiorite block on a horizontally bilateral servo-controlled press machine. The experimental results demonstrate the following: (1) a large area of decreasing temperatures in wall rocks and increasing temperatures in sporadic sections of the fault indicate entrance into the meta-instability stage. (2) The rapid expansion of regions of increasing temperatures on the fault and the enhancement of temperature increase amplitude correspond to the turning point from the quasi-static stage to the quasi-dynamic stage. Our results reveal thermal indicators for the critical points prior to earthquakes that provide clues for identifying the short-impending stage of earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770017641','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770017641"><span>Critical areas: Satellite power systems concepts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1975-01-01</p> <p>Critical Areas are defined and discussed in the various areas pertinent to satellite power systems. The presentation is grouped into five areas (General, Space Systems, Solar Energy Conversion, Microwave Systems, and Environment/Ecology) with a sixth area (Power Relay) considered separately in an appendix. Areas for Future Consideration as critical areas are discussed in a second appendix.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>